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Summary. The usage of a spatial spectral domain integral
equation solver for electromagnetic scattering from dielec-
tric objects provides a means to execute scattering simula-
tions for lithography. We consider the extension of the local
normal vector field formulation to support polygonal build-
ing blocks in a Gabor series representation of functions.

1 Introduction

Possible improvement in both power efficiency and
performance for integrated circuits (IC) is the resul-
tant of extreme ultraviolet (EUV) lithography by fur-
ther decreasing the node size to a mere 5 nanome-
ter [1]. This lithographic production of ICs becomes
a cost-effective process if one can ensure that param-
eters such as illumination and alignment between lay-
ers are controlled [2]. In other words, it is preferred
that the equipment used for lithography is subjected
to continuous monitoring and calibration in order to
guarantee nanometer precision. A possible calibra-
tion method for the lithography process is scatterom-
etry [2].

Recently, a spatial spectral Maxwell solver has
been designed specifically for electromagnetic scat-
tering by dielectric objects in layered media [3]. The
main idea of this Maxwell solver is to calculate the
scattered field from the scatterer by solving a domain
integral equation, which originates from the frequency-
domain Maxwell equations. It was shown that the in-
tegral equation can be solved more efficiently if one
implements the Gabor series representation of func-
tions with a Gaussian window function as defined in
[4]. This ensures a fast and analytical transformation
between spatial and spectral domain.

A key ingredient of [3] is the normal vector field
formulation in order to respect the Fourier factoriza-
tion rules [5]. The normal vector field formulation ex-
presses the idea to construct a vector field F consisting
of the continuous parts of electric field E and electric
flux density D. The advantage is that the field-material
interaction described by a Fourier series proved to be
more accurate via an intermediate vector field F com-
pared to direct the field-material interaction by E or
D [5]. The extension of the normal vector field for-
mulation to local normal vector field formulation can

be found in [6]. The local normal vector field formu-
lation enables to have an object of interest and nor-
mal vector field independent from each other. In [3],
this local normal vector field formulation was imple-
mented numerically for the Gabor series representa-
tion of bar-shaped and circular cylindrical objects.

The work of [6] is also an analytical approach to
evaluate polygonal shapes with the local normal vec-
tor field formulation. This analytical approach incor-
porates parameters such as rotation and translation of
objects. Thus, the approach is object-based and not
pixel-based. However, [6] only describes the spatial
and spectral local normal vector field formulation for
functions described in terms of a Fourier basis.

We propose an approach to construct a local nor-
mal vector field formulation for polygonal building
blocks while using a Gabor series representation of
functions with a Gaussian window function as defined
in [3], [4].

2 Gabor series representation

Given that we aim to extend the work of [3], we
use the Gabor series representation with the follow-
ing Gaussian window function

x2 2
g(x,y) =24 ™ (1)

where X and Y define the spatial period of the win-
dow function for x and y direction, respectively. This
Gaussian window function is used to define the Gabor
frame, which plays a central role in the Gabor series
representation. The Gabor frame is defined as

gmn(%,y) = g(x—my 06X, y— myayY)ejﬁ.rnxKxx+jﬁyn);K)'y

2)
with the indices m = (my,my) and n = (nx,ny). The
spectral periods are expressed as Kx = ZX—” and Ky =

27”. The oversampling coefficients are defined as o, 3, < 1

and oy, <1. The Gabor frame is used to represent a
function such as the electric field as

E=YY emn(2)gmn(,y) 3)

where ey represents a Gabor coefficient.
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3 Computation of spectral operators

The work of [6] refined the ideas proposed in [5] by
expressing the 3D electric field E as

Cxx ny sz F,
E=C,F= |C) Cy Cy| |Fy 4
Cox Czy Cy F;

in case of dielectric media. Vector field F represents
an intermediate vector field while linear operator C¢
is used to transform F back to E and similar for

D = eCF )

where € expresses permittivity.

An important aspect of [3] is the transformation
between spatial and spectral domain. This means that
we are interested in performing a spectral transforma-
tion on linear operator C¢. Therefore, we evaluate the
following integral

cij(m,n,z) = / gmn (X, y)dxdy (6)
Au

where A, represents the support of the polygonal
shape in xy-plane. The main issue of Eq. (6) is that
we need to solve 2D integral for each m and n, which
results in a heavy burden in computation time.

A closed contour provides us a way to introduce
Gauss’s theorem to reduce the surface integral to a
line integral where the contour is the sum of the line
integrals along the edges of a closed polygon [6]. This
reduces the computation time. An extra advantage of
this method is that one would only require the edge
points of a polygon to obtain all required information
necessary to go from spatial to spectral domain. An-
other interesting aspect of the linear operator Cg is
that it can be obtained independently for each vertical
position along z of a shape, which readily enables the
implementation of parallel computing. Overall, these
components can help to decrease the computational
effort while solving Eq. (6).

4 Spectral C; calculations for FinFET

We show the conversion from a FinFET structure [7],
Fig. 1, to polygonal building blocks with correspond-
ing normal vector for each boundary as seen in Fig. 2.
These polygonal building blocks are used to define
our spatial version of the C, for each z-position of
a FinFET. Our main focus is to display a cut-and-
connect strategy with Eq. (6) as outlined in [6]. This
strategy employs the idea to generate polygons for
shapes such as in Fig. 2.

Fig. 1. A simplified example of a FinFET structure

Fig. 2. An example of a z-position of a FinFET by polygonal
building blocks. The arrow represents the direction of the
normal vector for each polygonal building block
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