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Outcome predictors for Gamma Knife radiosurgery on vestibular
schwannoma

Vestibular schwannomas (VSs) are benign intracranial tumors originating from the
eighth cranial nerve. Since most symptoms usually do not improve after treatment,
the main treatment goal has shifted in the last decades from complete removal of
tumor tissue to functional preservation of the vestibulocochlear nerve and other
adjacent cranial nerves. However, selecting the optimal treatment modality, i.e.
microsurgery or radiosurgery, remains ambiguous. Each modality has its own
specific advantages and disadvantages, and the scientific body of evidence con-
cerning which strategy is most suited, is hampered by the lack of randomized
control studies. As such, it remains a difficult task to select the optimal treatment
strategy, especially on an individual basis. Currently, in the majority of cases, ra-
diosurgery is selected for small- to medium-sized VSs and microsurgery for large
VSs. However, it is unclear whether this strategy provides the optimal treatment.

In order to aid the physician and VS patient in selecting the optimal treatment
strategy, this thesis investigates the possibility of a-priori prediction of the Gamma
Knife radiosurgery (GKRS) treatment response of the VS tumor on an individual
basis. This investigation involves five distinct fields. First, to enable evaluation of
the GKRS treatment response, a large database containing data on many patients
is created. Since the response to GKRS involves slow, time-consuming processes,
the follow-up times need to be long enough for the included patients to enable
objective assessment of the treatment response. This resulted in the inclusion
of 735 unilateral sporadic VS patients, treated between 2002 and 2014 with the
Gamma Knife at the ETZ in Tilburg.

Second, because evidence-based ground-truth on transient swelling and on
true tumor progression following GKRS are unavailable, clear and objective def-
initions of the various short- and long-term treatment responses are designed.
Tumor volume changes, calculated on over 4,000 follow-up MRI scans, are em-
ployed for these measures. Therefore, inter- and intra-observer variabilities in
tumor contouring are assessed to analyze the impact of multi-reader annotations.
Our experiments show that for non-small tumors, the annotation variability is
well below 10% in volume.

Third, in Chapter 3, the influence of the readily available, patient-specific pre-
treatment growth rate on the GKRS treatment response is evaluated. To this end,
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pre-treatment MRI scans of 311 patients are obtained and growth rates are calcu-
lated by so-called volume doubling times (VDTs). The experiments show that relative
short-term volume changes have no statistically significant correlation to the pre-
treatment VDTs. However, for the long-term treatment response, Kaplan-Meier
survival analyses have revealed that slow-growing tumors, with a VDT equal to or
longer than the median VDT of 15 months, have calculated 5- and 10-year tumor
control rates of 97.3% and 86.0%, respectively, whereas fast-growing tumors have
tumor control rates of 85.5% and 67.6%, respectively. This difference proves to
be statistically significant using the log-rank test (p < 0.01). The influence of the
VDT on tumor control is also determined by employing Cox regression analyses,
obtaining a significant (p < 0.05) effect of the VDT on the hazard rates for loss of
tumor control. The resulting model enables the calculation of the risk at treatment
failure on an individual basis.

Fourth, in Chapter 4, the impact of the treatment planning on the GKRS re-
sponse is investigated. This chapter is split into three different parts. First, the
global treatment-related parameters, such as the planning quality scores and ra-
diation doses to the tumor margin, are statistically evaluated for the complete
patient cohort. The obtained results show that there is no significant impact of the
global parameters on the final treatment outcome. Second, the variability in tumor
contouring is evaluated on a small dataset, where 20 tumors showed a significant
short-term volume decrease, and 20 tumors in which the treatment resulted in a
loss of tumor control. In this limited dataset, we have determined that the vari-
ability in tumor contouring is larger in the significant volume reduction cohort,
compared to the variability in the treatment failure cohort. Third, the impact of
the heterogeneous dose distribution on the treatment outcome is evaluated. We
introduce a novel approach for assessing the dose distribution. To this end, three-
dimensional histograms of oriented gradients are employed in conjunction with
support vector machines and principal component analysis. The resulting model
obtained an accuracy of 77.5%, suggesting the influence of the treatment on the
outcome itself.

Fifth, in Chapters 5, 6, and 7, the visual properties of VS tumors on MRI scans
are examined and captured with quantitative image features. These chapters in-
vestigate the potential of predicting the individual GKRS treatment response of
VS tumors employing these radiomic features. These features capture the intrinsic
tumor texture and shape differences that may reflect variations in the underlying
tumor biology. In Chapter 5, the first experiments into relating these image fea-
tures to the treatment response are conducted. In the limited dataset of 40 tumors
previously employed in Chapter 4, experiments show that the tumor shape is
not suitable for predicting the treatment response. Furthermore, various quanti-
tative tumor texture features are extracted from these 40 tumors for evaluating
their correlation to the treatment outcome. It is determined that second-order
statistical metrics distilled from gray-level co-occurrence matrices (GLCMs) and
run-length matrices are suitable for describing texture differences, but are slightly
outperformed by simple first-order statistics. The obtained prediction accuracy is
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about 85%.
Next, in Chapter 6, the predictability of TTE employing MRI tumor texture

features is assessed. To enable comparison between different MRI scans, a tissue-
specific MRI normalization method is introduced. Furthermore, the impact of
imbalance in the data is investigated, and the influence of different tumor sizes
on the prediction results are examined. The experiments show that a set of four
GLCM-features lead to the best discrimination between patients suffering from
TTE and those not suffering from TTE. Moreover, these results increase for larger
tumor volumes, obtaining sensitivity and specificity values of 0.77 and 0.89, re-
spectively. The impact of the imbalance in the data is also visible in the results:
models trained on lower performing features show results that are skewed to the
majority class. However, for the higher performing models, the imbalance leads
to improved prediction results due to the availability of more data for training.

Finally, in Chapter 7, the impact of MRI-based tumor texture features on the
long-term tumor control is considered. By exploiting the strict and objective def-
initions for treatment failure and long-term tumor control, two distinct patient
cohorts are selected from the unique large ETZ database. The experiments lead
to a model that ultimately can predict whether the GKRS treatment will result
in long-term tumor control, or a failed treatment where tumor progression is not
stopped. The resulting prediction model obtained accuracy, sensitivity, and speci-
ficity scores of 0.77, 0.71, and 0.83, respectively. Again, these results depend on
the size of the tumor. By increasing the lower bound for the tumor volume, the
obtained results improve. Including tumors larger than 5 cc result in the best-
performing model, obtaining accuracy, sensitivity, and specificity values of 0.83,
0.83, and 0.82, respectively. These results clearly show the possibility of predicting
the long-term GKRS treatment response, utilizing MRI tumor texture features.

The work in this thesis demonstrates that computer-aided methods can fa-
cilitate the physicians and patients in establishing an optimal treatment strategy
on an individual basis. The research has revealed that variations in the intrinsic
tumor biology are most likely causing the differences in treatment response of
vestibular schwannomas following Gamma Knife radiosurgery. The promising
results obtained in this work show the feasibility of predicting the short- and
long-term treatment response of vestibular schwannomas on an individual basis,
using MRI-based data such as the pre-treatment growth rate and tumor texture
features. These results can be exploited for further research into creating a clinical
decision-support system, facilitating physicians and patients to select a personal-
ized optimal care path.
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Resultaatvoorspelling van Gamma Knife radiochirurgie op vestibulair
schwannomen

Vestibulaire schwannomen (VS) zijn goedaardige hersentumoren die ontstaan
vanuit de achtste hersenzenuw. Aangezien de meeste symptomen niet verbeteren
na behandeling, is het doel van de behandeling in de laatste decennia veranderd
van het compleet verwijderen van de tumor naar het behoud van zenuwfunc-
tionaliteit. Het selecteren van de optimale behandelstrategie (radiochirurgie of
microchirurgie) blijft echter moeilijk. Beide opties hebben elk hun eigen voor- en
nadelen en wetenschappelijk bewijs voor welke strategie de beste is, is nauwe-
lijks beschikbaar omdat er geen gerandomiseerde studies zijn gedaan. Hierdoor
is de keuze voor de beste behandelstrategie een dilemma, zeker op individueel
niveau. Momenteel wordt in de meeste gevallen gekozen voor radiochirurgie bij
kleine tot middelgrote tumoren en voor microchirurgie bij grote tumoren. Het
blijft onduidelijk of dit de optimale strategie is op individuele basis.

Om de behandelend arts en de VS patiënt te helpen bij het selecteren van de
optimale behandelstrategie, wordt in deze thesis onderzocht of het mogelijk is
om de behandelresultaten van Gamma Knife radiochirurgie (GKRS) vooraf te
voorspellen op individuele basis. Dit onderzoek omvat vijf verschillende aan-
dachtsgebieden. Ten eerste is er een grote database gecreëerd met data van veel
patiënten. Aangezien de behandelresponsie een langdurige periode omvat, is een
lange opvolgingstijd na radiochirurgie vereist om objectief de behandelresultaten
te kunnen beoordelen. Dit heeft geresulteerd in de inclusie van 735 patiënten met
een eenzijdige VS, welke behandeld zijn tussen 2002 en 2014 met de Gamma Knife
in het ETZ in Tilburg.

Ten tweede, aangezien de ware toestand van een tumor voor tijdelijke zwel-
ling of voor uiteindelijke tumorcontrole niet te bewijzen is, zijn er duidelijke en
objectieve definities opgesteld voor de behandelreacties op korte en lange ter-
mijn. Veranderingen in tumorvolume, welke gebaseerd zijn op analyses van meer
dan 4000 MRI scans, zijn gebruikt om deze definities te bepalen. Tevens is er on-
derzocht wat de impact is van variabele annotaties tussen de diverse medische
waarnemers op de tumorvolumes. Deze experimenten laten zien dat de variaties
voor de middelgrote en grotere tumoren ruim onder de 10% liggen.

Ten derde is in Hoofdstuk 3 de invloed van de beschikbare patiënt-specifieke
VS groeisnelheid voor behandeling op de GKRS behandelreactie onderzocht. Hier-
voor zijn MRI scans van 311 patiënten van voor de behandeling verkregen en
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groeisnelheden berekend volgens de zogenaamde volumeverdubbelingstijden
(VDTs). De experimenten tonen aan dat de relatieve korte-termijn volumeverande-
ringen geen statistisch significante correlatie hebben met de VDTs. Kaplan-Meier
overlevingsanalyses laten echter zien dat de langetermijnreacties voor langzaam
groeiende tumoren, met een VDT gelijk aan of groter dan de mediaan VDT van
15 maanden, 5- en 10-jaars tumorcontroleratio’s hebben van respectievelijk 97,3%
en 86,0%, terwijl snelgroeiende tumoren tumorcontroleratio’s van respectievelijk
85,5% en 67,6%, laten zien. Dit verschil is statistisch significant volgens de log-rank
test (p<0,01). De invloed van de VDT op tumorcontrole wordt ook bevestigd door
de Cox regressieanalyse, die een significant effect (p<0,05) van de VDT heeft op
het relatieve risico van verlies op tumorcontrole. Het resulterende model maakt
het mogelijk om het risico op een mislukte behandeling te berekenen.

Ten vierde is in Hoofdstuk 4 de impact van de behandelingsplanning op de
GKRS-responsie geanalyseerd. Dit hoofdstuk is in drie delen gesplitst. Als eerste
zijn de globale behandelparameters, zoals de kwaliteitsindices en de bestralings-
doses op de rand van de tumor, statistisch geëvalueerd. De behaalde resultaten
laten zien dat er geen significante impact is van deze globale parameters op de
uiteindelijke behandelresultaten. Als tweede is de variabiliteit in tumorcontouren
geëvalueerd in een kleine dataset, waarin 20 tumoren een zeer sterke volumeaf-
name in korte tijd laten zien en 20 tumoren waarbij de behandeling is mislukt. In
deze gelimiteerde dataset is bepaald dat de variatie in tumor-annotaties groter
is in de groep met significante krimp vergeleken met de variatie in het cohort
waarbij de behandeling is mislukt. Als derde is de impact van de heterogene
dosisverdeling op de behandeluitkomsten geëvalueerd. Er is een nieuwe me-
thode geı̈ntroduceerd om de heterogene dosisverdeling te analyseren. Hierbij is
gebruik gemaakt van histogrammen van georiënteerde gradiënten in drie dimen-
sies, samen met SVM en principale component analyse. Het resulterende model
behaalt een nauwkeurigheid van 77,5%, wat suggereert dat heterogeniteit van de
dosisverdeling invloed heeft op de behandelresultaten.

Ten vijfde wordt in de Hoofdstukken 5, 6 en 7 de visuele aspecten van de
tumoren op de MRI scans onderzocht en berekend door middel van kwantitatieve
beeldaspecten. Deze hoofdstukken onderzoeken de mogelijkheid om de individu-
ele behandelreactie te voorspellen aan de hand van deze radiomics aspecten. Deze
aspecten leggen de intrinsieke tumortekstuur- en vormverschillen vast, welke
de verschillen in de onderliggende tumorbiologie mogelijk reflecteren. Allereerst
worden de eerste experimenten naar meting van deze verschillen beschreven in
Hoofdstuk 5. In de kleine dataset van 40 tumoren laten de resultaten zien dat de
vorm van de tumor geen goede parameter is voor het voorspellen van de behan-
delresultaten. Vervolgens worden diverse kwantitatieve kenmerken van de tumor-
tekstuur getest op dezelfde dataset. Hierbij is ontdekt dat tweede-orde statistische
waarden bepaald door middel van zogenaamde gray-level co-occurrence matrices
(GLCMs) en run-length matrices geschikt zijn om verschillen in tekstuur te be-
schrijven. Alleen worden deze enigszins overtroffen door eerste-orde statistische
eigenschappen voor tumortekstuur zoals het gemiddelde, standaardafwijking en
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mediaan van de MRI waarden. De behaalde nauwkeurigheid is 85%.
Vervolgens wordt in Hoofdstuk 6 gekeken of met behulp van de kwantita-

tieve eigenschappen voor tekstuur, de transiënte zwelling kort na behandeling te
voorspellen is. Om de onderlinge verschillen in MRI waarden beter te kunnen ver-
gelijken wordt in dit hoofdstuk een weefselspecifieke MRI normalisatiemethode
geı̈ntroduceerd. Bovendien wordt de invloed van de onbalans in de hoeveelheid
patiënten op de machine learning techniek onderzocht en wordt gekeken naar
de impact van de tumorgrootte op de voorspellingsresultaten. De resultaten van
deze experimenten laten zien dat een set van vier GLCM-kenmerken het beste
onderscheid kan maken tussen patiënten die een transiënte zwelling laten zien
en de patiënten die dit niet laten zien. Daarbovenop nemen deze resultaten toe
voor grotere tumoren, en worden sensitiviteit- en specificiteitsscores behaald van
respectievelijk 0,77 en 0,89. De impact van de onbalans in de data is ook zichtbaar
in de resultaten. Voor modellen die getraind zijn op minder goede kenmerken
voor tekstuur worden de resultaten in de richting van de meerderheid getrok-
ken, terwijl de resultaten van de goedwerkende modellen verbeteren door de
beschikbaarheid van meer data voor het trainen.

Als laatste wordt in Hoofdstuk 7 de impact van de MRI-gebaseerde karakte-
ristieken voor tumortekstuur op de langetermijnresultaten van de behandeling
in de dataset van het ETZ onderzocht. Door het toepassen van strikte en objec-
tieve definities voor mislukte behandeling en succesvolle behandeling kunnen
twee onderscheidende groepen patiënten geselecteerd worden. De experimen-
ten op basis van karakteristieken voor tumortekstuur leiden tot een model dat
uiteindelijk het mislukken of het slagen van de behandeling kan voorspellen. De
resulterende modellen behalen een nauwkeurigheid, sensitiviteit en specificiteit
van respectievelijk 0,77, 0,71 en 0,83. Deze resultaten zijn wederom afhankelijk
van de grootte van de tumoren. Het verhogen van de volume-ondergrens zorgt
ervoor dat de resultaten verbeteren. Het alleen includeren van tumoren groter dan
5 cm3 geeft de beste voorspellingsresultaten: een nauwkeurigheid, sensitiviteit en
specificiteit worden behaald van respectievelijk 0,83, 0,83 en 0,82. Deze resultaten
laten duidelijk zien dat het mogelijk is om de langetermijnresultaten van de GKRS
behandeling te voorspellen op basis van tumortekstuur vanuit MRI beelden.

Het werk dat is beschreven in deze thesis laat zien dat computerondersteunde
methodes doktoren en patiënten kan helpen in het bepalen van de optimale
behandelstrategie op een individuele basis. Het onderzoek heeft aangetoond dat
variaties in de onderliggende intrinsieke tumorbiologie zeer waarschijnlijk de
verschillen tussen behandelresultaten van Gamma Knife radiochirurgie kunnen
verklaren. De veelbelovende resultaten behaald in dit werk geven de haalbaarheid
aan van het voorspellen van de korte- en langetermijnreacties van vestibulaire
schwannomen op individuele basis, gebruikmakend van MRI-gebaseerde data,
zoals groeisnelheid en kenmerken voor tumortekstuur. Deze resultaten kunnen
gebruikt worden voor verder onderzoek naar het ontwikkelen van een klinisch
beslissingssysteem, dat door doktoren en patiënten kan worden geraadpleegd om
het beste persoonlijke zorgpad te kiezen.
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1.1 Background
Vestibular schwannomas (VSs) are benign, usually slow-growing brain tumors,
that arise from the Schwann cells of the vestibulocochlear nerve. An illustration of
the tumor and its location in the cerebellopontine angle is presented in Figure 1.1.
These tumors make up 8% of the primary brain tumors diagnosed in the United
States [1]. In the Netherlands, the incidence rate is increasing and it grew to
15.5 cases per million inhabitants in the last decade [2]. The main reason for this
increase is thought to be the ever-improving access to high-quality diagnostic
tools, such as magnetic resonance imaging (MRI).

Typical symptoms associated with these tumors are unilateral or asymmetrical
hearing loss, tinnitus (ringing in the ear) and vertigo (dizziness or loss of balance).
As tumors grow larger, they can interfere with other cranial nerves, such as the
trigeminal nerve causing facial numbness, and the facial nerve causing facial
weakness or paralysis. Further enlargement of the tumor eventually can lead to
pressure on nearby critical brain structures, such as the cerebellum and the brain
stem, thereby becoming life-threatening in nature.

A VS is often difficult to diagnose in the early stages, since symptoms are
most likely to be subtle and develop gradually over time. Furthermore, the typical
symptoms related to these tumors are also associated with other middle- and
inner-ear afflictions. This causes a significant variation in diagnostic strategies
across medical centers [4]. However, the gold standard to diagnose a VS is per-
forming an MRI of the brain, followed by a radiographical analysis.

Although the diagnosis is usually indisputable, the subsequent steps in clinical
practice show great diversity. An international standard concerning the manage-
ment of VS tumors is lacking [4]. In the last decades, the main treatment goal for
VSs has shifted from complete removal of the tumor to functional preservation of
the facial, trigeminal and cochlear nerves [5]. Especially the introduction of less
invasive treatment options and their reduced risks at post-treatment morbidities
has led to this substantial shift [6]. Moreover, various medical centers justify a con-
servative “wait-and-see” approach, instead of up-front active treatment because
the relatively mild symptoms usually do not improve after treatment [7]. Active
treatment is only considered if the tumor appears to progress on MRI scans. How-

1



C
hapter1

1 . I N T R O D U C T I O N

Figure 1.1 — Illustration of a vestibular schwannoma in the cerebellopontine angle. [3]

ever, other medical experts advocate against the wait-and-see strategy, because
postponing active treatment may lead to a worsening of symptomatic tinnitus [8]
and it exposes the patient to an elevated risk of hearing degradation [9].

If active treatment is selected, either at diagnosis or after progression of the tu-
mor is observed, radiosurgery is generally preferred over microsurgery for small-
to-medium-sized VSs [10]. The reason for this preference is the highly invasive
nature of microsurgery, which results in (1) higher risk at mortality, (2) inferior
preservation of the facial nerve function, (3) decreased hearing preservation, and
(4) lower quality of life [11]–[13]. Moreover, neurosurgical treatments invoke a
significantly larger overall cost on average, compared to radiosurgery [14], [15].

However, for large VSs the discussion concerning the best treatment strategy
is still ongoing. Most medical centers consider microsurgical resection as the
optimal treatment strategy for these large tumors, since it effectively averts the
compression of surrounding critical brain structures such as the brain stem, the
cerebellum and the previously mentioned cranial nerves [16]. Because the risks
involved in microsurgery can be contra-indicative for this strategy, less invasive
treatment strategies such as radiosurgery and radiotherapy have been considered
increasingly in the last decade. These procedures have shown good results for
large VSs and obtained acceptable radiation-induced morbidities [17]–[24].

Nevertheless, according to the latest guidelines on the treatment of adults with
VSs, scientific evidence on which treatment option is best should be classified
under Class III, i.e. unclear clinical certainty [25]. Furthermore, many care providers
and institutions remain highly biased towards one particular therapy [26], and
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some even consider that stereotactic radiosurgery can cause radiation-induced
tumors or malignant transformation. However, this risk is limited and should not
be used to justify the selection of an alternative treatment approach [27].

1.2 Gamma Knife radiosurgery
There are several radiation treatment modalities available that can treat VS tu-
mors. These include Cyberknife, linear accelerator, and Gamma Knife. Of these
modalities, most centers opt for Gamma Knife radiosurgery (GKRS), since it re-
sults in a 2 to 4 times lower dose to surrounding healthy brain tissue compared
to other stereotactic modalities [28]. Due to this lower extratumoral dose, GKRS
can spare surrounding critical brain structures, while subjecting the tumor to high
radiation dose-levels. Since the start of employing GKRS for treating VS tumors,
the prescribed dose has dropped significantly from 18 – 20 Gy to 12 – 14 Gy, while
still demonstrating equivalent local control [29]. The main reason for this reduc-
tion in dose was the observed radiation-induced toxicities in numerous patients.
The prescribed radiation dose depends mostly on the size of the tumor and the
distance to the cochlea, especially when patients still have functional hearing [30],
[31].

1.2.1 Gamma Knife technique
A Gamma Knife treatment device, as seen in Figure 1.2, employs γ-radiation
beams of 192 individual Cobalt-60 sources. These sources are arranged in a cylin-
drical configuration in five concentric rings, such that they all converge into a
single point. This point of convergence is called an isocenter. A 120-mm thick
Tungsten collimator array ring is used for concentrating the individual beams in
eight identical independent sectors. Three different collimator sizes are available:
4 mm, 8 mm, and 16 mm. Furthermore, each of the eight collimator sectors can be
blocked, resulting in four collimator settings per sector. Using these 32 different
collimator settings, each isocenter can be changed in shape and size. By combin-
ing multiple isocenters, a radiation-dose plan can be achieved that accurately
conforms to the three-dimensional shape of a target. Due to the convergence of
the 192 individual beams, there is a steep drop-off in radiation dose outside an
isocenter. Hence, an accurate conformity to the tumor margin, results in a low
radiation dose to surrounding tissues, while subjecting the tumor tissue to high
levels of radiation. An example of a treatment plan, highlighting the steep dose
gradient, is presented in Figure 1.3.

Each isocenter has a set of three Cartesian stereotactic coordinates that corre-
spond to a three-dimensional space defined by a rigidly fixed stereotactic frame,
called the Leksell G-frame (Figure 1.4). Thus, these coordinates are related to the
position of the frame. To create these stereotactic coordinates, a fiducial box is
placed over the frame during the MRI or computed tomography (CT) scanning of
the head of a patient. This fiducial box has a Z-shaped canal at the left and right
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Figure 1.2 — Gamma Knife treatment machine, called Gamma Knife Icon. Courtesy Elekta AB,
Stockholm, Sweden

sides that is filled with copper sulfate. This creates bright marks on each MRI or CT
scan, such that the planning software can determine the stereotactic coordinates of
each MRI or CT volume element (voxel) with respect to the G-frame. By making
use of the so-called patient positioning system, the planned isocenter coordinates
can be placed in the point of convergence of the 192 radiation beams. As such, the
complete treatment plan is executed fully automated.

1.2.2 Workflow
A typical workflow of a single Gamma Knife treatment is depicted in Figure 1.5.
The patient comes in early for preparation by the nurse. After administering local
anesthesia, the neurosurgeon mounts the G-frame to the skull of the patient. With
the frame mounted, the patient goes into the MRI machine, where thin-sliced T1-
weighted, T2-weighted, and T1-weighted contrast-enhanced (T1CE) MRI scans
are obtained. These scans are sent to the planning system, where the neurosurgeon
accurately delineates the target volume. Next, isocenters are placed within the
target volume and by adjusting the size, shape, and weight of each isocenter,
the target is conformed by a specific isodose line. Generally, an isodose value
of approximately 50% is selected for this line, because the dose drop-off is the
steepest at half the maximum dose. Using three different quality indices, namely
selectivity, gradient, and Paddick conformity, the treatment plan is evaluated and
further optimized. Once the neurosurgeon is satisfied with the treatment plan, it
is reviewed by a radiotherapist and a medical physicist. After their approval of
the plan, the patient is brought to the treatment device where the frame is fixated
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Figure 1.3 — Example of a treatment plan. The top part of the figure displays the T1-weighted,
contrast-enhanced MRI, with in red transparency, the dose distribution. The green line represents
a cross-section, of which the dose levels are given in the graph at the bottom part of the figure. In
this graph, the red line depicts the dose level. The dashed blue lines correspond to the tumor contour
in the upper part of the image, and the dashed black lines represent the edges of the head. From this
graph, it is clearly visible that the dose drops to low levels within a small distance from the tumor
location.

Figure 1.4 — Leksell G-frame. Left: The Leksell G-frame as used in Gamma Knife radiosurgery.
Right: The G-frame is mounted onto the head of a patient, after which it is locked in the machine
during treatment. Courtesy Elekta AB, Stockholm, Sweden.
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Figure 1.5 — Typical stage diagram of a single Gamma Knife treatment workflow.

in the frame holder. After the treatment plan is completed, the patient is taken off
the table and the frame is removed by the nurse. The patient is then discharged
until follow-up visits.

1.3 Gamma Knife treatment response
GKRS is a safe and effective treatment strategy for VSs, obtaining local tumor-
control rates in the range of 90% [29]. However, it has two major drawbacks. The
first and foremost disadvantage involves the success of the treatment. Since the
main treatment goal is to stop tumor progression, the definition of treatment suc-
cess would be “no further tumor growth”. However, it remains uncertain whether
a VS will continue to grow, or even start regrowing several years after treatment. It
has been reported that failures may occur even after 10 years following GKRS [32].
Therefore, each patient is subjected to lifelong surveillance by annual MRI scans.
If continued growth or regrowth of the tumor is observed, a secondary treatment
may be warranted. This can either be a re-treatment by GKRS, or microsurgical
excision of the tumor.

The second drawback of stereotactic radiosurgery concerns the short-term
volumetric treatment response of the tumor. During the first two to three years
following treatment, a VS can suffer a radiation-induced transient tumor enlarge-
ment (TTE) [33]. This adverse effect, which is also known as pseudo-progression,
is a temporary swelling of the tumor which usually subsides within the same
time period. For small-to-medium-sized tumors, this is not a cause for concern,
although patients can suffer from a temporary worsening of their complaints.
However, when tumors are already pressing against critical brain structures, this
transient enlargement can lead to significant issues that even necessitate micro-
surgical intervention [16].

As both of these major drawbacks can lead to microsurgical intervention, it
negates the previously mentioned reasons for electing stereotactic radiosurgery
over microsurgery in the first place. Moreover, microsurgical excision of tumor
tissue following GKRS is considered to be more difficult than if the tumor was
not irradiated. This is caused by the fact that in most cases of salvage surgery,
dense adhesions between the tumor and the structures surrounding the tumor are
observed [34]–[38].

Therefore, it can be concluded that GKRS is the preferred treatment modality
for VS, but only if the tumor responds well to this treatment. However, this re-
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sponse is not known in advance, and a reliable prediction of this response would
be highly attractive. This is the main topic of research in this thesis.

1.4 The potential for predicting the Gamma Knife treatment
response

Prediction of the Gamma Knife radiosurgical treatment response of vestibular
schwannoma is twofold. It has both a clinical potential, as well as a technical
potential. These are both discussed in the following subsections.

1.4.1 Clinical potential
Currently, it remains unknown why some tumors are unresponsive to the GKRS
treatment, while others show significant volume reductions. Several studies have
investigated possible factors that influence the GKRS treatment response [18], [31],
[32], [39]–[59]. Numerous research papers concluded that the tumor volume is
significantly correlated with treatment outcome [32], [39], [43], [47], [48], [51], [52],
[60]. Therefore, many medical centers do not treat large VSs with Gamma Knife,
since the chance at treatment failure is considered significantly higher, either for
failed long-term tumor control or due to TTE. However, other research groups
have shown that large and giant VS tumors can be safely treated using the Gamma
Knife [17]–[22], [24], [61]. As such, the tumor volume is not a suitable informative
parameter that can be employed for individual treatment outcome prediction.

To enable such prediction of a treatment response on an individual basis, all
available patient-specific information should be considered. This information
ranges from macroscopic-scale structure of the tumor to genetic profiling [62] ob-
tained by performing a biopsy. However, in the case of a VS, this is an undesired
and extremely risky procedure. One of the most frequently encountered compli-
cations of such a procedure is post-biopsy hemorrhage, which in the case of a VS
tumor can cause even death due to its risky intracranial location.

Therefore, predictive parameters for radiation-treatment responses in individ-
ual VS patients have to be obtained from readily available clinical data. Examples
of such data are tumor size, tumor shape, and MRI tumor characteristics. Using
the tumor size at different time instances, the tumor-specific growth rate can be
calculated. With this characteristic, Marston et al. recently determined that fast
growing tumors are less likely to obtain long-term tumor control in GKRS-treated
VS [49]. Furthermore, it is well known that the MRI findings in VSs are highly
variable, not only for size and shape, but also in the gray-level inhomogeneity of
the tissue itself. The VS tumors can appear micro- or macro-cystic [63], hemor-
rhagic [64], and with variable contrast-enhancement patterns after gadolinium.
Some examples of different enhancement patterns of VS tumors can be found in
Figure 1.6. These MRI differences reflect variations in histology, such as cell prolif-
eration and micro-vessel density [65], [66]. Furthermore, the assumed biological
effect of radiosurgery on VS tumor cells is a combination of acute inflammation
and vascular occlusion [67], [68]. As such, the observed MRI differences may pro-
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Figure 1.6 — Examples of different appearances of vestibular schwannomas on contrast-enhanced
MRI scans. Part A: Near-homogeneously enhanced lesion. Part B: Small irregularities in texture.
Part C: Heterogeneously enhanced lesion with an apparent hypo-intense area.

vide information on variations in tumor biology, thereby enabling the creation of
a patient-specific tumor model that can be employed for predicting the Gamma
Knife treatment response on an individual basis.

1.4.2 Technical potential
In a review by Gillies et al. [69], the authors conclude that medical images can pro-
vide useful data for computer-aided support (e.g. detection, diagnosis, survival
prediction), using so-called radiomic features. These features, coupled with arti-
ficial intelligence, can serve as biomarkers and can be exploited to construct pre-
diction models that have the potential to achieve significant improvements over
the largely qualitative approaches currently performed in the clinical setting [70].
Employing imaging features for detection started in the 1960s, in the initial stage
of computer vision [71]. The first large-scale and systematic research and devel-
opment of these techniques in medicine was in the 1980s and focused mainly on
computer-aided detection or diagnosis (CAD) in cancer research [72]. The initial
CAD systems utilized size, shape, pixel- or voxel intensities, and textures of the
regions of interest. These radiomic features can be described as handcrafted or en-
gineered, and are used to obtain image-based phenotypes of the cancerous tissue.
For example, the larger the entropy of enhanced texture, the more heterogeneous
the pattern within the tumor, potentially reflecting the heterogeneous nature of
angiogenesis and treatment susceptibility, serving as a location-specific “virtual
digital biopsy” [73].

Many different radiomic features have been proposed in the past decades.
Most of these are based on tumor shape [74]–[77], or tumor texture [78]–[85]. One
widely applied texture feature extractor is based on the work by Haralick et al. [86].
They employed gray-level co-occurrence matrices (GLCMs) to calculate informa-
tion about relative positions of pixels having similar gray-level values. Several
variations of this texture feature extractor have been proposed, such as gray-
level run-length matrices (RLMs), and gray-level size zone matrices (GLSZMs).
Gray-level RLMs provide sizes of consecutive, collinear pixel lines with the same
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intensity value for each gray-level in the image [87], whereas GLSZMs calculate
the number of different zone sizes of equally valued intensity pixels [88]. Another
group of radiomic features are biologically inspired features. These descriptors
are based on the recognized radiological knowledge and can therefore improve
the model accuracy [89], [90].

However, handcrafting features has a significant drawback. Useful features
are difficult to design and often take the collective efforts of many researchers over
years or even decades to optimize, and are in most cases domain- or problem-
specific [91]. Nevertheless, in the last two decades, the number of publications
concerning machine learning and radiomics in medicine has grown exponentially.
A PubMed search on the terms “machine learning” and “radiomics” revealed that
in 2019 over 10,000 articles were published.

As a possible solution, deep learning has proven in the past years that it can
overcome the problems involved in handcrafting features. In the last 5 – 6 years, a
shift to these featureless learning methods can be noticed. This revolution started
in computer vision and is now also considered extensively in medicine. In 2010,
only 9 articles appeared concerning deep learning, whereas in 2019 this has ex-
ploded to 4,470 articles, according to PubMed where “deep learning” was used
as search term. Such deep learning methods no longer require feature calculation
and extraction steps, but use the image itself as input to automatically determine
useful features. These approaches employ multiple neural-like processing layers
with several levels of abstraction [89], and have obtained significant improve-
ments in computer vision tasks over the feature-based methods [92]. However, a
major downside of deep learning is the required amount of training data, thereby
limiting the implementation in studies with small datasets [70]. Furthermore,
deep learning requires input data that are manually annotated by medical ex-
perts, which supervises the learning process. As such, the annotations need to
be of high-level quality, since it provides the medical ground truth. To develop a
large annotated dataset is therefore highly time-consuming and expensive. This
aspect is another significant downside of using deep learning methods, and this
explains why actual research concentrates on self-supervised learning. Neverthe-
less, numerous publications have shown the high performance of these types of
models in medical image segmentation [93], computer-aided detection [94] and
diagnosis [95], and survival prediction [96].

The above discussion highlights interesting developments that shows the po-
tential of predicting the Gamma Knife treatment response of vestibular schwan-
noma. Since these tumors show highly varying enhancement patterns on MRI, it
is hypothesized that these variations can be employed as radiological phenotypes,
which in turn can explain the differences in the GKRS treatment response.

1.5 Challenges of developing a prediction algorithm
Currently, studies on predicting the Gamma Knife treatment response for vestibu-
lar schwannomas on an individual basis are not yet available. Therefore, the
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feasibility of a prediction system has not yet been evaluated. Furthermore, medi-
cal experts are uncertain about which factors influence the individual treatment
response. Several studies have reported that the tumor size at treatment has high
correlation to the final treatment outcome. Furthermore, some investigations at-
tribute the radiation dose as influencing factor, while other research groups have
investigated the contributions of basic tumor appearances on MRI. Their results
all highlight crucial information from a clinical point of view and are employed
in calculating so-called “survival rates”. These rates form a basis for determining
the optimal treatment strategy for groups of patients. Although these factors def-
initely provide clues for a prediction system, most are expressed in a qualitative
fashion and are evaluated at a cohort level. As a logical next step, these factors
need to be transformed into quantitative features and need to be evaluated on an
individual basis.

Availability of data: One of the serious challenges in studies involving rare
pathologies is found in the number of available data samples. Having too few
data points severely limits the accuracy of classifier models. A reasonable rule of
thumb is, that for each included feature in a binary classification model, 10 data
samples are required [69]. As such, a significant amount of data is needed for
finding a binary prediction classifier. Since VS tumors are considered to be rare,
this forms a major challenge for the considered research. In addition, the amount
of data needed for treatment-prediction evaluation increases even further, because
treatment failures are only occurring in approximately 10% of all VS patients.
Furthermore, since Gamma Knife radiosurgery invokes a slow process lasting
several months to years, treatment results can only be noticed after a long time
period, i.e. treatment failures can occur as late as 10 years after treatment [32].
Consequently, this requires the data set to have an extended follow-up, further
limiting the availability of data for creating a well-defined binary classifier.

Treatment outcome definitions: Another challenge in this work is related to the
classification labeling of the data. For the development of a binary classification
system, clear definitions of both output labels are needed. In the case of Gamma
Knife treatment on VS tumors, this forms a significant challenge because there is
no clear ground truth available. Therefore, trade-offs are unavoidable and need to
be carefully made. First, the definition of treatment success is highly obscure, since
the main treatment objective of GKRS is to stop tumor progression. Because it is
impossible to prove that tumor progression has stopped indefinitely, concessions
in creating the definition for treatment success are needed. Second, the definition
of treatment failure varies significantly in literature. The employed definitions
range from “an increase in diameter of more than 2 mm” [49] to “secondary
treatment needed” [41], [97]. Furthermore, most medical teams rely on linear
measurements in the clinical setting for determining tumor progression. This
explains why subtle loss of tumor control can go unnoticed. Moreover, even if
tumor progression is observed, salvage treatment may be (1) unwanted if patients
are deemed unfit, or (2) are considered not necessary since the progression is
considered to be small with respect to the time period in which it took place. To
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enable a clear definition of treatment failure, an objective measure needs to be
constructed. However, such an objective measure may have a limited clinical value
and is formed to fit the scientific requirements of the technical machine learning
approach.

Clinical patient-specific features: Next to the availability of data, the challenge
of determining individual, patient-specific features is significant. This is espe-
cially the case when a ground truth based on genetics is unavailable. In prior
research, the VS tumor size itself is an often evaluated and interesting character-
istic. However, same-sized tumors may display contrasting behavior such as a
difference in natural growth rate. Because the growth rates differ significantly
between individual VS tumors, these may form an interesting feature for individ-
ual treatment-outcome prediction. However, calculation of the tumor growth rate
is ambiguous due to the availability of various growth models, thereby further
challenging the evaluation of this feature.

Treatment planning factors: Another challenge arises from the multi-faceted
treatment planning. Different factors all have their contributions to the final treat-
ment plan, as presented in Section 1.2. These factors may show a causal relation to
the treatment outcome. One of the concerns with respect to the treatment planning
is whether undertreating the tumor margin may be the cause of a decreased treat-
ment efficacy. This undertreatment can originate from a lower dose to the tumor
margin, but also from the variability in tumor contouring, which is performed
by different neurosurgeons during the course of time. Another concern involves
the high complexity of the treatment plan itself. Such a plan is created by placing
multiple isocenters with varying shapes and weights, making it a highly flexible
confounder that is difficult to evaluate.

Radiomic feature selection: However, the biggest challenge in evaluating ra-
diomic features lies in the appropriate feature selection. These features can be
calculated on all possible imaging modalities, thereby creating a multitude of
tumor imaging aspects. These may or may not provide quantitative information
related to the treatment response. Furthermore, there are many possible features,
each highlighting a different imaging characteristic. Since the amount of data lim-
its the number of features that can be included in the machine learning approach,
feature selection is a crucial step. Several researchers have opted for calculating
clinically inspired features, thereby including the already present and recognized
clinical experience in the technical machine learning approach. However, in the
field of radiosurgically treated VS tumors, medical experts are undecided in what
influences the treatment response, particularly with respect to the variations in
MRI tumor appearances. Therefore, it is impossible to generate clinically inspired
features, which requires that different radiomic strategies have to be evaluated.

Radiomic confounders: Finally, various parameters have an influence on the com-
parison of quantitative image characteristics. First, to enable direct comparison of
image-based features, the image data need to be normalized. However, in the case
of MRI data, this is non-trivial and therefore constitutes a significant challenge in
this work. Furthermore, due to the employed MRI imaging protocols, the individ-

11



C
hapter1

1 . I N T R O D U C T I O N

ual voxel sizes are fixed. As such, smaller tumors may present with fewer texture
details, thereby increasing the difficulty of creating suitable texture features. How-
ever, volume-based selection of the data severely impacts the number of available
data points. Consequently, careful analyses are needed to evaluate the impact of
the tumor volume on the radiomic features.

1.6 Problem statement and research questions
This section describes the problem statement based on the observations from the
previous sections and formulates specific research questions following from this
problem definition.

Problem statement
It is our objective to investigate the possibility to a-priori predict the Gamma Knife
treatment response of vestibular schwannomas, on an individual basis. If such
treatment prediction can be implemented in a clinical workflow, a personalized
treatment and follow-up strategy can be selected for each individual patient. This
will improve the overall results in clinical outcome, it will most likely reduce
healthcare costs, and it will enhance the individual and overall quality of life for
patients suffering a VS tumor. The key problem in this research is the lack of
clinical knowledge concerning the reason behind treatment failures. Since there
are many factors that may potentially influence the treatment response, this in-
vestigation is multi-faceted. As such, several research questions are addressed,
investigating the multiple factors that potentially could have influenced the treat-
ment response.

Research questions
From the above statement, a number of specific research questions (RQs) can be
derived, which are formulated below.

RQ1: Data and treatment response measurements
Since vestibular schwannomas are a relatively rare disease, the availability of data
on these types of tumors is limited. To enable treatment prediction evaluation,
a significantly large database needs to be created. Furthermore, many medical
centers employ various measurements and definitions for determining the treat-
ment response of these tumors. Therefore, the following research questions can
be defined, which will be discussed in Chapter 2.

• RQ1a: Which patients and how many need to be included for determining predictive
parameters of the GKRS treatment outcome?

• RQ1b: What are good clinical metrics for determining the different treatment out-
comes?
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RQ2: Influence of the pre-treatment growth rate on long-term tumor control
Due to the shift in treatment goal from complete removal of the tumor to preser-
vation of cranial nerve functionality, the wait-and-see strategy is considered an im-
portant tool in the clinical decision-making process concerning treatment options
for VS tumors. This specific strategy has led to an increase in data on patient-
specific information concerning tumor-size changes over time. Because variations
in tumor proliferation may reflect differences in the underlying tumor biology,
this temporal information may have predictive value. This leads to the following
research questions, which will be addressed in Chapter 3.

• RQ2a: Is the pre-treatment growth rate influencing the rate of volume reduction
following treatment?

• RQ2b: How does the pre-treatment growth rate relate to the long-term tumor
control?

• RQ2c: In what way does the adopted clinical methodology influence the obtained
prediction model results?

RQ3: Influence of the treatment planning on the treatment outcome
There are many parameters that could potentially influence the outcome. Some
studies have suggested that the dose to the tumor margin has an impact on the
obtained treatment results, whereas other studies did not find this relation. Nev-
ertheless, because the dose drop-off in a Gamma Knife treatment is steep, one can
argue that undertreatment of the tumor margin may lead to an increased risk of
treatment failure. Furthermore, since treatment plans are evaluated on specific
quality indices that are related to the tumor contouring, the inter-observer vari-
ability in tumor segmentation can also be considered as a confounding factor.
Moreover, due to the huge amount of possibilities in creating a conformal treat-
ment plan, the resulting dose distributions are highly heterogeneous. As a result
of different hot- and cold-spots in such plans, tumors may respond differently
after GKRS. These observations lead to the following research question, which
will be addressed in Chapter 4.

