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Capillary interactions between soft capsules
protruding through thin fluid films

Maarten Wouters,ab Othmane Aouane, b Marcello Sega b and
Jens Harting *bc

When a suspension dries, the suspending fluid evaporates, leaving behind a dry film composed of the

suspended particles. During the final stages of drying, the height of the fluid film on the substrate drops

below the particle size, inducing local interface deformations that lead to strong capillary interactions

among the particles. Although capillary interactions between rigid particles are well studied, much is still to

be understood about the behaviour of soft particles and the role of their softness during the final stages of

film drying. Here, we use our recently-introduced numerical method that couples a fluid described using

the lattice Boltzmann approach to a finite element description of deformable objects to investigate the

drying process of a film with suspended soft particles. Our measured menisci deformations and lateral

capillary forces, which agree well with previous theoretical and experimental works in case of rigid particles,

show that the deformations become smaller with increasing particle softness, resulting in weaker lateral

interaction forces. At large interparticle distances, the force approaches that of rigid particles. Finally, we

investigate the time dependent formation of particle clusters at the late stages of the film drying.

1 Introduction

Capillary interactions give rise to a wide range of interesting
phenomena, and the first documented observations date back
to the Renaissance, when Leonardo da Vinci described the
capillary rise in a glass tube.1 The clustering of Cheerios in a
bowl of milk2 and of mosquito eggs on the water surface3 are all
examples of gravity-induced capillary interactions. Micro-
swimers made of ferromagnetic beads on a fluid interface can
be set in motion on the interface surface thanks to the interplay
between the capillary forces and a controlled magnetic field.4,5

The famous coffee-stain effect6 can be suppressed by shape-
dependent capillary interactions.7,8 Furthermore, the assembly
of anisotropic particles at a fluid interface can be controlled by
use of switchable dipolar capillary interactions.9

A single spherical particle adsorbed onto a fluid interface of
a film thinner than the particle diameter deforms the interface
around it symmetrically and experiences in general no forces
parallel to the substrate. The extent over which the particle
deforms the meniscus around it is characterised by the capillary
length Lcap. When the separation between two particles is below

this characteristic length, the capillary force between the parti-
cles becomes relevant, and the driving mechanism for all the
phenomena described in the previous paragraph. Depending on
the sign of the slopes of the meniscus at the contact points with
the particles, this force can be either attractive or repulsive,10,11

and can be used to direct the self-assembly of particles.12–15

The lateral capillary interaction forces are referred to as
lateral flotation forces when the meniscus deforms such that
the gravitational potential energy of the particles reduces with
the inter-particle separation.10 Lateral immersion forces,
instead, are defined as those appearing when the deformation
of the meniscus is related to the wetting properties of the particle
surface. In Fig. 1 we schematically visualise these two groups.
The strength of lateral flotation forces is proportional to R6/g,
while the lateral immersion forces are proportional to R2/g,
where R is the particle radius and g is the surface tension.10

Due to this difference, capillary interactions between spheres
protruding through a thin fluid film can be several orders of

Fig. 1 Lateral capillary interactions between spherical particles: (left)
Wetting-dominated interface deformation; (right) External force-
dominated interface deformation.
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magnitude larger than the force between the same spheres
floating at a liquid–liquid interface.16–18

In this paper we focus on lateral immersion forces between
particles protruding through a fluid film on top of a rigid, flat
substrate. The capillary interactions between rigid particles in
liquid films have already been studied extensively. Theoretical
descriptions have been derived for rigid spheres and cylinders
for both immersion and flotation forces.10,17–19 Several
experimental studies report on the interaction forces between
particles, and on the clustering and aggregation of particles due
to these capillary interactions.20–23 Additionally, analytical and
computational techniques have been applied to study the
capillary interactions between rigid particles.9,15,24–32

Several experimental studies for soft latex or microgel
particles can be found.13,33–36 Furthermore, molecular dynamics,
dissipative particle dynamics, lattice Boltzmann and mean field
simulations were applied to investigate various properties of soft
particles at fluid interfaces.37–42 While molecular dynamics
simulations are not capable to study the influence of the particle
softness and the surface wetting properties for many particles at
a fluid–fluid interface due to the prohibitive computational
effort, dissipative particle dynamics and mean field approaches
overcome this limitation by reducing the resolved details of the
particle structure. However, to the best of our knowledge, the
detailed influence of the particle softness on the lateral forces
and on aggregation properties has not been systematically
studied in experiments or simulations.

