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Abstract—In energy communities with high penetration of
renewables, electricity supply can become scarce during certain
periods. In such cases, the objective of a resource allocation
algorithm can be to minimize the disutility of the worst-off user
of the community. This paper presents the problem of finding an
optimal max-min fair allocation of available energy. A mixed-
integer linear formulation is used to tackle the problem, so
that the worst-off user’s disutility is minimized. The allocation
results are compared to the standard approach that optimizes
the system’s Social Welfare. The users’ disutility function models
for electricity consuming devices, are based on their time-under-
unsatisfied-demand, which is a measurable and comparable
metric and does not rely on the user’s self reported valuation
for energy consumption.

Index Terms—Fairness, High RES Penetration, Energy Com-
munities

I. INTRODUCTION

A. Motivation and Background

Future smart grids need to accommodate the proliferation
of small-scale distributed assets. In residential neighborhoods,
local generation typically comes from intermittent, renewable
energy sources (RES). Thus, it is mainly the demand side that
offers itself for control capabilities, however, with demand side
management, the comfort of consumers comes in the loop.
This means that traditional optimization approaches that were
applied for generators should be re-examined and re-evaluated.

Traditional power system optimization considers the objec-
tive of cost minimization given inelastic demand. The cost of
energy generation can be defined fairly well, based mainly
on the operational cost of the generators. However, when
demand is elastic and included in the optimization, two serious
complications arise. First, users’ utility functions are notorious
for not being well-defined. In other words, with humans in
the loop, maximizing social welfare is no longer well-defined.
Second, the very objective of social welfare maximization
itself becomes subject to reconsideration, since there might
be use cases where a different objective is more relevant.

The contribution of this paper is twofold. First, we propose
novel models for the two most energy-consuming classes
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of residential loads, namely Thermostatically Controlled
Loads (TCLs), including Air-Conditioners, Water Heaters etc.,
and Storage-and-Charging Loads (SCLs), including en-route
charging electric vehicles, washing machines, etc. We define
the user’s payoff (cost) based on the time that the task of the
device remains unsatisfied. Thus, we side-step the problem of
defining the consumer’s valuation for energy, and consider the
total time under non-accomplished task as a homogeneous,
comparable and well-defined cost function.

The second contribution relates to formulating and solving
an optimization problem that considers the minimization of
the maximum agents’ cost as the objective, instead of the
average/aggregated agents’ cost.

B. Relevant Literature

Demand Response mechanisms have been studied exten-
sively in the literature. The typical approach is to conceptualize
a valuation function that captures the end-user’s monetary
value for energy, so that standard optimization approaches
can be applied. Characteristic examples of such schemes
include dual decomposition [1] and other types of Lagrangian
relaxations (e.g. [2], [3]), while game-theoretic techniques also
have their fair share [4]. However, the research community has
not yet reached consensus on reliable methods for defining
user valuation functions. Indicative approaches include ques-
tionnaire surveys [5], data acquisition via serious games [6]
and data-driven approaches [7], while there are also voices of
critique to the up to date definitions of valuation functions [8].

From the viewpoint of an aggregator or operator, user
valuation functions are sometimes considered as known [9]
or discovered via iterative exchange of price signals [10], and
sometimes truthfully reported due to an incentive compatible
mechanism [11]. However, all the above methods implicitly
assume that the end-user is capable of defining his/her own
valuation function, and then the problem for the aggregator
or operator is reduced to discovering these functions and
optimizing the social welfare.

Opting for fairness instead of social welfare maximization is
a different approach. Max-min fairness is a formulation that is
vastly utilized in other fields (e.g. cloud applications [12]) and
is associated with various concepts such as fairness of resource
allocation (i.e. minimizing the cost of the most underprivileged
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entity), robustness (i.e., solving for the worst-case scenario)
towards risk [13] or towards system security [14]. In particular,
within Smart Grid related research, this alternative objective
has been leveraged in order to minimize the risks of medium-
term [15] or long-term [16] decisions of a microgrid operator.
Also, a minimax formulation has been adopted in demand side
management problems where the objective is to minimize the
peak-to-average ratio of electricity consumption [17], [18].

