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1.1 Introduction

1.1.1 Motion systems

Motion systems are mechanical systems with actuators with the primary func-
tion to position a load. The actuator can be either hydraulic, pneumatic, or
electric. The freedom in trajectory planning and motion profile is often lim-
ited when compared to general robotic systems. In addition, motion systems
are closely related to active vibration isolation systems, a main di↵erence is
that active vibration systems regulate a motion to zero. Examples of motion
systems include linear and rotational servo drives, and also state-of-the art
planar 6 DOF (Degree-of-Freedom) motion platforms. Typically, such motion
systems can be represented well by linear models, which are possibly of high
order due to flexible dynamics in case of high performance and high DOF
systems. Inexpensive motion systems typically have friction in the guidance.
Backlash is often prevented by application of direct drive actuators. Sensor
systems include encoders, capacitive sensors, and laser interferometers, with
accuracies into the sub-nanometer range. For further aspects on the mecha-
tronic design of such systems, see [38], [16].

1.1.2 Industrial state of the art

The industrial state-of-the-art control of motion systems is summarized as fol-
lows. By appropriate system design, most systems are either decoupled or can
be decoupled using static input-output transformations. Hence, most motion
systems and their motion software architecture use Single-Input Single-Output
SISO control design method and solutions. The feedback controller is typically
designed using frequency domain techniques, in particular via manual loop-
shaping. A typical motion controller has a Proportional-Integral-Derivative
(PID) structure, with a low-pass filter at high frequencies and one or two notch
filters to compensate flexible dynamics [62] [43]. In addition to the feedback
controller, a feedforward controller is often implemented with acceleration,
velocity, and friction feedforward for the reference signal. The setpoint itself
is designed using a setpoint generator with jerk limitation profiles [31].

One of the most accurate, fast, and expensive motion systems available
today is a wafer stage, which is part of a wafer scanner used in lithographic
processes. The extreme accuracy and speed requirements necessitate and jus-
tify a further development of the state of the art, which is outlined next.
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1.1.3 Developments in lithography

Wafer scanners, see Fig. 1.1, are the state-of-the-art equipment for the mass
production of ICs. During the production process, a photoresist is exposed
on a silicon disc, called a wafer. During exposure, the image of the desired
IC pattern, which is contained on the reticle, is projected through a lens on
the photoresist. Subsequent chemical reactions enable etching of these pat-
terns, which is repeated for successive layers. Typically, more than 20 layers
are required for each wafer. Each wafer contains more than 200 ICs that are
sequentially exposed. During this entire process, the wafer must extremely
accurately track a predefined reference trajectory in six motion degrees-of-
freedom (DOFs), with future requirements of tracking accuracy below 1 nm,
velocity in the order of 1 m

s and acceleration in the order of 102 m
s2 . These

extreme speed requirements are imposed by throughput, which directly de-
termines the market position of the machine. This highly accurate and fast
motion task is performed by the wafer stage, which is one of the most accurate
and expensive motion systems commercially available.

In the last decades, increasing demands with respect to computing power
and memory storage have led to an ongoing dimension reduction of transis-
tors. The minimum feature size associated with these transistors is called the
critical dimension (CD) and is determined by the wavelength of light, see [34],
[30]. In [30], CDs of 50 nm have been achieved using deep ultraviolet (DUV)
light with a wavelength of 193 nm through many enhancements of the produc-
tion process. However, a technology breakthrough is required to reduce the
wavelength of light and consequently improve the achievable CD.

Extreme ultraviolet (EUV) is a key technology for next-generation lithog-
raphy [65], [70]. At present, experimental prototypes with a 13.5 nm wave-
length are reported in [30], [3] and production systems are already in use [1].
The introduction of EUV light sources in lithography has far-reaching con-
sequences for all subsystems of the wafer scanner, including the wafer stage.
EUV does not transmit through any known material, including air. Hence,
lenses used in DUV have to be replaced by mirrors in EUV. Moreover, the
entire exposure has to be performed in vacuum.

1.1.4 Developments in precision motion systems

Due to the developments in lithographic production processes, next-generation
precision motion systems are expected to be lightweight for several reasons.
First, vacuum operation requires these systems to operate contactless to avoid
pollution due to mechanical wear or lubricants. In addition, contactless op-
eration reduces parasitic nonlinearities such as friction and thus potentially
increases reproducibility. Since contactless operation requires a compensation
of gravity forces, a lightweight system is essential. Second, market viability
requires a high throughput of the wafer scanner. As is argued in Section 1.1.3,
this requires high accelerations in all six motion DOFs. The accelerations a
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Sensor

FIGURE 1.1

IC production. The lens system that exposes a wafer is being positioned using
a sensor that measures the edge of the system.

of the wafer stage are determined by Newton’s law F = ma. Here, the forces
F that can be delivered by the electromagnetic actuators are bounded, e.g.,
due to size requirements and thermal reasons. Hence, a high acceleration a

is enabled by a reduction of the mass m, again motivating a lightweight sys-
tem design. Third, there have been initiatives to increase the wafer diameter
from 300 mm to 450 mm to increase productivity. This requires increased
dimensions of the wafer stage, which again underlines the importance of a
lightweight system design.

As a result of a lightweight system design, next-generation motion systems
predominantly exhibit flexible dynamical behavior at lower frequencies. This
has important consequences for control design, as is investigated next.

1.1.5 Towards next-generation motion control: the necessity

of a model-based approach

The increasing accuracy and performance demands lead to the manifestation
of flexible dynamical behavior at lower frequencies. On the other hand, due
to these increasing demands, the controller has to be e↵ective at higher fre-
quencies. Combining these developments leads to a situation where flexible
dynamical behavior is present within the control bandwidth. This is in sharp
contrast to traditional positioning systems where the flexible dynamical be-
havior can be considered as high-frequency parasitic dynamics, as is, e.g., the
case in [71, Sec. 2.1, Assumption 1-3].

