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BACKGROUND
Piezo-stepper actuators have major bene-
fits in nano-positioning applications, including
scanning-probe microscopy [1]. The actuators, il-
lustrated in Figure 1, retain the high precision and
high stiffness properties of the piezo elements,
while achieving an infinite stroke of the mover
through a walking motion. Periodic waveforms
are used to map a commutation angle α to the
input voltages of the piezo elements.

Engagement and release between the piezo-
elements and the mover during the walking mo-
tion lead to disturbances [2]. These disturbances
are directly related to the actuating waveforms,
and are repeating in the commutation-angle or
α-domain. Consequently, for varying velocities,
the error profile caused by these disturbances is
varying in the temporal domain.

Iterative Learning Control (ILC) can compensate
repeating disturbances completely by modifying
a feedforward signal based on preceding experi-
ments [3]. The disturbances for a piezo-stepper
actuator are repeating in the temporal domain for
a constant velocity, but for varying velocities the
disturbances are varying. The aim of this paper
is to develop and implement an ILC approach
that is applicable to long-range piezo-stepper
actuators with varying velocities, by exploiting the
observation that the disturbance is repeating in
the α-domain.

This paper is organized as follows. First,
the commutation-angle based control of a
piezo-stepper actuator is explained. Then, the
disturbances caused by the walking motion are
analyzed. A commutation-angle iterative learning
control approach is proposed to compensate
these disturbances. After that, the implemen-
tation of this approach is explained and the
approach is experimentally validated. In the final
section, conclusions are given.

FIGURE 1. Schematic representation of a piezo-
stepper actuator with clamp elements 1 ( ) and 2
( ) and shear groups 1 ( ) and 2 ( ) indicated.

COMMUTATION-ANGLE CONTROL
In this section, the functioning and control of a
piezo-stepper actuator are explained and the
actuator is modeled.

The piezo-stepper actuator considered in
this work consists of two groups of longitudinal
and shear piezo elements, as shown in Figure
2b. When the longitudinal element or clamp
of one group is elongated, the corresponding
shear elements are in contact with the mover.
The mover follows the position of the connected
shear elements. A walking motion is obtained by
alternating the connected piezo group.

The walking motion of the piezo-stepper ac-
tuator is implemented using waveforms that map
a commutation angle α ∈ [0, 2π) [rad] to the
input voltages of the piezo elements, as shown
in Figure 2a. The waveforms can be divided into
four phases: takeover phases 1 and 3 and reset
phases 2 and 4, as shown in Figure 2.

1. Takeover phase: the clamp of group 1 is ex-
tending while that of group 2 is retracting,
such that the mover is taken over by group
1. Both sets of shear elements are moving
with equal velocity.
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Clamp inputs

Shear inputs

phase 1 phase 2 phase 3 phase 4 phase 1

(a) Piezo-stepper actuator waveforms.

(b) Phases in a step of a piezo-stepper actuator.

FIGURE 2. The waveforms (a) map the com-
mutation angle α to the input for the piezo el-
ements: clamp elements 1 ( ) and 2 ( ) and
shear groups 1 ( ) and 2 ( ). A step of a piezo-
stepper actuator is divided into four phases, in-
dicated in (a) and illustrated in (b). Note that in
takeover phases 1 and 3, both groups may be in
contact with the mover. In these phases the in-
puts of the shear groups have equal derivatives,
such that the elements move with equal velocity.

2. Reset phase: once the clamp of group 2
is fully retracted, the shear elements of this
group are reset. The shear elements of
group 1 continue displacing the mover.

3. Takeover phase: the clamp of group 1 is re-
tracting while that of group 2 is extending,
such that the mover is taken over by group
2. Both sets of shear elements are moving
with equal velocity.

4. Reset phase: once the clamp of group 1

is fully retracted, the shear elements of this
group are reset. The shear elements of
group 2 continue displacing the mover.

The piezo-stepper actuator is modeled in the α-
domain as a gain with a lumped disturbance
dα(α) [m]. The disturbance dα(α) is assumed to
be related to the commutation angle and is an-
alyzed in the next section. The position of the
mover y [m] during a single step is described by

y(α) = cus(α) + dα(α), α ∈ [0, 2π), (1)

where c [mV−1] is a positive piezo constant and
us [V] is a combination of the inputs to the shear
elements. The inputs to the two groups of shear
elements are denoted by us1 [V] and us2 [V]. Be-
cause the derivatives of the connected shear el-
ements are always equal, as shown in Figure 2a,
the input that influences the mover can be written
as a single signal us(α) for modeling. For us(α),
the following holds:

δus(α)

δα
=


δus1(α)
δα in phase 2

δus2(α)
δα in phase 4

δus1(α)
δα = δus2(α)

δα otherwise.
(2)

Note that in this model, rate-dependent effects
such as creep and hysteresis are assumed
to be negligible, since these effects can be
compensated, for example, by using separate
feedforward [4, ch. 2,11].

