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Chapter 1
Introduction



Chapter 1

1.1 Clinical Background and Computational Pathology

At the microscopic scale, the structure of tissue specimens constitutes a primary source
of information about the state of a disease. By observing tissue samples under a mi-
croscope, pathologists quantify disease-associated structures that support clinical de-
cision making. In the case of cancerous tissues, this assessment is essential to deter-
mine the prognosis of patients. To measure the appearance abnormality of cancer-
ous tissues, pathologists rely on well-established grading systems that define cancer-
specific tissue characteristics to inspect [1]–[3]. For example, the Gleason Grading Sys-
tem [1] categorizes patterns in prostate cancer tissue samples based on the formation
of glands and infiltrative patterns; the Nottingham Grading System [2] grades breast
cancer tissue samples based on the assessment of tubule formation, the degree of nu-
clear pleomorphism and the count of mitotic figures.

The on-going development of whole-slide image scanners has enabled the dig-
itization of glass slides of tissue specimens as an alternative to the use of conven-
tional brightfield microscopes. In addition to transferring the examination and anno-
tation procedures of tissue sections to a computer, the digitization of pathology labs
equipped with this technology has induced a demand for automated image analysis
systems (Figure 1.1) that can assist pathologists in their routine workflow [4], [5].

  

20µm

5mm

Histology Slide Whole-Slide Image

scanning processing
Prediction

Figure 1.1: Illustration of the digital pathology acquisition and processing pipeline. A physical
histology slide is digitized into a whole-slide image that is then processed by an algorithm to make a
prediction or quantify a biomarker of interest.

Such systems present significant potential as they can perform tasks in a faster,
systematic and reproducible way in comparison to human experts. With modern
computational resources, it has become possible to process gigapixel whole-slide im-
ages (WSIs) at high resolution in a few minutes (whereas inspecting the same amount
of data would be impracticable for a human). Yet, the most promising benefit of
such automated systems is the reliable quantification of biomarkers, that can support
pathologists to more accurately assess the prognosis of cancer patients, improving
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inter-observer agreement, reducing cancer interpretive errors and ultimately leading
to better patient care. Beyond that, such computational power also enables prioritiz-
ing cases and refocusing the workload of pathologists on other tasks that require their
expertise.

From a research viewpoint, this technology has fostered the creation and release
of large datasets of whole-slide images, joined with molecular and clinical data. The
field of computational pathology emerged from the access to these datasets, as they
provide researchers with the material to develop and validate computational models
and algorithms that can extract, quantify and discover disease-associated patterns [6],
[7] and answer the demand for reliable automated image analysis systems. To leverage
this large amount of image data, the computational pathology community has estab-
lished machine learning and more specifically convolutional neural networks (CNNs)
as the prominent methodology to achieve state-of-the-art performances across many
histopathology image classification tasks [8]. By modeling associations between com-
plex visual patterns in WSIs and corresponding target quantities (labels) that exist in
the training data, CNNs have the potential to generalize and make accurate predic-
tions of these quantities on new unseen images encountered in a clinical context.

1.2 Machine Learning for Computational Pathology

The key principle behind the success of this methodology is that CNN-based models
have the ability to learn complex informative high-level features that are predictive
of target quantities of interest, directly from data. As this feature representation is
learned from training examples, the subsequent system does not have to rely on a re-
stricted set of hand-crafted features that requires domain expertise to be defined, and
whose implementation has typically a higher computational cost than the forward-
pass of a CNN. Given sufficient training data and capacity, the universal approxima-
tion property of neural networks implies that hand-crafted features can be in principle
reproduced by CNNs, and even surpassed if they are sub-optimal with respect to solv-
ing a given task. This explains why deep learning models have outperformed models
based on feature engineering: we refer to [9] for an overview of recent machine learn-
ing advances in the field of medical image analysis, and to [8], [10]–[13] for an overview
of machine learning techniques dedicated to histology image analysis.

As this data-driven paradigm has moved the manual feature extraction process of
classical machine learning to the design of model architectures and training protocols,
this thesis presents developments that concern these design decisions. Depending
on the assumptions that can be made to train the models, the type of labels available,
and the desired level of interpretability, we distinguish three families of CNN-based
frameworks for WSI-based predictive/quantitative tasks (Figure 1.2).

3
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1. Patch-level classification: a CNN is trained to classify known tissue biomark-
ers and patterns given a training set of image patch examples extracted from
WSIs that were labeled by expert annotators. Here, CNNs make patch-level pre-
dictions (detection and classification of objects) that can then be used to de-
rive slide-level quantities that have a clinical value (Figure 1.2(a)). Examples of
such CNN-based applications include mitosis detection [14], nuclei segmenta-
tion [15], nuclei classification [16], tubule detection [17] or lesion detection [18].

2. Multiple-instance learning: in the scenario in which patch-level labels are not
available, a CNN is trained to learn a feature representation of image patch in-
stances extracted from WSIs (here WSIs are viewed as bags of instances). This
feature representation is then aggregated from all the instances of a given WSI
to produce a slide-level representation. This aggregated representation is then
input to a classifier that is trained to predict slide-level target quantities (Fig-
ure 1.2(b)).

3. End-to-end predictions: a CNN-based model takes a full WSI as input and is di-
rectly trained to predict a slide-level target (Figure 1.2(c)). This approach relies
on methods that enable overcoming memory and computational limitations re-
lated to processing gigapixel WSIs in a end-to-end fashion [19], [20].

  

Quantitative 
analysis of patch-
level predictions

patch-level
processing

instance-level
processing

...
aggregatingpartitioning

end-to-end
processing

Slide-level
prediction

Slide-level 
prediction

slide-level
representation

slide-level
representation

(a)

(b)

(c)

Figure 1.2: Illustration of the main families of computational frameworks to process WSIs.
(a) Patch-level classification (here, example of mitosis detection). (b) Multiple instance learning. (c)
End-to-end WSI processing.
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1.3 Invariant Representation Learning

The common point across this spectrum of WSI processing frameworks is that all use
CNNs to learn abstract feature representations of the input histology images to com-
pute an output. Although these representations are aimed to capture phenotypical
features that are informative for the task at hand, in practice, this representation is
highly sensitive to irrelevant factors of appearance that are present in the images. As
these irrelevant factors are potentially captured in the learned representation, the out-
put of the trained models is subject to vary in an unpredictable manner when these
(confounding) factors change, making the developed systems unreliable to some ex-
tent.

Histology images (and more generally bioimages) are known to exhibit a high vari-
ability of appearance that is caused by factors that are independent of the inherent
morphological characteristics of the imaged tissues [21], [22]. These inevitable factors
of variation can thus be treated as irrelevant with respect to solving most tasks of in-
terest. In the case of WSIs, we consider four categories of sources of variations that
affect their appearance (Figure 1.3):

1. Histology slide preparation: as the preparation protocol varies from a pathol-
ogy lab to another, this causes appearance variations associated to the thick-
ness of the specimens, staining inconsistencies (concentration or fading), and
any other slide-specific artifacts (tissue distortions, improper fixation or embed-
ding).

2. The positioning of the tissue specimen on the slide is subject to variations, caus-
ing uninformative roto-translations of the acquired image.

3. Scanner characteristics (optical system, acquisition device/algorithm) and scan-
ning parameters (illumination, camera focus) are another independent source
of variation.

4. Other residual variations that are independent of the other categories.

In this thesis we consider histology images as samples of an unknown generative
process that involves multiple latent random variables (Figure 1.3 (a)). With this prob-
abilistic modeling perspective, solving a predictive task can be seen as an inference
process in which we want to recover the variables that are informative of the mor-
phology of tissues, that have a predictive power (Figure 1.3 (b)). Therefore, we address
the inference problem of representing images by explanatory latent variables that are
invariant to irrelevant factors of variations.

In the machine learning literature, the concept of learning invariant representa-
tions is covered in several topics including domain adaptation/generalization [23],
representation disentanglement [24]–[26] and fair classification [27], [28]. These top-
ics are of significant interest for computational pathology [7], [10], and thus motivates
the development of the frameworks presented in this thesis.
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Tissue Sample

Fixation
Embedding
Sectioning

Tissue Section

Staining
Mounting

ScannerSlide WSI

z0

z2

z3

x

Slide preparation

Specimen positioning

Scanning parameters

Tissue morphology

x z0

(a) Data Generative Process

z4Residual variables

Imagez1

(b) Inference Process

Figure 1.3: Illustration of the pipeline generating WSIs from tissue specimens. (a) Variations in the slide
preparation steps and in the scanning procedures constitute sources of irrelevant variations in the
image generative process. (b) In computational pathology, we are interested in inferring the
morphological information of the imaged tissues.

1.4 Outline

Following this line of research, this thesis describes new frameworks to constrain deep
learning models and provide them with invariance properties that improve their ro-
bustness to the irrelevant variability of histology data. Comparative analyses of the
developed methods across multiple datasets and classification tasks are presented.
The chapters are ordered in two parts. First, the Chapters 2, 3 focus on invariant rep-
resentations in the context of supervised learning (when pre-assigned labels of a set
of image examples are used to train the models) applied to patch-level classification
tasks. Then, chapters 4, 5, 6 concern learning representations from unlabeled data
which is a promising research direction with significant potential for computational
pathology applications.

In Chapter 2, we investigate methods to make CNN-based models robust to slide-
specific variations of appearance. Based on the assumption that all image patches
extracted from a given WSI are drawn from a unique data distribution, we propose to
consider every WSI of the training data as a domain, and address the problem of multi-
domain generalization. Domain-adversarial training is investigated as an alternative
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solution to conventional standardization and augmentation approaches. A compara-
tive analysis on two tasks is presented (inter-lab generalization of a mitosis classifier
and multi-organ generalization of a nuclei segmentation system).

In Chapter 3, we address the robustness of CNN-based models to the arbitrary
global orientation of tissue specimens. We propose a framework to encode the geo-
metric structure of the special Euclidean motion group SE(2) in CNNs to yield transla-
tion and rotation equivariance via the introduction of SE(2)-group convolution layers.
As a result, the robustness of the output of models equipped with this operation to
rotations of the input is guaranteed by construction. Relative improvement of perfor-
mances is shown on three different tasks (mitosis detection, nuclei segmentation and
tumor detection) in comparison to baseline models trained with rotation augmenta-
tion.

In Chapter 4, we present a qualitative proof-of-concept study related to tri-dimen-
sional rotational invariance. We describe an adversarial-driven method to infer a real-
istic tri-dimensional volume of stain concentrations that would produce realistic im-
ages under simulations of light transmission. This study gives insights into the possi-
bility for deep learning models to represent the underlying tri-dimensional structure
of imaged tissue slices from single two-dimensional views. This opens research direc-
tions towards granting additional rotational invariance into a learned representation.

In Chapter 5, we investigate an adversarial-driven extension of the variational au-
toencoder (VAE) framework to learn a useful latent representation of bioimages from
unlabeled data. We show it is possible to train a latent variable model that is compet-
itive with other popular models in a downstream classification task. As opposed to
existing models, this method enables direct synthesis and reconstruction of realistic
images from the latent variables, providing a tool for researchers to gain better insight
into structure variations.

In Chapter 6, we further extend the VAE framework by leveraging the group struc-
ture of rotation-equivariant CNNs to learn orientation-wise disentangled generative
factors of histology images. As a result, this learned representation can be directly
used in downstream classification tasks (nuclear pleomorphism grading, mitotic ac-
tivity assessment, cell type classification) and is competitive with respect to baseline
VAEs.

7
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Learning domain-invariant

representations of
histological images

This chapter is based on:

M. W Lafarge, J. P. Pluim, K. A. Eppenhof, and M. Veta, “Learning domain-invariant represen-
tations of histological images”, Frontiers in Medicine, vol. 6, p. 162, 2019.

M. W. Lafarge, J. P. Pluim, K. A. Eppenhof, P. Moeskops, and M. Veta, “Domain-adversarial neu-
ral networks to address the appearance variability of histopathology images”, in Proceedings of
the International Workshop on Deep Learning in Medical Image Analysis in Conjunction with
MICCAI, 2017, pp. 83–91.



Chapter 2

2.1 Introduction

The traditional microscopy-based workflow of pathology labs is undergoing a rapid
transformation since the introduction of whole-slide scanning. This new technology
allows viewing of digitized histological slides on computer monitors and integration of
advanced image analysis algorithms, which can enable pathologists to perform more
accurate and objective analysis of tissue.

The process of producing a digital slide consists of several successive procedures:
formalin fixation and paraffin embedding of the tissue, sectioning, staining and scan-
ning. Each procedure has a multitude of parameters that vary between pathology labs
and within the same lab over time. This results in significant tissue appearance vari-
ation in the digital slides, that adds to the underlying biological variability that can
occur, for example, due to differences in tissue type or pathology.

In a real-world scenario, histological images are made available in pair with ground-
truth annotations for the development of a predictive model to solve and automate a
given task. Very often, these images were acquired in specific conditions (via the same
scanner, following a lab-specific preparation process or from a small cohort for ex-
ample) resulting in a narrower range of appearances than what could be observed in
other conditions (different scanner, lab or cohort).

The discrepancy between the restricted data distribution available at training time
and the higher variability of possible histological images on which a model is expected
to perform, often limits the generalization of image analysis techniques, including
deep learning-based methods.

This problem is typically addressed with ad-hoc methods based on known priors.
For instance, one might correct for the known staining variability via a staining nor-
malization approach. However, relying on such specifically chosen priors raises the
risk to leave out or enhance domain-specific noise in the learned representation. For
example, staining normalization methods will not handle other sources of variability
such as specific tissue pleomorphism.

Deep learning methods learn abstract representations directly from the image data
and have achieved state-of-the-art results in many computer vision and medical im-
age analysis tasks including histopathology. Every histological slide results from a
given set of latent parameters (corresponding to a specific case, hospital or tissue type
for instance) and thus can be considered an individual domain. As such, all the image
patches extracted from a given whole slide image (WSI) are samples of the same data
distribution, and so, the same domain. We hypothesize that learning a representation
that is explicitly invariant to the domains of the training data is likely to be also invari-
ant, to some extent, to new unseen domains. This hypothesis is motivated by the fact
that regular Convolutional Neural Networks (CNNs) preserve domain information in
their representation that is not useful for the task at hand. This phenomenon is illus-
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Figure 2.1: Illustration of the domain distribution of the internal representation of convolutional
neural networks (CNN) trained for the task of nuclei segmentation. The scatter plots are t-SNE
embeddings [29] of a random selection of 64 image patches for each of 12 digital slides, for which a
representative patch is displayed on the left and framed with matching colors. Each image patch is
represented by the concatenated means and standard deviations of its activations after the second
convolutional layer of the CNNs. Two models are compared: (a) shows the representation learned by a
baseline CNN model and (b) a model that uses stain-normalized inputs and domain-adversarial
training. The models were trained with image patches from these 12 slides, and image patches from two
hold-out slides (colon tissue type) were embedded the same way and are shown in gray. The baseline
model induces domain clusters in the embedding space whereas the domain-invariant model produces
a smoother distribution of the domains.

trated in Figure 2.1 (a): the appearance features present in some digital slides form
separated clusters in the space of the learned representation, even if the slides share
a known variability factor (patches from different liver tissue images, in blue, are dis-
tributed apart when represented by a baseline model). In the example of Figure 2.1
(a), image patches that originate from an unseen domain (colon tissue represented in
gray), form a disjoint cluster, in a region that the model was not trained to process,
and that is likely to lead to poor performances. However, this internal distribution can
become smoother when strategies are employed to make the representation domain-
invariant. The distribution of the embeddings shown in Figure 2.1 (b), illustrates how
the representation of seen domains that was disjoint among the same organ now over-
laps, and how unseen domains align with this smooth distribution: the gray cluster
representing an unseen organ tissue type is now connected to the rest of the embed-
dings, and is more likely to lead to better generalization performances.

In this paper, we propose a domain-adversarial framework to constrain CNN mod-
els to learn domain-invariant representations (Section 2.3.2)), and compare it with
staining normalization (Section 2.3.3), augmentation methods (Section 2.3.3, 2.3.3)
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and combinations of these methods. Domain-adversarial training differs from con-
ventional methods in the sense it does not rely on defined hard priors: the proposed
framework leverages the domain information that is available in most histopathology
datasets in order to achieve domain invariance, whereas this information is usually
left aside by conventional methods.

This work is an extension of the comparative analysis presented at the 2017 MICCAI-
DLMIA workshop [30]. In addition to an extended set of experiments, we also make a
novel technical contribution that enables the use of batch normalization when train-
ing a single network with different input data distributions, as is required with domain
adversarial networks.

We show experiments for two different tasks: 1) mitosis detection with a testing set
originating from pathology labs that were unseen during training and 2) nuclei seg-
mentation with a testing set consisting of tissue types that were unseen during train-
ing.

2.2 Related Work

Machine learning models for histopathology image analysis that directly tackle the
appearance variability can be grouped in two main categories: 1) methods that rely
on pre-processing of the image data and 2) methods that directly modify the machine
learning model and/or training procedure.

The first group of methods includes a variety of staining normalization techniques
[31], [32]. Some image processing pipelines handle the variability problem via ex-
tensive data augmentation strategies, often involving color transformations [16], [30],
[33]–[35]. Hybrid strategies that perturb the staining distributions on top of a staining
normalization procedure have also been investigated [36]–[39].

The second group of methods is dominated by domain adaptation approaches.
Domain adaptation assumes the model representation learned from a source domain
can be adapted to a new target domain. Fine-tuning and domain-transfer solutions
were proposed for deep learning models [40]–[43], and with applications to digital
pathology [44]–[46]. Another approach consists in considering the convolutional fil-
ters of the CNN as domain-invariant parameters whereas the domain variability can
be captured with the Batch Normalization (BN) parameters [47], [48]. Adaptation to
new domains can be achieved by fine-tuning a new set of BN parameters dedicated to
these new domains [48].

Adversarial training of CNNs was proposed to achieve domain adaptation from a
source domain of annotated data to a single target domain from which unlabeled data
is available [49].

Adversarial approaches aim at learning a shared representation that is invariant
to the source and target domains via a discriminator CNN, that is used to penalize the
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model from learning domain-specific features [49]–[53]. This type of method has been
successfully applied and adapted to the field of medical image analysis [54]. These
methods, however, require that data from the target domains is available at training
time, which is not a constraint of our approach and were not investigated on tasks
involving histological images.

Finally, we proposed in [30] a similar approach that enforces the model to learn a
domain-agnostic representation for a given extensive domain variability present within
the training data and we investigated its ability to perform on new unseen domains.

2.3 Material and Methods

We evaluate the different approaches for achieving domain invariance on two relevant
histopathology image analysis tasks: nuclei segmentation and mitosis detection. Au-
tomated nuclei segmentation is an important tool for many downstream analyses of
histopathological images, such as assessment of nuclear pleomorphism. Mitosis de-
tection is the first step towards assessment of the tumor proliferation activity, and is
therefore an important biomarker for breast cancer prognostication and part of the
widely used Bloom-Richardson-Elston grading system [55].

In this section, we first describe the datasets used for the two image analysis tasks,
and specify the domain shift under which the generalization of trained models on new
domains will be assessed. Then, we describe the baseline convolutional neural net-
work model, the domain-adversarial framework, the staining normalization and the
data augmentation approaches that will be used in the comparative analysis.

2.3.1 Datasets

The proposed comparative analysis was made on two datasets which expose two dif-
ferent types of domain variability. These datasets correspond to different tasks, en-
abling to study the framework viability in multiple analysis settings.

Inter-Lab Mitosis Dataset

We used the TUPAC16 dataset [56] that includes 73 breast cancer cases with histolog-
ical slides stained with Hematoxylin-Eosin (H&E). The dataset consists of a selection
of high power field images (HPF) that were annotated with mitotic figure locations,
derived from the consensus of at least two pathologists.

The cases come from three different pathology labs (PLA, PLB and PLC with 23,
25 and 25 cases respectively) and were scanned with two different whole-slide image
scanners (the slides from PLB and PLC were scanned with the same scanner). We split
the dataset as follows:

• A training set of eight cases from PLA (458 mitoses).
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• A validation set with four other cases from PLA (92 mitoses).

• A test set with the remaining 11 cases from PLA (533 mitoses), in order to mea-
sure the intra-lab performance of the trained models in the same condition as
the AMIDA13 challenge [57].

