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Generalized sensing and actuation schemes for local module
identification in dynamic networks

Karthik R. Ramaswamy, Paul M.J. Van den Hof and Arne G. Dankers

Abstract— For the problem of identifying a target module
that is embedded in a dynamic network with known inter-
connection structure, different sets of conditions are available
for the set of node signals to be measured and the set of
excitation signals to be applied at particular node locations. In
previous work these conditions have typically been derived from
either an indirect identification approach, considering external
excitation signals as inputs, or from a direct identification
approach, considering measured node signals as inputs. While
both approaches lead to different sets of (sufficient) conditions,
in this paper we extend the flexibility in the sufficient conditions
for selection of excitation and measured node signals, by
combining both direct and indirect approaches. As a result we
will show the benefits of using both external excitation signals
and node signals as predictor inputs. The provided conditions
allow us to design sensor selection and actuation schemes with
considerable freedom for consistent identification of a target
module.

I. INTRODUCTION

In recent years increasing attention has been given to
the identification of large-scale dynamically interconnected
systems (modules), known as dynamic networks. Among the
large amount of literature on this topic, there are three main
research trends. The first one deals with the identification
of the interconnection structure (topology) of systems in the
dynamic network [1], [2], [3], [4]. The second deals with
identification of the full network dynamics [5], [6], [7], while
the third deals with identification of a target module in the
dynamic network under the assumption of known topology
(known as local module identification, see [8], [9], [10], [11],
[12], [13]).

In this paper we focus on the local module identifica-
tion problem. In [8], the classical direct-method [14] for
closed-loop identification has been generalized to a dynamic
network framework using a MISO identification setup. It
introduces a method to achieve a consistent estimate of
the target module when all the node signals in the MISO
setup are measured. In [15], an extension has been made
towards the situation where some of the node signals might
be non-measurable. In [16] and [17], an approach has been
introduced to consistently estimate the target module in
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the presence of confounding variables due to non-measured
nodes and noise correlation. The direct method has been
extended to a Bayesian setting in [9], where regularized
kernel-based methods are used to reduce the mean-square
error of the target module estimates. In [12] and [10], the
situation has been addressed where the node measurements
are affected by sensor noise.

An important condition in the works that use the direct
method [8], [15], [16], [17] is that all parallel paths from the
input of the target module to its output and all loops through
the output node should pass through a measured node signal
that is included as a predictor input. This requirement ensures
that the identified module using the direct method is equal
to the target module. However, in practical situations, there
can be parallel paths and loops that might have all nodes
non-measured. This creates a restriction for the selection of
measured node signals.

In indirect method as in [11], [7], external excitation
signals are used as predictor inputs for an open loop MIMO
identification problem. These methods involve two steps: (1)
First obtain consistent estimates of a transfer function from
external signals to measured node signal; (2) Using these
estimates obtain consistent estimates of the target module
(we call this step as post-processing). In [7], the freedom
in selection of measured node signal is exploited under the
condition that all nodes are excited.

In this paper we extend the flexibility in the sufficient
conditions for selection of excitation and measured node
signals for consistent target module estimates and thereby
generalizing the sensing and actuation schemes. We relax the
above discussed condition on the parallel paths and loops
around the output node. This relaxation in conditions are
achieved by combining elements of both direct and indirect
approaches. We use both the node signals and external
excitation signals as predictor inputs, allow post-processing
of module estimates, use MIMO identification setting and
thereby mixing both direct and indirect methods. The pro-
vided conditions allow us to design sensor selection and
actuation schemes with considerable freedom for consistent
identification of a target module.

II. NETWORK AND IDENTIFICATION SETUP

A. Dynamic network setup

Following the basic setup of [8], a dynamic network is
built up out of L scalar internal variables or nodes wj , j =
1, . . . , L, and K external variables rk, k = 1, . . .K. Each
internal variable is described as:



wj(t) =

L∑
l=1

l 6=j

Gjl(q)wl(t) + uj(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);
• Gjl is a proper rational transfer referred to as modules;
• uj(t) is generated by the external variables rk(t) that

can directly be manipulated by the user and is given
by uj(t) =

∑K
k=1Rjk(q)rk(t) where Rjk are stable,

proper rational transfer functions;
• vj is process noise, where the vector process v =

[v1 · · · vL]T is modelled as a stationary stochastic pro-
cess with rational spectral density Φv(ω), such that there
exists a white noise process e := [e1 · · · eL]T , with
covariance matrix Λ > 0 such that v(t) = H(q)e(t),
where H is square, stable, monic and minimum-phase.