• RQ3a: Does the marginal dose influence the long-term tumor control?

• RQ3b: Is there an influence of the specific heterogeneous dose distribution on the
long-term treatment outcome?

• RQ3c: How does the inter-observer tumor segmentation variability work out on the
Gamma Knife treatment response?

RQ4: Selection of informative MRI-based quantitative features for predicting
the GKRS treatment response
It is hypothesized that the differences in GKRS treatment response originate from
variations in the underlying intrinsic VS tumor biology. However, in the case
of VSs, biopsy carries a significant risk of complications due to the surrounding
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critical brain structures, making it an undesirable procedure. Therefore, predictive
tumor-specific information needs to be obtained from readily available clinical
data, such as MRI scans. The differences in MRI appearances of VS tumors may
reflect variations in histology and may therefore provide information that enables
the prediction of the GKRS treatment response. Prediction of the various treatment
responses of VS tumors following Gamma Knife radiosurgery can significantly
improve overall treatment success, increase individual and overall quality of life,
and reduce healthcare costs. Furthermore, it can help physicians and patients
in selecting the most-suited treatment option on an individual basis. However,
currently it is not known what influences the various treatment outcomes and
how to define treatment success. These observations lead to the following research
questions, which will be addressed in Chapters 5, 6 and 7.

• RQ4a: Can quantitative tumor shape descriptors enable the prediction of the GKRS
treatment response?

• RQ4b: Which texture features are informative for the various treatment responses?

• RQ4c: What is the influence of the imbalance in data and the variations in tumor
volumes on the prediction results?

• RQ4d: Is it possible to develop models that can predict transient tumor enlargement
and the long-term treatment success, based on MRI texture features?

1.7 Contributions
This section provides an overview of the scientific contributions presented in this
thesis. These contributions can be linked to four categories, which are elaborated
below.

Contributions to data and treatment outcome measurements
Since Gamma Knife treatment of VS tumors in the Netherlands is only executed in
a single center, a unique large database has been constructed using the data of that
institution. The database is one of the largest in the world, enabling strict inclusion
criteria to obtain a dataset that is well defined. This database includes 735 patients
with a median follow-up of 72 months. For the creation, we have annotated over
4,000 MRI scans to enable careful evaluation of the various treatment responses.
Furthermore, for the assessment of transient tumor enlargement, we have included
an additional 22 patients for the analysis. Finally, in order to calculate the pre-
treatment growth rate, the pre-treatment MRI scans of 311 patients in our database
have been obtained.

Furthermore, since a significant amount of patients have their follow-up scans
at the same institution, accurate analyses of the volumetric treatment responses
are possible. Therefore, clear and objective treatment response definitions have
been constructed. First, to include the potentially missed failures due to linear
measurements employed in the clinical setting, we have introduced an objective
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measure for treatment failure. The definition evaluates whether there is twice
a significant increase in tumor volume within three consecutive follow-up MRI
scans at least two years after treatment. Second, because the employed dataset
includes data of patients with a significantly long follow-up period, we have been
able to carefully assess the treatment responses, thereby enabling the creation of
a data-driven treatment success definition. Treatment is considered successfully
executed if the tumor progression has stopped for at least 129 months after treat-
ment. Third, by employing data of patients that had available MRI scans during
the first year after treatment, we have been able to create a definition for transient
tumor enlargement. For this definition, we have included MRI scans obtained at
about 6 months after treatment. If the tumor volume on this MRI scan shows a sig-
nificant increase with respect to the treatment volume, followed by a reduction to
at least the tumor volume in the succeeding follow-up MRI scans, it is considered
that this tumor presented a transient tumor enlargement.

Contributions to the evaluation of the pre-treatment growth rate influence
With the first large-scale evaluation on temporal pre-treatment data, we have
investigated the influence of the tumor-specific growth rate of a VS prior to treat-
ment, on the tumor volume response after treatment. The conducted experiments
have shown that fast growing tumors are less likely to obtain long-term tumor con-
trol. A Cox-regression-based model has been developed and can be implemented
in a clinical setting for calculating the risk at treatment failure. The experiments on
the pre-treatment growth rate have highlighted that the clinical failure definition,
as well as the so-called volumetric failure definition, correlate to the pre-treatment
growth rate. Furthermore, we have evaluated whether the pre-treatment growth
rate influences the short-term volumetric response after Gamma Knife treatment.
Our experiments have shown that this so-called bending-the-curve effect is not
present in our unique large dataset.

Contributions to the evaluation of the treatment planning influence
Due to a change in treatment planning strategy, we have evaluated whether the
marginal dose influences the long-term tumor control. The conducted experiments
have shown that there is no statistical significant difference between a cohort
treated with less than 12 Gy compared to a cohort treated with more than 12 Gy.
Furthermore, experiments on the heterogeneous character of the dose distribution
have highlighted that there is a correlation to the treatment outcome. In a limited
dataset, we have employed a novel strategy in measuring the heterogeneity of
a Gamma Knife treatment plan, using a computer vision-based method called
three-dimensional histograms of oriented gradients. A machine learning technique is
exploited to determine whether short-term significant volume reductions can be
separated from treatment failure using this measure of heterogeneity. The obtained
results have shown that the calculated heterogeneity features are correlated to the
treatment response in a limited dataset. Finally, due to inter-observer variations
in delineation of tumor contours, a treatment plan may result in undertreating
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the tumor margin. Our experiments have shown that for tumors responding with
significant short-term volume reductions, the variations in contouring are signifi-
cantly larger than for tumors that show a treatment failure, when comparing two
different delineations created on separate moments in time.

Contributions to the evaluation of tumor-specific MR image features in cor-
relation to the short- and long-term GKRS treatment responses
With the first evaluation on MR image features, we have investigated the dis-
criminating properties to distinguish between VS tumors presenting a significant
volume decrease and those that showed a treatment failure. To the best of our
knowledge, we are the first to evaluate quantitative tumor shape descriptors on
clinical data of GKRS-treated VS tumors. Our experiments have shown that shape
appears to be a weak predictor of the short-term significant volume reduction. Fur-
thermore, we have contributed with the first explorations into quantitative tumor
texture features on conventional MR images to enable prediction of the treat-
ment response in VS tumors. The machine learning experiments have achieved
promising results offering high prediction value, warranting further research in
the predictive value of MRI tumor texture.

Exploiting our unique, large-scale database on all treated VS patients, and the
aforementioned explorations in feature selection, we have extensively investi-
gated the possibility of creating prediction models for the clinical GKRS treatment
responses. First, we have examined the short-term treatment response known as
radiation-induced transient tumor enlargement. The conducted experiments show
that gray-level co-occurrence matrix features lead to the best results for captur-
ing the textural differences between two cohorts. The obtained model enables to
predict whether a large VS tumor will either show a temporal swelling, or remain
stable or shrink in the same time period. Additionally, due to the imbalance in
the amount of tumors presenting transient enlargement and those that did not, a
balancing step is introduced in the machine learning algorithm. This has helped in
determining which features lead to robust prediction models, without preferring
the majority class.

Second, for evaluating the long-term tumor control prediction, a definition for
treatment success is introduced in this thesis. Using this definition, in conjunction
with our objective measure for treatment failure, we have conducted experiments
on creating a model that is able to distinguish between treatment failure and
treatment success, i.e. long-term tumor control, using MRI tumor texture features.
This model is trained by support vector machines on retrospective clinical MRI
data. Our experiments have shown that gray-level co-occurrence matrix features
are most informative for distinguishing long-term tumor control from treatment
failures.
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Chapter 2 - Treatment response and potential predictive characteristics

Clinical tumor data Treatment plan data Tumor image data

Chapter 3

Pre-treatment growth 
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influence
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Radiomic feature 
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Prediction of transient 

tumor enlargement

Chapter 7

Prediction of long-term 

tumor control

Chapter 8 - Conclusions

Treatment outcomes

Figure 1.7 — Schematic overview of this thesis. Solid arrows represent direct relations, while the
dashed arrows indicate the link between treatment outcome definitions and the various chapters.

1.8 Thesis outline and scientific background
This section presents an outline of the chapters in this thesis and briefly discusses
the contributions of each chapter, including the underlying scientific publications.
Figure 1.7 shows a schematic layout of this thesis. Chapter 2 presents a state-
of-the-art overview, and introduces the unique large database and several key
elements for evaluating the factors that may influence the treatment response,
such as the treatment response definitions. Furthermore, it provides a technical
background in the image analysis tools employed in this work. Chapter 3 investi-
gates the influence of the pre-treatment growth rate on the volumetric response
of the VS tumor to Gamma Knife treatment. The possible impact of the varia-
tions in treatment planning is discussed in Chapter 4. Chapter 5 describes the
first experiments on quantitative MRI image features, such as shape descriptors
and tumor texture characteristics. In Chapter 6, these experiments are extended
to the prediction of the short-term volumetric treatment response. The resulting
machine learning approach on short-term volumetric data is then employed for
evaluating the predictability of long-term treatment success and treatment failure
in Chapter 7, using the strict definitions introduced in Chapter 2. The remainder
of this section introduces the focus of the individual chapters, including references
to the corresponding publications.

Chapter 2 introduces the unique large Gamma Knife database of VS patients
treated at the ETZ hospital in Tilburg. Furthermore, it provides an overview of
the state-of-the-art in evaluating risk factors associated with the Gamma Knife
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treatment response of vestibular schwannomas and it introduces the strict and
objective treatment response definitions employed in this work. Moreover, since
these definitions are based on tumor volume changes, the impact of inter- and
intra-observer variations from multi-reader tumor annotations are discussed. Fi-
nally, this chapter introduces the background of the employed feature extraction
methods and machine learning approaches.

Chapter 3 investigates the influence of the pre-treatment growth rate of vestibu-
lar schwannomas on the post-treatment volumetric tumor response. First, the strict
inclusion criteria for determining the influence of the growth rate are presented.
The data of the obtained patient cohorts are then analyzed for determining group
differences, followed by the evaluation of the impact on short-term volumetric
responses, i.e. the “bending-the-curve effect”. Finally, the experiments on assess-
ing correlations between the growth rate prior to treatment and the long-term
tumor control are presented and discussed. The contributions of this chapter were
presented at the Int. Stereotactic Radiosurgery Society meeting (ISRS) in 2017 [98],
the winter meeting of the Dutch society for neurosurgery (NVvN) in 2018 [99],
and were published in the Journal of Neurosurgery in 2019 [97].

Chapter 4 addresses the different factors that influence the creation of a treat-
ment plan and the resulting treatment parameters. Each of these factors may have
an impact on the treatment efficacy. For this purpose, the chapter explores vari-
ations in global treatment parameters, such as the prescribed dose to the tumor
margin, to evaluate their impact on the long-term tumor control. Next, experi-
ments are conducted that assess whether the complexity of a single treatment plan
and its resulting heterogeneous dose distribution impacts the treatment response.
To this end, an image-based feature extractor is employed for evaluating differ-
ences in the dose distribution data, and the resulting features are evaluated in
a machine learning environment. Finally, the accuracy of the tumor annotations
during treatment planning are evaluated for their influence on the treatment re-
sponse. Contributions to this chapter were presented at the Leksell Gamma Knife
Society meeting (LGKS) in 2016 [100], at SPIE Medical Imaging in 2019 [101], and
were published at the Int. Symp. on Information Theory and Signal Processing in
the Benelux (SITB) in 2017 [102].

Chapter 5 describes the first experiments into MRI-based tumor features and
their correlation to the Gamma Knife treatment response of VS tumors. It presents
the results on experiments employing tumor shape descriptors and MRI-based
tumor texture features. The experiments lead to the creation of several classifica-
tion models, possibly enabling the prediction of the treatment response. These
resulting classification models are evaluated and a selection of best-performing
models is given. The contributions to this chapter were presented at BioMedica in
2017 [103] and at SPIE Medical Imaging in 2018 [104].
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Chapter 6 examines the predictive value of the MRI tumor texture features for
the transient tumor enlargement effect that may occur during the first two to three
years following GKRS. First, two MRI normalization techniques are discussed.
Second, a method for coping with the imbalance in the data is described. Third, a
machine learning algorithm is constructed based on support vector machines, to
evaluate the predictability of transient tumor enlargement using the quantitative
MRI image features. Finally, this chapter evaluates the impact of the tumor size
on the amount of tumor texture information. The contributions to this chapter
were presented at the Int. Stereotactic Radiosurgery Society meeting (ISRS) in
2019 [105], the Int. 8th Quadrennial Conf. on Vestibular Schwannoma and other
CPA tumors in 2019 [106], and were published in the Medical Physics journal in
2020 [107].

Chapter 7 investigates the predictability of the long-term tumor control of
VS tumors that are treated with Gamma Knife radiosurgery. First, this chapter
introduces a data-driven objective definition of long-term tumor control. Second,
it evaluates the effect of the imbalance present in the data and the influence of
the tumor volume on the prediction results. Finally, it assesses the possibility to
train a model that enables the a-priori prediction of long-term tumor control on an
individual patient basis. The contributions to this chapter were presented at the
Int. 8th Quadrennial Conf. on Vestibular Schwannoma and other CPA tumors in
2019 [106], and is accepted for publication in the journal Otology and Neurotology
in 2020 [108].

Chapter 8 summarizes the most important results of this thesis and addresses
the research questions formulated in Section 1.6. Finally, this chapter provides a
brief outlook regarding treatment prediction algorithms for application in Gamma
Knife radiosurgery for vestibular schwannomas.
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2.1 Introduction
The previous chapter has outlined the scope of this thesis by introducing the
vestibular schwannoma tumor and the Gamma Knife treatment modality. Further-
more, it has emphasized the benefit of predicting the GKRS treatment response of
these tumors and it has addressed the inherent challenges.

In this chapter, the basis for the research conducted in this thesis will be pre-
sented. First, the current state-of-the-art in determining predictive parameters for
the Gamma Knife treatment response of vestibular schwannomas is summarized
in Section 2.2. Although many papers describe several parameters that corre-
late to the treatment response, an algorithm for predicting the GKRS treatment
response for VS tumors on an individual basis is currently not available. Nev-
ertheless, in recent years, a variety of image-based investigations into radiation
treatment responses on different tumors have been conducted. These studies are
also discussed in this section.

Because the vestibular schwannoma is a relatively rare intracranial tumor, stud-
ies concerning this disease are rather limited in patient numbers. In the Nether-
lands, Gamma Knife treatment of VSs have been executed since the start of the
Gamma Knife center at the ETZ hospital in Tilburg in 2002. Up till now, this is
the only Gamma Knife center in the Netherlands that has taken care of VS pa-
tients, and therefore has been treating a large number of patients from all over the
Netherlands. The data enclosed in this large patient database is the basis of this
thesis and will be described in Section 2.3.

Another important aspect in determining predictive parameters for any treat-
ment outcome, is the employed definitions of the treatment responses. In current
literature, as described in Section 2.2, there is no clear consensus on the defini-
tions for the different treatment outcomes of Gamma Knife-treated VSs. Therefore,
Section 2.4 introduces novel and objective definitions of the clinically relevant
treatment outcomes.

In order to evaluate the individual treatment responses, we employ the MRI
data of all follow-up visits of each included patient. By determining the VS tumor
volumes on each MRI, it is possible to analyze the individual treatment responses
accurately and objectively. However, since the volume calculations are based on
tumor annotations that are obtained manually, the inter- and intra-observer varia-
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tions are critical in the treatment outcome evaluation. To assess these variations,
an inter- and intra-observer study is conducted, which is presented in Section 2.5.

2.2 State of the art on influencing parameters
Vestibular schwannomas have been treated with Gamma Knife radiosurgery since
the first treatment by Leksell in 1969 [109]. Since then, numerous publications have
discussed this treatment modality for these types of tumors. The treatment pro-
tocol has changed significantly over the past decades, as discussed in Section 1.2,
due to investigations into the efficacy of this treatment. Furthermore, many re-
search papers discuss numerous parameters that may influence the treatment
response, thereby shaping the treatment protocol to what is currently applied in
the clinical care path. In current state of the art, many papers describe cohort-based
investigations into parameters that influence the GKRS treatment outcome of VS
tumors. These so-called risk factors can be classified into the following three main
areas: patient-related, treatment-related, and tumor-related areas. The following
sections discuss, per main area, several clinical investigations correlating certain
risk factors to the treatment response. In Table 2.2.2, a summary of the papers
is given. In this table, the implemented methodologies and the investigated risk
factors and their results are highlighted per article.

2.2.1 Patient-related risk factors
Many papers describe patient-related characteristics, such as patient age and gen-
der, that do not influence the long-term treatment outcome. However, Varughese
et al. [42] postulated that a 10-year increase in age gave 2.18 times higher odds
of tumor control. They speculate that this is caused by failing DNA repair mech-
anisms, leading to the VS becoming more sensitive to radiation with increasing
age. Conversely, Wangerid et al. [45] showed a tendency in younger patients (less
than 60 years old at time of treatment) for higher control rates. Nevertheless, it
appears that age, as well as gender, does not influence the volumetric treatment
response in these tumors.

2.2.2 Treatment-related risk factors
In the case of treatment-related characteristics, various conclusions are found in
the literature. Most of the characteristics that have been investigated, include the
following:

• Radiation dose to the tumor margin: minimum level of absorbed radiation in
Gray (Gy) within the tumor margin;

• Prescription isodose line: planned isodose line that covers the tumor margin
on which a specific dose is prescribed;

• Radiation dose to specific percentages of the tumor volume: minimum level of
absorbed radiation in Gy for a specific percentage of the tumor volume;
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• Maximum radiation dose: maximum level of absorbed radiation in Gy within
the tumor volume;

• Number of shots, or isocenters: the total number of planned radiation shots per
treatment;

• Beam-on time: total number of minutes that is spend in the Gamma Knife
machine, while it was administering radiation;

• Gradient index: a measure for the dose drop-off at the tumor margin;

• Selectivity: a measure for the dose delivered to the tumor, relative to the dose
delivered to normal tissue;

• Paddick conformity index: a measure for the conformity of the treatment plan.

Many articles that examined one or more of these parameters, concluded that the
influence on the long-term tumor control is limited. As reported in Section 1.2,
the prescribed dose has dropped significantly in the last decades. This resulted
in considerably less radiation-induced toxicities, while maintaining equivalent
long-term tumor control. Therefore, it can be hypothesized that small differences
in marginal dose do not influence the long-term tumor control. Nevertheless,
both Hasegawa et al. [39] and Lim et al. [57] concluded that a slightly higher
dose to the tumor margin is correlated to increased long-term tumor control rates.
Contrarily, others did not find this correlation. Notwithstanding, the Gamma Knife
treatment modality has many settings and options, resulting in a high variation of
underlying differences in treatment plans: no two plans with the same prescribed
dose to the tumor margin are the same. Therefore, Millar et al. [110] investigated
the role of the concept biologically effective dose (BED) in treatment planning.
They concluded that BED calculations, taking into account the repair of sublethal
damage, may indicate the importance of reporting overall treatment time, to reflect
the biological effectiveness of the total physical dose applied. Due to the high
complexity of calculating the BED for multi-isocenter treatment plans, reports
have not yet been published that investigate the influence of the BED on the long-
term treatment outcome in VS patients. Nevertheless, it is expected to observe
only a limited influence on the treatment results.
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2.2.3 Tumor-related risk factors
The most-likely source of the variations in treatment responses may be found
in the tumor-specific parameters. Indeed, many articles report that tumor size is
predictive for the long-term tumor control[32], [39], [43], [47], [48], [51], [52], [60].
Large tumors tend to have significantly lower tumor control rates according to
these publications, although a clear cut-off is difficult to render. However, there
are numerous papers that did not find this distinction [31], [40], [41], [44], [45],
[49], [50], [53], [54], [56] or even concluded the opposite, where larger tumors had
greater odds of tumor control [42].

Even though tumor size can be considered a tumor-specific parameter, it does
not reflect differences in intrinsic tumor biology. For instance, two different VS
tumors with the same size may have a contrasting growth behavior, since growth
rates are highly variable in VS tumors [111]. Several clinical investigations have
reported on the influence of the pre-treatment growth rate on the long-term GKRS
treatment outcome. This will be further highlighted in Chapter 3. Presently, six
publications have investigated the influence of the pre-treatment growth to the
outcome of Gamma-Knife treatment. Four of these concluded that it has no influ-
ence, while the two other publications determined the opposite.

Another promising tumor-specific characteristic that is directly related to tu-
mor biology is whether a tumor is cystic or not. During the last decades, it was
considered that cystic VSs did not obtain a good response to radiosurgery [112].
Contrarily, recent publications have shown that there is no significant difference
in long-term treatment outcome between cystic and non-cystic tumors [18], [39],
[46], [50], [52], [57], [59] and that cystic VSs even present a rapid decrease in tumor
volume post-GKRS [39], [46], [50], [53], [59].

2.2.4 Methodologies
From the presented results in the previous sections, it can be concluded that de-
termining the treatment response a priori is highly problematic. Some resulting
conclusions are not concurred by its peers, while others even deduce the opposite.
It is a difficult topic, and the authors of the new guidelines published in 2018
determined that all evidence could only be classified as unclear clinical certainty at
best [25]. The difficulty in comparing results obtained in these mostly retrospec-
tive studies, lies in the fact that many papers describe data on a limited number of
patients and follow-up times. Since the reported tumor control rates of GKRS on
VS lie in the range 80 – 100%, the absolute number of failures is small in cohorts
of limited sizes. Furthermore, treatment failures can occur many years after treat-
ment [32], resulting again in a limited number of failures if the follow-up time is
insufficient. Therefore, the statistical power of these studies is low. Moreover, the
differences between treatment failure definitions cause significant methodologi-
cal inconsistencies [42], [47], [113]. These different definitions may substantially
impact the number of failures per study, resulting in incomparable results that can-
not be generalized over the complete VS patient population. There are numerous
other issues that cause methodological imperfections, making comparison even
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more difficult. Some examples are variations in: (1) tumor measurement methods,
(2) growth classifications, (3) distribution of tumor sizes, and (4) classification
definitions for cystic tumors.

2.2.5 Radiomics
Because the assumed biological effect of radiosurgery on VS cells is a combina-
tion of acute inflammation and vascular occlusion [67], [68], it is hypothesized
that the treatment response depends mainly on the individual tumor biology.
Therefore, a prediction model should incorporate biological tumor characteristics.
Because tumor biopsy is not necessary for diagnosis and poses significant risks
for intracranial hemorrhage, tumor-tissue information needs to be obtained from
readily available clinical data. One source of biological information is through
imaging techniques, such as MRI. For VS tumors, MRI images are readily available
as this imaging technique is generally used for diagnosis.

Only a few studies to date have investigated the possible influence of dif-
ferences in VS tumor biology on the GKRS treatment response by means of
quantitative MRI tumor characteristics, i.e. radiomics. Two studies considered
the apparent diffusion coefficient (ADC), calculated from MRI with diffusion-
weighted imaging (DWI). The ADC value is a measure of the magnitude of water
molecule diffusion within tissue, thereby reflecting differences in tumor biology.
Camargo et al. [51] concluded that the pre-treatment ADC values of VS tumors
were lower in responders than in non-responders. By employing a minimum
ADC value of 800 × 10−6 m2/s, they correctly classified 18 out of 20 patients.
These results were obtained in a limited dataset containing 11 responders and
9 non-responders. Wu et al. [53] similarly determined that ADC values were pre-
dictive for the VS treatment response. They surmised that the maximum ADC
value of patients with tumor regression or stabilization (at last follow-up) was sig-
nificantly higher than in those with tumor progression. Since advanced techniques
like DWI are usually not applied in clinical practice, Speckter et al. [59] employed
a first-level texture recognition analysis for determining a prediction model. The
comparison of first-order statistical texture features (e.g. mean, standard deviation,
kurtosis) between the group of 14 progressors and the 9 regressors did not show
significant differences. Nevertheless, they were able to obtain a sensitivity and
specificity of 71% and 78%, respectively, in their complete cohort by employing a
separating value based on the kurtosis of the T2-weighted MRI.

Speckter et al. [114] not only investigated the impact of tumor texture on the
GKRS treatment outcome for VS tumors, but also for meningioma tumors. They
concluded that, if only routine MRIs are available, the standard deviation of the
T2-weighted MRI can be used for predicting treatment success. Radiomics are also
used in creating models that can predict the radiosurgical treatment outcome of
malignant brain tumors, such as brain metastases and gliomas. Tiwari et al. [82]
were able to distinguish cerebral radionecrosis from recurrent brain tumors on
multi-parametric MRI. Peng et al. [84] and Zhang et al. [83] evaluated texture
features calculated on MRI sequences, to find predictive models distinguishing
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radionecrosis from true tumor progression following radiosurgery on brain metas-
tases. Wang et al. [85] demonstrated that multi-modality MRI imaging and ra-
diomics analysis have potential to identify early treatment response of malignant
gliomas treated with concurrent radiosurgery and bevacizumab.

These studies all highlight the importance of incorporating tumor-specific in-
formation, possibly reflecting underlying biological differences, for creating a treat-
ment prediction model. Nevertheless, a well-designed methodology is paramount
in such an investigation. It requires a large number of patients with a significantly
long follow-up time, in order to create a robust and generic prediction algorithm.
Furthermore, clear and objective definitions of treatment failure, transient tumor
enlargement, and long-term tumor control need to be implemented. In the fol-
lowing sections, the patient database, the treatment outcome definitions, and the
tumor measurement methods used for the work described in this thesis, will be
discussed in more detail.

2.3 Patient database
Within the Gamma Knife center at the ETZ hospital in Tilburg, patients with
vestibular schwannoma have been treated since its start in 2002. Up till now, more
than 1,200 patients have received GKRS for their VS. This includes (1) patients that
previously underwent surgical resection, either partial, sub-, or near-total, (2) pa-
tients that suffered from neurofibromatosis Type 2 (NF2), and (3) patients that
received a re-treatment of their VS after GKRS treatment failure. This is a unique
large database which enables extensive and in-depth research in this disease and
its response to the Gamma Knife treatment.

To create a database that is optimally defined, all patients are excluded that pre-
viously underwent treatment for their VS, either (micro-)surgical or radiosurgical.
Furthermore, all NF2 patients are omitted, as their conditions are considered to
have significant differences in tumor biology compared to non-NF2 patients [115].
One of the signs that a patient may suffer from NF2 is presenting bilateral VS tu-
mors. As such, only unilateral VS patients are included. Finally, since the treatment
response is generally a slow process, a long follow-up time is needed for evaluat-
ing the overall treatment response. Therefore, all patients that received treatment
after 2014 are excluded from the long-term treatment-response evaluation, and all
patients treated after 2015 are excluded from the short-term treatment-response
evaluation.

After these exclusions, a dataset of 735 patients is created for the long-term
treatment-response evaluation. Table 2.2 highlights a number of aspects of this
dataset, including patient- and treatment-related characteristics. Of these 735 pa-
tients, 75 (10.2%) were at some point in time lost to follow-up, 62 (8.4%) required a
second treatment, and the remaining 598 (76.1%) remain under observation. Lost
to follow-up is generally caused by disease-unrelated death, patient well-being,
or patient preference. Of the 62 patients requiring intervention, 14 (22.6%) un-
derwent microsurgical resection, 46 (74.2%) had a secondary GKRS treatment,
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Characteristic Median IQR Range

Patient age at treatment [yrs] 58 49 – 66 15 – 87
Tumor volume at treatment [mm3] 1531 627 – 3810 14 – 18706
Pre-treatment observation time [mos] 19 14 – 30 6 – 105
Post-treatment follow-up time [mos] 72 49 – 108 0 – 199
Volume Doubling Time [mos] 15 10 – 26 3 – 344
Prescription dose [Gy] 13.0 12.5 – 13.0 8.4 – 19.4
Prescription isodose line [%] 58 48 – 64 36 – 100
Dose to 100% of tumor vol. [Gy] 11.3 11.0 – 12.0 8.8 – 13.0
Dose to 99% of tumor vol. [Gy] 11.8 11.4 – 12.6 9.5 – 14.8
Dose to 95% of tumor vol. [Gy] 12.6 12.2 – 13.6 4.5 – 15.3
Dose to 90% of tumor vol. [Gy] 13.0 12.6 – 14.2 5.9 – 16.2
Maximum dose to tumor vol. [Gy] 21.9 19.8 – 26.1 12.8 – 36.5
No. of isocenters 15 10 – 21 1 – 53
Beam-on time [mins] 42.2 31.0 – 55.6 4.9 – 132.2
Coverage [%] 91.0 89.0 – 99.0 0.0 – 100.0
Selectivity 0.89 0.82 – 0.94 0.00 – 0.99
Gradient index 2.94 2.70 – 3.34 2.44 – 9.73
Paddick conformity index 0.83 0.78 – 0.86 0.02 – 1.31

Table 2.2 — Patient- and treatment-related characteristics, where IQR stands for inter-quartile
range.

and 2 patients (3.2%) were relieved of a growing cyst and fluid build-up. A total
number of 6 neurosurgeons planned the GKRS treatment at the Gamma Knife
center in the employed time-period.

The Gamma Knife center in Tilburg is a tertiary center, where patients are gen-
erally referred from other hospitals. Reason for referral is mainly tumor growth
(441 patients, 60.0%). Other indications are the tumor size at diagnosis (159 pa-
tients, 21.6%), hearing preservation (84 patients, 11.4%), and preference of the
patient (20 patients, 2.7%). Of the remaining 31 patients (4.2%), the reason for
referral was not discernible from their medical records. Out of the 735 patients,
363 had their VS at the left side (49.4%).

To enable the evaluation of the treatment response, all follow-up MRI data
are collected. From these scans, the tumor volume changes are calculated. A
total number of 3,666 MRI scans are employed for determining these volume
changes. Utilizing this data, it is possible to accurately determine the Gamma
Knife treatment response of the included patients. This enables the creation of very
strict inclusion criteria for the experiments conducted in this thesis. Furthermore,
the extensive number of parameters that are included in the database allows for
accurate assessment of all possible risk factors.
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2.4 Treatment response definitions
In current clinical practice, tumor treatment responses are generally evaluated
using medical imaging. The assessment is performed by means of linear mea-
surements via comparing the size of the tumor on the latest post-treatment scan
to its size of the pre-treatment scan or of the second-last post-treatment scan. In
order to provide an objective measure for treatment responses, the Response Eval-
uation Criteria in Solid Tumors (RECIST) group developed a concept which is
integrated in the guidelines for codification of tumor response evaluation [116].
In this concept, the response criteria are defined as follows:

• Complete response: disappearance of all target lesions;

• Partial response: at least 30% decrease in the sum of longest diameters;

• Progressive disease: at least 20% increase in the sum of longest diameters;

• Stable disease: otherwise.

In 2003, a consensus meeting on systems for reporting results in vestibular
schwannoma was convened [117]. In that meeting, an agreement was made on
only using linear measurements in millimeters instead of volumetric measure-
ments. Nevertheless, in the classification of the radiotherapy treatment effect, a
10% decrease in volume (or 2 mm in longest diameter) is considered control of
tumor growth. The tumor is classified as progressive if the tumor has increased in
size by 2 mm or by 10% in volume.

In 2009, a revision of the RECIST criteria, called modified RECIST (mRECIST),
was developed [118]. In this modification, disease progression classification now
additionally requires a 5-mm absolute increase in the sum of largest diameters of
the tumors, in order to cope with erroneous classification of progression when the
sum of diameters is very small. Furthermore, a tumor is now considered measur-
able if the largest diameter is larger than 10 mm, instead of the previously adopted
20-mm threshold. At the moment of the mRECIST publication, the authors did not
recommend adoption of volumetric assessments, although there was sufficient
standardization and widespread availability. However, since then, several publi-
cations emphasize the need for volumetric tumor measurements in order to more
accurately assess the treatment response [119]–[122]. The benefit of using vol-
umes becomes evident when a comparison is made between the one-dimensional
RECIST criteria and their volumetric counterparts: a 20% increase in largest diam-
eter results in a 73% gain in volume, and a 30% linear reduction in a 65% decrease
in volume [116]. This motivates why tumor volumes are employed in this work,
to accurately assess the treatment response. Moreover, many of the treated tumors
are smaller than 20 mm in longest diameter. As such, these small tumors should
be considered immeasurable according to the RECIST and mRECIST criteria.

As previously described, the main difficulty in determining disease progres-
sion in the case of GKRS-treated VS tumors is that the treatment response is
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generally slow and can show unpredictable behavior. For instance, multiple re-
ports describe a radiation-induced transient tumor enlargement (TTE) that occurs
in a broad range of 11 – 74% of VS patients treated with stereotactic radiosurgery,
during the first 2 – 3 years after treatment [33], [52], [123]–[136]. With the availabil-
ity of a large database and significant follow-up, we have been able to carefully
investigate the individual treatment responses of these tumors. Indeed, from these
assessments, various volumetric treatment responses have been observed. Some
examples are highlighted in Figure 2.1. These graphs demonstrate that the re-
sponse of a VS tumor to the GKRS treatment can change significantly throughout
the follow-up duration and it is rarely linear or monotonous, making the clas-
sification of disease progression difficult at any given time-point. For example,
in the case of a TTE, the increase in tumor size leads to a progressive disease
classification according to the RECIST criteria. However, since TTE is a transient
phenomenon and most tumors reduce to their original size after this temporary
swelling, it is generally not considered as disease progression. Moreover, there are
tumors that display volumetric stability following TTE. Again, RECIST classifies
this as progressive disease, even though the radiosurgical treatment objective for
VS tumors is to halt tumor progression, which is accomplished in these cases.
As such, we consider that the RECIST criteria are not well suited for defining
treatment failure and treatment success in this work.

2.4.1 Treatment failure
Many papers describing the Gamma Knife treatment response of VS tumors have
been published. In these papers, the employed definitions of treatment failure
vary significantly, as discussed in Section 2.2.4. Most medical centers classify the
treatment as failed if intervention took place. There are two major issues with
such a definition: (1) what criteria need to be satisfied prior to intervention is
considered, and (2) if those criteria are met, is an intervention really desirable.
Concerning the first highlighted issue, the criteria for intervention vary for each
medical center and even for each patient, especially if worsening of symptoms
is involved. Moreover, these criteria may change over time due to new insights.
For example, the insights in the occurrence of TTE have changed the criteria for
intervention [137]. Furthermore, in conjunction with the second issue, intervention
may still be highly undesirable due to e.g. the fact that a patient is deemed unfit
for salvage surgery, even if the criteria for intervention would be standardized.

Nevertheless, the most important criterion for intervention is tumor size pro-
gression. Generally, for many medical centers, this is determined by employing
linear tumor measurements. As discussed in the previous section, this is not a
highly reliable and accurate method, as small progressions can be easily missed.
Therefore, in addition to proven tumor progression followed by intervention, a
mathematical model for determining treatment failure is employed in this work.
This model simultaneously accounts for missed small progressions in the clinical
setting and for undesirable interventions. The model may not be clinically rele-
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Figure 2.1 — Examples of different volumetric responses of vestibular schwannoma to the Gamma
Knife treatment.
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Figure 2.2 — Graphical representation of (a) the volumetric failure definition and (b) the transient
tumor enlargement definition. In these graphs, ∆vol. represents the required significant volume
change, and i, j are integers denoting the i-th or j-th follow-up (FU) scan, respectively.

vant, but it provides an objective measure for determining treatment failure. This
so-called volumetric failure is defined as two consecutive significant increases in
tumor volume, among three consecutive follow-up MRI sessions. The definition
of a significant volume change is based on the inter- and intra-observer variability,
discussed in Section 2.5. To exclude changes in volume caused by TTE, only MRIs
were used that are obtained after the first two years of follow-up. A graphical
representation of this definition can be found in Figure 2.2. Furthermore, in order
to avoid miss-classifying TTE occurrence as treatment failure, all patients with
an intervention in the first two years following GKRS are excluded in our binary
prediction evaluations.

2.4.2 Treatment success
Medical papers describing the GKRS treatment response of VS tumors employ
various statistical tools for evaluating the treatment outcome. These tools measure
the fraction of patients surviving for a certain amount of time after treatment. In
the case of VS tumors, a non-failed treatment is considered as surviving. Therefore,
a treatment success definition is not required. However, such a distinction from
treatment failure is crucial in a machine learning approach for binary prediction of
the treatment response. Defining treatment success is in the case of Gamma Knife-
treated VS tumors highly challenging, specifically because the main treatment
goal for VSs is to halt tumor progression. Therefore, treatment success may be
defined as no more growth. However, it is impossible to determine whether a
tumor has stopped growing permanently and will remain stable or decrease even
further in size during the remainder of a patient’s life. In theory, a treatment
failure may occur many years after GKRS. Indeed, Hasegawa et al. [32] reported
that only after ten years of follow-up, no more failures occurred. However, others
reported the last-occurring failure at four years after GKRS [138]. Hence, treatment
success cannot be defined without concessions. As a consequence, the treatment
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success definition employed in this work is based on the latest occurring failure
in the employed large database. This failure presented at 129 months following
treatment, concurring with the data reported by Hasegawa et al. [32]. According
to these strict criteria, 89 patients have been treated successfully in the database.

2.4.3 Transient tumor enlargement
A third relevant Gamma Knife treatment outcome is the previously mentioned
phenomenon of transient tumor enlargement (TTE). This short-term treatment
response is considered clinically important for large VS tumors that already ex-
hibit contact to, or pressure on the neighboring critical brain structures, such as
the brain stem. This post-radiation swelling of the tumor may cause severe, and in
some cases, life-threatening adverse effects, necessitating emergency interventions
to alleviate the mass effect, which further increases the risk of surgical complica-
tions. This phenomenon can occur in the first 2 – 3 years following treatment, with
the peak volume between 6 – 15 months after radiation, followed by volumetric
reduction [33], [49], [127], [132], [134]. For this reason, the TTE effect is defined
in this work as a significant volumetric increase within the first 12 months after
treatment, followed by volumetric reduction to at least the tumor volume at treat-
ment. Again, the definition of a significant volume change was based on the inter-
and intra-observer variability, as discussed in Section 2.5. Since the TTE can be
resolved at 12 months following treatment, a follow-up scan around 6 months
after treatment is required in order to prevent miss-classifying such a response
as non-TTE. Part b of Figure 2.2 shows a graphical representation of the TTE
definition.

2.5 Inter- and intra-observer variations
As previously discussed, volumetric measurements form an integral part of this
work. The tumor volumes were determined on all available pre- and post-treat-
ment MRI scans, in order to evaluate the pre-treatment growth rates and the post-
treatment volumetric responses. Segmentation of the tumor was performed slice
by slice with the Gamma Knife treatment software (GammaPlan® Versions 10 and
11, Elekta AB, Stockholm, Sweden). The segmentation tool in this software aids the
operator by enabling a semi-automatic contouring. This method highlights and
selects all voxels in an operator-selected intensity range, that are within a drawn
circle on a single MRI slice. The resulting contours can be manually modified to
optimize the tumor delineation. After the segmentation is completed, the software
calculates the encompassed tumor volume. Because the contouring of each tumor
depends on the operator, the obtained volumes may vary between operators and
between contours of the same tumor by a single operator at different time-points.
These operator-induced discrepancies are known as inter- and intra-observer
variations, respectively.

These inter- and intra-observer variations are critical in many fields, especially
in the medical field. Generally, in the medical community, a gold standard is estab-
lished for annotations of anatomical regions in medical imaging. Nevertheless,
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small differences can be crucial in automatic segmentation and detection. For
instance, Van der Sommen et al. [139] introduced a so-called sweet-spot method for
improving the annotations of detections and optimizing detection performance.
In their paper, they utilize the intersection of all expert annotations as positive
training samples and the complement of the union of all annotations as negative
training samples. Another method for estimating the true segmentation is intro-
duced by Warfield et al. [140]. Their method considers a collection of annotations
and computes a probabilistic estimate of the true segmentation and a measure
of the performance level represented by each segmentation. In this thesis, it is
important to know the inter- and intra-observer variations, since it influences
the treatment outcome evaluation. Because we are not interested in automatic
segmentation and all follow-up MRI scans are contoured by a limited number of
operators, we assume that the obtained annotations are sufficient for volumetric
response evaluation. Nevertheless, small variations between contours should be
incorporated in the definitions for treatment responses.

Generally, for linear measurements, an increase of at least 2 mm is considered as
growth by the RECIST criteria (see Section 2.4), for preventing miss-classification
due to these operator-induced variations. However, this is not yet generalized for
volumes. Some researchers employ a 20% cutoff [41], while others recommend
to use a 10% volume threshold [117]. To determine a lower bound on volume
change, an inter- and intra-observer variation experiment was designed. For the
inter-observer variations, several operators evaluated the tumor volume by con-
touring it. These operators included two neurosurgeons with years of experience
in contouring tumors on MRI, using the planning software. Two other opera-
tors were instructed on the contouring and had certain experience prior to this
variability study. Furthermore, one operator who annotated most of the pre- and
post-treatment volume annotations, performed the same contouring again several
weeks after the first contouring, to determine the intra-observer variations.

This study is based on employing the T1-weighted, contrast-enhanced MRI
scans of the first follow-up visits. The reason for selecting these scans is found
in the tumor appearance, since this can vary significantly between patients. Dur-
ing the first year after treatment, a radiation effect that results in tumor necrosis
may be present inside the tumor. This will create hypointense areas within the tu-
mor, making the segmentation more labor-intensive because the computer-aided
method cannot be applied in these cases. This enforces the operators to segment
the tumor completely manually, leading to increased differences between opera-
tors, compared to employing the treatment scan. This results in an over-estimation
of the observer variations.

Since the volume range in the complete dataset is large, i.e. ranging from
15 mm3 to 18,720 mm3, the scans employed in this analysis are not randomly
chosen, but selected according to the distribution of all tumor sizes. The volume
distribution of all VS tumors in the database is depicted in Figure 2.3, where it
can be distilled that the distribution is highly skewed towards the left side of the
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Figure 2.3 — Histogram-based distribution of all tumor volumes in the dataset.

volume range.
The inter- and intra-observer rates can be visualized using a Bland-Altman

plot [141]. Generally, this plot is employed for displaying the absolute differences.
However, in this case, the relative difference between the volumes is of interest.
For doing so, the following calculations are performed:

Meanv =
Volume1 + Volume2

2
, (2.1)

Relative difference =
Volume1 −Meanv

Meanv
. (2.2)

These calculations allow the comparison of the volumes created by two dif-
ferent operators (inter-observer), or of two different annotations from the same
operator (intra-observer). The obtained results are depicted in Figure 2.4. It can be
clearly observed from the graphs that the variations depend on the tumor size.
This was hypothesized, because small tumors consist of a small number of voxels,
while large tumors are composed of a large number of voxels. The difference
between two operators may be relatively small in the absolute number of voxels.
However, the relative difference with respect to the tumor size, becomes larger
for smaller tumors. Indeed, in the bottom graph of Figure 2.4 it is clear that the
relative difference for smaller tumors is increased compared to the larger tumors.