• A test set using the 50 cases from PLB and PLC (469 mitoses), in order to evaluate
inter-lab generalization performance.

Multi-Organ Nuclei Dataset

We used the multi-organ dataset created in [32]: a subset of 30 HPF images, selected
from single WSIs of H&E-stained tissue slices, prepared in 18 different hospitals, and
provided by The Cancer Genome Atlas [58]. These 30 images consist of seven different
tissue types with nuclei mask annotations publicly available [32].

To be in conditions similar to [32], we split the dataset in two groups of tissue types
TA={Breast, Liver, Kidney, Prostate} and TB={Bladder, Colon, Stomach}. For experimen-
tal purpose, we split the dataset in the conditions of [32] as follows:

• A training set of 12 HPF images with three images for each tissue type of TA (7337
nuclei).

• A validation set of four other HPF images with one images for each tissue type
of TA (1474 nuclei).

• A test set of eight other HPF images with two images for each tissue type of TA

(4130 nuclei).

• A test set using the six HPF images of TB with two images of each type (4025
nuclei), in order to to evaluate cross-tissue-type generalization performance.

2.3.2 Domain-Adversarial Framework

The framework we propose is designed for classification tasks given images x that are
associated with class labels y.

The Underlying Convolutional Network

The proposed framework is applicable to any baseline CNN architecture that can be
decomposed in two parts: a feature extractor CNNF and a classifier CNN C, parame-
terized by θF and θC respectively, as illustrated in Figure 2.2.
F takes images x as input and outputs an intermediate representation F(x;θF ),

whereasC takesF(x;θF ) as input and outputs a classification probabilityC(F(x;θF );θC).
The (F , C) pipeline can be trained by minimizing the cross-entropy lossLC(x,y;θF ,θC).
θF and θC are optimized by stochastic gradient descent using mini-batches of image-
label pairs (x, y).
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Chapter 2

Domain-Adversarial Training

The goal of the framework is to make the intermediate representation F(x,θF ) in-
variant to the domains of the training data. We make the assumption that by making
F(x,θF ) domain-agnostic, this will improve the cross-domain generalization of the
classifier C. By making the representation invariant to the known domain variability
of the training data, we can expect, in some extent, it will also be invariant to unseen
variability factors.

Towards this goal, we turned the baseline CNN to a domain-adversarial neural net-
work (DANN) [49] by involving a discriminator CNN D with parameters θD. D takes
the representationF(x;θF ) as input and predicts the domain probabilityD(F(x;θF ),θD)
of the input training images x via softmax activation. We define LD(x, d;θF ,θD) as
the cross-entropy loss of the domain discriminator given an input of image-domain
pair (x, d), with d a domain identifier, unique to each slide of the training dataset.

The minimization ofLD(x, d;θF ,θD) during training implies that domain-specific
features get extracted from the shared representation that we want to make domain-
invariant. Such domain identification is possible since regular models naturally dis-
tribute domains apart in the representation as shown in Figure 2.1 (a). In order to
obtain domain-invariance, the weights θF are jointly optimized by stochastic gradient
ascent, to maximizeLD(x, d;θF ,θD). This process aims at removing domain-specific
features from the representation that are useless for the task at hand, as it is illustrated
in Figure 2.1 (b), while still being optimized to improve the performances of C.

Handling Classification-Related and Domain-Related Input Distributions

Batch Normalization (BN) [59] is used throughout the networks F , C and D as it is
an efficient method that allows fast and stable training, in particular with adversarial
components [60]. By normalizing every batch with computed mean and variance at
every convolutional layer, BN implies that the distribution of the feature maps is a
function of the distribution of the input batch. As a consequence, the distribution of
the feature maps will vary with the balance of the batch associated with every pass (see
Section 2.3.2).

It is necessary for the domain-adversarial update to be computed with a forward-
pass in the same conditions as for the classification pass. Therefore, we propose to
apply BN during the adversarial pass using the accumulated moments of F , while
keeping a regular BN computation and regular moment accumulation during the clas-
sification pass. To this end, we adjusted the adversarial update (2.4) to update only the
convolutional weights ϑF ⊂ θF , so as not to interfere with the BN weights, updated
according to (2.1) of the classification pass, with a similar motivation as in [48].
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The domain-adversarial training procedure consists in alternating between four
update rules:

Optimization of the feature extractor with learning
rate λC :

θF ← θF − λC ∂LC∂θF
(2.1)

Optimization of the classifier : θC ← θC − λC ∂LC∂θC
(2.2)

Optimization of the domain discriminator with
learning rate λD:

θD ← θD − λD ∂LD
∂θD

(2.3)

Adversarial update of the feature extractor: ϑF ← ϑF+αλD
∂LD
∂ϑF

(2.4)

The update rules (2.1) and (2.4) work in an adversarial way: with (2.1), the param-
eters θF are updated for the classification task (by minimizing LC ), and with (2.4),
a subset of the same parameters are updated to prevent the domains of origin to
be recovered from the representation F(·;θF ) (by maximizing LD). The parameter
α ∈ [0, 1] controls the influence of the adversarial component.

2.3.3 Comparison of Methods

For comparison purpose, we chose to study three different well-established standard
methods that aim at improving the generalization of deep learning models in the con-
text of histopathology image analysis and that do not require additional data. A visual
overview of these methods is presented in Figure 2.3. We also analyzed combinations
of these individual approaches together with the proposed domain-adversarial train-
ing framework.

  

(a) (b) (c) (d)

Figure 2.3: Illustration of different types of pre-processing augmentations: (a) Original images, (b) RGB
Color Augmentation, (c) Staining Normalization, (d) Staining Augmentation.
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Color Augmentation

Since the most prominent source of variability in histology images is the staining color
appearance, one alternative to artificially produce new training samples consists in
randomly perturbing the color distribution of sampled image patches. By increasing
the amount of different color distributions in the training set, the model is expected to
learn a representation that better generalize to this type of variability.

We performed color augmentation (CA) by transforming the contrast and shifting
the intensities of every color channel Ic ← ac(·Ic − µ(Ic)) + µ(Ic) + bc, where ac and
bc are drawn from uniform distributions ac ∼ U [0.9, 1.1] and bc ∼ U [−13,+13] and
where µ(Ic) is the mean intensity of Ic.

Staining Normalization

The opposite strategy is to reduce the appearance variability of all the images as a pre-
processing step before training and evaluating a trained CNN model. For hematoxylin
and eosin (H&E) stained slides, staining normalization (SN) methods can be used [61],
[62].

The RBG pixel intensities of H&E-stained histopathology images can be modeled
with the Beer-Lambert law of light absorption: Ic = I0 exp (−Ac,∗ ·C). In this expres-
sion c = 1, 2, 3 is the color-channel index,A ∈ [0,+∞]3×2 is the matrix of absorbance
coefficients and C ∈ [0,+∞]2 are the stain concentrations [61]. We perform staining
normalization with the method described in [62]. This is an unsupervised method
that decomposes any image with estimates of its underlying A and C. The appear-
ance variability over the dataset can then be reduced by recomposing all the images
using some fixed reference absorbance coefficients Aref .

Staining Augmentation

An approach between CA and SN consists in artificially perturbing the distribution of
the concentrations estimated in the unmixing step of SN before applying the recom-
posing step with constant Aref [36]–[39].

We experimented with Staining Augmentation (SNA) for comparison, by randomly
perturbing each estimated concentration map Ci linearly with Ci ← gi · Ci + hi,
where gi and hi are drawn from uniform distributions gi ∼ U [0.9, 1.1] and hi ∼
U [−0.1,+0.1].

2.4 Experiments

We implemented two DANN models [49], one for the mitosis detection task and one
for the nuclei segmentation task. Both problems are approached with a patch-based
classification setup. In the case of mitosis detection, C outputs the probability for the
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input patches to be centered on mitotic figures. In the case of nuclei segmentation,
C outputs the 3-class probability vectors for the center of the image patches: nuclei
foreground, nuclei edge, or background.

2.4.1 Architectures

For both problems, we chose straightforward convolutional networks, similar to the
related literature [14], [30], [32], [56], [57]. We chose to investigate DANN models with
a single bifurcation at the second max-pooling layer, corresponding to receptive fields
of size 12× 12 for the mitosis classifier and 16× 16 for the nuclei classifier.

Every convolutional layer is activated by a leaky Rectified Linear Unit (with co-
efficient 0.01), except for the output layers that are activated by a softmax function.
Architecture details are presented in Table 2.1 and Table 2.2.

Table 2.1: Architecture of the mitosis detection model. The feature extractorF and mitosis classifier C
form a 10-layer CNN with a single class-probability output. The domain classifierD is a 3-layer network
bifurcated at the second max-pooling layer ofF and outputs a 8-domain probability vector.

Feature Extractor and Mitosis Classifier Domain Classifier

Layer Size Filter Rec. F. Layer Output Filter Rec. F.

F

Input 64× 64× 3 1× 1

Conv 60×60×16 5× 5 5× 5

Max Pool 30×30×16 2× 2 6× 6

Conv 28×28×16 3× 3 10×10
Max Pool 14×14×16 2× 2 12×12 Bifurcation 14×14×16 12×12

C

Conv 12×12×16 3× 3 20×20 Conv 12×12×32 3× 3 20×20
DMax Pool 6× 6× 16 2× 2 24×24 Conv 10×10×64 3× 3 24×24

Conv 4× 4× 16 3× 3 40×40 Softmax 10× 10× 8 1× 1 24×24
Max Pool 2× 2× 16 2× 2 48×48

Conv 1× 1× 64 2× 2 64×64
Sigmoid 1× 1× 1 1× 1 64×64

2.4.2 Training Procedures

We used the same training procedure for the models of both the problems. For all
experimental configurations, image patches were transformed by a baseline augmen-
tation pipeline consisting of a random 90-degree rotation, random mirroring,−10/+
10% spatial-scaling. Sampling of non-mitosis figures and nuclei background classes
were adjusted by hard-negative mining using a first version of the baseline models to
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Table 2.2: Architecture of the nuclei segmentation model. The feature extractorF and nuclei classifier
C form a 9-layer CNN with a 3-class probability output. The domain classifierD is a 3-layer network
bifurcated at the second max-pooling layer ofF and outputs a 12-domain probability vector.

Feature Extractor and Nuclei Classifier Domain Classifier

Layer Size Filter Rec. F. Layer Output Filter Rec. F.

F

Input 52× 52× 3 1× 1

Conv 48×48×24 5× 5 5× 5

Max Pool 24×24×24 2× 2 6× 6

Conv 20×20×24 5× 5 14×14
Max Pool 10×10×24 2× 2 16×16 Bifurcation 10×10×24 16×16

C

Conv 8× 8× 24 3× 3 24×24 Conv 8× 8× 32 3× 3 24×24
DMax Pool 4× 4× 24 2× 2 28×28 Conv 6× 6× 64 3× 3 28×28

Conv 2× 2× 24 3× 3 44×44 Softmax 6× 6× 12 1× 1 28×28
Conv 1× 1× 96 2× 2 52×52

Softmax 1× 1× 3 1× 1 52×52

reject easy-to-classify image patches. The domain-balanced batches were built using
patches of size 24 × 24 for the mitosis detection model and 28 × 28 for the nuclei
segmentation model in order for the domain classifiers to output 1× 1 predictions.

The model weights were optimized with Stochastic Gradient Descent with learn-
ing rates λC = 0.01 and λD = 0.001 and momentum µ = 0.9. λC and λD were
decayed by a factor of 0.9 every 5000 iterations. L2-regularization was applied to all
the convolutional weights. For stability purposes and as proposed in [54], we used
a warm-up scheduling for the coefficient α, to control the influence of the adversar-
ial component, by following a linear increase from 0.0 to 1.0 from the 5000th to the
10000th training iteration.

2.5 Results

This section presents quantitative and qualitative evaluations of the ability of the de-
veloped models to generalize to a known factor of variability of the test set that is ab-
sent from the training data.

2.5.1 Mitosis Detection

The performances of the mitosis detection models were evaluated with the F1-score
as described in [14], [56], [57]. We used the trained classifiers to produce dense mi-
tosis probability maps for all test images. All local maxima above an operating point
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were considered detected mitotic figures. This operating point was determined as the
threshold that maximizes the F1-score over the validation set.

  

(a) F
1
-scores  –  Seen Labs (b) F

1
-scores  –  Unseen Labs
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Figure 2.4: Box-plot of the F1-score of the mitosis classification models. Points represent the mean±
standard deviation of the F1-score of each model across 3 repeats with random initialization and
random patch sampling. DANN: Domain-Adversarial Neural Network, CA: Color Augmentation, SN:
Staining Normalization, SNA: Staining Augmentation.

On the test made of images acquired in the same labs as the images of the training
set, all methods and combinations have relatively good performances, in line with
previously reported results [14], [33], [56], [57]. The best performing method is CA (F1-
score of 0.62 ± 0.008, see Figure 2.4). Adding domain-adversarial training does not
improve performance of the conventional methods.

On the other hand, on the test set of images acquired in different labs than for the
training set, the best performing method is the combination of CA and DANN (F1-
score of 0.609 ± 0.017). The baseline model does not generalize properly to unseen
labs, and domain-adversarial training improves the performances except for the com-
bination with SNA.

2.5.2 Nuclei Segmentation

We used the trained nuclei classifiers to produce segmented nuclei objects. First we
generated a set of object seeds using the object foreground map prediction, thresh-
olded by an operating point selected based on a validation set. A set of background
seeds were generated using the background prediction, thresholded by a constant of
0.5. Finally a set of segmented nuclei objects was generated using the watershed algo-
rithm given the computed background and foreground seeds and the predicted edges
as the topographic relief.

All segmented objects with more than 50% overlap with ground-truth annotations
were considered as hits. The performances of the nuclei segmentation models were
evaluated with the F1-score as described in [32], computed over a whole test set.
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Figure 2.5: Box-plot of the F1-score of the nuclei segmentation models. Points represent the mean±
standard deviation of the F1-score of each model across 3 repeats with random initialization and
random patch sampling. DANN: Domain-Adversarial Neural Network, CA: Color Augmentation, SN:
Staining Normalization, SNA: Staining Augmentation.

On the test set of images of seen tissue types, the best performing method is SN
(F1-score of 0.821 ± 0.004, see Figure 2.5). On the test set of unseen tissue types, the
best performing method is the combination of SN and domain-adversarial training
(F1-score of 0.851± 0.011). On both test sets, domain-adversarial training produces a
decrease in generalization performance when combined with augmentation methods
(CA and SNA).

The baseline model generalizes properly due to the high variability already present
in the training set, and therefore is in line with the results reported in [32]. We report a
difference of the range of performances between the two test sets.

2.5.3 Qualitative Results

Qualitatively, we observe that the baseline models fail to generalize with images that
have unseen low-contrast appearance (see Bladder and Colon examples in Figure 2.6).
This limit is solved by methods involving staining normalization. The addition of
domain-adversarial training tends to better separate touching nuclei, improving the
F1-score.

Likewise, low-contrast structures occurring in the images from the unseen labs
entail false positive detection of mitotic figures (see Figure 2.7), whereas these do not
occur for models trained using CA. The addition of domain-adversarial training tends
to produce smoother distribution of the predictions, resulting in a higher rate of true
positives and higher F1-score.
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Figure 2.6: Visualization of the raw predictions (background: white, foreground: black, border: red)
and resulting segmentation maps of the baseline and best-performing segmentation models. True
positive, false positive and false negative are show in green, blue and red respectively.

2.6 Discussion and Conclusions

The relative improvement of performances brought by the analysed methods depends
on the data and task at hand. In the case where the training data presents a high do-
main variability (images from multiple labs, multiple organ types), SN is the most ef-
fective method when testing on the test set that consists of the same tissue types, be-
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Figure 2.7: Visualization of the predictions of the baseline and best-performing models (CA for seen-lab
test set, and CA+DANN for unseen-lab test set). Ground-truth mitotic figures are circled in green.

cause the model can learn to be efficient to the range of staining variability observed
on these specific tissue types. However, CA and SNA generalize better than SN on the
test set that consists of unseen tissue types as they allow to anticipate the new color
and staining variability that can occur in these images. We assume this limit of SN is
overcome when combined with domain-adversarial training, as it enables the model
to improve the generalization of the learned representation beyond the range of stain-
ing distributions seen in the training set.

In the case where the training data presents a low domain variability (intra-lab
variability only), CA and SNA, were the most effective methods when testing on un-
seen images whether they were obtained in the same lab as for the training data or in
different labs. This implies that augmentation methods or domain-adversarial train-
ing can better anticipate unseen color/staining distributions than SN in this situation.
The failure case of the baseline model indicates overfitting to the limited variability of
domains of the training data and is avoided by CA, SNA or domain-adversarial train-
ing. The additional improvement of performances shown when domain-adversarial
training is combined with CA indicates that this approach helps the model to general-
ize to factors other than colors.

Two design choices need to be considered in the proposed domain-adversarial
framework as we assume they have an influence on the task performances. These
parameters depend on the type of image, task at hand and type of domain variability,
and thus need to be carefully tuned.
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First, the depth level ofF has to be chosen: with an early bifurcation, the low-level
features can be made invariant (with the risk of over-fitting to the domains of the train-
ing data), whereas a late bifurcation can make the high-level features invariant with
the risk that the early features do not get affected by the domain-adversarial update,
thus failing to extract features in unseen domains. Fine-tuning this hyper-parameter
is necessary to obtain optimal performances. An alternative solution could consist in
using multiple bifurcations as it was proposed in [30], [54].

The receptive field of D on the input is another point to consider. Depending on
the task at hand, the receptive field ofD does not need to be necessarily the same as C,
especially if the source of domain variability can be captured in a field of view smaller
than the objects that are being classified. Using too large a receptive field forD raises
the risk of identifying, and removing from the representation, some features specific
to a domain that might actually be relevant for the task at hand.

In conclusion, we proposed a domain-adversarial framework for training CNN
models on histopathology images, and we made a comparative analysis against con-
ventional pre-proccessing methods. We showed that exploiting slide-level domain in-
formation at training time, via an adversarial training process, is thus a suitable ad-
ditional approach towards domain-invariant representation learning and to improve
generalization performances. Still, the performances of a trained model vary with the
type of normalization/augmentation method used and the type of variability present
in the data at training and inference time. Analyzing these factors is therefore a critical
decision step when designing machine-learning models for histology image analysis.
Directions for further research include adapting the framework to other model archi-
tectures, other tasks, and exploiting known variability factors other than slide-level in-
formation. The relative top-performances that domain-adversarial training achieved,
confirm it is a relevant research direction towards a general method for consistent gen-
eralization to any type of unseen variability of histological images.
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Chapter 3

3.1 Introduction

Invariance to irrelevant factors of variability is a desirable property of machine learn-
ing models, in particular for medical image analysis problems for which models are
expected to generalize to unseen shapes, appearances, or to arbitrary orientations. For
example, histopathology image analysis problems require processing a digital slide of
a stained specimen whose global orientation is strictly arbitrary. Indeed, in the prepa-
ration workflow of histology slides, resection of the tissue is done arbitrarily and local
structures within the section can have any three-dimensional orientation. In this con-
text, models whose output varies with the orientation of the input constitute a source
of uncertainty. The output of such image analysis systems should be rotation invari-
ant, meaning that the output of a model should not change when its input is rotated.

Convolutional Neural Networks (CNNs) are the method of choice to solve complex
image analysis tasks, in part due to the translation co-variance induced by trainableR2

convolution operators. In theory, this structure allows CNNs to learn features in any
orientation given sufficient capacity. For example, if a specific edge detector is a rele-
vant filter for the task at hand, it is expected that the CNN learns this filter in all pos-
sible directions. Typical solutions to obtain rotation invariance consist in augmenting
the dataset by generating additional randomly rotated samples, with the expectation
that the model will learn the relevant features that are artificially observed under these
additional orientations. Although data augmentation is a way to induce and encour-
age an invariance prior, such approaches do not guarantee conventional CNNs to be
rotation-invariant. Furthermore, with such approaches it is common practice to av-
erage predictions of the trained model on a set of rotated inputs at test time: this can
increase the robustness of the model, however it comes at the cost of a computational
overhead.