In contrast to the studies mentioned previously, in this
paper the maximization of the minimax problem is not across
time, but across users. The objective is to achieve a fair
allocation of available resources. Max-min fairness is a widely
utilized concept in resource allocation, whereas in demand side
management literature, there are surprisingly few studies that
consider it as a requirement. In [19], fairness is defined using
the Shapley value, whereas in [20] and [21] fairness is assessed
on the basis of equally distributing electricity costs among
users, based on their level of effect on the community’s elec-
tricity cost. In [22], a maxmin fairness algorithm is provided
for a system that accepts or rejects appliance tasks depending
on their priority. However, the authors based their solutions
on heuristics and not on optimization techniques.

C. Contributions and Organization

In this paper, we define a cost function of a device based
on the time that its task is not satisfied, so as to have a metric
that is measurable and comparable across different devices. We
use this cost metric to solve for a min-max fair allocation of
available resources. This formulation is relevant for a number
of use cases, including but not limited to:
• A local energy community that opts for a fair allocation

rather than a welfare-optimizing one.
• An aggregator that wants to minimize the possibility of

a user experiencing discomfort in situations where the
user’s utility function cannot be defined mathematically
(which is typically the case with real users).

• A retailer/aggregator that wants to upgrade the worst-case
performance of the resource allocation algorithm, in order
to reduce the possibility of losing a client (assuming that
the most unsatisfied clients churn first).

II. SYSTEM MODEL

Given a time horizon, continuous time is divided into
timeslots of equal duration in set T . We consider a set N
of |N | electricity consuming devices, where each device’s
consumption is controlled by an agent. Each agent i ∈ N ,
controls the device’s consumption in horizon T :

xi = {x1i , x2i , ..., x
|T |
i } (1)

We consider a setting with limited resources. An aggre-
gator/retailer is constrained on the amount of total energy
consumption: ∑

i∈N
xti ≤ Lt,∀t ∈ T (2)

These constraints (one per timeslot), can model different use
cases, however in this paper, we consider the case where

parameters Lt represent the output of intermittent generation
(RES) in a microgrid, and a consumption greater than Lt

would be infeasible or very expensive to serve.
Each device i ∈ N is modeled by a set of constraints and

a cost function θi(xi) that captures the device’s waiting time
for the completion of the device’s task. Subset NTCL ⊂ N
contains the TCL units and subset NSCL ⊂ N contains the
SCL units, where NTCL∪NSCL = N and NTCL∩NSCL = ∅.
For each family of devices, we present the models below.

A. Storage-and-Charging Loads

An SCL i ∈ NSCL is constrained by an upper and lower
power consumption level:

xmin
i ≤ xti ≤ xmax

i (3)

and it cannot be charged before arrival:

xti = 0, t < arri (4)

Also, an SCL i has a certain requirement Ei for charging
energy that must be fulfilled, and the State-Of-Energy (SOE),
of the SCL, follows a certain transition function

ηi
∑
t∈T

xti = Ei (5)

SOEt
i = SOEt−1

i + ηix
t
i (6)

where parameter ηi relates to charging efficiency. When charg-
ing at full power capacity xmax

i , the SCL’s energy demand
will be fulfilled in a total of dEi/ηix

max
i e timeslots, where

d·e denotes rounding to the nearest integer above. When the
controlled power is generally lower than ηixmax

i , the SCL will
suffer an extra waiting time (beyond dEi/ηix

max
i e). Let the

binary variable uti denote whether in timeslot t, agent i still
has unsatisfied demand:

uti =

{
1, SOEt

i − Ei < 0

0, SOEt
i − Ei ≥ 0

(7)

Then, the extra waiting time is defined as a function of xi, as
follows:

θSCL(xi) =
∑
t∈T

uti − dEi/ηix
max
i e − arri (8)

where in order to define the net waiting time, from the
total timeslots that the SCLs energy requirement was not
satisfied, we subtract those that were before its arrival as well
as those that the SCL would need to wait if it was charging
at dEi/ηix

max
i e.