The remainder of the paper is organised as follows. In Section
2 we provide a brief summary of the relevant theory on lateral
immersion forces between rigid spherical particles. Section 3
then gives a brief overview of the used numerical method and
simulation set up. In Section 4, we benchmark our method and
compare simulations of rigid spherical particles with both theory
and experimental results. Next, we characterise the deformation
of the interface and capillary charge of a single soft particle in a
liquid film on a rigid substrate, and study the influence of the
softness and wetting properties of the particle. Furthermore, the
clustering of many soft particles in a liquid film is studied.
Finally, we discuss our results and present our conclusions.

2 Lateral capillary interactions

Here, following Kralchevsky and coworkers,11,43 we summarize
the theory of the capillary interaction between two spheres with
radius R0 protruding through a fluid layer of height h0 above a
solid, flat substrate as depicted in the left panel of Fig. 1.

We define the height of the fluid meniscus in the horizontal
xy-plane relative to the film height at infinite distance as h0.

Sufficiently far away from the particle the meniscus is flat,
and its overall shape can be described by the Laplace equation
of capillarity17,44

grII �
rIIz

1þ rIIj j2
� �1=2
2
64

3
75 ¼ Pc; (1)

where g is the surface tension, z describes the height of the
meniscus relative to h0 in the horizontal xy-plane, Pc is the
capillary pressure difference across the meniscus, and

rII ¼~ex
@

@x
þ~ey

@

@y
; (2)

is the two-dimensional gradient operator in the xy-plane. If the
particle deforms the interface only slightly, with pertubations
that are small as compared to the undisturbed film thickness
h0, the Laplace equation simplifies to a linear form11

rII
2z = q2z, (3)

where q is the inverse capillary length, which characterises the
extent of the deformation of the fluid meniscus. Converting
eqn (3) to cylindrical coordinates (r,y), the meniscus shape
around a single particle can be shown to take the form17,45

z(r) = G sin(c)K0(qr), (4)

where G is the radius of the three-phase contact line, c is the
slope of the meniscus, and K0 is the modified Bessel function of
the second kind (Macdonald function46) and zeroth order,

K0ðxÞ ¼
ð1
0

cosðxtÞffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1
p dt: (5)

The corresponding meniscus decays exponentially at infinity.44

The capillary interaction force between two spheres partially
immersed in a thin film can be approximated by the interaction
between two cylinders assuming that the surface tension of the
fluids acts only at the particle-fluid contact line and that the
curvature of the particle is small as compared to the deforma-
tion of the fluid interface.17

Despite that the capillary force acting on two immersed bodies
results indirectly from the overlap of their menisci, the interaction
forces do obey Newton’s third law.10,17 Hence, it suffices to
characterise the capillary interaction force on only one of the two
bodies. The original theory is derived in two alternative manners:
an energetical approach18 and a mechanical approach,17,47 which
were shown to yield equivalent results.10

For the case of two vertical cylinders, labelled as k = 1, 2, the
deformation of the interface can be characterised by their capil-
lary charge18

Qk = Gk sin(ck), (6)

where Gk is the radius of circumference of the horizontal plane
at the contact-point of the fluid meniscus with particle k, and c
is the slope of the meniscus near the contact point of particle k.
The resulting lateral capillary interaction force reads16,18

Fcap(L) = � 2pqgQ1Q2K1(qL), (7)

where L is the distance between the centre of mass of the two
particles, and K1(x) is the modified Bessel function of the second
kind and first order

K1ðxÞ ¼
ffiffiffi
p
p

�1
2

� �
!

1

2
x

� �ð1
1

e�xtðt2 � 1Þ�1=2dt: (8)
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When qL { 1 this reduces to a form similar to Coulomb’s law for
the electric force18

FcapðLÞ ¼ �2pg
Q1Q2

L
; (9)

which is why Qk is commonly referred to as the capillary charge.
Although derived initially only for contact angles close to

p/2, Velev et al.,16 have shown that it remains valid even for
highly wetting surfaces, and thus for large meniscus slopes in
the vicinity of the cylinders.

3 Numerical method
3.1 Method description

We simulate the suspending fluid using the lattice Boltzmann
method (LBM).48 The standard LBM can be extended towards
multiphase/multicomponent fluids49,50 and suspensions of
particles of arbitrary shape and wettability.15,51,52 We review
some details in the following and refer the reader to ref. 42 for a
detailed description of the method and our implementation.