We propose to replace convolutions in R2 by group convolutions using represen-
tations of the special Euclidean motion group SE(2) (roto-translation of a kernel) so as
to explicitly encode the orientation of the learned features. This structure ensures that
the learned representation is co-variant/equivariant with the orientation of the input
for rotations that lay on the pixel grid and to some extent for rotations that are out of
the pixel grid. This equivariance property implies that an oriented feature of interest
will get extracted independently of the spatial orientation of the input. We achieve
orientation encoding at resolution levels higher than 90-degree via bi-linear interpo-
lation of the SE(2) convolution kernels. Finally rotation invariance can be achieved
via a projection operation with respect to the encoded orientation of the learned rep-
resentation.
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Contributions This work builds upon our previous work presented at the MICCAI
conference 2018 [63]. In addition to a more detailed description of the proposed frame-
work, we now present a comparative analysis of models with different angular dis-
cretization levels of the SE(2)-image representations. Here we focus on three types of
histopathology image analysis problems (mitosis detection, nuclei segmentation and
tumor detection), for which we conduct experiments on popular and realistic bench-
mark datasets. With this we also show that the SE(2)-image representations can be in-
tegrated in other classical CNN architectures such as U-net [64]. Finally, in a new series
of in-depth experimental analyses we show an increased robustness of the proposed
group convolutional neural networks (G-CNNs) compared to standard CNNs with re-
spect to rotational variations in the data. This includes a quantitative and qualitative
assessment of rotational invariance of the trained networks, as well as a data regime
analysis in which we investigate the effect of increased angular resolution when the
data availability is reduced.

3.2 Rotation Invariance, Related Work, and Contributions

3.2.1 Rotation Invariance via G-CNNs

We distinguish between invariance and equivariance/covariance as follows. An artifi-
cial neural network (NN) is invariant with respect to certain transformations when the
output of the network does not change under transformations on the input. We call a
NN equivariant, or covariant1, when the output transforms in a predictable way when
the input is transformed (we formalize this statement in Subsection 3.3.2). The prop-
erty of equivariance guarantees that no information is lost when the input is trans-
formed. Standard CNNs are equivariant to translations: if the input is translated the
output translates accordingly and we do not need to worry about learning how to deal
with translated inputs. It turns out that group convolution layers are the only type
of linear NN layers that are guaranteed to be equivariant (see e.g. [65, Thm. 1]) and
that the standard convolution layer is a special case that is translation equivariant. In
this paper, we construct SE(2) equivariant group convolution layers and with it build
G-CNNs with which we solve problems in histopathology that require rotation invari-
ance.

Nowadays, rotation invariance is often still dealt with via data augmentations. In
such an approach the data is rotated during training time while keeping the target
label fixed, thereby aiming for the network to learn how to classify input samples re-
gardless of their orientation. Downsides of this approach are that 1) valuable network
capacity is spend on learning geometric behavior at the cost of descriptive representa-

1 Terminology changes between fields of study (mathematics, physics, machine learning) and often
refer to the same. Following custom in machine learning research we will use the term equivariance.
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tion learning, 2) rotation invariance is not guaranteed, and 3) augmentation only cap-
tures geometric invariance globally. G-CNNs solve these problems by hard-coding ge-
ometric structure into the network architecture such that 1) geometric behavior does
not have to be learned, 2) rotation invariance is guaranteed by construction, and 3)
each group convolution layer achieves local equivariance on its own, so that global
equivariance is still obtained when the layers are stacked.

The local-to-global equivariance property means that G-CNNs recognize both low-
level features (e.g. edges), mid-level features (e.g. individual cells), and high-level fea-
tures (e.g. tissue structure) independent of their orientations. In this paper we experi-
mentally show that SE(2) equivariant G-CNNs indeed solve all three aforementioned
problems and that in fact the added geometric structures leads to networks that sig-
nificantly outperform classical CNNs trained with data-augmentation.

3.2.2 Related Work on G-CNNs

G-CNN Methods

In the seminal work by Cohen et al. [66] a framework is proposed for group equivari-
ant CNNs. In G-CNNs, the convolution operator is redefined in terms of actions of a
transformation group, and by consistent use of the group structure (rules for concate-
nating transformations) equivariance is ensured. They showed a significant perfor-
mance gain of G-CNNs over classical CNNs, however, the practical applicability was
limited to discrete transformation groups that leave the pixel grid intact (s.a. 90◦ rota-
tions and reflections). Subsequent work in the field focused on expanding the class of
transformation groups that are suitable for G-CNNs by:

1. Working with a grid that has more symmetries than the standard Cartesian grid
[67].

2. Expanding convolution kernels in a special basis, tailored to the transformation
group of interest, that enables to build steerable CNNs [68]

3. Relying on interpolation methods to transform kernels [63], or relying on ana-
lytic basis functions and sample the transformed kernels at arbitrary resolution
[69], [70].

Extensions to 3D transformation groups are described in [71]–[74], generalization to
equivariance beyond roto-translations are described in [65], [75], extension to spheri-
cal data are described in [76]–[79], and additional theoretical results and further gener-
alizations of G-CNNs are described in [77], [80], [81]. Applications of G-CNN methods
in medical image analysis are discussed below in Subsection 3.2.2.

Although the first of the above generalizations elegantly enables an exact imple-
mentation of G-CNNs of roto-translations with a finer resolution than the 90◦ rota-
tion angles of [66], it is a very specific approach that does not generalize well to other
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groups. The second approach does not require to sample transformed kernels at all,
but works exclusively by manipulations of basis coefficients in a similar way as stan-
dard 2D convolutions (and translations) can be described in the Fourier domain. This
approach however requires careful bookkeeping of the coefficients, only optimizes
over kernels expressible by the basis, and the choice for non-linear activation func-
tions is limited. In this paper we rely on the third approach. We build upon our previ-
ous work [63] and use bi-linear interpolation to efficiently transform (unconstrained)
convolution kernels. This allows us to build SE(2) equivariant G-CNNs at arbitrary
angular resolutions.

Rotation Equivariant Machine Learning

Prior, and in parallel, to the above discussed G-CNN methods, group convolution
methods for pattern recognition have been proposed that, at the time, were not re-
garded as G-CNNs or not treated in the full generality of (end-to-end) deep learning.
E.g., Gens et al. [82] redefine the convolution operator and construct sparse (approx-
imative) group convolution layers that are used to build what they called deep sym-
metry networks. Scattering convolution networks, as proposed by Mallat [83], involve
a concatenation of separable group convolutions with well-designed hand-crafted fil-
ters followed by the modulus as activation function. Other examples are orientation
score based template matching [84], cyclic symmetry networks [85], oriented response
networks [86], and vector field networks [87], which can all be considered instances of
roto-translation equivariant G-CNNs.

Other techniques that focus on equivariance properties of CNNs work via trans-
formations on input feature maps, rather than transformations of convolution ker-
nels as in G-CNNs, and are closely related to spatial transformer networks [88]. These
methods include warped CNNs [89], polar transformer networks [90], and equivari-
ant transformer networks [91]. Although these methods describe elegant and efficient
ways for achieving (global) equivariance, they often break translation equivariance
and local symmetries as the transformations act globally on the whole inputs.

Group Theory in Medical Image Analysis

Equivariance constraints and group theory take a prominent position in the mathe-
matical foundations of “classical” image analysis, e.g., in scale space and wavelet the-
ory. In medical image analysis, group theoretical algorithms enable to respect natu-
ral equivariance constraints and deal with context and the complex geometries that
are abundant in medical images. Examples of group theoretical techniques, closely
related to G-CNNs, are orientation score [92], [93] methods such as crossing preserv-
ing vessel enhancement based on gauge theory on Lie groups [94]–[96], vessel and
nerve fiber enhancement (in diffusion imaging) via group convolutions with Gaussian
(derivative) kernels [97]–[99], and anatomical landmark recognition via group con-
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volutions[65]. In other, non-convolutional methods in medical image analysis, group
theory provides a powerful tool to deal with symmetries and geometric structure, such
as in statistical shape atlases [100], shape matching [101], registration [102], [103] and
in general in statistics on non-Euclidean data structures [104]. Following this success-
ful line of geometry driven methods in medical image analysis, we propose in this
paper to rely on G-CNNs to solve tasks in histopathology in an end-to-end learning
setting.

G-CNNs in Medical Image Analysis

For many medical image analysis tasks, the location, reflection or orientation of ob-
jects of interest should not affect the output of the developed models. Although typical
solutions rely on data augmentation, several studies investigated G-CNNs in the con-
text of medical image analysis to leverage this prior into building equivariant models
that outperform classical CNNs.

In Winkels et al. [72], Andrearczyk et al. [74], and Winkels et al. [105], G-CNNs were
used to detect pulmonary nodules in CT scans. G-CNNs were also investigated for
segmentation tasks in dermoscopy images [106], retinal images [63] and microscopy
images [63], [107], [108]. Chidester et al. [109] proposed a variation of G-CNNs for the
classification of sub-cellular protein localization in microscopy images.

Rotation-equivariant models have shown to be particularly efficient for problems
in histopathology images, at cell level for mitosis detection [63], nuclei segmentation
[107], and at higher tissue levels for tumor detection in lymph node sections [110] and
gland-lumen segmentation in colon histology images [108].

3.3 Material and Methods

We evaluate the proposed framework on three relevant histopathology image anal-
ysis tasks: mitosis detection, nuclei classification, and patch-based tumor detection.
In this section, we first describe the benchmark datasets corresponding to the analysis
tasks, that we used to train and evaluate the models. We then describe the relationship
between the proposed framework and group theory, and our proposed implementa-
tion via bi-linear interpolation of rotated convolution kernels.

3.3.1 Datasets

We chose three popular benchmark datasets of hematoxylin-eosin stained histological
slides, in order to assess the performances of the proposed framework and its variants
in a controlled and reproducible setup. We chose datasets for which objects of interest
are observed at different scales, thus covering a range of problems that are typically
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addressed in histopathology image analysis. In these datasets, we assume that the ori-
entation of the objects of interest is irrelevant for the classification task. Therefore we
hypothesize that any bias in the orientation information captured by a non-rotation-
invariant CNN could be reflected in its performance on the selected benchmarks. This
hypothesis will be experimentally confirmed in Section 3.5.

Mitosis Detection We used the public dataset AMIDA13 [57] that consists of high
power-field (HPF) images (resolution∼0.25µm/px) from 23 breast cancer cases. Eight
cases (458 mitotic figures) were used to train the models and four cases (92 mitoses)
for validation. Evaluation is performed on a test set of 11 independent cases (533 mi-
toses), following the evaluation procedure of the AMIDA13 challenge, for details see
[57].

Multi-Organ Nuclei Segmentation We used the subset of the public multi-organ dataset
introduced by [32], that consists of 24 HPF images (resolution∼0.25µm/px), selected
from WSIs of four different tissue types (Breast, Liver, Kidney and Prostate), provided
by The Cancer Genome Atlas [58], associated with mask annotations of nucleus in-
stances. We used the balanced dataset split proposed in [111]: 4×3 HPF images for
training (7337 nuclei), 4×1 HPF images for validation (1474 nuclei) and 4×2 HPF im-
ages for testing (4130 nuclei). Given the high staining variability of the dataset, all the
images were stain normalized using the method described in [62].

Patch-Based tumor detection We used the public PCam dataset introduced by [110],
that consists of 327, 680 image patches (resolution∼1µm/px), selected from WSIs of
lymph node sections derived from the Camelyon16 Challenge [18]. The patches are
balanced across the two classes (benign or malignant), based on the tumor area pro-
vided in [18], and we used the dataset split proposed by [110].

Data Regime Analysis In order to study the behavior of the compared models when
data availability is reduced, we analyzed the performances under different data regimes,
by using reduced versions of the training sets. We constructed:

• Three variations of the mitosis dataset by sequentially removing two cases out
of the original eight.
• Two variations of the nuclei dataset by sequentially removing one HPF image

per organ out of the original three HPF images per organ.
• Four variations of the patch-based tumor dataset by randomly removing 25%,

50%, 75% and 90% in each class-subset of the training data.
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3.3.2 Group Representation in CNNs

The Roto-Translation group SE(2)

A group is a mathematical structure that consists of a set G, for example a collection
of transformations, together with a binary operator · called the group product that
satisfies four fundamental properties: Closure: For all h, g ∈ G we have h · g ∈ G;
Identiy: There exists an identity element e; Inverse: for each g ∈ G there exists an
inverse element g−1 ∈ G such that g−1 · g = g · g−1 = e; and Associativity: For each
g, h, i ∈ Gwe have (g · h) · i = g · (h · i).

The group product essentially describes how two consecutive transformations, e.g.
by g, h ∈ G, result in a single net transformation (g · h) ∈ G. Here, we consider the
group of roto-translations, denoted2 by SE(2) = R2 o SO(2), which consists of the
set of all planar translations (in R2) and rotations (in (SO(2)), together with the group
product given by

g · g′ = (x,Rθ) · (x′,Rθ′) = (Rθx
′ + x,Rθ+θ′), (3.1)

with group elements g = (x, θ), g′ = (x′, θ′) ∈ SE(2), with translations x,x′ and
planar rotations by θ, θ′. The group acts on the space of positions and orientations
R2 × S1 via

g · (x′, θ′) = (Rθx
′ + x, θ + θ′).

Since (x,Rθ) · (0, 0) = (x, θ), we can identify the group SE(2) with the space of
positions and orientations R2 × S1. As such we will often write g = (x, θ), instead of
(x,Rθ). Note that g−1 = (−R−1θ x,−θ) since g · g−1 = g−1 · g = (0, 0).

Group representations

The structure of the group can be mapped to other mathematical objects (such as
2D images) via representations. Representations of a group G are linear transforma-
tionsRg : L2(X) → L2(X), parameterized by group elements g ∈ G that transform
vectors, e.g. signals/images f ∈ L2(X) on a space X , and which share the group
structure via

(Rg ◦ Rh)(f) = Rg·h(f), with g, h ∈ G.

We use different symbols for the representations ofSE(2) on different type of data
structures. In particular, we writeR = U for the left-regular representation of SE(2)
on 2D images f ∈ L2(R2), and it is given by

(Ugf)(x′) = f(R−1θ (x′ − x)), (3.2)

2 It is the semi-direct product (denoted by o) of the group of planar translations R2 and rotations
SO(2), i.e., it is not the direct product since the rotation part acts on the translations in (3.1) in the group
product of SE(2).

35



Chapter 3

with g = (x, θ) ∈ SE(2), x′ ∈ R2. It corresponds to a roto-translation of the image.
We write R = L for the left-regular representation on functions F ∈ L2(SE(2)) on
SE(2), which we refer to as SE(2)-images, and it is given by

(LgF )(g′) = F (g−1 · g′) = F (R−1θ (x′ − x), θ′ − θ), (3.3)

with g = (x, θ), g′ = (x′, θ′) ∈ SE(2). In Section 3.3.3 we define the G-CNN layers in
terms of these representations.

Equivariance

Given the above definitions, we can formalize the notation of equivariance. An opera-
tor Φ : L2(X)→ L2(Y ) is equivariant with respect to a groupG if

Φ(Rg(f)) = R′g(Φ(f)), (3.4)

with Rg and R′g representations of G on respectively functions the domains X and
Y . I.e., if we transform the input byRg, then we know that the output transforms via
R′g. To ensure that we maintain the equivariance property (3.4) of linear operators Φ
it is required that we define such Φ in terms of representations of G, that is, via group
convolutions (see e.g. [65, Thm. 1], [112, Thm. 21], or [80, Thm. 6.1]).

3.3.3 SE(2) Group Convolutional Network Layers

Notation and 2D Convolution Layers

In the following we denote the space of multi-channel feature maps on a domainX by
(L2(X))N , withN the number of channels. The feature maps themselves are denoted
by f = (f1, . . . , fN ), with each channel fi ∈ L2(X). The inner product between such
feature maps onX is denoted by

(k, f)(L2(X))N :=

N∑
c=1

(kc, fc)L2(X)

with (k, f)L2(X) =
∫
X k(x′)f(x′)dx′ the standard inner product between real-valued

functions onX . Then, with these notations we note that the classical 2D cross-correlation3

operator can defined in terms of inner products of input feature map f with translated
convolution kernels k via

(k ?R2 f)(x) : = (Txk, f)(L2(R2))N (3.5)

=

N∑
c=1

∫
R2

kc(x
′ − x)fc(x

′)dx′,

3 In CNNs one can take a convolution or a cross-correlation viewpoint and since these operators sim-
ply relate via a kernel reflection, the terminology is often used interchangeably. We take the second view-
point, our G-CNNs are implemented using cross-correlations.
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withTx the translation operator, the left-regular representation of the translation group
(R2,+). It is well known that convolution layers Φ, mapping between 2D feature maps
(i.e. functions on X = Y = R2), are equivariant with respect to translations. I.e. in
Eq. (3.4) we let R′g = Rg = Tx be the left-regular representation of the translation
group with g = (x) ∈ R2.

Roto-Translation Equivariant Convolution Layers

Next we define two types of convolution layers that are equivariant with respect to
roto-translations. We do so simply by replacing the translation operator in Eq. (3.5)
with a representation of SE(2). When the input is a 2D feature map f ∈ (L2(R2))N

we need to rely on the representationUg ofSE(2) on 2D images, and define the lifting
correlation:

(k?̃f)(g) : = (Ugk, f)(L2(R2))N (3.6)

=
N∑
c=1

∫
R2

kc(R
−1
θ (x′ − x))fc(x

′) dx′.

These correlations lift 2D image data to data that lives on the 3D position orientation
space R2 × S1 ≡ SE(2) by matching convolution kernels under all possible transla-
tions and rotations.

We define the lifting layer, recall Figure 3.1, as an operator Φ̃(l) : (L2(R2))Nl−1 →
(L2(SE(2))Nl that maps a 2D feature map f (l−1) ∈ (L2(R2))Nl−1 withNl−1 channels

to an SE(2) feature map F l ∈ (L2(SE(2))Nl withNl channels via lifting correlations

with a collection of Nl kernels, denoted with k(l) := (k
(l)
1 , . . . , k

(l)
Nl

), each kernel with
Nl−1 channels, via

F (l) = Φ̃(l)(f (l−1)) := k(l)?̃f (l−1), (3.7)

where we overload the ?̃ symbol defined in Eq. (3.6) to also denote the lifting cor-
relation between a set of convolution kernels and a vector valued feature map via

k(l)?̃f (l−1) :=
(
k
(l)
1 ?̃f

(l−1) , . . . , k
(l)
Nl
?̃f (l−1)

)
. Note that such operators are

equivariant with respect to roto-translations when in (3.4) we let Tg = Ug and T ′g = Lg
be the representations of SE(2) given respectively in (3.2) and (3.3),

indeed Φ̃(l)(Ugf (l−1)) = LgΦ̃(l)(f (l−1)).

The lifting layer thus generates higher-dimensional feature maps on the space of
roto-translations. An SE(2) equivariant layer that takes such feature maps as input
is then again obtained by taking inner products of the input feature map F with (3D)
roto-translated convolution kernelsK, where the kernels are transformed by applica-
tion of the representationLg of SE(2) on L2(SE(2)).
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Group correlations are then defined as

(K ? F )(g) : =

Nc∑
c=1

(LgKc, Fc)L2(SE(2)) (3.8)

=

Nc∑
c=1

∫
SE(2)

Kc(g
−1 · g′)Fc(g′)dg′.

Note here, that a rotation of anSE(2) convolution kernel is obtained via a shift-twist, a
planar rotation and shift along the θ-axis, see Eq. (3.3) and Figure 3.1. The convolution
kernels K are 3-dimensional and they assign weights to activations at positions and
orientations relative to a central position and orientation (relative to g ∈ SE(2)). A

set of SE(2) kernels K(l) := (K
(l)
1 , . . . ,K

(l)
Nl

) then defines a group convolution layer,

which we denote with Φ(l), and which maps from SE(2) feature maps F (l−1) at layer
l− 1, withNl−1 channels, to SE(2)-feature maps F (l) at layer l, withNl channels, via

F (l) = Φ(l)(F (l−1)) := K(l)?F (l−1), (3.9)

where we overload the group correlation symbol ?, defined in (3.8), to also denote
correlation between a set of convolution kernels and a vector valued feature map on

SE(2) via K(l) ? F (l−1) :=
(
K

(l)
1 ?F

(l−1) , . . . , K
(l)
Nl
?F (l−1)

)
.