We will assume that the standard regularity conditions on the
data are satisfied that are required for convergence results
of prediction error identification method1. In this paper we
consider the situation where uj(t) =

∑K
k=1Rjk(q)rk(t), and

Rjk = 1 if j = k, Rjk = 0 if j 6= k, and j = 1, . . . , L.
When combining the L node signals we arrive at the full

network expression
w1

w2

...
wL

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L
GL1 · · · GL L−1 0



w1

w2

...
wL

+

u1
u2
...
uL

+H

e1
e2
...
eL


which results in the matrix equation:

w = Gw +Rr +He. (2)

We will assume that the dynamic network is stable, i.e. (I−
G)−1 is stable, and well posed (see [18] for details).
The identification problem to be considered is the problem
of identifying one particular module Gji(q) on the basis of
a selection of measured variables w, and possibly r.

B. Direct method

Let us define N−j as the set of node indices k such that
Gjk 6= 0, i.e. the node signals in N−j are the w-in-neighbors
of the node signal wj . The nodes corresponding to the set
of node indices k such that Gkj 6= 0 are called the w-
out-neighbors of wj (i.e. N+

j ). Let Dj denote the set of
indices of the internal variables that are chosen as predictor
inputs. Let Zj denote the set of indices not in {j}∪Dj , i.e.
Zj = {1, . . . , L} \ {{j} ∪ Dj}. Let wD denote the vector
[wk1 · · · wkn ]T , where {k1, . . . , kn} = Dj . Let uD denote
the vector [uk1 · · · ukn ]T , where {k1, . . . , kn} = Dj , and
where the `th entry is zero if u` is not present in the network.
The vectors wZ , vD, vZ and uZ are defined analogously. The
ordering of the elements in wD, vD, and uD is not important,
as long as it is the same for all vectors. The transfer function
matrix between wD and wj is denoted GjD. The other transfer
function matrices are defined analogously.

1See [14] page 249. This includes the property that e(t) has bounded
moments of order higher than 4.

By this notation, the network equation (2) is rewritten as:wjwD

wZ

 =

 0 GjD GjZ
GDj GDD GDZ

GZj GZD GZZ

wjwD

wZ

+

vjvD
vZ

+

ujuD
uZ

 , (3)

where GDD and GZZ have zeros on the diagonal.
Identification of module Gji can be done by selecting Dj

such that i ∈ Dj , and subsequently estimating a multiple-
input single output model for the transfer functions in GjD.
This can be done by considering the one-step-ahead predic-
tor2 ŵj(t|t− 1) := Ē{wj(t) | wt−1j , wtDj

}, and the resulting
prediction error ([14]) εj(t, θ) = wj(t)−ŵj(t|t−1, θ), given
by

εj(t, θ) = Hj(θ)
−1
(
wj −

∑
k∈Dj

Gjk(θ)wk − uj
)

(4)

where arguments q and t have been dropped for notational
clarity. The parameterized transfer functions Gjk(θ), k ∈ Dj
and Hj(θ) are estimated by minimizing the sum of squared
(prediction) errors: Vj(θ) = 1

N

∑N−1
t=0 ε2j (t, θ), where N is

the length of the data set. We refer to this identification
method as the direct method, [8]. Let θ̂N denote the min-
imizing argument of Vj(θ).

C. Indirect method

As an alternative approach, following the setup of [7],
the network model (2) can be re-written as w = Twrr + v̄
where Twr = (I−G)−1R and v̄ = (I−G)−1He. Using the
known external references r as predictor inputs and measured
signals w as predicted outputs, it is well known that, under
appropriate conditions, a consistent estimate T̂wr of Twr can
be obtained using open loop MIMO identification methods.
On the basis of T̂wr, an estimate of Ĝ can be obtained by
solving (I − Ĝ)T̂wr = R. By solving only a subset of these
equations, a target module embedded in the dynamic network
can be identified. We refer to this type of identification
method that uses external signals as predictor inputs as the
indirect method.

III. BACKGROUND AND MOTIVATING EXAMPLE

In this section we highlight the motivation of the paper
using a suitable example. In [15] it has been shown that
we can identify the target module Gji consistently provided
that we choose the selection of predictor input signals to
satisfy particular properties. One of the main conditions is
formulated next.