The presence of flexible dynamical behavior within the control bandwidth
has significant implications for motion control design in comparison to the
traditional situation:
i) next-generation motion systems are inherently multivariable, since the

flexible dynamical behavior is generally not aligned with the motion
DOFs;
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ii) next-generation motion systems are envisaged to be designed with many
actuators and sensors to actively control flexible dynamical behavior,
whereas traditionally the number of inputs and outputs equals the num-
ber of motion DOFs; and

iii) a dynamical relation exists between measured and performance variables,
since the sensors generally measure at the edge of the wafer stage system,
while the performance is required on the spot of exposure on the wafer
itself. In contrast, the flexible dynamical behavior is often neglected in
traditional motion systems, leading to an assumed static geometric rela-
tion between measured and performance variables, see Figure 1.1 for a
graphical illustration.
These implications of lightweight motion systems on the control design

motivate a model-based control design, since
i) a model-based design provides a systematic control design procedure for

multivariable systems;
ii) a model is essential to investigate and achieve the limits of performance.

Specifically, fundamental performance limitations are well-established for
nominal models, see [58], and robust control provides a transparent trade-
o↵ between performance and robustness, see [60]; and

iii) a model-based design procedure enables the estimation of unmeasured
performance variables from the measured variables through the use of a
model.

As pointed out in [71], a model-based control design is far from standard in
state-of-the-art industrial motion control, since the majority of such systems is
controlled by manually-tuned single-input single-output (SISO) proportional-
integral-derivative (PID) controllers in conjunction with rigid-body decoupling
based on static input-output transformations. One of the main reasons is the
fact that a manually tuned design achieves reasonably performance while only
requiring easily available FRF data, instead of an accurate parametric model.
The presence of flexible dynamical behavior in next-generation motion control
necessitates and justifies the additional modelling e↵ort required to deal with
the situations sketched above.

1.1.6 Contribution: from manual tuning to model-based syn-

thesis

The main contribution of this chapter is an overview of a systematic control
design procedure for motion systems that has proven its use in industrial
motion control practise. A step-by-step procedure is presented that gradually
extends SISO loop-shaping to the multi-input multi-output (MIMO) situation.
This step-by-step procedure consists of (i) interaction analysis, (ii) decoupling,
(iii) independent SISO design, (iv) sequential SISO design, and finally, (v)
norm-based MIMO design. In the norm-based MIMO design, a model-based
control is pursued that addresses the future motion control challenges from
Section 1.1.5. As such, the present chapter provides a unified overview of
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ongoing research on motion feedback control, including [63], [50], [25], [46],
and [41]. The design of the feedforward controller is an important aspect but
beyond the scope of this chapter, see Section 1.5 and [43] for a results in this
direction, as well as [42] for learning control.

1.2 Motion systems

The dynamical behavior of motion systems is typically linear and dominated
by the mechanics. Indeed, the actuator and sensor dynamics are typically rel-
evant in higher frequency regions and are therefore ignored. These mechanics
are typically described in the Laplace domain as [19], [52], [37]

Gm =
nRBX

i=1

cib
T
i

s2

| {z }
rigid�body modes

+
nsX

i=Nrb+1

cib
T
i

s2 + 2⇣i!is+ !
2
i

| {z }
flexible modes

, (1.1)

where nRB is the number of rigid-body modes, the vectors ci 2 Rny , bi 2 Rnu

are associated with the mode shapes, and ⇣i,!i 2 R+. Here, ns 2 N may
be very large and even infinite [29]. Note that the rigid-body modes are not
suspended in (1.1). In the case of suspended rigid-body modes, e.g., in case of
flexures as in [16], [46], (1.1) can directly be extended. As an example, Fig. 1.2
shows a magnitude frequency response function (FRF) and the underlying
modes of a system.

Traditionally, motion systems are designed to be sti↵, such that the flexible
behavior is well above the intended closed-loop bandwidth, implying a rigid-
body behavior in the control bandwidth. Also, the number of actuators nu

and sensors ny is chosen equal nRB , and are positioned such that the matrixPnRB

i=1 cib
T
i is invertible. In this case, matrices Tu and Ty can be selected such

that

G = TyGmTu =
1

s2
InRB +Gflex, (1.2)

where Ty is typically selected such that the transformed output y equals the
performance variable z, as is defined in Sec. 1.4.1. Importantly, the selection
of these matrices Tu and Ty can be done directly on the basis of frequency
response function (FRF) data, see Sec. 1.3.3.2 and, e.g., [66]. As a result of this,
often decentralized controllers can be designed, i.e., diagonal PID controllers
with typically a few notch filters, as is outlined in the forthcoming sections.

As is argued in Sec. 1.1.5, future motion systems are envisaged to have
more actuators and sensors to improve their performance. In Sec. 1.4.3, the
modal representation (1.1) is employed to actively damp and sti↵en certain
flexible modes.
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FIGURE 1.2

Separating rigid body and flexible dynamics. Top: original system. Bottom:
separation in rigid-body dynamics (red) and flexible dynamics (green).
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FIGURE 1.3

Standard single DOF feedback configuration.

1.3 Feedback control design

1.3.1 System Identification - obtaining an FRF

Motion control design is typically done in the frequency domain, since it allows
the direct evaluation of performance and robustness in addition to intuitive
tuning. Frequency domain tuning requires a model of the system. In the case
where the motion system has already been realized, system identification is an
inexpensive, fast, and accurate approach to model motion systems. In partic-
ular, the first step in motion systems typically involves a frequency response
function (FRF) identification using noise signals, single sine, swept sine, or
multi-sine excitation [51]. It is important to note that most motion systems
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are unstable in open-loop, since these have rigid body dynamics leading to
poles at zero in (1.1).

Indeed, due to open-loop instability, safety requirements, or nonlinear be-
havior, it is often required to implement a feedback controller during the
identification experiments. Consider the single DOF feedback configuration
depicted in Fig. 1.3. Here, K can be implemented during the identification
experiment, and is later re-designed to enhance system performance. For in-
stance, K can be a low bandwidth PD controller K(s) = Ds + P . Typically,
the controller zero (ratio P/D) is taken su�ciently low. If the sign of the sys-
tem at low frequencies is known, a simple procedure can be used to increase
the gain, while keeping the ratio P/D constant, or first D is increased, then P,
while giving the motion system a modest setpoint. In particular, a so-called
jogging motion enables overcoming the friction while tuning and identifying
the system. The resulting low-bandwidth controllers are typically su�cient
for system identification purposes. Once these experimental controllers have
been designed, an identification experiment can be performed.