Finally, we define the projection layer as the operator that projects a multi-channel
SE(2) feature map back to R2 via

f (l)(x) = P(F (l))(x) := mean
θ∈[0,2π)

F (l)(x, θ). (3.10)

Here we define the projection layer as taking the mean over the orientation axis, how-
ever, we note that any permutation invariant operator (on the θ-axis) could be used to
ensure local rotation invariance, such as e.g. the commonly used max operator [63],
[66].

3.3.4 Discretized SE(2,N) Group Convolutional Network

Discretized 2D images are supported on a bounded subset of Z2 ⊂ R2 and the ker-
nels live on a spatially rectangular grid of size n × n in Z2, with n the kernel size. We
discretize the group SE(2, N) := R2 o SO(2, N), with the space of 2D rotations in
SO(2) sampled withN rotation angles θi=

2π
N i, with i = 0, . . . , N − 1.

The discrete lifting kernels k(l) at layer l, are used to map a 2D input image with
Nl−1 channels to an SE(2, N)-image withNl channels, and thus have a shape of n×
n×Nl−1 ×Nl (the discretization of k(l) is illustrated in Figure3.1 as a set of n rotated
R2 kernels, distributed on a circle). Likewise, the SE(2, N) kernels K(l) have a shape
of n× n×N ×Nl−1 ×Nl.
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The lifting and group convolution layers require rotating the spatial part of the
kernels and shift along the θ-axis for the SE(2)-kernels. We obtain the rotated spatial
parts of each kernel via bi-linear interpolation. The discretization of a single lifting

kernel k
(l)
i,j and its N rotated versions is illustrated in the top-left part of Figure 3.1.

The discretization of a single group correlation kernel K
(l)
i,j and its N rotated and θ-

shifted versions is illustrated in the bottom part of Figure 3.1.

  

Trainable Base Kernel

Fixed Set of Interpolation Matrices
Set of Effective Kernels

Input Output

SE(2,N)
convolution

Interpolation Matrix
Rotated Kernel

Trainable Base Kernel

Vector of
Base Weights

Figure 3.2: Illustration of the process generating a rotated set of effective kernels from a trainable
vector of base weights via the introduction of fixed interpolation matrix in the computational pipeline.

In order to construct the rotated sets of effective kernels k(l) or K(l) we rely on bi-
linear interpolation. We first define a set of trainable vectors containing base weights
that are used to generate rotated versions of the same base 2D kernel via bi-linear
interpolation. We implemented this rotation process in the computational pipeline
via the definition of non-trainable interpolation matrices, each coding for a rotation
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step, and the introduction of respective matrix multiplication operations. This process
is illustrated in Figure. 3.2.

Although these sets of rotated kernels are used in the computational pipeline, only
the base weights are updated during the network optimization. By construction, the
effective kernels are differentiable with respect to their base weight, enabling their
update in back-propagation of gradients (since the matrix multiplication operation is
differentiable).

3.4 Experiments

In this section, we present the G-CNN architectures that we build using the layers de-
fined in Section 3.3.3 and we describe the experiments that we used to analyze and
validate them. In the construction of the G-CNNs we adhere to the following principle
of group equivariant architecture design.

G-CNN design principle A sequence of layers starting with a lifting layer (Eq. (3.7))
and followed by one or more group convolution layers (Eq. (3.9)), possibly intertwined
with point-wise non-linearities, results in the encoding of roto-translation equivari-
ant feature maps. If such a block is followed by a projection layer (Eq. (3.10)) then the
entire block results in a encoding of features that is guaranteed to be rotationally in-
variant. Our implementation of the G-CNN layers is available at https://github.
com/tueimage/se2cnn.

3.4.1 Applications and Model Architectures

For each task introduced in Section 3.3.1 we conducted two experiments: first, we
trained a set of variations of a baseline CNN, by changing the orientation sampling
level N of their SE(2,N) layers, while keeping the total number of weights of each
model approximately the same. Second, we trained each model with the reduced data
regime counterparts of the training sets introduced in Section 3.3.1. For each task we
opted for versions of straight-forward architectures with a low number of parameters
that were in-line with methods reported in the literature. This way, we propose new
G-CNN baselines that facilitate comparative experiments and that can be extended to
more sophisticated architectures.

Mitosis Detection We used the mitosis classification model originally described in
[63] as a baseline: a 6-layer CNN with three down-sampling steps, such that the overall
receptive field is of size 68× 68.

We designed the G-CNN variants of this baseline described in Table 3.1, by replac-
ing the first convolution layer by a lifting layer, replacing the following convolution
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layers by group convolution layers and inserting a projection layer before the last fully
connected layer.

The models were trained with batches of size 64 balanced across classes. Non-
mitosis class patches were sampled based on a hard negative mining procedure [14]
using a first baseline model trained with random negative patches. The models were
trained to minimize the cross-entropy of the binary-class predictions.

Nuclei Segmentation For the nuclei segmentation task, we opted for a 7-layer U-net
that corresponds to two spatial down/up-sampling operations with an overall recep-
tive field of size 44×44. The sequence of operations defining this G-CNN architecture
is given in the first column of Table 3.2.

The label associated with each input image is a 3-class mask corresponding to the
foreground, background and border of the nuclei it contains (these masks can then
be used to retrieve an individual nucleus using a segmentation procedure such as de-
scribed in Section 3.5).

The models were trained with batches of size 16 balanced across patients, to min-
imize the class-weighted cross-entropy of the softmax activated output maps corre-
sponding to the three target masks.

Tumor detection The baseline architecture we used for the tumor detection model
is a 6-layer CNN with three down-sampling steps, such that the overall receptive field
is of size 88× 88 (see Table 3.3 for the detailed architecture).

The models were trained with batches of size 64 balanced across classes. We re-
fined both classes by running a hard negative mining procedure [14] using a first base-
line model trained with the original dataset of the benchmark. The models were trained
to minimize the cross-entropy of the binary-class predictions.

3.4.2 Implementation details

For all three baseline architectures, convolution kernels are of size 5× 5 with circular
masking and fully connected layers are implemented as convolutional layers with ker-
nels of shape 1×1 to enable dense application (the resulting models can efficiently be
applied on larger input sizes).

Batch Normalization [59] is used throughout the networks. Batch statistics are
normally computed across batch and spatial dimensions of the activations, but we
also included the orientation-axis of the SE(2,N)-image activation maps in the statis-
tic computation to ensure their invariance with respect to the orientation of the input.

All models were trained with Stochastic Gradient Descent with momentum (learn-
ing rate 0.01, momentum 0.9) and a epoch-wise learning rate decay using a factor of
0.5 was applied. Training was stopped after convergence of the loss computed on the
validation sets. All models were regularized with decoupled weight decay (coefficient
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Table 3.1: Architecture of the investigated G-CNN models for mitosis detection. The left-most column
indicates the operations applied in each layer. Max. Proj. indicates the projection operation on R2,
achieved via maximum intensity projection along the orientations.

SE(2,N) Groups

Layers N=1 (R2) N=4 (p4) N=8 N=16

Input 68×68×3

Lifting Layer
BN + ReLU

MaxPool(2×2)

1×42×42×16
(1040)

4×42×42×10
(650)

8×42×42×8
(520)

16×42×42×6
(390)

Group Conv.
BN + ReLU

MaxPool(2×2)

1×14×14×16
(5408)

4×14×14×10
(8420)

8×14×14×8
(10768)

16×14×14×6
(12108)

Group Conv.
BN + ReLU

MaxPool(2×2)

1×5×5×16
(5408)

4×5×5×10
(8420)

8×5×5×8
(10768)

16×5×5×6
(12108)

Group Conv.
BN + ReLU

1×1×1×64
(21632)

4×1×1×16
(13472)

8×1×1×8
(10768)

16×1×1×4
(8072)

Group Conv.
BN + ReLU

1×1×1×16
(1056)

4×1×1×16
(1056)

8×1×1×16
(1056)

16×1×1×16
(1056)

Max. Proj. 1×1×16

FC Layer +
Sigmoid

1×1×1 (17)

Total Weights 34561 32035 33897 33751

5 × 10−4). Baseline augmentation transformations were applied to the training im-
age patches (random spatial transposition, random 90-degree-wise rotation, random
channel-wise brightness shifting).

3.4.3 Experiment: Orientation Sampling

In order to assess the effect of using the proposed SE(2,N) G-CNN structure on the
benchmark performances, we trained every model with N ∈ {1, 4, 8, 16}. In order
to allow fair comparison we adjusted the number of channels in every layer involving
SE(2,N)-image representation such that the total number of weights in the models stay
close to the count of the corresponding baselines. The detailed distributions of the
weights are shown in Tables 3.1, 3.2 and 3.3: for each SE(2,N) group, the dimensions
of the output of the layers are shown with the formatN×Height×Width×C, withC
the number of output channels in the layer.

Each model was trained three times with random initialization seeds. We report
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Table 3.2: Architecture and weight counting of the G-CNN models for patch-based tumor detection.
The left-most column indicates the operations in each layer. Concat(HL.x) indicates the characteristic
skip operation of the U-net architecture that consist in concatenating a centered crop of the output
activation of the xth layer of the network. Max. Proj. indicates the projection operation on R2, achieved
via maximum intensity projection along the orientations.

SE(2,N) Groups

Layers N=1 (R2) N=4 (p4) N=8 N=16

Input 60×60×3

Lifting Layer
BN + ReLU

MaxPool(2×2)

1×28×28×16
(1040)

4×28×28×10
(650)

8×28×28×8
(520)

16×28×28×6
(390)

Group Conv.
BN + ReLU

MaxPool(2×2)

1×12×12×16
(5408)

4×12×12×10
(8420)

8×12×12×8
(10768)

16×12×12×6
(12108)

Group Conv.
BN + ReLU

1×8×8×16
(5408)

4×8×8×10
(8420)

8×8×8×8
(10768)

16×8×8×6
(12108)

Up-sampling
Concat(HL.2)
Group Conv.

BN + ReLU

1×12×12×16
(10784)

4×12×12×10
(16820)

8×12×12×8
(21520)

16×12×12×6
(24204)

Up-sampling
Concat(HL.1)
Group Conv.

BN + ReLU

1×20×20×64
(43136)

4×20×20×16
(26912)

8×20×20×8
(21520)

16×20×20×4
(16136)

Group Conv.
BN + ReLU

1×20×20×16
(1056)

4×20×20×16
(1056)

8×20×20×16
(1056)

16×20×20×16
(1056)

Max. Proj. 20×20×16

FC Layer
Softmax

20×20×3 (54)

Total Weights 66886 62332 66206 66056

the mean and standard deviation of the performances across three random intializa-
tions.

3.4.4 Experiment: Data Regime Experiments

In order to assess the effect of using the proposed SE(2,N) with varying sampling fac-
tor N when data is availability is reduced, we trained each model on the data-regime
subsets presented in Section 3.3.1. Likewise, each model was trained three times with
random initialization seeds so as to report the variability of the performances.
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Table 3.3: Architecture and weight counting of the G-CNN models for patch-based tumor detection.
The left-most column indicates the operations in each layer. Mean. Proj. indicates the projection
operation on R2, achieved via mean intensity projection along the orientations.

SE(2,N) Groups

Layers N=1 (R2) N=4 (p4) N=8 N=16

Input 88×88×3

Lifting Layer
BN + ReLU

MaxPool(2×2)

1×42×42×32
(2080)

4×42×42×19
(1235)

8×42×42×14
(910)

16×42×42×10
(650)

Group Conv.
BN + ReLU

MaxPool(2×2)

1×19×19×32
(21568)

4×19×19×19
(30362)

8×19×19×14
(32956)

16×19×19×10
(33620)

Group Conv.
BN + ReLU

MaxPool(3×3)

1×5×5×32
(21568)

4×5×5×19
(30362)

8×5×5×14
(32956)

16×5×5×10
(33620)

Group Conv.
BN + ReLU

1×1×1×64
(43136)

4×1×1×16
(25568)

8×1×1×8
(18832)

16×1×1×4
(13448)

Group Conv.
BN + ReLU

1×1×1×16
(1056)

4×1×1×16
(1056)

8×1×1×16
(1056)

16×1×1×16
(1056)

Mean Proj. 1×1×16

FC Layer
Sigmoid

1×1×1 (17)

Total Weights 89425 88600 86727 82411

3.5 Results

This section summarizes the qualitative and quantitative results of the experiments
we conducted. Each trained model was evaluated on the test set of its corresponding
benchmark dataset based on standard performance metrics.

Mitosis Detection For the mitosis detection task, models were densely applied on
test images, followed by a smoothing operation before extracting all local maxima to
be considered candidate detections. We computed the F1-score of the set of detections
using an operating point that is optimized on the validation set, as described in the
scoring protocol used in [57].

Nuclei Segmentation To quantify the performances of the nuclei segmentation model,
generation of segmented candidate objects is obtained by following the protocol used
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in [32], [111]. First, marker seeds are derived from thresholded foreground and back-
ground predictions, border predictions are used as the watershed energy landscape.
Then, candidate objects that overlap the nuclei ground-truth masks by at least 50% of
their area are considered hits, enabling object-level detection quantification to be cal-
culated using the F1-score. Thresholds to generate marker seeds were selected such
that the F1-score is maximized on the validation set.

Patch-based tumor detection To evaluate the tumor detection model, we computed
the class probability of every patch of the test dataset and calculated the accuracy of
the model given the ground-truth labels as in Veeling et al. [110] after selection of the
operating point that maximizes the accuracy on the validation set.

3.5.1 Qualitative Results

We qualitatively investigated the robustness of the prediction of different models to
controlled rotations of the input. We see that the model predictions can be very incon-
sistent for our best baseline model, in comparison to G-CNN models (see Figure 3.3,
Fig. 3.5 and 3.4) in particular for cell or tissue morphologies that are typically asym-
metric. For example, the mitotic figures (h) and (i) shown in Fig. 3.3 are in telophase
(directed separation of the pair of chromosomes) and the variance of the prediction
of the baseline model is higher for these cases (green curve) compared to the G-CNN
models (blue and red curves). We also observe that for the SE(2,4) model, predictions
that are obtained for an input image rotated with an angle below π/2rad also produce
some variance, but present a π/2rad-period cyclic pattern.

3.5.2 Quantitative Results

The performances of the trained models for both orientation sampling experiments
and data regime experiments are summarized in the box plots of Fig. 3.6, 3.7 and 3.8.

Notes on absolute performances For the mitosis detection benchmark, the best re-
sult we obtained is in line with the results previously reported in [111] (best F1-score of
0.62±0.008). For the PCam benchmark, the best result we obtained is in line with the
results previously reported in [110] (best accuracy of 0.898). For the nuclei segmen-
tation task, we note that the performances we achieved are significantly lower than
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Figure 3.5: Example of image patches selected from the test set of the nuclei segmentation benchmark
(column 1-2: breast tissue, column 3-4: prostate tissue, column 5: kidney tissue, column 6: liver). For
each image, and a selection of models, the raw predictions of the nucleus boundary class were
computed and stored for the set of rotated inputs using steps of π/8 rad. Predictions were re-aligned
and their means were mapped to gray-scale and the standard deviations of the predictions were
mapped to a white-to-red color scale. The overlap of these statistics is shown below each original image.
Selected models are the best obtained models that were trained without reduced data regime over
repeats (based on their F1-score).

the performances previously reported in the literature (on the same test set, Lafarge et
al. [111] reported a F1-score of 0.821±0.004). We explain these difference by the strict
constraints we imposed in the design of the baseline segmentation model of this study
(lower receptive field, shallower network, lower weight capacity).

Effect of orientation sampling For all three studied tasks, we observed an increase of
performance with the number of sampled orientations fromN = 1 toN = 8. For the
full data regime of the mitosis detection experiments, the use of a SE(2,8) G-CNN im-
proves the F1-score to 0.626±0.015 on average compared to 0.556±0.016 for the base-
line model without test-time rotation augmentation (see Fig. 3.6). A similar increase of
performances is observed for the nuclei segmentation experiments with an improve-
ment of the F1-score from 0.754±0.006 to 0.771±0.06 (see Fig. 3.7), and for the tu-
mor detection experiments with an improvement of the accuracy from 0.863±0.003
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Figure 3.6: Mean and Standard Deviation plots summarizing the F1-score of the mitosis detection
models. Mean± standard deviation is indicated. Color identifies the different data regime (red: 8 cases;
green: 4 cases; blue: 2 cases).

to 0.892±0.004 (see Fig. 3.8).
We remark that the performances of the SE(2,4) G-CNN models are better than the

baseline with test-time rotation augmentation as was previously reported in literature
for similar tasks [63], [110]. We also report that for all three tasks, SE(2,16) G-CNN
models perform worse than the SE(2,8) G-CNN models.

Effect of reduced data regime with orientation sampling For all three tasks, we see
a global consistent decrease of performances when less training data is available. In
Fig. 3.8, the performances of the SE(2,4) and SE(2,8) G-CNN models trained with the
25%, 50% and 75% data regimes, are higher than for the baseline model at full data
regime using test-time rotation augmentation. This reveals that under experimental
conditions, data availability is not the only reason for limited performances since this
experiment shows that the SE(2,N) G-CNN models enable achieving higher perfor-
mances than the baseline models, even if less data is available.
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Figure 3.7: Mean and Standard Deviation plots summarizing the F1-score of the nuclei segmentation
models. Mean± standard deviation is indicated. Color identifies the different data regime (red: 6
HPFs/organ; green: 4 HPFs/organ; blue: 2 HPFs/organ).

3.6 Discussion and Conclusions

The presented study investigated the effects of embedding the SE(2) group structure
in CNNs, in the context of histopathology image analysis, across multiple controlled
experimental setups.

The comparative analysis we conducted shows a consistent increase of perfor-
mances for three different histopathology image analysis tasks when using the pro-
posed SE(2,N) G-CNN architecture compared to conventional CNNs acting in R2 eval-
uated with test-time rotation augmentation. This is in line with previously reported
results when using G-CNNs with groups that lay on the pixel grid (p4, p4m) [66], [110],
but we also show that these performances can be surpassed when using groups with
higher discretization levels of SE(2).

This confirms that conventional R2 CNNs struggle to learn a rotation equivari-
ant representation based on data solely and that enforcing equivariant representation
learning enables reaching higher performances. G-CNNs with SE(2,N) structure have
the advantage to guarantee higher robustness to input orientation without requiring
training-time or test-time rotation augmentation. Furthermore, the slight computa-
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Figure 3.8: Mean and Standard Deviation plots summarizing the accuracy of the tumor detection
models. Mean± standard deviation is indicated. Color identifies the different data regime (red: 100%;
lime: 75%; green: 50%; blue: 25%; purple: 10%).

tional overhead for computing rotated convolutional operators and their gradient, at
training time, can be canceled at test-time by computing and fixing all final oriented
SE(2,N) kernels, resulting in a model that is computationally equivalent to conven-
tional R2 CNNs.

We show that these performances can be surpassed when using representations
with higher angular resolution levels, as shown with experiments involving SE(2,8) G-
CNNs and when the training data is of sufficient amount. This conclusion corrobo-
rates the results we reported on other medical image analysis tasks [63] and in studies
that investigated models with rotated operators that lay outside of the pixel grid [67].

However, we also identified consistent lower performances for SE(2,16) G-CNNs
compared to SE(2,8) G-CNNs at full data regime. We assume that this phenomenon
is in part related to the model architectures we chose to enforce fixed model capacity,
resulting in a number of channels in the representation of the SE(2,N) models being
reduced when N increases. This reduced number of channels might affect the diver-
sity of the features learned by the models, to the point that this limits their overall
performances. Therefore, it appears there is a trade-off between performances and
angular resolution at fixed capacity, further work would be necessary to confirm this
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hypothesis.

For the tumor detection task, we observed that the performances of the baseline
models (with or without test-time rotation augmentation) reached a plateau, whatever
the regime of available training data was among 25%, 50%, 75% or 100%. This indi-
cates that in the conditions of the PCam dataset, the amount of available training data
does not significantly influence the performances. However, the rotation-equivariant
models were able to achieve better performances with increased data regime.