Another influencing factor in annotating the tumor is the MRI image quality.
The first treatment in the database dates from 2002. Since then, the scanning
protocols of the MRI and the machine itself may have changed. For instance, in
the earlier years, thicker-sliced MRIs were employed for the treatment planning.
Furthermore, the signal-to-noise ratios have increased due to improved software
and hardware. As such, the MRI image quality has improved significantly over
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Figure 2.4 — Results of the inter- and intra-observer variation study in volume annotations.
Here, the absolute values of the relative differences are plotted against the calculated means. Terms
OP1 and OP2 denote the two instructed operators with certain experience, NS1 and NS2 are the
experienced neurosurgeons. Note that the top figure depicts the results over the complete volume
range, while the bottom figure zooms in on the smaller tumors.

the last decades. To analyze this impact, two operators additionally investigated
the inter- and intra-observer variations in older scans compared to more recent
scans. To this end, two different datasets were created. One contained images
from 2002 up to 2009, while the second set contained images from 2011 up to
2014. The results of this experiment can be found in Figure 2.5. Again, smaller
tumors show a larger variability than larger tumors. These results also highlight
that the variability is slightly higher in the older scans, although this dependency
is limited to the smaller tumors.

From the results given in Figures 2.4 and 2.5, it is extrapolated that the vari-
ability for larger tumors remains well below the 10% relative difference. There-
fore, 10% is chosen to be the lower bound on volume change for larger tumors.
However, for smaller tumors, this bound does not hold. At the bottom part of
Figures 2.4 and 2.5, it can be distilled that for tumors smaller than 250 mm3, the
lower bound on volume change should be higher than 10%. In this study, a lower
bound of 20% is selected for these tumors. Although it can be argued that this
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Figure 2.5 — Plot of the inter- and intra-observer variations, comparing old and recent MRI
scans. The absolute values of the relative differences are plotted against the calculated means. Note
that the top figure depicts the results over the complete volume range, while the bottom figure zooms
in on the smaller tumors.

bound value is too low, the volumetric failure definition is safeguarded against
misclassification, by requiring twice such an increase.

2.6 Machine learning techniques
At present, machine learning is a hot topic in research and industry, where new
methods are developed continuously. It enables the discovery of models that are
contained within the data, thereby facilitating the construction of many appli-
cations. Some examples are image recognition (e.g. face detection, license plate
detection), automatic language translation, stock-market trading, online fraud de-
tection, spam and malware filtering, self-driving cars, product recommendations,
speech recognition, etc.

In the medical field, the applications of machine learning are based on dis-
ease detection and diagnosis, automatic segmentation of regions of interest, and
prognosis prediction, and its use has increased rapidly [142]. Some examples of
these applications are detection of early Barret’s neoplasia [143], discriminating
molecular subtypes of glioblastomas and the corresponding 12-month survival
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status [81], and cancer detection in histopathology whole-slide images [144]. In
recent years, the number of publications employing machine learning in clinical
data has grown exponentially and the methods have increased in complexity.

Generally, there are two different machine learning strategies: feature-based
and featureless. The first strategy employs calculated image characteristics as
input to learn a mathematical model, which relates these characteristics to an
output variable, e.g. disease classification. This strategy generally explores a hy-
perplane that separates the input vectors of different output classes with a high
accuracy. In medical image analyses, the input characteristics are also known as
radiomic features. These features, often based on the expertise of clinicians, are con-
sidered to describe biological properties of the tissue, thereby –at least partially–
representing biological information. In a review by Gillies et al. [69], the authors
have reported on the potential power of medical image analysis using radiomics,
to facilitate improved clinical decision making. Indeed, many studies describe
the ability of employing computer-aided diagnosis using medical imaging for
classifying disease and treatment response [73].

The second strategy, i.e. featureless learning, employs images as inputs instead
of handcrafted features, thereby skipping the feature extraction and selection
steps. This method, also known as deep learning, is currently outperforming the
previously described strategy in many fields of research, including the medical
imaging field [91]. It employs several layers of parameters to capture nonlinear
patterns in the data. However, for the best performance, this technique requires
large-scale data input and a significant amount of computational power, since
it involves self-tuning of many parameters within huge network architectures.
Furthermore, due to the number of hidden layers and parameters, it is difficult to
interpret the resulting deep learning models [91].

Since medical data on the rare vestibular schwannoma is inherently limited
especially in combination with Gamma Knife radiosurgery, training deep learning
networks from scratch is impossible. Furthermore, because this work provides the
first experiments into evaluating the predictability of GKRS on VS tumors, em-
ploying feature-based methods instead of featureless methods may provide more
insight in the resulting model, thereby providing a basis for more complex meth-
ods. Hence, we are going to opt for employing feature-based machine learning
techniques to evaluate the predictability of the GKRS treatment response. Because
the ultimate goal is to predict the treatment response, we will utilize supervised
machine learning techniques in this work. Therefore, the input data needs to have
a correct classification labeling, such that the resulting model can classify new
unseen inputs with high accuracy, as discussed in Section 2.4.

Several supervised machine learning strategies are available for binary clas-
sification of the input data. These include a.o. logistic regression, decision trees,
support vector machines, and random forests1. Since logistic regression employs a

1Random forests are typically an ensemble of decision trees, which average the results of multiple
trained decision trees.
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Figure 2.6 — Graphical example of a decision tree. In this tree, the input is divided into subsets
using first-order statistical features of gray-level intensities within an image, e.g. MRI. For instance,
the first “if-then” node in this tree represents the question “is the mean intensity value lower
or higher than 0.75?”. If the value is higher than 0.75, the input progresses to the right branch,
otherwise it proceeds to the left branch. This is continued until the input reaches a terminating leaf
(triangle), after which the classification label is known.

linear decision surface, i.e. the separating surface between inputs, it is considered
not powerful enough for our research. Therefore, we will experiment on the data
using decision trees and support vector machines, because these methods provide
a higher multi-dimensional freedom in constructing the decision boundary. The
choice for these two types of machine learning is based on the ease of interpreta-
tion and their successful results in medical image classification. Both methods are
explained in more detail in the following subsections.

2.6.1 Decision trees (DTs)
Decision tree learning is one of the supervised machine learning methods that en-
ables classification from observations in the data. A DT generates hypotheses that
consist of multiple ”if-then” statements, thereby building up a decision tree that
is easy to interpret. It divides an input space, spanned by the calculated features,
into multiple non-overlapping regions. A resulting tree model consists of nodes,
branches, and leafs. A node represents the attribute that is tested, and a branch is
the outcome of that test. The leafs are the end-points of the tree, representing the
final classification label. This is graphically depicted in the example of Figure 2.6.

Training such a tree results in a division of the input data into subgroups,
such that the distribution of class labels in the subgroups are as homogeneous as
possible. The depth of the tree is an important parameter and can be controlled by
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setting the maximum number of branch nodes, the maximum number of consecu-
tive branches, and the minimum number of leaf-node observations. The creation
of such a tree is performed by splitting the input feature vector into subsets. This
process is recursively repeated on each derived subset until either a single subset
at a node has all the same class labels, or when splitting no longer adds informa-
tion to the classification. This process is known as top-down induction of decision
trees [145]. The features that are employed for splitting the data are determined
using the information gain provided by the individual features. The individual
feature-specific information gain I(A) is calculated by the difference between the
entropy H of the training set S and the entropy of the feature A:

I(A) = H(S)−
∑
vεAvals

|Sv|
|S|

H(Sv), where (2.3)

H(S) = −
N−1∑
i=0

pi log2 pi. (2.4)

Furthermore, H(Sv) is computed according to Eq. (2.4) where the input variable
is the probability distribution of subset Sv. In the above equations, parameter N
is the number of output classes, pi denotes the probability of class i within the
(training) set, v is a specific feature value, Avals are all possible values of feature
A, and Sv corresponds to the subset of S where feature A has a value v [70].
Features are then ranked by their information gain from highest to lowest and are
subsequently employed for splitting the data.

2.6.2 Support vector machines (SVMs)
Another important classification method of supervised machine learning is SVMs,
which is still broadly applied in many machine learning applications. This method
allows for training a binary classification model by finding the best hyperplane
that separates all input features of one class from the feature values of the other
class. It computes a decision boundary with a maximized marginal distance to
the input data, such that it can provide a robust decision boundary enabling the
obtained model to tolerate noisy test data [70]. In order to determine this deci-
sion boundary, SVM methods optimize between the maximum margin and the
training error. The data points that are closest to the separating hyperplane are the
so-called support vectors. Figure 2.7 shows a graphical representation of a separat-
ing hyperplane and the corresponding support vectors. There are several methods
for determining the separating hyperplane. If data is linearly separable, a hard
margin can be calculated. With a normalized dataset, the parallel hyperplanes
can be described by (~w · ~x) − b = +1 and (~w · ~x) − b = −1, where ~x represents
the data point, ~w is the normal vector to the hyperplane, b determines the off-
set of the hyperplane from the origin, and −1 and +1 are the class labels. The
margin distance equals 2/‖~w‖, so that for the maximum distance between the
two parallel hyperplanes, ‖~w‖ needs to be minimized. Furthermore, data points
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Figure 2.7 — Graphical representation of separating hyperplane. Here, the support vectors, i.e.
the data points that are on the maximum marginal distance, are highlighted by circles.

cannot fall within the margin. Therefore, the constraint yi ((~w · ~xi)− b) ≥ 1 for
all data points i is included in the optimization problem. For data that is not lin-
early separable, the hinge loss function is introduced, based on the expression
max (0, 1− yi ((~w · ~xi)− b)). This results in the following minimization problem:

argmin
~w,λ

[
1

n

n−1∑
i=0

max (0, 1− yi ((~w · ~xi)− b)) + λ‖~w‖2
]
, (2.5)

where parameter λ determines the trade-off between increasing the margin size
and ensuring that all ~xi do not lie between the two parallel hyperplanes. This
problem can be rewritten as a constrained optimization problem, so that

minimize
1

n

n−1∑
i=0

max (0, 1− yi ((~w · ~xi)− b)) + λ‖~w‖2, (2.6)

subject to yi((~w · ~xi)− b) ≥ 1−max (0, 1− yi ((~w · ~xi)− b)) and

max (0, 1− yi ((~w · ~xi)− b)) ≥ 0.

By solving the Lagrangian dual of this problem, it can be simplified to:

maximize f(c0, . . . , cn−1) =

n−1∑
i=0

ci −
1

2

n−1∑
i=0

n−1∑
j=0

yici(~xi · ~xj)yici, (2.7)

subject to
n−1∑
i=0

ciyi = 0, where 0 ≤ ci ≤
1

2nλ
.

Here, the variables ci for i = 0, 1, . . . , n− 1 (where n is the number of data points)
are defined such that ~w =

∑n−1
i=0 ciyi~xi. Moreover, ci = 0 for ~xi that lie on the

correct side of the margin, and 0 ≤ ci ≤ (2nλ)−1 for ~xi lying on the parallel hyper-
planes. This problem can be solved using quadratic programming algorithms.

In order to create nonlinear classifiers, Boser et al. [146] suggested to apply
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kernels in the optimization problem. Some common kernels that are employed in
SVM training are polynomials, Gaussians, and hyperbolic tangents. These kernels
are implemented to transform feature space S to a higher dimensional space SK ,
using the transform ϕ(~xi). The classification vector ~w is also transformed to SK ,
thereby becoming ~w =

∑n−1
i=0 ciyiϕ(~xi). In the problem given in Eq. (2.6), the inner

product (~xi · ~xj) is transformed to (ϕ(~xi) · ϕ(~xj)). The coefficients ci can be solved
again by using quadratic programming.

2.6.3 Validation
After the training step, each resulting model needs to be evaluated for its ability
to separate the classes. This validation step can be performed utilizing several
different strategies and provides an unbiased evaluation of the model fit on the
training data. Generally, it calculates the following performance metrics.

• Accuracy: Percentage of the correctly classified data samples out of all data
samples, i.e. true positives plus true negatives divided by all available sam-
ples.

• Sensitivity: Ratio between correctly classified positives over all actual posi-
tives, i.e. true positives divided by the sum of true positives and false nega-
tives.

• Specificity: Ratio between correctly classified negatives over all actual neg-
atives, i.e. true negatives divided by the sum of true negatives and false
positives.

• Area under the receiver operating characteristic: An aggregate measure of perfor-
mance across all possible classification thresholds. It is the probability that
a classifier will rank a randomly chosen positive data sample higher than
a randomly chosen negative sample (under the assumption that positives
rank higher than negatives).

Here, positives and negatives represent the two classification classes. These above-
described measures are chosen for their interpretability and are well-known for
their ability to evaluate model performance.

One of the possible validation strategies which is often employed is k-fold
cross-validation. This method first splits the data into k randomly partitioned
subsets, i.e. folds. Then, the model is trained on k − 1 folds and tested on the
left-out fold. This is executed k times, after which the results of each validation are
averaged over the k calculations. A schematic overview of this validation strategy
is given in Figure 2.8. Such a method of validation provides an assessment of the
ability of the model to generalize towards independent datasets. However, it has a
significant downside, since it trains only on k − 1 folds of the available data. This
disadvantage is reduced in another method that is often implemented in model
validation, namely leave-one-out cross validation (LOOCV). This method performs
the same steps as k-fold cross-validation, only with k equal to the number of data
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Figure 2.8 — Graphical representation of a 5-fold cross validation strategy.

samples. In other words, it leaves out only one sample for the training step, and
then checks the classification result of the trained model on that left-out sample.
This is executed for each individual data sample, after which all performance
results are averaged.

Both above-described model validation methods result in models that have
seen all data samples. This makes it hard to evaluate whether the final model is
able to accurately classify new (unseen) data samples. To improve this, the com-
plete dataset can be split into a training set and a test set. This validation method is
known as hold-out validation, where the model is trained on the training set, pos-
sibly by including k-fold cross-validation, after which it is validated using the test
set. Since the trained model has not yet seen the test data, the results obtained on
these unseen data samples highlight the ability of the model to generalize on other
novel datasets. However, this method reduces the number of data samples avail-
able for training even further, compared to k-fold cross-validation. In addition,
this method may suffer from sampling bias because due to non-random sampling,
some data points may be less likely included in training compared to other data
points. This is particularly the case when the complete dataset consists of a lim-
ited number of data points. Therefore, this hold-out method requires a significant
amount of training data. Indeed, it has been shown that hold-out validation is less
suited for performance estimation given a finite sample amount [147]. For this
reason, in this work, we will opt for LOOCV and k-fold cross-validation, where k
is set to 10.

2.7 Feature extractors
Many feature extraction methods have been introduced in radiomics studies.
These features may involve the shape of the regions of interest (ROIs), but also
texture of the included ROIs. Some of the implemented features are based on
clinical knowledge and are engineered for a specific task. Others are more general
and have been implemented in other fields of research within computer vision, or
even find their origin outside computer vision.

In the current research of vestibular schwannomas, it remains unclear which
sets of radiomic features are related to the Gamma Knife treatment response.
However, based on the supposition of the neurosurgeons who perform the GKRS
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treatment of VS tumors in the Gamma Knife center in Tilburg, it is considered that
contrast-enhancing tumors with inhomogeneous texture properties show differ-
ent behavior than the homogeneous contrast-enhanced tumors. More specifically,
inhomogeneity in the form of dark streaks and dark areas within the enhanced
lesion are considered to be the most informative visual properties. Thus, a subset
of radiomic features can be selected, that adequately quantify such forms of het-
erogeneity. These include features calculated on gray-level co-occurrence matrices
(GLCMs), gray-level run-length matrices (RLMs), gray-level size zone matrices
(GLSZMs), and Minkowski functionals (MFs). The following subsections describe
these feature extraction methods in more detail.

2.7.1 Gray-level co-occurrence matrices (GLCMs)
One method for quantifying image texture is by employing GLCMs. These matri-
ces describe the distribution of co-occurring pixel values at a given offset within
an image. This method was introduced in 1973 by Haralick et al. [86], and has been
exploited successfully in many fields of research [78], [79], [81], [82], [148]–[152].

Given a gray-level image I , this method computes how often pairs of pixels
with a specific value and offset, under different viewing angles, occur within the
image. Each element (i, j) in the resulting matrix Pd,θ denotes the number of
times that the ith and jth pixel values occur in the image, in the relation given by
the offset d and angle θ. Furthermore, the image can be quantized in N` levels to
include the ability to modify the level of detail in the image. As such, the GLCM
Pd,θ of image I(x, y) quantized to N` levels can be calculated according to the
following equation

Pd,θ,N` (i, j) =

n−1∑
x=0

m−1∑
y=0

{
1, if I(x, y) = i and I(x+ dx, y + dy) = j ,

0, otherwise.
(2.8)

In this equation, n and m denote the width and height of the image, respectively,
and dx and dy can be calculated using offset distance d and angle θ. For instance,
if θ = 45◦ and d = 2, then dx = 2 and dy = 2, whereas for θ = 0◦ this results in
dx = 2 and dy = 0. This is further highlighted in Figure 2.9, where a basic image
is employed for calculating a GLCM. For each of the resulting GLCMs, numerous
statistical features can be calculated [153], which are then employed for training.

2.7.2 Gray-level run-length matrices (RLMs)
An alternative variant on the previously described GLCMs was introduced by
Galloway [87] in 1975. In that work, gray-level run-length matrices were employed
for terrain classification. A gray-level run is a set of consecutive, collinear pixels
having the same gray-level value. The length of the run is the number of pixels
contained in that run. Galloway employed statistical features calculated on the
RLMs for terrain classification and obtained promising results [87]. Since it is an
efficient tool for determining specific textures within a gray-level image, it has
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Figure 2.9 — Graphical example representation of the calculations of the gray-level co-occurrence
matrices (GLCMs). The GLCM is calculated by counting the inter-pixel relations. These relations
depend on (1) the inter-pixel distance (in this example equal to unity), (2) the inter-pixel angle (in
this illustration zero degrees), and (3) the number of quantization levels, which is the number of
different pixel values (here equal to 5). The resulting GLCM is calculated by counting the number
of each specific combination of pixel pairs. In this example, the pairs “1-2” are highlighted. The
resulting value in the corresponding position of the final matrix is equal to “4”, as there are 4 pairs
of “1-2”.

Figure 2.10 — Graphical example representation for calculating a gray-level run-length matrix
(RLM). For the RLM, the number of equally valued connected pixels is counted in a specific direc-
tion given by θ. In this example, θ equals zero degrees. The pixel values depend on the number of
quantization levels and for different levels, distinct RLMs can be calculated. In this figure, some
example run-lengths in the horizontal direction are highlighted. These run-lengths consist of con-
nected pixels with values “1” and “5” of size 2 and 3, respectively. Since there are two run-lengths
with pixel value “1” of size 2, the corresponding position in the resulting matrix becomes “2”. The
same counting can be performed for the run-length with the value “5”. This results in a “1” on the
corresponding position in the matrix.

proven its application in other fields of computer vision, including medical image
analysis [80], [81], [152], [154].

Calculation of a run-length matrix R is straightforward: each matrix ele-
ment (i, j) specifies the number of times that the image contains a run of length j,
in the direction given by angle θ, consisting of pixels having gray-level i. Numer-
ous distinct RLMs can be calculated on each image by varying the viewing angle θ.
Furthermore, by utilizing image quantization, various levels of detail can be in-
corporated in the resulting RLMs, denoted by Rθ,N` . Figure 2.10 gives a visual
representation of the RLM computation on the same example image employed
for the GLCM calculation in Figure 2.9. For each individual RLM Rθ,N` , a single
feature vector is computed incorporating the above-described statistics, which is
then employed for training.
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Figure 2.11 — Graphical example representation for calculating the gray-level size zone matrices
(GLSZMs). For the GLSZM, the number of zones with equally valued connected pixels and specific
size is counted. The pixel values depend on the number of quantization levels, and for different levels
distinct GLSZMs can be calculated. In this figure, some example zones are highlighted. These zones
consist of connected pixels with the values “1” and “5” of size 2 and 4, respectively. Since there are
2 zones with pixel value “1” of size 2, the corresponding position in the resulting matrix becomes
“2”. The same can be done for the zone with the value “5”. This results in a “1” on the corresponding
position in the matrix.

2.7.3 Gray-level size zone matrices
The previous two texture feature extractors, i.e. GLCM and RLM, only consider
neighboring pixels in a specific direction in the calculation of the resulting ma-
trices. However, in many medical cases, texture may not be limited to specific
parallel structures (e.g. roads in terrain images). For example, homogeneous tex-
ture consists mostly of large areas of similar intensities, whereas heterogeneous
textures can contain streaks and patches in arbitrary directions. As such, it is inter-
esting to include neighboring pixels in multiple directions simultaneously, thereby
analyzing a neighborhood of pixels. In a paper by Thibault et al. [88], the authors
modified the RLM to incorporate the neighborhood of pixels, instead of only rely-
ing on the neighboring pixels in a specific direction. This resulted in a novel metric:
the gray-level size zone matrix (GLSZM). The authors employed GLSZMs, next to
GLCMs and RLMs, to determine whether the nuclei of cells have a homogeneous
or a heterogeneous texture. The authors determined that GLSZMs improve the
classification rate, compared to results obtained with GLCMs and RLMs. Other
papers concurred with their findings, concluding that GLSZMs provide valuable
texture features [150]–[152].

A GLSZM is calculated according to the RLM principle. Each matrix ele-
ment (i, j) specifies the number of times that the image contains an area of size j,
consisting of pixels having gray-level i. Again, this can be executed for various
levels of quantization in order to influence the level of detail. A visual example of
the GLSZM calculation is illustrated in Figure 2.11. For each individual GLSZM
per quantization level N`, a single feature vector is calculated. This feature vector
incorporates the above-described statistics. This feature vector is then employed
for training.
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2.7.4 Minkowski functionals
Another method for texture analysis, finally presented here, that can incorporate
neighborhoods of pixels is the application of Minkowski functionals (MFs). These
functionals have been defined in the field of integral geometry [155] and analyze
spatial structures, by simultaneously describing the morphology and shape of
regions within an image [156]. These regions are obtained by thresholding the
gray-scale image, resulting in a binary image. MFs have been applied in various
fields of research, such as in cosmology [157], materials [158], and even for biom-
etry of tree positions in forests [159]. MFs are also employed in medical image
analysis, where they have yielded interesting results [160]–[163].

In this thesis, the MFs are calculated based on the work by Hadwiger [164]. For
a binarized image IT , thresholded at level T , the following elementary geometric
shape objects can be extracted: (1) number of white pixels, (2) sum of the boundary
lengths of all white shapes, and (3) number of white shapes minus the number
of encompassed black shapes within the white shapes. As an example, these
computations are visualized in Figure 2.12. The geometric shape objects can be
extended to three-dimensional data, such as MRI scans, where the following shape
objects can be computed: (1) number of cubes (voxels) Nc , (2) number of open
faces Nf , (3) number of open edges Ne , and (4) number of open vertices Nv [162].
These four objects are then employed in the calculation of the following four MFs:
foreground volume MT

0 , surface area MT
1 , curvature MT

2 , and Euler number MT
3 .

These functionals are specified by the following equations:

MT
0 = Nc , (2.9)

MT
1 = −6Nc + 2Nf , (2.10)

MT
2 = 3Nc − 2Nf +Ne , (2.11)

MT
3 = −Nc +Nf −Ne +Nv . (2.12)

The calculated MFs are highly scale-dependent. Therefore, the MFs need to be
normalized with respect to the tumor volume. This is performed by dividing the
functionals by the maximum included tumor volume.

Furthermore, by varying the threshold T , multiple distinct MFs can be cal-
culated. Some examples of thresholded MRI slices can be found in Figure 2.13,
where it becomes apparent that each threshold can cause significant differences in
the shapes of objects.

2.8 Conclusions
This chapter has discussed several aspects that form the foundation of evaluat-
ing the predictability of the Gamma Knife radiosurgical outcome of vestibular
schwannomas.

First, the current state of the art in this field is described. Numerous papers
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Figure 2.12 — Visualized example for calculating the Minkowski functionals in two-dimensional
images. In these basic images of 6×6 pixels, the following features are computed [164]: (1) number
of white pixels K, (2) sum of all boundary lengths L, and (3) the number of white shapes minus the
number of encompassed black shapes M . As such, each image is represented by three values. Part A:
K = 8, L = 12, and M = 1. Part B: K = 8, L = 16, and M = 2. Part C: K = 8, S = 16, and
M = 0.

Figure 2.13 — Visualization of the effect of imposing various thresholds on an MRI tumor image.
Part A represents the original T1-weighted contrast-enhanced MRI image. Parts B, C, and D were
generated with thresholds T equal to 0.5, 0.7, and 0.8, respectively, where the final image only
contains pixels within the tumor segmentation.

have assessed the impact of various risk factors on the treatment outcomes. How-
ever, the results remain inconclusive. Several researchers have distilled that the
tumor size is an important factor associated with treatment failure, although other
studies suggest the safe and efficient treatment of large and giant VS tumors using
GKRS. Furthermore, tumor growth rate, various treatment-related parameters,
and tumor appearances on MRI have been considered, but correlation to the treat-
ment outcome is lacking due to conflicting results. In the following chapters will
evaluate the previously considered risk factors on our data, and we will improve
upon these parameters by introducing a novel approach for assessing the treat-
ment planning in Chapter 4 and by employing radiomic features in Chapters 5, 6
and 7.

Second, our unique large database of all VS patients treated at the Gamma
Knife center in Tilburg is introduced. Due to the substantial number of patients
included in this database, it offers the unique opportunity to assess the correlation
of the numerous parameters on various treatment outcomes. As such, we are able
to reliably assess one highly interesting tumor-related parameter, i.e. the tumor
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growth rate. The results of these experiments are presented in Chapter 3.
Third, a discussion on the treatment response definitions is presented. We have

debated that objective treatment outcome definitions are required for accurate
and robust GKRS treatment outcome evaluation. As such, mathematical models
for defining treatment failure and transient tumor enlargement are proposed.
Furthermore, a data-driven definition for long-term tumor control is introduced.
These definitions form the basis of the machine learning approaches in Chapters 6
and 7, where training data are labeled accordingly.

Fourth, this chapter has evaluated the importance of inter- and intra-observer
variations of the tumor annotations. Since we employ tumor volume changes over
time on several thousands of MRI scans, it is paramount that the observer varia-
tions are analyzed and included in the definitions for the various treatment out-
comes. After conducting several experiments, we have determined lower bounds
on these variations, which have been included in the treatment response defini-
tions.

Finally, the technical methods for machine learning and feature extraction em-
ployed in this work have been introduced. These methods form the basis for the
machine learning approaches described in Chapters 4, 5, 6, and 7.

The next chapter will evaluate the impact of a clinically highly interesting
parameter, i.e. tumor growth rate, on the long-term treatment outcome. Due to
the unique large number of patients in our database that were followed-up prior
to GKRS treatment, it is possible to robustly ascertain the influence of this tumor-
specific parameter on the effect of the GKRS treatment.
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3.1 Introduction
The previous chapter has given an overview of the current state-of-the-art in the
risk factors associated with the long-term tumor control following Gamma Knife
stereotactic radiosurgery on vestibular schwannomas. It has discussed the three
main areas in which these factors can be classified. From the presented results was
deducted that patient-related risk factors do not influence the treatment response.
Concerning the treatment-related parameters, it was determined that these have
shown some correlation to the outcome in a number of papers. However, the
presented results were found to be contradicting with other studies. The final
category of risk factors, i.e., tumor-related characteristics, has presented some
promising results. More specifically, tumor size and tumor appearance on MRI
have shown correlation to the treatment response.

Furthermore, the previous chapter also highlighted a number of significant
concerns in determining predictive factors associated with the volumetric treat-
ment response of vestibular schwannomas. Methodological inconsistencies tend
to blur the results, such that comparing different studies becomes difficult and
conclusions cannot be generalized to other patient cohorts and Gamma Knife
centers. Regardless of this, the chapter has provided interesting evaluation factors
for developing a treatment prediction model.

Concerning some of the methodological inconsistencies in the current state-of-
the-art, Section 2.3 has elaborated on the creation of a unique database with a large
number of patients having an extensive follow-up time. A total of 735 patients
that were treated at least 5 years ago, were included. Furthermore, a separate
database was constructed for developing a prediction model of the short-term
treatment response, specifically for predicting transient tumor enlargement. The
previous chapter also discussed in Section 2.4 the development of clear and ob-
jective GKRS treatment outcome definitions for VS tumors. These definitions
were based on in-house determined inter- and intra-observer variations in tu-
mor volume measurements, and provide a solid basis for acquiring robust and
generalizable outcome prediction models.

As presented in Section 2.2.3, the most promising class of risk factors con-
sists of tumor-specific characteristics. One of the parameters in this class that has
been considered previously in literature is the pre-treatment growth rate. Since
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Varughese et al. [111] determined in their prospective study that VS tumors show
highly variable growth rates, the pre-treatment growth may contain predictive
information related to the treatment outcome. Nevertheless, reporting is sparse
on the effect of it to stereotactic radiosurgery in patient cohorts [41], [42], [44], [49],
[55], [165]. Recently, Marston et al. [49] indicated that fast-growing VSs are more
likely to continue to grow after GKRS. However, other studies did not confirm
this effect [41], [42], [44].

Again, the conflicting results of these previous studies can be possibly ex-
plained by methodological imperfections such as limited patient numbers, two-
dimensional tumor measurements, insufficient follow-up times, and inconsisten-
cies among treatment failure definitions [47], [166]. Therefore, any meaningful
analysis of the effect of pre-treatment growth rates on the GKRS treatment out-
come should include a sufficient number of cases in which tumor control was not
achieved. The low number of failures after GKRS and their possible late occurrence
implies that such studies should include large patient numbers and long follow-up
times. Furthermore, Varughese et al. [111] determined that pre-treatment growth
rates can best be modeled by employing an exponential model to calculate vol-
ume doubling times (VDTs). This implies that volumetric measurements should
be obtained. In addition, these measurements are also necessary to accurately
determine post-treatment tumor progression [119], [120].

The possible influence of pre-treatment growth rates on the radiosurgical out-
come can be important for clinical decision-making. A pronounced effect of the
pre-treatment growth rate, with faster growing tumors exhibiting lower control
rates after GKRS, might be an argument for a different treatment strategy in these
cases.

The objective of this chapter is to obtain insight into the efficacy of GKRS in
growing VSs and to provide information on the possible effect of the pre-treatment
growth rate on the treatment efficacy. As a refinement of this general problem
statement, we therefore list the following aspects.

• Since the number of treatment failures is limited to approximately 10% of
the cases, data from a large patient cohort with proven radiological pre-
treatment progression and sufficiently long follow-up times after treatment
need to be available.

• There are several models possible for calculating the growth rate prior to
treatment. It is important to implement a clinically proven, accurate, and
robust growth model in evaluating its impact on the treatment response.

• The treatment response of VS tumors is highly variable and it is difficult
to determine an objective outcome measure. Therefore, different treatment
outcomes will be evaluated. These include the short-term volumetric re-
sponse, and the long-term tumor control, based on (1) clinical failures and
(2) volumetric failures.
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• Alternative to the different treatment outcomes, there are also numerous
methods for evaluating the impact of the growth rate to the treatment out-
come. We will describe these methods that will be employed for correlating
the growth rate to the different outcome measures.

• The possibility to create a model that enables the treatment response predic-
tion is evaluated. If possible, this model should be feasible for implemen-
tation in the current clinical workflow, since such a model is less complex
than image processing algorithms and growth rate data are relatively easy
to obtain.

This chapter is outlined as follows. First, Section 3.2 elaborates on the available
growth rate models for untreated vestibular schwannomas, combined with the
different treatment outcome measures that are employed. Next, the experimental
setup is described for evaluating the correlation of the pre-treatment growth rates
to the specific outcome measures in Section 3.3. Then, the experimental results
are presented in Section 3.4, after which these are discussed in Section 3.5. Finally,
Section 3.6 concludes this chapter.

3.2 Growth rate models and radiosurgical treatment outcome
This section gives a description of the pre-processing steps involved in the experi-
ments of this chapter. First, the pre-treatment growth rate needs to be calculated
using MRI scans obtained in the wait-and-scan period. Second, the post-treatment
outcome measures need to be determined. The following subsections discuss
these crucial elements.

3.2.1 Pre-treatment growth rate
There are several methods available for calculating the growth rate of untreated
tumors. Essentially, these methods rely on either measurements of the tumor di-
ameter, or measurements of the tumor volume. As discussed in Section 2.4, linear
measurements of the tumor diameter are significantly less accurate than volu-
metric tumor measurements [119]–[122]. Also volume approximation methods
using linear measurements are deemed undesirable, as irregular shapes are poorly
suited for this [167], [168] and VS tumors have many different shapes [169]. Nev-
ertheless, the most commonly employed method for growth-rate measurements is
diameter-per-time [41], [49], [111], [170]–[175]. Other researchers describe growth
rate in terms of volume-per-time [111], [176], clinical growth index [177], [178] and
volume doubling time (VDT) [42], [111], [179]. From current literature, it can be
concluded that there is no consensus on how to uniquely measure the growth rate
of VS tumors.

In an in-vitro study by Sarapata et al. [180], several growth models were eval-
uated for different types of tumors. These models were all based on volumetric
measurements. The resulting model-fit ranking showed that there is no ”one-size
fits all” growth model. In theory, an exponential model can be considered as ideal

53



C
hapter3

3 . P R E - T R E AT M E N T G R O W T H R AT E

for tumors where cells can divide without constraint and can continue to double
indefinitely [181]. However, it is not appropriate for the long-term growth of solid
tumors, due to limitations of the availability of nutrients, oxygen, and space [181].
Therefore, the authors performed an in-vivo examination for various tumors and
concluded that for VS tumors, the 2/3 power law fits best. Nevertheless, the
employed dataset was limited in the number of patients to 75. Furthermore, all
employed tumor volumes were smaller than 3 cm3, and volumetric measurements
were performed on CT images, which is not the preferred modality for imaging
of VS tumors [5].

In a prospective study by Varughese et al. [111], the authors compared three
different growth models with respect to their fit with the actual clinical data. In
their study, they evaluated whether a tumor will (1) increase by a set number of
millimeters per year, (2) increase by a set number of cubic centimeters per year, or
(3) double every set number of years. The first two models consider that the tumor
increases linearly, while the third model assumes the growth as an exponential
development. Their results, based on a cohort of 178 patients, showed that the
tumor growth data fitted the best with an exponential volumetric model [111].

Therefore, in this chapter, the exponential volume doubling time (VDT) model
proposed by Varughese et al. is employed. This exponential model implies that
tumor volumes double every set number of months and is calculated using the
following specification:

VDT = log10 (2) ·
Ttreatment − Tpre-treatment

log10 (Vtreatment)− log10
(
Vpre-treatment

) . (3.1)

In this equation, Ttreatment and Tpre-treatment represent the dates of the treatment and
pre-treatment MRI sessions, respectively. Parameters Vtreatment and Vpre-treatment are
the corresponding volumes. The pre-treatment tumor volumes and the treatment
tumor volumes were determined using GammaPlan (Versions 10 and 11, Elekta
AB, Stockholm, Sweden) on T1-weighted contrast-enhanced (T1CE) MR images.
If such MR images were unavailable or of poor quality for the pre-treatment
scan, instead thin-slice T2-weighted MR images were used. Furthermore, the pre-
treatment MRI should have been obtained at least 6 months prior to treatment, in
order to avoid the impact of short observation periods which would result in mis-
leadingly large growth rates [111]. As an example of a VDT calculation, consider
a tumor volume of 1 cm3 one year before treatment and 2 cm3 at treatment. The
result is a VDT of 12 months.

3.2.2 Radiosurgical treatment and outcome
Gamma Knife radiosurgery was performed using either Leksell Gamma Knife
model 4C or Perfexion (since November 2008; both Elekta AB, Stockholm, Swe-
den). A dose of 13 Gy was prescribed to the isodose line covering 90% (until
May 2011) or 99% (since May 2011) of the tumor volume. Treatment data such
as beam-on times, number of isocenters, dose to 99% of the tumor volume, and
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Paddick conformity indices were collected from the treatment system.
After treatment, follow-up imaging was performed within a standard interval

of one year using T1CE MRI with a slice thickness of 1 mm. The follow-up interval
was shortened in case of suspected radiological progression or new or worsening
symptoms. If the tumor displayed radiological regression or stability for several
years, the follow-up interval was extended. Volumetric tumor measurements were
performed on all follow-up scans using GammaPlan (Versions 10 and 11).

All patient records and volumetric tumor responses are reviewed to assess
treatment failure. Loss of tumor control was always confirmed by the radiosurgi-
cal team, based on linear measurements. During the first two years after treatment,
an increase in tumor volume is generally accepted and considered as transient
tumor enlargement, unless tumor expansion is deemed too excessive. Tumor
growth after this period is considered as failure. In addition, we look for poten-
tially missed failures, i.e. discrete volume increases that are undetected by linear
measurements employed in the clinical setting, but detected with the volumet-
ric analysis performed for this research. For this purpose, the volumetric failure
definition introduced in Section 2.4.1 is employed.

3.3 Experimental setup
In order to evaluate the predictive value of the VDT on the Gamma Knife treatment
response of VS tumors, a number of experiments is conducted. These experiments
involve the assessment of the VDT impact on the treatment response using two
different approaches. First, in Section 3.3.1, we evaluate whether the GKRS treat-
ment results in a so-called ”bending-the-curve” effect, by assessing the correlation
of the pre-treatment growth rate to the short-term volume changes after GKRS.
Second, the effect of the pre-treatment growth rate on the long-term tumor control
is evaluated, which is discussed in Section 3.3.2. All statistical analyses in this
chapter are performed using IBM SPSS statistics for Windows (Version 23, IBM
Corp., USA).

3.3.1 Bending-the-growth curve
A recent publication by Fu et al. [182] discussed the efficacy of retreating VS pa-
tients with the Gamma Knife, after failure of their first GKRS treatment. They
conclude that retreatment is an effective strategy in terms of tumor control. This,
together with the hypothesis that fast growing VS tumors respond less well to
GKRS, raises the question if this treatment slows down the growth rate of these
tumors [166]. The presence of this so-called ”bending-the-growth” effect would
therefore be very interesting for clinicians. To evaluate this effect, the correlation
between the pre-treatment growth rate and the volume changes after GKRS are
assessed. Since the volumetric response to GKRS treatment is non-uniform, as
presented in Section 2.4, these volume changes are calculated by the (1) relative
volume changes with respect to the treatment volume, and (2) the inverse of the
VDT, i.e. the volume halving time (VHT). These volume changes are calculated
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using the 6-month, 1-year, 2-year, and 3-year follow-up MRIs. The correlations
between the pre-treatment growth rate (calculated as the VDT) and the post-
treatment volume changes are analyzed with the Spearman’s rank correlation
coefficient. This method is selected because it assumes a monotonic relationship
between the two variables, thus not limited to a linear relation, and it does not
require the variables to be uniformly distributed. Since it correlates the ranking
instead of the actual values of the variables, it is highly robust to strong outliers.
Furthermore, the corresponding confidence intervals are calculated by perform-
ing bootstrapping with 1000 samples, using case-resampling with replacement
from the original dataset. These confidence intervals propose a range of plausible
values for the correlation coefficient. Using these ranges, the hypothesis that the
correlation coefficients are significantly different from zero is tested. A p-value of
less than 0.05 is considered to be statistically significant.

3.3.2 Long-term tumor control
There are multiple methods available for determining whether the VDT has an
impact on the response to GKRS in terms of long-term tumor control. Since pa-
tients can exhibit a treatment failure at different points in time and also have
variable follow-up times, it is important to incorporate the time component. This
is accomplished with so-called survival analyses. In these methods, the expected
time duration until one or more events happen is examined. It attempts to find the
proportion of a population which will survive past a certain time. Patients that
did not experience an event up to their last follow-up are censored from analysis
at their last available follow-up. In the case of GKRS-treated VS tumors, such an
event can be treatment failure.

There are two distinct statistical analysis methods for survival analysis: Kaplan-
Meier, and Cox proportional hazards regression. Both methods are utilized in the
experiments of this section and are discussed in detail below.

Kaplan-Meier
The Kaplan-Meier method estimates the survival function S(t) of a cohort. This
function represents the probability that a patient survives longer than time t. This
analysis can be employed in cases where the predictor variable is categorical. By
stratifying a cohort into multiple groups using a quantitative predictor variable, a
comparison can be made among the resulting Kaplan-Meier survival curves. This
is done using the log-rank test. This test determines if the observed number of
events in each cohort is significantly different from the expected number of events,
at each time point. If this log-rank test obtains a p-value less than 0.05, the cohorts
are significantly different in terms of survival.

In this chapter, the patient cohort can be stratified using the median VDT,
creating two approximately equally sized cohorts. VDT values equal to the median
VDT, are assigned to the slow-growing cohort. Next, a comparison of Kaplan-
Meier curves is made between the fast growing tumors and the slow growing
tumors, using the log-rank test. However, the other possible predictor variables
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that could potentially influence the treatment outcome, need to be assessed in both
groups and tested for statistically significant differences. These include patient
age, tumor volumes at treatment, doses to 99% of the tumor volume, number of
isocenters, beam-on times, and Paddick conformity indices. To this end, Mann-
Whitney U tests are performed. This test is selected, since it does not assume a
uniform distribution of the input variable. Furthermore, the difference between
the number of failures is evaluated using the Fisher’s exact test, since this method
is ideal for testing differences in categorical data.

The same Kaplan-Meier analysis can be extended to multiple stratifications,
evaluating whether a linear trend is present in the complete patient database.
However, due to the limited number of failures, the possible number of stratifi-
cations is also limited. We therefore split the complete cohort into three groups,
using the 33rd and 67th percentile values of the VDT. If a linear trend is present, it
indicates a distinct relation between the VDT and the GKRS treatment outcome in
terms of tumor control. Again, the other possible predictor variables that could po-
tentially influence the treatment outcome, need to be assessed in the three groups
and tested for statistically significant differences. Since Mann-Whitney U tests are
limited to two groups only, Kruskal-Wallis tests are performed because this allows
for more than two groups. Furthermore, the difference between the number of
failures is evaluated using the Chi-square test, enabling the evaluation of multiple
groups.

Cox proportional hazard regression
The second survival analysis method, i.e. Cox regression, is able to evaluate the
impact of quantitative predictor variables on the survival function. Using this type
of method, no arbitrary stratification is needed for the analysis. First, univariate
analyses are utilized to evaluate the influence of each of the predictor variables to
the treatment outcome. Apart from the VDT, these also include the aforementioned
characteristics. If more than one predictor variable obtains a p-value less than 0.05,
a multivariate Cox regression analysis is performed to evaluate the interaction
between the multiple predictor variables and their joint impact on the survival
function. The Cox regression fits a so-called hazard function h(t) to the data. This
function can be interpreted as the risk of failure at time t and is estimated by:

h(t) = h0(t) · exp(b1x1 + b2x2 + . . .+ bkxk). (3.2)

In this function, the coefficients (b1, b2, . . . , bk) measure the impact of the predictor
variables (x1, x2, . . . , xk) on the survival. The function h0(t) is called the baseline
hazard.

3.4 Results
Using the experimental setup described in the previous section, two distinct ex-
periments are conducted to investigate the impact of the VDT on the treatment
response of VS tumors. In this section, first a description of the employed data is

57



C
hapter3

3 . P R E - T R E AT M E N T G R O W T H R AT E

Figure 3.1 — Patient exclusion criteria and their resulting numbers.

given. Subsequently, the results of each experiment are presented.