We solve the discretized Boltzmann transport equation on a
cubic lattice with lattice constant Dx for the distribution func-
tions of each component c,

f ci xþ eiDt; tþ Dtð ÞÞ � f ci ðx; tÞ ¼
�Dt
tc

f ci ðx; tÞ � f
eq
i ðx; tÞ

� �
;

(10)

where i = 1,. . .,19 labels the discrete velocity vectors in three
dimensions, f c

i(x,t) is the single-particle distribution function,
Dt is the time step, and ei is the discrete velocity in the ith
direction. Here, tc represents the relaxation time for compo-
nent c. We define the macroscopic densities and velocities for
each component as rcðx; tÞ ¼ r0

P
i

f ci ðx; tÞ, where r0 is a refer-

ence density, and ucðx; tÞ ¼
P
i

f ci ðx; tÞei
	

rcðx; tÞ, respectively.

f eq
i is the second-order equilibrium distribution function,

defined as

f eqi ¼ oirc 1þ ei � uc
cs2
� uc � ucð Þ

2cs2
þ ei � ucð Þ2

2cs4

" #
; (11)

where oi denotes the lattice weights with values o0 = 1/3 for the
rest component, o1,. . .,6 = 1/18 for the six nearest neighbors and
o7,. . .,18 = 1/36 for the nearest neighbours in diagonal direction.

The speed of sound of the model is cs ¼
1ffiffiffi
3
p Dx

Dt
.

The polymeric soft particles are modelled using fluid-filled
elastic capsules.53 We use a strain-hardening two-dimensional
hyperelastic law known as the Skalak strain energy,54 which is
written as

Estrain ¼ kS
4

I
I21 þ 2I1 � 2I2 þ CI2

2

 �

dAc; C4 � 1=2;

(12)

where
H

is an integral over the capsule area (Ac), I1 = l1
2 + l2

2� 2
and I2 = l1

2l2
2 � 1 are the deformation invariants, and C is a

constant parameter related to the strain-hardening nature of the
membrane. In the small deformation limit, the 2D Poisson
ratio can be expressed as function of C such as ns = C/(1 + C)
with ns A [�1. . .1].55 The area dilatation modulus kA is defined
such as kA/kS = 1 + 2C. To avoid membrane buckling, which can
occur as a result of compressive tensions,53 we restrict ourself to
quasi-inextensible membranes with C E 9. In addition to
resistances to shear elasticity and area dilatation, our particles
are endowed with bending resistance. The curvature energy is
accounted for via the Helfrich free energy

Ebending ¼ kB
2

I
2H �H0½ �2dAc þ kG

I
A

KdAc; (13)

where H0, H ¼ 1

2

P2
i¼1

Ci, and K ¼
Q2
i¼1

Ci are the spontaneous,

mean, and Gaussian curvatures. kB, and kG are the bending
and Gaussian curvature moduli. The volume conservation of the
capsule is enforced using a penalty function reading as

Evolume ¼ kV
2

V � V0½ �2

V0
; (14)

where V0 is the reference volume of the stress-free capsule, and
kV is a constant parameter. The strain and volume forces are
evaluated using the principle of virtual work while the curvature
force is obtained from the functional derivative of the Helfrich
free energy. Further details on the method can be found in.56,57

In principle, the approach presented here could be extended to
model solid elastic particles by considering a tetrahedralized
volume mesh coupled with a 3D hyperelastic constitutive law as
recently described in.58

The equilibrium shape of the particle steams from the
interplay between the property of the interface and the elasticity
of the membrane. Thus, we introduce the dimensionless num-
ber b to describe the softness of the particle at the fluid–fluid
interface, such that

b ¼ R0
2g

kB
; (15)

where g is the surface tension of the fluid–fluid interface, and
R0 is the radius of the undeformed particle. b here is defined
with respect to kB, since the contribution of kS to the
equilibrium shape of the particle is found to be negligible in
the absence of in-plane forces.