This behavior was not evidenced for the mitosis detection and nuclei segmenta-
tion experiments. We assume this result may be task-dependent or might be due to
the fact that the plateau of performances observed for the tumor detection models
was not reached yet for the two other tasks.

We qualitatively showed that in some cases, the predictions of conventional CNNs
are inconsistent when inputs are rotated, whereas SE(2) G-CNNs show better stabil-
ity in that sense. This suggests that the anisotropic learned features of conventional
models only get activated when the input is observed in a specific orientation. On the
shown examples (Section 3.5.1), the SE(2) models are more robust to the input orien-
tation since their SE(2) structure guarantees the features to be expressed in multiple
orientations. We also see that SE(2) models with a limited angular resolution can yet
produce some variance for rotation angles lower than this resolution. This is also sup-
ported by the fact that higher performances were obtained for the experiments that
compare SE(2,4) models to SE(2,8) models.

Still, variation of performances for these models was also observed when the input
was rotated out of the pixel grid. We explain this limit from the approximation errors
caused by two of the operators we used, and that have a weaker rotation equivariance
property. First, the interpolation-based computation of the rotated kernels can cause
small variations in the output when the input is rotated. Second, the pooling operators
are not rotation equivariant by construction (since they lay on fixed down-sampled
versions of the pixel grid), and so are another source of error.

In conclusion, we proposed a framework for SE(2) group-convolutional network
and showed its advantages for histopathology image analysis tasks. This framework
enables the learned models to be invariant to the natural roto-translational symme-
try of histology images. We showed that G-CNNs models whose representation have
a SE(2) structure yield better performances than conventional CNNs and our experi-
ments suggest the ability of G-CNNs models to fully exploit the data amount of large
datasets. Our results suggest the existence of a trade-off between network capacity
and the chosen angular resolution of the SE(2,N) operators. We chose to experiment
with light-weighted shallow model architectures in order to clearly show benefits of
SE(2,N) equivariance: such light-weighted shallow model architectures allow for fair
and transparent comparisons (where we control and fix the overall network capacity,
see Table 3.1,3.2,3.3). The proposed framework can also be applied to more heavy-
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weighted and deeper models via the replacement of conventional R2 convolutions by
SE(2,N) convolutions, but this is beyond the scope of this article and is left for future
work. Likewise, the use of more sophisticated data augmentation strategies that do
not involve rotating the images can still be beneficial in practice. Other directions
for future work include further analysis of the relationship between the newly intro-
duced architecture-related hyper-parameters and their effect on model performances,
as well as studying other prior structures that can improve model stability to other
families of input transformations.
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Chapter 4

4.1 Introduction

In clinical context, pathological diagnosis and prognosis commonly results from the
analysis of bright-field microscopy images of histological slides. These 2D images
are obtained by transmitting light through the histological specimens, stained before-
hand, in order to attenuate light and produce contrast. To quantify biomarkers of in-
terest in 2D images, pathologists rely on their experience and knowledge of the 3D
context of the objects they observe, when 3D microscopy techniques are not consid-
ered.

Taking inspiration from the image formation process of bright-field microscopy,
we propose a method to infer a realistic decomposition of hematoxylin and eosin
(H&E) stained histological slides along the axis of their thickness (z-axis), resulting
in 3D images. The decomposition of a given histological image is achieved by generat-
ing a volume of its underlying stain concentrations, such that new images obtained by
simulating transmitted light along other directions are realistic according to a trained
discriminative deep learning model.

This study is motivated by the recent developments in deep generative models
[113], in particular for generating biological microscopy images [114]. In Gadelha et al.
[115], the authors showed that it is possible to train a generative adversarial network to
infer 3D volumes from 2D training images only, without having to rely on 3D training
data. Likewise, our method trains a discriminator from 2D training images only, but
can generate 3D volumes that correspond to the decomposition of 2D images, and
therefore does not require a generator drawing samples from a latent space.

The proposed algorithm can be seen as generating realistic 3D scenarios for the
2D observed scenes. As an example of a possible application, the generated 3D vol-
umes can be used for data augmentation as they allow to create new “views” of the
same data. Generalization of deep learning models is a known problem in automated
histopathology image analysis, and new augmentation methods can help improving
generalization [30]. The 3D information inferred by our method can also be used for
analysis by synthesis strategies [116], to improve histopathology image analysis mod-
els, as it is a way to include the prior that processed objects have a 3D structure.

4.2 Method

Histological images can be modeled as a set of stain concentrations at every pixel lo-
cation [61] as illustrated in Figure 4.1. Thus, our method aims at solving the inverse
problem of estimating the volume of stain concentrations that produced the original
histological image, for a chosen model of light absorption. We hypothesize that de-
composition in depth is possible since the thickness of the histological specimens is of
the order of the image resolution. Such a volume is generated under two constraints:
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(C1) the reconstruction of the original image must be possible from the estimated vol-
ume, and (C2) new images produced from the volume must be realistic.

4.2.1 Model of Stain Concentration Volume

The RGB pixel intensities can be modeled according to the Beer-Lambert law of light
absorption [61], such that the image intensity at each pixel location (x, y) can be de-
composed as Ic(x, y) = I0 exp (−Ac,∗C(x, y)) with c = 1, 2, 3 the color-channel
index, A ∈ [0,+∞]3×2 the matrix of absorption coefficients specific to the current
image, and C(x, y) ∈ [0,+∞]2 the H&E stain concentrations. We used the method of
Macenko et al. [62] to achieve unsupervised staining unmixing of the images.

Based on the same model, the stain concentrations can be discretized along the
z-axis inN parts, such that C(x, y) =

∑N−1
z=0 C(x, y, z).

yx
N

z

c

I0

I(x,y)

Figure 4.1: Decomposition of the estimated stain concentration values of a digital slide along the z-axis
at (x, y).

The constraint (C1) can be enforced by reducing the problem to finding the vectors
V(x, y, z) ∈ [0, 1]2, with C(x, y, z) = C(x, y) � V(x, y, z) and

∑N−1
z=0 V(x, y, z) =

[1, 1]> describing how the concentrations C(x, y) are distributed along the z-axis (the
operator� is the element-wise multiplication).

4.2.2 Simulation of Transmitted Light

For a given volume of concentrations, new images can be generated by simulating
transmitted light from different directions, using the same model of light absorption.
In particular, new projection images Iprojx=x0,c and Iprojy=y0,c are generated by simulating
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light transmission along the x-axis and y-axis through the slices x ∈ [x0, x0 +N − 1]
and y ∈ [y0, y0 +N − 1], as shown in Figure 4.2. The pixel intensities of these images
are expressed in equation (4.1) as the sum of stain concentrations in the direction of
projection.

Iprojx=x0,c(y, z) = I0 exp

(
−Ac,∗

x0+N−1∑
x=x0

C(x, y, z)

)

Iprojy=y0,c(x, z) = I0 exp

(
−Ac,∗

y0+N−1∑
y=y0

C(x, y, z)

) (4.1)

N is carefully chosen such that the pixel resolution in the xz-slices and yz-slices
is the same as in the original xy-plane.

x0
x0+N-1

y0

y0+N-1

N-1

0

I0 I0

I0

(C1)

(C2)(C2)

Figure 4.2: Illustration of an inferred concentration volume block of sizeN ×N ×N pixels. (C1) is
respected by enforcing the z-projection to reconstruct the original image patch. (C2) requires the
x/y-projections, obtained by simulated transmitted light (red arrows), to be realistic.
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4.2.3 Realism Constraint

A convolutional neural network can be trained to discriminate “fake” generated pro-
jection images that result from an underlying unrealistic concentration volume and
“real” images that are assumed to be the result of realistic volume of concentration
distributions.

For a given image patch, 3D volume inference starts from a 4D tensor V initialized
with uniform concentration distributions. Then, the trained discriminative model
(discriminator) can be used to update V by gradient descent, so that the generated
projections of the updated volume appear slightly more realistic. The gradient of the
loss of the discriminator with respect of the input is computed via back-propagation.

This update process (Figure 4.3) is iterated until convergence: when the discrimi-
nator classifies the generated projections as realistic with small error.

This image generation approach via optimization of the loss function of a neural
network is similar to the methods developed in [117], [118], and plays a role compara-
ble to the generator of standard generative adversarial networks [113] in the way how
generated images are used as input to a discriminator.

Original Image Stain Concentration Maps

Stain Concentration 
Distributions

Concentration 
Volume

Simulated Projections

Discriminator

Realism Score

Iterative Gradient Descent Update

Figure 4.3: Iterative process of generating a volume of concentrations constrained by an original image.
The stain concentration volume is updated by gradient descent in order to produce projection images
that “fool” the fixed trained discriminator.

4.2.4 Discriminator Training

The discriminator is trained using two sets: a set of random real image patches Sreal,
and a set of adversarial examples Sadv that are generated during training, using the
projections computed with (4.1), from previous states of the trained model.
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The training procedure alternates between two steps. First, the current state of the
model is used to infer volumes from real images via gradient update using the pro-
cess presented in Section 4.2.2, and x/y-axis projections produced from this volume
are added to Sadv. Secondly, a batch of image patches balanced between samples of
Sreal and Sadv is used to train the discriminator. Images in Sadv are sampled accord-
ing to their misclassification probability such that the model learns from the “fake”
generated images that are the most realistic and that are more challenging to classify.

4.3 Experiments and Results

4.3.1 Dataset

We used the high power field images of H&E stained slides of the public AMIDA13
dataset [57] for the experiments. 232 images of size 2000 × 2000 pixels from 8 differ-
ent breast cancer cases were used for training and the remaining images were used to
generate test examples.

4.3.2 Discriminator Architecture and Training Procedure

We implemented the discriminator that can classify input patches as “fake” or realistic
as a 6-layer convolutional neural network. The network takes 24 × 24 image patches
transformed to H&E concentration maps as input. Kernels of size 3×3, batch normal-
ization, average-pooling and leaky ReLU non-linearities were used throughout. The
network was trained by minimizing the cross-entropy loss using the Adam optimizer.

4.3.3 Generative Process and Extension to Large Images

We set the z-axis discretization to 24 pixels as we considered 6 micrometers as the
maximum thickness of a tissue slice, in which case the z-axis pixel resolution of the
inferred volumes can be the same as in the xy-plane (0.25 micrometers).

The discriminator, as such, can only infer volumes from images of size 24 × 24.
To overcome this limitation, volumes of larger images can be inferred by optimizing
overlapping 24× 24× 24 sub-volumes in parallel. This solution was used to produce
stain concentration volumes from 64× 64 images.

The generated projections presented in Figure 4.4 indicate that the optimization
process is able to distribute the stain concentrations of unseen images across the z-
axis, and is able to create new tissue structures that are realistic for the trained dis-
criminator.
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4.4 Discussion and Conclusions

We proposed a method for inferring the 3D structure of 2D histological images. The
method showed good qualitative performance when applied to an image dataset of
mitoses and non-mitosis objects extracted from breast cancer histology slides. Al-
though the volumes generated by our method cannot be considered as representing
the actual tissue structure, the generated projections can still be considered as a likely
scenario and thus used as a data augmentation tool.

In addition to being driven by the image formation process of bright-field mi-
croscopy, our method has the property that the generated images are directly pro-
duced from the available data, the same way transformation-based augmentation meth-
ods work. In contrast, generators drawing inputs from a latent space, such as genera-
tive adversarial networks, do not have this property.

Directions of future work include, further research to assess the realism quality
of the generated images, and application of the generated 3D representation for data
augmentation.

60



Chapter 5
Capturing Phenotypic

Variations via Unsupervised
Representation Learning

This chapter is based on:

M. W. Lafarge, J. C. Caicedo, A. E. Carpenter, J. P. Pluim, S. Singh, and M. Veta, “Capturing
single-cell phenotypic variation via unsupervised representation learning”, in Proceedings of
the International Conference on Medical Imaging with Deep Learning (MIDL), vol. 102, 2018,
pp. 315–325.



Chapter 5

5.1 Introduction

Microscopy images provide rich information about cell state. Image-based profiling—
an approach where images of cells are used as a data source—is a powerful tool with
several applications in drug discovery and biomedicine [119].

Cell samples are treated using chemical or genetic perturbations, then stained us-
ing fluorescent markers, and imaged under a microscope. Image-based profiles of
these genes or compounds are created by summarizing the single-cell level informa-
tion extracted from these images. When executed using high-throughput technolo-
gies, this framework can be used to generate profiles of tens to hundreds of thousands
of perturbations.

Creating profiles that accurately capture variations in cellular structure is an open
problem [119]. Central to this problem is the task of generating representations of sin-
gle cells, which can then be appropriately summarized into a profile representing the
population (e.g. as the mean of the individual cell representations). In recent years,
several methods have been proposed for generating single cell representations, span-
ning both feature engineering approaches [120], as well as feature learning using deep
neural networks [121]–[125]. While the resulting profiles perform well in downstream
analysis, none are able to provide much biological insight into what cellular structure
variations are important for discerning phenotypes (i.e. visible appearance). This lack
of insight hinders a better understanding of what drives similarities or differences be-
tween perturbations.

Recently, generative adversarial networks (GANs) were shown to learn feature rep-
resentations [126], while also to synthesize cell images to help biologists visualize salient
phenotypic variations. However, while the images generated were highly realistic, the
accuracy of resulting profiles was relatively poor, and a direct reconstruction from the
learned representations was not possible.

Here, we propose using an adversarial-driven similarity constraint applied to the
standard variational autoencoder (VAE) framework [127] that addresses these limi-
tations: (1) VAEs enable direct reconstruction given a feature representation, (2) our
proposed model is demonstrably better in learning representations for profiling ap-
plications, and (3) our proposed training procedure allows higher quality reconstruc-
tions than standard VAEs, making the visualizations comparable with previous GAN
models.

By proposing a novel training procedure for learning representations of single cells,
we provide researchers a new tool to match cellular phenotypes effectively, and also
to gain greater insight into cellular structure variations that are driving differences be-
tween populations, offering insights into gene and drug function.
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5.2 Related Work

Image-based profiling measures multiple phenotypic features of single cells to char-
acterize the effect of drugs or the function of genes. The phenotypic features can be
obtained by engineering representations that capture known relevant properties of
cell state, such as cell size. Previous studies using feature engineering approaches
demonstrate that profiles generated using standard feature sets in bioimaging soft-
ware (e.g. CellProfiler [128]) are successful in grouping compounds based on mecha-
nism-of-action [120], [129]–[132], grouping genes into pathways [133]–[135], predict-
ing genetic interactions [136]–[139], and several other applications [119].

Deep convolutional neural networks (CNN) have been evaluated for computing
cellular features using models pretrained on natural images. A deep metric network
trained on a large collection of consumer images was evaluated [121] for predicting
mechanism-of-action in the BBBC021 benchmark dataset (used in this paper), as were
CNNs trained on the ImageNet dataset [123]. Both gave competitive results without
requiring cell segmentation or image preprocessing.

Representations can be learned directly from biological images. Multiple instance
learning and supervised learning using mechanism-of-action labels directly have been
used to train neural networks that process full images without segmentation [124],
[140]. Given that ground truth labels are rarely available for training in high-throughput
projects, other strategies that require less supervision have also been explored. Weakly
supervised learning using treatment replicates has been proposed to learn single-cell
feature embeddings for profiling [122], and a similar technique has been developed
for full fields of view [125].

However, these approaches encode cellular features without an explicit mecha-
nism for interpreting phenotypic variations, a major limitation for many applications
in biology. Goldsborough et al. [126] proposed to tackle this problem using the Cy-
toGAN model to generate explanatory visualizations of cell variations between two
treatments, but the models do not allow direct reconstructions, and have relatively
poor classification accuracy on at least one benchmark dataset (BBBC021).

Unlike GAN models, autoencoder (AE) models are optimized to learn embeddings
that can directly produce good reconstructions, and were successfully applied on cell
images [141], [142]. In particular, the variational autoencoder (VAE) framework [127]
implies a constraint on the embedding that produces some desired properties: smooth
embedding interpolation [142] and disentanglement of generative factors [143]. To
improve the limited reconstruction quality of standard VAE models, some methods
involving adversarial training were proposed [144]–[147]. Here we propose to follow
the concept proposed by Larsen et al. [144] to address the requirements of the cell
profiling pipeline [148], while allowing high-quality reconstructions from the embed-
dings.
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5.3 Material and Methods

5.3.1 Datasets

We use the BBBC021 dataset, a popular benchmark for image-based profiling that
has been adopted in several studies, mostly for evaluating assignment of chemicals to
mechanisms-of-action using the leave-one-compound-out evaluation protocol [120].
The dataset is from a high-throughput experiment performed in multi-well plates;
each plate has 96 wells, and in each well, a sample of cells has been treated with a
compound at a specific concentration.

The subset used in all profiling experiments, including ours, has 103 unique treat-
ment conditions (i.e. compounds at a specific concentration) representing 12 mecha-
nisms-of-action [149]. After treatment with a given compound, the cells were stained
using fluorescent markers for DNA, F-Actin and β-Tubulin and imaged under a micro-
scope, capturing four 3-channel images for each well, and approximately one million
cells across the entire dataset. These channels are stacked and treated as RGB images
by mapping DNA 7→ R, β-Tubulin 7→ G, F-Actin 7→ B.

Encoder Decoder

Discriminator

D
1

D
2

D
3

D
N

VAE
 

x z ~x

x

Figure 5.1: Flowchart of CNN models. The auto-encoder (blue-framed components) describes the
original VAE formulation. The adversarial-driven reconstruction losses are illustrated by the
representation learned by the discriminator (red-framed images).

5.3.2 The VAE framework

In this study, we are interested in methods that can directly generate low-dimensional
embeddings z and reconstructions x̃ of given input images x. Therefore we chose the
VAE framework as a baseline [127]. VAE models consist of an encoder convolutional
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neural network (CNN) that models an approximation of the posterior qφ(z|x) on the
latent z, parameterized by φ, and a decoder CNN that models the likelihood of the
data pθ(x|z), parameterized by θ. The model is then optimized by maximizing a lower
bound on the marginal log likelihood of the data
LVAE(x, z; θ, φ) = Ez∼qφ(z|x) [log pθ(x|z)] − β ·DKL (qφ(z|x) || p(z)), with p(z) a de-
fined prior distribution to constrain the embeddings, DKL the Kullback-Leibler di-
vergence, and β an hyper-parameter controlling the strength of this constraint [127],
[143].

5.3.3 Transition from Pixel-Wise to Adversarial-Driven Reconstructions

The limited reconstruction quality of standard VAE models can be explained by the
pixel-wise reconstruction objective related to the Gaussian observation process mod-
eled by pθ(x|z) [144], [150].

Learned similarity As proposed by Larsen et al. [144], we define a discriminator CNN
D with parameters χ that is trained to classify real images x from independent recon-
structions x̃. The discriminator outputs the probability for the input to originate from
the distribution of real images and is optimized via minimization of the binary cross-
entropy.

The activations resulting from the hidden layers of the discriminator Di (x) and
Di (x̃) are used as additional, synthetic Gaussian observations, with i the layer in-
dices. These observations are drawn from pχ (Di(x)|z), modeled as normal distri-
butions with meansDi(x̃) and identity covariances. We thus define additional recon-
struction lossesLDi (x, z; θ, φ, χ) = Ez∼qφ(z|x) [log pχ(Di(x)|z)] for every hidden layer
i of the discriminator. Figure 5.1 illustrates how the different losses of the framework
arise in the full model pipeline.

Progressive Training We conjecture that the reconstruction term in LVAE should not
be discarded and that the additional lossesLDi can be all used to compensate the lim-
ited reconstruction ability induced by LVAE, as opposed to the formulation of Larsen
et al. [144]. Therefore, we propose to use LVAE + LD as the full objective for the en-
coder and decoder with LD =

∑
i γi · LDi , and (γi) a set of parameters to control the

contribution of each reconstruction loss.
For stability purposes when dealing with adversarial training Karras et al. [151],

we chose to define the γi(t) as a function of the iteration step t. By defining γi(t) =
min(1,max(0, t/T − i)), we induce a progressive training procedure, such that the
abstraction levels of the discriminator contribute sequentially to LD. T is thus the
hyper-parameter defining the period between two losses LDi and LDi+1 to contribute
to the final objective.
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5.3.4 Model Architectures

The encoder takes image patches of size 68 × 68 as input, and estimates the mean
and standard deviation of the Gaussian posterior, that allow sampling an embedding
of size 256 using the reparameterization trick Kingma et al. [127].