3.4.1 Patient cohort
In the database from the Gamma Knife center at the ETZ hospital in Tilburg,
440 patients showed a confirmed radiological progression of the tumor prior to
treatment, as described in Section 2.3. After reviewing the medical records, 129 pa-
tients (29.3%) are excluded for the experiments in this chapter (Figure 3.1). Reasons
for exclusion are (1) less than two years of follow-up (22 patients, 5.0%), (2) pre-
treatment MRI images not obtainable, unavailable, or less than 6 months prior to
treatment (79 patients,18.0%), (3) pre-treatment MRI of poor quality (slice thick-
ness less than 2.5 mm) (15 patients, 3.4%), or (4) pre-treatment MRI incompatible
for accurate volumetric analysis in GammaPlan, due to external MRI formats such
as non-square images (13 patients, 3.0%). This finally results in a patient cohort of
311 patients.

In this cohort, the median time between treatment and the available pre-
treatment scan is 19 months. For the VDT calculations, we use 165 T1-weighted
and 146 T2-weighted pre-treatment MR scans with a median slice thickness of
1 mm. The resulting VDT values for the cohort have a median of 15 months with
a range of 3 – 344 months. Patient- and treatment-related characteristics are given
in Table 3.1. The median post-treatment follow-up time is 60 months with a me-
dian time between two consecutive scans of 12 months. Lack of tumor control
is observed in 35 cases (11.3%) within this cohort, resulting in the Kaplan-Meier
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Characteristic Median IQR Range

Patient age at treatment [years] 59 51 – 68 24 – 85
Tumor volume at treatment [cm3] 1.16 0.62 – 2.54 0.06 – 12.18
Pre-treatment observation time [months] 19 14 – 30 6 – 105
Post-treatment follow-up time [months] 60 38 – 86 19 – 159
VDT [mos] 15 10 – 26 3 – 344
Prescription isodose line [%] 55 47 – 64 37 – 100
Dose to 99% of tumor volume [Gy] 11.9 11.5 – 13 9.5 – 13.6
No. of isocenters 13 9 – 19 1 – 43
Beam-on time [mins.] 41.5 30.9 – 54.7 8.3 – 112.0
Gradient index 2.92 2.68 – 3.30 2.47 – 6.74
Selectivity 0.87 0.81 – 0.93 0.50 – 0.99
Paddick conformity index 0.82 0.77 – 0.85 0.46 – 1.31

Table 3.1 — Patient- and treatment-related characteristics, where IQR stands for inter-quartile
range.

0 20 40 60 80 100 120 140 160
Time [months]

0

0.7

0.8

0.9

1.0

F
re

e
 o

f 
p
ro

g
re

s
s
io

n
 r

a
te

Figure 3.2 — Kaplan-Meier curve for the complete cohort. The calculated 5- and 10-year control
rates for this cohort are 91.6% and 77.5%, respectively. Tick marks indicate censored cases.

curve depicted in Figure 3.2. One tumor exhibited obvious and excessive growth
during the first two years after treatment, such that intervention was considered
necessary. The calculated 5- and 10-year control rates of the cohort were 91.6% and
77.5%, respectively. Of these 35 cases, 14 were classified as a volumetric failure.
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Follow-up No. of Patients Median (IQR) of p-value
times relative volume change [%]

6 months 54 -4.4 (-25.4 – 13.5) 0.84
1 year 282 10.6 (-11.9 – 34.3) 0.45
2 years 225 28.2 (8.3 – 43.5) 0.07
3 years 170 19.6 (3.1 – 37.5) 0.17

Table 3.2 — Statistics of the relative volume changes after GKRS. A negative volume change
denotes an increase in tumor volume. The second column represents the number of patients having
an available MRI scan at the indicated time.

Follow-up No. of Patients Median (IQR) of p-value
times tumor halving time [months]

6 months 54 -9.0 (-28.0 – 23.8) 0.71
1 year 282 13.0 (-29.0 – 35.0) 0.09
2 years 225 23.0 (-21.0 – 52.0) 0.55
3 years 170 31.5 (-22.5 – 62.3) 0.41

Table 3.3 — Statistics of the tumor halving times following GKRS. A negative halving time
denotes an increase in tumor volume. The second column represents the number of patients having
an available MRI scan at the indicated time.

3.4.2 Short-term volumetric response
To evaluate the relationship between pre-treatment growth rates and the short-
term volumetric tumor response after GKRS, the post-treatment volume changes
of each tumor are calculated based on the 6-month, 1-year, 2-year, and 3-year
follow-up MR images, using two different models. The medians and inter-quartile
ranges of the relative volume changes and for the tumor halving times are given
in Tables 3.2 and 3.3, respectively. Correlations between these volume changes
and the VDTs were determined according to the Spearman’s rank correlation
method. The relative volume changes were not significantly correlated with the
pre-treatment growth rates, as can be seen in the last column of Table 3.2. For
the tumor halving times, the same conclusion can be distilled, as all p-values are
larger than 0.05 (Table 3.3).

3.4.3 Long-term tumor control
For analyzing the effect on the long-term tumor control, two different approaches
are implemented. This section will present the results for both methods. First, the
results of the Kaplan-Meier survival analyses are described, followed by the Cox
regression analyses results. Finally, a robustness analysis will be applied to the
obtained results.
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Figure 3.3 — Kaplan-Meier curves for the fast growing cohort (blue continuous line) and slow
growing cohort (green dashed line), stratified at the median of the pre-treatment growth rate. Tick
marks indicate censored cases.

A. Kaplan-Meier
For the first Kaplan-Meier survival analysis, the patient cohort is stratified into
two groups, a slow growing and a fast growing tumor group, with a median VDT
of 15 months as the separating value; ties (VDT = 15) are assigned to the slow
growing cohort. This stratification results in slow growing and fast growing tumor
cohorts of 162 and 149 patients, respectively. These two cohorts include 10 and
25 cases of treatment failure, respectively. This difference is statistically significant
(Fisher’s exact test, p < 0.01). The median times to loss of tumor control in both
groups are 63 and 49 months for the slow growing and the fast growing cohorts,
respectively. This difference is also statistically significant (Mann-Whitney U-test,
p = 0.04), meaning that fast growing tumors tend to exhibit a failure earlier than
slow growing tumors. The Kaplan-Meier curves for both cohorts are depicted in
Figure 3.3. A comparison of these curves indicates a significant difference between
tumor control rates of the cohorts using a log-rank test (p < 0.01). The calculated
5- and 10-year tumor control rates were 97.3% and 86.0% in the slow growing
cohort, and 85.5% and 67.6% in the fast growing cohort, respectively. To evaluate
if characteristics other than the VDT can explain this difference, we investigate
possible distinctions in the main characteristics between these two groups. Statis-
tical analyses indicate that there are no significant differences between the groups
using the Mann-Whitney U test (Table 3.4).

Next, we perform the same Kaplan-Meier analysis using three groups by cre-
ating a slow growing, an average growing, and a fast growing tumor cohort. Sep-
aration is performed by splitting the total cohort according to the 33rd and 67th
percentiles, where ties are assigned to the slow growing tumor cohort or the aver-
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Median (IQR)
Fast growing Slow growing p-

Characteristic cohort cohort value

Patient age at treatment [yrs.] 60 (49 – 68) 59 (52 – 67) 0.86
Tumor vol. at treatment [cm3] 1.06 (0.65 – 2.74) 1.27 (0.53 – 2.44) 0.67
Prescription isodose line [%] 55 (46 – 63) 53 (48 – 64) 0.54
Dose 100% of tumor vol. [Gy] 11.4 (11.1 – 12.2) 11.4 (11.0 – 12.0) 0.09
Dose 99% of tumor vol. [Gy] 12.0 (11.6 – 13.0) 11.9 (11.4 – 12.7) 0.11
Dose 95% of tumor vol. [Gy] 12.6 (12.4 – 13.8) 12.6 (12.3 – 13.8) 0.08
Number of isocenters 13 (10 – 19) 14 (9 – 19) 0.71
Beam-on time [mins.] 41.9 (32.1 – 55.2) 41.5 (29.7 – 54.4) 0.40
Gradient index 2.92 (2.70 – 3.26) 2.92 (2.68 – 3.37) 0.98
Selectivity 0.88 (0.82 – 0.94) 0.87 (0.80 – 0.92) 0.29
Paddick conformity index 0.82 (0.78 – 0.85) 0.82 (0.77 – 0.85) 0.24

Table 3.4 — Comparison of patient- and treatment-related characteristics between the fast growing
and slow growing cohorts.

age growing tumor cohort, respectively. This results in three cohorts containing
106, 109, and 97 patients with 5, 12, and 18 cases of treatment failure, respectively.
The Chi-square test resulted in a p-value less than 0.01, indicating a significant
difference in number of failures among the three cohorts. The calculated 5- and
10-year tumor control rates are 98.8% and 91.4% for the slow growing cohort,
90.6% and 70.7% for the average growing cohort, and 84.6% and 66.4% for the
fast growing cohort, respectively. The resulting curves are presented in Figure 3.4,
where a linear trend can be observed (log-rank test, p < 0.01). Here, the Kruskal-
Wallis tests reveal that again no other factor is significantly different among the
three cohorts.

B. Cox regression
Finally, we have also investigated the effect of the main characteristics on the
tumor control rates by implementing univariate Cox regression analyses. The
results have shown that only the VDT has a significant effect (p < 0.05). None
of the other patient- and treatment-related characteristics, shown in Table 3.4,
display a statistically significant influence. Consequently, the Cox regression is
constrained to performing a univariate analysis and multivariate analyses are
not needed. The impact of the VDT on the proportional hazards ratio is given by
exp(bx) (see Eq. (3.2)), where constant b = 0.97. This means that the risk of loss
of tumor control for a tumor with a given VDT (the x parameter) will decrease
with factor 0.97 for a tumor for which the VDT is one month larger, i.e. a slower
growing tumor. For example, the 5-year loss of tumor control in the Kaplan-Meier
analysis is 8.4% in the patient cohort for a tumor with a median VDT of 15 months.
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Figure 3.4 — Kaplan-Meier curves for the fast growing cohort (blue continuous line), average
growing cohort (green dashed line), and slow growing cohort (red dash-dotted line), stratified by the
33rd and 67th percentiles of the pre-treatment growth rate. Tick marks indicate censored cases.

If the VDT increases by 12 months, the estimated 5-year loss of tumor control rate
will be 5.8%.

C. Robustness of Our Findings
Since this work is mainly based on tumor volumes, the impact of the inter- and
intra-observer inconsistencies of the volumetric assessments may be significant
on the results. These inconsistencies are more critical in small tumors because
relative errors become larger for decreasing volumes, as shown in Section 2.5. We
have adopted a threshold on the minimum time required between scans in the
VDT calculations. However, a threshold on the required minimum tumor volume
is not imposed, which would reduce the impact of the relative volume errors.
Hence, for small tumors the calculated VDT can be inaccurate. If we remove
tumors smaller than 0.25 cm3 in our cohort and redo the analyses, we observe
a statistically improved result from the univariate Cox regression (286 patients,
p = 0.01).

Furthermore, the inter- and intra-observer inconsistencies also have an impact
on our additional volumetric treatment failure definition. If we redo the analyses
without the so-called volumetric failures and only consider failures determined
in the clinical setting, we still find a significant difference between the slow- and
fast-growing tumor cohorts (Fisher’s exact test, p = 0.04; Kaplan-Meier log-rank
test, p = 0.02).

3.5 Discussion
This chapter has focused on investigating the relationship between the pre-treat-
ment growth rate and the Gamma Knife radiosurgical efficacy. More specifically,
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several experiments are conducted to examine the correlation of the VDT to the
volumetric treatment response of VS tumors. This is relevant because if the growth
rate prior to treatment influences the radiosurgical outcome, the question arises
whether this justifies alterations in treatment management.

In this section, the different aspects of the implemented methodology and the
obtained results of the pre-treatment growth-rate investigation are highlighted
and discussed. First, the growth model is discussed in Section 3.5.1 and a compar-
ison to the current state-of-the-art is made in Section 3.5.2. Next, in Section 3.5.3,
our findings are summarized and we discuss possible explanations and conse-
quences of these findings in Sections 3.5.4 and 3.5.5, respectively. Finally, some
limitations of this investigation are reviewed in Section 3.5.6.

3.5.1 Growth model
The only way to accurately determine the influence of the pre-treatment growth
rate to the GKRS treatment outcome is to study a cohort with quantifiable tu-
mor progression prior to treatment. We have used the VDT model proposed by
Varughese et al. [42] to quantify tumor progression. Since VSs do not necessarily
grow at a regular rate, the VDT may not be a perfect fit for each individual case,
as also stipulated by Talkington et al. [181]. However, we do not have the data to
observe the growth of each individual tumor over a long period of time. Many tu-
mors are treated when tumor growth is observed between two consecutive scans.
With the pre-treatment data available in this work, the VDT is the most accurate
way to describe VS growth, as Varughese et al. [42] concluded in their article, that
specifically addresses the issue of determining growth rates of VSs.

3.5.2 State-of-the-art in methodology
Various previous studies have addressed the potential role of pre-treatment growth
rates on GKRS treatment responses, but the results are conflicting [41], [44], [49],
[55], [111], [165]. In our opinion, the reported inconsistent results can be explained
by methodological shortcomings in these studies. Loss of tumor control is ob-
served rarely and often occurs several years after treatment. This fact makes it
mandatory that studies on this topic include large patient numbers and long
follow-up times. All six aforementioned studies reported on a relatively low num-
ber of patients, and only three studies had median follow-up times significantly
larger than the generally accepted time period for transient tumor enlargement
(Table 3.5). Furthermore, it is important to apply volumetric measurements. Sub-
tle loss of tumor control can go unnoticed when obtaining linear measurements.
Such small changes may be irrelevant from a clinical perspective, i.e. not de-
manding an intervention. However, from a scientific viewpoint, it is important
to identify all cases of tumor growth after radiosurgery. It allows for an accurate
assessment of the correlation between the pre-treatment growth rate and the volu-
metric GKRS treatment response. Four of the six studies addressing the influence
of pre-treatment growth rates on the treatment outcome utilized pre-treatment
volumetric measurements. One study, by Timmer et al. [41], did not exploit the
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actual linear pre-treatment measurements, but it stratified the cohort accordingly
into growing and non-growing tumor cohorts. Chang et al. [55] also investigated
whether there was a difference between growing and non-growing tumors. They
found no statistical significant difference between both cohorts. Furthermore, our
literature study has revealed that there are also inconsistencies among the defi-
nitions of treatment failure (Table 3.5). Therefore, in our research we have used
volumetric tumor measurements in a large patient cohort with long follow-up
times (Table 3.5).

3.5.3 Prediction model
Our data clearly illustrate that the pre-treatment growth rate correlates with the
radiosurgical efficacy. Slow growing tumors in our cohort are more likely to ex-
hibit tumor control than their fast growing counterparts. Using Kaplan-Meier
analysis, the estimated 5- and 10-year tumor control rates are 97.3% and 86.0%
for the slow growing tumors, and 85.5% and 67.6% for the fast growing tumors,
respectively. This effect is also apparent if we stratify the data of this patient cohort
into three groups, with most failures in the fastest growing cohort (n = 18), and
an intermediate number of failures in the middle cohort (n = 12). This suggests
a distinct effect of the pre-treatment growth rate on tumor control after GKRS.
Indeed, the Cox regression analysis is significant for the pre-treatment growth rate
expressed by the VDT (p < 0.05). In the resulting prediction model, the impact of
the VDT on the risk of loss of tumor control equals a factor of 0.97. This means
that increasing the VDT by one month results in a decrease with a factor of 0.97 of
failure risk at a certain time. It is interesting to use this factor for evaluating the
risk of loss of tumor control for various cases. Some examples of this evaluation
can be found in Table 3.6.

3.5.4 Possible explanations of the findings
It has been suggested that a higher rate of loss of tumor control after radiosurgery
for fast growing VSs can be explained by the radiobiological effect of slowing
down the growth curve: fast growing tumors will be slowed down by radio-
surgery, but possibly not enough to obtain tumor control, whereas the growth
curve of slow growing tumors is bent sufficiently to obtain tumor control [49],
[166]. However, our data indicate that relative post-treatment volume changes
and tumor halving times do not demonstrate differences between fast and slow
growing tumors. We therefore hypothesize that the intrinsic tumor biology of fast
growing tumors make them more likely to start growing again several years after
radiosurgery, rather than radiosurgery slowing down their growth rate. However,
the radiobiological effect of radiosurgery on VS remains unclear from existing lit-
erature. There is an ongoing discussion whether the radiosurgical response of VSs
results from direct cytotoxic effects to cells, or whether it reflects indirect effects. In
the review by Yeung et al. [183], the authors discussed three possible mechanisms
that could explain the decreased tumor control rates in certain VS tumors: (1) the
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VDT (years) 5-Year hazard rate 10-Year hazard rate

0.5 11.0% 29.6%
1 9.2% 24.7%
2 6.4% 17.1%
3 4.4% 11.9%
4 3.1% 8.2%

Table 3.6 — Predicted hazard rates for loss of tumor control calculated by the prediction model
created in this research. These hazards are calculated including the volumetric failure definition.

Figure 3.5 — Visual representation of the cell cycle. There are four distinct phases in a cell cycle:
(1) the G1-phase in which the cell increases in size, (2) the S-phase in which DNA replication occurs,
(3) the G2-phase in which the cell increases further in size, and (4) the M-phase consisting of mitosis
and cytokinesis. In this final phase, the cell stops growing and is divided into two daughter cells.
There is an additional phase, called the G0-phase, in which the cell is in a resting state.

Merlin-induced imbalance in the c-Jun N-terminal kinase pathway and extracel-
lular signal-related kinase pathway, (2) the inadequate angiogenesis and hypoxia,
and (3) the radioresistance during cell cycle. A visual representation of the cell
cycle is given in Figure 3.5. In general, cell survival data have demonstrated that
cells are most sensitive to irradiation during mitosis and in the G2-phase, less
sensitive in the G1-phase, and least sensitive during the S-phase [184]. This would
indicate that radioresistance increases for tumors that relatively lack cell division,
i.e. are slow growing. However, we have observed the opposite: fast growing VSs
tend to respond less to radiosurgery. This would imply that either fast growing
tumors have a superior DNA repair system [183], or the response to radiosurgery
reflects indirect radiation effects, such as decreasing tumor vascularity [185].
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3.5.5 Consequences of the findings
The results in this chapter clearly indicate that the pre-treatment growth rate
influences the volumetric outcome of VS after GKRS. The prediction obtained in
this work provides the opportunity to determine the risk of treatment failure for
each specific VS, employing the VDT. However, this prediction model needs to be
validated with data of other cohorts.

Nevertheless, the findings presented in this chapter raise the question of
whether fast growing tumors should be treated differently, i.e. with a higher
radiation dose, with microsurgery, or by reducing the radioresistance of these
tumors employing radiosensitizers [185]–[188]. A prospective study should be
designed to investigate whether an increased radiation dose, or a combination
of radiosensitizers with GKRS, for fast growing VS increases the overall tumor
control rates, without increasing toxicity. However, Fu et al. [182] recently showed
that retreatment of VS by GKRS appears to be an effective strategy, suggesting
that fast growing tumors may benefit from a second GKRS treatment.

Another possible benefit of being able to predict the chance of tumor control
may be the personalization of the standard follow-up protocol: for patients with a
slow growing VS, the follow-up interval may be extended, while for fast growing
VS, patients may be monitored more closely.

3.5.6 Limitations
One of the most important limitations of this investigation, as well as other studies
on this topic, is that there is no clear consensus on the explicit criteria for treatment
failure after GKRS. Hence, direct comparison of tumor control rates reported in
various studies is problematic, since the definition of treatment failure appears
to be inconsistent [47], [49], [166]. Some studies define treatment failure as the
requirement for microsurgical resection and do not mention whether a second
GKRS treatment is considered as failure [189], [190]. Others, like the radiosurgical
team at our center, define tumor control as the absence of radiologically identified
progression, which is usually performed by linear assessment [45], [191], [192].
However, even with proven tumor progression, intervention may still be undesir-
able. Therefore, in addition to proven tumor progression followed by intervention,
we have employed a mathematical model for determining treatment failure to
simultaneously account for missed small progressions in the clinical setting and
undesirable interventions. This model may not be clinically relevant, but it pro-
vides an objective measure for determining treatment failure. Because of this strict
criterion, the results of our Kaplan-Meier analysis displayed lower tumor control
rates than those reported by other studies.

Furthermore, the determination of tumor control is troublesome, because of the
transient tumor enlargement phenomenon. Most tumors presenting with this ad-
verse effect reach a maximum volume after a median of 5 months and first signs of
regression at a median of 15 months [41], [131], [134], [137]. In this study, we tried
to circumvent this issue in defining loss of tumor control by only considering vol-
umetric measurements beyond two years after treatment. However, it is claimed
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that the transient swelling can occur as late as 3 – 4 years after radiosurgery [166].
Another limitation of this research is that the data are retrospectively ana-

lyzed. This leads, for instance to uncertainties in the volumetric assessment of
the tumors, due to differences in MRI scans. For 146 patients, the T1-weighted
contrast-enhanced MRI study obtained prior to treatment was unavailable or of
poor quality. Employing the T2-weighted MR images for these patients may have
introduced uncertainties in the determined tumor volumes. This effect is more
critical in small tumors, as relative errors in the volumetric assessments become
larger for decreasing volumes [120]. However, we have shown that excluding
these small tumors results in statistically improved outcomes.

3.6 Conclusions
In current literature, the influence of the pre-treatment growth rate of VS on the
GKRS treatment response can be classified as undetermined, due to the conflicting
results reported by various studies. Methodological imperfections can possibly
explain these contradicting results. Because of the large number of patients, the
long follow-up times of our cohort, and the volumetric tumor assessments both
prior to and after GKRS treatment, we had the unique opportunity to accurately
investigate the influence of the pre-treatment VS growth rate on the radiosurgical
efficacy.

The most important findings of this chapter are as follows. The so-called
”bending-the-growth-curve” effect of Gamma Knife radiosurgery was not found
in our data. However, the influence of the pre-treatment growth rate of VS tumors
on the long-term GKRS treatment effects with respect to the tumor volume is
established. The resulting tumor control rates confirm the high efficacy of GKRS
for slow growing VS. The 33%-slowest growing tumors in our unique and large
database obtain 5- and 10-year tumor control rates of 98.8% and 91.4%, respec-
tively, even with the inclusion of a very strict and objective treatment failure
measure thereby increasing the number of failures. However, the fast growing tu-
mors exhibited significantly lower control rates. Our analyses demonstrate that for
the 33%-fastest growing tumors, the calculated 5- and 10-year tumor control rates
are 84.6% and 66.4%, respectively. For these cases, different treatment strategies
may be considered. Furthermore, by employing the Cox regression, we were able
to create a predictive model supporting tumor control. More specifically, by using
the volume doubling time as a prediction parameter, the obtained model can be
exploited to predict the 5- and 10-year chance of tumor control on an individual
patient basis.

Additionally, the results of this research may help in patient counseling and in
determining a patient-specific follow-up protocol, where the follow-up frequency
of slow growing tumors may be reduced with respect to the frequency needed
for fast growing tumors. Especially the fitted Cox regression model can be imple-
mented in the clinical workflow to facilitate physicians in selecting the optimal
treatment strategy. By using the volume doubling time of the specific VS tumor,
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this model is able to calculate a risk at treatment failure following GKRS.

In this chapter, the impact of a clinically highly interesting tumor-specific risk
factor to the Gamma Knife treatment response has been evaluated. The tumor
growth rate prior to treatment, calculated by the volume doubling time, has shown
to be predictive for the long-term treatment outcome. In the following chapter, the
impact of the treatment planning itself on the treatment outcome is examined. This
investigation is performed in three different ways. First, the generally accepted
clinical planning parameters are evaluated for their impact on the treatment re-
sponse. Second, we will introduce a novel approach for examining the underlying
dose distribution and its effect on the GKRS outcome. Finally, the impact of expert
annotations of the tumor on the treatment outcome is investigated.
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4.1 Introduction
The previous chapter has described one of the tumor-specific parameters that can
be indicative for the long-term Gamma Knife treatment response of vestibular
schwannomas. It has presented the results obtained in the unique large database
from the Gamma Knife center in Tilburg. Using the tumor-specific growth rate as
potential risk factor in statistical survival analyses, it has become clear that this
characteristic is prognostic for the long-term treatment response. The obtained
model enables the calculation of the risk at treatment failure for individual patients
with an available pre-treatment MRI scan. This treatment prediction model can
be readily implemented in the clinical workflow, since tumor volumes can be
determined relatively easy and MRI scans are already obtained for diagnosis and
for treatment planning.

In the previous chapter, various global treatment parameters have been in-
cluded in the statistical analyses. Furthermore, the possible impact of the Gamma
Knife treatment parameters and settings cannot be ignored, which was already
discussed one chapter earlier in Section 2.2.2. These treatment-related parameters
failed to show their significant relation to the treatment outcome. However, the
data employed in the previous chapter only included patients with confirmed
tumor progression prior to treatment. This patient selection may have caused a
bias in the statistical analyses of these parameters.

In this chapter we therefore investigate the impact of the Gamma Knife treat-
ment planning itself on the treatment response. In Section 1.2, an overview of
the Gamma Knife modality is given, in which the many parameters and settings
that form the final treatment plan are specified. These settings and parameters
may be correlated to the individual treatment response and should therefore be
investigated extensively.

In Section 2.2.2, an overview of the current state of the art in treatment-related
characteristics was given. Furthermore, as can be distilled from Sections 2.2.2
and 2.2.4, the contradicting results in the described studies most likely originate
from the significant differences between the implemented methodologies. Nu-
merous publications have investigated the impact of several treatment-related
parameters. Hasegawa et al. [32] and Lim et al. [57] both concluded that slightly
higher doses to the tumor margin correlate to increased long-term tumor control
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rates. However, many other publications have concluded that the impact of the
dose to the tumor margin is not statistically significant in multivariate analyses.
Indeed, in a systematic review by Germano et al. [60], the authors conclude that
within the range of doses used for the treatment of VS, a lower dose had little to
none appreciable difference in the progression-free survival, while generally high
rates of progression-free survival were reported across a wide range of delivered
doses.

In current state of the art, the influence of the treatment procedure itself on
the outcome is only investigated using global parameters, such as the prescribed
dose to the tumor margin, the number of isocenters, and the beam-on time. A
possible reason for only considering such global treatment characteristics is that a
Gamma Knife treatment is initially considered to be uniformly planned, conform
protocols established by the Gamma Knife community. The dose distribution
within the tumor is deemed to be similar to that of other radiosurgical modalities,
such as CyberKnife® or linear accelerator (LINAC). However, when comparing
Gamma Knife to these other modalities, the dose distribution is determined to be
significantly less homogeneous for an elliptic target [193]. This is not a surprise,
since Gamma Knife employs a widely varying number of isocenters with varying
shapes, sizes, and weights, in contrast to for example LINAC, which uses only a
single shot. Indeed, in a publication by Millar et al. [110], the authors determined
that the biological effectiveness of a given physical prescription dose fluctuates
with the variations in treatment parameters between different patients. However,
it remains unclear if the actual differences in biological effectiveness influence
the treatment outcomes. Nevertheless, it is hypothesized in this chapter that the
inhomogeneous dose distribution of Gamma Knife treatments could potentially
influence the treatment results. Unfortunately, the inhomogeneity of the dose
distribution cannot be expressed in the global parameters commonly employed in
literature. This motivates why we explore the predictive value of the spatial dose
distribution on the treatment outcome of Gamma Knife radiosurgery on VS.

Another important step in treatment planning that may introduce uncertainties
involves the delineation of tumors, because this is the basis for creating the highly
accurate radiosurgical treatment planning. Each treatment planning is reviewed
using quality indices, such as the coverage and the selectivity. These indices are
all calculated using the delineated tumor volume. Therefore, an inaccurate delin-
eation may lead to underexposure of parts of the tumor margin, which in turn can
reduce the chance at treatment success. As described in Section 2.5, variations in
tumor segmentation are present among operators, although the differences are
generally small. Nevertheless, these small differences may be correlated to the
Gamma Knife treatment response.

In summary, this chapter focuses on the different treatment planning parame-
ters and their possible influence on the long-term treatment outcome, as described
above. The following aspects of the treatment planning will be specifically inves-
tigated.
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• Global treatment parameters: In current state-of-the-art research, global treat-
ment parameters such as prescribed dose to the tumor margin, number of
isocenters, and various quality indices are investigated. In this chapter, we
will experiment on these factors to evaluate their impact on the treatment
outcome in our own unique large database.

• Inhomogeneous dose distribution: One of the most interesting aspects of a
Gamma Knife treatment is its heterogeneous dose distribution. This may
cause significant differences among treatment plans, such as single or mul-
tiple hot-spots at varying locations, dose drop-offs inside the tumor, etc.
To the best of our knowledge, the impact of these differences on the treat-
ment response has never been investigated. Therefore, we provide the first
experiments into analyzing this impact, and explore a novel approach to
incorporate the spatial dose-distribution information.

• Tumor delineation: Another aspect that has not been considered in the eval-
uation of the treatment response, is the tumor delineation. To this end, we
will explore the accuracy of the tumor delineation and its possible influence
on the treatment response.

These aspects are all based on the various parameters and settings involved in
the Gamma Knife treatment planning of VSs. However, since the underlying data
and methodologies differ significantly among the specific experiments, each aspect
is individually discussed in the following sections. First, the influence of global
dose parameters, such as the radiation dose to the tumor margin, on the long-
term tumor control is investigated in Section 4.2. Next, Section 4.3 examines the
influence of the heterogeneous dose distribution with respect to the Gamma Knife
treatment response, and presents the results of these methods. Following this, the
experiments on the effect of expert annotations on the volumetric response are
discussed in Section 4.4. Finally, in Section 4.5, the main outcomes and conclusions
are summarized.

4.2 Global treatment plan parameters
In this section, the influence of numerous global treatment-plan parameters on
the treatment response is investigated in various experiments. This section is
divided into the following subsections. First, a brief background is discussed in
Section 4.2.1. Next, the experimental setup is presented in Section 4.2.2, followed
by its results in Section 4.2.3. Section 4.2.4 concludes this section with a discussion
and conclusions.

4.2.1 Background
In the last decades, the prescribed dose has dropped significantly for the treatment
of VSs. Nowadays, most medical centers opt for a dose of 12 – 14 Gy prescribed
to the tumor margin. Since small irregularities in the tumor shape can cause high
radiation dosage outside the tumor, this so-called marginal dose does not cover
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the tumor completely. In the early years at the Gamma Knife center in Tilburg,
the coverage percentage was selected to be 90%, resulting in a marginal dose of
approximately 11 Gy. However, after evaluating the tumor control rates and the
follow-up complication cases in a large cohort, the control rates were slightly
unfavorable compared to other large studies [47]. After assuming that these differ-
ences were directly attributable to the employed dosimetry, the center changed the
treatment protocol in 2010 to a marginal dose of 13 Gy. In practice, this meant that
the coverage of the prescription isodose volume was raised from 90% to 99%. This
dose-level change in the treatment protocol enables evaluation of the impact of the
marginal tumor dose to the long-term treatment outcome. Current state of the art
shows that its influence is limited. However, as discussed in Sections 2.2.2 and 4.1,
the results can be considered inconclusive, since some authors have demonstrated
that higher doses lead to increased tumor control rates. Nevertheless, it is hypoth-
esized that minor differences (in the order of magnitude) in marginal tumor dose,
constrained by internationally established treatment protocols, do not influence
the long-term tumor control rates.

4.2.2 Global treatment parameter experiments
In the experiments that will investigate the impact of global treatment-related
parameters on the long-term tumor control rates, the complete database of the
Gamma Knife center in Tilburg will be employed. This database is introduced in
Section 2.3 and contains 735 unilateral VS patients that were treated between 2002
and 2014.

Several methods are available for evaluating the influence of specific potential
risk factors to the long-term treatment outcome. Most methods employed in med-
ical papers are so-called survival analyses, as discussed in Section 3.3.2. Generally,
for investigating continuous variables, a Cox proportional hazards regression
analysis is performed. Therefore, in this section, each global treatment-related
parameter is evaluated using the Cox regression analysis.

Another method for assessing the influence of risk factors to the treatment
response is the Kaplan-Meier survival analysis. This method enables the compari-
son of two or more (sub)cohorts by examining the difference in survival curves.
By splitting the complete cohort using different treatment-related parameters, the
influence of those specific parameters can be investigated. Since the treatment
protocol has changed in 2010, we are able to use the marginal tumor dose of the
Tilburg dataset as splitting variable in this analysis.

By reviewing the literature, as described in Section 2.2.4, significant method-
ological variations can be discerned when comparing studies that discuss long-
term tumor control rates. Furthermore, as argued in Section 3.1, radiosurgical
efficacy in terms of true tumor control can only be accurately evaluated in patients
who have exhibited radiological progression prior to treatment [194]. In order to
evaluate the effect of the dosimetry on the long-term tumor control, these issues
need to be addressed. We evaluate the impact of these confounding factors on
the conducted experiments. Therefore, the influence of employing an objective
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Risk factor p-Value

Age at treatment 0.70
Tumor volume at treatment <0.01
Prescription isodose line 0.46
Coverage 0.16
Selectivity <0.01
Gradient index 0.46
Paddick conformity index 0.10
Number of isocenters 0.03
Beam-on time 0.37
Dose covering 99% of tumor volume 0.05

Table 4.1 — Results of the univariate Cox regression analyses. The relevant p-values are indicated
in bold.

failure definition is assessed. Furthermore, the effect is examined of only including
patients that presented radiological progression prior to treatment.

4.2.3 Results on global treatment parameter experiments
The following subsections highlight the results of the conducted experiments
concerning the global treatment-related parameters. First, the results on the Cox
regressions are presented. Next, the outcomes of the Kaplan-Meier analyses are
given. Finally, the assessment results of the two methodological confounding
factors are depicted.

A. Cox regression
In the univariate Cox regression, the following factors have shown a significant
correlation to the long-term tumor control in the large Tilburg database: tumor
volume at treatment, selectivity, and the number of isocenters. The p-value for the
dose covering 99% of the tumor volume is slightly higher than the required 0.05
for obtaining statistical significance. The results from the univariate analyses can
be found in Table 4.1. In a multivariate Cox regression analysis with step-wise
forward selection, only the tumor volume at treatment (p < 0.01), and the dose
covering 99% of the tumor volume (p = 0.03) are determined to be significant
covariates. These results suggest that, next to the tumor size, the dose to the tumor
margin does influence the long-term tumor control.

B. Kaplan-Meier
In the Tilburg dataset, the difference in marginal tumor dose between the two
employed protocols is approximately 2 Gy. In contrast with our hypothesis, the
above-described results from the Cox regression analyses suggest that the patients
treated with the first protocol, i.e. with a lower marginal dose, have a considerable
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Figure 4.1 — Left: Resulting Kaplan-Meier curves of the low-dose cohort (blue, solid) and the
high-dose cohort (green, dashed). Right: Resulting Kaplan-Meier curves of the low-dose cohort (blue,
solid), the average-dose cohort (green, dashed) and the high-dose cohort (red, dot-dashed).

higher risk at loosing tumor control than those treated with the high-dose protocol.
To evaluate whether this is the case, a Kaplan-Meier analysis is performed. By
using the median of the marginal tumor dose, i.e. the dose covering 99% of the
tumor volume, two cohorts are created.

First, these two cohorts are compared to evaluate whether there are significant
differences between them, apart from the treatment planning differences. Specifi-
cally the tumor volume at treatment is important in this analysis, since this factor
has shown its impact in the previously described results. From Table 4.2, it can
be distilled that the only significant differences between both cohorts are related
to the treatment planning and to the follow-up duration. However, differences in
the number of isocenters and the Paddick conformity indices are not significant.
The significant difference in follow-up time can be explained by the fact that the
high-dose protocol has been implemented since 2010, while the low-dose protocol
was used in the preceding years. The differences in treatment planning param-
eters between the two cohorts are to be expected, because they are all related to
the prescribed dose and employed treatment protocols. The number of patients
that underwent secondary treatment for their progressing tumor is also not signif-
icantly different between both cohorts (p = 0.11). These numbers for the low-dose
cohort and the high-dose cohort were 37 and 25, respectively. The time to failure
was also comparable between the two cohorts (p = 0.50).

Second, the Kaplan-Meier survival tables and curves are generated and com-
pared, using a log-rank test. The resulting curves can be found at the left side of
Figure 4.1. The log-rank test determined that there was no significant difference
between the two cohorts with respect to their survival curves (p = 0.69).

Separation of the two cohorts is performed at the median of the marginal
tumor dose in our cohort. However, this value can be arbitrarily chosen, but it
should be kept in mind that it has a considerable influence on the outcome. The
same analysis can be performed again, but now employing three cohorts, selecting
the lowest one-third of the patients as the low-dose cohort, the middle one-third
as the average-dose cohort, and the highest one-third as the high-dose cohort.

76



C
ha

pt
er

4

4.2. Global treatment plan parameters

Characteristic Low-dose High-dose p-Value

Number of failures 37 25 0.12
Time to failure (mos) 41 (32 – 62) 52 (35 – 63) 0.50
Age at treatment (yrs) 57 (48 – 66) 59 (49 – 67) 0.09
Volume at treatment (cm3) 1.40 (0.60 – 3.75) 1.59 (0.64 – 3.91) 0.47
Follow-up time (mos) 96 (72 – 121) 60 (48 – 84) <0.01
Prescription isodose line (%) 61.0 (57.0 – 66.0) 49.0 (45.0 – 60.0) <0.01
Coverage (%) 90.0 (89.0 – 91.0) 98.0 (92.0 – 99.0) <0.01
Selectivity (%) 93.0 (87.0 – 96.0) 86.0 (80.0 – 91.0) <0.01
Gradient index 3.17 (2.89 – 3.47) 2.75 (2.61 – 3.06) <0.01
Paddick conformity index 0.83 (0.78 – 0.86) 0.83 (0.77 – 0.86) 0.18
Number of isocenters 16 (11 – 22) 15 (11 – 22) 0.06
Beam-on time (mins) 39.1 (29.8 – 48.4) 46.9 (33.7 – 62.6) <0.01
Dose to 99% of volume (Gy) 11.4 (11.2 – 11.6) 12.6 (12.0 – 13.0) <0.01

Table 4.2 — Comparison between the cohorts receiving a low dose and receiving a high dose.
The value ranges are given as ”median (inter-quartile range)”. The p-values lower than 0.05 are
considered statistically significant, and are indicated in bold.

The resulting Kaplan-Meier curves can be found at the right side in Figure 4.1.
From this graph, it can be distilled that the three cohorts are comparable. Indeed,
the log-rank test resulted in a p-value of 0.35. If only the low-dose and high-dose
cohorts in this experiment are compared, the log-rank test obtains a p-value of
0.20. These results show that, even though the Cox regression determined that the
dose is a significant covariant, the differences between tumor control rates within
the protocolized doses are small and statistically not significant.

C. Confounding factors
The results described in the previous subsections show the difficulty in determin-
ing the influence of the dose on the long-term treatment outcome. The related con-
clusions based on these results are highly dependent on the method for analyses
and the interpretation of the obtained results. Furthermore, several confounding
factors related to methodology can influence the obtained results. In the following
paragraphs, the impact of an objective failure definition and the influence on the
outcome when only including confirmed progressing tumors are presented.

Factor 1: Objective failure definition
With the introduction of an objective failure definition in this thesis (Section 2.4.1),
loss of tumor control can be determined more robustly. In the Tilburg dataset,
39 patients showed a volumetric failure, but did not (yet) require or undergo sec-
ondary treatment. Performing the same analyses as in the previous subsections,
but now with the inclusion of the volumetric failures, will produce more robust
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Risk factor (incl. volumetric failures) p-Value

Age at treatment 0.64
Tumor volume at treatment 0.05
Prescription isodose line 0.74
Coverage 0.75
Selectivity 0.26
Gradient index 0.97
Paddick conformity index 0.41
Number of isocenters 0.31
Beam-on time 0.80
Dose covering 99% of tumor volume 0.23

Table 4.3 — Results of the univariate Cox regression analyses with the inclusion of volumetric
failures.

and generic results. The Fisher’s exact test, comparing the number of failures in
the low-dose and the high-dose tumor cohorts, obtains a p-value of 0.07. This
indicates that the number of failures does not differ significantly between the
two cohorts, although medical experts may say that a trend is present. Further-
more, the time to failure does not show a statistically significant difference. In
the univariate Cox regression analyses, none of the evaluated risk factors appears
to be a statistically significant covariate. Even tumor volume at treatment is no
longer statistically relevant, although it only has a slightly higher p-value than the
required significance level. All resulting p-values can be found in Table 4.3.

Indeed, the Kaplan-Meier curves show comparable results to the case where
only secondary treatments are considered as failure. Figure 4.2 presents the curves
where the volumetric failure definition is included in the analyses. According to
the log-rank tests, these curves do not differ significantly.

Factor 2: Pre-treatment progressing tumors
Since the Gamma Knife center in Tilburg is a tertiary referral center, and generally a
wait-and-scan protocol is chosen in the Netherlands for vestibular schwannomas,
the database contains a significant amount of patients who showed radiological
tumor progression prior to Gamma Knife treatment. As such, the above-described
evaluation can be executed for the tumors that were considered to require treat-
ment due to a radiologically progressing tumor. Of the 735 patients in the database,
441 patients were referred due to growing tumors. By splitting the database prior
to selecting only these 441 patients, the same dose cut-off is employed. After select-
ing only progressing tumors, a comparison of the resulting two cohorts highlights
that only the tumor volume at treatment is a statistically significant covariate. The
other risk factors obtained similar results when compared to the analysis on the

78



C
ha

pt
er

4

4.2. Global treatment plan parameters

0 50 100 150 200
Time [months]

0

0.7

0.8

0.9

1.0
F

re
e
 o

f 
p
ro

g
re

s
s
io

n
 r

a
te

0 50 100 150 200
Time [months]

0

0.7

0.8

0.9

1.0

F
re

e
 o

f 
p
ro

g
re

s
s
io

n
 r

a
te

Figure 4.2 — Kaplan-Meier curves where failure was defined as secondary treatment and volu-
metric progression. Left: Resulting Kaplan-Meier curves of the low-dose cohort (blue, solid) and
the high-dose cohort (green, dashed). Right: Resulting Kaplan-Meier curves of the low-dose cohort
(blue, solid), the average-dose cohort (green, dashed) and the high-dose cohort (red, dot-dashed).