The particle membrane and the fluid are coupled using the
half-way bounce-back algorithm with the coupling proposed by
Ladd59 as already used for the simulation of soft particle
suspensions in single-component fluids,60–62 and a first-order
accurate time-integration scheme where each boundary node
(x̂i) is advected in time such that

x̂iðtþ DtÞ ¼ x̂iðtÞ þ Dt
Fi

tot

mi
; (16)

with mi being the mass of the ith boundary node and Ftot
i =

Fbending
i + Fstrain

i + Fvolume
i + Fint

i the total membrane force. Here,
Fint

i = FPP
i + FPS

i refers to a short range Hertz repulsive force
added to avoid particle–particle and particle–substrate overlap.
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The coupling of quantities between the boundary elements
and boundary nodes is done via a homogeneous scheme where
the three nodes of only the corresponding boundary element
are given the same weighting factor. The half-way bounce back
method is known to suffer from so-called staggered momenta
which can be prevented by spreading the total exchanged
momentum homogeneously over two consecutive time steps.59

To include multi-component fluid interactions, we follow
the work of Shan and Chen49 and apply a mean-field force Fc to
the fluid components c and c0,

FSCðx; tÞ ¼ �ccðx; tÞ
X
c0

Gcc0
X
i

oicc0 xþ ei; tð Þei; (17)

where cc is a pseudo-potential, and Gcc0 is the fluid interaction
strength related to the surface tension. For the current work we
choose cc = 1� exp(�rc/r0) and limit ourselves to two components.

In addition to the half-way bounce back conditions, we also
decouple the interior and exterior fluid interaction forces. To
satisfy continuity close to the boundary, we interpolate the
densities for a layer of fluid nodes just outside our boundary for
the inner fluid, and a layer of fluid nodes just inside the
boundary when calculating the interaction force on the fluid
nodes just outside the boundary. Momentum is conserved
since we apply the resulting force that would act on the fluid
node across the boundary to the boundary element that
separates the set of nodes. This also allows to tune the contact
angle of the particle surface by adding an offset to the inter-
polated densities as originally proposed by Jansen et al.,52

However, in this paper we restrict ourselves to neutrally wetting
particles. For more details and a validation of the algorithm
please refer to ref. 42.

3.2 Simulation setup

Throughout this work we use two fluids of equal density. As a
result, we cannot a priori calculate the capillary length of the
cylinder, as one could when there is a density difference between
the fluids via16

q ¼ r2 � r1j jg
g

� �1=2

; (18)

where r1,2 are the mass densities of the two fluids and g is the
gravitational acceleration. However, a smaller difference between
the two fluid component densities increases the capillary length,
and thereby reduces the curvature of the fluid–fluid interface.
Hence, our choice of two equal density fluid components is
expected to improve the accuracy of the discretization of the
interface onto the fluid lattice. In our simulations we therefore
achieve the capillary length not via eqn (18), but rather via a fit of
the meniscus profile.

Unless specified otherwise, all work is performed on a rigid,
spherical particle with radius R0 = 10Dx, with 2880 boundary
elements. To each boundary node we assign a mass of m = 25r0.

The particle protrudes through a fluid film of the first
component on a solid substrate, as shown in Fig. 1a. The
remainder of the system is filled with the second fluid compo-
nent, and periodic boundary conditions are applied in all

directions. In all simulations we set the fluid–fluid interaction
strength Gcc0 = 3.6, and the initial minority and majority
densities of each component to rc

min = 0.04r0 and rc
maj = 0.7r0.

In order to enhance the equilibration of the diffuse interface, we
initialise a single layer of fluid nodes between the two fluid
layers, where both components have a density of 0.3.

A short range Hertz force is used to avoid any overlap
between boundary nodes from different interfaces and from
the substrate such that

FPP = Xd1.5 d o d0, (19)

FPS = Xd1.5 d o d0. (20)

The interaction strength is fixed to X = 1.5 in all presented
results, and the cut-off distances to d0 = 1.5Dx. This choice
ensures that there is always at least one fluid node between the
particles, and the substrate and the particles.

The Shan-Chen multi-component method yields a diffuse
interface between the different fluid components. When a
small film is initialised on top of a substrate with a height
h0 comparable to the diffuse interface width x, it can be
expected that either the flat interface will dewet the solid sub-
strate, or that an additional and undesired interaction appears
between the substrate and the interface. With the fluid-structure
coupling that we use, it was shown that for a particle radius of
R0 \ 1.5x the presence of the diffuse interface does not play a
significant role on the deformation of a particle.42 Still, in order to
mitigate possible spurious effects originating from the interaction
of the diffuse interface and the substrate, we keep the particles
further away from the substrate by introducing an additional
horizontal, repulsive plane with vertical offset Dz = 10Dx.
A schematic representation of the system, and the main variables
is shown in Fig. 2.