The encoder, decoder and discriminator have four convolution layers with filters
of size 5× 5, with an additional 1× 1 layer for the last layer of the decoder and an ad-
ditional fully connected layer for the discriminator. Leaky Rectified Linear Units (co-
efficient 0.01) and max-pooling/up-sampling layers were used throughout the CNNs,
except for the last layer of the discriminator, which is activated by a sigmoid.

The decoder is a mirrored version of the encoder, by using transposed convolu-
tions followed by 2×2 up-sampling layers. Batch normalization (BN) layers were used
throughout the CNNs, and the BN moments for the discriminator were computed only
using batches balanced with input reconstructions and independent real images. The
implementation of the model is available at https://github.com/tueimage/cytoVAE.

5.4 Experiments and Results

5.4.1 Experiments

We investigated three variations of the proposed model for comparison purposes. We
trained standard AE and VAE models by setting the parameter β to 0.0 and 1.0 respec-
tively while excluding LD from the full objective. The proposed model (VAE+) was
trained using the full objective (see Section 5.3.3), β was set to 2.0 to compensate the
additional reconstruction losses, and T was set to 2500 iterations.

Mini-batches were built by sampling a random image patch from each treatment
of the dataset. Every channel of the image patches was normalized by its maximum
intensity. Two independent mini-batches B1 and B2 were used at every iteration: B1

was used to compute LVAE through the encoder-decoder, B2 was paired with the re-
constructions of B1 to train the discriminator. Finally, B1 and its reconstructions were
used to compute LD.

We used the Adam optimizer to train the encoder and decoder (learning rate 0.001;
momentum 0.9), and Stochastic Gradient Descent with momentum (learning rate 0.01;
momentum 0.9) to train the discriminator. All the convolutional weights were regu-
larized with weight decay (coefficient 0.0001). Training was stopped after 40, 000 iter-
ations.

5.4.2 Creating Profiles and Classifying Compounds

Given images of cells treated with a compound (the input), the challenge in the BBBC021
dataset is to predict the mechanism-of-action (the label) of the compound. Centers of
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each cell were precomputed using CellProfiler [128] and were used to extract patches.
Representations of these patches were generated using the trained models. Given a
representation per cell, a profile for each well was computed as the average of all
the cells in that well. Next, the profile for each unique treatment (a compound at
a specific concentration) was computed by computing the median of all wells with
that treatment. Treatments were classified using 1-nearest-neighbors, using one of
two hold-out procedures as proposed by Ando et al. [121]: (1) Not-Same-Compound
(NSC), where all profiles of the same compound (regardless of concentration) were
held out, and (2) Not-Same-Compound-and-Batch (NSCB), where in addition to NSC
constraints, profiles from the same experimental batch where held out.

NSCB indicates how sensitive the profiling method is to variations across exper-
imental batches; better NSCB performance indicates better resilience to batch vari-
ations. Ando et al. [121] transformed the profiles on a given plate using a whitening
transform learned from the control wells on that plate, which improved NSCB per-
formance; we tested this procedure (indicated by “Whitened” in Table 5.1). Further,
Rohban et al. [135] created profiles by summarizing using standard deviations as well
as means; we tested this approach (indicated by “Mean+S.D.” in Table 5.1).

5.4.3 Results

Classification Performances

The proposed VAE model (VAE+ in Table 5.1) significantly outperforms the best GAN-
based models (68% NSC; NSCB unavailable), which is the only model to our knowl-
edge that can provide reconstructions. Further, whitening consistently improves ac-
curacy across all configurations where mean is the summary statistic, and for some
where both mean and S.D. are used as summary statistics. The VAE+ model, with mean
+ S.D. summaries followed by whitening (last column) performs similarly to the best
performing classical approach (90% NSC; 85% NSCB Singh et al. [152]). While none
of these models, including VAE+, achieve classification performance as high as the
best performing deep-learning-based model (96% NSC; 95% NSCB Ando et al. [121]),
they nonetheless provide valuable insight (discussed below) into the variations in cel-
lular morphologies that underlie the similarities and differences between the treat-
ment conditions. Finally, we observe that the AE model implemented performed very
similarly to VAE+. The VAE+ reconstructions are however superior to AE, making the
former overall better suited for profiling applications.

Visualizing Structural Variations in Cell Phenotypes

The proposed VAE+ model produces the most realistic images (Figure 5.2); both AE
and VAE images are consistently blurrier than VAE+ images. Similar to Goldsborough
et al. [126], we assessed the quality of reconstructed images by presenting three ex-
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Table 5.1: Classification Accuracy of the compared models. Mean result± standard deviation across 3
repeated experiments with random initialization and random input sampling. The numbers in bold
indicate the method-summarization combination that was best performing for each hold-out
procedure (NSC and NSCB).

Method Mean
Mean

+Whitened
Mean+S.D.

Mean+S.D.
+Whitened

NSC

VAE+ 90.6± 1.5 90.3± 1.0 92.2± 1.7 92.9± 2.4

VAE 83.5± 1.0 80.6± 4.4 90.9± 1.1 87.1± 0.6

AE 87.6± 2.0 92.2± 1.0 90.3± 0.0 92.5± 0.6

Ando et al. N.A 96.0 N.A N.A

Singh et al. 90.0 N.A N.A N.A

NSCB

VAE+ 71.0± 1.2 76.1± 1.1 72.5± 2.3 82.2± 2.6

VAE 68.8± 0.6 69.9± 5.1 74.6± 0.6 71.0± 0.6

AE 75.0± 2.0 79.0± 0.6 76.8± 0.7 80.8± 1.7

Ando et al. N.A 95.0 N.A N.A

Singh et al. 85.0 N.A N.A N.A

pert biologists with 50 real cell images and 50 cells reconstructed using VAE+. The
cells were balanced across the available treatments, including controls and the biolo-
gists were blinded with respect to this treatment information. Images were randomly
shuffled and presented to experts to assess whether each cell was real or synthetic.
On average, 40.7% of the time the synthetic cells were realistic enough to deceive the
experts into labeling them as real, compared to 30% previously reported with GANs
[126].

  

Original VAE AE VAE+

Figure 5.2: Comparison between original images of four randomly sampled single cells, and their
reconstructions produced via different auto-encoders.
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The ability to interpolate between real cells from different treatment conditions
and produce realistic images is powerful tool to visualize how a compound affects cel-
lular structure (Figure 5.4 and Figure 5.3). Compounds from different mechanisms in-
duce visually distinct phenotypes. Interpolating between a control cell and a treated
cell presents a hypothetical path in phenotypic space that the cell may have taken
to arrive at the observed (target) state. Verifying these hypotheses would require fur-
ther followup experiments. Regardless, these visualizations give valuable insight into
how each compound is affecting cellular structure. For instance, an actin disrupt-
ing chemical (cytochalasin D) appears to make the cells smaller, with both actin and
tubulin condensing more tightly and symmetrically around the nucleus. A cholesterol
lowering chemical (simvastatin) has a similar effect but makes the tubulin more asym-
metric. Both results match expectations and inspection of real images.

  

Actin Disruptor (cytochalasin D 0.3μM)

Cholesterol Lowering (simvastatin 20.0μM)

0.22 0.34 0.44 0.54 0.63 0.70 0.76 0.80 0.92 0.90

0.30 0.43 0.57 0.66 0.73 0.77 0.80 0.84 0.87 0.89

Figure 5.4: Translation in VAE+ latent space of a control cell (left) to target cells (right) corresponding to
compounds with different mechanisms-of-action. The target cell is the one closest to the mean of the
compound. Each interpolation step is a shift of features with highest absolute difference w.r.t. the target
features. Cosine similarity between the embedding of an image and its target is shown below each.

  

Real Cell VAE+ AE

Control Nocodazole (3μM)

Real cells randomly sampled from Nocodazole (3μM)

Figure 5.5: VAE+ captures β-tubulin structure better (less blurry) and correctly identifies Nocodazole as
a microtubule destabilizer. AE incorrectly classifies it as an actin disruptor. However, neither captures
the fragmented nucleus phenotype seen in a fraction of cells’ real images (right).

However, we noticed one interesting anomaly when exploring a case where VAE+
correctly classified a drug and AE did not (recall their overall classification accuracies
across all classes are similar (Table 5.1)). For the drug Nocodazole, a known micro-
tubule destabilizer, AE yields a blurry reconstruction of tubulin while VAE+ yields a
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more accurate texture (Figure 5.5). Upon inspection of randomly sampled cell images,
however, it becomes clear that neither representation is able to capture the distinc-
tive fragmented nucleus phenotype caused in some cells by Nocodazole. We suspect
that the selection of the target cell is thus a crucial choice in the proposed strategy,
particularly when a population of cells shows two very distinct types of appearances.

5.5 Discussion and Conclusions

We proposed an auto-encoding approach competitive with other unsupervised learn-
ing approaches while overcoming the challenge of high quality reconstructions.

We introduced adversarial-driven representation learning for the problem of image-
based profiling using a straightforward extension of the VAE framework, by proposing
a generic method inline with the work of Larsen et al. [144]. Some methods are other
plausible solutions for this task, such as Adversarially Learned Inference Dumoulin et
al. [146] and are worth investigating for future work.

The unsupervised training context explains the limited classification performances
reported here, but could be improved when combined with more effective approaches
(weakly/fully supervised training).

This model offers researchers a powerful tool to probe the structural changes in a
cell induced by genetic and chemical perturbations, or even disease states. This is a
step towards filling the gap of interpretability in image-based profiling approaches: to
reveal not just which perturbations are similar or different, but also to provide clues
about the underlying biology that makes them so. We identified room for improve-
ment in capturing phenotypes for very heterogeneous cell populations. The proposed
strategy may be applied to other domains in biomedical imaging that require captur-
ing phenotypic variations, particularly detecting, understanding, and reversing dis-
ease.
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Chapter 6

6.1 Introduction

Dimensionality reduction is an efficient strategy to facilitate the analysis of large im-
age datasets by representing individual images by a small set of informative variables,
which can be used in place of the original images. Unsupervised learning methods can
be used to obtain such an informative latent representation from a given dataset with-
out the need for expert annotations. For this purpose, popular unsupervised learn-
ing frameworks such as the Variational Auto-Encoder [127] or flow-based approaches
[153] can be used to model a joint distribution between an image dataset and a set of
latent generative factors. As these frameworks provide a posterior distribution over a
space of latent variables, they enable the estimation of the latent factors of new previ-
ously unseen images, that can then be used for any subsequent task.

However, irrelevant factors that affect the appearance of images but are indepen-
dent of the factors of interest can get entangled in the learned representation [25],
[28], [143]. These irrelevant factors can be treated as nuisance variables that affect the
learned representation in an unpredictable way [154], consequently perturbing any
downstream analysis1 performed on a distribution of generative factors. Therefore,
there is a need for disentangling such nuisance variables from the informative gener-
ative factors of interest.

In computational pathology, these nuisance variables are known to affect the gen-
eralization power of machine learning models. They affect the appearance of the im-
ages across slides, scanners and hospitals and can be associated with the inevitable
variations in tissue slide preparation and scanner-dependent digitization protocols.

In a supervised learning context, strategies were developed to filter-out such ir-
relevant factors from the learned representation; popular methods applied in com-
putational pathology include: staining normalization [31], staining/style transfer [45],
[155], [156], data augmentation [36], domain-adversarial training [30], [111] and rotation-
equivariant modeling [63], [157].

In this paper, we focus on a specific generative factor that can be considered as a
nuisance variable in some specific tasks: the orientation of individual image patches.
In digital pathology, the orientation of localized image patches in a dataset of WSIs is
arbitrary in the sense that tissue structures are likely to be observed in any orientation,
as opposed to natural images or organ-level medical images for which the orientation
of the imaged objects is typically not uniformly distributed.

We propose an unsupervised learning framework to model a partitioned latent
space of generative factors in which specific independent latent variables either
code for oriented or non-oriented (isotropic) morphological components of histo-
pathology images.

1 We refer to downstream task/analysis to express any task/analysis performed on an image dataset for
which a learned representation is used in place of original images.
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Motivation We identified several points that motivate the development of methods
to handle nuisance variables for computational pathology in an unsupervised learn-
ing context:

- Using an informative representation in place of large and complex images can
reduce the computational cost and facilitate training of subsequent task-specific
models. In particular, such a representation can be used to directly process
Whole Slide Images (WSIs) via patch-based compression [19] or to represent
bags that consist of a high number of image patches in two-stage multiple-instance-
learning frameworks [158]. By removing irrelevant factors from the representa-
tion, such existing frameworks can be further improved.

- A representation learned without supervision can better conserve the extent of
the morphological information of tissue images making it suitable for a wide
range of potential downstream tasks. This is opposed to using the representa-
tion of a supervised model that potentially discards information that is irrele-
vant for the task for which it was trained, but that might be relevant for other
downstream tasks.

- Latent variable models equipped with a generative component enable visual in-
spection of the individual learned factors. This can support the interpretation
of a model, as a tool to gain insights into the morphological factors that are pre-
dictive for a given downstream task.

  

(a)

x

z0 θ
0

(b)

x

Z 

θ
0

(c)

x

θ
0

z 
ISO z 

ORI 

Figure 6.1: Bayesian networks of three latent variable models in which a hidden nuisance variable θ0 is
involved. (a) Classical generative model; z0 and θ0 are independent sources of the observed images x.
(b) Chain-structured model; the images x are generated from intermediate latent variablesZ that
depend on θ0. (c) Proposed disentangled model; the images x are generated by two independent
variables: zISO that is independent of θ0 and zORI that encodes θ0.

The proposed method To enable such a partitioning of the latent space, we lever-
aged the structure of SE(2)-group convolutional networks [63], [157] to build the com-
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(a)

(b)

Figure 6.2: Generated images using the proposed latent variable model in which images are
represented by a set of two types of variables: real-values zISO that code for isotropic components and
angle variables zORI that code for oriented components. Left-most images are original and were used to
estimate initial values of zISO and zORI. In (a), zISO is kept fixed and the values of zORI are sequentially
incremented by a fixed angle measurement (cycle-shifted), causing a spatial rotation of the generated
images. In (b), zORI is kept fixed while the values of zISO are sequentially varied causing isotropic
morphological changes in the generated images.

ponents of a new VAE that produces a pair of rotation-equivariant and rotation-invariant
embeddings of image patches. This means that instead of representing an image by a
vector of scalar latent variables (z0 in Figure 6.1 (a)), the proposed framework learns
in parallel a vector of real-valued isotropic variables (zISO) and a vector of angular ori-
entation variables (zORI, see Figure 6.1 (c)) that enable the disentanglement of the ori-
entation information in images.

In Figure 6.2, we illustrated the orientation disentanglement property obtained
with the proposed framework, in which the effect of varying each type of genera-
tive factor can be observed in the generated examples. The resulting structure of the
learned representation is also illustrated in Figure 6.3, in which we show that the trans-
lation between existing datapoints in the latent space along the oriented or isotropic
dimenisons causes distinctive generative effects.

The independence between the two types of variables is guaranteed by the struc-
ture of the SE(2)-CNN-based auto-encoder. In the spirit of the original VAE framework,
we propose an extension of the objective function so as to encourage the mutual in-
dependence between all the introduced latent variables.

We made a comparative analysis of the proposed framework with a baseline VAE
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Figure 6.3: Generated image from linearly interpolated latent variables: along the horizontal axis the
isotropic variables zISO are interpolated, along the vertical axis the angular components zORI are
interpolated. Original images used to estimated the original values of the latent variables are framed in
blue (top-left images), and green (bottom-right images).

and well-established hand-crafted measurements in the context of histopathology im-
age analysis. We trained and evaluated the models using a dataset of nucleus-centered
images extracted from histological cases of 148 breast cancer patients, exposing a large
variability of nuclear morphology to be learned. We evaluated the quality of the un-
supervised learned representation by training simple logistic regression models on
downstream classification tasks. We compared the ability of the learned embedding
to predict the pleomorphism grade and tumor proliferation grade associated to each
case of a hold-out test set using multi-class ROC-AUC metrics.

Contributions

- To our knowledge, this is the first time that an auto-encoder is proposed to ex-
plicitly disentangle the orientation information in images by learning a 2-part
structured representation consisting of rotation-invariant real-valued variables
and rotation-equivariant angle variables.

- We propose to use SE(2)-structured CNNs to generate latent variables with guar-
anteed equivariance/invariance properties.

- We show that such an unsupervised model can quantify nuclear phenotypical
variation in histopathology images and that the learned representation can be
used in dowstream analysis to predict slide-level target values.
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6.2 Related Work

Representation Learning for Microscopy Image Analysis Automated quantification
of morphological features of single-cell images has been a paradigm for comparing
populations of cells in high-throughput studies across microscopy modalities and ap-
plications [148], [159], [160].

In particular, machine learning methods were proposed to learn representation
directly from image data. Transfer learning methods use the internal representation
of deep learning models that were trained with an independent dataset and task [161]–
[165]. Weakly-supervised and self-supervised models use the representation of deep
learning models that are trained with the data at hand but optimized to solve an aux-
iliary pretext task [122], [125], [126], [166].

We argue that methods that rely on training a generative adversarial network and
that exploit the inner feature maps of the discriminator network as a representation
fall into this category as these feature maps do not necessarily correspond to gener-
ative factors. These methods rely on the hypothesis that deep learning models can
learn generic features that will generalize to an external task without further assump-
tions. However, such generalization is not guaranteed for a difficult medical-related
task whose domain is too different from the task and dataset that were used for the
original training of the models. Also, these methods often rely on subsequent fine-
tuning using the data at hand, and such a transferred learned representation cannot
give any direct visual insight into the nature of the individual features.

Generative models and in particular latent variable models, were developed to
learn the generative factors of cell images as a representation to be used in down-
stream tasks. These methods are based on (sparse) dictionary learning [167], sparse
auto-encoding [35], [168], variational auto-encoding [169]–[171], conditional auto-
encoding [142] or other auto-encoding frameworks [172]–[175].

Other Applications of Representation Learning for Computational Pathology We
consider unsupervised representation learning of random patches of digital slides re-
lated work: such representations facilitated the achievement of downstream tasks [161],
[176]–[195]. However, when supervision is possible, patch-based representation can
be achieved in a end-to-end fashion in a multiple-instance-learning framework for a
given task [158], [182], [190], [194], [196]–[202]. In [19], the authors compared differ-
ent latent variable models in order to compress WSIs and enable their processing in
a single run, and investigated their potential on downstream tasks. Studies on realis-
tic generation of histopathology images [203]–[206] showed that decoder-based gen-
erative models can embed the fine-grained morphological structures of tissues in a
low-dimensional latent space, which is in line with the motivation of our work.
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Structured Latent Variable Models Although unsupervised latent variable modeling
is appealing, Locatello et al. [207] and Dai et al. [208], supported by the work of Ilse et
al. [209] showed that learning disentangled generative factors is not possible without
constraining the learned representation. This argument justifies the limited perfor-
mances of the learned representation of baseline VAE models in downstream tasks.
As a solution, methods were proposed to structure the VAE latent space as a form of
inductive prior: hyperspherical latent structure [210], supervised nuisance variable
separation [28] or domain-wise latent space factorization [209] for example.

In the context of single-cell representation learning, Johnson et al. [142] proposed
a structured latent space via a conditional VAE model that encourages separation of
cell/nuclear shape information from sub-cellular component localization.

The framework proposed in this paper is in the direction of research of these prior
works but specifically address the spatial orientation of the generative factors of cell
images.

Rotation-Equivariance in Convolutional Networks Deep Learning methods were
proposed to learn representations that are equivariant to the orientation of images.
These methods enable learning a representation that changes in a deterministic way
when the input image is rotated. In particular, group convolutional networks [63],
[66], [67], [71], [73], [76], [81] extend standard CNNs by replacing the convolution op-
eration. Advantages of using group-structured convolutional networks were shown on
computational pathology tasks in a supervised training context [63], [107], [108], [110],
[157], [211].

Here we leverage the structure of SE(2)-CNNs in an unsupervised context as a new
way to structure the latent space of VAE-based models.

6.3 Datasets

To train and compare the models investigated in this study, we used one dataset for
training purposes and to assess slide-level classification performances and another
patch-based benchmark dataset to assess cell-level classification performances.