The commutation angle α(t) is a function of
time and depends on the drive frequency fα(t)
[Hz]. The number of steps per second is equal
to the drive frequency. For each step of duration
T [s], the commutation angle increases from
α(0) = 0 to α(T ) = 2π. The commutation angle
is given by

α(t) = 2π

∫ t

0

fα(τ) dτ. (3)

The system is modeled in terms of α for a sin-
gle step. During this step, the sign of fα(t) is
constant and α(t) ∈ [0, 2π) is monotonically in-
creasing, i.e., there is no change in direction. The
time-dependency of α is omitted for brevity.

DISTURBANCE ANALYSIS
In this section, the disturbances for a piezo-
stepper actuator are analyzed in the temporal
and the commutation-angle domain.
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(a) Position as a function of time.

(b) Position as a function of the commutation angle.

FIGURE 3. Positions for a piezo-stepper for drive
frequencies 20Hz ( ), 25Hz ( ), 30Hz ( ) and
40Hz ( ). In the temporal domain (a) the sam-
pling is equidistant but the disturbance is vary-
ing. In the α-domain (b) the sampling is non-
equidistant for varying velocities, but the distur-
bances are similar.

During walking experiments, disturbances in
the position of the piezo-stepper actuator are
observed. The desired behavior for the actuator
is that for a constant drive frequency, the mover
velocity is also constant. However, due to distur-
bances this desired behavior is not obtained, as
is shown for multiple drive frequencies in Figure
3a.

Although the disturbances are varying in the
temporal domain for varying drive frequencies,
they are largely repeating in the commutation-
angle or α-domain. This is shown in Figure 3b,
where the position of the mover during a single
step is plotted as a function of α for varying
drive frequencies. The disturbances could be
explained by considering physical sources: mis-
alignment between the piezo elements and the
mover or contact dynamics.

The central idea is to exploit the repetitive-
ness in the α-domain to compensate the position

disturbances for the piezo-stepper actuator. To
this end, an approach for commutation-angle or
α-domain ILC is developed that is used to design
a disturbance-compensating input as an addition
to the existing waveforms.

COMMUTATION-ANGLE ITERATIVE LEARN-
ING CONTROL
In this section, a new framework for α-domain
iterative learning control is introduced. ILC can
exactly compensate repeating disturbances by
learning a compensating input over a series of
experiments, known as iterations, while it typ-
ically amplifies non-repeating disturbances [3].
Typically, ILC is applied to systems with repetitive
behavior in the temporal domain. To compensate
the repeating disturbances for a piezo-stepper
actuator, an α-domain approach is proposed,
where each step is considered to be one iteration.

For varying drive frequencies, the number of
samples per step in the α-domain is varying and
samples are non-equidistant, as shown in Figure
3b. Since the sampling is iteration-varying, ILC
cannot be applied directly to the sampled signals.
This is resolved by parameterizing the sampled
input and error signals using basis functions. ILC
is then applied to the resulting continuous signals.

ILC is applied to a system that is continuous
in α, given by

yj(α) = c(us(α) + uj(α)) + dα(α) (4)
ej(α) = yd(α)− yj(α), (5)

with disturbance-compensating input uj(α), error
ej(α) and reference yd(α) for iteration j. The error
and input are parameterized such that

uj(α) = ψ>(α)θuj (6)

ej(α) = ψ>(α)θej , (7)

where it is assumed that the basis functions can
be scaled to describe the error exactly. The basis
function vector ψ, containing M basis functions,
and the parameter vector θuj are given by

ψ(α) =
[
ψ1(α) ψ2(α) ... ψM (α)

]> (8)

θuj =
[
θu1,j θu2,j ... θuM,j

]>
. (9)

The steps to implement α-domain ILC are out-
lined in Algorithm 1 for n iterations and explained
below.
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Algorithm 1 Approach to α-domain ILC