From the perspective of the particle, this repulsive plane acts
as the effective location of the substrate, and refer to it simply
as to the substrate.

4 Results
4.1 Model validation with hard particles

In order to validate our approach, we begin by performing
simulations of a rigid particle. Here, we choose to initialise the
fluid film as a flat film, and let the meniscus evolve towards its
equilibrium shape. Fig. 3 shows an instantaneous snapshot of
the simulated meniscus when the equilibrium has been clearly
established (7.5 � 105 Dt), and eqn (4) fitted for the inverse
capillary length q.

The profile is measured on a horizontal slice through the
centre of the particle, and averaged over the four sides along
the principal directions of the particle. The measured meniscus
shape shows an excellent agreement with the theoretical shape,
and allows us to obtain a precise estimate of the capillary
length and of the capillary charge of the particle.

Next, we characterise the dependence of the capillary charge
of the rigid particle on the effective height of the film. Fig. 4
depicts the measured capillary charge for different particle
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positions relative to the film height. When the centre of the
particle is close to the fluid interface (h0/R0 C 1), the maximum
capillary rise Z and capillary charge Q approach zero, as one can
intuitively expect. For a wide range of relative film heights,
both, the rise of the meniscus and the capillary charge appears
to follow a linear relation, which only breaks when the fluid
interface is getting close to the bottom of the particle, yielding
also large capillary charges.

The capillary charge of a single particle determines the
interactions with other particles immersed in a fluid film. After

having characterised the dependence of the capillary charge on
the main system parameters, we validate the lateral capillary
interaction force between two rigid spherical particles
immersed in a fluid film with h0 = 0.16R0. In order to ensure
that the fluid meniscus is fully settled when we measure the
interaction force, we fix the position of two particles at different
separation distances from Lgap = 3 to 7R0. All simulations are
run for 5 � 105Dt in order to assure the equilibration of the
fluid meniscus, after which data is collected every 104Dt. Since
we fix the position of both particles, we can easily extract the
total lateral force acting on a particle by sampling the force
acting on the boundary nodes that results from fluid-structure
coupling.

In Fig. 5 we show the measured lateral interaction force
acting between the two particles. The measured force shows
excellent agreement with the theoretical prediction from
eqn (7) by taking the capillary charge estimate from the
simulation results. Our simulations show also an excellent
agreement with the experiments of Velev et al., who directly
measured the capillary force between two hydrophilic glass
cylinders (B300 mm diameter) immersed in a thin film of
water.11,16 In this sense, our simulations provide physically
sound results, and can be used for studying capillary interac-
tions between particles at fluid–fluid interfaces, provided that
the fluid meniscus is allowed to equilibrate for sufficiently
long times.

4.2 Meniscus deformation for soft particles

We place a deformable particle, initially spherical with radius
R0 = 10Dx, above a thin fluid film, with the lower part of the
particle positioned such that it is at the boundary where the
interaction with the substrate starts. The particle softness
parameter b is varied while keeping the Poisson ratio ns = 0.9
constant. In contrast to the simulations described previously,
the particle is no longer being kept fixed in space, but is left free
to move and also to deform. The fluid–fluid interface is
initialised as a flat film, with a final film height of h0 = 0.15R0.

Similar to the rigid particles, the fluid meniscus rises at the
particle surface, but at the same time, because of the particle

Fig. 2 Schematic visualisation of used variables for a single particle
(green) immersed in a film of fluid c covered by another fluid c0 on top
of a substrate (grey). The different lengths and sizes are not shown to scale.

Fig. 3 Equilibrium profile of the meniscus around a rigid particle
immersed in a thin fluid film with h0 = 0.4R0 (circles), and the fitted profile
with eqn (4) (solid line) for a domain of D

-
= [38.4,38.4,3.2]R0.

Fig. 4 Capillary charge Q (circles) and total rise of the meniscus Z
(squares) for a single particle immersed in a fluid film for various initial
effective film heights h0.

Fig. 5 Effective force between two particles with effective initial film
height of h0 = 0.16R0: (cirlces) equilibrium results at t = 5 � 105Dt, (upper
triangles) results at t = 1 � 105Dt, (crosses) experimental results of Velev
et al.,16 (solid line) eqn (7) using the capillary charge estimate from the
simulation data.
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softness, it stretches at the interface. This interplay results in a
lowering of the contact-point with the meniscus, and reduces
the deformation of the meniscus around the particle.