Next, assume that an external excitation is applied for system identifica-
tion. For the purpose of illustration, assume that r2 = 0, whereas r1 is the
excitation signal. In the case that the measurement indeed is performed under
closed-loop operating conditions, i.e, K 6= 0, then care must be taken when
attempting to identify G in Fig. 1.3. In particular, in the situation where the
measured outputs are contaminated by noise and disturbances, and in addi-
tion, the external excitation r1 is taken as a noise signal, as is common practise
in motion control, then a direct identification of the plant, i.e., from u to y may
lead to biased estimates. In particular, poor signal-to-noise ratios will lead to
an identified inverse controller. In particular, in the case of noise excitation,
it is recommended to first identify the process-sensitivity (GS : r1 7! y), see
again Fig. 1.3, and the sensitivity (S : r1 7! u). Subsequently, divide the two
FRFs to obtain the FRF of G. This will reduce the bias in the estimate of the
plant. The same procedure can be followed for MIMO systems, provided that
appropriate matrix transformations are done for every frequency measure-
ment point. Recently, important progress has been made to enhance the FRF
by appropriate input design, see [50, Appendix A], and by non-parametric
pre-processing, see [69] for an application on a motion system.

In the forthcoming sections 1.3.2 and 1.3.3, the nonparametric FRF model
su�ces for tuning. In Sec 1.4, a parametric model is required. This parametric
model is estimated based on the obtained FRF data.

1.3.2 Loop-shaping - the SISO case

The feedback controller can be directly designed based on the obtained FRF.
First, manual loop-shaping for SISO systems is investigated. As an example
consider the measured FRF of a wafer stage that is presented in Section 1.4.2,
see Figure 1.6.

The idea in loop-shaping is to select K that directly a↵ects the loop-gain
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L = GK. Indeed, L can be directly manipulated by the choice of K using
Bode and Nyquist diagrams, see, e.g., [4, Sec. 11.4], which is essentially due
to the Laplace transform that replaces the time domain convolution by a
simple multiplication. In turn, L directly connects to the closed-loop transfer
functions in certain frequency ranges, including S = 1

1+GK and T = GK
1+GK ,

see also Fig. 1.3. Loop-shaping typically consists of the following steps, which
are typically re-tuned in an iterative fashion.
1. Pick a cross-over frequency fbw [Hz], which is the frequency where

|L(2⇡fbw)| = 1. Typically, |S| < 1 below fbw, while |T | < 1 beyond fbw.
Furthermore, fbw is typically selected in the region where the rigid-body
modes dominate, i.e., fbw <

!i
2⇡ , where !i, i = nrb + 1, . . . , ns is defined in

(1.1).

2. Implement a lead filter, typically specified as Klead = plead

1
2⇡ 1

3
fbw

+1

1
2⇡3fbw

+1
, such

that su�cient phase lead is generated around fbw. In particular, the zero
is placed at 1

3fbw, while the pole is placed at 3fbw. Next, plead is adjusted
such that |GKlead(2⇡fbw)| = 1. This lead filter generates a phase margin at
fbw. Indeed, the phase corresponding to the rigid-body dynamics in (1.1)
is typically �180 degrees, which leads to a phase margin of 0 degrees.

3. Check stability using Nyquist plot of GK and include possible notch filters
in the case where the flexible modes endanger robust stability.

4. Include integral action through K = KintKlead, with Kint =
s+2⇡

fbw
5

s .
Since GK � 0 at low frequencies, S ⇡

1
GK , the integrator pole at s = 0

inproves low frequency disturbance attenuation, while not a↵ecting phase
margin due to the zero at 1

5fbw.
The loop-shaping procedure is highly systematic and fast: it only requires

a nonparametric FRF model, which is fast, inexpensive, and accurate, and the
above procedure is very systematic and intuitive to apply. However, in case
the system is multivariable, caution should be taken to deal with interaction.

1.3.3 Loop-shaping - the MIMO case

Loop-shaping cannot be directly applied to MIMO systems due to interaction.
Essentially, the interdependence between the decentralized PID controllers
complicates the tuning of the overall multivariable controller that at least
has to be stabilizing. In this section, the manual loopshaping procedure is
gradually extended to the multivariable case. These results are essentially all
based on the generalized Nyquist criterion.

In MIMO systems, closed-loop stability is determined by the closed-loop
characteristic polynomial det(I + L(s)). By graphically analyzing det(I +
L(j!)) similar to the scalar Nyquist plot, closed-loop stability can be ana-
lyzed, see [59, Theorem 4.9] for details. This plot can be generated directly
using the identified MIMO FRF of Sec. 1.3.1. However, in the case where
the closed-loop systems is unstable, it is not immediate which element of the
MIMO controller K to re-tune.
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Note that a related test can be obtained in terms of the loci of L(j!),
i.e., the eigenvalues of L as a function of frequency. In case both K and G

are open-loop stable, then a su�cient condition for closed-loop stability is
where all loci do not encircle the point (�1, 0). However, this does not resolve
the design issue: the shaping of these eigenvalue loci is not straightforward
if the plant has interaction. Furthermore, typical margins that are used in
SISO systems, such as phase margins are less useful. In particular, the phase
margin based on characteristic loci implies a phase change at the same time
in all loops simultaneously.

In the special case where the open loop transfer function matrix is diagonal,
L(s) = diag{li(s)}, i.e. the open loop is decoupled, then

det(I + L(s)) =
nY

i=1

det(1 + li(s)). (1.3)

As a result, the characteristic loci of the open loop transfer function matrix
directly coincide with the Nyquist plots of the scalar loop gains li(j!). The
MIMO feedback control design complexity then reduces to that of a number of
SISO feedback control design. Many classical MIMO control design methods
aim at decoupling the open loop function at some location in the feedback
loop, e.g. at the plant input or plant output.

