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Mechanism Design for Fair and Efficient
DSO Flexibility Markets

Georgios Tsaousoglou ', Juan S. Giraldo

Abstract—The proliferation of distributed energy assets neces-
sitates the provision of flexibility to efficiently operate modern
distribution systems. In this article, we propose a flexibility mar-
ket through which the DSO may acquire flexibility services from
asset aggregators in order to maintain network voltages and cur-
rents within safe limits. A max-min fair formulation is proposed
for the allocation of flexibility. Since the DSO is not aware of
each aggregator’s local flexibility costs, we show that strategic
misreporting can lead to severe loss of efficiency. Using mech-
anism design theory, we provide a mechanism that makes it a
payoff-maximizing strategy for each aggregator to make truthful
bids to the flexibility market. While typical truthful mechanisms
only work when the objective is the maximization of Social
Welfare, the proposed mechanism lets the DSO achieve incentive
compatibility and optimality for the max-min fairness objective.

Index Terms—Flexibility, distribution system, incentive com-
patibility, mechanism design, fairness, aggregator.

NOMENCLATURE
Sets

Qp  Set of nodes/aggregators.
Q Set of lines.

Qr  Set of time periods.
Parameters
Ay  Parameter of flexibility cost at node i, period ¢
_ [$kWh).
Ki; Maximum flexibility factor at node i, period ¢.
K;; Minimum flexibility factor at node i, period z.
T,-j Maximum current magnitude for line ij [A].
P?t Active power demand at node i, period ¢ [kKW].
Q?, Reactive power demand at node i, period ¢ [kvar].

Rj Resistance of line ij [m].

Manuscript received May 28, 2020; revised September 25, 2020 and
November 30, 2020; accepted December 26, 2020. Date of publication
January 1, 2021; date of current version April 21, 2021. The work of
Georgios Tsaousoglou was supported by the European Union’s Horizon
2020 Research and Innovation Programme under the Marie Sklodowska-
Curie under Agreement 754462. Paper no. TSG-00817-2020. (Corresponding
author: Georgios Tsaousoglou.)

Georgios Tsaousoglou, Juan S. Giraldo, and Nikolaos G. Paterakis are
with the Department of Electrical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands (e-mail:
g.tsaousoglou@tue.nl).

Pierre Pinson is with the Department of Electrical Engineering, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2020.3048738

Digital Object Identifier 10.1109/TSG.2020.3048738

, Member, IEEE, Pierre Pinson, Fellow, IEEE,
and Nikolaos G. Paterakis

, Member, IEEE

V  Maximum voltage magnitude [kV].
\ Minimum voltage magnitude [kV].
Xij Reactance of line ij [mS2].

Variables
K;:  Flexibility factor at node i, period .
I;qtr Squared current magnitude at line ij, period ¢ [A?].
PZ" Active power flow at line ij, period ¢ [KW].
P?,  Active power injection at substation i, period ¢ [kW].
Qg + Reactive power flow at line #j, period ¢ [kvar].
Q;, Reactive power injection at substation i, period ¢
[kvar].
Vl-sft]r Squared voltage magnitude at node i, period ¢ [kV?].

I. INTRODUCTION AND RELATED WORK

LONG with high penetration of renewable energy

sources (RES), electricity distribution systems face sev-
eral challenges relating to their safe and reliable operation.
Flexible distributed resources are seen as an important asset
towards accommodating the intermittent nature of RES gener-
ation. These flexibility assets may include small-scale genera-
tion, distributed storage facilities, building energy management
systems, electric vehicles etc., and their flexibility refers to the
ability of controlling their power profile.

Due to their small size and large numbers, distributed flex-
ibility assets cannot be incorporated in the electricity markets
because they would dramatically increase the number of deci-
sion variables and constraints in the operator’s market clearing
problem. Thus, market participation of small flexibility assets
is envisioned via aggregators. An aggregator is an entity that
provides flexibility services on behalf of the flexible assets in
its portfolio [1], [2]. The framework for flexibility aggrega-
tion is not trivial, and has been the topic of recent studies
(e.g., [3]).

In modern electricity systems, buyers and sellers freely trade
energy through electricity pool markets or through bilateral
contracts. However, at a certain time before actual delivery
(the gate closure time), the trading stops and the system oper-
ator makes sure that the physical constraints of the underlying
grid are respected. The energy transactions of a player until the
gate closure time, constitute the player’s market program. The
players’ market programs may not be feasible for the physi-
cal distribution system to support. Thus, distribution system
operators (DSOs) need to use flexibility services provided
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locally by aggregators in order to keep the network within
safe operational limits.

In this article we consider a distribution system and a set of
aggregators, where each aggregator represents a set of loads
along with a set of flexibility assets. The second-order cone
programming relaxation based on the branch flow model as
in [4], [5] has been used to represent the operation of the dis-
tribution system. Given the day-ahead program, the DSO calls
on the aggregators’ flexibility in order to satisfy the physi-
cal network’s constraints. An aggregator provides flexibility
by modifying its demand profile with respect to its day-ahead
market program.

Depending on the type of assets that constitute the aggrega-
tor’s portfolio, this modification can be realized in different
ways. For example, electric vehicle aggregators can shift
charging to later timeslots [6] or coordinate the geographical
distribution of vehicles via incentives and prices [7]. In simi-
lar fashion, residential aggregators and building management
systems can control the smart appliances of buildings (e.g.,
by manipulating the thermostats of thermostatically controlled
loads). These services come at the cost of possibly causing
discomfort to the end users, which is why aggregators com-
pensate the users for their flexibility provision via data-driven
methods [8], dynamic pricing schemes [9] or transactive local
energy markets [10].