Characteristic Low-dose High-dose p-Value

Number of patients 191 250
Number of failures 22 15 0.12
Time to failure (mo) 41 (32 – 62) 60 (49 – 62) 0.29
Age at treatment (yr) 59 (52 – 69) 60 (51 – 68) 0.68
Volume at treatment (cm3) 1.03 (0.53 – 2.45) 1.26 (0.63 – 2.94) <0.01
Follow-up time (mo) 96 (72 – 121) 60 (48 – 83) <0.01
Prescription isodose line (%) 61.0 (57.0 – 66.0) 49.0 (45.0 – 57.0) <0.01
Coverage (%) 90.0 (88.0 – 91.0) 98.0 (95.0 – 99.0) <0.01
Selectivity (%) 92.0 (86.0 – 95.0) 85.0 (79.0 – 90.0) <0.01
Gradient index 3.17 (2.92 – 3.52) 2.74 (2.64 – 3.05) <0.01
Paddick conformity index 0.82 (0.78 – 0.85) 0.82 (0.77 – 0.86) 0.39
Number of isocenters 14 (10 – 19) 13 (9 – 19) 0.58
Beam-on time (min) 36.1 (28.3 – 45.2) 45.8 (31.0 – 59.7) <0.01
Dose to 99% of volume (Gy) 11.4 (11.2 – 11.6) 12.6 (12.2 – 13.0) <0.01

Table 4.4 — Comparison between the cohorts receiving a low dose and receiving a high dose of all
patients with radiological tumor progression prior to Gamma Knife treatment. The value ranges are
given as ”median (inter-quartile range)”.The p-values smaller than 0.05 are considered statistically
significant.

complete database. Table 4.4 displays all characteristics and resulting p-values.
In the univariate Cox regression analyses, no significant covariates are found,

as depicted in Table 4.5. Even the dose to 99% of the tumor volume was no
longer a significant covariate. It is interesting to observe that the tumor volume at
treatment is also not a significant covariate in this cohort with only progressing
tumors. This can be explained, because larger tumors do not undergo the wait-
and-scan protocol. These tumors are referred immediately after diagnosis, due
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Risk factor (incl. only progressing tumors) p-Value

Age at treatment 0.99
Tumor volume at treatment 0.73
Prescription isodose line 0.41
Coverage 0.31
Selectivity 0.46
Gradient index 0.15
Paddick conformity index 0.82
Number of isocenters 0.60
Beam-on time 0.35
Dose covering 99% of tumor volume 0.65

Table 4.5 — Results of the univariate Cox regression analyses on a cohort where only progressing
tumors are included. None of the resulting p-values indicate statistical significance.

to their size. Therefore, this cohort is not a good representation of the VS patient
population.

4.2.4 Discussion and conclusions on global parameters
In this section, the unique large database of the Gamma Knife center at the ETZ in
Tilburg is exploited for evaluating the influence of global treatment parameters
on the long-term tumor control. First, we employed Cox regression analyses for
this investigation. The obtained results show that the tumor volume at treatment
is a significant risk factor and that the dose covering 99% of the tumor volume
becomes statistically relevant in the multivariate analysis. It is interesting that this
dose is related to the long-term treatment response, particularly because literature
shows inconclusive results. The odds ratio, i.e. the ratio between those obtaining
loss of tumor control and those that do not, equals 0.63 for the dose. As presented
in Section 3.4, this results in a decreasing risk of loss of tumor control with factor
0.63 for a tumor receiving a specific marginal tumor dose compared to a tumor
with a 1-Gy higher dose, which is quite significant. Thus, when increasing dose,
the tumor control rates will also expand accordingly. However, increasing the
dose may lead to a significant rise in toxicities, and is therefore unwanted.

The Kaplan-Meier analyses have demonstrated the opposite: splitting the com-
plete cohort using the marginal tumor dose does not result in a statistically signif-
icant difference in tumor control rates among the created sub-cohorts. Although
the previous paragraph indicated that the dose may influence the long-term tu-
mor control rates, it can be deduced that the effect is negligible within the limited
protocolized dose range, according to the Kaplan-Meier results. Furthermore, by
investigating two major confounding factors, the obtained results show a loss in
statistical significance of all analyzed risk factors. It can be therefore concluded that
the effect of these globally determined treatment parameters have no influence on
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the long-term tumor control, as long as they remain within protocolized ranges.
However, since Gamma Knife treatments are not homogeneous in their dose

distribution, the analysis of only global parameters may be too restrictive to de-
termine the actual impact of this treatment on the tumor response. Therefore,
in the next section, the heterogeneous character of the dose distribution will be
examined.

4.3 Dose distribution
In this section, the impact of the heterogeneous dose distribution on the treatment
response will be investigated. This section is divided in the following subsections.
First, a brief background is given in Section 4.3.1. Second, the conducted experi-
ments are explained in Section 4.3.2 and their corresponding results are presented
in Section 4.3.3. Finally, in Section 4.3.4, a discussion on the obtained results and
conclusions on these experiments are given.

4.3.1 Dose distribution background
A single Gamma Knife treatment consists of the execution of multiple isocenters
at different positions within the tumor, building up a specific marginal tumor
dose level. Therefore, the resulting plan is heterogeneous in its dose distribution
within the tumor. This may cause significant differences among treatment plans,
such as single or multiple hot-spots at varying locations, dose drop-offs inside
the tumor, etc. Indeed, Yu et al. [193] proved that the Gamma Knife has a highly
heterogeneous dose distribution compared to other modalities. They employed
dose-volume histograms and specific homogeneity index (HI) values for this com-
parison. Furthermore, each individual plan is tailored to the specific tumor. As
such, each plan is unique in its dose distribution. Therefore, the differences be-
tween treatment plans with respect to the heterogeneous dose distributions may
impact the response. Up to now, only global treatment-related parameters have
been investigated, as discussed in the previous section. However, the inhomogene-
ity of the dose distribution cannot be expressed in the global parameters employed
in literature. This motivates why the predictive value of the dose distribution on
the treatment outcome of GKRS on VSs is investigated.

4.3.2 Dose distribution experimental setup
The steps for realizing the proposed experiments are shown in Figure 4.3. First,
descriptions of the pre-processing steps applied to the data are provided. Next,
the methods for extracting dose-distribution features are presented. These meth-
ods are described in more detail below. The final step of the approach consists of
classification and prediction of the treatment outcome. Classification is performed
by support vector machine (SVM) and validation of these steps is realized with
leave-one-out (LOOCV) and 10-fold cross-validation methods. The classification
performance is measured as accuracy (ACC), true positive rate (TPR), true nega-
tive rate (TNR), and area under the receiver operating characteristic curve (AUC).
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Figure 4.3 — Flow diagram of the proposed approach for inhomogeneous dose distribution. For the
analysis of the dose distribution, both homogeneity indices (HI) and three-dimensional histograms
of oriented gradients (3D-HOG) are calculated.

Figure 4.4 — Image examples of the data. The contouring determined by the neurosurgeon
during treatment planning is superimposed in red. (A) T1-weighted, contrast-enhanced MRI of a
vestibular schwannoma, where the image part containing the tumor is delineated. (B) Calculated dose
distribution, where the dose intensities are proportional to the gray-level intensities. (C) Gradient of
the dose distribution in the x-direction. The strength of the gradient is represented by the gray-level
intensities, where fully white is a strong positive gradient, and fully black a strong negative gradient.
The different isocenters used in a Gamma Knife treatment are clearly visible in this image.

A. Pre-processing the dose data
As described in Section 1.2, each treatment planning requires a T1-weighted,
contrast-enhanced MRI scan. Using this scan, the VS tumor is segmented by the
neurosurgeon. An example image of such an MRI scan, including tumor segmen-
tation, is visualized in Part A of Figure 4.4. The segmentation consists of a set of
x- and y-coordinates per MRI slice in the axial MRI plane, and are generated with
sub-pixel accuracy.
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Figure 4.5 — Example of a three-dimensional interpolation of VS contours.

After treatment planning, the dose distribution details are calculated on a 0.5×
0.5× 0.5 cubic millimeter grid, representing the stereotactic coordinate system of
the Gamma Knife treatment machine. An example of such a dose distribution can
be seen in Figure 4.4, Part B. In this image, the pixel intensity values are related to
the dose intensities. Compared to the fine grid of the dose distribution within the
tumor, the segmentation contours have a coarse axial resolution. Hence, in order
to determine the dose distribution within the tumor, the segmentation contours
need to be mapped to the dose distribution space. To achieve this, the following
pre-processing steps have been employed. First, both spaces are mapped to the
same image coordinate system. Second, a 3D tumor shape is created using the
MATLAB AlphaShape tool, by interpolating the contours to fit the axial resolution
of the dose distribution. An example of such a 3D tumor shape is presented in
Figure 4.5. The value for parameter α used by the MATLAB tool is minimized per
tumor, such that the generated 3D tumor surface does not contain any holes while
maintaining a high conformity to the provided segmentation. In the final step, the
dose distribution voxels inside the interpolated tumor volume are extracted.

B. Homogeneity indices
In order to measure the homogeneity of a dose distribution, Kataria et al. [195]
have proposed four equations, calculating the homogeneity indices (HIs). The HIs
are based on the dose-volume histograms (DVHs). These DVHs are calculated for
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each patient on the basis of the input percentage. Employing these computations,
the following four HI values are calculated by the respective parameters HI i and
the DVH (x):

HI 1 =
DVH (5)

DVH (95)
, (4.1)

HI 2 =
DVH (1)−DVH (98)

Dp
· 100%, (4.2)

HI 3 =
DVH (5)−DVH (95)

Dp
· 100%, (4.3)

HI 4 =
DVH (1)

Dp
. (4.4)

In the above equations, DVH (x) denotes the minimum dose that x% of the target
volume receives, and Dp is the prescribed dose to the target.

C. 3D Histogram of oriented gradients
The previously described HIs do not consider spatial information, since these are
calculated using the dose-volume histograms. As such, the locations of hot- and
cold-spots are not taken into account. To incorporate the spatial information on the
dose distribution, three-dimensional histograms of oriented gradients (3D-HOGs)
are employed. These 3D-HOGs are calculated on each of the dose distributions,
and are based on the work by Dalal and Triggs in 2D [196]. The computation is
implemented by calculating the gradients of the dose distribution in x-, y-, and
z-directions and performing orientation binning.

The gradients are computed by employing centered one-dimensional point-
derivative masks inside a bounding box of 80 × 80 × 64 voxels, encompassing
the VS tumor. A visual example of such a gradient measurement of the dose
distribution can be found in Part C of Figure 4.4. In this image, the heterogeneous
character of the dose distribution is clearly visible. Using the calculated gradients
in the x-, y-, and z-directions, a gradient vector can be constructed for each dose
distribution voxel. This gradient vector ~a is defined for each dose distribution
voxel D(i) by:

~a (i) =


∂
∂xD(i)
∂
∂yD(i)
∂
∂zD(i)

 , (4.5)

where i is the dose distribution voxel index.
Orientation binning is performed in cells, where each cell contains 16×16×16

voxels, resulting in 5 × 5 × 4 cells for each tumor. Each bin of the histogram
can be interpreted as a unit vector ~bn within an (x, y, z) coordinate system. We
have implemented two different experiments, where the amount of bin vectors
~bn per cell equals either 6 or 26. This results in a total of 600 and 2,600 bin vectors,
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Figure 4.6 — Illustration of the bin vectors employed in the 3D-HOG calculations. The bin
vectors for a 6-bin HOG are depicted in red, while the additional 20 vectors for the 26-bin HOG are
highlighted in blue, and are derived from the 6 red vectors.

respectively, for the complete bounding box around the tumor. When using 6 bin
vectors, every bin vector is oriented along an axis in a 3D space in either the
positive or negative direction, i.e. ±x, ±y, and ±z (see Figure 4.6 in red color).
When employing 26 bin vectors, the additional 20 vectors are constructed from
the base 6 vectors (i.e. the vectors in the + and − directions of the x-, y-, and
z-axes) with a separation angle of 45◦. These additional vectors are derived by
linear weighting of the nearest neighboring three red vectors. These 20 vectors
form a unit sphere as they all have radius unity, and can be found in Figure 4.6 in
blue.

Next, the angle θn between gradient vector ~a (i) and every bin vector ~bn is
computed. In the 2D case presented in the paper by Dalal and Triggs [196], every
gradient pixel votes for the two closest bin vectors, i.e. the two vectors~bk,l associ-
ated with the smallest angle to ~a. Here, we employ three-dimensional data, thus
each gradient voxel should vote for the three bin vectors that have the smallest θn
with respect to the gradient vector ~a (i) . These votes are calculated by:

vk = |~a (i) | θl + θm
2 (θk + θl + θm)

, (4.6)

vl = |~a (i) |
θk + θm

2 (θk + θl + θm)
, (4.7)

vm = |~a (i) | θk + θl
2 (θk + θl + θm)

, (4.8)

where k, l, and m are the indices of the bin vectors with the smallest angle θ to
~a (i) . The closer the gradient vector ~a (i) is to a bin vector, the higher its vote
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for that specific bin becomes. For each bin vector~bn within a cell of 16× 16× 16

gradient voxels, the sum of all its votes vn is calculated. Subsequently, each cell is
represented with an array of size 6 or 26, depending on the number of employed
bins, containing the sum of voting values of its vector bins. Finally, for each dose
distribution, the arrays containing the bin vector values of each individual cell
are combined to construct an array of 600 or 2,600 voting values. This array is
implemented in the machine learning stage as input feature.

4.3.3 Results on dose distribution experiments
In this section, first the data used in this research are described, after which the
classification results of the individual features are presented. All implementations
are realized in MATLAB (MathWorks inc., Natick, Massachusetts, USA). Training
of the models is performed by the Classification Learner Application in MATLAB
using default settings. For the 3D-HOG features, principal component analysis
(PCA) is applied to limit the number of features by using the most relevant Eigen-
values and discarding the other ones.

A. Dataset
The dataset in these experiments involves clinical dose distribution data of 40 se-
lected VS tumors. The VS segmentation contours were drawn by the neurosurgeon
during treatment planning, and are thus available for each tumor for which the
volumetric response to Gamma Knife is known. The treatment resulted in a failure
on 20 tumors, and on the remaining 20 tumors, Gamma Knife was considered
successful as these tumors showed a significant volume reduction within the first
year after treatment (fast responders). Treatment outcome was determined by eval-
uating the volumetric response, where an increase in tumor volume is considered
a failure. This evaluation was performed in a clinical setting by a medical team of
specialists. In contrast to this, treatment success is difficult to define. The response
of VS to Gamma Knife can only be determined after years of follow-up, where
treatment failures can still occur after several years [97]. Therefore, we selected
tumors that displayed a significant decrease in volume within a relative short
time-period following treatment. The relative tumor volumes are plotted over
time in Figure 4.7, where time was defined at treatment moment and at follow-
up visits. The dose distribution is calculated by the treatment planning software
(GammaPlan, Elekta AB, Stockholm, Sweden) and is mapped to a 3D space with
a resolution of 0.5 mm × 0.5 mm × 0.5 mm, with every element containing a
high-precision representation (16 bits) of the delivered dose.

B. Homogeneity indices
Employing the DVH per tumor, the HI features and their means and variances
for the two patient cohorts are calculated. The resulting statistics are depicted in
Table 4.6. To evaluate differences between the two cohorts, the results for each HI
are tested using a paired t-test. The resulting p-values are also listed in Table 4.6.
There is no significant statistical difference between the two cohorts, as indicated
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Figure 4.7 — Plot of the relative volumes of the tumor following Gamma Knife radiosurgery. The
red curves refer to the volume responses of the VS tumors for which the treatment failed. In blue
color, the volume changes of the rapid responding VSs are highlighted.

by a p-value smaller than 0.05. Thus, it can be concluded that there is no statistical
difference in HI values between the successfully treated tumors and the tumors for
which treatment failed. Indeed, employing these features in a machine learning
algorithm yielded unreliable results (see Table 4.7). One particular trained model
obtained zero scores for all performance indices. This happens if the model assigns
labels randomly. The SVM model cannot find a reasonable decision boundary in
the data, since the classes are inseparable and the model predicts everything into
the majority class. Because we have 2 cohorts of 20 tumors, leaving one out will
result in an incorrect prediction, since the model predicts the opposite, majority
class. This results in all-zero scores. Furthermore, the highest performing SVM
trained on these features obtained an ACC of 52.5%, showing that these features
cannot distinguish treatment failure from treatment success.

C. 3D Histogram of oriented gradients
Employing a bounding box of 80 × 80 × 64 voxels, divided into 5 × 5 × 4 cells,
we obtain a number of 3D-HOG features that is equal to 100 times the number
of bins. Since the number of features is high, PCA is employed to reduce this
number. The classification results of these 3D-HOG features show that overall,
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Homogeneity Successful Unsuccessful
index Mean Std. Mean Std. p-Value

HI1 1.94 0.72 1.80 0.27 0.39
HI2 97.8 31.4 93.6 27.1 0.59
HI3 73.2 26.6 69.7 19.5 0.59
HI4 1.80 0.28 1.77 0.25 0.61

Table 4.6 — Statistical description of the resulting homogeneity index (HI) values. For each HI
feature, the mean and standard deviation (std.) are presented, including the resulting p-values from
the paired t-tests comparing the two cohorts.

SVM type Validation ACC [%] TPR [%] TNR [%] AUC

Linear
10-fold CV 40.0 70.0 10.0 0.32

LOOCV 12.5 5.0 20.0 0.05

Quadratic
10-fold CV 52.5 55.0 50.0 0.53

LOOCV 37.5 40.0 35.0 0.41

Cubic
10-fold CV 52.5 55.0 50.0 0.40

LOOCV 40.0 40.0 40.0 0.28

Fine Gaussian
10-fold CV 50.0 50.0 50.0 0.59

LOOCV 42.5 40.0 45.0 0.51

Medium Gaussian
10-fold CV 45.0 40.0 50.0 0.38

LOOCV 17.5 5.0 30.0 0.03

Coarse Gaussian
10-fold CV 45.0 5.0 85.0 0.39

LOOCV 0.0 0.0 0.0 0.00

Table 4.7 — Classification performance for homogeneity indices, measured in accuracy (ACC),
true positive rate (TPR), true negative rate (TNR), and area under the ROC curve (AUC). Results
are obtained from 6 support vector machine (SVM) models. Validation was performed by 10-fold
cross-validation and leave-one-out cross-validation (LOOCV).

linear SVM obtains the highest ACC values, regardless of the amount of principal
components or bins. The highest ACC (77.5%) is obtained by employing 26 bins,
20 (largest) principal components and 10-fold cross-validation. The resulting TPR,
TNR, and AUC values are 80%, 75%, and 0.79, respectively. Results of the other
SVMs obtained by employing 26 bins and 20 principal components are presented
in Table 4.8. The obtained SVMs by employing 6 bins show similar results.

4.3.4 Discussion and conclusions on dose distribution experiments
The objective of these experiments was to investigate the possible influence of the
GKRS dose distribution on the treatment response for vestibular schwannoma.
For the binary classification problem in this research, treatment success and treat-
ment failure need to be defined. The purpose of a GKRS treatment on VS is to
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SVM type Validation ACC [%] TPR [%] TNR [%] AUC

Linear
10-fold CV 77.5 80.0 75.0 0.79

LOOCV 72.5 75.0 70.0 0.75

Quadratic
10-fold CV 67.5 75.0 60.0 0.77

LOOCV 67.5 70.0 65.0 0.71

Cubic
10-fold CV 62.5 75.0 50.0 0.79

LOOCV 65.0 75.0 55.0 0.73

Fine Gaussian
10-fold CV 55.0 45.0 65.0 0.59

LOOCV 0.0 0.0 0.0 0.00

Medium Gaussian
10-fold CV 65.0 75.0 55.0 0.77

LOOCV 62.5 75.0 50.0 0.72

Coarse Gaussian
10-fold CV 75.0 75.0 75.0 0.77

LOOCV 0.0 0.0 0.0 0.00

Table 4.8 — Classification performance for 3D-HOG features, measured in accuracy (ACC), true
positive rate (TPR), true negative rate (TNR), and area under the ROC curve (AUC). Results
are obtained from 6 support vector machine (SVM) models. Validation was performed by 10-fold
cross-validation and leave-one-out cross-validation (LOOCV).

stop tumor expansion. From this purpose, it is easy to define treatment failure.
However, continuous or even recurring tumor growth can occur as late as 10 years
following treatment [32]. As such, treatment success is not simply ‘no failure’, even
after several years of follow-up. To this end, we have selected tumors that showed
a significant volume reduction in the first year following GKRS. This definition
of treatment success has enabled us to create two very dissimilar cohorts of each
20 patients, so that the experiments were technically well-defined. However, this
definition causes a limitation on the actual evaluation of the dose-distribution in-
fluence, as it provides a bias in the data. Furthermore, since the treatment planning
involves many settings that result in significant variations in the dose distribution,
the number of patients included in these experiments may be too limited. Hence,
the influence of the dose distribution needs to be investigated further on larger
datasets, with a broader definition of treatment success.

Nevertheless, there seems to be a correlation between the actual heterogeneous
dose distribution and the treatment outcome. The details in the 3D-HOG features
suggest that there are measurable differences that could potentially influence
the treatment efficacy, even though treatment plannings are considered uniform.
These findings may provide a basis for refining towards personalized treatments
and prediction of treatment efficacy, if positively validated on larger datasets.

4.4 Tumor delineation
Another important step in the treatment planning that may influence the GKRS
outcome of VSs is found in the tumor delineation by the neurosurgeon. Therefore,
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in this section, we will attempt to establish an explanation for tumor response
by exploring the possible relation between the accuracy of tumor delineation by
physicians and the tumor response derived from an imaging database. In short,
we will investigate whether the accuracy of the tumor delineation plays a role in
the tumor response. This section is split up in the following subsections. First, a
background in assessing tumor delineation quality is provided in Section 4.4.1.
Next, the experiments are introduced in Section 4.4.2, after which the results are
presented in Section 4.4.3. Finally, Section 4.4.4 will discuss the obtained results
and provide conclusions.

4.4.1 Background in tumor delineation
One of the first steps in creating a conformal treatment plan is the delineation of
the tumor on the MRI scans. This segmentation is needed for calculating various
treatment quality indices, such as the conformity and selectivity. Since the final
segmentation of the tumor is a human-defined element which is employed for
calculating the treatment quality indices, it is highly susceptible for inter-observer
variations and inaccuracies, as already discussed in Section 2.5. Such deviations
from the true tumor outline may lead to underexposure of parts of the tumor,
which in turn could reduce the chance at treatment success. This is especially crit-
ical in Gamma Knife treatments because of the steep dose drop-off. Consequently,
tumor tissue that was not included in the segmentation may receive significantly
lower radiation doses than protocolized.

For evaluating delineations, metrics for image segmentation quality can be
applied and modified if needed. To assess segmentation quality, many methods
and algorithms have been introduced. Fenster et al. [197] grouped the necessities
of medical image segmentation evaluation into accuracy, precision, and efficiency,
where the latter is related to the practical use of the evaluated algorithm. This
becomes important when segmentation should be performed in real time and
hence, it is a measure of time consumption. For accuracy, the authors evaluated
two quality aspects: the boundary and the size. The precision category evaluates
the repeatability of a technique: variations in delineated tumors can be caused by
subjective observer interactions with the segmentation method.

To evaluate the boundary and size, the metrics known as accuracy and preci-
sion are obvious, simple methods which can be used to assess the performance of
a segmentation if the ground truth is available [198]. Furthermore, sensitivity and
specificity are valuable, pixel-based metrics, which can be used to assess the qual-
ity of a segmentation. The sensitivity measures the percentage of true positives
that are correctly segmented, whereas the specificity measures the percentage of
true negatives that are correctly segmented.

In spite of the low complexity of the pixel-based metrics mentioned above,
the main drawback of these methods is that they are highly correlated with the
segment size. Metrics that are size invariant are the Jaccard index [199] and the
Dice coefficient [200], which quantify the similarity between the segmentation and
the ground truth, by measuring the area of each segmentation and their spatial
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overlap. Taha et al. [201] showed that Dice and Jaccard are related. Their research
investigated different metrics for evaluating 3D medical image segmentation, in-
cluding the previously mentioned Dice and Jaccard indices, but also a number
of other options. Furthermore, they used the notion that medical segmentation
can be seen as fuzzy, meaning that voxels have a grading of membership in the
unity interval. This is the case when the underlying segmentation is the result of
averaging different delineations of the same structure annotated by different oper-
ators. This is useful for obtaining binary representations which can be evaluated
as ground truth. Alternatively, sweet-spot training can also be applied for estimat-
ing a ground truth, even when annotations vary significantly between multiple
experts [139]. It is comparable to the Jaccard index, where multiple annotations
are compared instead of only two.

Shi et al. [202] described various types of segmentation errors, based on four
basic error types: (1) added regions, (2) added background, (3) inside holes, and
(4) border holes. The described segmentation errors are evaluated using the fol-
lowing similarity measures: (1) quantity, i.e. the number of segmented objects,
(2) area accuracy, (3) contour similarity, and (4) the content, i.e. the existence of
inside holes and boundary holes in the segmented region.

With respect to the vestibular schwannoma and the Gamma Knife treatment,
the evaluation of tumor delineation accuracy has not yet been investigated. Be-
cause the treatment planning is reviewed by multiple specialists prior to executing
the treatment, each segmentation can be considered highly accurate. Nevertheless,
the small variations at the tumor boundary may explain the differences in the
treatment response. Since a ground-truth segmentation is not available in the case
of VS treated with GKRS, metrics such as precision, sensitivity, and specificity are
not suited for the evaluation of the treatment delineation in this work. Here, a
comparison is made between two different annotations using metrics based on
the first two categories proposed by Fenster et al. [197], and on the alignment
measures as proposed by Taha et al. [201]. Furthermore, since MRI slices can
have varying thickness, a novel metric is proposed that considers differences at a
specific normalized axial height of the tumor.

4.4.2 Tumor delineation experimental setup
In this section, a description of the proposed experiments is provided. To evaluate
the differences between tumor delineations, the following metrics are examined:
(1) variation in number of annotated slices, (2) deviations in segmentation area per
slice, and (3) Jaccard indices, which provide a measure for delineation similarity.
The Jaccard index is selected because it can directly compare two delineations.
The differences will be tested for significance by using (1) Student’s t-tests or
rank-sum tests, and (2) visual evaluation of a notched box-plot, if applicable. In
the following subsections, the employed dataset is presented, followed by the
detailed descriptions of each utilized similarity metric.
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Figure 4.8 — Example of the treatment delineation (red solid line) and the second delineation by
the VS specialist (blue dashed line) in the planes at specific axial (z-axis) distances. The values on
the x-, y-, and z-axes are given by the patient coordinate system defined by the MRI scanner.

A. Dataset
The tumor delineation experiments focus on evaluating annotations of VSs, which
are used for prescribing the protocolized dose with high accuracy to the tumor.
Using the same dataset as described in Section 4.3.3, two groups of VS tumors
with a significantly different response to the Gamma Knife treatment are available.
Since the true tumor segmentation (ground truth) is unknown, one of the neuro-
surgeons who is specialized in treating VS tumors was tasked to create a second
segmentation of the VS tumors in that dataset. He was blinded to the annotation
created at time of treatment and had no knowledge of the GKRS response, in
order to prevent bias. Furthermore, the amount of time required for the tumor
segmentation was unrestricted, such that the delineation could be optimized. As
a visual example, a pair of annotations is shown in Figure 4.8. The delineations
are drawn on parallel, equidistant T1-weighted, contrast-enhanced MRI scans
in axial directions. Furthermore, T1-weighted and T2-weighted MRI scans were
available as resource for creating the segmentation. The resulting dataset contains
40 delineations created during treatment planning and another 40 created several
years after the treatment was performed. A total of 401 MRI slices were employed
for segmentation.
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B. Volumes
The tumor volumes of both the treatment delineation and the revisited delineation
were calculated using the treatment planning software (GammaPlan version 10,
Elekta AB, Stockholm, Sweden). Both volumes are subtracted for each patient. A
large difference in volume represents a less accurate delineation, with respect to
the revisited segmentation. However, a small volume difference cannot directly
represent a high accuracy, because two delineations from two completely different
objects can have the same volume. Therefore, the assumption is made that all
delineations are closely aligned to the actual tumor. As such, the volume difference
can provide an estimate for the delineation performance.

C. Number of slices
The number of slices can differ between both delineations. This happens if one of
the operators considers some of the voxels in MRI slices just above the top or just
below the bottom of the tumor as part of the tumor, while another operator does
not, like at the bottom part of the tumor in Figure 4.8. This provides information
about the differences, targeting the top and bottom parts of the tumor, between
the two annotations. By comparing the difference in the number of slices between
the two patient cohorts, we can verify if the top or the bottom part of the tumor is
the sensitive part that may influence the radiosurgical response.

D. Slice area
After finding the differences between the complete 3D tumor delineations, each
tumor annotation is compared on a slice-by-slice basis. To this end, the annotation
slices are converted into high-resolution binary image masks (pixels within the
tumor contour are assigned unity value). Next, the slice area is calculated by
counting the unity pixels. Furthermore, a novel metric is implemented in which
the area differences are computed for each slice at a specific, normalized axial
height. This height is determined by employing the following equation:

Hnorm (j) =
z (j)− zmin

zmax − zmin
, (4.9)

where Hnorm denotes the normalized height position, j is the slice number, z(j) is
the j-th slice position in millimeters with respect to the patient coordinate system
defined by the treatment planning software, and zmin and zmax are the minimum
and maximum z-values per patient among both delineations, respectively. The
area difference is determined by subtracting the area of the treatment delineation
from the area of the revisited delineation. For the two cohorts, the summed ab-
solute pixel (SAP) difference and the summed relative area (SRA) difference at a
specific normalized height are computed and plotted. The SAP is calculated as∑
j |Streat(j)− Srevisited(j)|, where j is the slice index and Streat and Srevisited are the

masks of the treatment delineation and the revisited delineation, respectively. The
calculation for the SRA difference is similar, but now with respect to the individual
surface areas of the delineations. This metric assists in investigating whether there
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Metric Failure Success p-Value

Volume [mm3]
mean voltreat 2538.05 3687.75

0.08mean volrevisited 2490.80 3436.10
mean voldiff 47.25 251.65

Total slice bottom 3 9
-

difference top 6 6
No. of patients bottom 3/20 5/20

-
with slice diff. top 6/20 6/20
Jaccard index mean ± std 0.792 ± 0.252 0.749 ± 0.260 <0.01

Table 4.9 — Comparison of all metrics between the two delineation sets.

is a crucial part in the tumor delineation that should be accurately delineated.

E. Slice similarity
Similar to the comparison of the slice area, the slice alignment is compared using
the Jaccard index. This index is calculated by exploiting the same binary image
masks as in the previous metric. From these image masks, the union and inter-
section of the two different masks per slice are computed and employed in the
formula for the Jaccard index, which is given by:

J(j) =
|Streat(j) ∩ Srevisited(j)|
|Streat(j) ∪ Srevisited(j)|

, (4.10)

where J is the Jaccard index for slice j. This formula results in a Jaccard index
value within the unity interval, where zero means no intersection at all and unity
represents two completely overlapping shapes. If either mask is empty, there is
zero overlap and hence the resulting Jaccard index will be zero as well.

4.4.3 Tumor delineation results
In this section, the results obtained from the experiments are presented. These
results are highlighted for each of the individual metrics in separate subsections.

A. Tumor volume differences
The results of the volume measurements are listed in Table 4.9. The volume of the
treatment delineation is denoted as voltreat, whereas the volume of the revisited
delineation is denoted as volrevisited. The volume difference voldiff is calculated
by subtracting voltreat from volrevisited. From the results, it can be observed that
the mean volume difference for the successfully treated cohort is larger than the
mean difference for the failed treatment cohort. However, this difference is not
statistically significant according to the t-test (p = 0.08). This can also be distilled
from the box-plot depicted in Figure 4.9, where the notches of both plots overlap.
Nevertheless, there may be a trend present due to the p-value being close to the
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Figure 4.9 — Boxplots of the tumor volume differences. The vertical black dashed lines indicate
notch range borders to improve the visual inspection of the boxplots. Here, the notches clearly
overlap. It can therefore be concluded that the differences in tumor volumes between the two sets are
not statistically significant.

significance threshold of p = 0.05.

B. Number of segmentation slices
From the results given in Table 4.9, it is observed that the number of slices in the
successful cohort, i.e. fast responders, and the failure cohort are quite similar. Most
of the possible differences are in fact equal to zero, as can be seen from the number
of patients with differing slice numbers. Compared to the revisited delineation,
it is interesting that the slice number differences at the bottom of the tumors are
always positive in the fast-responding cohort, whereas they are negative in the
failed cohort. Because there are only a few cases that show this difference, the
effect of such a difference on the treatment outcome can be most likely neglected.
This statement also holds for the top parts of the tumors, where the differences are
typically small. It is worthwhile to note that in some cases, at the bottom part of
the tumor, the difference in number of slices may sometimes be larger than a single
slice. This discrepancy is typically caused by a difference in interpretation by the
various neurosurgeons. It is sometimes unclear where the tumor boundaries are
situated.

C. Slice area
As a pre-processing step required for the slice-area metric and the slice-similarity
metric (discussed in the next subsection), the tumor delineations are converted
into high-resolution binary image masks with a resolution of 2,048 × 2,048 pixels.
An example of a pair of tumor delineation masks is shown in Figure 4.10.

Furthermore, the height position of each slice is normalized using Eq. (4.10).
After adding each slice-area difference at the normalized height position, the left
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A B

Figure 4.10 — Example of two binary image masks. (A) Mask from the treatment delineation. (B)
Mask of the same MRI slice, created by the VS specialist.

graph in Figure 4.11 is obtained. It shows the SAP differences between the treat-
ment delineation and the revisited delineation for all patients in the two cohorts.
From this plot, we observe that the SAP difference varies across the complete nor-
malized height, and that the SAP differences are larger for the successfully treated
cohort. At the right of Figure 4.11, the SRA curves are presented. In this graph,
significant differences appear at the top and bottom parts of the tumors, while
in the rest of the tumor these differences are small. In this plot it can be noticed
also that the SRA differences for the successfully treated cohort are overall slightly
larger. This can also be measured from the average difference in the number of
pixels per slice, which are 12,000 ± 28,926 and 44,859 ± 118,797 for the failure and
successful cohort, respectively. With respect to the slice area itself, these average
difference results become 4.4%± 29.4% and 11.7%± 31.3%. These variations are
significantly different when tested using a t-test (p = 0.02). Indeed, the boxplots in
Figures 4.12 and 4.13 show no overlap for the SAP and SRA values, respectively,
thereby visually supporting the statistical significance found in the t-tests.

D. Slice similarity
Table 4.9 presents the summarized statistical results of the Jaccard indices for both
cohorts. The mean Jaccard value of the failure cohort is higher than the mean
value of the successfully treated cohort. This means that the similarity of the
treatment delineation is higher in the failure cohort, compared to the revisited
delineation. In other words, the treatment delineation of the failure cohort has a
higher accuracy. The distribution of the indices shows a slightly higher skewness
for the failure cohort when compared to the successfully treated cohort, being -2.04
and -1.86, respectively. The boxplots shown in Figure 4.14 depict the distributions
of the Jaccard indices for the two cohorts. It can be derived from the boxplots
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Figure 4.11 — Results of the slice area metrics. Left: SAP differences of the treatment delineation
and the delineation of the specialist. Right: the SRA differences of both delineations. In both graphs,
the red solid line denotes the differences in the failure cohort, whereas the blue dashed line depicts
the differences in the fast-responding cohort.
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Figure 4.12 — Boxplots of the relative area differences. The vertical black dashed lines emphasize
the notch range boundaries to improve the visual inspection of the boxplot. It becomes clear that
there is no overlap in the notches, suggesting that the differences in slice areas between the two
delineation sets are statistically significant.

97



C
hapter4

4 . D O S I M E T R I C PA R A M E T E R S

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Relative slice area difference [%]

Failures

Fast responders

Figure 4.13 — Boxplots of the relative area differences. The vertical black dashed lines emphasize
the notch range boundaries to improve the visual inspection of the boxplot. It is visible that there
is no overlap in the notches, suggesting that the relative differences in slice areas between the two
delineation sets are statistically significant.
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Figure 4.14 — Boxplots of the slice similarity differences, calculated by the Jaccard indices. The
vertical black dashed lines emphasize the notch range boundaries to improve the visual inspection of
the boxplot. Here, the notches do not overlap, thereby implying that the differences in slice similarities
between the two delineation sets are statistically significant.

that the notches do not overlap. Therefore, the difference in Jaccard indices can be
considered statistically significant. This is also the conclusion after the rank-sum
test, which results in a p-value of less than 0.01, thereby confirming the strong
dissimilarity between both cohorts.
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4.4.4 Discussion and conclusions on tumor delineation experiments
In this section, the correlation between the GKRS treatment response of VS tumors
and the tumor delineation accuracy during treatment planning have been inves-
tigated. This is performed by implementing well-known metrics for assessing
the quality of medical image segmentation and by introducing novel SAP and
SRA difference metrics. We have compared the treatment delineation with the
annotation of a neurosurgeon who is specialized in treating VS tumors, which
were created retrospectively, using volumes, number of slices, slice areas, and slice
similarities. The obtained results show no evidence to the hypothesis that a less
accurate delineation leads to an increased failure rate. The results illustrate that
the delineation of the fast-responding group is less accurate compared to the delin-
eation of the VS specialist, rather than the delineation of the failure cohort, which
is surprising. This suggests that when there is more disagreement between the
two tumor delineations, the more likely it is to achieve treatment success within
this small dataset, where treatment success is considered to be a rapid decrease
in tumor volume within a limited time frame. This leads to the conjecture that
the type of tumors that are more difficult to delineate are more likely to show a
positive treatment response.

Because of the limited framework of the current experiment, e.g. a quite lim-
ited dataset, biased selection of subjects for simple binary classification, and a
lack of multi-variate analysis, the drawn conclusion can only be considered as the
results of a technical experiment, rather than a justified relevant medical conclu-
sion. However, the obtained results suggest that a tumor that is apparently more
difficult to delineate, responds better to the GKRS treatment. This is an interest-
ing topic for further research, where the shape and texture of the tumor on the
MRI scans, which may represent the underlying biology of the tissue, should be
incorporated.

4.5 Conclusions
Currently, many research articles have discussed the influence of the Gamma Knife
treatment parameters on the radiosurgical response of vestibular schwannomas.
Many authors have concluded that the different dose-related factors do not impact
the volumetric response, although some investigations show contradicting results.
In our unique large database from a single institution, we have investigated the
treatment parameters on the long-term tumor control. The performed Cox regres-
sion analysis reveals that the dose to the tumor does significantly correlate to the
long-term tumor control, with a resulting risk factor of 0.63 (p = 0.03), implying
that lowering the dose will result in higher risks at treatment failure. However,
analyzing the variation in long-term tumor control between multiple sub-cohorts,
split by using the dose to the tumor margin, did not reach statistical significance.
Therefore, it can be concluded that even though there may be an influence, it is
limited within the boundaries of the treatment protocols.

Since Gamma Knife radiosurgery involves a combination of multiple radiation
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shots at different shapes and weights, global parameters may oversimplify the ac-
tual underlying dose distribution. Therefore, we have introduced a novel method
for evaluating the resulting heterogeneous dose distribution and its impact on
the treatment response. Calculated homogeneity indices presented no statistical
differences within our data. Our novel method, employing three-dimensional his-
togram of oriented gradients (3D-HOG) to describe spatial differences between
treatment plans, resulted in a classification accuracy, true positive rate, true nega-
tive rate, and area under the curve of 77.5%, 80.0%, 75.0%, and 0.79, respectively.
These values are based on exploiting linear support vector machines for classifica-
tion. Although these metric results are attractive, they need to be more extensively
analyzed on larger datasets to validate their impact on the treatment response.

Finally, we have investigated another important aspect that is generally not
considered: the accuracy of the tumor delineation during treatment planning and
its possible influence on the radiosurgical response. Since the dose is prescribed to
the tumor margin, inaccuracies in the tumor annotations may lead to underexpo-
sure of the tumor margins. As such, we have conducted experiments to determine
whether the differences between annotations may have influenced the treatment
response. To this end, we have compared the treatment delineation with the anno-
tation by a VS specialist, created retrospectively, using volumes, number of slices,
slice areas, and slice similarities. By calculating the Jaccard indices, it is illustrated
that the delineations of the fast-responding group have more variation compared
to the delineations of the VS specialist. In contrast, the delineations of the failure
cohort show less variations. This suggests that tumors that are more difficult to
segment, are expected to obtain a positive treatment outcome.

In this thesis, it is suggested that the underlying intrinsic tumor biology is
the main cause for the variations in the Gamma Knife treatment response. In this
point of view, the previously described results on the impact of tumor delineations
are interesting. Therefore, the following chapter will further research this sugges-
tion, where the influence of the tumor shape and appearance on the MRI scans
are investigated by means of quantitative shape and texture features. We will
examine the shape of the tumor to evaluate whether this parameter enables the
prediction of the treatment response. Furthermore, the first experiments on the
MRI tumor texture are conducted, in order to explore whether differences in the
calculated quantitative tumor texture features facilitate treatment response predic-
tion. If possible, this will ultimately lead to the ability of predicting the vestibular
schwannoma response to Gamma Knife radiosurgery prior to treatment, aiding
physicians and their patients in selecting the optimal treatment strategy on an
individual basis.
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vestibular schwannoma

5.1 Introduction
The previous chapter explored the impact of various treatment-related parameters
on the response to Gamma Knife radiosurgery of vestibular schwannoma. In cur-
rent state of the art, only global treatment parameters have been investigated, and
their impact on the treatment response is reported to be limited. Indeed, using the
unique Tilburg database of VS patients, we have determined that the correlation
is minimal and significantly related to the employed methodology. Furthermore,
we have introduced a novel method for evaluating the heterogeneous character
of the planned dose and determined that the resulting metrics show correlation
to the treatment outcome. Finally, the previous chapter has also investigated the
impact of the tumor delineation accuracy on the treatment response. The obtained
results highlight that inter-operator differences are significantly larger in the fast
responding group compared to the group where treatment failed. This leads to
the conjecture that the type of tumors that are more difficult to delineate, are more
likely to obtain a positive treatment response. Consequently, it is hypothesized
that the shape and appearance of the tumor on MRI scans may have impact on
the treatment response.

In this chapter we therefore examine the predictive value of the tumor shape
and textural appearance on MRI. It is speculated that these parameters are related
to the underlying tumor biology. Since the MRI appearance of VS tumors is highly
variable, calculated MRI features may reflect specific differences in tumor biology,
which in turn can explain the variations in treatment response, as discussed in
Chapter 1. Some examples of the VS appearance on MRI are found in Figure 5.1.

MRI pattern scoring and diffusion parameters
Currently, most of the studies involving MRI characteristics of VSs employ scoring
of the contrast-enhanced MRI patterns, e.g. homogeneous versus heterogeneous
and cystic versus non-cystic tumor classification. Frisch et al. [46] explored the
outcomes after stereotactic radiosurgical treatment of predominantly cystic VS,
and determined that these tumors tend to have a larger size reduction compared
to solid tumors. Bowden et al. [50] confirmed in their study that tumor volume
regression was most evident in patients with cystic tumors.

Other studies have also employed apparent diffusion coefficients (ADC), in
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Figure 5.1 — Examples of the MRI appearance of vestibular schwannoma. From these four slices,
it can be verified that shape and texture can differ significantly.

addition to scoring of MRI patterns. These coefficients can reflect differences in
tumor biology and are calculated using MRI with diffusion-weighted imaging.
High ADC values usually indicate sparse cellularity, necrosis, or cystic features,
because it is a measure of the magnitude of diffusion of water molecules within
tissue. Camargo et al. [51] determined that higher minimum ADC values are asso-
ciated with non-responding tumors. Using an ADC cut-off value of 800 µm2/s,
they distinguished non-responders from responders in 18 out of 20 cases, with sen-
sitivity and specificity of 77.8% and 100%, respectively. Furthermore, the authors
determined a significant correlation between the minimum ADC value and the
percentage of tumor-size reduction. They also explored other qualitative image
features of the tumors, such as homogeneous versus heterogeneous and cystic
versus solid tumors. However, these qualitative factors did not show any pre-
dictive value of the radiation response. Wu et al. [53] determined that the mean
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of all maximum pre-radiosurgical ADC values of VSs was significantly higher
for those with tumor regression or stabilization at last follow-up, compared to
those with progression. They determined an ADC cut-off value of 1274 µm2/s
for the pre-radiosurgical ADC value to generate the optimal combination of sen-
sitivity (69.2%) and specificity (70%). They also found that enhancing patterns,
dichotomized into homogeneous and heterogeneous enhancement, at the time
of GKRS did not significantly correlate with the volume reduction ratio at last
follow-up. However, the authors did discover that tumors with cysts, making
up at least one-third of the whole tumor volume, were more likely to regress or
stabilize and also had greater volume-reduction ratios at last follow-up, when
compared to non-cystic tumors.