B. Thermostatically Controlled Loads

For TCL j ∈ NTCL let Ct
j denote the temperature measured

by the TCL’s sensor. The transition function of the temperature
is defined as:

Ct
j = Ct−1

j + insj(C
t
env − Ct−1

j ) + conjx
t−1
j (9)



where Ct
env is the environment’s temperature, insj is a param-

eter related to temperature decay (e.g. insulation) and conj is
a conversion factor (from electrical power to thermal energy).
Similarly to constraints (3) and (4), for TCLs we have:

xmin
j ≤ xtj ≤ xmax

j (10)

xtj = 0, t < arrj , t > depj (11)

where arrj and depj are the times where the TCL is turned
on and off respectively.

The set points of the TCL controller are denoted as Cmin
j for

minimum comfortable temperature and Cmax
j for maximum

comfortable temperature. We assume that when the temper-
ature Ct

j is within [Cmin
j , Cmax

j ], the demand is considered
satisfied. Let utj denote whether the temperature is beyond the
comfort levels in a timeslot that the device is turned on:

utj =

{
1, Ct

j /∈ [Cmin
j , Cmax

j ] ∧ t ∈ [arrj , depj ]

0, Ct
j ∈ [Cmin

j , Cmax
j ] ∨ t /∈ [arrj , depj ]

(12)

The number of timeslots that the temperature preference is not
satisfied is:

θTCL(xj) =
∑
t∈T

utj (13)

Note that the timeslots in which the TCL is turned off do not
count in the devices θ.

III. PROBLEM FORMULATION

We consider the problem of an Aggregator that needs to
minimize the maximum waiting time across the devices in its
portfolio:

min
xn,∀n∈N

max
n∈N
{θf(n)(xn)}

s.t.(2)− (13)
(14)

where

f(n) =

{
SCL, n ∈ NSCL

TCL, n ∈ NTCL

(15)

A. Reformulations

Problem (14) cannot be tackled directly because of con-
straints (7) and (12). We reformulate constraint (7) as:

SOEt
i − Ei − (1− uti)M < 0 (16)

SOEt
i − Ei + utiM ≥ 0 (17)

For constraint (12), we introduce auxiliary binary variables
uAt

j and uBt
j , to denote whether the temperature of TCL j is

above or below comfort limits respectively:

uAt
j =

{
1, Ct

j > Cmax
j ∧ t ∈ [arrj , depj ]

0, Ct
j ≤ Cmax

j ∨ t /∈ [arrj , depj ]
(18)

uBt
j =

{
1, Ct

j < Cmin
j ∧ t ∈ [arrj , depj ]

0, Ct
j ≥ Cmin

j ∨ t /∈ [arrj , depj ]
(19)

TABLE I: Illustrative example general parameters

t 1 2 3 4 5 6 7 8 9
Lt 4 4 2 2 2 2 2 2 2
Ct

env 78 78 85 85 90 100 100 90 90

Indicator constraints (18) & (19), are relaxed as in (20) - (25):

Cmax
j − Ct

j + uAt
jM ≥ 0, t ∈ [arrj , depj ] (20)

Cmax
j − Ct

j − (1− uAt
j)M ≤ 0, t ∈ [arrj , depj ] (21)

Ct
j − Cmin

j + uBt
jM ≥ 0, t ∈ [arrj , depj ] (22)

Ct
j − Cmin

j − (1− uBt
j)M ≤ 0, t ∈ [arrj , depj ] (23)

uAt
j = 0, t /∈ [arrj , depj ] (24)

uBt
j = 0, t /∈ [arrj , depj ] (25)

while utj becomes 1, if the temperature is either above or
below limits:

utj ≥ uAt
j + uBt

j (26)

Finally, the min-max objective is reformulated by introducing
slack variable z, and the final mixed-integer linear program,
is written as:

min{z}
s.t z ≥ θf(n)(xn), ∀n ∈ N

(2)− (6), (8)− (11),(13), (16), (17), (20)− (26)

(27)

We also formulate the standard social cost minimization ob-
jective in order to showcase the different behavior stemming
from the two approaches:

min{
∑
n∈N

θf(n)(xn)}

s.t(2)− (6), (8)−(11), (13), (16), (17), (20)− (26)

(28)

IV. SIMULATION RESULTS

In this section we present simulation results to demonstrate
the behavior of the proposed framework.