Based on the above, flexibility comes at a financial cost
that the aggregator has to pay to its flexibility assets in order
to incentivize them to provide the requested service. Thus,
each aggregator bids a flexibility cost function to the DSO’s
flexibility market. The peculiarity of a DSO flexibility market
is that, due to the physical network’s topology, it is very often
the case that the flexibility of a particular node is necessary
for the safe network operation. This means that an aggregator
can strategically inflate its bid in order to benefit from price
manipulation. Furthermore, aggregators may also decide to not
follow the DSO instruction if they find that to be of benefit
for them. The potential of strategic behaviour by aggregators
has been demonstrated in recent studies [11], [12]. In [13], it
was also shown that even small aggregators can manipulate
the price by leveraging their grid location. Moreover, in [14],
deep reinforcement learning is shown to be a well-performing
method for aggregators to compute such a strategy.

For these reasons, it is important to implement a market
mechanism where aggregators are incentivized to make a truth-
ful report on their flexibility costs and have nothing to gain by
inflating their bids or by not following the DSO instructions.
A mechanism is defined by an allocation rule, i.e., the way
that resources are being allocated to participating agents, and
a payment rule, i.e., the way that agent paymets/rewards are
being calculated.

In the literature of electricity systems, the allocation rule
is typically defined by solving an optimization problem that
maximizes social welfare, while the payment rule is defined by
calculating a set of Lagrange multipliers, where the Lagrange
multiplier of a node’s power balance constraint is interpreted
as the node’s locational price. This concept has already been
proposed also for DSO markets, and is usually referred to
as Distribution Locational Marginal Pricing, e.g., [15], [16],
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[17], [18], [19]. It is important to note that the Lagrangian
methods [15]-[19] do not provide protection against strate-
gic behavior and they are vulnerable to price manipulation by
strategic participants. One way to deal with strategic behavior
is to employ ex-post market monitoring techniques as proposed
in [20], while another is to ex-ante employ an incentive
compatible payment mechanism.

A mechanism that makes truthful reporting a profit-
maximizing strategy is said to have the property of incen-
tive compatibility. In more detail, there are different notions
of incentive compatibility, the strongest of which is called
Dominant Strategy Incentive Compatibility (or DSIC). We say
that a mechanism is DSIC when the best (dominant) strategy
of every participating player is to be truthful, regardless of
what other players do.

Some studies in the area of the smart gird have leveraged
concepts from mechanism design to design payment rules for
various use cases. In [21], a payment rule is designed, to
incentivize residential load agents to truthfully report their
expected demand to a load aggregator. In [22], a payment rule
is designed so that flexible electricity assets are incentivized
to shift their consumption away from peak-demand timeslots.
In [23], an asymptotically truthful rule (not DSIC) is designed
to allocate electricity consumption to a set of flexible house-
hold agents under certain assumptions on the agents’ local
valuation functions.

Another family of studies in the smart gird literature,
leverages the (DSIC and optimal) Vickrey-Clarke-Groves
(VCG) mechanism for achieving truthfulness and optimal-
ity. Examples include [24] and [25], while in [26], the
authors propose a distributed implementation of VCG to
achieve truthfulness along with scalability and privacy in a
Demand Response scheme.

Since the studies mentioned above [23]-[26], examine dif-
ferent use cases, each one proposes a different payment rule.
However, the underlying objective in all of them is social wel-
fare maximization, which, although formulated differently in
different use cases, means that the allocation rules are similar
in nature: minimizing the average agent cost.

In the setting of a DSO flexibility market, however, the typi-
cal approach of minimizing the average flexibility cost among
agents can have detrimental effects on the payoff of some
particular participant, i.e., the mechanism may “sacrifice” the
payoff of a certain node or aggregator, in order to benefit the
whole system. Especially in a distribution system, the grid
topology might cause a particular set of users (that are sited
under a particular node of the grid) to be repeatedly treated
unfairly. Such phenomena can lead to non-sustainable busi-
ness models for some aggregators, which can result in market
concentration and deteriorate market competition.

In order to prevent such phenomena, the objective of
the market can be defined so as to maximize fairness.
In [27] and [28], fairness is defined using the Shapley value,
whereas in [29] a compensation mechanism for flexibility
activation is proposed as a fair way to compensate aggre-
gators. In [30] and [31] fairness is assessed on the basis
of equally distributing electricity costs among users, based
on their level of effect on the community’s electricity cost.
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However, in order to remedy issues of aggregators sustain-
ability and thus promote market competition, the most relevant
objective is to maximize the lowest payoff among aggregators.
This is commonly referred to as optimizing for max-min fair-
ness and is generally considered a fairness criterion in various
fields (e.g., load-balancing in communication networks [32]).
In [33], max-min fairness is assessed for a DR setting with
electric vehicles and cooling devices, while in [34], max-min
fairness optimization is considered and solved using the alter-
nating direction method of multipliers (ADMM) algorithm. In
contrast to the case of minimizing the average cost, optimiz-
ing for max-min fairness is not thoroughly studied in the smart
grid literature. Moreover, the optimal and incentive compatible
VCG mechanism only works when the objective maximizes
the social welfare and not fairness.

In fact, to the best of our knowledge, developing a flexibility
mechanism that is simultaneously fair and incentive compati-
ble has not been dealt with before. In this article we consider
a distribution system, where the DSO calls on the aggrega-
tors’ flexibility in order to satisfy the physical constraints of
the system. We design a DSIC mechanism that incentivizes
aggregators to declare their true cost for flexibility provision
at the scheduling phase, and then follow the DSO’s instruc-
tion at real-time operation. Thus, the main contributions of
this article can be summarized as follows:

o We formulate a max-min fair allocation problem for flexi-
bility in a distribution system, so that network constraints
are satisfied in a fair way.