Radiomics in medical imaging
Although diffusion-weighted imaging adds functional information to the largely
anatomical data gathered by the conventional MRI sequences, differences in tu-
mor biology can also be determined by these conventional MRI scans. Texture
features obtained from these MRI scans have shown good results in the medical
field for computer-aided diagnosis (CAD) and the creation of prediction models.
Wibmer et al. [78] presented a method for detecting cancerous tissue in prostates,
applying Haralick features on MRI images. They determined that, next to ADC
values, five Haralick-based texture features were significantly different between
cancerous and non-cancerous tissue. Chaddad et al. [79] proposed a novel model to
characterize glioblastoma multiforme tissue phenotypes using MRI and gray-level
co-occurrence matrices in three anatomical planes, reaching an accuracy, sensi-
tivity, and specificity of 88.14%, 85.37%, and 96.1%, respectively. Zhou et al. [80]
employed mean intensity and gray-level non-uniformity (GLN) based on run-
length matrices (RLM) of contrast-enhanced MRI scans, to predict histological
grading of hepatocellular carcinomas. Their model, using only the mean intensity
value, resulted in an optimal sensitivity of 76% and specificity of 100%, whereas
the model employing the GLN in four different directions led to comparable or
even higher rates.

Furthermore, in the field of medical image analysis, several experiments have
been conducted in regard to relating shape to tumor classification. Soltanian-
Zadeh et al. [74] compared multi-wavelet, wavelet, Haralick, and shape descriptors
for micro-calcification classification in mammograms. They found that their shape
descriptors were superior to the wavelet and Haralick features. Alvarenga et al. [75]
used so-called morphometric parameters obtained from the normalized radial length,
i.e. the normalized Euclidean distances between the centroid and all points on
the boundary, and trained a multi-layer perceptron classifier to obtain results in
terms of sensitivity and specificity of around 90% in classifying breast tumors.
Boujelben et al. [76] used this research as a basis for their own experiments, and
added the index angle and convexity descriptors to their k-nearest neighbors
analyses. They found improved results compared to the work of Alvarenga et al.
Furthermore, Czarnek et al. employed algorithmic three-dimensional analysis of
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tumor shape in MRI to improve prognosis of survival in glioblastoma. Employing
five features that quantify the extent of irregularity in tumor shape in two and
three dimensions, they concluded that the tumor shape is statistically prognostic
of survival for patients with glioblastoma multiforme. In a machine learning sys-
tem, Zacharaki et al. [77] implemented tumor shape and intensity characteristics,
as well as rotation-invariant texture features, to distinguish different types of brain
tumors. They obtained accuracy, sensitivity, and specificity scores of 85%, 87%,
and 79%, respectively, for discriminating metastases from gliomas, and 88%, 85%,
and 96% for discerning high-grade from low-grade neoplasms.

Radiomics for vestibular schwannomas
However, for VS tumors, only one study has investigated quantitative tumor tex-
ture features from conventional MRI in relation to the Gamma Knife treatment
response. Speckter et al. [59] determined in a cohort of 14 progressors and 9 re-
gressors that first-order statistical texture features, such as the mean and standard
deviation, do not show significant differences between both treatment response
groups. Nevertheless, using a separator value, which is based on the lower quartile
of the kurtosis value obtained from the T2-weighted MRI scans of the progressors
cohort, they achieved a sensitivity to predict progression of 71% and a specificity
of 78% within the complete group, resulting in a positive predictive value of 86%
and a negative predictive value of 59%. However, their classification labels of
regressor and progressor are based on the response within the first 18 months
following GKRS treatment. As such, their model does not differentiate between
transient and permanent progression, which is crucial for predicting the actual
treatment response and the corresponding possible consequences. Nevertheless,
their results do show the potential of employing the tumor appearance on MRI
for treatment response prediction.

Therefore, in this chapter, the differences in tumor appearance on the con-
ventional MRI scans are investigated. The correlations between the GKRS treat-
ment outcome and the quantitative shape and MRI texture characteristics are
explored, with the purpose to predict the effectiveness of GKRS treatment for each
individual VS patient. If successful, the benefit for patients is that they can be
well-informed for choosing the best treatment option, together with their treating
physicians. Additionally, it can also potentially provide a basis for an individ-
ualized follow-up protocol, reducing the overall number of follow-up hospital
visits and MRI scans. As a refinement of the general problem statement, we list
the following aspects.

• Data selection: For the training of a prediction model, clear and objective clas-
sification labels and data are needed. Therefore, two distinct patient cohorts
are selected to evaluate the impact of the tumor shape and appearance on
the treatment response.

• Features: Numerous radiomic features, quantitatively describing tumor shape
and tumor texture, are evaluated in a machine learning environment for
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their impact on the treatment response.

• Response prediction: Experiments are performed to determine which shape
and texture descriptors are most suited for treatment response prediction.
Using these features, the possibility to train a model that a-priori predicts
the treatment response is investigated. If possible, this model will lead to
an enhanced treatment selection strategy and ultimately to an improved
overall treatment efficacy.

This chapter is outlined as follows. First, in Section 5.2, the employed methods
are discussed, followed by the experimental setup in Section 5.3. Next, Sections 5.4
and 5.5 elaborate on the obtained results using shape descriptors and texture fea-
tures, respectively. In Section 5.6, the obtained results are discussed and limitations
of these experiments are highlighted. Finally, several conclusions to these experi-
ments are given in Section 5.7.

5.2 Methods for shape and texture feature extraction
5.2.1 Shape descriptors
In pattern recognition and computer vision, many contour-based shape descrip-
tors are used. These descriptors can be divided into two groups: two-dimensional
(2D) shape descriptors, and three-dimensional (3D) shape descriptors. In the fol-
lowing subsections, the shape features employed in the experiments of this chapter
are described.

A. Two-dimensional descriptors
First, several 2D shape descriptors are considered. These are calculated on each
individual contour drawn on a single MRI slice. The formulas used for computing
the shape features are as follows.

Consider the contour as a non-self-intersecting polygon defined by N or-
dered points (x0, y0), (x1, y1), · · · , (xN−1, yN1

), where xn and yn are the x- and
y-coordinates in the MRI slice. Each contour has a centroid with coordinates
(Cx, Cy), which can be calculated using the following equations:

Cx =
1

6A

N−1∑
n=0

(xn + xn+1) (xnyn+1 − xn+1yn) , and (5.1)

Cy =
1

6A

N−1∑
n=0

(yn + yn+1) (xnyn+1 − xn+1yn) , (5.2)

where A is the area of the contour (Eq. (5.6)), xN = x0, and yN = y0. With the
centroid known, the radial length RL and the normalized radial length RLnorm

of each point n on the contour can be calculated using the following equations,
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respectively:

RL (n) =

√
(xn − Cx)2 + (yn − Cy)2, and (5.3)

RLnorm (n) =
RL (n)

max (RL)
. (5.4)

With these four equations, the following 19 2D shape descriptors can be computed:

• Perimeter length This is specified by:

P =

N−1∑
n=0

√
(xn+1 − xn)2 + (yn+1 − yn)2, (5.5)

where xN = x0, and yN = y0.

• Area size This parameter is computed as:

A =
1

2

∣∣∣∣∣
N−1∑
n=0

(xnyn+1 − xn+1yn)

∣∣∣∣∣ , (5.6)

where xN = x0, and yN = y0.

• Mean normalized radial length This feature is calculated by:

µRLnorm =
1

N

N−1∑
n=0

RLnorm (n) . (5.7)

• Area ratio The area ratio computes the percentage of the tumor outside the
circular region defined by the mean normalized radial length, by using the
equation of [75] as follows:

AR =
1

N · µRLnorm

N−1∑
n=0

(RLnorm (n)− µRLnorm) , (5.8)

where RLnorm (n)− µRLnorm = 0 for ∀ RLnorm (n) ≤ µRLnorm .

• Roughness index The roughness index is a measure for the average dis-
tance between neighboring contour points over the entire contour. This is
computed using the equation of [75] as follows:

RI =
1

N

N−1∑
n=0

|RLnorm (n)− RLnorm (n+ 1)| , (5.9)

where RLnorm (N) = RLnorm (0).

106



C
ha

pt
er

5

5.2. Methods for shape and texture feature extraction

• Normalized shape compactness [203] This shape characteristic is determined
using:

P2Anorm =
P 2

4πA
. (5.10)

• Haralick’s circularity measure [204] This descriptor is computed by:

HC =
µRLnorm

σRL
, (5.11)

where σRL is the standard deviation of all radial lengths RL (n).

• Danielssons’s shape factor [205] This factor is derived by computing:

G =
A

9πµ2
RLnorm

. (5.12)

• Bribiesca’s normalized discrete compactness [206] This parameter is calculated
using:

CD,norm =
CD − CD,min

CD,max − CD,min
, (5.13)

where CD = (4A − P )/2 is the perimeter of contact, and the bottom and
top limits of the perimeter of contact are defined by CD,min = A − 1 and
CD,max = (4A− 4

√
A)/2, respectively.

• Eccentricity This feature is computed by:

ε =
(µ2,0 − µ0,2)

2 − 4µ2
1,1

(µ2,0 + µ0,2)
2 , (5.14)

where µ1,1, µ2,0, and µ0,2 are second-order central moments.

• Convexity [76] This variable is derived by:

CVX =
P

Pcvx
, (5.15)

where Pcvx is the perimeter of the convex hull of the contour points.

• Fourier descriptor coefficients [207] First, a complex number u (n) = xn + iyn
for n = 0, 1, . . . , N − 1 is defined, with (xn,yn) the contour coordinates. For
translation invariance, the difference of the n-th contour point and the cen-
troid is taken, i.e. u (n) = xn−Cx+i (yn − Cy). Next, the Fourier transform of
u (n) is calculated. For scaling invariance, the magnitude of F [k] is divided
by the magnitude of the first Fourier value, i.e. |F [0]|, to obtain F [k]. Finally,
the second to the fifth Fourier coefficient are taken as shape descriptors, i.e.
F [1] , . . . , F [4].
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• Contour sequence moments features For calculating the contour sequence mo-
ments (CSMs) mr and central CSMs µr, the following equations from [208]
are needed, respectively:

mr =
1

N

N−1∑
n=0

RLr (n) , and (5.16)

µr =
1

N

N−1∑
n=0

(RL (n)−m1)
r
. (5.17)

These functions can be made translation-, rotation-, and scale-invariant by
normalization, which leads to:

mr =
mr

µ
r/2
2

, and (5.18)

µr =
µr

µ
r/2
2

. (5.19)

While these can be used directly as features for shape classification, less
noise-sensitive results can be obtained from the following features:

CSM1 =

√
µ2

m1
, (5.20)

CSM2 =
µ3

µ
3/2
2

, (5.21)

CSM3 =
µ4

µ2
2

, (5.22)

CSM4 =
µ5

µ
5/2
2

. (5.23)

The first three CSMs can be viewed as the normalized amplitude variation,
the coefficient of skewness, and the coefficient of kurtosis, respectively.

The above-specified shape descriptors can be also employed as feature per tumor.
This is done by calculating the mean, standard deviation, skewness, and mean
absolute deviation over all contours per tumor.

B. Three-dimensional descriptors
Since the extracted contours are 2D, they need to be transformed to 3D shapes
in order to determine the 3D shape descriptors. To this end, MATLAB is used
to create 3D alpha shapes. Employing these shapes, the following six 3D shape
descriptors are computed:

• Approximated volume The approximate volume of the 3D shape is calculated
by MATLAB’s AlphaShape tool. This volume is denoted by V .
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• Surface area The surface area is calculated by MATLAB using the Al-
phaShape tool. This surface is denoted as Asurf.

• Surface-to-volume ratio This ratio is calculated using

SV =
Asurf

V
. (5.24)

• Compactness This feature is computed by

Comp = 36π
V 2

A3
surf

. (5.25)

• Sphericity This feature is a measure of how spherical, or rounded the shape
is. It is defined as the surface area of a sphere with the same volume as
the tumor shape, divided by the surface area of the tumor shape. This is
calculated as follows:

ψ =
π

1/3 (6V )
2/3

Asurf
. (5.26)

• Spherical disproportion This characteristic indicates how close a 3D shape
is to a sphere with radius R and equal volume. This discrepancy can be
computed as follows:

ψD =
Asurf

4πR2
, (5.27)

where R = (3V/4π)
1
3 .

5.2.2 Texture features
In radiomics, numerous texture features are employed. In the experiments of
this chapter, we have opted for using well-known and successful features. These
include first-order statistics and second-order statistics, based on gray-level co-
occurrence matrices (GLCMs) and run-length matrices (RLMs). These features are
calculated on the MRI intensities of the largest VS tumor slice. In the following
subsections, the employed features are discussed.

A. First-order statistics (FOS)
For each selected MRI slice, the following FOS of the gray-level intensities within
the tumor contour are calculated: Mean, standard deviation, and median.

We have selected these specific features, because they present a highly con-
densed representation of the gray-level intensities within the MRI scans. Since the
appearance of the tumors on MRI are either homogeneous or heterogeneous, these
three metrics may provide enough information on the difference among the VS
tumors to enable treatment outcome prediction. Homogeneous tumors will have
similar mean and median values, accompanied with a low standard deviation,
while heterogeneous tumors will have different mean and median values and
higher standard deviation values.
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B. Gray-level co-occurrence matrices (GLCMs)
In the experiments described in this chapter, several second-order statistical met-
rics based on GLCMs are exploited [86]. The GLCMs are calculated for each
selected tumor slice, using the method described in Section 2.7.1. In summary, let
Pθ,N`,d be the GLCM constructed at an angle θ and a neighboring pixel distance d
of an image quantized to N` levels. Element (i,j) of Pθ,N`,d denotes the number of
times that a co-occurrence between two pixels exists, where the pixel of interest
with gray-level i occurs together with another pixel with gray-level j at the spec-
ified distance d, number of quantization levels N`, and angle θ. Based on these
matrices and the research by Parmar et al. [209], the following four features related
to GLCMs are computed:

• Contrast: Cn =
∑
i,j |i− j|

2
Pθ,N`,d (i, j),

• Correlation: Co =
∑
i,j

(i−µi)(j−µj)Pθ,N`,d(i,j)
σiσj

,

• Energy: E =
∑
i,j P

2
θ,N`,d

(i, j),

• Homogeneity: H =
∑
i,j Pθ,N`,d (i, j) /(1 + |i− j|).

Here, i and j are the row and column indices of the GLCM, respectively, µi and
µj are the averages of row i and column j, respectively, and σi and σj are the
standard deviations of row i and column j, respectively. The parameter choices
for θ, N`, and d for the GLCMs are selected within ranges that are viable for each
specific parameter within the data. This empirical choice was made after visual
inspection of the MRI images and statistical analyses on the sample data.

C. Run-length matrices (RLMs)
Another set of second-order statistical metrics incorporated in the experiments
is based on the gray-level RLMs [87]. Again, these matrices are calculated per
selected tumor slice. Let Rθ,N` be the RLM constructed of an image quantized
to N` levels at an angle θ. Then, Rθ,N` (i, j) denotes the number of times that a
run of length j occurs having gray-level intensity i in the direction θ. Figure 5.2
depicts a visual representation for calculating the RLMs. Based on these RLMs,
the following features are computed:

• Short-run emphasis: SRE =
∑
i,j j

−2Rθ,N` (i, j) /SRLM ,

• Long-run emphasis: LRE =
∑
i,j j

+2Rθ,N` (i, j) /SRLM ,

• Gray-level non-uniformity: GLN =
∑
i

(∑
jR

2
θ,N`

(i, j)
)
/SRLM ,

• Run-length non-uniformity: RLN =
∑
j

(∑
iR

2
θ,N`

(i, j)
)
/SRLM ,
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Figure 5.2 — Graphical representation of the calculations of the run-length matrices (RLMs).
For the RLM, the number of equal-valued connected pixels in a specific direction (e.g. horizontal or
vertical) is counted. The pixel values depend on the number of quantization levels, and for different
levels distinct RLMs can be calculated. In this figure, some example run-lengths in the horizontal
direction are highlighted. These run-lengths consist of connected pixels with values “1” and “5”
of size 2 and 3, respectively. Since there are two run-lengths with pixel value “1” of size 2, the
corresponding position in the resulting matrix becomes “2”. The same can be done for the run-
length with the value “5”. This results in a “1” on the corresponding position in the matrix. For each
individual RLM a single feature vector is calculated incorporating the above-described statistics,
which serves then as input for training.

• Run percentage: RP = SRLM/n ,

where SRLM is the sum of all elements of matrix Rθ,N` . Again, i and j are the row
and column indices of the RLM, respectively, and n is the total number of pixels
of the tumor in the selected MRI slice. The parameter choices for θ and N` for
the RLMs are selected within ranges that are viable for each specific parameter
within the data. This empirical choice was made after visual inspection of the MRI
images and statistical analyses on the sample data.

5.3 Experimental setup
This section provides a description of the experimental setup. This setup is vi-
sualized in a flow diagram in Figure 5.3. The individual blocks of this diagram
are discussed in detail in the following subsections. First, Section 5.3.1 discusses
the employed data. Second, in Section 5.3.2, the shape feature selection proce-
dure is presented. Third, for the tumor texture analysis, pre-processing of the MRI
data is needed. This step is highlighted in Section 5.3.3. This section is concluded
in Section 5.3.4, where the employed classification and validation strategies are
presented.

5.3.1 Data
In this chapter, the first experiments in evaluating the prognostic value of the VS
tumor shape and its MRI appearance on the Gamma Knife treatment response are
presented. In the previous chapter, a limited dataset of 40 selected tumors is em-
ployed. These VSs were selected for their extreme response to treatment, resulting
in either a continued volume progression for 20 tumors, or in a significant decrease
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Data

Pre-processing

FOS GLCM RLM

Fast responder Failure

Classification

2D features 3D features

Feature selection

Fast responder Failure

Classification

Figure 5.3 — Flow diagram of the proposed approach, of which two separate experiments are
visualized. The left part depicts the shape experiments, while the right part illustrates the texture
experiments. For the shape feature extractor, both two- and three-dimensional characteristics are
calculated. The texture feature extraction methods applied in this research are first-order statistics
(FOS), and second-order statistics based on the gray-level co-occurrence matrix (GLCM) and run
length matrix (RLM). Classification is performed by support vector machines and decision trees for
both experiments.

in tumor volume within a relative short time-period for the other 20 tumors. Be-
cause of their distinct difference in treatment response, as seen in Figure 4.7, we are
able to evaluate the impact of the tumor shape and the tumor appearance on the
treatment response. The contour of each VS tumor, as drawn by the neurosurgeon
during treatment planning, is extracted from the treatment-planning station. From
these contours, the tumor shape descriptors can be calculated. Furthermore, each
MRI obtained at the day of treatment was collected. For enabling the tumor texture
feature calculations, the MRI tumor voxels, i.e. the voxels within the annotated
tumor contours, are extracted from the treatment MRI scans. These include the
T1-weighted (T1), T2-weighted (T2), and T1-weighted contrast-enhanced (T1CE)
MRI scans.

5.3.2 Selection of shape features
In a machine learning approach, the quality of the resulting model is influenced
by the number of input features. It needs enough informative characteristics to
enable a clear distinction between the different classes. However, too many input
features can cause overfitting. This leads to a model that corresponds too closely
to the data, and as such may fail to reliably fit future observations. Therefore,
feature selection is required. To this end, shape descriptors are visually evaluated,
using the following steps.
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• Scatter plots: The values per shape for each feature are visualized in a scatter
plot to assess the inter-class variations.

• Feature distribution: Histograms are created per shape descriptor to evaluate
the overlap of the per-class constructed histograms.

• Boxplots: The per-class distribution of the individual shape feature values
are captured in boxplots to visually check if the notches overlap.

If these plots suggest a significant difference between both data classes, i.e. fast
responders or failures, the related feature is included in the machine learning
approach. Furthermore, unpaired Student’s t-tests are employed to evaluate the
statistical significance of differences between both cohorts for each shape de-
scriptor. Every feature with a resulting p-value lower than 0.05 is considered for
inclusion.

Finally, for training the machine learning classifiers, the following four experi-
ments are conducted.

• Single contour, 2D shape descriptors: Each individual contour with a feature
vector consisting of the included 2D shape descriptors, is employed in the
machine learning approach.

• Complete tumor, 2D shape descriptors: For each individual tumor, the mean,
standard deviation, skewness, and mean absolute deviation of the per-con-
tour-calculated 2D shape descriptors are computed.

• Complete tumor, 3D shape descriptors: Each individual tumor with a feature
vector consisting of the included 3D shape descriptors, is utilized in the
machine learning approach.

• Complete tumor, 2D and 3D shape descriptors: For each individual tumor, the
2D and 3D feature vectors are combined and implemented in the machine
learning approach.

5.3.3 Pre-processing MRI data for texture features
Unlike other medical imaging techniques such as computed tomography, MRI
data are expressed in arbitrary units, which differ between MRI machines, se-
quences, studies, and subjects. To support comparison of results, MRI intensities
need to be normalized. In this chapter, the normalization step is performed by
subtracting the minimum voxel intensity within the complete MRI, followed by
dividing all gray-level intensities by the maximum MRI intensity. This results in
voxel values within the unity range. After normalization, the MRI slice with the
largest tumor area is selected for calculating the texture features.

5.3.4 Classification and validation strategies
In the experiments of this chapter, both support vector machine (SVM) and deci-
sion tree (DT) learning algorithms are utilized for classification and prediction of
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the treatment response. Section 2.6 presents an in-depth description of these algo-
rithms. For training the prediction models, the classification learner application of
MATLAB is exploited. This application offers multiple model types per classifier
for training. For the experiments, the following model types are exploited for
the DT classification: simple tree, medium tree, and complex tree. The resulting
trees have node depths of 4, 20, and 100, respectively. For the SVM classification,
we employ the following six model types: linear, quadratic, cubic, fine Gaussian,
medium Gaussian, and coarse Gaussian.

To examine the predictive accuracy of the fitted models, leave-one-out cross-
validation (LOOCV) and 10-fold cross-validation are employed, as discussed in
Section 2.6.3. The performance of each classifier is assessed by accuracy (ACC),
true positive rate (TPR), true negative rate (TNR), and area under the receiver
operating characteristic curve (AUC). In case of having SVM models or DT models
with the similar performance, the simplest SVM model or DT model is chosen.
Hyper-parameter optimization was not applied, i.e. all settings in the application
are left on default.

5.4 Results on shape descriptors
This section presents the results of the treatment outcome prediction strategy,
based on shape descriptors. First, results on the feature selection methods are
given, followed by the classification performance of the SVM- and DT approaches
employing the included shape features.

5.4.1 Results on selected shape features
Visual inspections of the scatter plots, histograms, and boxplots suggest that the
descriptors are unable to clearly separate the two classes. From the scatter plots
it becomes clear that inter-class variations are small, while intra-class variations
are large. Some resulting scatter plots can be found in Figure 5.4. Based on the
histograms, it is observed that the data is skewed and histograms overlap for a
significant part. Using the boxplots, it is discerned that in most cases the notches
overlap completely, except for the roughness index descriptor. Some of the box-
plots can be found in Figure 5.5.

In order to statistically assess the differences in each shape descriptor be-
tween the two classes, unpaired t-tests are conducted. The results are depicted in
Table 5.1. The p-values obtained from these tests reveal that P ,A,RI , and the four
CSM shape descriptors are significantly different between the two included clas-
ses. For this reason, these shape descriptors are selected for the machine learning
approach. For the 3D shape descriptors, the t-tests display no statistical signif-
icance of the differences between the two classes, as can be seen in Table 5.1.
Nevertheless, all 3D shape features are considered to be possible predictors, be-
cause of previously obtained results in the advancing field of radiomics. This
approach results in feature vectors consisting of seven 2D shape descriptors per
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Figure 5.4 — Some of the resulting scatter plots for visual inspection, showing the feature value
per tumor or contour (depending on shape descriptor) for the fast responders (red dots) and the
failures (blue diamonds). None of the scatter plots show clear differences between the two cohorts.

contour, and twenty-eight 2D and six 3D shape descriptors per tumor.

5.4.2 Classification results on shape features
The performance scores of each one of the best SVMs in predicting whether GKRS
on VS leads to a failure can be found in Table 5.2. This table shows that the
SVM trained on the per-tumor averaged contour data obtains the best-performing
model, with an accuracy of 67.5%. The highest TNR (70%) and AUC (0.70) are
also obtained with this SVM. Models trained on the other feature vectors obtain
comparable values for the accuracy, TPR, and AUC. However, for the SVM trained
on the 2D individual contour shape descriptors, the specificity is significantly
lower (57.8%).

The results obtained by the best-performing DTs are presented in Table 5.3.
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Shape descriptor Parameter p-Value

2D

Perimeter P <0.01
Area A <0.01
Mean normalized radial length µRLnorm 0.13
Area ratio AR 0.33
Roughness index RI <0.01
Normalized shape compactness P2Anorm 0.33
Haralick’s circularity measure HC 0.49
Danielssons’ shape factor G 0.21
Normalized discrete compactness CD,norm 0.39
Eccentricity ε 0.21
Convexity CVX 0.50
First Fourier coefficient F [1] 0.23
Second Fourier coefficient F [2] 0.55
Third Fourier coefficient F [3] 0.27
Fourth Fourier coefficient F [4] 0.35
First contour sequence moment CSM1 <0.01
Second contour sequence moment CSM2 <0.01
Third contour sequence moment CSM3 0.01
Fourth contour sequence moment CSM4 0.03

3D

Volume V 0.33
Surface area Asurf 0.26
Surface-to-volume ratio SV 0.49
Compactness Comp 0.89
Sphericity ψ 0.74
Spherical disproportion ψD 0.57

Table 5.1 — Results of the unpaired t-tests on each individual shape descriptor, comparing the
two included classes, i.e. fast responder and treatment failure. From these tests only the following
2D shape descriptors reached statistical significance (in bold): perimeter, area, roughness index, and
the four contour sequence moments.
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(a) Surface-to-volume ratio (b) Roughness index

(c) Mean normalized radial length (d) Danielssons’ shape factor

Figure 5.5 — Selection of the resulting boxplots for visual inspection. Only the roughness index
(RI) presents with non-overlapping notches, thereby suggesting a significant difference between both
cohorts.

Data Descriptors ACC [%] TPR [%] TNR [%] AUC

Per contour 2D 63.6 68.7 57.8 0.70
Compl. tumor 2D 67.5 65.0 70.0 0.70
Compl. tumor 3D 65.0 60.0 70.0 0.60
Compl. tumor 2D + 3D 65.0 65.0 65.0 0.69

Table 5.2 — Performance scores of the best support vector machines. Here, the experiments are
divided based on the input data, i.e. either individual contours, or complete tumor using all image
slices, and the implemented features: 2D shape descriptors, 3D shape descriptors, or the combination
of 2D and 3D shape descriptors. The performance is measured in accuracy (ACC), sensitivity (or
true positive rate (TPR)), specificity (or true negative rate (TNR)), and area under the receiver
operating characteristic curve (AUC).
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Data Descriptors ACC [%] TPR [%] TNR [%] AUC

Per contour 2D 62.6 82.7 39.6 0.62
Compl. tumor 2D 55.0 55.0 55.0 0.59
Compl. tumor 3D 42.5 40.0 45.0 0.36
Compl. tumor 2D + 3D 55.0 70.0 40.0 0.63

Table 5.3 — Performance scores of the best decision trees. Here, the experiments are divided based
on the input data, i.e. either individual contours, or complete tumor using all image slices, and
the implemented features: 2D shape descriptors, 3D shape descriptors, or the combination of 2D
and 3D shape descriptors. The performance is measured in accuracy (ACC), sensitivity (or true
positive rate (TPR)), specificity (or true negative rate (TNR)), and area under the receiver operating
characteristic curve (AUC).

These are all obtained using a coarse DT strategy. The validation results show
that the DT trained on the individual 2D shape descriptors reaches the highest
accuracy (62.6%) and sensitivity (82.7%). However, the resulting specificity val-
ues are inferior to the results obtained with SVM. The DT model trained on 3D
shape descriptors alone obtained the worst results and is even inferior to random
selection.

From all best classifiers, the SVM trained on the tumor data with averaged 2D
shape descriptors has attained the maximum performance in predicting whether
the Gamma Knife treatment would lead to a failure or to a fast volume reduction,
achieving accuracy, sensitivity, specificity, and AUC values of 67.5%, 65%, 70%,
and 0.70, respectively.

5.5 Results on tumor texture
This section discusses the obtained results using tumor texture features. First,
the selected parameter values of the GLCM and RLM calculations are presented,
followed by the performance results of the texture features. All implementations
are realized in MATLAB, using the RLM implementation based on the algorithm
by Wei [210].

5.5.1 Parameter selection
For the GLCM and RLM matrices, only neighboring pixels in the horizontal and
vertical directions are considered, resulting in θ equal to 0◦ and 90◦. The diagonal
angles are not considered in this research, since visual inspection of the data did
not present any particular diagonal structures. The number of levels N` in which
the gray-scale image intensities are quantized for feature extraction, is chosen as a
power of two, with a maximum number of levels set at 64. This choice is based on
the expectation that very subtle intensity changes are not relevant. The maximum
neighboring pixel distance d in the GLCM method is set to 4. This value is based
on the average horizontal and vertical sizes of the tumors in the dataset, which
is found to be 9 pixels. Combining all these parameter choices with the applied
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Parameter Symbol Values

Angle θ 0◦, 90◦

Levels N` 4, 8, 16, 32, 64
Distance d 1, 2, 3, 4

Table 5.4 — Parameters of the GLCM and RLM texture feature extractors.

Classifier Validation ACC [%] TPR [%] TNR [%] AUC

DT, coarse tree 10-fold 65.0 75.0 55.0 0.68
DT, coarse tree LOOCV 67.5 62.0 70.0 0.85
SVM, fine Gaussian 10-fold 85.0 85.0 85.0 0.85
SVM, fine Gaussian LOOCV 85.0 85.0 85.0 0.85

Table 5.5 — Best classification performance scores for FOS texture features, measured in accuracy
(ACC), true positive rate (TPR), true negative rate (TNR), and area under the receiver operating
characteristic curve (AUC). The best results are obtained from exploring three different decision tree
(DT) models and six support vector machine (SVM) models (Section 5.3.4). For DT, the coarse tree
obtained the best scores, and for SVM the fine Gaussian model. Validation was performed by 10-fold
cross-validation and leave-one-out (LOOCV) cross-validation, both obtaining comparable results.

classifiers, i.e. DT and SVM, and validation methods (10-fold CV and LOOCV),
results in a total of 204 separate experiments in the MATLAB classification learner
application: 4 experiments for the FOS features, 160 experiments for the GLCM
features, and 40 experiments for the RLM features. All different parameter settings
for the GLCMs and RLMs are summarized in Table 5.4.

5.5.2 Classification performance on texture features
The results of the best performing model for each combination of classification and
validation method for the FOS features are presented in Table 5.5. It shows that the
type of validation has little impact on the achieved results. However, the difference
between machine learning techniques is significant. SVM achieves higher accuracy
than DT, being 85.0% and 67.5%, respectively. The highest sensitivity (85.0%) and
specificity (85.0%) are also obtained from SVM. Since there are only three different
features used in training, the medium and complex trees did not improve the
results obtained from training a simple tree, where only maximally 4 splits are
implemented, compared to 20 and 100 for the other two methods, respectively. For
the SVM training, the best results are achieved by applying a fine Gaussian kernel.
Cubic SVM reaches comparable accuracy results (77.5%) with the same sensitivity,
but the specificity is reduced to 70.0%. Hence, the fine Gaussian method is selected
as the best performing classifier.

Employing GLCM features for classification resulted in Figure 5.6. This bar
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Figure 5.6 — Bar chart of the best-performing classification models trained on GLCM features.
The red and blue bars denote the results trained on GLCMs constructed with inter-pixel angle
θ = 0◦ and θ = 90◦, respectively. Furthermore, the bars are grouped per inter-pixel distance (d)
and number of quantization levels (N`).

chart depicts the best results for each combination of feature parameters. Af-
ter evaluating the results of the 204 classification and validation experiments, it
appears that there is no distinguishable overall difference between the training
methods, as was the case with the FOS features, highlighted in Table 5.5. How-
ever, models trained by the coarse Gaussian method and validated by LOOCV
consistently result in a failed classification or too low accuracy results, reaching
at most 47.5%. Most of the other training results achieve accuracy values of less
than 70%. The highest obtained accuracy for GLCM features is 82.5% for a sim-
ple tree, trained with parameter combination d = 3, N` = 64, and θ = 0◦, using
LOOCV cross-validation. The resulting model obtains a sensitivity and specificity
of 90.0% and 75.0%, respectively. This result stands out as the overall accuracy re-
sults seem to decline for increasing N` and d, as can be seen in Figure 5.6. Overall,
quadratic and cubic SVMs show promising results, especially for a low number of
quantization levels and inter-pixel distances, resulting in accuracy values of about
80%.

The results for models trained by the RLM features are presented in Figure 5.7.
From this figure it can be distilled that SVMs obtain overall the best accuracy
results, with the only exception for the feature parameter combination of N` = 64

and θ = 0◦. When evaluating the specific SVM methods, the Gaussian models
have the best classification capability. The best performing RLM texture feature
vectors achieve an accuracy of 77.5%, obtained with feature parameters N` = 4

and θ = 90◦, N` = 8 and θ = 90◦, and N` = 16 and θ = 90◦. The corresponding
sensitivity and specificity values are 95.0% and 65%, respectively, for the first
parameter vector, 80.0% and 75%, respectively, for the second parameter vector,
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Figure 5.7 — Bar chart of the best-performing classification models trained on RLM features. The
red and blue bars denote the results trained on RLMs constructed with run-length angle θ = 0◦ and
θ = 90◦, respectively. Furthermore, the bars are grouped per machine learning algorithm (decision
tree (DT) and support vector machine (SVM)), and number of quantization levels (N`).

and 75.0% and 80.0%, respectively, for the third parameter vector. Although the
sensitivity is high, especially for the first parameter vector, the specificity is lower
than using the models trained on FOS features.

When comparing the FOS results from Table 5.5 with the second-order statis-
tical features from Figures 5.6 and 5.7, the overall observation is that FOS with
SVM outperforms the GLCM and RLM features.

5.6 Discussion
The experiments described in this chapter have been designed to investigate the
possible predictive value of image features obtained from conventional clinical
MR images for the GKRS treatment of VS tumors. In these experiments, the tumor
shape and tumor texture on MRI have been evaluated.

A. Shape as predictor
Experiments on the employed data have demonstrated that shape is a weak pre-
dictor for considering that GKRS on VS will result in a failure. The best trained
classifier achieves an accuracy and AUC of 65.0% and 0.71, respectively.

In research concerning the GKRS outcome of VS, the only shape-related pa-
rameter that has been investigated is the tumor volume. In a previous study by
Klijn et al. [47], tumor volume was appointed as a possible predictor of tumor
control after GKRS on VS. They employed statistical analyses on records of 420 pa-
tients to show that tumor volume was significantly correlated to tumor control
(p < 0.01). These results are concurred by other authors, but are also contradicted
by alternative studies, as discussed in Section 2.2.3. In this chapter, using machine
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learning classifiers, the conducted experiments have demonstrated that tumor
volume is not a good predictor. Separation of the different outcomes, i.e. fast re-
sponder and failure, proved to be limited with the tumor volume as input feature.
Furthermore, employing other 2D and 3D shape features in various combinations
do not improve the classification performance in terms of accuracy and AUC.

In other oncological fields, such as breast cancer, authors determined that shape
of the tumors can classify different lesions, supporting the creation of computer-
aided diagnosis tools [74]–[76]. Even in brain cancer research, shape can be em-
ployed for improving the survival prognosis [211]. Nevertheless, our data has
revealed that the commonly employed shape features are not suitable for predict-
ing the GKRS treatment response on VS. Both almost perfect spherical tumors and
lobulated tumors are found in each of the two classes, thereby underlining that
the overall differences in shape between the two selected classes is limited.

B. Tumor texture as predictive feature
Conversely, our experiments on tumor texture information do yield predictive
value of the Gamma Knife treatment responses in the employed data. More specif-
ically, first-order statistics on MRI gray-level intensities obtain high accuracy, sen-
sitivity, specificity and AUC values of 85.0%, 85.0%, 85.0%, and 0.85, respectively.

Concurring with our findings, Speckter et al. [59] also determined that the
histogram of tumor gray-level intensities provided information that may enable
the a-priori prediction of the Gamma Knife response of VS tumors. However,
they achieved lower sensitivity and specificity values in their employed dataset.
Nevertheless, it can be concluded that there is information in the VS tumor texture
that may enable the Gamma Knife treatment response prediction.

C. Limitations
In order to investigate the predictive value of quantitative image features on the
Gamma Knife treatment response, two equally sized tumor cohorts were selected.
The included patients have presented an extreme treatment response: either a
continued tumor progression, or a significant volume reduction in the first year
following treatment. This selection has enabled technically well-defined experi-
ments. However, it may have caused a bias in the employed data. Furthermore, the
clinical definition for treatment success is stopping tumor expansion and not nec-
essarily reducing the size of the tumor. However, in large tumors that are already
causing pressure on nearby brain structures, the ability to predict a significant
volume reduction within a short time period following GKRS would be highly
beneficial for the treatment selection process. Nevertheless, there is a discrepancy
between the definition employed in this chapter, i.e. fast responder, and the clini-
cally desired long-term tumor control. The applied definition of treatment success
enabled us to create two very dissimilar cohorts of each 20 patients. However,
this definition of treatment success causes a limitation on the actual predictive
value of the implemented features. The best choice for texture features needs to
be investigated further, employing extensive analyses on larger datasets, includ-
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ing a broader definition of treatment success. This will be a logical next step in
confirming and refining the predictive value of MRI texture features of VSs on the
Gamma Knife treatment response.

Because of the above discussion, the experiments concentrated on a patient
cohort with fast-reducing VSs after GKRS. As a consequence, the obtained results
found in this research thereby confirm the conclusions drawn by Frisch et al. [46]
and Bowden et al. [50], that cystic tumors tend to have better volume reductions.
These tumors have lower image intensities on T1-weighted, contrast-enhanced
MRI scans, which we found to be of predictive value in our dataset. However,
in our case, the experiments did not focus on cystic tumors specifically, and our
patient cohort was not analyzed on this characteristic.

5.7 Conclusions
Prognostic factors of tumor control after GKRS for VS are largely unknown, so it
remains difficult to a-priori predict the GKRS treatment response of an individual
VS patient. Such prediction is of crucial importance for each specific patient, in or-
der to choose the most-suited treatment modality, i.e. microsurgery or stereotactic
radiosurgery. Furthermore, a likelihood estimation of tumor control after GKRS
can potentially provide a basis for an individualized follow-up protocol, reducing
the overall number of follow-up visits and MRI scans.

The experiments on evaluating the predictive value of tumor shape on the
Gamma Knife treatment response, result in the conclusion that shape appears to
be a weak predictor. Both SVM- and DT-trained models indicate that classifying
the treatment response of a VS, based on the calculated shape descriptors, does
not provide a significant improvement over random classification. This shortcom-
ing is explained by the observation that the inter-class differences, i.e. variations
between the failure and the fast-responder cohorts, are limited, whereas intra-
class differences are considerable. Hence, the variations between both classes are
too restricted, thereby reducing the prognostic value of these shape descriptors
significantly.

However, experiments involving the tumor texture have shown that popular
second-order statistical metrics, like GLCM and RLM, are suitable for describ-
ing texture and predicting the Gamma Knife treatment response. Nevertheless,
these metrics are slightly outperformed by simple first-order statistics, like mean,
standard deviation and median, obtaining an accuracy, sensitivity, and specificity
of 85.0%. Nevertheless, the best choice for texture description can only be made
after performing more extensive analyses on larger datasets. In any case, these
experiments provide useful texture measures for successful prediction of GKRS
treatment outcome for VS and invokes further research on patient-specific evalua-
tion for VS treatment options.

The latter positive conclusion fuels the demand for further research on this
topic. Therefore, in the following chapter, we will further investigate the predictive
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value of MRI tumor texture on another, clinically highly relevant Gamma Knife
treatment response of vestibular schwannomas. Using the results obtained in
this chapter, the next chapter will examine their correlation to the short-term
adverse effect of radiation-induced transient tumor enlargement. This temporary
swelling of the tumor occurs in a broad range of all VS patients within the first
two to three years after treatment. It can cause a temporary increase in cranial
nerve morbidities and, in case of large VSs, even life-threatening morbidities. It is
therefore extremely beneficial to enable the prediction of this adverse effect prior
to treatment, such that severe patient problems can be avoided.
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6.1 Introduction
The previous chapter has introduced the first experiments into evaluating the
predictability of the treatment response, based on tumor-specific features obtained
from the treatment MRI scans. Using a limited dataset, with 20 tumors that showed
a significant volume reduction within the first year after treatment, and 20 tumors
for which the treatment did not result in a halted tumor progression, the previous
chapter has highlighted that tumor shape descriptors are not suitable for treatment
outcome prediction. Furthermore, by employing specific image-related tumor
texture features, we were able to obtain accuracy, sensitivity, and specificity values
of 85.0%, 85.0%, and 85.0%, respectively.

Nevertheless, the previous chapter has also presented one significant concern
in determining the predictive value of the tumor texture features: the limitation
of the employed dataset. Although the rapid and significant volume reduction
may be clinically interesting, there remain some methodological concerns. As
discussed in Section 2.4, clear and objective definitions of the treatment response
are needed. Despite these concerns, the previous chapter has provided interesting
results, concluding that tumor texture features may have predictive value on the
Gamma Knife treatment response.

Therefore, in this chapter, clear and objective definitions are employed to create
a dataset that is both clinically highly interesting as well as technically well de-
fined. From a clinical point of view, one of the major contraindications for Gamma
Knife treatment of VS tumors is the tumor size. As discussed in Section 1.1, the
discussion concerning the best treatment strategy is difficult to answer, especially
for large VS tumors. Most medical centers consider microsurgical resection as the
optimal treatment strategy for these large tumors, because it effectively averts the
compression of surrounding critical brain structures, such as the brain stem, the
cerebellum and the neighboring cranial nerves. Since the risks involved in micro-
surgery can be contra-indicative for this strategy, less invasive treatments such
as radiosurgery and radiotherapy have been considered increasingly in the last
decade. These strategies have obtained good results for large VSs and achieved
acceptable radiation-induced morbidities [17]–[22], [24], [61].

Nevertheless, radiosurgical treatments of large VSs remain controversial due to
the possible transient tumor enlargement (TTE). This radiation-induced swelling
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of the tumor, also known as pseudo-progression, occurs in a broad range of
11 – 74% of all VS patients in the two to three years following treatment and
can cause a temporary increase in cranial nerve morbidities [33], [52], [123]–[136].
For large VSs, where the tumor already exhibits a mass effect on the brain stem,
this post-radiation effect may cause severe, and in some cases, life-threatening
morbidities. This adverse effect necessitates salvage treatment, further increasing
the risk of surgical complications.