Since SISO loop-shaping is systematic and very fast design procedure for
motion systems, it is a preferred procedure even for MIMO systems. In prac-
tise, it is often attempted to decouple the system such that (1.3) holds. If this
is not possible, it may be tempting to directly go to a norm-based optimal de-
sign, however, this requires a parametric model. Such parameteric models, as
is outlined in Sec. 1.4 are expensive and user-intensive to obtain. Therefore,
several ideas from multivariable and robust control are exploited to extend
loop-shaping towards MIMO systems. This leads to a design procedure for
MIMO motion systems, consisting of the following steps.

1. interaction analysis,

2. decoupling and possible independent SISO design,

3. multi-loop feedback control design with robustness for interaction,

4. sequential feedback control design,

5. norm-based control design.

All except for the last step can be performed with a non-parametric model
of the plant, i.e., an identified FRF. The norm-based control design requires
a parametric model of the plant. Nonetheless, the last step may be essential
to address the complex motion control problems envisaged in future systems,
see Sec. 1.1.5.
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1.3.3.1 Interaction analysis

The first step in multivariable motion feedback design is interaction analysis.
Especially two-way interaction is essential, since one-way interaction does not
a↵ect closed-loop stability.

Several approaches have been developed for interaction analysis. A well-
known, easy to compute, and useful approach is the relative gain array. The
frequency-dependent relative gain array (RGA) [60, 11] is given by

RGA(G(f)) = G(f)⇥ (G(f)�1)T , (1.4)

where ⇥ denotes element-wise multiplication. Note that the RGA can be di-
rectly computed using FRF data. In addition, the RGA is independent of the
feedback controller and invariant under scaling. The rows and columns of the
RGA sum to 1 for all frequencies f (Hz). If (RGA)(f) = I, 8!, then perfect
decoupling is achieved.

1.3.3.2 Decoupling and independent SISO design

Static decoupling may be considered if the interaction is too severe to allow for
multi-loop SISO design. For motion systems, such transformations, see also
(1.2), can be obtained using kinematic models. Herein, combinations of the
actuators are defined so that actuator variables act in independent directions
at the center of gravity. Similarly, combinations of the sensors are defined so
that each translation and rotation of the center of gravity can be measured
independently. Such decouplings can be further refined using FRF data, see
[66] for details.

In certain situations, it may be desirable to decouple the plant at other
frequencies, see, e.g., [8], or to use a dynamic decoupling. In any situation,
the e↵ect of the decoupling transformations should be analysed using the
interaction measures derived earlier. If the system is su�ciently decoupled
using static transformations, then multi-loop SISO controllers can be designed.

1.3.3.3 Multi-loop feedback control design with robustness for in-

teraction

In case where the interaction after decoupling is too large to successfully design
multi-loop SISO controllers, robustness for interaction may be enforced. This
approach employs concepts from robust control theory [72]. The objective is
to design SISO controllers that are robust for interaction terms.

To this end, note that [23]

det(I +GK) = det(I + ETTd) det(I +GdK), (1.5)

with, Td = GdK(I + GdK)�1. Let Gd(s) be the diagonal terms of G. Then,
the non-diagonal terms of the plant Gnd(s) = G(s)�Gd(s) can be considered
in ET (s). As a result, MIMO closed-loop stability can be decomposed into
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stability of N non-interacting loops associated with det(I + Gd(s)K(s)) and
stability associated with det(I + ET (s)Td(s)).

In det(I + ET (s)Td(s)), Td is the complementary sensitivity function of
the N decoupled loops. If G(s) is stable and Td(s) is stable, then the small
gain theorem [59] implies that det(I + ETTd) does not encircle the origin if,

⇢(ET (j!)Td(j!)) < 1, 8!, (1.6)

where ⇢ is the spectral radius. Next, (1.6) holds if

µTd(ET (j!)Td(j!)) < 1, 8! (1.7)

which in turn implies that

�(Td(j!)) < µTd(ET (j!))
�1

, 8! (1.8)

where µTd is the structured singular value [72] with respect to the diagonal
(decoupled) structure of Td. Since �(Td(j!)) = maxi |Td,ii(j!)|, condition
(1.8) can be used as an additional bound on Td,ii when loop-shaping the multi-
loop SISO controllers. In other words, once the structured singular value in
(1.8) is computed, the SISO approach in Sec. 1.3.2 can directly be followed,
where an additional bound is enforced on all SISO complementary sensitivity
functions Td,ii to provide robustness for interaction terms.

Clearly, the test (1.8) provides robustness for any choice of stabilizing
controller in the other loops. Intuitively, this implies that this may be con-
servative. In the next section, the particular choice of controller in a previous
loop is explicitly taken into account, leading to a procedure for designing
decentralized controllers for interaction.

1.3.3.4 Sequential loop closing

In the situation where the approach in Sec. 1.3.3.3, which provides robustness
for interaction, leads to conservative designs, then the interaction terms and
specific controller designs may be explicitly taken into account in subsequent
design steps. This procedure is called sequential loop closing (SLC). Here,
earlier designed controllers are explicitly taken into account in the next loops.

The idea is to start with an FRF of the open-loop system, which is as-
sumed to be open-loop stable. Then, the first loop is closed, and a new FRF
is computed of the resulting system, which includes e↵ects of the designed
controller. Then, one more loop is closed, and the resulting FRF is com-
puted again. In particular, each single input single output controller ki, from
K = diag{ki}, i = {1, ..., n}, is designed using the property [35]

det(I +GK) =
nY

i=1

det(1 + g
i
ki), (1.9)

where for each i
th design step, the equivalent plant gi is defined as the lower
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fractional transformation:

g
i = Fl(G,�K

i) (1.10)

where K
i = diag{kj}, j = {1, ..., n}, j 6= i.

It can be directly proved that the closed-loop system is stable if every ki is
designed to be stabilizing. However, the robustness margins, that are typically
enforced for each ki, may change due to the closing of subsequent loops. As a
consequence, the overall MIMO design may have very poor robustness margins
[17].

To alleviate these drawbacks, the ordering of the design steps may be
changed, since this may significantly influence on the achieved performance.
There is no general approach to determine the best sequence for design. This
may lead to many design iterations, especially for large MIMO systems. Note
that the loops should always be opened in the same ordering as they are
closed, otherwise closed-loop stability cannot be guaranteed.