« We design an incentive compatible mechanism so that
flexibility aggregators are incentivized to declare their
true cost for flexibility at the scheduling phase, and then
follow the instructions of the DSO at real-time operation.

o We thoroughly evaluate the proposed system through
simulations and compare it to different benchmarks.

The remainder of this article is organized as follows:
Section II presents the system model and the power flow equa-
tions of the distribution network. In Section III the problem
formulation is presented and in Section IV the proposed reward
function is built, and its properties are theoretically proven.
In Section V, simulation results for various test cases are
presented and Section VI concludes this article.

II. DISTRIBUTION SYSTEM MODEL

We consider a distribution system, constituted by a set €2
of nodes b € 2 and a set ; of lines [ € ;. We consider
a set of aggregators where each aggregator is responsible for
the net demand of its portfolio. We assume that the DSO has
access to measurement facilities and can observe each aggre-
gator’s power consumption. In order to facilitate the analysis,
we assume that each node of the distribution network is repre-
sented by one demand aggregator i € 25, however the methods
and results of this article hold equivalently for the general
case. For a horizon of discrete timeslots ¢ € QT, an aggrega-
tor i€ Q;, is characterized by an active power demand profile

{Pl ., t € Qr} constituted by the aggregator’s demand at
each timeslot. The profile PD represents the energy bought in
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the day-ahead market and it is communicated by the day-ahead
market operator to the DSO.

The DSO is responsible for the operation of the distribution
system, so that voltage and current magnitudes remain within
safe limits. For this purpose, the DSO draws on the flexibility
offered by the aggregators in €2, that is, the ability of an
aggregator to modify its active power demand P , at timeslot
t by a certain factor K;;. A modification K; le - results in an
active power injection P5 , determined by the active power
balance equation

it

> Pua— 2 (Pi+ Ryl ) + PS = KiPD,
kieSy ijey
Vie Qp,t € Qr (D

The corresponding reactive power flows are represented as

> Ouia— (i + Xl + 0% = K@D,

kie$2; ije
Vie Qp,teQr 2)
Notice that aggregators are assumed to maintain a constant
power factor and also, it is assumed PS Q = 0 for all

buses but the substation. On the other hand for the substation
bus, notice that P(S), , can also be less than 0O, representing back-
feeding. It should be noted that these assumptions are without
loss of generality with respect to the methods that will be
presented.

Since current and voltage magnitudes appear naturally as
squared, non-negative, continuous variables in the steady-state
operation of AC electrical distribution systems, it is convenient
to perform the change in variables V;{" = V7, and I}y = I},
as in [35]. The voltage magnitude drop between nodes i and
Jj is represented by

VI 2R Py X0, — (R + XE) 1 = Vi
Vij € Qp,t € Qr 3)

while current magnitudes are calculated using
VILE =Py, + 0, ViieQ.teQr )

Upper and lower bounds on nodal voltage magnitudes and
current magnitudes are enforced by

V<V <V VieQyieQr 5)
0<1;qj<1 Vij e Q,t e Qr (6)

An aggregator’s flexibility is bounded as in
K, <Ki;<Ki; VieQ,teQr (7

Let K; = {K;;, t € Qr} denote i’s profile of ﬂexibility acti-
vation. Accordingly, tuple L; = {A;,, K;, K,,, t e Qr}
denotes the aggregator’s local parameters, where A;; is a
cost parameter for flexibility activation. It is assumed that the
aggregator draws its flexibility by calling on demand-response
resources from the prosumers in its portfolio at a cost defined
by function ¢;(K;, L;). This is modelled by causing a devi-
ation in the prosumers’ active power demand (from PD to
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P?t(l — K 1)), which comes at a cost defined as

ci(Ki, Lj) = Z hio (PR (1 - Ki,z))2

teQr

Vi e Qp. ®)

III. PROBLEM FORMULATION

The objective of the DSO is to satisfy the operational
constraints of the distribution system, while minimizing the
highest flexibility cost incurred among aggregators by decid-
ing the optimal flexibility activation. In other words, the DSO
pursues a fair allocation of flexibility costs among aggre-
gators so that all aggregators are motivated to contribute,
while no particular aggregator has to be compromised to uni-
laterally facilitate the DSO in achieving its objectives. This
optimization problem can be formulated as

min max{c;(K;, L;)}
Ki Vit I P Qi Py 05, €S0
s.t (1)—(8) )
By introducing the slack variable z, and replacing (4) with
VIV = PL + 0F, VijeQuteQr (10)
problem (9) can be recast as second order cone programming
problem that is represented by

sqr,Sqr {Z}

min
K, Vi ’Iij,t’Pi/'vf’QijJ’P(S),t’Q(S),r
S.t z>ci(K;,L;)) Vie
(1)=(3), (5)—(8), and(10) (11)

Notice that under certain conditions, constraint (4) is equiv-
alent to (10) in radial distribution systems, as explained
in [4] and [5].

The model in (11) could be efficiently tackled assuming that
the DSO knows the flexibility cost parameters A;,, as well as
the limits K;, and K;, for each aggregator. However, these
parameters depend on each aggregator’s demand response
capabilities based on the scheduling of the flexible loads in
its portfolio. Thus, the DSO does not have direct access to
this information and relies on the aggregator’s self report. An
important problem arises, concerning the aggregator’s truthful-
ness upon declaring its local parameters. Naturally, unless the
aggregator is compensated for the service provided, it would
opt for maximizing its own revenue, which is done by declar-
ing no available flexibility. Moreover, a compensation scheme
that is not carefully designed, might still result in strategic
misreporting. R

Let Zi = {’):,-,,, Kl-’l, K./} denote the aggregator’s declaration
for L; which may or may not be equal to the actual L;. The
DSO solves (11) using the declarations Zi as input, and the
optimal solution is given to each aggregator as an instruction
K7 to follow.