In Fig. 6 we show the averaged height of the fluid meniscus
around the particle, compared to the theoretically expected
shape as given by eqn (4). The inset shows the isodensity curves
highlighting the equilibrium particle shape and the surround-
ing meniscus on a slice of the system cut through the center of
the particle, for different softness parameters. The shape of the
fluid meniscus resulting from the simulations is in good
agreement with the theoretical shape for b = 10 and 25.
However, for b = 50, the slope of the meniscus near the contact
point is slightly increased as compared to eqn (4). This offset
can be expected to be an error originating from the discretisa-
tion of the fluid lattice and the particle boundary near the
contact point.

4.3 Capillary interaction force between two soft particles

While the slope of the meniscus can be expected to reduce due
to the deformation of the soft particle, it is more difficult to
predict the changes in contact radius G and film height as a
function of the softness, because of the competition between
the reduced rise of the meniscus and the stretching of the
particle boundary near the contact points. In general, however,
we can expect that the total capillary charge reduces, since the
elastic energy stored in the deformation of the soft particle
reduces the one stored in the deformation of the fluid–fluid
interface.

Computing the non-equilibrium force between two soft
particles, free to deform and move is, however, far from being
a trivial task, because of possible overlaps of characteristic
times for the particles’ movement or deformation, and the
relaxation time of the meniscus. In order to reduce the inaccu-
racy in the determination of the force, we opted to let the
system start relaxing from a prescribed minimal surface-to-
surface distance Lgap of two particles. After 104 timesteps,
during which the particle shape does not change significantly
anymore, but the interparticle distance is still well below
the lattice spacing, we prevent further deformations and let
the fluid meniscus relax fully. At the end of this relaxation

protocol, we start sampling the force between the two particles.
We then repeat this routine for different initial separations Lgap

and softness parameters to characterise the lateral capillary
interaction force.

In Fig. 7 we report the measured capillary force/separation
curve for different degrees of particle softness. For all simulated
sets of softness parameters we initialise the particles with a gap
in between of Lgap = 4 to 7R0. Due to the deformation of the
particles during the first 104 simulation steps, the gap
decreases slightly for the soft particles, while it remains equal
for the rigid particles. As already observed in Fig. 6, the fluid
meniscus stretches the particle, thereby mitigating the rise of
the meniscus at the particle surface. This results in a reduction
of the capillary interaction force for increasing softness para-
meters as compared to the interaction force of rigid particles at
the same particle separation. For rigid particles, one can obtain
a full collapse of the force/distance curves by rescaling the force
with the square of the capillary charge, according to eqn (4).
Indeed, we found that such universal behaviour is observable
also in the case of deformable particles. In the inset of Fig. 7 we
show the collapse of the rescaled curves, obtained using
capillary charges within the uncertainty margin of the
capillary rise.

4.4 Approach dynamics of two soft particles

As shown before, the maximal rise Z of the fluid meniscus at
the contact-point with the particle decreases with the particle
softness. Therefore, the strength of the lateral capillary inter-
action decreases with the particle softness, too. Qualitatively,
one would expect two deformable particles closing the gap in
between them more slowly with increasing softness.

Fig. 8 shows the time evolution of the size of the gap
between two soft particles that start at Lgap = 2R0 as
spherically-shaped particles in a film with h0 = 0.4R0. Indeed,

Fig. 6 Radial dependence of the meniscus height for different degrees of
softness: (lines) simulation results, (crosses) fit to eqn (4). Inset: Density
isolines in a slice cut through the centre of the particle (solid lines) and the
initial shape of the deformable particle (gray area).

Fig. 7 Capillary force between two particles as a function of the minimal
gap between the two: (dotted) rigid, (solid) b = 10, (dashed) b = 25, and
(dot-dashed) b = 50. The lines are a guide to the eye. Inset: Force scaled by
the squared effective maximal rise.
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the stiffer particles approach each other faster than the softer
particles. The gap decreases initially as a result of the deforma-
tion of the particles and afterwards as a result of the lateral
capillary interaction force. The approaching velocity of the
particles is approximately constant until the gap distance is
of the order of Dx. At such close distances, the particle motion
is dampened as a result of the hydrodynamic lubrication force
between the particles and finally the repulsive particle–particle
interaction force. For the softest particles (b = 50), the
approaching velocity shows some variations due to the chan-
ging discretisation of the particle boundary and resulting
fluctuations in the force on both the particle boundary and
fluid nodes.