The main advantage of the sequential loop closing approach is that it allows
for SISO loop-shaping while explicitly addressing interaction, while only re-
quiring a non-parametric plant model. If the sequential loop-closing approach
still does not lead to satisfactory performance, then a full multivariable control
design approach may be pursued, as is investigated next. Such an approach
may become essential for envisaged future systems as described in Sec. 1.1.5,
which exhibit a drastically increased complexity.

1.4 Model-based control design

A full model-based control design is a suitable approach in the case where the
manual tuning approaches that are presented in the previous section do not
lead to satisfactory results. In this section, a general framework for model-
based motion control is outlined. The presented framework relies on parame-
teric models of the system and optionally a detailed description of the involved
uncertainty. Due to the need for parametric models and uncertainty models,
the proposed model-based control framework requires a significantly larger
investment of time and e↵ort in obtaining such models. Relevant situations
where the additional investment may be justified and may be necessitated
include, see also Sec. 1.1.5:

• multivariable systems with large interaction and/or uncertainty;

• overactuation and oversensing, i.e., the use of additional actuators and
sensors to actively control flexible dynamics; and

• inferential control, i.e., the situation where not all performance variables
are measured variables for feedback control.
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K

P

u y

w z

FIGURE 1.4

Standard plant configuration.

1.4.1 A standard plant approach

A standard plant approach is pursued to deal with the relevant situations
mentioned in Sec. 1.4. The considered standard plant is depicted in Fig. 1.4.
Here, P denotes the standard plant and C is the to-be-designed controller. In
addition, the vector w contains exogenous input variables, including distur-
bances, sensor noise, and setpoints, whereas the vector z contains the regulated
variables that are defined such that they are ideally zero, e.g., servo errors.
Furthermore, the vector y contains the measured variables that are available
to the feedback controller, whereas the vector u contains the manipulated
variables.

The standard plant is general in the sense that enables the formulation of
general control problems, including an arbitrary number of regulated variables
u and measured variables y for overactuation and oversensing, and a distinc-
tion between measured variables y and performance variables z as is required
in the inferential control situation.

Once the motion control problem is posed in the standard plant framework,
a large amount of literature, including [60] and [72], and software toolboxes,
including [5], are available to synthesize the optimal controller C. Posing the
control problem properly into the standard plant involves at least three as-
pects that are investigated next: 1. weighting filter selection, 2. obtaining a
parametric model of the motion system, and 3. uncertainty modeling.

1.4.1.1 Weighting filter selection for performance specification

To properly pose the control problem, weighting filters have to be selected. A
criterion of the form

J (P,K) = kFl(P,K)k (1.11)

is adopted, where the goal is to compute

K
opt = min

K
J (P,K). (1.12)

Here, a specific norm k.k has to be selected, e.g.,H2 orH1. For motion control
problems, the H1 norm has proven to be particularly useful, since it enables
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the specification of performance weights through loop-shaping ideas, see Sec-
tion 1.3.2 and Section 1.3.3, and it enables the design of robust controllers by
explicitly addressing model uncertainty. The H1 norm for a stable system H

is given by
kHk1 = sup

!
�̄(H(j!)). (1.13)

The next step in specifying the performance goals is to select the internal
structure of the standard plant. For instance, in the case where y = z a
common choice is

Fl(P,K) = W


G

I

�
(I +KG)�1

⇥
K I

⇤
V. (1.14)

In (1.14), G denotes the open-loop system and W and V are weighting filters.
These weighting filters enable the specification of various control goals and
have to be user-specified. When using the H1 norm, these can be specified
by means of desired loop-shapes of closed-loop transfer function matrices [60]
or open-loop gains [67]. Suitable weighting filters for typical motion control
problems that are in line with the guidelines in Section 1.3.2 and Section 1.3.3
have been developed in, e.g., [56], [62], whereas extensions to multivariable
systems are presented in [71] and [8].

1.4.1.2 Obtaining a nominal model

Besides the specification of the control goal through weighting functions, the
optimization in (1.12) requires knowledge of the true system denoted by Go.
In a model-based control design, the knowledge of the true system is reflected
by means of a model Ĝ. System identification is an accurate, fast, and inex-
pensive approach to obtain the required model for motion systems. To obtain
an accurate model, the model should be tailored towards the control goal [21],
[57]. These results are further developed in [12] and [47] towards the identifi-
cation of low-order models for control design. The main ingredient for these
algorithms is the control criterion (1.11) and closed-loop FRFs, as is explained
in Section 1.3.1.

1.4.1.3 Uncertainty modeling

The model Ĝ obtained in through the procedure in the previous section is not
an exact description of the true system Go, since i) motion systems generally
contain many resonance modes [29] of which a limited number is included
in the model; ii) parasitic nonlinearities are present, e.g., nonlinear damping
[61]; and iii) identification experiments are based on finite time disturbed
observations of the true system.

Robust control design [72], [60] explicitly addresses these model errors by
considering a model set by extending the nominal model Ĝ with a descrip-
tion of its uncertainty. This model set has to be chosen judiciously, since the
resulting robust controller is typically designed to optimize the worst-case
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performance over all candidate models in this set. This has led to the develop-
ment of model uncertainty structures for robust control, where the traditional
uncertainty structures, e.g., [72, Table 9.1], have been further developed to-
wards coprime factor perturbations [36], [32], and dual-Youla structures [2],
[12], [14], see [45] for recent developments.

1.4.2 Case study 1: Multivariable robust control

To illustrate the concepts of Sec. 1.4.1, a model-based controller is designed
for a traditional motion control problem, i.e., non-inferential (y = z) and non-
overactuated/non-oversensed (dim y = dimu, which in turn equals the number
of motion degrees of freedom). In particular, the x and y translational degrees
of freedom of the wafer stage in Fig. 1.5 are considered. This wafer stage is
the main high-precision motion system in a lithographic machine [3].

The following sequence of steps is applied.

1. An FRF is identified following the procedure in Sec. 1.3.1.

2. Weighting filters W and V are specified as outlined in Sec. 1.4.1.1. In view
of the procedure in Section 1.3.2, a cross-over frequency of 90 Hz is set as
target for both the x and y translational degrees-of-freedom.