Once the instruction is communicated to each aggregator
for the horizon 2, real-time operation begins. The aggregator
implements a flexibility profile K;, where the tilde denotes the
fact that this is the actual final flexibility factor implemented
by the aggregator, as measured by the DSO’s smart meters.
In real time operation, two things may go differently than
scheduled:

o The aggregator might not follow the instruction, and

implement a different final profile, i.e., K; # K.

IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 3, MAY 2021

« The actual cost ¢; = ¢;(K;, L;) that the aggregator pays
to its customers for the implementation of the flexibil-
ity profile K;, may not be equal to the cost calculated
by the DSO, ci(Ki,zi), e.g., aggregators providing false
declarations of flexibility costs.

Note that both cases result in inefficiency, since even after
assuming that the aggregator perfectly follows the instruction,
the costs can still differ, i.e., ¢; = (K}, L) # ci(K},L;).
The efficiency sensitivity to aggregator’s declarations will be
addressed in a later section.

The payoff of an aggregator i, defined as m;, is calculated
as the compensation p; received by the DSO for its flexibility
services, minus the actual cost ¢; paid to its flexible customers
according to

(12)

T =pi —Ci

The task of the DSO in this case is to design the reward
function, p;, in such a way that it makes it a dominant strategy
for each aggregator to first make truthful declarations and then
follow the flexibility instruction, i.e., i,» ~ L; and I?,- ~ K},
respectively. That is, the reward function p(-) should be incen-
tive compatible in the sense that it aligns the aggregators’
local objectives with the general objective of the DSO. This
needs to be done in order to achieve the optimal solution to
problem (11), since this solution guarantees the safe operation
of the distribution system and fairness for flexibility assets.

A general overview of the proposed procedure and mes-
sage exchange is depicted in Fig. 1. First, the DSO is informed
about the aggregators’ expected demand profiles PP for a given
time horizon ahead. The DSO checks whether the network
constraints can be satisfied. In case they cannot be satisfied, the
DSO calls for the aggregators’ flexibility bids. The aggregators
make their flexibility bids ii to the DSO. Given the bids, the
DSO solves (11) and communicates the instruction K to each
aggregator i. Given the instruction, the aggregator manages its
portfolio at real time operation. The aggregator’s actual load
profile K; can be measured by the DSO. After the end of the
horizon, the aggregator compensates its flexible agents and
communicates the “proof of payment” to the DSO, i.e., the
voucher ¢;. This could also be done automatically, e.g., via a
smart contract. Given the aggregator’s instruction and obser-
vation (i.e., measured consumption and proof of payments),
the DSO calculates the aggregator’s compensation p;.

IV. REWARD FUNCTION DESIGN

For the design of the reward function p; we consider the
family of mechanisms referred to as compensation and penalty
mechanisms (CPM), as in [36, Sec. 10.6.1]. In our context,
the aggregators’ instructions K}, are calculated by solving
problem (11), but using the declared tuples Zl- as the input
that defines the functions c¢;(K;, ii). After the observation of
the outcome, the aggregator’s reward is calculated by

CPM _ 3, z, : K*,i)} 13
2 ci—B max{cl jerfrzlﬁ;’(yéi{cj( j o L (13)

As explained above, ¢; = c,-(I?,-,L,-) is the observation of
the actual flexibility costs for aggregator i after the end of the
horizon, while K; is the measured flexibility factor, which is
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t=0
Horizon start

t=T
Horizon end

r—————— ~ [ | [ | * * [ |
| DSO I | Constraint I | . I | . I
| Actions | e #| satistaction? | - | Solve MinMax | | l__ bt #-| Observation |
L o R | S | .- A |
—_ - Tu ’ [ — ’ [ — | R | 7 L _ _ _ 12
] 1 K / [
] ] b ' 1 )
F———— . 1 1 v | 1 | 1 Di
s Y v _ __ N __ r _ —_—

- 7 ST 7 <7 <7 < z N, 7 N7/ N
I I(D:SO Aggreg?tor ( Energy ( Ca!l fqr ) (Flexibility Bid) ( Instruction ) I Measurement | [ Vouchers ) Payments )
| Communication | | ‘Demand , Wilexibiliyy’ (= T, Ny I\ IZIRN Z_N /_
L — —— d .

D - ~
P ——— . 1)Z LL | K,L | C;
| Asgregators | [T A . o
| Actions | | Demant_i | FIeX|b|I|§y | Execution | Settlement |
| Aggregation Aggregation

L=~ | | | | |

- L— — — — 4 L— — — — 4 L— — — — 4

Fig. 1. Procedure and message exchange between DSO and Aggregator.

calculated at the end of the horizon based on the measure-
ments of the actual power injections. The first term in (13)
compensates the aggregator for its actual flexibility cost that
the latter offered at its flexible assets. The second term is the
worst-off flexibility cost among aggregators, where the cost is
calculated over the declared tuples L; and instruction factors
K;" of the rest of the aggregators, j # i, but over the observed
cost for i. Parameter B is a penalization factor chosen by the
DSO.

Let us temporarily assume that all aggregators follow their
instruction K7, that is K; = K. Then, the CPM mechanism is
incentive compatible, and consequently, an implementation of
the optimal solution to (11). The intuition behind this is that
each aggregator is penalized over the maximum actual flexi-
bility cost of all players. Thus, by making false declarations
L;, the aggregators can only increase this cost, since a false
declaration causes the DSO to allocate flexibility suboptimally.
A formal statement and proof follows.