Property 1: To identify a target module Gji, consider a set
of internal variables wk, k ∈ Dj . Let Dj satisfy the following
properties:

1) i ∈ Dj and j /∈ Dj ;
2) Every path from wi to wj , excluding the path through

Gji, pass through a node wk, k ∈ Dj (parallel path
condition);

3) Every loop through wj pass through a node wk, k ∈ Dj
(loop condition).

2Ē refers to limN→∞
1
N

∑N
t=1 E, and w`

j and w`
Dj

refer to signal
samples wj(τ) and wk(τ), k ∈ Dj , respectively, for all τ ≤ `.



When this property is satisfied, the direct method as dis-
cussed in section II-B provides a consistent estimate of the
target module, if data informativity conditions are satisfied,
and in addition there are no confounding variables for the
estimation problem wDj

→ wj
3. This restrictive property is

required for the target module in the dynamic network to be
invariant in an immersed network where all non-measured
signals are being removed while keeping the remaining
signals invariant [15].

Fig. 1. Example network

Example 1: Consider a dynamic network as represented
in Figure 1 with all noises in v uncorrelated with each other.
For identifying the target module G21 (in green box), we
have j = 2, and in order to satisfy Property 1 we need
Dj = {1, 3, 5} where w3 is included to block the parallel
path from w1 to w2, and w5 is included to block the loop
through w2. Using this set of measured nodes, we arrive at
an immersed network after removing the non-measured node
w4 as sketched in Figure 2. We can observe that the module
between w1 and w2 (the green box) is G21 and remains
invariant.

Fig. 2. Immersed network of network in figure 1 [15] where the nonmea-
sured node w4 has been removed (immersed), and where ṽ2 = v2+G24v4.

If w3 and w5 are not selected in Dj , and so Dj = {1},
we arrive at an immersed network after removing all non-
measured nodes, as depicted in Figure 3. We can now observe
that the dynamic module between w1 and w2 (the green box
in figure 3) is not equal to G21. The terms (1−G25G52)−1

and G23G31 are due to the fact that in this situation the loop
and parallel path condition in property 1 are not satisfied,
respectively. In this paper we are going to relax these
restrictive conditions in property 1 and increase the freedom
in the selection of measured node signals.

For the approach based on the indirect identification
method, in [11] a method has been presented to identify

3A confounding variable is an unmeasured variable that induces corre-
lation between the input and output signal of an estimation problem [19].
See [17] for a formal definition.

Fig. 3. Immersed network of network in figure 1[15] where the
non-measured nodes w3, w4, w5 have been removed (immersed), and
where ṽ1 = (1 − G31G13)−1(v1 + G13v3) and ṽ2 = (1 −
G25G52)−1 (v2 + (G23 +G24G43)v3 +G24v4 +G25v5).

a target module using external signals as predictor inputs,
along the following reasoning.

Proposition 1 (from [11]): In order to identify a target
module Gji, perform the following experiment:

1) Excite node wi and all its w-out-neighbors with suffi-
ciently rich signals. Include these excitation signals as
predictor inputs;

2) measure the out-neighbors of wi. Include them as pre-
dicted outputs.

Under these conditions and using full order models for the
elements of Twr, consistent estimates T̂N+

i N
+
i

, T̂N+
i i

of
TN+

i N
+
i

and TN+
i i

can be obtained using an open loop
MIMO identification method. Then a consistent estimate of
ĜN+

i i
(which includes the target module) is obtained by,

ĜN+
i i

= [T̂N+
i N

+
i

]−1T̂N+
i i

(5)

2
A dual of this proposition with w-in-neighbors of wj is also
provided in [11]. It can be observed that a consistent estimate
of the target module is obtained from consistent estimates
of elements of Twr. We will refer to this step (5) of ma-
nipulating identified objects, as post-processing. Considering
the earlier Example 1, we can now consistently identify our
target module using an open loop MIMO identification setup
with {r1, r2, r3} as inputs and {w2, w3} as outputs. However
this requires restrictive conditions on the nodes to be excited
and nodes to be measured, i.e. measured excitation signals
r1, r2, r3. Further relaxations of these restrictive conditions
on excitation and measured node signals will be addressed
in the sequel.

IV. ILLUSTRATION OF THE DEVELOPED METHOD

In this section we illustrate the developed method in this
paper with suitable examples. In this paper, we combine
the ideas of both the direct and indirect method such that
we introduce flexibility in the selection of excitation and
measured node signals. We use both the measured node
signals as well as the excitation signals as predictor inputs.
In addition to that, we do not restrict to the situation of
invariance of our target module after immersion as in the
direct method, but use the mechanism of post-processing
from the indirect method to consistently identify the target
module.