3. A nominal model Ĝ is identified using the procedure outlined in
Sec. 1.4.1.2. The resulting model is depicted in Figure 1.6. The model
is control-relevant and of low order. Indeed, the model is accurate around
the desired cross-over region where the rigid body modes are accurately
modeled. In addition, the first two resonance phenomena around 200 Hz
are captured into the model, since these are known to endanger stability.
In addition, the model is of order 8: 4 states correspond to two rigid body
modes, whereas the other 4 states correspond to the inherently multivari-
able flexible modes around 200 Hz.

4. The uncertainty of the nominal model is taken into account, see
Sec. 1.4.1.3. Here, the emphasis is on selecting the uncertainty such that
the true system behavior Go is encompassed but that the uncertainty is
selected as parsimonious as possible. The resulting model set is depicted in
Fig. 1.6. Clearly, the model set is extremely tight in the cross-over region,
which is well-known to be important for subsequent control design [6].

5. Next, a robust controller K is synthesized using commercially available
optimization algorithms [5]. Note that the resulting controller K is mul-
tivariable and obtained in one shot, which is in sharp contrast to the
approach in Sec. 1.3.3.4. As a result, optimality is guaranteed for the mul-
tivariable system.

6. The resulting controller is implemented on the experimental system, see
Figure 1.7 for the resulting power spectra. When compared to a standard
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FIGURE 1.5

Experimental wafer stage system.

manually tuned PID controller, the optimal robust controller automati-
cally generates notch filters and leads to a factor four in variance reduction.
Further details of the approach and experimental results are presented in
[50].

1.4.3 Case study 2: Overactuation and oversensing

Besides the fact that the approach in Sec. 1.4.1 can deal with the traditional
motion control design problem as shown in Sec. 1.4.2 and [71], it can also
systematically address control problems that are not immediate to solve by
manual design. An important case is the situation where additional actua-
tors and sensors are used to enhance control performance. Indeed, when the
sensors and actuators are equal to the number of motion degrees of freedom,
the achievable performance is limited, see [8] for a systematic H1-optimal ap-
proach to achieve optimal performance for this situation and [28] for a manual
loop-shaping based approach. The main rationale in overactuation and over-
sensing is that additional actuators and sensors, i.e., strictly more than motion
DOFs, can significantly enhance performance.

The basic idea is to extend the setup of Figure 1.4 towards Figure 1.8,
where additional inputs uext and outputs yext are introduced. In particular,
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FIGURE 1.6

Bode magnitude diagram of FRF (blue dots), nominal model Ĝ (solid blue)
and uncertain model set for robust control (cyan).
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TABLE II
ROBUST-CONTROL-RELEVANT IDENTIFICATION AND ROBUST CONTROLLER SYNTHESIS RESULTS.

Controller Minimized criterion J (P̂ , C) JWC(Psta, C) JWC(Pdyn, C)
Cexp None (PID) 89.91 92.05 90.16
CNP

J (P̂ , C) 10.94 1 1

CRP
JWC(Pdyn, C) 16.38 1 16.43

Fig. 17. Measured error signals in x-direction (left) and y-direction (right):
initial controller Cexp (top), CRP (bottom).
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Fig. 18. Cumulative power spectrum of the measured error signal in x-
direction (left) and y-direction (right): initial controller Cexp (solid blue),
CRP (dashed red).

The key step that enables the results in this paper involves
important new connections between system identification and
robust control that significantly extend prior results, including
those in [9] and [20]. Firstly, a new connection between
nominal control-relevant identification and coprime factor
identification leads to Contributions C1-C4 of the paper, see
Section I-E. The model of the wafer stage is of low order,
since 1) the multivariable dynamics are appropriately modeled,
and 2) only those dynamics are included in the model that
are important for subsequent control. An especially important
property of the identified coprime factorization from a robust
control perspective involves C2, since the identified coprime
factorization is at the basis of a new model uncertainty
structure.

Indeed, the novelty of the proposed model uncertainty
structure is that it connects the size of model uncertainty
and the control criterion, see C5. This enables the use of
unstructured uncertainty without introducing conservatism.
Consequently, the resulting system identification and robust
control procedure is expected to extrapolate well to next-

generation motion systems with many inputs and outputs. In
contrast, prior results, including [9] and [20], require the use of
highly structured and frequency weighted uncertainty models
to avoid overly conservative results. Such highly structured
uncertainty models are not expected to extrapolate well to
identification and robust control for next-generation motion
systems with a high number of inputs and outputs and high
order flexible dynamical behavior.

After the quantification of the size of model uncertainty
through extensive validation experiments, see C6, the identi-
fied robust-control-relevant model set is thoroughly analyzed.
New visualization techniques, see C7, enable a thorough
analysis of robust-control-relevance that goes beyond the
state-of-the-art. Analysis of the model set reveals that the
multivariable wafer stage model set is extremely accurate in
certain frequency ranges, while it is highly uncertain at high
and low frequencies, see also C9. These results are thus in
sharp contrast when compared to, e.g., additive uncertainty
structures.

Robust control reveals that the use of unstructured uncer-
tainty leads to an efficient synthesis algorithm that, in contrast
to the use of structured model uncertainty, does not unneces-
sarily introduce conservatism, see C9. Subsequent controller
implementation confirms a significantly improved wafer stage
motion performance, which constitutes Contribution C10 of
this paper.

Continued research focusses on:
• the investigation of the limits of achievable control perfor-

mance for the traditional motion control situation, where the
number of inputs and outputs equals the number of motion
DOFs. Subsequently, the potential performance improvement
can be achieved when additional actuators and sensors are
available, see also Section I-C. An additional aspect involves
the actual placement of these actuators and sensors in view of
the achievable control performance;

• systematically extending the control goal definition,
which in the present paper is entirely based on loop-shaping
techniques, see Section IV-B, towards explicitly incorporating
knowledge regarding the disturbances that affect the wafer
stage system, see, e.g., Figure 18. Initial results in this di-
rection include the ad hoc procedure in [18, Section 4.3];

• dealing with unmeasured performance variables, as is
explained in Section I-C. Although conceptually this fits in
the standard plant formulation [11, Section 3.8], significant
extensions of the procedure that is presented in this paper are
required. Initial results in this direction are presented in [62];
and

• dealing with position-dependent dynamics. Obviously,
motion systems involve moving parts of the system. Conse-
quently, the dynamics of the system generally depend on the
operating conditions. Although an initial attempt to improve

FIGURE 1.7

Cumulative power spectrum of the measured error in x-direction (left) and
y-direction (right): manually tuned controller for reference (solid blue) and
optimal robust controller (dashed red).