Lemma 1: If the aggregators always follow the instruction,
then under the CPM payment rule (13), it is a dominant
strategy for each aggregator to declare its true parameters
L =L,

Proof: The proof is provided in Appendix A. |

The CPM reward structure was originally designed for
task allocation to machines where each machine declares its
cost for executing a task. Once the tasks are allocated, the
machine has no option but to execute its tasks, and this is
why the assumption that the aggregator follows the instruc-
tion is needed for the CPM to work in our setting. However,
in practice, aggregators are not hard-constrained to follow the
instruction. In fact, the aggregator can instead opt for a pro-
file K; # K}". In this case, the original CPM mechanism
is not enough to guarantee incentive compatibility. We pro-
pose a novel payment rule, called enhanced-CPM (ECPM),
modifying the CPM rule as stated by

pi(K.L) =R+ — 8 maX{Fi,jerg:};;i{q<K}‘,

- Z 4 (I?i’f - Ki’ft)2

teQr

)l

(14)

The first term, R;, is a fixed payment to each aggregator, in
order to make sure that the mechanism is individually rational,
i.e., the aggregators’ payoff is always positive which makes
the aggregators eager to participate in the mechanism rather
than opt out. The middle term is (13), while the last term is
a penalty controlled by parameter y, that has been introduced
in order to penalize the aggregator’s deviation from the DSO’s
instruction. The penalty imposed to the deviating aggregator
is quadratic in the volume of deviation, so as to penalize devi-
ations in both directions (up and down). Also, the per-unit
penalization is increasing in the amount of deviation, which
helps towards penalizing large deviations strongly, but keeping
the penalty of small (possibly unintended) deviations mild.

The last term is not included in the original CPM mecha-
nism described in [36], but it is necessary in order to incen-
tivize the aggregators to follow the instructions. Regarding
the value of y, the following theorem states that the proposed
mechanism (14) is incentive compatible for y > A; ;.

Theorem 1: Given payment structure (14), for y > A;,, it
is a dominant strategy for each aggregator to declare its true
parameters (ii = L;) and then follow the DSQO’s instructions
(K; = K7).

Proof: The proof is provided in Appendix B. |

Remarks and Extensions

The proposed mechanism of this article intrinsically
assumes a deterministic and perfect information system, where
the aggregators have perfect knowledge of their flexibility
parameters L;. In practice, however, an aggregator may only
have a forecast of the parameters that it is required to declare.
Thus, there can be a case where an aggregator truthfully
declares L; to the best of its abilities, but is then unable to
follow the instruction, due to unforeseen changes in the capa-
bilities of its flexibility portfolio and through no fault of its
own.

Identifying the reasons behind a deviation from the instruc-
tion, and determining whether it occurred due to uncertainty
or due to strategic behavior, is a challenging task that requires
administrative procedures (e.g., auditing) and falls well beyond
the scope of this article. Nevertheless, against this perspective,
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ECPM provides the DSO with the ability to adjust the devi-
ation penalty y, depending on the system characteristics, so
that a good trade-off is achieved between not heavily punish-
ing unintended deviations on one hand and disincentivizing
strategic behavior on the other.

More generally, the choice of values for parameters y, R;
and B of ECPM need to be carefully engineered so that the
aggregators always benefit from participating in the flexibility
market. This means that the penalization for deviations needs
to be high enough so as to disincentivize misreporting, but
at the same time not so high that aggregators with uncertain-
ties would rather not participate in the market at all, in fear
of negative payoffs and heavy penalties. In this context, in
Section V, the reader can find examples of suitable choices
for parameters y, R; and B, that address this trade-off in a
particular test case.

In view of the uncertainties discussed in this subsection, it
is also important to note that the ECPM payment rule (14),
also provides resiliency, since an aggregator’s payment does
not depend on the deviations of others. As a counter-example,
consider the simpler payment function

pi=Ri+7¢ — ﬂmrflx{?n} - Z v (K — K?f,)z

teQr
where the term max,,{C,,} is the maximum realized cost over all
aggregators (including i). In a fully deterministic system where
aggregators have accurate knowledge over their cost function
and are also assumed to follow the instruction, this choice
would also align the aggregators’ incentives with the DSO’s
objective. However, in cases of uncertainty in the players’
cost parameters A, the term — max,{c,} of the above choice
would unfairly penalize truthful and non-deviating aggrega-
tors, due to imperfect A forecasts of other, more volatile,
aggregators.

Moreover, such a choice would not only result in unfair-
ness, but would also incentivize an aggregator i to strategically
misreport a lower A;; in order to be allocated more flexibil-
ity, so that less flexibility is allocated to another aggregator j,
which i considers to be volatile. In contrast, in the proposed
mechanism, an aggregator’s payoff depends only on its own
cost realization ¢; and not on the cost realizations of oth-
ers (but only on their declarations, which are proved to be
truthful).

Finally, towards extending the system model to include
multiple aggregators under the same network node, equa-
tions (1) and (2) would read respectively as

> P = 2 (P + Rl ) + P = D KiaiPPu,

ki ije ae<dy
(15)
Okit — Qi+ XL 4 QS — K QD
kit ij,t ijlij 1 it — i,a,tj a,¢
kie$2; ijeSy aEQi\

(16)

where Qg is the set of aggregators under node i of the network.
The ECPM mechanism (and its properties) reads the same as
presented, although an aggregator would have to be indexed
by a, where a € @', rather than simply i.
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V. TEST CASES

Different test cases were performed in order to compare
the proposed formulation using a 34-bus medium-voltage,
radial, distribution system. System parameters can be found
in [37]. The system has 29 load buses each defined by its
base load, P;pase and Q;pase. As explained in the introduc-
tion, a great deal of flexibility capability stems from small
distributed assets, which in turn motivates the need for aggre-
gation. These small assets typically reside at residential or
commercial buildings and parking lots. For this reason load
buses are assumed in this article as the system aggregators.
Hourly profiles have been shaped by scaling base loads with a
loading factor for each timeslot, resembling a typical day-load
profile.