A. Illustrative example

For the purpose of demonstrating the system’s behavior, we
present a small example setup with 2 TCL units: NTCL =
{A,B} and 4 SCLs: NSCL = {a, b, c, d}. For a horizon of 9
timeslots we set the available energy and outdoor temperature
(in Fahrenheit) as shown in Table I. For the two TCLs,
the parameters are set as in Table II, while for the four
SCLs, the parameters are shown in Table III. The TCLs
initial temperature (at timeslot 1) is assumed to be equal to
the environment’s temperature C1

env and the comfort interval
[Cmin

i , Cmax
i ] was set to [73, 79].

For this example setup, Fig. 1 shows the power that each
agent consumed in each timeslot. A green car signifies the
arrival timeslot of an SCL. Yellow cells signify the timeslots
that the SCL would need to fully satisfy its demand, if
resource constraints did not apply, while an hourglass signifies
a timeslot that the SCL is waiting due to resource constraints.



TABLE II: Illustrative example TCL parameters

TCL xmin
j xmax

j conj insj arrj depj
A 0 4 0.05 3.5 1 9
B 0 4 0.05 3.5 1 9

Fig. 1: Min-Max solution for the illustrative example

SCL a waits for one timeslot and the other SCLs for two
timeslots. The TCLs remain within comfortable temperatures
the whole time. Figure 2 shows the respective outcome of our
benchmark for the same setting. The evident difference is that
the Social Cost minimization approach sacrifices SCL a (with
4 waiting timeslots) for the benefit of the rest, while the Max-
Min fairness approach leaves no agent waiting for long at the
cost of all agents experiencing a limited delay.

The behavior of the TCLs is the same for both cases. They
consume energy in timeslot 1, so as to leave room for the
SCLs to consume energy in later timeslots. Their temperature
across time is depicted in Fig. 3. The TCLs’ temperatures
in the first two timeslots would be within comfort levels (78
F) even without consuming power at timeslot 1. However, as
SCLs are going to arrive in later timeslots, the TCLs bring
their temperature down to the minimum level so that they will
not require consuming energy at the same time with the SCLs.

B. Case Study

In this subsection we present more general results for a
larger setting with parameters that are probabilistically set.
A system of 70 TCLs and 30 SCLs was simulated for a
horizon of 28 timeslots, where each timeslot represents a 15-
minute interval (∆t = 15min). The horizon represents the
interval from 05.00 in the morning, until 12.00. The average
outside temperature Ct

env(average) was assumed to follow
the temperature of a typical summer day in southern Europe,
starting at 78.1 degrees Fahrenheit at 05.00 and gradually
reaching 97 at 12.00.

The system was simulated in a 3-GHz (24 cores) work-
station (RAM: 128 GB) using Matlab 2018b. The big-
M values where set as M = |NSCL|maxi∈NSCL

Ei +
|NTCL|maxj∈NTCL

Cmax
j so as to make sure that it is always

big enough to properly enforce the constraints. Solution times
for one experiment under this setup were observed to be

TABLE III: Illustrative example SCL parameters

SCL xmin
i xmax

i arri ηi Ei

a 0 4 2 1 8
b 0 2 3 1 2
c 0 2 4 1 2
d 0 2 5 1 2

Fig. 2: Benchmark solution for the illustrative example
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Fig. 3: Temperature of the TCLs for the illustrative example

between 1 and 7 seconds, depending also on the tightness
of each problem instance.

In the experiments, the temperature of a timeslot
Ct

env was assumed to be uniformly distributed between
Ct

env(average)−2.5 and Ct
env(average)+2.5. Lower bounds

on power consumption were set to xmin
n = 0,∀n ∈ N . Upper

bounds xmax
i , i ∈ NSCL, for the power consumption of SCLs,

were assumed to follow a normal distribution with an average
value of xmax

i (average) = 10kW and a standard deviation
of 1kW . The arrival times of the SCLs were set to follow a
normal distribution around 7:30 (timeslot 10) in the morning
(with σ = 4) in order to capture the peak of en-route charging
electric vehicles on their way to work. The SCLs efficiency of
charging, ηi, follows a uniform distribution between 90% and
100%, whereas the energy required Ei has an average value
of 20kW∆t (which on average corresponds to two timeslots
of charging at full power capacity) and a σ of 3.33.