Example 2: We now consider the same network as in
Example 1 but with two constraints: (a) it is not possible



to measure w3 and w5; (b) it is not possible to excite node
w1 (i.e. no r1). It can be inferred that it is not possible to
consistently estimate Gji = G21 using the direct method
due to constraint (a). Similarly due to constraint (b), it is not
possible with the indirect method either.

As shown in Example 1, if we do not measure w3 and
w5 our target module changes to (1 − G25G52)−1(G21 +
G23G31) in the immersed network. However, we can see
that this module also contains the target module of interest
G21. Therefore we might extract the target module from this
term if we know (or) find the other contributions.

Consider that we excite node w3, w5 and measure node
w4. After immersing the non-measured nodes (see [15])
we end up in a dynamic network setup as in Figure 4.
Now consider the identification problem {w1, w4, r2, r3} →
{w2, w4}. We can infer the following from the figure:

1) Identifying the transfer from r3 → w4 provides G43

and the transfer from w1 → w4 provides G43G31. Thus
we can identify G31;

2) The transfer from r3 → w2 provides (1 −
G25G52)−1G23. The term (1−G25G52)−1 is due to the
fact that in the original network there is a loop around
w2 which is not “blocked” by a measured node. This
term is given by the transfer from r2 → w2. Now, we
can obtain G23.

3) The term G23G31 is due to the fact that in the original
network there is a path from w1 to w2 through w3 which
is not “blocked” by a measured node. Knowing G23

and G31 from the above two steps, we obtain the term
G23G31. We also know (1−G25G52)−1. Eventually we
obtain our target module of interest from the transfer
w1 → w2 (i.e. (1−G25G52)−1(G21 +G23G31)).

This shows that we can consistently identify the target
module G21 if we know or could consistently identify the
transfer from {w1, w4, r2, r3} → {w2, w4}.

Remark 1: The consistency results may still require ad-
ditional excitation conditions, which will be specified later
on.

We can observe from Figure 4 that the noise at predictor
input w1 and at predicted outputs w2, w4 are correlated due
to v3. This is due to the fact that in the original network, v3
(in turn e3) has simultaneous paths to w1 and w2 (also w1 and
w4), while these paths run through the unmeasured node w3.
Therefore e3, which is a confounding variable, creates noise
correlation between predictor inputs and predicted outputs.
When using the prediction error framework with the MIMO
setup as explained above (i.e. with {w2, w4} as predicted
outputs), we only model the noise from {e2, e4} → {w2, w4}
but not from the confounding variable e3. This leads to a
lack of consistency property of identified modules [16]. If
we also predict w1 (include it also as predicted output), we
now model the noise from e3 as well. This leads to consistent
estimates. This has been studied in [20] for a two-node
example network. Therefore for the Example 2, we need the
MIMO identification setup {w1, w4, r2, r3} → {w1, w2, w4}.

From the discussed example, we can now conjecture the
following generalization:

Fig. 4. Immersed network of network in Figure 1 where the
nonmeasured nodes w3, w5 have been removed (immersed), and
where ṽ1 = (1 − G31G13)−1(v1 + G13v3), ṽ2 = (1 −
G25G52)−1 (v2 +G23v3 +G25v5) and ṽ4 = v4 +G43v3.

1) Violating the parallel path condition can be handled by
exciting a node in the parallel path, including the exci-
tation signal in the predictor input, and by measuring a
descendant node from the excited node, different from
the output of the target module, and by including this
descendant node in the predicted output;

2) Violating the loop condition can be handled by either
• exciting the output node and including the excita-

tion signal in the predictor input; or
• exciting a node in the loop, including the excitation

signal in the predictor input, and by measuring a de-
scendant node from the excited node, different from
the output of the target module, and by including
this descendant node in the predicted output;

3) Confounding variables can be handled by including
measured nodes as predicted outputs4.

In the sequal of this paper, we will derive the formal results
that underly the above conjectured statements.