Kext

Pext

u y

uext yext

w z

FIGURE 1.8

Extended standard plant configuration with additional control inputs and
outputs.
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consider the situation in Figure 1.8, then it can be immediately verified that


I 0 0
0 I 0

�
Pext

2

4
I 0
0 I

0 0

3

5 = P. (1.15)

with corresponding performance Jext, which is achieved by a controller Kext

in the extended configuration, is given by

Jext(Kext) := kF`(Pext,Kext)k. (1.16)

The rationale behind the setup in Figure 1.8 is that the bound

min
Kext

Jext(Kext)  J (K?) (1.17)

holds by defintion, which can be directly seen by setting Cext =


K

? 0
0 0

�
it

holds that Jext(Kext) = J (K?). By performing the procedure of Sec. 1.4, it
can be achieved that

min
Kext

Jext(Kext) ⌧ J (K?) (1.18)

if appropriate design and theoretical considerations are followed as suggested
in [25].

A wafer stage case study is presented to show potential performance im-
provement of overactuation and oversensing. Herein, control design in the ver-
tical direction is considered, i.e., the translational direction z and rotations
Rx and Ry as depicted in Figure 1.9(a). Also, 4 actuators are placed as indi-
cated in Fig. 1.9(a). Specifically, a1, a2, and a3 are placed below the corners
of the stage, whereas a4 is positioned at the middle of the line between the
center and a2. Moreover, corner sensors s1, s2, and s3 are used as indicated
in Fig. 1.9(a). Finally, a piezo sensor s4, which measures strain of the wafer
stage, is available at the middle of the line between the center and s2. Since 4
actuators and sensors are available to control the 3 rigid-body DOFs, there is
freedom left to actively control flexible dynamical behavior of the wafer stage.

An extended version of the procedure in Section 1.4.2 is followed. In partic-
ular, the system is rigid-body decoupled except for an additional input-output
pair that is available for control of relevant flexible dynamical behavior. The
first flexible mode of the system is a torsion bending of the stage, depicted
in Fig. 1.9(b). This mode can e↵ectively be controlled using the fourth input-
output direction of Pext, which is indicated by Pflex in Fig. 1.10. On the one
hand, the fourth output of Pext is the piezo sensor s4, which measures strain.
As a consequence, no rigid-body displacements are observed at this output,
while the structural deformations associated with the flexible dynamical be-
havior of the system are measured indeed. On the other hand, the fourth input
of Pext does not excite rigid-body behavior of the system.
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a2a4

a1

Rx

Ry

a3

s1

z

s3

s4
s2

(a) Actuator and sensor configuration. (b) Torsion bending mode.

FIGURE 1.9

Inputs and outputs that can be used to counteract undesired torsion of the
wafer stage.

The main idea is that the fourth loop can be closed to actively compensate
the torsion mode in Fig. 1.9(b). To illustrate this, the equivalent plant as is
defined in (1.10) is depicted in Fig. 1.11. The main result is an increase of
the torsion mode frequency from 143 Hz to 193 Hz as well as an increased
damping of this loop. This enables enhanced performance for the remaining
equivalent plant, since this torsion mode was performance limiting due to
non-collocated dynamical behavior. In particular, active control of the torsion
mode implies that a higher cross-over frequency can be achieved in the original
motion degrees of freedom.

To reveal the potential performance enhancement with additional actua-
tors, a controller for the conventional situation in Figure 1.4 to the extended
control configuration in Figure 1.8, see also Fig. 1.11. The resulting controllers
are implemented on the wafer stage system and stand-still errors are measured,
see Fig. 1.12. Clearly, the performance has been significantly increased by ac-
tive control of the torsion mode. Further details of this approach are reported
in [26], see also [55] for a related feedforward control approach.

1.4.4 Case study 3: inferential control

As is argued in Section 1.1.5, increasing performance requirements lead to
a situation where the measured variables y are not a good representation of
the performance variables z. In motion systems, mechanical deformations may
be present between the location where performance is desired and where the
measurement takes place. This is shown in Fig. 1.1. In this section, a third
case study is presented to show potentially poor controller designs when this is
not properly addressed. In addition, by means of a model-based approach, the
performance variable z can be (possibly implicitly) inferred from the measured
variables y.

The high-precision prototype motion system in Fig. 1.13 has been devel-
oped for evaluating control strategies in next-generation motion systems that
exhibit dominant flexible behavior. Four out of six motion DOFs of the mov-
able steel beam have been fixed by means of leaf springs. Thus, the system can
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FIGURE 1.10

Identified FRF Go,ext and control-relevant 8th order parametric model Ĝext.
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FIGURE 1.11

Equivalent plant Go,eq (dotted) and parametric fit P̂eq (solid) under active
control of the torsion loop. The initial model of motion DOFs [z,Rx, Ry]
Fig. 1.10 is shown for comparison (dashed).
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FIGURE 1.12

Cumulative power spectral density (CPSD) for the conventional controller
of Figure 1.4 (blue) and for the extended control configuration controller of
Figure 1.8.