As TTE is one of the major contra-indicators for radiosurgical treatment of large
VSs, it would be extremely beneficial if this effect can be a-priori predicted. This will
enable physicians to select the most optimal treatment strategy on an individual
basis. However, it remains unclear why some patients exhibit TTE, while others do
not show TTE but exhibit an arbitrary volumetric response. Several investigations
into the correlation of tumor- and treatment-related characteristics to this effect
have been reported [33], [52], [123]–[136], [212]. However, their results remain
inconclusive. Treatment-related characteristics, such as marginal radiation dose
and maximum tumor dose, were found not to correlate with TTE occurrence in
all but one study [133]. Some papers describe that tumor volume is significantly
different between VSs presenting TTE and those that do not [126], [133], [136],
while others could not find this correlation [33], [123]–[125], [130], [132], [134],
[135]. Also tumor appearance on MRI, classifying a VS tumor as cystic or solid,
has been investigated. Shirato et al. [212] determined that cystic tumors are more
likely to exhibit TTE. However, others did not find this correlation [124], [126],
[131], [134], or even observed that cystic tumors are less likely to exhibit TTE [52].

The assumed biological effect of radiosurgery on VS cells is a combination
of acute inflammation and vascular occlusion [67], [68]. Because of this and the
previously described contradicting results, it is hypothesized that differences in
tumor biology may be the cause of TTE in a subset of patients. Ideally, a biopsy
is performed to analyze tumor tissue. However, this is an undesirable procedure,
since post-biopsy hemorrhage is one the most frequently encountered complica-
tions, which can cause even death due to the close proximity of the VS location
to the brain stem. The more readily available source of biological information is
through imaging techniques, such as magnetic resonance imaging (MRI). These
scans are already obtained for diagnostics and may contain information on the
biological tumor features.

A literature study was carried out to find out as to how far image analysis
techniques were explored for determining features describing biological tumor
properties. In a review by Gillies et al. [69], the authors reported on the potential
power of medical image analysis using radiomics, to facilitate improved clinical
decision making. Indeed, numerous studies describe the ability of employing
computer-aided diagnosis using medical imaging for classifying disease and treat-
ment response. Yang et al. [81] evaluated tumor-derived MRI-texture features
for discriminating molecular subtypes of glioblastomas and the corresponding
12-month survival status. Their study obtained area under the receiver operat-
ing characteristic (AUC) values of 0.70 to 0.82 for the specific subtypes, and 0.69
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for the 12-month survival status. Moreover, specifically for radiosurgical treat-
ment responses, several authors evaluated the possibility to distinguish true tu-
mor growth from radionecrosis in primary malignant brain tumors and brain
metastases. Utilizing computer-extracted texture features, Tiwari et al. [82] were
able to distinguish cerebral radionecrosis from recurrent brain tumors on multi-
parametric MRI. Their method obtained AUC values of 0.79 on fluid-attenuated
inversion-recovery (FLAIR) MRI images, both for primary malignant brain tu-
mors and for brain metastases, thereby outperforming the diagnosis made by the
medical experts. Zhang et al. [83] evaluated 285 texture features calculated on four
different MRI sequences, to find a predictive model distinguishing radionecrosis
from true tumor progression following radiosurgery on brain metastases. They
obtained an AUC value of 0.73 using so-called delta feature values, that represent
the change in feature values over time. Peng et al. [84] obtained an AUC value of
0.79 on distinguishing radionecrosis from tumor progression, using 10-fold cross-
validation of their prediction model. Wang et al. [85] demonstrated that multi-
modality MRI imaging and radiomics analysis have the potential to identify early
treatment response of malignant gliomas treated with concurrent radiosurgery
and bevacizumab.

These studies all show the potential of distinguishing different radiosurgical
treatment responses in malignant brain tumors. However, the ability to predict
such a treatment response prior to treatment is crucial in the case of large VS
tumors, because this can lead to a well-informed treatment selection based on
quantitative analysis. Since clinical- or treatment-related parameters have not
shown any prognostic value, it is hypothesized that quantitatively analyzing the
tumor appearance on readily available MRI scans can facilitate pre-treatment
prediction of the TTE effect.

Therefore, the objective of this chapter is to explore whether TTE after radio-
surgery, specifically Gamma Knife radiosurgery (GKRS) on VS, can be predicted
from the measured MRI tumor texture characteristics. As a refinement of this
general problem statement, we therefore list the following research challenges.

• Patient-inclusion conditions: In order to train a prediction model, MRI data
of a sufficient number of patients need to be available. There are several
trade-offs that influence the amount of patients that can be included. First, a
strict definition of transient tumor enlargement is required for preventing
misclassifications. Second, the adverse reaction to a transient swelling is
highly relevant in patients with large VS tumors, since in these cases inter-
vention is conceivable. Finally, patients should have at least a 2 – 3 years
follow-up MRIs available to determine if the swelling was indeed transient.

• Data balancing: Another important factor concerning the MRI input data
is the number of patients available in the two distinct cohorts. Since these
numbers may not be evenly distributed, the machine learning approach
should be able to handle the impact of this imbalance.
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• Tumor volumes: Up to this point, the MRI-scan resolution of the VS tumors
has been unrelated to the tumor size. Therefore, larger tumors contain more
tumor voxels and may show more detail in tumor texture. We will evaluate
the impact of tumor volume on the prediction results.

• Machine learning: We will analyze several texture features and apply machine
learning as a technique for classifying the MRI observations.

• TTE prediction: We aim at a-priori prediction of transient tumor enlargement
using machine learning. Moreover, this developed model should preferably
allow an evaluation on an individual basis, where this model can be possibly
implemented in a clinical decision-support system, aiding physicians and
patients in selecting the optimal care path.

This chapter is outlined as follows. First, Section 6.2 elaborates on the available
data and the pre-processing steps needed to normalize the MRI data. Next, the
experimental setup is described for evaluating the predictability of transient tumor
enlargement in Section 6.3. Then, the results of the experiments are presented in
Section 6.4, after which these are discussed in Section 6.5. Finally, Section 6.6
concludes this chapter.

6.2 Data and pre-processing
This section presents a description of the available data and discusses the proposed
approach for MRI normalization.

6.2.1 Data
The data employed in this research consist of prospectively collected patient-
and treatment-related information and clinical MRI image data. The included
patients have been selected based on a volumetric threshold derived from the
Koos grade. This grade is used in a clinical setting to classify the VS tumor size.
This classification is based on the tumor stage, where Grade I is selected for tumors
only present in the auditory canal and Grade IV for tumors displacing the brain
stem. Koos Grade IV is in medical terms considered a large tumor. For these large
tumors, the adverse effects of TTE can cause severe complications because of the
already caused displacement of critical brain structures and cranial nerves. Koos
Grade IV tumors have a corresponding average tumor volume of 4.17 ± 2.75
cubic centimeter (cm3) [137]. In this chapter, we select a lower bound of 1.42 cm3

as the minimum inclusion threshold. Furthermore, as TTE will occur between
6 – 18 months after treatment, all included patients had at least an available MRI
scan at 6 months following treatment and were followed-up for at least 18 months.
These follow-up scans were employed for calculating tumor volume changes, to
determine whether a TTE has occurred or not. This resulted in the inclusion of
99 patients.

The obtained patient- and treatment-related information include (1) age at
treatment, (2) tumor volume at treatment (gross target volume, GTV), (3) radiation
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dose to 99% of the GTV, (4) coverage (ratio between GTV within prescription
isodose volume GTVPIV and GTV), (5) selectivity (ratio between GTVPIV and PIV),
(6) gradient index (ratio between volume enclosed by half the prescription iso-
dose and PIV), (7) Paddick conformity index (coverage multiplied by selectivity),
(8) number of isocenters, and (9) the beam-on time. We will employ Student’s
t-tests to evaluate differences in these patient- and treatment-related characteris-
tics between patients that suffered from TTE and those that did not.

The clinical MRI data employed in this research for texture analysis consisted
of the MRI scans that were already acquired for treatment planning. These in-
cluded T1-weighted, T2-weighted, and contrast-enhanced T1-weighted (T1CE)
MRI scans and were obtained on the day of treatment. Ideally, for discriminating
TTE from non-TTE, a histopathological evaluation of tumor tissue is employed.
However, in current clinical practice, surgical intervention is highly unwanted
due to the significantly increased inherent risks. This is why the medical team
at our center opted for GKRS in the first place and also has the protocol to only
intervene when the tumor expansion becomes life-threatening. In all other cases,
watchful waiting is preferred for the first 2 – 3 years following GKRS. As such, the
presence or absence of TTE needs to be determined from the MRI data obtained
at follow-up visits. To this end, tumor volumes were calculated on each available
follow-up MRI, by segmenting the tumor using the treatment planning software
(GammaPlan Version 11, Elekta AB, Stockholm, Sweden). Several publications
report that the maximum TTE is observed between 6 – 15 months after treatment,
followed by volumetric reduction [33], [49], [127], [132], [134]. For this reason, the
TTE effect is defined as in Section 2.4.3. This definition states that a volumetric
increase of at least 10% within the first 12 months after treatment, followed by
volumetric reduction to at least the tumor volume at treatment. Examples of a
treatment and follow-up MRI scans of a VS tumor that exhibited TTE are shown
in Figure 6.1. If tumor expansion was less than 10% during the first 2 years, the VS
was considered to be stable or shrinking and consequently classified as non-TTE.
Using these definitions for TTE and non-TTE, 38 out of the included 99 patients ex-
perienced a TTE after GKRS treatment. The remaining 61 patients were classified
as non-TTE.

The treatment MRI scans, including the tumor delineations created by the
neurosurgeon on the day of treatment, were extracted from the database of the
Gamma Knife treatment system. The data from which image features are extracted
consist of the MRI volume elements (voxels) within the tumor delineations.

6.2.2 Pre-processing
Whereas data from other medical imaging modalities are measured in absolute
units, MRI data provides relative values. These values can differ between MRI ma-
chines, but also between patients and even between two scans of the same patient.
To support comparison between subjects, the MRI intensities need to be normal-
ized. To this end, we employ a multi-landmark intensity normalization (MLIN),
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Figure 6.1 — T1-weighted, contrast-enhanced magnetic resonance images of a vestibular schwan-
noma that exhibited transient tumor enlargement after Gamma Knife radiosurgery. In each part
of the figure, the red delineation depicts the tumor at time of treatment. Part A: tumor at time of
treatment, with a volume of 12.8 cm3. Part B: in green, the tumor 6 months after treatment, with
a volume of 17.7 cm3. Part C: in green, the tumor 24 months after treatment, with a volume of
8.7 cm3.

which is based on the work by Madabhushi and Udupa [213]. This method aims to
find a generalized intensity scale, such that MRI scanning parameters have limited
influence on the image analysis techniques. It performs a nonlinear normalization
utilizing tissue-specific landmarks. For T1 and T1CE MRI scans, the utilized land-
marks are the brain stem and the fiducial markers. For the T2 scans, the selected
landmarks are the brain stem, the fiducial markers, and the cerebrospinal fluid.
Examples of the landmarks are given in Figure 6.2. These landmarks are manually
selected, and the median value is calculated for each selected landmark region.
Using a training set, a generalized scale is estimated. Next, each specific landmark
value is mapped onto that generalized scale, resulting in a piece-wise linear trans-
formation function for each individual MRI. Furthermore, in order to cope with
artifacts that lead to misleadingly high intensity values, a histogram-percentile-
based cut-off for the high image intensities is employed. These percentiles were
empirically chosen as 99.8%, 99.8%, and 99.999%1 for the T1, T1CE, and T2 MRI
scans, respectively.

6.3 Experimental setup
In order to evaluate the possibility to predict the transient tumor enlargement
effect of VS tumors following Gamma Knife treatment, a number of experiments
is conducted. These experiments involve the evaluation of the impact on the TTE
of the MRI tumor texture. Figure 6.3 depicts the flow diagram of the proposed
approach. This section first discusses the training data selection in Section 6.3.1.
Second, in Section 6.3.2, elaborates on the employed MRI image feature extractors.
Finally, the classification and validation method is described in Section 6.3.3.

1This percentile value is chosen to include almost all voxel values. Outliers on the T2 MRI are
rare and lie well beyond the normal values. Furthermore, the intensity values have almost always the
highest values for the fiducial markers on T2 MRIs.

130



C
ha

pt
er

6

6.3. Experimental setup

Figure 6.2 — Examples of the landmarks used in the multi-landmark intensity normalization
method for the T2-weighted magnetic resonance imaging (MRI) scans (left), and the T1-weighted,
contrast-enhanced MRI scans (right). For the T1-weighted MRI scans, the same landmarks are used
as shown in the right image. Specific areas are highlighted for the cerebrospinal fluid (red), brain
stem (green), and the fiducial markers (blue arrows).

Figure 6.3 — Flow diagram of the proposed transient tumor enlargement prediction approach.
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6.3.1 Pre-selection of training data
The conducted experiments in this chapter are based on possible confounding fac-
tors present in the data. As discussed in Section 6.1, the included cohort contains
several challenging aspects. Therefore, training of the models is based on different
data inclusion criteria. These criteria are discussed below.

Imbalanced dataset
The first criterion is derived from the small imbalance in the available data, where
the majority class contains 61 patients (non-TTE) and the minority class 38 patients
(TTE). Due to this imbalance, training can lead to a model that is skewed towards
the majority class. This way, a classification algorithm can obtain a reasonable ac-
curacy, at the cost of a low specificity. To evaluate whether this imbalance impacts
the results, training is performed in two different ways. First, all available data
points are employed in training the SVM models. Second, a balanced training set
is used, in which each cohort is equally sized. Balancing the data is performed by
random subsampling of the majority class. To account for possible data biases, a
further validation loop is employed. In this loop, models are trained using n re-
sampled subsets of the majority class. The resulting model is the average of these
n models, indicating the combined model performance.

MRI sequence
The second data inclusion criterion is based on the MRI sequence. In this chapter,
we have T1-, T1CE-, and T2-weighted MRI data available. In the classification
approach, we have evaluated each individual MRI sequence, as well as the com-
bination of all three sequences.

Tumor size
The third data inclusion criterion is based on the tumor volume. The data from
which the MRI image features are extracted consist of the MRI voxels within the
tumor delineations. Due to the employed scanning method and parameters, each
tumor is scanned using the same voxel dimensions. Thus, MRI scans of large
tumors contain more tumor voxels than scans of small tumors. If the number of
tumor voxels increases, the amount of texture information also grows. Therefore,
we have also explored the impact of the tumor volume, by imposing various
volume thresholds for specific selection of the data (volume filtering). The selected
volume thresholds are 2, 3, 4, 5, 6, and 7 cm3, since higher thresholds result in too
few number of patients in the minority class.

6.3.2 Feature extraction
In this section, the employed feature extraction methods are presented. These
include first-order statistics and second-order statistics, based on Minkowski func-
tionals (MFs) and gray-level co-occurrence matrices (GLCMs).

For each tumor and individual MRI sequence, the following first-order statis-
tics (FOS) are computed from the tumor MRI voxels: mean, standard deviation,
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skewness, kurtosis, and a 16-bin histogram. Next, we calculate the Minkowski
functionals (MFs) as defined by Hadwiger [164], again for each individual MRI
sequence. In mathematical morphology, these functionals represent geometric
measurements of shapes. These shapes are obtained by transforming gray-scale
images to binary images using a threshold value. Varying this threshold value will
result in multiple instances from which MFs can be computed. These variations
allow for extracting texture information. From the binarized data, thresholded at
level T, the following elementary geometric shape objects are extracted: (1) num-
ber of cubes Nc, (2) number of open faces Nf , (3) number of open edges Ne, and
(4) number of open vertices Nv [162]. These objects are employed in the calcula-
tion of the following four functionals: foreground volume MT

0 , surface area MT
1 ,

curvature MT
2 , and Euler number MT

3 . These functionals are specified by

MT
0 = Nc , (6.1)

MT
1 = −6Nc + 2Nf , (6.2)

MT
2 = +3Nc − 2Nf +Ne , (6.3)

MT
3 = −Nc +Nf −Ne +Nv . (6.4)

The MFs are highly scale-dependent. Since the VS tumors in our dataset have a
ratio between minimum and maximum of 13:1, the MFs need to be normalized
with respect to the tumor volume. This is performed by dividing the functionals
by the maximum tumor volume in the dataset.

Finally, for each individual MRI sequence, the gray-level co-occurrence matri-
ces (GLCMs) are computed. For GLCM Pθ,d,N` , each matrix element Pθ,d,N`(i, j)
denotes the number of times a pixel with intensity i occurs together with a pixel
of intensity j, at angle θ, distance d, and quantization level N`. Each element is
normalized with respect to the total number of elements in the GLCM. From these
matrices, the following four features are calculated: entropy (H), contrast (Cn),
energy (E), and correlation (Co) [86]. These features are specified by:

H =
∑
i,j

−Pθ,d,N`(i, j) log (Pθ,d,N` (i, j)) , (6.5)

Cn =
∑
i,j

|i− j|2 Pθ,d,N`(i, j), (6.6)

E =
∑
i,j

+P2
θ,d,N`

(i, j), (6.7)

Co =
∑
i,j

(i− µi) (j − µj)Pθ,d,N`(i, j)
σiσj

. (6.8)

Here, i and j are the row and column indices of each GLCM element, respectively.
Parameters µi and σi denote the mean and standard deviation of row i and µj
and σj denote the mean and standard deviation of column j, respectively.
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Characteristic Mean Inter-quartile range Range

Age [years] 58 47 – 66 24 – 84
Tumor volume [cm3] 6.54 3.10 – 6.04 1.44 – 18.72
Dose 99% of tumor vol. [Gy] 12.36 11.80 – 13.00 11.10 – 13.20
Coverage [%] 95.74 91.00 – 99.00 86.00 – 100.00
Selectivity 0.89 0.85 – 0.90 0.71 – 0.99
Gradient index 2.74 2.58 – 2.82 2.45 – 3.60
Paddick conformity index 0.84 0.84 – 0.89 0.17 – 0.93
Number of isocenters 24 17 – 31 1 – 53
Beam-on time [min] 60.27 42.18 – 75.04 22.80 – 144.80

Table 6.1 — Patient- and treatment-related characteristics for the complete patient cohort.

6.3.3 Classification and validation
The final step in the experiments is to train a classifier for binary prediction of TTE.
The implemented machine learning method in this chapter is support vector ma-
chines (SVMs), since it has proven to be effective in binary classification problems
without requiring large amounts of data. As our dataset is relatively small and
containing only 99 tumors, advanced algorithms such as neural networks are not
well suited for classification. The considered SVM types include linear, quadratic,
cubic, fine Gaussian, medium Gaussian, and coarse Gaussian, which are all imple-
mented in MATLAB (MathWorks inc., Natick, Massachusetts, USA). Validation is
performed by 10-fold cross-validation. The performance metrics for determining
the optimal model are the sensitivity and specificity. In case the multiple models
perform equally well, preference is given to a higher specificity: false positives can
be related to erroneous prediction of TTE occurrence, which necessitates salvage
treatment in a patient. Alternatively, false negatives are related to erroneous pre-
diction of the absence of TTE, resulting in the selection for microsurgical treatment.
Because the first situation has a larger impact on the well-being of the patient,
higher emphasis is placed on specificity.

6.4 Results
In this section, first a description is given of the statistical analyses of the patient-
and treatment-related characteristics. Next, the feature extraction parameters and
results are presented. Finally, the classifier performances are discussed with re-
gards to balancing of the training data, the employed features, and the tumor
volume filtering.

6.4.1 Statistical analyses
For the statistical analyses, all patient- and treatment-related characteristics of
the included patients were obtained from a prospectively collected database. A
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summary of the resulting characteristics can be found in Table 6.1.
First, Student’s t-tests are employed for evaluating differences in patient- and

treatment-related characteristics between patients suffering from TTE and those
that do not show TTE. These tests are also performed after implementing the
additional volume thresholds. The resulting p-values are presented in Table 6.2.
None of the tests obtained statistical significance (p < 0.05), showing that the
patient- and treatment-related characteristics have no prognostic value for the
occurrence of TTE. This is fully in agreement with the found literature on the
subject.

6.4.2 Classification performance
This section presents the implemented feature parameters and results obtained
per feature extraction method. For each extractor, we evaluate the impact of the
volume thresholding, as discussed above. First, the FOS results are elaborated.
Next, the results of the MFs are presented, and finally the GLCM-based results are
given.

A. First-order statistics (FOS)
The calculated FOS of the MRI scans are the mean, standard deviation, skewness,
and kurtosis. Furthermore, a 16-bin histogram is included, resulting in a total of
20 features per MR image sequence. In Table 6.3, the performance of both training
strategies, including all available data and including balanced data, of the best
FOS-based models are presented for the various volume thresholds. For the FOS-
based features, the model that is trained with balanced training data achieves a
sensitivity and specificity of 0.72 and 0.40, respectively. Excluding tumors smaller
than 7 cm3 from the training data improves this performance slightly to values
of 0.66 and 0.58, respectively. However, these results do not provide a significant
improvement over random classification.

Additionally, training the SVM models on all available data results in models
that are skewed towards the majority class. This is clearly visible in Table 6.3,
where the values for the specificity are all significantly below 0.50 in all but one
of the best-performing models. The model of exception obtained sensitivity and
specificity values of 0.73 and 0.52, respectively. It can therefore be concluded that,
regardless of the balancing step, these experiments clearly show that FOS-based
features are not well-suited for predicting TTE.

B. Minkowski functionals
The Minkowski functionals provide an alternative feature description of the data
and are computed as a function of the binarization threshold T . These compu-
tations can be performed for all available discrete levels, though the functionals
show high correlation between subsequent thresholds when the difference be-
tween thresholds is small. Therefore, we employ 9 threshold levels equally spaced
within the unity interval, ranging from 0.1 up to 0.9. The resulting 36 MF features
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6.4. Results

Volume Balanced Full
Threshold (>) Sensitivity Specificity Sensitivity Specificity

- 0.72 0.44 0.84 0.34
2 cm3 0.48 0.63 0.87 0.29
3 cm3 0.47 0.70 0.73 0.52
4 cm3 0.63 0.50 0.83 0.40
5 cm3 0.46 0.65 0.95 0.25
6 cm3 0.67 0.55 0.94 0.32
7 cm3 0.66 0.58 1.00 0.35

Table 6.3 — Performance scores of SVM models trained with FOS features for various volume
thresholds and two data selection methods. Training data is either a balanced subset (Balanced) or
the entire set (Full).

are computed per MRI sequence. For training the SVM models, we employ each
functional MT

i for i = 0, . . . , 3 individually, as well as all four combined. The
performance metrics of the best MF-based models are given in Table 6.4. These
results are obtained from various different models, where the applied MF features
are varying per case. These experiments already indicate that the MF features are
not very selective in finding the discriminating information, but the information
can be retrieved by specific combinations of them. Furthermore, for each volume
threshold, different SVM strategies may perform best. This may enable the search
for an ensemble approach of using MF features with specific SVM combinations to
enhance performance. This search is beyond the scope of our experiments. Instead,
we focus on the performance of the best model employing MF features, combined
with a balanced training set, which results in sensitivity and specificity values of
0.69 and 0.53, respectively. Implementation of the volumetric threshold defined
at 7 cm3 slightly increases these metrics to 0.64 and 0.61, respectively. The impact
of the imbalance in the dataset is less influential for the MF-trained models, com-
pared to the FOS-trained models, although some models still are skewed towards
the majority class. The highest-performing MF-based model trained on all avail-
able data obtains sensitivity and specificity values of 0.80 and 0.60, respectively.
These values are found with a minimum volumetric inclusion criterion of 4 cm3.

C. Gray-level co-occurrence matrices (GLCMs)
Generally, GLCMs are evaluated for the four unique two-dimensional (2D) di-
rections, chosen as θ ∈ {0◦, 45◦, 90◦, 135◦}. Specific subsets may be chosen based
on existing clinical knowledge. However, such clinical information is not avail-
able, due to the fact that influencing factors of TTE are unknown. Since 3D MRI
scans are available, we employ the 3D extension of the GLCM directions. Each
direction is separated by a 45◦ rotational offset on the cardinal planes, resulting in
13 unique GLCM directions per MRI scan. The second parameter of the GLCM,
distance d, is evaluated for the integer values 1, 2, . . . , 6. The upper bound of 6 is
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Volume Balanced Full
Threshold (>) Sensitivity Specificity Sensitivity Specificity

- 0.69 0.53 0.82 0.50
2 cm3 0.74 0.50 0.80 0.50
3 cm3 0.63 0.59 0.93 0.42
4 cm3 0.61 0.60 0.80 0.60
5 cm3 0.63 0.56 0.73 0.63
6 cm3 0.60 0.67 0.87 0.47
7 cm3 0.65 0.65 0.69 0.64

Table 6.4 — Performance scores of SVM models trained on MF features for various volume
thresholds and two data selection methods. Training data is either a balanced subset (Balanced) or
the entire set (Full).

Volume Balanced Full
Threshold (>) Sensitivity Specificity Sensitivity Specificity

- 0.69 0.75 0.82 0.69
2 cm3 0.64 0.76 0.76 0.65
3 cm3 0.68 0.73 0.84 0.61
4 cm3 0.70 0.75 0.88 0.64
5 cm3 0.67 0.75 0.89 0.67
6 cm3 0.71 0.79 0.77 0.89
7 cm3 0.79 0.75 0.85 0.75

Table 6.5 — Performance scores of SVM models trained on GLCM-based features for various vol-
ume thresholds and two data selection methods. Training data is either a balanced subset (Balanced)
or the entire set (Full).

chosen to align with half the size of the smallest tumor dimension in the dataset,
so that the distance is clearly embedded within the size of larger tumors. The third
parameter, i.e. the maximum number of quantization levels N`, affects the fine
details retained in the input image. This parameter is evaluated for values with
powers of 2: 22, 23, . . . , 26. Implementing all parameter combinations yields a total
of 390 unique GLCMs per MRI sequence.

The GLCM features employed in training a single SVM model are composed
of the entropy, contrast, energy, and correlation, calculated from a single GLCM.
Given the number of GLCMs per MRI sequence and the number of SVM types, a
total of 9,360 GLCM-based models are trained. Table 6.5 shows the results of the
top-performing models for each data inclusion setting.

Initial tests with GLCM-based features were performed with a balanced train-
ing set. Without volumetric exclusion of the data, sensitivity and specificity values
of 0.69 and 0.75 are obtained, respectively. Applying volumetric thresholds on
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the data improves the model performance. A sensitivity and specificity of 0.79
and 0.75 are obtained, respectively, when implementing the maximum volume
threshold.

Next, the effect of data balancing is explored. Utilizing the full dataset, in
contrast to a balanced subset, increases the number of included samples by more
than 20%. The effect of these additional data yields a performance improvement,
increasing sensitivity and specificity to 0.82 and 0.69, respectively. For a minimum
volume inclusion criterion of 6 cm3, the highest sensitivity and specificity values
of 0.77 and 0.89 are obtained, respectively. From these results, it can be concluded
that GLCM features contain the most predictive information of TTE, compared
to FOS- and MF-based features. Application of all training data compared to a
balanced training set, only slightly improves the performance of these GLCM-
based models.

However, the largest effect on the performance for these models is imposing
more strict volumetric data thresholds. Table 6.5 shows this influence on the high-
est obtained sensitivity and specificity. A different metric employed to evaluate
model performance is the area under the curve (AUC) of the receiver operating
characteristic (ROC). In Figure 6.4, the ROC curves of the best GLCM-based mod-
els for the various volume thresholds are depicted. Here, all thresholds obtain
similar performance. The models obtain AUC values of approximately 0.90 – 0.95.
These results are validated by performing bootstrapping2, resulting in confidence
intervals of approximately 0.80 up to 0.99.

Furthermore, the models obtaining these results show large variations in their
parameters. Among the seven best models, one for each volume threshold, all
three image modalities perform best at least once. Additionally, all quantization
levels show the same effect, where each level is implemented at least once in the
highest-performing models. Because the data mainly differ in volume between
these models, the large variations between parameters indicate the presence of
information at various levels. A combination of models and features may prove
to further enhance the results.

6.5 Discussion
The research in this chapter was performed in order to find predictive features of
transient tumor enlargement (TTE) after GKRS treatment of VS. More specifically,
several experiments were conducted to examine the possible prediction of this
adverse effect after GKRS. This possibility is relevant because if this effect can be
a-priori predicted, a different treatment strategy may be considered.

First, this discussion starts with a summary of the obtained results. After this,
specific limitations of this investigation are addressed in a broader perspective.

2Bootstrapping is a statistical procedure that resamples a single dataset to create numerous simu-
lated samples. This allows for constructing confidence intervals.
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Figure 6.4 — Receiver operating characteristic curves of the best performing SVM classification,
based on GLCM features, per volume threshold setting. These results are obtained with a balanced
training strategy (figure best viewed in color).

Furthermore, the robustness of our findings are discussed.

6.5.1 Obtained results
Previous studies investigated this problem from a clinical point-of-view [33], [52],
[123]–[136], [212]. These studies did not find decisive correlations. Moreover, sev-
eral studies contradicted the results previously found in other studies. Therefore,
at present it remains unknown if prediction of TTE is possible. Our study is able
to achieve a classification sensitivity and specificity of 0.82 and 0.69, respectively.
When employing volume thresholding, we have obtained improved performances
for increasing volumes. For tumors larger than 6 cm3, a sensitivity and specificity
of 0.77 and 0.89 are realized, respectively. These results have been obtained by
employing features from individual gray-level co-occurrence matrices (GLCMs)
and represent the highest scoring models. Additionally, multiple models based on
individual GLCMs have achieved promising classification results. Combining fea-
tures from these individual GLCMs may improve the presented results and enable
prediction of TTE with even higher accuracy, sensitivity, and specificity. Further-
more, we have determined that features calculated from different MR sequences
also show promising results. Thus, besides combining features calculated from
individual GLCMs, the results can also be improved when using the combination
of features from different MR sequences.
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6.5.2 Feature extraction methods
The three feature extraction methods implemented in this study are selected both
on technical and on clinical aspects. Technically speaking, the implemented fea-
tures and classification method have a proven track record in other healthcare
image analysis applications, for instance in oncology. Both GLCM and Minkowski
functionals attempt to measure local changes in gray-level texture within the MRI
image, thereby addressing heterogeneous properties of the tissue. Furthermore,
SVM has shown to be effective in binary classification problems without requiring
large amounts of data. We are aware that these techniques are at present out-
performed by machine learning using convolutional neural networks (CNNs).
However, since this work is the first to explore this data and the related research
questions, the dataset was inherently limited at the beginning, which prevented
straightforward application of this new machine learning technology. In this view,
the current work can serve as a good baseline benchmark. Furthermore, we con-
sider that starting with such an advanced technique, clinical application would
only be accepted if the learning network would provide what is actually learned
from the data. Since our exploration has indicated important features to be used as
a reference, we have learned what is important in the images and this knowledge
can be further exploited in developing so-called explainable artificial intelligence.

Coming back on the employed feature extraction techniques, but now from
a clinical point of view, we remark that they are based on the supposition of the
neurosurgeons that perform the GKRS treatment of VS tumors in the Gamma
Knife center. They surmise that enhancing tumors with inhomogeneous texture
properties show different behavior than the homogeneously enhancing tumors.
More specifically, inhomogeneity in the form of dark streaks and dark areas within
the enhancing lesion are considered to be the most informative visual properties.
Thus, we have selected the three described feature extractors, since these can
adequately quantify such forms of heterogeneity. However, the results in this
chapter may further improve by investigating other texture features employed in
radiomics analysis of medical images, which is a point of further research. Some
examples of such alternative features are gray-level size zone matrices [88], or
frequency-based methods like Gabor wavelet analysis [214].

6.5.3 Retrospective character
A significant confounder in this research is its retrospective character. One of the
disadvantages of the retrospectively analyzed data is that MR image intensities can
vary between subjects, because MR protocols and scanners may have changed in
the course of time. Despite our attempt to minimize the impact of the inter-subject
MR intensity variations by implementing an advanced normalization method,
these variations may still be present in the prediction approach, albeit at reduced
level.

Another confounder in this work is the applied definition for TTE. As stated
by Marston et al., TTE is difficult to differentiate from true tumor growth [49]
Ideally, a histopathological examination of tumor tissue obtained from resection
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is employed for determining the ground-truth labeling. However, in the case of a
VS, surgical intervention is only warranted if the mass effect of the tumor causes
life-threatening issues. In all other cases, the transient swelling is accepted and
carefully followed-up. Thus, only the volumetric data obtained from the follow-up
MRI scans can be used for determining TTE. Nevertheless, this may have caused
an incorrect labeling of the data, creating uncertainty in the final classification
results.

6.5.4 Inter- and intra-observer variations
Moreover, inter- and intra-observer variations in measuring tumor volumes make
the determination of true volume changes difficult, as discussed in Section 2.5.
During treatment planning, the VS tumor is segmented by the treating neurosur-
geon, using a semi-automatic contouring tool incorporated in the treatment plan-
ning software. In the course of time, a total of 6 different neurosurgeons treated
VS tumors at the Gamma Knife center. Furthermore, the follow-up MRI scans
were segmented using the same tool by one neurosurgeon and one researcher.
An in-house evaluation of the inter- and intra-observer variations demonstrated
that these variations decrease for increasing volumes. For volumes larger than
1 cm3, this variation reduces to less than 10%. This, together with the confound-
ing ground-truth labeling, motivates why we have only included patients who
presented obvious TTE and obvious non-TTE. This strict selection has been imple-
mented to create two distinct cohorts. However, this definition may have caused
a selection bias that has influenced the obtained results.

Furthermore, the inter- and intra-observer variations also influence the amount
of voxels included in the feature extraction algorithms. However, due to the em-
ployed method for tumor segmentation, the variations in contouring are found in
the so-called partial-volume effects of the MRI scans. These variations are consid-
ered to have a limited impact, because they constitute less than 10% of the total
amount of voxels and because features are calculated globally. Nevertheless, it
could have influenced the calculated features and the obtained results.

6.5.5 Robustness of the results
The above-described confounding factors may have influenced the obtained re-
sults and the robustness of it. Currently, the Gamma Knife center in Tilburg is the
only center in the Netherlands treating this type of brain tumor using GKRS. As
such, we assume that we have selected a good cross-section of all VS patients in
the Netherlands. Thus, the results found in this chapter are most likely applicable
to other Gamma Knife centers as well. However, the obtained results need to
be validated, preferably in a joint multi-center setting. This would ensure that
these confounding factors are reduced, thereby improving the robustness of the
obtained results. Furthermore, a prospective study could be designed to cope
with the previously described problems. Nonetheless, the results achieved in this
study strongly suggest the possibility of TTE-prediction for individual treatment
selection, making an implementation of this in the clinical workflow conceivable.
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6.6 Conclusions
At present, small-to-medium size vestibular schwannomas (VSs) are generally
treated using Gamma Knife radiosurgery (GKRS), since the treatment goal for
these tumors has shifted from complete removal with inherent risks for the cranial
nerve functions to less invasive techniques such as GKRS. However, for large VS
tumors, microsurgical excision remains the preferred treatment strategy. Since
the risk involved in microsurgery can be contra-indicative for this strategy, less
invasive treatments such as radiosurgery and radiotherapy have been considered
increasingly in the last decade obtaining good results with acceptable radiation-
induced morbidities. However, it remains a controversial alternative to micro-
surgery, since one of the major contra-indications for GKRS on large VSs is the
adverse effect of transient tumor enlargement (TTE). Therefore, the possibility of
predicting TTE would be extremely beneficial as this would enable the selection
of the most optimal treatment strategy on an individual basis.

It is hypothesized that the origin of this phenomenon can be found in the
variations in individual tumor biology. We have explored the idea that the various
tumor appearances on MRI reflect variations in tumor biology. Therefore, we
have employed quantitative MRI texture features derived from conventional MR
images in this research.

A comparative study on feature extraction methods has revealed that MRI
tumor texture can provide information for predicting TTE. In this study, the in-
formation contained in MRI texture is best captured by GLCM features. Using
these texture features extracted from MRI data, we are able to obtain classification
sensitivity and specificity values of 0.77 and 0.89, respectively. These results clearly
show that MRI tumor texture can provide information for predicting TTE. This
can form a basis for individual VS treatment selection, further improving overall
treatment results. Particularly for patients with large VSs, where the phenomenon
of TTE is most relevant and for which our predictive model performs best, these
findings can lead to an implementation in a clinical workflow such that for each
patient the optimal treatment strategy can be determined.

The current chapter has shown that the prediction of TTE is feasible. However,
TTE is not the only controversial effect of Gamma Knife radiosurgery on vestibular
schwannomas. Another important critique that this modality receives, concerns
the long-term treatment goal of VS tumors. In approximately 5 – 20% of the cases,
tumor progression is not stopped and intervention is needed. This motivates
that the predictability of long-term tumor control is investigated in the following
chapter.
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7.1 Introduction
The previous chapter has discussed the difficulty in selecting the optimal treat-
ment strategy for vestibular schwannomas (VSs), specifically for large tumors.
It has introduced the first experiments in determining predictive factors for the
transient tumor enlargement (TTE). This adverse effect is one of the reasons why
microsurgical resection is considered for large VS tumors, even though several
publications show that stereotactic radiosurgery (SRS) can be safely employed in
the treatment of large VS tumors. Therefore, we have presented the possibility of
predicting the TTE effect prior to treatment, by implementing MRI tumor texture
features calculated by gray-level co-occurrence matrices (GLCMs). Using these
features, in combination with support vector machine (SVM) learning, we are able
to achieve a classification sensitivity and specificity of 0.77 and 0.89, respectively.

When taking a birds-eye view on the problem of TTE, this chapter is con-
centrating on a different direction. The prediction of the TTE effect is clinically
highly beneficial in aiding physicians and patients in selecting the optimal care
path, especially for patients in which the VS tumor already causes pressure on
the neighboring critical brain structures. A transient swelling may cause life-
threatening issues in these cases and should be avoided. However, the prediction
of not developing TTE does not automatically imply that SRS will stop tumor
progression. This long-term treatment goal is separate from the short-term TTE
effect and necessitates a life-long follow-up of each patient. Furthermore, if tu-
mor progression is not stopped, salvage microsurgical treatment may be needed.
Such an intervention negates the reasons for electing SRS over microsurgery in
the first place. Moreover, microsurgical excision of tumor tissue following SRS is
considered more difficult than if the tumor was not irradiated [38]. Because SRS
has lower overall post-treatment morbidity and overall increased preservation
rates of cranial nerve functions when compared to microsurgery [215], it can be
concluded that SRS is an attractive treatment modality for VSs, but only if the
tumor responds well to this treatment.

Currently, it is not possible to a-priori predict the long-term SRS treatment re-
sponse of a VS on an individual basis. To enable such prediction, tumor-specific
information should be assessed. This ranges from macroscopic scale structure of
the tumor to genetic profiling obtained by performing a biopsy [62]. However, in
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Figure 7.1 — Examples of different vestibular schwannoma tumor textures appearing in contrast-
enhanced MRI scans. The depicted tumors have comparable volumes. Part A: Near-homogeneously
enhanced lesion. Part B: Small irregularities in texture. Part C: Heterogeneously enhanced lesion
with an apparent hypo-intense area.

the case of a VS, biopsy is not necessary for diagnosis. In fact, it poses a signifi-
cant risk of complications due to surrounding critical neurovascular structures,
making it an undesired procedure. Therefore, predictive tumor-specific parame-
ters for SRS response in individual VS patients have to be obtained from readily
available clinical data. For VS tumors, such data are available in the form of mag-
netic resonance imaging (MRI) scans. It is well-known that the MRI findings in
VSs are highly variable in the gray-level inhomogeneity of the tissue itself. VS
tumors can appear as micro- or macro-cystic [63], hemorrhagic [64], and with
variable contrast-enhancement patterns. Some appearance examples can be found
in Figure 7.1. These MRI appearances reflect variations in histology, such as cell
proliferation and micro-vessel density [65], [66]. As such, these MRI images may
provide sufficient information to enable the individual prediction of the SRS treat-
ment response.

In this chapter we therefore investigate quantitative, tumor-specific parameters
obtained from conventional MRI scans. These so-called radiomic features may
provide information on differences in tumor biology, enabling the creation of a
patient-specific tumor model that can be employed for predicting the long-term
SRS treatment response. The aim of this chapter is to explore the prediction of
long-term tumor control, employing radiomic features obtained from MRI scans.
As a refinement of this general problem statement, we list the following aspects.

• Patient-inclusion criteria: In order to train a prediction model, MRI data of a
sufficient number of patients need to be available. There are several trade-
offs that influence the amount of patients that can be included. A strict
definition of treatment failure and long-term tumor control are needed in
order to prevent misclassifications.

• Machine learning: Several texture features will be analyzed and subsequently
machine learning is applied as a technique for classifying the MRI observa-
tions.
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• Tumor-control prediction: To facilitate prediction, a model is trained that en-
ables the a-priori prediction of long-term tumor control on an individual
basis. This model is then evaluated and, if possible, implemented in a clini-
cal decision-support system, aiding physicians and patients in selecting the
optimal care path.

This chapter is outlined as follows. First, Section 7.2 elaborates on the available
patient data and the treatment protocol. Next, Section 7.3 describes the experi-
mental setup for evaluating the predictability of long-term tumor control. Then,
the results of the experiments are presented in Section 7.4, after which they are
discussed in Section 7.5. Finally, Section 7.6 concludes this chapter.

7.2 Patient cohort and treatment protocol
This section introduces the data employed in this chapter and presents the applied
treatment protocol. Furthermore, it discusses the employed classification labels
based on objective treatment failure and long-term tumor control definitions.

7.2.1 Patient cohort
All patients with unilateral VS treated with SRS in our center between 2002 and
2014 were identified. This cohort consisted of all VS patients remaining after
excluding patients with neurofibromatosis Type 2 (NF2), those previously treated
for their VS, or with less than two years of post-SRS follow-up. Furthermore,
we excluded patients with small VS tumors, because these tumors show little
to no variation in texture. The associated volumes of such small tumors are ill-
defined. Analysis of the entropy of voxel intensity variations in our data showed
that tumor texture becomes discernible in tumors around one cm3, see Figure 7.2.
Since an exact volumetric cut-off is arbitrary, we opted for an approach based on
the controversy to treat larger tumors with SRS. Thus, we investigated all tumors
with a minimum volume of 1.42 cm3, because this corresponds to the volumes
reported in literature for Koos Grade IV tumors [137].

7.2.2 Treatment and follow-up
Stereotactic radiosurgery was performed using the Leksell Gamma Knife® model
4C or Perfexion (since November 2008; both Elekta AB, Stockholm, Sweden). A
dose of 13 Gy was prescribed to the isodose line covering 90 – 99% of the tu-
mor volume. For treatment planning, T1-weighted with (T1CE) and without (T1)
Gadolinium administration, and T2-weighted (T2) MRI scans were obtained for
each patient. Treatment was carried out in a single fraction with frame-based
fixation.