V. CONCEPTS AND NOTATION

We will denote wY as the node signals in w that serve as
predicted outputs, and wD as the node signals in w that serve
as predictor inputs, and rP as the external excitation signals
in r that serve as predictor inputs. Next we decompose wY

and wD in disjoint sets according to: Y = Q∪O∪{o} ; D =
Q∪A where wQ are the node signals that are common in wY

and wD; wO is the set of node signals that are only predicted
outputs (excluding the output node of target module); wo
is the output wj of the target module; if j ∈ Q then {o}
is void. Additionally we denote wZ as the node signals in
w that are neither predicted output nor predictor input, i.e.
Z = L\{D ∪ Y}, where L = {1, 2, · · ·L}. Next we define
the set related to rP as P ⊆ L\A.

VI. MIMO IDENTIFICATION SETUP

Consider a dynamic network defined by (2), however with
cov(e) = I and H not necessarily monic. The identification
that we need to perform refers to the estimation problem

4Confounding variables can also be handled in other ways, for example,
adding predictor inputs(see [16], [17]). In this paper we handle using
predicted outputs in order to avoid measurement of additional node signals.



(wD, rP) → wY . In order to analyze this problem, based on
system equation of the considered network, we rewrite the
system equations for the output variables wY .

Proposition 2: The systems equations for the output vari-
ables in wY can always be written as,

wY = ḠwD + H̄ξY + R̄rP , (6)

where ξY a white noise process with dimensions conforming
to wY , with cov(ξY) = Λ̄ and with H̄ being monic, stable
and stably invertible.
Proof: The detailed proof is provided in [21]. 2

As a result we can set up a predictor model
based on a parametrized model set determined by
M :=

{
(Ḡ(θ), H̄(θ), R̄(θ), Λ̄(θ)), θ ∈ Θ

}
, while the ac-

tual data generating system is represented by S =
(Ḡ(θo), H̄(θo), R̄(θ0), Λ̄(θ0)). The corresponding identifi-
cation problem is defined by considering the one-step-
ahead prediction of wY , according to ŵY(t|t − 1) :=
E{wY(t) | wt−1Y , wtD, r

t
P} where wtD, r

t
P denotes the past of

wD, rP respectively, i.e. {wD(k) and rP(k), k ≤ t}. The
resulting prediction error ε(t, θ) := wY(t) − ŵY(t|t − 1; θ)
becomes:

ε(t, θ)=H̄(q, θ)−1
[
wY(t)−Ḡ(q, θ)wD(t)−R̄(q, θ)rP(t)

]
(7)

and the weighted least squares identification criterion

θ̂N = arg min
θ

1

N

N−1∑
t=0

εT (t, θ)Wε(t, θ), (8)

with W any positive definite weighting matrix. This pa-
rameter estimate then leads to an estimated subnetwork
ḠYD(q, θ̂N ), with the estimated module Ḡji(q, θ̂N ) as one
of its scalar entries.

VII. MAIN RESULTS

In this section we first present the consistency results for
the above considered identification problem.

Theorem 1: Consider a (MIMO) network identification
setup with predictor inputs (wD, rP) and predicted outputs
wY as in (6). Then a prediction error identification method
according to (7)-(8), applied to a parametrized model set
M will provide a consistent estimate of Ḡ and R̄, if the
following conditions on the sets of nodes are satisfied:

a) there are no confounding variables for the estimation
problem wA → wY ;

b) Every measured node signal that has an unmeasured
path to a node signal in wY is included in wD;

and additionally:
1) M is chosen to satisfy S ∈ M;
2) Φκ(ω) > 0 for a sufficiently high number of frequen-

cies, where κ(t) :=
[
w>Y ξ>Q w>A r>P

]>
;

3) All rk, k ∈ P are uncorrelated to all ξ`, ` ∈ Y ∪ A;
4) All the elements in GQQ, GQA, GoQ, GoA are strictly

proper (or) all existing paths/loops from wQ, wo, wO to
wQ, wo and wO have at least a delay. 2

Proof: The detailed proof is provided in [21]. 2

The estimate Ḡ contains the estimate of Ḡji as one of
its elements since wi ∈ wD. However our final goal is to

estimate our target module Gji which will be present in Ḡ
but will need to be extracted from this matrix through post-
processing. For this post-processing step we will require two
additional sets:
• A set Zr ⊆ Z ∩ P which represents externally excited

nodes in unmeasured paths5 from wi to wj and in loops
around wj ; and

• A set T ⊆ Y\{j} which, for each of the nodes in
Zr represents a measured descendant node that has
an unmeasured path from wZr , while wj is excluded
from T . Note that for each node wk, k ∈ Zr, the
corresponding element in T is a measured node, and
therefore cannot be in the corresponding unmeasured
path from wi to wj or loops around wj , that passes
through wk. Therefore the descendant in T typically
breaks out of these unmeasured parallel paths/loops, as
illustrated in Figure 5.