Choose a basis ψ (see next section)
for j = 1 : n
1: Perform an experiment of one step using uj
2: Compute θej by determining the least

squares optimal fit of the sampled error
3: Update the input parameters θuj+1

according to (10)
4: Update the input: uj+1 = ψ>θuj+1

5: Divide uj+1 into waveforms for the shear
elements

end

Each iteration consists of five steps. First, an
experiment consisting of one step of the piezo-
stepper actuator is performed, resulting in an out-
put and error according to (4) and (5). The error
is parameterized according to (7), using a least
squares optimal fit to find the parameter vector
θej . The parameter vector for the input of the next
iteration θuj+1 depends only on the previous error
and input parameter vectors and is given by

θuj+1 = Qψθ
u
j + Lψθ

e
j , (10)

where Qψ and Lψ are optimal learning matrices.
The input signal for the next iteration is deter-
mined according to (6). Extended derivations for
Qψ and Lψ are available as [5]. The implemen-
tation of the input signal is explained in the next
section.

IMPLEMENTATION
In this section, the selection of suitable basis
functions and the implementation of the input sig-
nals using waveform enhancement are explained.

The first step mentioned in Algorithm 1 is
the selection of a basis ψ. This basis should be
selected such that it can describe the measured
error well. In this case, a set of 30 linearly inde-
pendent inverse quadratic radial basis functions
is used, see [6, ch.5]. The functions are of the
form

ψk(α) =
1

1 + (‖α− ck‖)2
, k = 1, 2, ..., 30 (11)

where the centerpoints ck are divided equidis-
tantly over the domain [0, 2π). An example of
a fit of an error signal with 1000 samples us-
ing this set of basis functions is shown in Figure 4.

Using the update law of (10) results in a
continuous input signal uj(α) for each iteration j.

FIGURE 4. Fit ( ) of the sampled error at 1000
points ( ) using 30 inverse quadratic radial basis
functions.

Separation of disturbance-compensating input

Enhanced shear inputs

phase 1 phase 2 phase 3 phase 4 phase 1

FIGURE 5. Waveform enhancement for distur-
bance compensation. The disturbance compen-
sating input uj(α) ( ) is divided into waveforms
for shear groups 1 ( ) and 2 ( ), such that
the waveforms for both shear groups have equal
derivatives in phases 1 and 3, where both groups
may be in contact with the mover. The compen-
sating waveforms are added to the existing shear
inputs of Figure 2a, resulting in enhanced wave-
forms for shear group 1 ( ) and 2 ( ).

This single input signal cannot be implemented
directly, since the input to the actuator consists
of two separate shear input signals. Therefore,
the disturbance-compensating input uj(α) is sep-
arated into two shear input signals, such that (2)
is satisfied. These signals are then added to the
existing shear inputs. This procedure is illustrated
in Figure 5.

EXPERIMENTAL RESULTS
The developed ILC framework is applied to
a piezo-stepper actuator walking at varying
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FIGURE 6. Improvements in the position of the
piezo-stepper actuator for one step between iter-
ations 1 ( ), 4 ( ), 8 ( ) and 16 ( ) using the
proposed α-domain ILC framework.

FIGURE 7. The RMS value of the error con-
verges over iterations with iteration-varying drive
frequencies: 30Hz( ), 35Hz( ), 25Hz( ), 28Hz( ),
22Hz( ) and 20Hz( ).

velocities for experimental validation. The de-
sired mover position is given by the reference
yd(α) = 3 × 10−7α. The iteration-varying drive
frequencies range from 20 to 35 Hz.

During the experiments, the influence of the
repeating part of the disturbance is reduced sig-
nificantly over iterations, as shown in Figure 6. In
Figure 7 it is shown that the RMS value of the er-
ror converges to a bounded region over iterations.

Note that part of the error reduction as shown
in Figure 6 and 7 is caused by convergence of
the slope of the mover position to that of the
reference signal. The improvements with regard
to the repeating disturbance are also shown in
Figure 8, where the detrended error signal before
and after learning a disturbance-compensating
input are compared. The experiments show
that learning a disturbance-compensating signal
using α-domain ILC leads to significant improve-
ments in the positioning accuracy and jogging
smoothness of the actuator.

step 1 step 2 step 3

FIGURE 8. Comparsion between the detrended
error for three steps at 30Hz before ( ) and after
( ) learning a disturbance compensating input.

CONCLUSION
A new approach for iterative learning control in
the commutation-angle domain is developed that
can fully compensate the repeating disturbance
for a piezo-stepper actuator. The approach is
used to learn a disturbance-compensating input
over iterations, which improves the positioning ac-
curacy and jogging smoothness significantly. Ex-
perimental results show that the error is reduced
significantly after several iterations.
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