4.5 Clustering of soft particles in a thin film

The capillary interactions between multiple particles induces,
for similarly wetting particle surfaces, an effective clustering. In
this section we study this clustering behaviour in a large system
with O(103) particles, and its dependency on the particle
softness.

We initialise 1730 particles protruding through a fluid film
on top of a substrate corresponding to an effective packing
fraction of around 25% in a domain of

-

D = [1200,1200,40]Dx3
0.

The initial height of the fluid film is set to h0 = 0.35R0 and the
simulations are run for 106 timesteps, while the particle proper-
ties are sampled every 103 steps.

We initialise the particles at the fluid–fluid interface in a
spherical morphology and initialise the fluid–fluid as a flat film
on top of the substrate. However, if the soft particles are not
initialised close to their equilibrium shape corresponding to
the surrounding fluid interface, the relaxation towards the local
equilibrium shape and resulting movement of the particle
boundary induces a flow as well as a deformation and move-
ment of the fluid–fluid interface. The forces acting on the
particle due to this relaxation can be substantially stronger
than the capillary interactions we are interested in. This effect
is however not easily avoidable, since the equilibrium shapes of
the particle and the fluid–fluid interface are not known a priori.
Therefore, the first few thousand timesteps of the simulations

are dominated by the equilibration process until the action of
the capillary interactions between the particles becomes the
determining factor.

In Fig. 9, we show some instantaneous snapshots of the
particle centres of mass at different times. The particles are
coloured based on the results of a clustering algorithm,63 where
particles are grouped into the same group when the separation
dcom between their centre of mass satisfies

dcom r h2Ri + d0. (21)

Here, h2Ri is the particle diameter in the horizontal plane
averaged over all particles in the system, and d0 is the minimal
interaction range between two particle boundary elements. Due
to identical initial conditions, it is possible to appreciate that
the morphology of the clusters in the case of rigid particles and
in case of b = 10 are quite similar at any stage, whereas the
softest case b = 25 is clearly different.

Looking at the time evolution of the average cluster size,
Fig. 10, it appears that the clusters containing rigid particles
are growing faster in the initial phase, approximately until
5 � 104Dt, after which the clusters in the system with softness
b = 10 start growing faster, being eventually overcome by the
softest system, that shows the largest slope at about 5 � 105Dt.

Initially, we observe a single cluster of six particles, which is
a result of the random initialisation of the particles. Then, in
the first stage of the particle clustering, many smaller clusters
are rapidly formed as a result of the capillary interactions
between the particles. Here, the rigid particles cluster faster
as a result of their larger capillary charge, and the growth rate
decreases for an increasing particle softness.

In the second growth stage, roughly between 2.5 � 103 and
3 � 105 timesteps, most particles belong to a cluster, and the
average cluster size grows with a constant exponent as can be
observed in Fig. 10. Here, the average domain size grows faster
for the soft particles as compared to the perfectly rigid particles.

The size of the largest cluster is initially the largest for the
rigid particles, as a result of the initial fast clustering rate.
However, after roughly 2 � 105 steps, the largest cluster for the
simulation with particles with b = 10 becomes of a comparable
size, and afterwards increases relative to the rigid particles. The
softest particles with b = 25 show a similar trend, albeit some-
what delayed due to the lower initial rate of clustering.

Comparing the different columns of Fig. 9, one can see that
for b = 25 the typical cluster is smaller, but also that the typical
separation between the clusters is smaller. Hence, it can be
expected that these clusters are sufficiently close to eventually
combine into larger clusters. Apparently, the initial rapid
clustering of the rigid particles results in larger separations
between the different clusters, which in the later stage require
more effort to cluster together, reducing the rate at which large
clusters combine.

In the early stages the particles are rapidly pulled together by
the capillary forces, forming clusters without a uniform order.
For example, in some cases a ring with 7 particles surrounding
a single particle or particles oriented in a square packing are
formed during the clustering, and remain stable until the end

Fig. 8 Time evolution of the gap Lgap between two soft particles, with
fluid film height h0 = 0.4R0: (solid line) b = 10, (dashed line) b = 25,
(dot-dashed line) b = 50. The grey area indicates the repulsive region,
Lgap o d0. Inset: Final state of two particles with b = 50 (solid lines) at the
interface (dashed line) Each tick mark in the inset indicates a distance of R0.
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Fig. 9 Top view of cluster formation in a thin liquid film with 1730 particles protruding the layer. The centre of mass of each particle is visualised with a circle,
where the colour differentiates between the clusters, and the size is chosen for visualisation purposes. Each tick mark indicates a distance of 200Dx.
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of the simulation. A thorough visual inspection of Fig. 9 shows
the tendency for softer particles to more easily form a hexago-
nal packing than the rigid particles. For the rigid particles,
however, it occurs more regularly that particles are trapped in a
non-hexagonal packing.