Fig. 5. Example network with all measured nodes in yellow. Modules and
noise are not shown for convenience purpose. Arrows with dots indicate
unmeasured path.

These two sets will play a major role in extracting the
target module estimate from the identification result Ḡ, R̄.
The properties that Zr and T need to satisfy in order to
realize this post-processing step correctly are formulated
next.

Property 2 (Properties of Zr and T ): Let Zr and T sat-
isfy the following properties:
a) All unmeasured paths from wi to wj pass through a node
wk, k ∈ Zr that has an unmeasured path to a node w`, ` ∈
T ;

b) All unmeasured paths from wi to wT pass through a node
wk, k ∈ Zr and GT i = 0;

c) If i ∈ T , then wi is excited by an external excitation
signal ri;

d) If there exist unmeasured loops through wj and wj is not
excited by an external excitation signal rj , then:

i) The unmeasured loops through wj pass through a
node wk, k ∈ Zr that has an unmeasured path to a
node wn, n ∈ T ;

ii) All unmeasured paths from wj to wT pass through a
node wk, k ∈ Zr and GT j = 0;

e) Every wk, k ∈ Zr is excited by an external excitation
signal rk;

5An unmeasured path is a path that runs through nodes in wZ only.
Analogously, we can define an unmeasured loop through a node wj .



f) For every subset of Zr (i.e. Sr ⊆ Zr) with cardinality
C, there are unmeasured paths to at least C nodes in wT

with each node in wSr having at least one path.

Theorem 2: Consider the situation of Theorem 1. Let i ∈
D and let the sets Zr and T satisfy Property 2. Then a
consistent estimate of target module Gji is obtained as

Gji(θ̂N )=Ř−1jj (θ̂N )
(
Ḡji(θ̂N )−R̄jZr (θ)R†TZr

(θ̂N )ǦT i(θ̂N )
)

where6

1) Řjj = R̄jj if wj is excited by an external signal uj ;

2) Řjj =
(

1− (1 + R̄jZr
R̄†TZr

ḠT j)
−1R̄jZr

R̄†TZr
ḠT j

)−1
if

wj is not excited by an external signal uj ;
3) ǦT i = ḠT i if i /∈ T ;
4) ǦT i = (ḠT i + Řii) if i ∈ T , where Řii is a column

vector with every element as zero except the element
corresponding to node wi which is R̄ii(1− R̄−1ii ) 2

Proof: The detailed proof for the above theorem is provided
in [21]. 2

Here [ . ]† correspond to the left inverse of the matrix.
The left inverse exists if set Zr and T has Property 2.

We interpret Property 2 using the network in Figure 5.
We have one unmeasured parallel path from wi to wj and
one unmeasured loop through wj . Considering the parallel
path, the excited node w2 and its measured descendant w1

ensures that Property 2a) and 2b) are satisfied with w2 in wZr

and w1 in wT . Similarly, considering the unmeasured loop
through wj , the excited node w5 and its measured descendant
w1 ensures that Property 2d) is satisfied with w5 in wZr .
Property 2e) is satisfied with both w2 and w5 being excited
by external signals. However, Property 2f) is not satisfied if
wZr

= {w2, w5} and wT = w1. For the subset Sr = Zr with
cardinality equal to 2, there are unmeasured paths to only 1
node in wT (i.e. w1). Hence we choose w9 in wT , which is
a descendant of w5 and ensure that Property 2f) is satisfied.
Property 2c) is redundant for this case since i /∈ T . It is
important to note that wT can be any node in the network that
satisfies the Property 2 and thus relaxes the sensor placement
scheme.

VIII. CONCLUSIONS

A new local module identification method has been in-
troduced that consistently identifies the target module under
known topology, with a generalized scheme for selection of
measured node signals and excitation of nodes. We provide
flexibility in the sufficient conditions to identify a target
module which creates considerable freedom in sensor selec-
tion and actuation schemes. This is achieved by combining
elements of the direct and indirect identification approaches.
We use both node signals and external excitation signals as
predictor inputs, allow post-processing of module estimates,
and use a MIMO identification setting. With this step we
remove restrictive conditions on measured node signals and
excitation signals that are present in the currently available
methods, e.g. concerning parallel paths and loops around the
output.

6notation (θ̂N ) is dropped in the following expressions.
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