A. Assuming Truthful Declarations of Flexibility Costs and
Accurate Instruction Following

This test aims at showing the difference in the results stem-
ming from the proposed min-max approach, compared to the
standard formulation that minimizes the total system cost.

For this particular test, load parameters were randomly
selected from normal distributions, i.e., P;pase ~ N (p, op).
Without loss of generality, it was assumed that all aggre-
gators shared the same probability distribution family and
a fixed standard deviation of 15kW. The above setting
was simulated for a total of 8 scenarios where up =
{100, 200, ..., 800} kW, and a constant power factor of 0.95.
For each scenario, the results were averaged out over a number
of experiments.

Assuming truthful declarations and no inaccuracies, the
results of problem (11) were compared to the results of the
cost minimization problem

> ciKi, L)

1S9

(D-(3), (5)—(8), and (10)

min
. Sqr Sqr .. .. S S
K Viy Ly Pijs Qi P Q4

7)

Notice that (17) minimizes the total system cost, whereas the
proposed approach minimizes the maximum cost. The total
flexibility cost of the system, Ziegb ¢i(K7, L;), is depicted
in Fig. 2 for both cases relating the average, maximum, and
minimum value of the experiments. It can be seen that the
solution to problem (17) minimizes the total cost, as expected.
Thus, Fig. 2 can be interpreted as a quantification of the
cost of fairness for this particular case study.

Similarly, both approaches were compared in terms
of the maximum flexibility cost among aggregators,
max;eq, ci(K;‘,Li). Results are shown in Fig. 3, again as a
function of wp(s). Interestingly, the difference is higher in
cases where the distribution system is only mildly overloaded.

B. The Cost of Not Knowing the Flexibility Cost Functions

It is usual for the DSO to receive a flexibility activation ser-
vice by activating predefined contracts. Those contracts define
the aggregator’s compensation in a static fashion. Thus, the
aggregators do not bid the cost functions c(-), but those are
assumed known by the DSO based on the contract. However,
the actual flexibility cost of an aggregator is not static and may
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Fig. 2. Cost of fairness: total system cost of the maxmin fair approach
compared to the optimal cost.
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Fig. 3. Maximum flexibility cost among aggregators, for the maxmin fair
approach and the cost minimization approach.

differ from the assumed costs. In this subsection, we assume
that the DSO’s estimation of flexibility cost parameters, A;;, is
inaccurate. More specifically, for our experiments, the assumed
parameter ’):,-,, follows a normal distribution around the actual
value A, i.€., /):,-,t ~ N (it 03).

After solving problem (11) using /):,; t» the DSO determines a
suboptimal instruction K?“b. Assuming all aggregators follow
the instruction, the actual cost of aggregator i is defined as
Cisubopt = Ci(K}™, L), as in (8).

Thus, the cost of the worst-off aggregator, i.e., the sub-
optimal value of the objective function in problem (11),
is obj = max;eq, {Cisubopt}- On the other hand, the
optimal objective value of problem (11) is denoted by obj*,
hence, obj* < obj. The optimality loss factor caused by
inaccurate estimation of the flexibility costs is defined as
OptLoss = obj/obj* and it is a function of the estima-
tion inaccuracy oj. Actual values for A;, were assumed to
follow a normal distribution with average 3[$/kW?] and a
standard deviation of 0.5 [$/kW2]. Results were averaged out
over a number of experiments and plotted in Fig. 4 as a
function of o7;.

As observed in Fig. 4, the inefficiency grows with the
inaccuracy of the estimated flexibility costs. Note that the
inefficiency due to the DSO’s inaccurate estlmatlon of A;; is
analog to the case of a false parameter A;; self-reported by
the aggregators for strategic reasons. Thus, it is important to
incentivize aggregators for truthful reports of their parameters.
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Efficiency loss factor — OptLoss

T T T
0.2 0.4 0.6 0.8 1.0
Standard deviation flexibility cost — o

Fig. 4. Optimality loss factor OptLoss as a function of estimation
inaccuracy oj.
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Fig. 5. Aggregator’s payoff for the pay-as-bid scheme, as a function of the
false declaration factor € for various cases of instruction deviation factor dg.

C. Simulating the Pay-as-Bid Scheme and Considering
Inaccurate Instruction Following

For the next experiment, we take the perspective of a par-
ticular aggregator. We assume that the DSO employs the
pay-as-bid scheme: In each scenario, the DSO compensates
the aggregator by p; = /):i,,IN(,-,t, where /):,',, is the aggregator’s
declared flexibility cost. The aggregator’s measured flexibil-
ity actions I?,;, may differ from the optimal instruction K7,
by a factor 8k, that is, IA(',;,‘ = SKK:[. Assuming a toler-
ance of 0.05% in the instruction following, we simulated three
scenarios for values of 6 = {0.95, 1, 1. 05}

The aggregator can declare false values A, ; on purpose In
the simulation, declaration A .+ was selected as A g = € Ay
where € € [0.8, 1.2]. Note that different values for A, ; results
in different instructions for all the aggregators. The results on
the aggregator’s payoff are depicted in Fig. 5.

It can be seen that the aggregator is able to increase its
payoff by declaring a higher flexibility cost than its true one,
ie., € > 1. Moreover, by exploiting the tolerance level g,
the aggregator is able to curtail more load in order to take
advantage of the inflated compensation. Thus, it is evident
that the pay-as-bid scheme is not suitable for our setting, since
it might incentivize the aggregators to arbitrarily inflate their
bids. This phenomenon has a detrimental effect on the global
efficiency, as shown in Section V-B.
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Fig. 6. Aggregator’s payoff with ECPM as a function of the deviation €
from the truthful declaration of flexibility costs, for various choices of S.
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Fig. 7. Aggregator’s payoff with ECPM as a function of the deviation dg
from the instruction for various choices of declaration €, with B = 0.05,
y = 1000.