Fig. 11 shows the radial distribution function of the particle
centres

gðrÞ ¼ A

N

nðrÞ
2prdr

; (22)

where n(r) is the number of particles within a shell of thickness
dr at a radial distance r, A is the total area of the system, and
N is the total number of particles in the system. In line with Fig.
9 and 10, we observe that for the rigid case many particles
almost touch each other already in the early stages (i.e., peaks
at integer values occur in g(r)), whereas these develop more
slowly for softer particles. A hexagonal packing (indicated by a

peak near r ¼
ffiffiffi
3
p

2Rh i) is more pronounced for b = 10 than for

the rigid particles near the end of the simulations. Further-
more, for the rigid particles most of the regions with a
hexagonal packing are formed in the early stages, whereas for

softer particles g r ¼
ffiffiffi
3
p

2Rh i

 �

increases significantly over time.
In order for clustered particles to transform from an arbitrary
packing to a hexagonal packing, they have to move relative to
each other. Soft particles deform near the contact point
between particles, which reduces the required energy barrier
for particles to move to a hexagonal packing. Rigid particles are
not able to deform, and therefore it is more likely that they
remain trapped in a non-hexagonal packing.

5 Conclusion and discussion

We presented three-dimensional numerical simulations of soft
fluid-filled particles protruding through a thin fluid film on top
of a substrate. Analytical and experimental results for solid
spherical particles were used to validate our model by measur-
ing the meniscus shape and the lateral capillary force. In the
case of a single soft fluid-filled particle, the deformation of the
meniscus decreases with the softness of the particle due to a
deformation of the particle induced by the surface tension of
the fluid. In other words, the capillary charge induced by the
particle deforming the interface reduces. For two particles, we
evaluated the lateral capillary force depending on the particle
separation distance. At sufficiently large separation distance,
the lateral capillary force shows no dependency on the softness
of the particles and even converges towards the case of rigid
particles. However, at small separations, the force exhibits a
non-monotonic dependency with respect to the distance. We
show that our method can also be applied to study capillary
force induced clustering of many particles and how the particle
softness influences the time dependent size distribution of
particle aggregates.

As an outlook, future work could include a variation of the
particle contact angle. However, while this will certainly have a

Fig. 10 Evolution of (top) average and (bottom) maximum cluster size
(number of particles within the cluster) for different softness parameters:
(solid line) rigid, (dot-dashed line) b = 10, (dashed line) b = 25.

Fig. 11 Radial distribution function at different simulation times. The
radial positions are scaled by the instantaneous averaged particle radii in
the plane of the fluid–fluid interface. The first peak at each plot exceeds
the visualised vertical axis, but is not fully shown for clarity purposes.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
9 

O
ct

ob
er

 2
02

0.
 D

ow
nl

oa
de

d 
by

 E
in

dh
ov

en
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

on
 6

/1
5/

20
21

 9
:4

0:
26

 P
M

. 
View Article Online

https://doi.org/10.1039/d0sm01385d


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 10910--10920 | 10919

quantitative effect on our results, we expect the general find-
ings to not change. A non-neutrally wetting soft particle will
position and deform asymmetrically with respect to the fluid
interface. Thus, the effective capillary charge might be reduced
for strongly wetting particles in a thin fluid film.

A further possible extension comprises solid elastic particles.
For this, the particle model needs to be extended by computing
the elastic forces on a tetrahedralized volume mesh rather than
on a triangular surface mesh.58 However, we do not expect the
impact of the actual kind of deformation to change our general
conclusions. The particle deforms due to the interplay of the
interfacial tension forces acting at the 3-phase contact line, as
well as the deformation at its bottom once it gets in contact with
the substrate. The deformation at the bottom should be qualita-
tively similar for elastic particles or soft shells if their effective
softness is comparable. At the three-phase contact line, however,
a soft shell can show a more smooth curvature as compared
to a tip-like deformation observed for soft elastic particles.37

We speculate that this might have an effect on the magnitude of
the capillary interactions due to a different resulting interface
deformation.
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