FIGURE 1.13

Photograph of the experimental flexible beam setup with three actuators and
three sensors.

s1 s2 s3

yp

zp

deformation

no
deformation

x

'

FIGURE 1.14

Schematic top view illustration of flexible beam setup.
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move x and ' direction indicated in Fig. 1.14. The inputs consist of 3 current-
driven voice-coil actuators, whereas the outputs are 3 contactless fiberoptic
sensors with a resolution of approximately 1 µm. The following selection is
made to show possible hazards in the inferential control situation and a solu-
tion. The goal is to control the translation of the center of the beam, i.e., at
sensor location s2, hence

zp = s2, (1.19)

where s2 is unavailable for the feedback controller and zp will be further
explained below. Regarding the measured variable, the center of the beam is
determined by averaging the outer sensors s1 and s3, i.e.,

yp =
⇥
1
2

1
2

⇤ s1
s3

�
, (1.20)

which in fact corresponds to a sensor transformation based on static geometric
relations as is indicated in Fig. 1.14. Consequently, a discrepancy between the
measured variable yp and performance variable zp may exist due to internal
deformations of the beam. Only the outer actuators are used for control, i.e.,

a1 = a3 = up, a2 = 0. (1.21)

Comparing (1.20) and (1.21) reveals that up and yp are collocated. The
resulting system is given by


zp

yp

�
=


Pz

Py

�
up = Pup, (1.22)

where zp denotes the point of interest of the system, yp is the measured
variable available for feedback control, and up is the manipulated plant input.
Note that in the standard plant formulation of Fig. 1.4, zp will be part of
z, in addition to, e.g., the input signal to avoid excessive control inputs, see
[46] for details. The resulting control problem above has closely resembles the
example in Fig. 1.1 and standard geometric decoupling techniques, e.g., [71].

Next, the procedure in Section 1.4.2 is followed again, i.e., it is for the
moment assumed that yp = zp. The resulting controller is implemented on the
beam system, where the measured response yp is shown in Fig. 1.15 (bottom).
The response is yp is as expected from simulations and su�ciently fast to reach
the setpoint. However, when inspecting the measurement zp, which is not
available to the feedback controller, but measured for performance validation,
it is clear that system exhibits large internal deformations. Hence, the true
performance of the system is poor if one neglects the fact that a distinction
exists between zp and yp. In addition, this poor performance cannot be directly
observed from the feedback loop signals.

In [46], an inferential motion control design framework is presented. This
framework exploits measurements yp and a model of Pz to infer the per-
formance variables, i.e., it does not require a real-time measurement of the
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FIGURE 1.15

Experimental step responses: inferential motion controller (solid blue), tradi-
tional robust control design (dashed red).

performance variables zp. This framework is applied to design an inferential
motion controller for the beam setup in Figure 1.13 and Figure 1.14. The re-
sults are also depicted in Figure 1.15. Clearly, the performance in terms of zp
significantly increases. For further details, the reader is referred to [46].

1.5 Conclusion

In this chapter, a step-by-step model-based control design approach is pre-
sented that is applied to several high-tech industrial case studies. The main
rationale of the design approach is to increase the complexity of the con-
trol design procedure and the associated modeling approach only if justified
and necessitated by the performance and accuracy requirements. The step-
by-step procedure consists of the following steps: (i) interaction analysis, (ii)
decoupling, (iii) independent SISO design, (iv) sequential SISO design, and
(v) norm-based MIMO design. The required model ranges from inexpensive
FRF data in step (i)-(iv) towards a parametric model in step (5).
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Three recent case studies are presented where the performance and accu-
racy requirements lead to a complex control design problem that necessitates
a model-based optimal design. These include (i) a robust multivariable con-
trol design for a traditional yet high-performance wafer stage control problem,
(ii), a case study on a prototype wafer stage to exploit overactuation and over-
sensing, and (iii) a case study on a prototype motion system to address an
inferential control problem where the performance variables are not available
for real-time feedback control.

Ongoing research mainly focuses modeling. Regarding steps (i) - (v), non-
parametric identification is being enhanced to improve the FRF quality. This
includes the use of multi-sine excitation signals, see [50, Appendix A] for
initial results, and the use of preprocessing using LRM/LPM, see [69], [33],
[15] for initial results that are presently being applied to multivariable FRF
estimation.

Regarding the norm-based MIMO control design step (v), the required
modeling e↵ort is a major obstruction for industrial application. Several as-
pects are important. First, regarding modeling for robust control, present re-
search focuses on new approaches to identify ‘good’ model sets for robust con-
trol. For mechatronic systems, important aspects include the identification of
a control-relevant nominal model, e.g., [57], the structure of model uncertainty,
see, e.g., [14] and [32] for general results, and [45] for recent developments,
and the size of model uncertainty, approaches that are particularly suitable
for mechatronic systems include, e.g., [20] for local parametric models, [49] for
a data-driven approach, and [44] for a validation-based approach.

Second, the identification of accurate models of complex high-tech systems
is numerically challenging. To enable the accurate and fast identification of
nominal models, new approaches that enable a numerically reliable imple-
mentation are being developed, see, e.g., [27], [24], see also [68] for a recent
benchmark comparison.

Third, motion systems lead to position-dependent behavior due to the fact
that the system inherently makes movements. At present, methods are being
developed to quantify the position dependence through control-relevance, see
[39, Section 5.7] for early results, as well as explicitly modeling the position
dependence by exploiting the physical model structure (1.1) in an LPV frame-
work, see also [64] and [22] for general LPV modeling and motion control. Fur-
thermore, identification of more general non-linear behavior is investigated in,
e.g., [54].

Fourth, disturbances have a crucial role in disturbance attenuation, see
[9] for initial research in this direction. Ongoing research focuses on control-
relevant disturbance modeling in the framework of [45].

Fifth, sampled-data identification and control is being investigated. All
the results presented in this chapter have tacitly been developed in the dis-
crete time domain. This neglects the important issue of intersample behavior,
see [13] for general results and [48] for a motion control framework. Such
sampled-data frameworks necessitate the modeling for sampled-data control,
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essentially requiring continuous time models [18]. In [40], a multirate frame-
work is presented that addresses this to best extent for periodic sampling. Note
that periodic sampling will always be restricted due to the Nyquist-Shannon
sampling theorem, yet at a higher frequency bound. This bound is for mo-
tion systems typically fairly high. If this is not su�cient, the approach can be
further enhanced by measuring irregularly sampled data, e.g., [18], which is
straightforward to perform in certain motion systems.

Finally, the present chapter focussed on feedback control design. For high
performance motion control, feedforward is equally important. For traditional
feedforward tuning, the reader is referred to [63, Section 27.3], [43]. Ongoing
research includes iterative learning control and automated feedforward control
tuning, see [42], both based on a tailored iterative learning control approach,
see [10], and based on instrumental variable system identification, see [7].
Related approaches are presented in, e.g., [53], where a frequency domain
approach is presented for nonlinear systems.
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