D. Simulating the Proposed ECPM Scheme With Accurate
Instruction Following

For the next experiment, we assume that the DSO employs
the proposed ECPM scheme and that the aggregators perfectly
follow the instruction. However, they can still declare false
flexibility costs /)\\i,t = € Aj; with € € [0.5,4]. The aggre-
gator’s payoff m;, given from (39), as a function of € for
different choices of the penalty parameter 8 is depicted in
Fig 6. Parameter R; was set to $400.

As it can be observed from Fig 6, the aggregator only makes
itself worse-off by declaring lower flexibility costs, € < 1. The
optimal choice would be ¢ = 1, which represents a truthful
declaration. For € > 1, the aggregator inflates its declared
flexibility cost, causing the DSO to allocate less flexibility
to i and more flexibility to other aggregators. The aggrega-
tor’s payoff remains unchanged for a range of € since the
DSO can still allocate the necessary flexibility without increas-
ing the term max;egq,;ji{cj(K7, L;)}. However, after a certain
point this term also increases, causing the decreasing of the
aggregator’s payoff.

E. Proof Against Strategic Behavior, Using the
ECPM Scheme

Finally, we study the case where the aggregator is free to
strategically declare its flexibility costs A;; = € A;; and then,
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Fig. 8. Aggregator’s payoff with ECPM as a function of the deviation dg
from the instruction for various choices of declaration €, with § = 0.1,
y = 500.
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Fig. 9. Aggregator’s payoff with ECPM as a function of the deviation dg
from the instruction for various choices of declaration €, with 8 = 0.02,
y = 1000.
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Fig. 10. Aggregator’s payoff with ECPM as a function of the deviation §g
from the instruction for various choices of declaration €, with 8 = 0.005,
y = 2000.

employ a flexibility profile K;; = dx K}, The aggregator’s
payoff m;, given from (39), was tested using different values
for B and y. The incentives for different aggregators were also
assessed. Indicative results are presented below.

In the case that the focal aggregator is not the one with the
worst-case cost, then choosing € < 1 does not affect its payoff
significantly. However, for € > 1, (or for §x # 1) the aggre-
gator is always worse-off than making a truthful declaration
(e = 1) and implementing the instruction (8¢ = 1). This is
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demonstrated in Fig. 7 and Fig. 8. In case the focal aggrega-
tor is the one that is the worst-off, then declaring € < 1 also
has detrimental effects on its payoff. This is demonstrated in
Fig. 9 and Fig. 10.

As can be observed, when an aggregator i falsely declares
a low flexibility cost (¢ < 1), then the DSO allocates more
flexibility, i.e., lower Kl?"‘t to i. Then, i has the incentive to not
follow the instruction, and activate less flexibility, i.e., a I?,-,,
that is closer to 1, (§ > 1), in order to decrease its actual flexi-
bility costs and receive a lower penalty from the second factor
of the payment function (14). Therefore, as can be seen for
all tested cases, the aggregator’s payoff-maximizing strategy
is to make a truthful declaration (¢ = 1) and then perfectly
follow the instruction given by the DSO (§ = 1).

VI. CONCLUSION AND FUTURE WORK

In this article, we formulated the problem of satisfying the
constraints of the distribution system in a max-min fair way,
through a flexibility market for aggregators. We provided an
incentive compatible mechanism, so that aggregators truth-
fully declare their flexibility costs and then follow the DSO’s
instructions. Without such a mechanism, aggregators would
inflate their bids, which results in detrimental effects on the
system’s efficiency. In particular, our simulations show that
without accounting for truthful declarations, the cost of the
worst-off player in the system can grow by a factor of up to
four times, compared to the optimal min-max allocation. The
property of incentive compatibility was theoretically proven,
while the system’s behavior was tested in a number of scenar-
ios. In these scenarios, we are able to show that the proposed
mechanism can be fine-tuned effectively, so that aggregators
are not heavily penalized for small deviations that can occur in
practice, while at the same time the property of incentivizing
truthful declarations is preserved.

Future work can include a detailed modelling of the aggre-
gators’ flexible assets, while also extend the proposed scheme
to be iteratively executed (in a rolling horizon fashion) and
maintain the property of incentive compatibility. Moreover,
future work can study the properties of incentive compatibility
and optimality in cases of multi-objective optimization, e.g.,
when the operator pursues a combination of social welfare
maximization and max-min fairness.

APPENDIX A
PROOF OF LEMMA 1

With payment rule (13), the aggregator’s payoff m;
from (12), considering K; = K} is given by

~ % T

m=—pmax{ei. ma o(k7.2,)}
Thus, the aggregator’s penalty is over its actual flexibility cost,
or over the maximum declared flexibility cost of other players,
whichever is highest. Let ¢f = ¢;(K}, L;) denote the cost of
player i at the instruction K} which resulted by (11), under
truthful declarations. Also, let K?”b denote the instruction of
i under a non-truthful declaration from any of the players.
Finally, let ci(K§”b) denote the actual cost of player i under

(18)
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non-truthful declarations. With ties broken arbitrarily, we have

the following two cases:
o under truthful declarations, i/ is not the player with
the highest flexibility cost at the instructions point, i.c.,

¢l < max {c]*} (19)
JEQi#
and also
= . 20
s o) = ) @
By (18), i’s payoff under truthful declarations is
j = — ¥ 21
i p jerslzlﬁ;;éi[cf } @D