For the TCLs, upper bounds xmax
j , j ∈ NTCL, follow a

normal distribution with average xmax
j (average) = 5kW

and standard deviation 0.5kW . Parameter conj was randomly
sampled from the interval [3, 4], whereas parameter insj has
an average of 0.05 and a standard deviation of 0.01. TCL loads
were assumed to have an arrival peak at 08:00 with σ = 4,
and staying ON for the whole horizon.

Minimum comfortable temperatures Cmin
j were set around

72 degrees, whereas Cmax
j were set around 80, both with

a small σ of 0.5. RES production was assumed to come
from solar and wind energy: Lt = Lt

solar + Lt
wind. Solar

energy for timeslot t follows a normal distribution around
Lt
solar(average). For 12:00, parameter L28

solar(average),
which is the average solar generation at time 12:00 was
set to: L28

solar(average) = percentage × xsystem, where
xsystem = |NTCL|xmax

j (average) + |NSCL|xmax
i (average)

and percentage ∈ [0, 1]. That is, the average solar generation
at 12:00 was derived as a percentage of the maximum system
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Fig. 5: Average and worst-case z for (1) and benchmark (2)
as a function of tprec

power consumption which would occur if all devices in N
consumed simultaneously at their maximum power capacity.
The earlier the timeslot, the lower the average solar generation:
Lt
solar(average) = L28

solar(average)− 0.04× (28− t).
Given these averages, the actual Lt

solar for the experiments
was normally distributed with a standard deviation of σt =
0.1Lt

solar(average). Wind generation was selected to vary
randomly between 0 and 0.5L28

solar(average). We present a
study about the maximum waiting time z of the system for
various values of percentage. Naturally, the lower the value
of percentage, the more tight the scenario. A number of ten
experiments were conducted for each value of percentage.
Figure 4 depicts the averaged and the worst-case results for
both algorithms (the min-max fair and the benchmark).

Next, we assume a functionality of pre-cooling the tem-
perature of each TCL. Each TCL is able to start its power
consumption, tprec timeslots before arrival. More formally, (4),
was generalized to:

xtj = 0, t < arrj − tprec, t > depj (29)

For percentage = 0.085, and for different values for
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Fig. 6: Aggregated consumption profile with (1) and tprec = 0
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parameter tprec, the results for the maximum waiting time z
are depicted in Fig. 5. Naturally, for the maxmin algorithm, z
diminishes as the precooling capability grows higher. This is
not necessarily the case for the benchmark, since minimizing
z is not the algorithms objective.
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5 10 15 20 25

timeslot

0

10

20

30

40

50

60

70

80

90

A
g
g
re

g
a
te

d
 p

o
w

e
r 

(k
W

)

SCLs

TCLs

RES production
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For tprec = 0, the resulted aggregated profiles of power
consumption for SCLs and TCLs are depicted in additive
graphs together with the RES production at each timeslot.
Figure 6 depicts the min-max case and Fig. 7 depicts the
benchmark case. For tprec = 5, the corresponding profiles
are modified as in Figs. 8 and 9. From the figures it can be
observed how in the case of the pre-cooling functionality, the
TCLs move part of their load in earlier timeslots in order to
facilitate the SCLs charging during peak demand timeslots.

V. CONCLUSIONS AND FUTURE WORK

We considered a RES-based energy community. We formu-
lated the min-max fair allocation problem so that the disutility
of the worst-off user is minimized. We modeled the utility
functions of the devices such that they do not depend on a self-
reported user valuation for energy, but rather on measurable
factors. The optimization problem was efficiently solved and
the results demonstrate the difference in the worst-off user’s
utility between the proposed formulation and the standard
formulation that minimizes the average user’s disutility.

Future studies can extend this work in various directions.
The interaction with a supplier and the wholesale electricity
prices can be incorporated in the model. A decentralized
optimization framework would be valuable towards preserving
users’ privacy, and could be configured with a pricing scheme.
With respect to the ownership of RES facilities, different
business models and their implications can be studied. Also,
the effect of uncertainty on system parameters (e.g. RES
generation) should be thoroughly studied.
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