TUPAC-ROI We used a dataset of 148 WSIs of Hematoxylin-Eosin-stained (H&E) tis-
sue slices of breast cancer patients. These WSIs are part of the training set of the TU-
PAC16 challenge [56] and are originally provided by The Cancer Genome Atlas Net-
work [58]. Three Regions of Interest (ROIs) were annotated by a pathologist to indicate
tumor regions with high cellularity, that pathologists would typically select for cancer
grading. Note that we used this subset of WSIs as it was the only subset for which ROIs
were provided.
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Heng et al. [212] provided several patient-level metrics on these cases, including
molecular and genetic information as well as expert-based visual morphological as-
sessment (mitosis grading, tubular formation, pleomorphism grading). We used the
pleomorphism grade and tumor proliferation grade (discrete grades in {1, 2, 3}) asso-
ciated to each WSI as a target value to evaluate the quality of the learned representa-
tions investigated in this study. In the case of tumor proliferation grading, we make
the assumption that this value can be associated to cell-level patterns and their local
distributions.

To reduce the inter-case staining variability, we pre-processed all images by apply-
ing the well-established staining normalization method described in [62]. We applied
our internal nuclei segmentation deep learning model [157] within each ROI, and used
the center of mass of the segmented instances as an estimate of the nuclei center lo-
cations. Image patches of size 68×68px2 at a resolution of ∼0.25µm/px centered on
these locations were extracted and constitute the effective dataset of cell-centered im-
ages we used to train and test our models. We made a training-validation-test split
of this dataset (including respectively 104, 22 and 22 cases). See the supplementary
material for details about the class distributions across the splits. We will refer to this
refined dataset as TUPAC-ROI.

CRCHistoPhenotypes In order to assess the single cell-level quality of the trained
models and investigate the transfer ability of the learned representation to other tis-
sue types, we used the classification subset of the CRCHistoPhenotypes - Labeled Cell
Nuclei Data (CRCHP) dataset provided by Sirinukunwattana et al. [16]. This dataset
consists of 22,444 localized nuclei extracted from 100 ROIs, themselves originating
from WSIs of H&E stained histology images of colorectal adenocarcinomas. Cell-type
labels (epithelial, inflammatory, fibroblast, miscellaneous) were provided for each nu-
cleus. We made a training-validation-test split of this dataset free of any ROI-overlap
(including respectively 11,090, 3,133 and 8,221 nuclei). We resampled and cropped
image patches centered at the nuclei locations so that the resolution and dimensions
matched the ones of the TUPAC-ROI dataset. Finally, we applied the same staining
normalization protocol as for the TUPAC-ROI dataset.

6.4 Methods

This section describes the proposed framework, first summarizing the baseline VAE
framework, then presenting its expansion using SE(2,N)-group convolutions and fi-
nally developing how we enable disentanglement of the orientation information.

We formalize the representation learning problem in this generative modeling set-
ting as the problem of learning the joint distribution p(x, z) of the observed images x
with their latent generative factors z. Typically, we want to estimate the distribution
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that maximizes the marginal likelihood p(x) of this model for a given dataset.

6.4.1 Variational Auto-Encoder

In the VAE framework [127], the likelihood of the observed images given a latent em-
bedding pψ(x|z) is modeled by a decoder CNN with parameters ψ. It is assumed that
the latent z are drawn from a given prior distribution p(z), typically a multivariate
normal distribution. By introducing an approximation of the posterior on the latent
qφ(z|x) modeled by a CNN encoder (parameterized by φ), Kingma et al. [127] pro-
pose to optimize ψ and φ by maximizing a tractable lower bound on the marginal log
likelihood, as written in Eq.6.1.

LVAE(x, z;ψ, φ) = Eqφ(z|x)[log pψ(x|z)]−β · DKL [qφ(z|x) || p(z))] (6.1)

The Kullback-Leibler divergence term DKL, encourages the distribution of the sampled
latents to be close to the prior distribution. The β hyper-pararameter controls the
strength of this constraint as introduced by Higgins et al. [143].

Orientation Encoding The encoder and decoder CNNs of conventional VAE models
are built as a series of alternating trainable 2D convolution operations, non-linearity
activation functions and down/up-pooling operations. For a given image x∈L2[R2],
the encoder CNN qφ generates low-dimensional embedding samples z ∼ qφ(z|x) (of
M elements) with z=[zi]

M
i=1 and zi ∈ R.

In the context of tissue imaging, we make the hypothesis that every image can
be decomposed as a pair x = (x0, θ0) of independent variables such that p(x) =
p(x0)·p(θ0). With this formulation, we assume the existence of a reference distribu-
tion of images x0 ∼ p(x0) that get rotated by an angle drawn from a uniform distri-
bution θ0 ∼ U(0, 2π). This uniformity assumption is logical for histopathology since
tissue slices are prepared independently of their orientation and thus tissue images
can be acquired in any possible orientation.

We write x = Lθ0 [x0] as the relationship between these variables, with Lθ0 :
L2[R2] → L2[R2] the left-regular representation on 2D images of the rotation group
SO(2), parameterized by θ0. In this notation θ0 indicates the action of a planar rota-
tionRθ0∈SO(2), such thatLθ0 [x0](u) = x0(R

−1
θ0
·u), given a vector location u∈R2.

From this point of view, θ0 is a generative factor of the observed images, and so
it would be expected that the model learns to isolate this factor in the learned latent
z. Without loss of generality, we can assume that an optimal model would learn to
decompose the latent variables such that z = [z0, θ0] with z0 the subset of latent
variables that are independent of θ0.

This decomposition would imply that the posterior distribution of θ0 is equivari-
ant under the deterministic action of the rotation group on the image domain, and via
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the concatenation of rotations on the domain of orientations (written as the addition
of angles modulo 2π in Eq. 6.2a). The desired (conditional) independence relation-
ship between z0 and θ0 is equivalent to the posterior being invariant under the same
group actions (see relationship of Eq. 6.2b).

p(θ0 + θ | x = Lθ[x0]) = p(θ0 | x = x0) ; ∀θ ∈ [0, 2π) (6.2a)

p(z0 | x = Lθ[x0]) = p(z0 | x = x0) ; ∀θ ∈ [0, 2π) (6.2b)

However empirical experiments have shown that perfect independence of the la-
tent variables is hard to achieve in a generative model and that such disentanglement
of the generative factors is typically not obtained without further constraints on the
models [143]. At that, the assumed uniform distribution of θ0 is not encouraged by
the Gaussian prior distribution of the formulation of the standard VAE. Therefore, we
propose to consider a network architecture that explicitly encodes the orientation in-
formation of the images, guarantees the relationships of Eq. 6.2a-b and enables the
modeling of the Bayesian network illustrated in Figure 6.1-c.
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Figure 6.4: Comparison of the auto-encoding pipeline of an image x in a conventional VAE (top) and
an SE(2,N)-CNN-based VAE (bottom). Here,µ andσ parameterize qφ(z|x) and qφ(Z|x) such that
samples z = [zi]i=1...M andZ = [Zi,j ]i,j=1...M are drawn using the reparametrization trick with
ε = [εi ∼ N (0, 1)]i=1...M or ε = [εi,j ∼ N (0, 1)]i,j=1...M .
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6.4.2 SE(2) Variational Auto-Encoder

Although conventional CNNs are equivariant to translations (since 2D convolutions
are equivariant to planar translations), they are not guaranteed to be equivariant with
respect to rotations of the input images.

Group Structured CNNs Group convolution operations were proposed to give CNNs
the structure of the roto-translation group SE(2) := R2oSO(2) [66]. The internal fea-
ture maps of CNNs with such group structure can be treated as SE(2)-images F ∈
L2[SE(2)] and the application of convolutional operations with SE(2)-image kernels
are equivariant under the action of the elements of SO(2). This architecture provides
an end-to-end roto-translation equivariance property to CNNs.

The architecture of a SE(2)-CNN can be implemented by discretizing the sub-group
SE(2,N) := R2oSO(2,N) by sampling SO(2) with the elements that correspond to the
N rotation angles of {2πn/N | n=0. . .N − 1} [63], [157]. This way, the internal fea-
ture maps of the network can be implemented as tensors of shapeH×W×N×M with
H andW the size of the spatial dimensions,N the size of the discretized orientation-
axis andM the number of channels in the layer.

Application to the VAE framework We propose to replace the 2D-convolution oper-
ations of the conventional CNNs in the VAE framework by SE(2)-group convolutions
to yield rotation-equivariant mappings from the input images to the sampled latent
variables and from the latent variables to the reconstructed images. This change of
architecture also relies on the replacement of the first layer of the encoder by a lifting
layer to produce SE(2)-image representation maps; and the replacement of the penul-
timate layer of the decoder by a projection layer to output 2D images [63], [157].

The bottleneck of a conventional CNN-based encoder corresponds to feature vec-
tors of size M . Likewise, in a SE(2)-CNN-based VAE, the feature vectors at the bot-
tleneck of the encoder can be defined in terms of the rotation elements of the circle
group SO(2) solely. We treat these feature vectors as Ug[f ] where Ug is the left-regular
group-representation of SO(2) on functions f ∈ L2[SO(2)] with g = Rθ ∈ SO(2) (we
simplify this notation to Uθf ).

In practice, we consider the sub-group SO(2,N), so that the SO(2,N)-vectors Uθf
can be implemented as tensors of shape N×M with N the size of the discretized o-
rientation-axis and M the number of latent variables. The difference in embedding
structure between conventional VAEs and SE(2)-CNN-based VAEs is illustrated in Fig-
ure 6.4.

SE(2,N)-Structured Latent Variables Instead of considering real-valued latent vari-
ables, we propose to model the latent variables as SO(2,N)-vector-valued random vari-
ablesZ. The group structure of the SE(2)-modified encoder enables to model the pos-
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terior distribution qφ(Z | x) with the property of being equivariant under the action
of SO(2,N). Thus, the modeled distribution verifies the relationship of Eq. ??.

qφ(Uθ[Z] | x = Lθ[x0]) = qφ(Z | x = x0) ; ∀θ ∈ SO(2,N) (6.3)

The SE(2)-CNN decoder takes the samples Z as input and models the likelihood
pψ(x|Z) as a multivariate Gaussian with identity covariance. Note that this SE(2)-
CNN-based VAE can be trained with the same objective as conventional VAEs (see
Eq.6.1) after adjusting the prior on the latent to a multivariate normal distribution that
matches the dimensions ofZ.

Consequences for Downstream Analysis By construction, the equivariance property
of the variational posterior qφ guarantees that rotating the input images by an angle
measure θ will cause a cycle-shift on the posterior distribution as expressed by the
relationship of Eq. 6.3. Likewise, the rotational equivariance of pψ implies that cycle-
shifting the values of a latent sample will cause a rotation of the reconstructed images.

As a result, the generative process of the images does not depend directly on θ0
anymore: this variable becomes encoded in the SO(2,N) latent variables as a hidden
shift on the orientation-axis. Still, the dependence of each variable Zi,j to θ0 makes
downstream analysis of these generative factors subject to the variability of this arbi-
trary orientation within a dataset.

6.4.3 Separation of Isotropic and Oriented Latents

In order to achieve disentanglement of the orientation information in the latent vari-
ables, we make the hypothesis that the set of generative factors can be split in two
sets of independent variables: a set of real-valued variables zISO = [zISO

i ]Mi=1 that codes
for non-oriented/isotropic features in the images, and a set of angle variables zORI =
[zORI
i ]Mi=1 with values in [0, 2π] that code for oriented structures in the images.

To achieve such partitioning of the latent space, we design the SE(2,N)-CNN en-
coder to approximate two posterior distributions qφ(zISO|x) and qφ(zORI|x) by pro-
ducing three output components that parameterize these distributions (as illustrated
in Figure 6.5):

- Two sets of SO(2,N)-vectors that are projected via the mean operator along the
orientation-axis resulting in a mean vector µISO ∈ RM and a variance vector
(σISO)2 ∈ (R+)M .

- One set of softmax-activated SO(2,N)-vectorsQORI
i that correspond to discretized

approximations of qφ(zORI
i |x) as defined in Eq. 6.4 with i = 1. . .M . Here the

softmax function is used to ensure that each vector QORI
i represents a probabil-

ity mass function.
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QORI
i,j =

∫ j2π
N

(j−1)2π
N

qφ(zORI
i |x) dzORI

i ; j = 1. . .N (6.4)

Finally, the zISO
i can be drawn from N (µISO

i , (σISO
i )2) and the zORI

i can be directly
drawn from qφ(zORI

i |x) using the approximations QORI
i (the implementation of these

sampling procedures are detailed in the next paragraph).

By construction, the µISO
i and σISO

i are rotation-invariant, and thus ensure that zISO

verifies the invariance relationship of Eq. 6.2b. The modeled posteriors qφ(zORI
i |x)

follow the equivariance relationship of Eq. 6.2a, as θ0 becomes encoded as a shared
hidden shift (modulo 2π) across the variables zORI

i .

Implementation Details on Latent Sampling During training, the stochastic sam-
pling process of the zISO and zORI variables requires implementation via differentiable
operations in the computational graph, to enable gradient back-propagation through
the encoder.

As proposed by Kingma et al. [127], we implemented the sampling process of zISO

via the reparameterization trick to obtain sampled latents zISO = µISO + εISO·σISO (as
illustrated in Figure 6.4). Here, εISO ∼ N (0, 1) is an auxiliary noise variable to simulate
sampling from a Gaussian distribution.

To approximate the sampling process of zORI we implemented an Inverse Trans-
form Sampling layer that returns a set of angle measures drawn from the distribu-
tions coded by QORI. This layer computes a continuous inverse cumulative distribu-
tion Q-1

i for each vector QORI
i and calculates each angle measure as zORI = Q-1

i (εORI)
with εORI ∼ U(0, 1) a uniformly distributed auxiliary noise variable. An example of
this two-step procedure is shown in Figure 6.5.

So as to conserve the end-to-end equivariance property of the framework, the la-
tent variables are reshaped as SE(2,N)-vectors, such that the decoding procedure can
occur in the same conditions as described in Section 6.4.2. This is done by expanding
and repeating the values of zISO along the orientation-axis, and via label smoothing to
encode the sampled angles zORI

i into SE(2,N)-vectors.

Extended Objective Since the images are generated from two independent sources
of generative factors we simply further developed the lower bound in the VAE formu-
lation such that the proposed model can be trained by maximizing the loss written
in Eq. 6.5. The constraints are computed by fixing the prior p(zISO) as a multivariate
normal distribution and the prior p(zORI) as a multivariate uniform distribution on
[0, 2π].
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Lθ-VAE(x, zISO, zORI;ψ, φ) = Eqφ(zISO,zORI|x) [log pψ(x | zISO, zORI)]

−βISO · DKL [qφ(zISO|x) || p(zISO)]

−βORI · DKL [qφ(zORI|x) || p(zORI)] (6.5)

Consequences for Downstream Analysis The isotropic generative factors zISO are
guaranteed to be independent to θ0 by construction, so they can be compared and
aggregated within/across populations of tissue image patches independently of their
spatial orientation. Likewise, the distribution of angles zORI in a given population char-
acterizes the variability of oriented features independently of isotropic factors.

Complementary Reconstruction Loss

Conventional VAE models are known for generating/reconstructing blurry images of
a lower quality than original images. Poor reconstructions might imply that the high-
frequency details in the images do not get encoded in the latent representation and
might entail poor performances in downstream tasks. This limited quality of gener-
ated images is often associated to the pixel-wise reconstruction term of the VAE ob-
jective (see Eq. 6.1).

To ensure the reconstruction term enables generation of realistic images, we used
the extension of the VAE objective that was described in [169]. This method is inspired
by the initial work of Larsen et al. [144] that introduces a discriminator CNN D with
parameters χ in the VAE framework.

This discriminator is trained to classify batches balanced between real images
x∼p(x) and reconstructed images x̃∼pψ(x|z). The internal feature maps of D for
a given input image x are defined as Di(x) with i a layer index. The Di(x̃) can be
considered as additional Gaussian observations with identity covariance drawn from
pχ(Di(x)|z). We thus define extra reconstruction losses LDi that we use to comple-
ment the model objective as defined in Eq. 6.6 where γ is a weighting hyper-parameter.

LVAE+(x, z;ψ, φ, χ) = LVAE(x, z;ψ, φ) + γ
∑
i

LDi (x, z;ψ, φ, χ)

LDi (x, z;ψ, φ, χ) = Eqφ(z|x)[log pχ(Di(x) | z)] (6.6)

The training procedure of the full model pipeline consists of alternating training
steps between updating ψ and φ by maximizing LVAE+ and updating χ by minimizing
the cross-entropy loss on the predictions ofD.

This extension of the VAE framework has the benefit to keep the rest of the model
formulation intact and was shown to be beneficial in autoencoder-based applications
involving cell images [142], [169]. The discriminator is used at training time only and
is discarded at inference time, which thus does not cause any computational overhead
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for downstream analysis. All the models investigated in this paper were extended by
this method.

6.5 Experiments

In this section we detail the network architectures we designed to implement the pro-
posed orientation-disentangled VAE (Section 6.4.3) and a comparable baseline VAE
model (Section 6.4.1). We also describe their training procedures and the evaluation
protocols we applied to compare the quality of the learned representation and gain in-
sights into the effect of the disentanglement and newly introduced hyper-parameters.

6.5.1 Model Architectures

We designed the conventional CNN encoders and SE(2,N)-CNNs encoders of the VAEs
as straight-forward sequences of four blocks that each consists of a convolutional
layer, a batch normalization layer (BN), a leaky reLU non-linearity and a max-pooling
layer.

In the case of the SE(2,N)-CNNs, conventional R2-convolutional layers were re-
placed by SE(2,N) convolutional layers and BN layers were adjusted to include the
orientation-axis in the computation of the batch statistics. We also introduced in-
termediate projection layers similar to the locally rotation-invariant CNNs proposed
by Andrearczyk et al. [74] within all the hidden layers in order to reduce the computa-
tional cost of the network.

In order to generate embedding samples at the bottleneck of the models during
training, we implemented the computational sampling procedures presented in Sec-
tion 6.4.1 for the conventional VAEs and in Section6.4.3 for the orientation-disentangled
VAEs.

The decoder networks correspond to mirrored versions of their encoder counter-
parts via the use of up-sampling layers and transposed convolutions. We included a
mean-projection layer at the end of the SE(2,N)-CNN decoder to project the features
maps on R2. Finally we added an extra 1×1-convolutional layer to the decoders to
output images whose dimensions match the input dimensions.

For all the networks, we used kernels with spatial size 5×5 so as to enable proper
rotation of the SE(2,N)-kernels as described in [63], [157]. We fixed the angular reso-
lution of the SE(2,N) layers to N=8 as it was previously shown to give optimal perfor-
mances [157]. To ensure fair comparison of the models, we balanced the number of
channels in each layer such that the total number of weights between the two types of
VAEs is approximately the same. In order to have a fair comparison,, we also fixed the
total number of variables in the bottleneck of all the models (size of z is 64 in the con-
ventional VAEs and zISO and zORI are both of size 32 in the orientation-disentangled
VAEs).
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6.5.2 Training Procedures

All the models were trained using the training set of the TUPAC-ROI dataset described
in Section 6.3. We used mini-batches that consist of 35 image patches, such that the
distribution of the WSIs of origin within each batch was approximately uniform. We
used the Adam optimizer to update the weights of the encoders and decoders (learn-
ing rate 0.001, β1=0.9, β2 = 0.999), and Stochastic Gradient Descent with momen-
tum to update the weights of the discriminator (learning rate 0.001, momentum 0.9).
All convolutional kernels were regularized via decoupled weight decay with coeffi-
cient 1×10−4. We stopped the training process after convergence of the loss on the
validation set (approximately 20×103 iterations). The weighting coefficient of the
disciminator-based reconstruction loss was fixed to γ=0.01 across all experiments.

In order to assess the effect of the weighting coefficient of the prior constraint as it
was evidenced by Higgins et al. [143] we trained the models with varying values of β,
βISO and βORI in {0.1, 0.5, 1.0, 2.0, 4.0}.

6.5.3 Downstream Analysis

In order to compare the quality of the learned representation at the bottleneck of the
different trained VAE models, we trained subsequent logistic regression models that
take the learned representation as input to solve downstream tasks.