Let us assume that i declares a higher flexibility cost
(Gvii > iy andfor K, > K;, and/or K;; < Kj).
Then, it would cause the DSO to allocate more flexibility
to other players j, which can only increase their flexibility
cost, i.e.,

max {cj(K?"b)} > max {cl*}
JEQwi# ' JjeQupijF#i L
There are two subcases:
— 1 is still not the player with the highest flexibility
cost at the new instructions point

c,-(K‘:»“b) < max {cj(K]S-“b)}
JeQuiiti

In this subcase i’s payoff is equal to

—-B maxjegb:j#i{cj(Kj“b)}, which, from (22) and (21),

is lower than i’s payoff under truthful declarations.
— 0’s flexibility cost at the new instruction point is the

highest
ci (K?‘Jb) = max{cn (Kfzub)}
I’lEQb

In this subcase i’s payoff is equal to —ﬂci(K‘?“b). For
i to be better-off, it needs to be:

(22)

(23)

(24)

¢ (K;?“b) < max {c;‘} (25)
JEQFI
which, by (20) and (24), gives
sub *
maclon(K0)} <mate) 0o

However, this is not possible because it contra-
dicts the fact that problem (11) provides the optimal
solution, i.e., the one that minimizes the maximum
cost.
Now let us assume that i declares a lower flexibility cost
(3:,-,1 < Ajz, and/or Kl-,[ <K, and/or Ki,, > K,-J). Then,
the DSO allocates more flexibility to i and less to other
players, which means that

e fo(5)] < man [
JEQpyAI L JEQp I

There are two subcases:

27)
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— i is still not the player with the highest flexibility cost
at the new instructions point, as in (23). In this sub-
case i’s payoff is equal to —f maxjegb:j#i{cj(K;”b)}.
For i to be better-off, it needs to be

max {cn (K;“b) } < max {c:;}

ne2, ne2,

(28)

However, since problem (11) provides the optimal
solution that minimizes max,cq,{c}}, eq. (28) could
only stand if

K;“b <K;, (29)
or

K" > X, (30)
either of which would constitute K]“f“b an infeasible
solution to problem (11). Therefore, it would not
be possible for the aggregator to follow the instruc-
tion, which, in turn, contradicts the assumption
of Lemma 1.

— 7’s flexibility cost at the new instruction point is
the highest, as in (24). This can be equivalently
written as

ci (K,S-“b) = max [cn (Kzub) }
neQb
In this subcase, i’s payoff is equal to —Bc;(K5"°). For

i to be better-off, it needs to be as in (25). Because
of (19), this means that

c,-(Kf‘Ib) < max{c}}
ney

€2y

(32)

which, by (31), becomes equivalent to (28) and thus
contradictory by the same argument made in the
previous subcase.
o under truthful declarations, i is the player with the
highest flexibility cost at the instructions point, i.c.,

(33)

¢; >  max {c]*}
JEQpjFEI

In this case, if i declares a lower flexibility cost, then it
would cause the DSO to allocate more flexibility to i. This
would increase i’s flexibility cost, i.e., ci(Kls»“b) > cf.
However, by (18), i’s payoff is less than or equal to
—,BC,'(K?ub). Thus, i can only be made worse-off by
increasing cl-(K?“b) in this case.
On the other hand, if i declares a higher flexibility cost,
the DSO allocates less flexibility to i. Again, there are
two subcases:

— i is still the player with the highest flexi-
bility cost at the new instructions point, i.e.,
ci(K3™) > maxjeq,;zilci(K;*™)}). For i to be
better-off, it has to be

ci (Kf‘“’) < (34

Since, by assumption of this subcase, i is the
player with the highest flexibility cost under both
truthful and non-truthful declarations, we have
that ¢;(K$") = maxueg,{c,(K™®)} and ¢f =
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max,cq,{c;}. Thus, eq. (34) becomes equivalent
to (26), which contradicts the fact that max,cq,{c;}
is the optimal solution to (11).

— i 1is no longer the player with the highest flexibility
cost, i.e.,

ci<Kls»ub) < max {q(K;“b)}
JEQpYFEI

or, equivalently

(35)

max Lo (K3) | = max{en ()| G6)

Similarly, (33) can also be written as

* = * 37
i = max{e,) G7
For i to be better-off, it needs to be
ma j K$“b)} ¥ 38
jegbz;(#l_[cj< § < (38)

which, by (36) and (37), is equivalent to (26), and
therefore contradictory.
Thus, the aggregator cannot benefit from false declarations.

APPENDIX B
PROOF OF THEOREM 1

With payment structure (14), the aggregator’s payoff is

i =R — ax{¢;, ma { (K*i)}
T i — B m X{Cl jeQb:;(;éi G\, Lj

- Z YV (I?i,z - K:;)z

teQr

(39)

Consider the aggregator’s problem of deciding on
the actual flexibility profile K;. Parameter R; and term
maxjegb#i{cj(K;-“,ij)} are fixed numbers. The aggregator’s
payoff optimization problem reads as

i Z, KZ)] K — K’
min max{c, jersrzlgy#i{c]< 5oL + Z V( it z,t)

K.?’Lj teQr
(40)
After introducing slack variable ¢, (40) is rewritten as
. ~ 2
min ¢+ Yy (K — K},
Kj.Lj teQr
> max {c; K*,i-)}
¢ _jth:jyéi{CJ( o
=7
The worst possible case happens when

maxjegbj¢i{cj(K7,E)} = 0, since in this case the aggregator
has maximum freedom to minimize its penalty. Hence, since

¢; > 0, we have ming, { f(IN(,-‘,)}, where

f(Kii) = G+ Z v (Kir - K?:t)z

teQr

(41)

By taking the stationary point of (41) for I~(i,t, we have
= )‘i,t + YK;T[
Aig+y

it =
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for y > Ai; we have IN{,-,, ~ Kl*t Thus, the aggregator is
incentivized to follow the instruction, which, combined with
Lemma 1, completes the proof.
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