We investigated two types of downstream tasks to evaluate the value of the learned
representation in different contexts: patient-level classification tasks (predicting the
pleomorphism grade and tumor proliferation grade of a given WSI) using the TUPAC-
ROI dataset and single-cell-level classification tasks (predicting the cell-type of a given
nucleus) using the CRCHP dataset.

Each downstream task was investigated with different types of representation of
the data points based on the different latent variables estimated in the VAEs (see z in
Section 6.4.1, zISO and zORI in Section 6.4.3. For comparison, we also considered well-
established nuclear morphometric measurements for comparison (mean nuclear area
and standard deviation of the nuclear area) as well as combinations of representations.

Patient-level classification tasks: we first aggregated the representation of all nucleus-
centered image patches within every ROI of the dataset (see Section 6.3). For the rep-
resentations corresponding to z and zISO, we considered the mean µ and µISO of the
estimated posterior distributions as cell-level embeddings, and we further computed
ROI-level embeddings by computing the mean of all the embeddings obtained within
a ROI. We then trained a single-layered multi-class logistic regression model to mini-
mize the cross-entropy loss given the WSI-level ground-truth labels.

For the representation corresponding to zORI, we used their discrete distribution at
the ROI-level as an aggregated representation (seeQORI in Section 6.4.3). Likewise, we
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trained a two-layer multi-class logistic regression model with an intermediate maxi-
mum projection layer to ensure rotational-invariance of the predictions.

Single-cell-level classification task: we directly used the meanµ andµISO of the pos-
terior distributions onz andzISO as representation of nucleus-centered image patches
and trained a single-layered multi-class logistic regression model to minimize the cross-
entropy loss given cell-type ground-truth labels.

All logistic regression models were regularized with L2-weight decay and the asso-
ciated coefficient was fine-tuned on the validation set.

6.6 Results

This section details the evaluation protocols and metrics we used to assess the quality
of the learned representation we obtained with the methods presented in Section 6.4.
We present the downstream performances for each type of representation on the tasks
described in Section 6.5.

6.6.1 Slide-Level Downstream Performances

We evaluated the trained multi-class logistic regression models on the hold-out test
set described in Section 6.3. For each model, we considered a set of binary classifiers
that correspond to pairwise comparisons of each class against the other classes. For
each set of such binary classifiers, we computed a set of Receiving Operating Curves
(ROCs) based on the model predictions. Within each set of ROCs, we computed the
corresponding Areas Under the Curve (AUC) and the mean of AUCs (mAUC) across
that set to summarize the AUC metric given the multi-class setting at hand.

To assess the robustness of the learned representations given perturbations of the
training data, we resampled the training set ten times, re-trained the models and re-
ported the mean and standard deviation of the mAUCs across these repeats.

Pleomorphism Grading The results for the pleomorphism grade prediction task are
summarized in Figure 6.6. We report an improvement of the mAUC of 0.038 from
the isotropic learned representation in comparison to the learned representation of
the baseline VAE. The isotropic learned representation performed better than the ori-
ented learned representation for all the tested values of βISO. We obtained a consistent
additional improvement of performance when combining the isotropic learned rep-
resentation with segmentation-based features.

Tumor Proliferation Grade Prediction The results for the tumor proliferation grade
prediction task are summarized in Figure 6.7. We do not report any significant im-
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Figure 6.6: Performances in downstream analysis for pleomorphism grading. The table shows best
obtained scores for each type of investigated representation. The plots shows the effect of different
hyper-parameters: β for the baseline VAE, and βORI with fixed βISO = 1 for the proposed
orientation-disentangled VAE. Mean± standard deviation of the multi-class AUC are indicated in the
table and shown with a bar in the plots.

provement of the mAUC from using isotropic or oriented learned representation in
comparison to the learned representation of the baseline VAE and to segmentation-
based features. We report a consistent additional improvement of performance when
combining the isotropic learned representation with segmentation-based features.
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Figure 6.7: Performances in downstream analysis for tumor proliferation grade prediction. The table
shows best obtained scores for each type of investigated representation. Curves shows the effect of
different hyper-parameters: β for the baseline VAE, and βORI with fixed βISO = 1 for the proposed
orientation-disentangled VAE. Mean± standard deviation of the multi-class AUC are indicated in the
table and shown with a bar in the plots.
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6.6.2 Cell-Level Downstream Performances

We used the same protocol to evaluate the cell-type classification models. The results
for the cell-type classification task are summarized in Figure 6.8. We report a consis-
tent improvement of the mAUC from using the isotropic representation in comparison
to the learned representation of the baseline VAE. The oriented learned representation
performed worse than the representation of the baseline VAE or the isotropic learned
representation for all the tested values of β and βISO.
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Figure 6.8: Performances in downstream analysis for single-cell type classification. The table shows
best obtained scores for each type of investigated representation. Curves shows the effect of different
hyper-parameters: β for the baseline VAE, and βORI with fixed βISO = 1 for the proposed
orientation-disentangled VAE. Mean± standard deviation of the multi-class AUC are indicated in the
table and shown with a bar in the plots.

6.7 Discussion and Conclusions

In this study, we proposed a novel rotation-equivariant variational auto-encoder frame-
work that learns two types of generative factors: isotropic real-valued components and
oriented angular components. We showed that this two-fold low-dimensional struc-
ture can efficiently represent histopathology images. We investigated in a controlled
experimental setup, the predictive power of the learned representation using the pro-
posed frameworks and show its advantage in comparison to unsupervised baseline
counterparts. The difference of generative action of each type of variable was qualita-
tively demonstrated via smooth transitions of generated examples given interpolated
embeddings (see Figures. 6.2-6.3).

Qualitatively, we observed that the isotropic learned representation captures mor-
phological factors such as stain ratios, nuclear sparsity, thickness of the nuclear bound-
ary (see Figure 6.2(b)) whereas the oriented learned representation codes for the radial
location of the surrounding objects (non-centered neighboring nuclei) and asymmet-
ric structures (see Figure 6.2(a)).
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Quantitatively, using isotropic representation was always better or as good as the
representation learned by conventional VAE or segmentation-based nuclear area fea-
tures (see Section 6.6). This is in agreement with our hypothesis that the orientation
information that is entangled in the representation learned by the baseline VAE af-
fects the quality of the aggregated representation, and subsequent downstream per-
formances. This was both observed for patient-level grading tasks based on aggre-
gated representation and for cell-level classification tasks. This is also in line with pre-
vious results reported in studies on supervised rotation-invariant CNN models trained
to solve computational pathology tasks [63], [107], [108], [110], [157], [211].

Although our results suggest that unsupervised learned representation is an effi-
cient alternative to hand-crafted feature-based representations, the fact that the com-
bination of hand-crafted nuclear feature representation with unsupervised learned
representation gave a consistent improvement of performances also reveals the lim-
itations of the proposed framework. Indeed, complex knowledge-based quantities
such as the mean nuclear area that were relevant for the task at hand could not be
extracted from the learned representation as they do not necessarily correspond to
independent generative factors that the models learned. However we conjecture that
this limitation might be due to the restricted architectural design of the model that we
chose for the comparative analysis. We thus believe that this limitation can be poten-
tially overcome by using more complex and sophisticated architectures for the latent
variable models and downstream classification models.

The performances achieved on the pleomorphism grading task using the isotropic
learned representation indicate that these features were more predictive than the ori-
ented features to solve this specific task. This is expected as by definition the pleomor-
phism grade was labeled based on rotation-invariant nuclear morphological factors.
However on the tumor proliferation grading task, oriented features were slightly more
predictive than isotropic features. This suggests that these two types of features were
equally informative of this specific patient-level grade.

Besides these applications, the proposed framework can be used as a generic tool
to quickly gain insights, and with minimal training effort, into the slide-level predic-
tive value of fixed-scale image patches. Indeed, we showed that logistic regression
models could be trained using aggregated representation of cell populations to predict
patient-level target values such as the pleomorphism grade and tumor proliferation
grade. But the same approach could potentially be applied to estimate any other slide-
level value. Also, extensions to other convolutional latent variable models are possible
including more complex architectures (such as flow-based generative models), other
families of variational distributions (such as structured posterior distributions of the
oriented variables) and other training paradigms (such as in a semi-supervised frame-
work). For computational convenience, we proposed implementing the sampling of
the angle variables by means of a straight-forward inverse sampling layer, however,
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other end-to-end sampling strategies could be investigated for further improvement.
This framework is also transferable to other problems in which one wants to model
a posterior distribution on the rotation group. Other interesting applications for fu-
ture work include pre-training for patch-based classification tasks, and compression
of WSIs.
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Chapter 7

Deep convolutional neural networks are powerful computational systems to learn
abstract representation of images: they have become a methodology of choice to achieve
state-of-the-art performances across many computational pathology tasks. However,
the high variability of histopathology data limits the robustness of deep learning sys-
tems to inconsistent and unforeseen variations.

With the goal of improving the quality of this learned representation, the main
contributions of this thesis consist of the development of new frameworks that im-
prove the robustness of deep learning models by making their learned representation
invariant to irrelevant factors of variations. This thesis focused on two known cate-
gories of nuisance variables: slide-specific variations (via domain-adversarial meth-
ods, in Chapter 2) and variations in terms of spatial orientation (via SE(2,N) convolu-
tional layers, in Chapter 3). We demonstrated the applicability of these frameworks to
several patch-level computational pathology tasks in both supervised (Chapters 2 and 3)
and unsupervised (Chapter 4-5-6) learning contexts.

The main goal for the frameworks presented in this thesis, was to enable the de-
velopment of deep learning models that can be safely integrated in a clinical envi-
ronment, as opposed to current state-of-the-art deep learning models that are poten-
tially subject to making mispredictions due to the unforeseen dataset shifts (distribu-
tional changes between the training data and the data encountered in practice), and
for which no design decisions were made to improve or guarantee their robustness.

Even when trained models are properly validated on a hold-out set, they can still
be subject to making mispredictions caused by dataset shifts, whereas the decisions
made by a human expert in the same circumstances would not be affected (see ex-
amples of error made by baseline models in Chapters 2 and 3). This lack of guaran-
teed robustness to distributional variations goes beyond the scope of computational
pathology, and constitutes a well-known artificial intelligence safety problem [213],
[214]. This problem is also linked to another legitimate trust issue towards deep learn-
ing systems that stems from the fact these models can be viewed as black boxes whose
feature representation cannot be directly interpreted and verified by humans. Along
with this lack of direct interpretability, we argue that this black-box status is an other
reason why the robustness of the models cannot be fully guaranteed.

In this chapter, we summarize how the studies presented in this thesis contribute
to solving this open problem in the context of computational pathology, we discuss
the understanding of the limitations of the proposed solutions and present recent
progress and directions for future work.

In their review, Bengio et al. [24] present building invariant features as a generic de-
sired property for learning good representations. In this thesis, we followed this gen-
eral principle by explaining away irrelevant factors of variations and build up more ro-
bust representations. One way to achieve this goal consisted in a loss-based domain-
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adversarial approach to improve robustness to slide-specific factors of variations (Chap-
ter 2). The proposed framework exploits the available known inter-slide variability of
a training set to encourage learning of a domain-invariant representation. In compar-
ison to existing ad-hoc methods, the generic aspect of the proposed framework can in
principle make a model robust to a wider range of variations than the ones addressed
by normalization and augmentation approaches. As shown in a controlled set of ex-
periments, generalization to images from external datasets was improved by combin-
ing this approach with conventional ones. Since generalization performances can be
improved by such a framework, the same trained model can be integrated across var-
ious labs and can potentially produce a more consistent output than models that do
not specifically address inter-slide variability. Yet, we acknowledge that this method
only acts as a generic regularizer to encourage domain invariance and does not bring
any generalization guarantee. Nonetheless, domain-adversarial approaches still are
a promising research direction as demonstrated by recent studies in computational
pathology [215], [216]. It is important for future work to combine the use of this type
of method with a large number of domains as a way to provide a soft guarantee regard-
ing the range appearance variability the model was exposed to. Recent developments
in domain-adversarial training and alternative approaches have been proposed since
our original publication and these constitute relevant research directions [209], [217]–
[220].

As opposed to constraining a model by means of a penalty in the training loss
function, we investigated solutions to build-in invariance properties into the architec-
ture of CNNs. Indeed, we showed in Chapter 3 how we can achieve robustness to the
global orientation of WSIs by construction, which is not a goal specifically addressed
by conventional CNNs. Without an approach such as the proposed equivariant con-
volutional layers, the end users of CNN-based models might get a different output
when rotating input images, which brings an undesired uncertainty for making a clin-
ical decision. With the proposed framework, end users now have a guarantee that
the internal features learned by a CNN to produce outputs are rotation-equivariant.
In consequence, this framework removes the typical extra computational cost of per-
forming rotation augmentation at test time, and removes the uncertainty of the out-
put related to the orientation of the input images. Furthermore, we showed in a set of
comparative analyzes that this framework significantly improves performances across
multiple classification tasks. Limitations of this approach include its specificity to a
single type of transformation and the relative increased computational cost related to
the increased usage of single weights in the computational pipeline. Recent studies
present promising directions to overcome these limitations by providing models with
invariance to other transformations [65], [75], and in a more efficient way via attention
mechanisms [221].
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These two investigated approaches aimed at removing irrelevant information from
the learned representation, however we can potentially achieve the same goal with a
generative perspective, with the concept of disentanglement[24], in which one wants
to extract and set apart distinct informative factors of the data from each other. We
followed this concept in Chapters 5 and 6, by proposing an auto-encoder that can dis-
entangle the orientation information in image patches. The developed models learn
low-dimensional representations of images that enable both high quality reconstruc-
tions and the ability to achieve reasonable performances in downstream tasks. Pre-
viously proposed unsupervised latent variables models for the analysis of large scale
microscopy image datasets were not competitive with feature engineering methods,
or supervised approaches, and did not enable the high quality of reconstruction we
achieved. With the orientation disentanglement framework we proposed, this is the
first time to our knowledge that a CNN-based representation can partition isotropic
and oriented variables. This framework enables end users to analyze the learned gen-
erative factors that correspond to oriented or isotropic components independently,
and offers the possibility to visually inspect the structural changes associated with
each factor via latent manipulation. This is opposed to conventional latent variable
models, for which the arbitrary orientation of the input images is likely to affect the
latent variables in an unknown manner, which in consequence, unreliably affects any
subsequent classification model. With tasks for which the orientation of images is
assumed to be irrelevant, we showed this information can now be discarded from
the representation, and that this process can improve performances in downstream
slide-level classification tasks. For future work, we consider extensions to disentangle
domain information in the learned representation as proposed in [209], [222], [223].
As such frameworks are modular, other extensions to control the disentanglement
of multiple known irrelevant factors should be investigated [224], [225] and perfor-
mances in downstream tasks could potentially benefit from other recently proposed
latent variable models [226]–[229].

Towards the end goal of providing robust image analysis systems, the quantifica-
tion of the predictive uncertainty of machine learning models is an important research
topic. By providing ways to detect unexpected data variations that are not part of the
training data, the safety of the systems integrated in the clinic can be improved. We
did not investigate methods to quantify the predictive uncertainty of the developed
models, but we assert it is an important topic that should be further investigated, in
particular in the context of the dataset shift problem addressed in this thesis [230].

We argue that the development of robust models is not possible without proper
construction and use of datasets. To properly validate trained models given the high
variability of histopathology data, it is important to evaluate them on independent
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cohorts ideally acquired in different hospitals/institutes, as it has become standard
according to recent large-scale studies [216], [231], [232]. Since the developed models
are data-driven, we argue it is also critical to design training sets that expose models to
variability that cannot be simulated via augmentation techniques solely. This concept
can be extended to strategies that aim at injecting prior knowledge about data varia-
tions (as is the motivation of Chapter 4) into the model, such that robustness to these
variations can be improved.

Furthermore, as new whole-slide high-throughput imaging techniques are emerg-
ing [233]–[237], these are reshaping the field of computational pathology by provid-
ing novel co-localized molecular data. This scaled up source of information can sup-
port the development of powerful machine learning models, but also comes with the
robustness-related challenges addressed in this thesis. In the line of the research we
presented, we believe that future models will have to be carefully designed to en-
sure robustness to various dataset shifts associated with these new techniques. For
an efficient progress, methodologies combining this new data with conventional WSI
of H&E-stained specimens while exploiting knowledge learned from existing models
[238] are promising research directions.

As shown in this thesis, proper design of deep learning models with respect to their
architectures and training procedures are key elements to produce robust automated
image analysis systems for computational pathology. As the proposed frameworks are
modular, this work present significant potential to contribute to advanced CNN-based
WSI processing pipelines and forthcoming challenging slide-level classification tasks.
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Summary

Learning Invariant Representations of Images
for Computational Pathology

The on-going development of whole-slide imaging techniques with their integra-
tion in pathology labs have enabled the digitization of glass slides of tissue specimens
as an alternative to the use of conventional bright field microscopes. This digitiza-
tion of pathology labs has led to an increasing demand for automated, reliable, robust
and fast histopathology image analysis systems that can quantify disease-associated
patterns in digital slides to support pathologists in their routine workflow.

The development of such systems has become possible thanks to the creation and
release of large histopathology image datasets that give opportunities for researchers
to develop and validate new algorithms. To leverage this large amount of image data
made available, the computational pathology community has established machine
learning and more specifically convolutional neural networks (CNNs) as the promi-
nent methodology to achieve state-of-the-art performances across many histopathol-
ogy image classification tasks.

The key principle behind the success of this methodology is that CNN-based mod-
els have the ability to learn complex informative high-level features of histopathology
images that are predictive of target disease-associated quantities of interest. As this
feature representation is learned directly from training examples, the subsequent sys-
tem does not rely on possibly biased hand-crafted features and can therefore effec-
tively generalize to unseen images encountered in a practical clinical context.

Yet, learning a representation from histopathology image data comes with some
methodological challenges that are addressed in this thesis. One main characteristic
of histopathology images is the fact that they exhibit a high variability of appearances
that are irrelevant to solve a task of interest. An example of such a factor of variability
is the arbitrary orientation in which tissue specimens are digitally viewed. Another ex-
ample is any change of appearance related to the preparation or the acquisition pro-
cedure of a digital slide. These examples of factors are independent of the inherent
morphological characteristics of the imaged tissues and can thus be treated as irrele-
vant. Without taking these data biases into account, these irrelevant factors can still
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be captured in the learned representation, thus affecting the trained models in an un-
predictable manner, making the developed systems unreliable to some extent. In this
thesis, new frameworks are proposed to constrain machine learning models and pro-
vide them with invariance properties that improve their robustness to the irrelevant
variability of the data. Comparative analyses of the developed methods across multi-
ple datasets and classification tasks are presented.

The first chapters of the thesis focus on yielding invariances in the context of su-
pervised learning. To make CNN-based models robust to slide-specific variations of
appearance, domain-adversarial training is investigated as a solution to directly con-
strain a task-driven learned representation to be invariant to any slide-related variabil-
ity present in the training data. A comparative analysis against conventional methods
on two tasks is presented (inter-lab generalization of a mitosis classifier and multi-
organ generalization of a nuclei segmentation system). To make deep learning models
robust to the arbitrary global orientations of tissue specimens, a new type of convo-
lutional layer is introduced to encode the orientation information of images into the
learned representation. As a result, CNN-based models equipped with this operation
are shown to achieve better performances on three different tasks in comparison to
baseline counterparts. Regarding tri-dimensional rotational invariance, a qualitative
proof-of-concept study is presented, giving insights on the possibility for deep learn-
ing models to represent the underlying tri-dimensional structure of the imaged tis-
sue slices from single two-dimensional views. This opens research directions towards
granting additional rotational invariances into a learned representation.

As opposed to supervised learning, learning a representation from data solely is a
promising research direction with significant potential for computational pathology
applications. This motivates the second part of the thesis which concerns yielding in-
variances into unsupervised learning frameworks. An adversarial-driven extension of
the variational auto-encoder framework that enables learning a useful latent represen-
tation of cell images that can reconstruct images with a high quality is presented. This
framework is then further developed to disentangle the orientation information of tis-
sue image patches in a partitioned learned representation. This structure is shown to
produce higher performances than baseline counterparts for slide-level classification
tasks.
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