After treatment, each patient was subjected to a follow-up schedule with a
standard interval of one year. A T1CE MRI with a slice thickness of one mm was
obtained at each follow-up visit. In the case of suspected radiological progres-
sion or new or worsening symptoms, the standard interval was reduced. If the
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Figure 7.2 — Entropy analysis of tumor voxels of all 735 patient data. Left: mean entropy of
tumor voxel intensities, captured in 35 equal-sized volume bins. Right: standard deviation of the
entropy values, divided over the same 35 bins.

tumor displayed radiological regression or stability for several years, the standard
interval was extended. All follow-up MRIs were employed for determining a
volumetric treatment response. Tumor volume were determined by segmenting
the tumor using the treatment planning software (GammaPlan Versions 10 and
11, Elekta AB, Stockholm Sweden).

7.2.3 Definitions of treatment outcome
A widely applied approach for obtaining models that can predict treatment out-
comes, is supervised machine learning (sML) [216]. This technique employs train-
ing data with pre-determined classification labels to discover and identify specific
patterns, possibly even indiscernible to the human eye. With these findings, such
techniques can distinguish cases in the training data with correct labels. Thus, it
is crucial that the input data has high-quality labels (i.e. a high certainty of cor-
rectness of the assigned classification label), such that the trained model is robust.
Therefore, a well-defined classification labeling is needed in these experiments.
These labels are defined as long-term tumor control, and true tumor progression.
Consequently, strict definitions for both controlled and progressive tumors are re-
quired. These definitions were discussed in Section 2.4 and are summarized below.
Patients that could not be labeled according to the strict criteria were excluded
from further analysis.

True tumor progression was detected using linear measurements in a clinical
setting. An increase in tumor size was accepted and considered as radiation-
induced swelling during the first two years after treatment [131], [134], unless the
enlargement was deemed too excessive for the considered patient by the radio-
surgical team. These failures may have been the result from swelling and not due
to true tumor progression. Since radiation-induced swelling is a radiobiological
distinct response from true tumor progression, we excluded patients that had
salvage treatment within the first two years following SRS, to avoid inaccuracy
through misclassification. Volumetric progression after this period was considered
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Figure 7.3 — Processing block diagram of the experimental setup.

true tumor progression. This was always confirmed by the radiosurgical team.
In addition, we looked for discrete volume increases after the initial two years,
which were undetected by linear measurements performed in the clinical setting.
However, these increases were detectable with the volumetric analyses performed
in this research. The potentially missed failures are defined as two consecutive
significant increases in tumor volume among three proceeding follow-up MRIs,
where a minimum of 10% increase in volume is deemed significant [97].

A definition for long-term tumor control highly depends on the time-period in
which treatment failures may still occur. However, there is no certainty that a spe-
cific VS will not progress anymore after a predetermined time. Hence, long-term
tumor control cannot be specified without concessions. Therefore, in this research,
we have defined it as absence of progression beyond 129 months following treat-
ment. This cutoff is based on the latest-occurring failure in our large database,
which was identified at 129 months after treatment.

7.3 Experimental setup
For evaluating the predictability of long-term tumor control following SRS, several
experiments are conducted. These experiments involve the evaluation of MRI
tumor texture features and their relations to long-term tumor control. Figure 7.3
depicts the processing block diagram of the experimental setup. In this section,
we will discuss each processing stage in this figure. First, in Section 7.3.1, we will
elaborate on the input MRI images used in this chapter. Next, we will present
the employed feature extractors in Section 7.3.2, followed by a discussion on the
model training approach in Section 7.3.3.

7.3.1 MRI input data
For each patient, the T1-, T1CE-, and T2-MRI scans (Intera® and Ingenia®, both
Philips Healthcare, Best, the Netherlands) were extracted from the treatment plan-
ning system, including tumor contours drawn by the neurosurgeon during treat-
ment planning. The matrix sizes of these MRIs were 256×256 pixels per axial slice
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for the T1 and T1CE, and 512×512 pixels for T2 scans.
As discussed in Section 6.2.2, MRI scans need to be normalized, in order to

enable comparison between patients. The same generalized intensity-scale method
is employed as in the previous chapter. This method performs piecewise-linear
normalization utilizing tissue-specific landmarks. These landmarks included the
brain stem and the stereotactic G-frame fiducial markers (Elekta AB, Stockholm,
Sweden) in the T1 and T1CE scans. Additionally, for T2 scans, the cerebrospinal
fluid is included as landmark.

7.3.2 Feature extraction methods
For evaluating the predictability of long-term tumor control, several texture fea-
tures are extracted from the available MRI scans. These radiomic features are as
follows.

• Twenty first-order statistics (FOS) features: statistical properties (e.g. average
and variance) of all voxel values, ignoring spatial interaction between image
voxels.

• Four Minkowski functionals (MFs) [162], [164]: morphological properties from
groups of voxels whose intensities are above a specific threshold.

• Thirteen gray-level size zone matrix (GLSZM) features [88]: statistical prop-
erties on the size of homogeneously enhanced zones for each gray-level,
depending on their quantization levels.

• Four gray-level co-occurrence matrix (GLCM) features [86]: spatial distribu-
tion properties of gray-levels in the image voxels, depending on inter-voxel
distances, viewing angles, and their quantization levels.

The illustrations in Figure 7.4 demonstrates a graphical explanation of the MFs
and Figure 7.5 shows the MF concept on an MRI scan. Furthermore, Figures 7.6
and 7.7 depict explanations of the GLSZM calculations and of the GLCM cal-
culations, respectively, using a simple two-dimensional example image. These
methods have been explained in more detail in Section 2.7. All features are cal-
culated on the complete tumor, thus in three-dimensional space for all feature
extraction methods.

7.3.3 Machine learning approach
The extracted features are applied to an sML stage to train predictive binary clas-
sification models, classifying either true tumor progression or long-term tumor
control. Training is performed on a single feature vector, i.e. an array of numerical
values, for each individual feature extraction method. This is to prevent overfit-
ting, caused by too many included features. If the number of features is large
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Figure 7.4 — Visualization of the calculations of the Minkowski functionals in two-dimensional
images. In these simple images of 6×6 pixels, we can calculate the number of white pixels (K), the
length of the boundary of all white shapes (L) and the number of white shapes minus the number of
black shapes within white shapes (M ). These three values then represent the image contents. Part
A: K = 8, L = 12, and M = 1. Part B: K = 8, L = 16, and M = 2. Part C: K = 8, L = 16,
and M = 0.

Figure 7.5 — Visualization of the Minkowski functionals (MFs) for a VS tumor. For three-
dimensional images like MRIs, four metrics can be calculated in the same way as depicted in
Figure 7.4: (1) the number of voxels, (2) the number of open faces, (3) the number of open edges,
and (4) the number of open vertices. This can be done for multiple threshold levels, resulting in
different binary representations of the tumor. Here, Part A represents the original T1-weighted,
contrast-enhanced MRI image. Parts B, C, and D are generated with thresholds T equal to 0.5, 0.7,
and 0.8, respectively.

compared to the number of tumors, each tumor can be uniquely identified by one
individual feature vector. This results in high prediction scores, but the resulting
model may have unreliable performance on new data. A single feature vector is
individually created per MRI modality. Furthermore, for the combination of all
three MRIs, the individual feature vectors are combined. Together with all the dif-
ferent parameter settings for each feature extraction and the different settings for
the employed sML algorithm, a large number of models are trained and evaluated.
All parameters, settings, and calculated features per feature extraction are listed in
Table 7.1. For implementation of support vector machines, training is carried out
by the classification learning application from MATLAB (MathWorks inc., Natick,
Massachusetts, USA).

With growing tumor volumes also the number of tumor voxels increases,
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Figure 7.6 — Graphical representation of the calculations of the gray-level size zone matrices
(GLSZMs). For the GLSZM, the number of zones is counted, where a zone contains equally-
valued connected pixels and has a specific size in pixels. The pixel values depend on the number of
quantization levels, and for different levels distinct GLSZMs can be calculated. In this figure, some
example zones are highlighted. These zones consist of connected pixels with the values “1” and “5”
of size 2 and 4, respectively. As there are 2 zones with pixel value “1” of size 2, the corresponding
position in the resulting matrix becomes “2”. The same can be computed for the zone with the
value “5”. This results in a “1” on the corresponding position in the matrix. For each individual
GLSZM, a single feature vector is calculated incorporating the above-described statistics, which is
then employed for training.

Figure 7.7 — Graphical representation of the calculations of the gray-level co-occurrence matrices
(GLCMs). The GLCM is calculated by counting inter-pixel relations. These relations depend on (1)
the inter-pixel distance (in this example equal to unity), (2) the inter-pixel angle (in this illustration
0 degrees) and (3) the number of quantization levels, which is the number of different pixel values
(here equal to 5). The resulting GLCM matrix is calculated by counting the number of each specific
combination of pixel-pairs. In this example, the pair “1-2” is highlighted. The resulting value in
the corresponding position of the final matrix is equal to “4”, as there are 4 pairs “1-2”. For each
individual GLCM, a single feature vector is calculated incorporating the above-described statistics,
which is then employed for training.
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Feature # Trained
extraction Parameters Calculated features models

FOS

- Mean 24
Standard deviation
Skewness
Kurtosis
16-bin histogram

MF

Various thresholds: Foreground volume 120
9 equally-spaced Surface area
values between Curvature
0 and 1 Euler number

GLSZM

Levels: 2, 3, 4, 5, 6 Small-zone emphasis 96
Large-zone emph.
Gray-level non-uniformity
Zone-size non-uniformity
Zone percentage
Low gl. zone emph.
High gl. zone emph.
Small-zone low gl. emph.
Small-zone high gl. emph.
Large-zone low gl. emph.
Large-zone high gl. emph.
Gray-level variance
Zone size variance

GLCM

Distance: 1, 2, 3, 4, 5, 6 Contrast 9360
Angle: 13 unique Energy
3D-directions Entropy
Levels: 2, 3, 4, 5, 6 Correlation

Table 7.1 — Description of all parameters and calculated features for each feature extractor. These
include first-order statistics (FOS), Minkowski functionals (MFs), gray-level size zone matrices
(GLSZMs), and gray-level co-occurrence matrices (GLCMs). The total number of trained models
per feature extraction method is calculated by multiplying the number of options for each parameter,
the number of MRI modalities (i.e. 4), and the number of SVM kernels (i.e. 6). For MFs, each feature
is a calculated average per MRI modality of the individual functionals for all thresholds. These are
employed individually as well as in combination. In this table, gray-level is abbreviated by ‘gl’.
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thereby expanding the amount of texture information. Therefore, we have ex-
plored the impact of the tumor volume on the prediction results, by imposing
various volume thresholds for specific selections of the data. The evaluated vol-
ume thresholds are 2, 3, 4, and 5 cm3.

Validation of the resulting individual models is performed using 10-fold cross-
validation. In this method, depicted in Figure 7.3, the model is subsequently
trained with 90% of the MRIs and validated on the 10% left-out scans. This is
repeated 10 times, each time leaving out a different set of MRIs. This method has
resulted in values for accuracy (ACC; correct prediction rate), sensitivity (SENS;
proportion of actual controlled tumors correctly identified), and specificity (SPEC;
proportion of actual progressed tumors correctly identified). Furthermore, boot-
strapping is performed to determine the area under the receiver operating charac-
teristic (AUC; degree of distinction between the two prediction classes), including
confidence bounds. An AUC value equal to unity translates to the ability to per-
fectly distinguish the two classes, while a value of 0.5 can be interpreted as random
selection.

7.4 Results
In this section, first a description of the patient dataset is given. Next, the feature
extraction parameters and results are presented, including the classifier perfor-
mances with regards to the employed features and the tumor filtering.

7.4.1 Cohort
After exclusion of patients with NF2, prior treatment, and small tumors, 379 pa-
tients were extracted from the database of 735 patients. Of these, 30 patients (7.9%)
did not have a post-SRS follow-up beyond two years, either due to salvage treat-
ment for their VS (7 patients, 1.8%), or because they were lost to follow-up (23 pa-
tients, 6.1%). After excluding these, a total of 349 patients with a median follow-up
of 74 months were identified for this study. Of these 349 patients, 30 (8.6%) needed
salvage treatment due to recurrent tumor progression. Of the remaining patients,
13 (3.7%) displayed a volumetric tumor progression. By combining these two
groups, a so-called progressed tumor cohort of 43 patients (12%) was defined. A
total of 42 patients were identified as having obtained long-term tumor control,
according to our strict definition of at least 129 months absence of true tumor
progression. As such, a total of 85 patients were included in the model training.

After stratifying for volume, the total number of patients per volume threshold
per group can be found in Table 7.2. The results of the optimal model for each
individual feature extraction, including the additional volume thresholding, are
described in the following subsection.

7.4.2 Evaluation of radiomic features
In this subsection, the results of each feature extraction algorithm are discussed.
First, the results from the FOS-based features are presented. Next, the results
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Volume True tumor Long-term
threshold (>) progression tumor control

- 43 42
2 cm3 38 38
3 cm3 30 28
4 cm3 22 18
5 cm3 18 11

Table 7.2 — Number of patients in both cohorts after additional volume thresholding.

Vol. threshold (>) ACC SENS SPEC AUC

- 0.67 0.74 0.60 1.00
2 cm3 0.63 0.74 0.53 0.86
3 cm3 0.73 0.80 0.64 1.00
4 cm3 0.66 0.68 0.65 0.94
5 cm3 0.83 0.94 0.64 0.88

Table 7.3 — Classification results obtained using first-order statistical features and additional vol-
ume thresholding (in cm3). The results are given in accuracy (ACC), sensitivity (SENS), specificity
(SPEC), and area under the receiver operating characteristic (AUC).

obtained with MF-based features are given, followed by the results based on
GLSZM-trained models. Finally, we present the results obtained using GLCM
features.

A. First-order statistics
The classification scores of the optimal FOS-based models for each volume thresh-
old can be found in Table 7.3. The optimal model trained with FOS features, with-
out any additional volume thresholding, obtains ACC, SENS, SPEC, and AUC
values of 0.67, 0.74, 0.60, and 1.00, respectively. The lower- and upper confidence
bounds for the AUC values are 0.99 and 1.00, respectively. For increasing volume
thresholds, the results increase up to 0.83, 0.94, 0.64, and 0.88 for tumors larger
than 5 cm3, with lower- and upper confidence bounds of the AUC value of 0.59
and 0.96, respectively. Even though the ACC, SENS, and SPEC increase, the AUC
value decreases, with a lower confidence bound only slightly above 0.5. This is
most likely caused by the reduced number of tumors in the dataset, resulting in a
less robust model.

B. Minkowski functionals
The results of the optimal MF-based models for each volume threshold are de-
picted in Table 7.4. The performance scores of the optimal MF-based model obtain
ACC, SENS, SPEC, and AUC values of 0.68, 0.64, 0.73, and 0.96, respectively. The
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Vol. threshold (>) ACC SENS SPEC AUC

- 0.68 0.64 0.73 0.96
2 cm3 0.71 0.74 0.69 0.91
3 cm3 0.67 0.73 0.60 0.97
4 cm3 0.72 0.64 0.82 0.76
5 cm3 0.76 0.83 0.64 0.88

Table 7.4 — Classification results obtained using Minkowski functionals and additional volume
thresholding (in cm3). The results are given in accuracy (ACC), sensitivity (SENS), specificity
(SPEC), and area under the receiver operating characteristic (AUC).

Vol. threshold (>) ACC SENS SPEC AUC

- 0.71 0.79 0.63 0.88
2 cm3 0.73 0.71 0.74 0.78
3 cm3 0.67 0.80 0.52 0.99
4 cm3 0.77 0.86 0.65 0.84
5 cm3 0.69 0.78 0.55 1.00

Table 7.5 — Classification results obtained using gray-level size zone matrix features and addi-
tional volume thresholding (in cm3). The results are given in accuracy (ACC), sensitivity (SENS),
specificity (SPEC), and area under the receiver operating characteristic (AUC).

lower- and upper confidence bounds for the AUC value are 0.90 and 0.98, respec-
tively. For growing volume thresholds, the results are increasing up to 0.76, 0.83,
0.64, and 0.88 for tumors larger than 5 cm3, with AUC lower- and upper confi-
dence bounds of 0.66 and 0.96, respectively. Again, the AUC values decrease for
increasing volumes. Furthermore, the specificity decreases significantly as well.
However, the lower confidence bound of the AUC value now remains well above
the 0.5 value.

C. Gray-level size zone matrix features
The resulting classification scores of the optimal GLSZM-based models for each
volume threshold are presented in Table 7.5. For the GLSZM-trained models, the
optimal model obtains ACC, SENS, SPEC, and AUC values of 0.71, 0.79, 0.63, and
0.88, respectively. The lower- and upper confidence bounds for the AUC value
are 0.75 and 0.94, respectively. For the additional volume thresholds, these results
remain comparable to the results of zero threshold. The best results are achieved
for tumors larger than 4 cm3, having an ACC, SENS, SPEC, and AUC of 0.77, 0.86,
0.65, and 0.84, respectively, with AUC lower- and upper confidence bounds of 0.67
and 0.95, respectively.
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Vol. threshold (>) ACC SENS SPEC AUC

- 0.77 0.71 0.83 0.93
2 cm3 0.75 0.76 0.73 0.92
3 cm3 0.76 0.80 0.72 0.87
4 cm3 0.82 0.86 0.76 0.90
5 cm3 0.83 0.83 0.82 0.99

Table 7.6 — Classification results obtained using gray-level co-occurrence matrix features and
additional volume thresholding (in cm3). The results are given in accuracy (ACC), sensitivity
(SENS), specificity (SPEC), and area under the receiver operating characteristic (AUC).

D. Gray-level co-occurrence matrix features
The classification scores of the optimal GLCM-based models for each volume
threshold can be found in Table 7.6. For the GLCM-based features, the ACC,
SENS, SPEC, and AUC values are 0.77, 0.71, 0.83, and 0.93, respectively. The lower-
and upper confidence bounds of the AUC value are 0.83 and 0.98, respectively. If
additional volume thresholding is applied, these results increase to 0.83, 0.83, 0.82,
and 0.99, respectively, for tumors larger than 5 cm3. With this threshold, the lower-
and upper confidence bounds of the AUC value are 0.94 and 1.00, respectively.
In contrast with the other feature extraction methods, the AUC values of GLCM
features improve for growing tumor volumes, including the confidence bounds.

7.5 Discussion
This chapter has concentrated on finding indicators for prediction of the long-term
treatment response of SRS-treated VS patients. Several experiments have been
conducted to examine the predictability of long-term tumor control following
stereotactic radiosurgery. The ability to a-priori predict such a treatment response
can significantly impact the treatment selection process and may improve the
overall treatment outcome. In this section, the different aspects of the implemented
methodology and the obtained results are highlighted and discussed. First, a
summary of the obtained results is given, after which some limitations of this
research are addressed.

7.5.1 Obtained results
Recently, there is an increasing interest of radiomics in various oncology fields,
including brain tumors, in relation to their specific pathology and treatment
response [69], [81]–[84]. For VS tumors, only incidental literature is available
and concerns the prediction of early treatment response, i.e. radiation-induced
swelling [59], [107]. To the best of our knowledge, this chapter presents the first
research to focus on the prediction of long-term tumor control following SRS treat-
ment of VS tumors, exploiting MRI-based radiomics. We have evaluated tumor-
specific parameters obtained from conventional MRI scans in a large database
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with long follow-up, enabling a high-throughput mining of MRI data, which can
be subsequently exploited for a machine learning approach.

Furthermore, we have employed objective definitions for true tumor progres-
sion and long-term tumor control. The highest obtained prediction accuracy, sen-
sitivity, specificity, and AUC values were 0.83, 0.83, 0.82, and 0.99, respectively. In
other words, the best-performing model is able to correctly predict the treatment
outcome in our own data in 83% of all cases (accuracy), progressed tumor in 82%
of the cases (specificity), and controlled tumor in 83% of the cases (sensitivity).
The most predictive features were based on GLCMs and in tumors larger than
5 cm3. These GLCMs measure the distribution of co-occurring voxels at a given
gray-level, revealing certain properties about the spatial distribution of the gray-
levels in the image. Furthermore, the obtained results show that the prediction
improves for increasing tumor volumes. This is most likely caused by the amount
of voxels: larger tumors have more tumor voxels, resulting in an increased amount
of texture information. However, for growing volume thresholds, the number of
available tumors decreases. This can cause overfitting in the machine learning
stage, which results in models that are too fine-tuned to the data, giving high pre-
diction results on the training data. As such, these models may be not sufficiently
robust in predicting the treatment outcome on new unseen data.

7.5.2 Definitions of the treatment outcome
A problematic aspect in predicting treatment outcome is the classification of long-
term tumor control and true tumor progression, which is crucial in a supervised
machine learning approach. Generally, treatments are classified as failed if salvage
treatment is needed. Although this is a valid clinical definition, various centers
use different motivations prior to considering salvage treatment [97]. Therefore,
there is no clear consensus on whether a treatment has failed. Furthermore, subtle
progressions may have been missed in the clinical setting, using linear measure-
ments. This is why we have implemented an objective measure for failure, i.e. true
tumor progression, using the volumetric tumor response. Moreover, it is hypothe-
sized that radiation-induced swelling is related to different radiobiological aspects
of the tumor compared to true tumor progression. To avoid misclassification of
this phenomenon, true tumor progression has been defined based on volumetric
tumor assessments beyond two years after treatment.

Long-term tumor control is also difficult to define, because tumor progression
can occur many years after SRS. Kondziolka et al. [138] reported that after four
years following SRS, no further increase in volumes were identified. Contrar-
ily, Hasegawa et al. [32] reported that only after 10 years of follow-up, no more
treatment failures occurred. In our extensive database, we have determined the
latest-occurring tumor progression at 129 months following treatment. Therefore,
we have adopted this time instance as cut-off for determining tumor control.

The author realizes that these definitions may have had an impact on the
obtained results, e.g. tumors now classified as controlled tumor may show tumor
progression in the future. However, it can be argued that tumor progression is a
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very unlikely phenomenon beyond 10 years after treatment. Nevertheless, this
may have impacted the obtained results.

7.5.3 Data limitations
Another possible confounder in this study is its retrospective character. As a con-
sequence of our long-term tumor control definition, the implemented algorithm
used MRIs of at least 10 years old to find aspects of tumor texture that distinguish
tumor control from progression. However, MRIs have improved in the course
of time. It is therefore possible that the currently employed conventional MRIs
exhibit more detailed radiomic features, leading to improved SRS outcome pre-
dictions.

Furthermore, the obtained results are based on the data from a single institu-
tion. As such, the obtained models may suffer from input bias errors. Moreover,
overfitting of the trained models is a concern for larger tumors, because the num-
ber of tumors that meet our strict criteria of long-term tumor control and true
tumor progression, decreases significantly with growing volume thresholds. To
prove the robustness of the results, the obtained algorithms need to be validated
on large datasets from multiple centers with sufficiently long follow-up.

7.6 Conclusions
Currently, it is not possible to a-priori predict the long-term SRS treatment outcome
of a VS on an individual basis. If possible, this would be highly beneficial for the
individual patient and their treating physician, since such a prediction can help
in selecting the optimal patient-specific treatment strategy, thereby improving
overall treatment results.

It is hypothesized that the differences in treatment response originate from
small variations in intrinsic tumor biology. Since taking a biopsy is undesired,
we have explored the idea that variations in tumor appearance on MRI reflect
variations in tumor biology. Therefore, we have employed quantitative MRI tumor
texture features derived from MRI scans in this chapter.

The results obtained in this research show that prediction of long-term tumor
control after SRS treatment of larger VS tumors is feasible with the use of radiomic
features. We have obtained prediction accuracy, sensitivity, specificity, and AUC
scores of 0.83, 0.83, 0.82, and 0.99, respectively, using GLCM-based features. These
scores have been obtained in tumors larger than 5 cm3.

The radiomics-based information can potentially be implemented in a clinical
decision-support system. Individual MRI scans can serve as an input to software,
which contains a well-trained tumor texture model. Such a system can then present
the patient and treating physician with prediction scores, thereby facilitating the
selection of a personalized optimal treatment strategy. This will enable overall
improvement of the treatment of vestibular schwannomas. This aspect will be
further discussed in the concluding chapter.
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8.1 Conclusions of the individual chapters
This thesis has investigated the possibility of predicting the Gamma Knife treat-
ment of vestibular schwannoma on an individual patient basis. Several con-
tributions to this have been presented, such as the creation of a unique large
database, introduction of various treatment outcome definitions, influence of the
pre-treatment growth rate on the volumetric tumor response, a novel method for
evaluation the heterogeneous Gamma Knife dose distribution, radiomic feature
evaluation of VS tumors, and the development of short- and long-term treatment
response prediction models. This concluding chapter will first summarize the
most important findings of each chapter, after which it continues with addressing
the posed research questions. Finally, a short outlook on the Gamma Knife treat-
ment prediction of vestibular schwannomas is provided.

Chapter 2 has presented the state of the art in the evaluation of risk factors
related to the Gamma Knife treatment response. The literature review highlights
that the obtained results remain inconclusive. Nevertheless, the included risk fac-
tors show their potential and may provide information that can be included in
more elaborate evaluation methods. Furthermore, this chapter has introduced the
unique large database, which has been created for the research in this thesis. This
database has enabled (1) the opportunity to assess the correlations of numerous
parameters on various treatment outcomes, and (2) the careful analysis of the
individual volumetric responses of the included tumors to debate and construct
objective treatment outcome definitions. These definitions form the basis of deter-
mining predictive parameters. Finally, this chapter is concluded with a technical
overview of the methods for machine learning and feature extractions employed
in this thesis for creating a treatment outcome prediction model.

Chapter 3 has discussed the pre-treatment growth rate of a VS, which is consid-
ered a highly interesting patient-specific risk factor, closely related to the intrinsic
tumor biology. Current state of the art reveals that this particular factor has not
been researched extensively and methodological differences may explain the con-
tradicting results found. The large number of patients, the long follow-up times,
and the volumetric tumor assessments both prior to and after GKRS treatment in
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the database have enabled the accurate investigation into the influence of the pre-
treatment growth rate on the radiosurgical efficacy. The conducted experiments
have shown that the so-called “bending-the-curve” effect is not present in the
data. However, the influence of the pre-treatment growth rate of VS tumors on the
long-term GKRS treatment effects with respect to the tumor volume is established
in various Kaplan-Meier analyses. The resulting tumor control rates confirm the
high efficacy of GKRS for slow growing VS. The 5- and 10-year rates are 98.8% and
91.4%, respectively. Conversely, fast growing tumors exhibit significantly lower
tumor control rates, i.e. 84.6% and 66.4%, respectively, for the 33%-fastest growing
tumors. For these cases, different treatment strategies may be considered. Further-
more, a Cox regression model is constructed that enables the prediction of the
risk at treatment failure on an individual basis, thereby emphasizing the impact
of the growth rate on the treatment outcome. This model can be implemented in
the clinical workflow to facilitate physicians in selecting the optimal treatment
strategy on an individual basis.

Chapter 4 has evaluated the various treatment-related parameters and their
possible impacts on the treatment response. First, using the extensive database, all
global treatment-related factors are investigated for their impact on the treatment
response. The performed Cox regression analyses reveal that the dose to the
tumor margin correlates to the long-term tumor control, with a resulting risk
factor of 0.63. This implies that a lower dose will result in higher risks at treatment
failure. However, after analyzing the variations in long-term tumor control among
multiple sub-cohorts, this effect is not established. Therefore, it is concluded that
the influence is limited within the boundaries of the treatment protocols.

Second, the heterogeneous character of the dose distribution is evaluated. The
calculated homogeneity indices show no statistical differences within the data.
However, this method ignores the actual spatial dose characteristics. Therefore,
a novel method is introduced to enable the inclusion of these characteristics in
the treatment response evaluation. The three-dimensional histogram of oriented
gradients method yields features that are implemented in a machine learning
environment. The resulting model obtains interesting results, with accuracy, true
positive rate, true negative rate, and AUC of 77.5%, 80.0%, 75.0%, and 0.79, respec-
tively. These results suggest that the spatial dose distribution has an impact on
the treatment response. Nevertheless, these findings need to be more extensively
analyzed on larger datasets to validate their impact on the treatment response.

Finally, the tumor segmentation step in the treatment planning is evaluated.
Since a minimum radiation dose is prescribed to the tumor margin, inaccuracies
in the tumor delineations may lead to underexposure of these tumor margins. As
such, experiments are conducted to analyze differences between the treatment de-
lineations and retrospectively created annotations, among two cohorts that have
experienced significantly different treatment responses. It is illustrated in this
chapter that the delineations of the fast-responding cohort show more variations
compared to the retrospectively created annotations, by means of the Jaccard in-
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dices. In contrast, the delineations of the failure cohort show less variation. This
suggests that tumors that are more difficult to annotate, are expected to obtain a
positive treatment outcome.

Chapter 5 has provided the first experiments on the radiomic features of VS
tumors. These features are calculated on the treatment planning MRI scans of
a limited dataset of 20 tumors showing a significantly fast response and 20 tu-
mors for which the treatment did not stop the tumor progression. First, various
tumor shape features are evaluated for their predictive value on the Gamma Knife
treatment response. It is concluded that the shape appears to be a weak predictor.
Both SVM- and DT-trained models indicate that classifying the treatment response
of a VS, based on the calculated shape descriptors, do not provide a significant
improvement over random classification. This shortcoming is explained by the
observation that the inter-class differences, i.e. variations between the failure and
the fast-responder cohort, are limited, whereas intra-class differences are consider-
able. Hence, the variations between both classes are deemed too restricted, thereby
significantly reducing the prognostic value of these shape descriptors.

Second, experiments involving the radiomic tumor texture features show that
popular second-order statistical metrics, like gray-level co-occurrence matrices
and run-length matrices, are suitable for describing texture and predicting the
Gamma Knife treatment response. Nevertheless, these metrics are slightly outper-
formed by simple first-order statistics, like mean, standard deviation and median,
obtaining an accuracy, sensitivity, and specificity of 85.0%. Nevertheless, the best
choice for texture description can be made only after performing more extensive
analyses on larger datasets. In any case, the experiments from this chapter have
provided useful texture measures for successful prediction of the Gamma Knife
treatment outcome for VS and invoke further research on the patient-specific eval-
uation for VS treatment options.

Chapter 6 has presented the experiments on predicting the short-term adverse
effect of radiosurgically induced transient tumor enlargement (TTE). This effect is
one of the main causes of controversy in the Gamma Knife treatment for large VS
tumors, since it can lead to severe life-threatening morbidities. Therefore, it would
be extremely beneficial to predict this effect, since this would enable the selection
of the optimal treatment strategy on an individual basis. It is hypothesized that
the origin of this phenomenon can be found in the variations in individual tumor
biology. To this end, we have explored the possibility that the various tumor
appearances on MRI reflect such variations. Therefore, quantitative MRI texture
features derived from conventional MR images are analyzed in this chapter. In
conjunction with this, since tumor texture is size-dependent, this chapter has also
explored the effect of volume thresholding. Furthermore, since MRI provides
relative data, two distinct normalization methods are examined in this chapter.

The obtained results prove that first-order statistics and Minkowski functionals
are not suited for predicting TTE. However, GLCM-based features obtain relevant
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results, with sensitivity and specificity values of 0.82 and 0.69, respectively. After
applying volume thresholding, these performance results improve. For a mini-
mum volume inclusion criterion of 6 cm3, the results increase to sensitivity and
specificity values of 0.77 and 0.89, respectively. The AUC measurements of the
resulting model obtain values of 0.95, with confidence intervals of approximately
0.80 up to 0.99. These results clearly show that MRI tumor texture can provide
information for enabling the prediction of TTE. This characteristic can form a basis
for individual VS treatment selection, further improving overall treatment results.
This holds particularly for patients with large VS, where the phenomenon of TTE
is most relevant and for which the obtained model performs best.

Chapter 7 has extended the experiments of the preceding chapter to the predic-
tion of long-term tumor control. First-order statistics obtain accuracy, sensitivity,
specificity and AUC values of 0.67, 0.74, 0.60, and 1.00, respectively. Increasing the
volume threshold improves these values to 0.83, 0.94, 0.64, and 0.88 for tumors
larger than 5 cm3. The application of Minkowski functionals does not signifi-
cantly improve these results. The optimal support vector machine model obtains
accuracy, sensitivity, specificity, and AUC values of 0.76, 0.83, 0.64, and 0.88, re-
spectively, for tumors larger than 5 cm3. The same holds for the models trained
on gray-level size zone matrix features, obtaining 0.77, 0.86, 0.65, and 0.84 for the
validation results, for tumors larger than 4 cm3. However, GLCM-based models
obtain accuracy, sensitivity, specificity, and AUC values of 0.77, 0.71, 0.83, and 0.93,
respectively, including all VS tumors of various sizes. These results increase up to
0.83, 0.83, 0.82, and 0.99, respectively, for tumors larger than 5 cm3. This shows that
radiomics-based information can be potentially used in a clinical decision-support
system, enabling the overall improvement of the treatment of VS tumors.

8.2 Discussion on the research questions
This section will evaluate the proposed methods and solutions addressing the
research questions formulated in Section 1.6.

RQ1: Data and treatment response measurements
RQ1a: Which patients and how many need to be included for determining predictive
parameters of the GKRS treatment outcome?

The discussions on the state of the art and the treatment response definitions
in Chapter 2 have highlighted several aspects of the vestibular schwannoma. First,
VS tumors are considered rare, so it is difficult to obtain large numbers of patients.
Furthermore, since the Gamma Knife obtains high levels of long-term tumor con-
trol (see Section 1.3), treatment failure rates are low. Therefore, in order to evaluate
parameters that may enable treatment outcome prediction, the required number
of included patients increases even further. Since the ETZ in Tilburg is the only
institution in the Netherlands that treats VS patients with a Gamma Knife, their
experts treat a significant amount of patients each year. Therefore, their unique
large database facilitates the careful evaluation of this specific brain tumor. Sec-
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ond, a VS can be unilateral and sporadic, but it can be caused also by a genetic
condition called neurofibromatosis Type 2 (NF2). The resulting NF2-based VS
tumors have different biological properties compared to their sporadic counter-
parts. As such, this type of tumors should be considered different and is therefore
excluded from our research work. Third, the response of a VS tumor to GKRS is
slow. Therefore, a long follow-up is required to enable the assessment of long-term
treatment outcome. Fourth, for transient tumor enlargement, it is required that
the tumor volume is known within the first 12 months after treatment. Since the
transient swelling can be subsided after 12 months, the tumor volume at around
6 months provides crucial information for determining TTE. As such, a 6-month
follow-up scan is required for this analysis. These four crucial observations have
led to the inclusion of 735 patients in this work, with an additional 22 patients for
the TTE analysis.

Since the amount of data points required for applying deep learning methods
in this field is not known, we have opted for employing conventional machine
learning approaches. These methods allow for obtaining meaningful results with
clearly lower patient counts than initially required for deep learning. This thesis
has proven with the obtained results in Chapters 5, 6, and 7, that prediction of the
Gamma Knife treatment for vestibular schwannomas is feasible with the obtained
dataset with the amount of patients varying between 40 and 99. These results pave
the way for future explorations of more advanced machine learning strategies.

RQ1b: What are good clinical metrics for determining the different treatment outcomes?
The literature review in Chapter 2 has highlighted that there is no clear con-

sensus in the employed treatment outcome definitions. First, long-term tumor
control (or treatment success) is not considered in clinical evaluations. There is
no clear cutoff as to how long patients need to be free of tumor progression be-
fore treatment is considered successful. In current research, survival analyses are
conducted, thereby circumventing the necessity of such a definition. However, to
enable treatment outcome prediction, clear and objective definitions are required.
Following careful considerations with several medical specialists, we have derived
a definition for long-term tumor control (Section 2.4.2). Based on the available
data, we have found that no treatment failures occur after 129 months following
treatment. Therefore, we have opted for employing this time-period as follow-up
end-point. Each patient that has reached this end-point is considered to have been
treated successfully.

Second, the definitions of treatment failure are highly variable in current state
of the art. Section 2.4.1 has demonstrated that most centers consider interven-
tion as treatment failure. However, several issues with this have been discussed.
Furthermore, different measurement strategies result in varying failure rates.
Therefore, we have introduced a clear and objective treatment failure definition
(Section 2.4.1). For this, we have employed volumetric measurements to improve
the measurement accuracy and introduced a mathematical model to determine a
so-called volumetric failure. This model is defined as two consecutive significant
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increases in tumor volume, among three consecutive follow-up MRI sessions. A
volume change is considered significant if the tumor has grown at least 10% in
volume. Furthermore, only MRI sessions are employed that were obtained at least
two years after GKRS.

Finally, definitions of transient tumor enlargement (TTE) are mainly based
on tumor-size measurements, and there is no clear consensus on the amount of
increase required before progression is considered. Furthermore, since a swelling
can subside within the first 12 months, it may be missed if patients are only
scanned annually. Therefore, we have proposed a clear and objective definition of
TTE, where we have incorporated a criterion for the change in tumor size and a
criterion on the required follow-up scans (Section 2.4.3). A tumor has presented
with TTE if there was a significant increase of the tumor volume within the first
12 months after treatment, followed by a volumetric reduction to at least the tumor
volume at treatment. For this, a follow-up scan is required at about 6 months after
treatment.

RQ2: Influence of the pre-treatment growth rate on the Gamma Knife treat-
ment response
RQ2a: Is the pre-treatment growth rate influencing the rate of volume reduction following
treatment?

The experiments in Chapter 3 have shown that the pre-treatment growth rate,
calculated by the volume doubling time (VDT), did not correlate significantly
with the short-term volumetric changes. For the 2-year MRI session, the obtained
p-value was 0.07, which may suggest a trend in the data. However, since we have
included 225 patients in the analysis for this specific correlation, it can be rea-
sonably well concluded that the impact is not present in our data. For the other
MRI sessions, i.e. after 6 months, 1 year, and 3 years, the resulting p-values clearly
indicate that there is no relation present in our data. These results remain negative
when considering a different approach for calculating the post-treatment volume
change, i.e. tumor halving times, instead of the relative volume changes.

RQ2b: How does the pre-treatment growth rate relate to the long-term tumor control?
The results on the volume doubling time (VDT) data with respect to the long-

term tumor control in Chapter 3 have presented that there is a clear influence of
the pre-treatment growth rate on the long-term tumor control. Various survival
analysis techniques have obtained p-values well beyond the generally accepted
cutoff value of 0.05. First, a Kaplan-Meier analysis comparing slow growing and
fast growing tumors showed that slow growing tumors obtained 5- and 10-year
tumor control rates of 97.3% and 86.0%, respectively, whereas fast growing tu-
mors obtained 85.5% and 67.6%, respectively (p < 0.01). This is confirmed in a
Kaplan-Meier analysis comparing slow growing, average growing, and fast grow-
ing tumors. The obtained 5- and 10-year tumor control rates were 98.8% and
91.4%, 90.6% and 70.7%, and 84.6% and 66.4%, respectively (p < 0.01). Finally, a
Cox regression analysis has been conducted. The resulting risk model is able to
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compute the risk of treatment failure for a specific volume doubling time. In this
model, the risk of loss of tumor control for a tumor with a given VDT will decrease
with a multiplication factor of 0.97 for a tumor for which the VDT is one month
larger, i.e. a slower growing tumor. This means the following for our database.
The average patient, i.e. having a VDT of 15 months, had a risk at loss of tumor
control within the first 5 years following treatment of 8.4%, whereas a patient with
a VDT of 48 months had a risk of 3.1% at loss of tumor control within that same
time period. Conversely, a tumor with a VDT of 6 months, i.e. a fast growing tu-
mor, had a risk at loss of tumor control in 11.0% of the cases within the first 5 years.

RQ2c: In what way does the adopted clinical methodology influence the obtained prediction
model results?

Since the treatment failure definition employed in the experiments from Chap-
ter 3 is based on tumor volumes, inter- and intra-observer variations may have
influenced the calculated VDT and the number of failures in each sub-cohort in the
conducted analyses. In Section 2.5, we have determined that for tumors smaller
than 250 mm3, the variability in contouring increases beyond the 10% cutoff value
chosen as reasonable for this work, in agreement with clinicians. Therefore, for
these smaller tumors, the relative volume errors are significant. By introducing
a threshold on the minimum required tumor volume (i.e. 250 mm3), we have
certainly reduced the impact of the relative volume errors. This statistically im-
proved the results from the Cox regression (changes from p < 0.05 to p = 0.01).
Furthermore, by excluding the volumetric failure, thus only considering interven-
tion as failure, we still determined a significant difference between the slow- and
fast-growing tumor cohorts (p = 0.02).

RQ3: Influence of the treatment planning on the treatment outcome
RQ3a: Does the marginal dose influence the long-term tumor control?

The conducted experiments in Chapter 4, Section 4.2, have presented no clear
statistical correlation between globally calculated treatment parameters and the
long-term tumor control. First, in univariate Cox regression analyses, the p-value
for the dose covering 99% of the tumor volume (DOSE99) was slightly higher than
the required 0.05 for obtaining statistical significance. Nevertheless, in a multivari-
ate Cox regression, both tumor volume at treatment and the DOSE99 setting are
determined to show significant covariation with respect to the long-term tumor
control. This suggests the influence of both factors on the long-term tumor control.
However, Kaplan-Meier analyses revealed that, after splitting the cohort based
on the median of DOSE99, the resulting tumor control rates did not differ signifi-
cantly. Dividing the complete cohort in three sub-groups did not improve these
results. These analyses suggest that, even though the Cox regression determined
that DOSE99 showed a significant covariation, the differences between tumor con-
trol rates within the protocolized doses are small and statistically not significant.
The small variation possibilities within the protocolized treatments are guided by
the minimization of the prescribed radiation dose over the last decades, where the
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treatment protocols have been optimized to reduce the radiation toxicity, while
maintaining good tumor control rates.

RQ3b: Is there an influence of the specific heterogeneous dose distribution on the long-term
treatment outcome?

The analyses in Chapter 4, Section 4.3, have presented that the specific hetero-
geneous dose distributions may have an influence on the treatment response. In
a limited dataset of 20 tumors in which the treatment resulted in a failure and
20 tumors that obtained significant volume reduction within the first year follow-
ing treatment (fast responders), the differences in calculated homogeneity indices
(HIs) were found statistically not significant. Indeed, in a machine learning envi-
ronment, the resulting HI values have obtained classification accuracy values of
about 50%. This did not yield improvement over random classification. However,
these indices do not incorporate actual spatial dose information. To this end, we
have introduced a novel metric for assessing the heterogeneous dose distribution
by incorporating the spatial information. The three-dimensional histograms of
oriented gradients have been calculated for each of the 40 included tumors. The
resulting feature vectors have been supplied to a well-known machine learning
algorithm to evaluate their impact on the treatment response. The highest ac-
curacy value obtained was 77.5%, thereby suggesting that there are measurable
differences that could potentially influence the treatment efficacy, even though
treatment plannings are considered uniform.

RQ3c: How does the inter-observer tumor segmentation variability work out on the
Gamma Knife treatment response?

It is observed in Chapter 4, Section 4.4, that the delineations of the fast-respon-
ding group show more variations compared to the retrospectively created an-
notations. Tumor volume differences are statistically not significant, although it
may be considered that a trend is present in the data since the resulting p-value
was 0.08. By introducing a novel metric that normalizes the differences in slice
area with respect to the height location within the tumor, we have shown that
both the summed absolute pixel differences, as well as the summed relative area
differences differ significantly between the two included cohorts (p = 0.02). Fi-
nally, calculated Jaccard indices have highlighted that the differences within the
fast-responding cohort are significantly larger than within the failure cohort. With
these results, it can be deduced that there are significant inter-observer variation
differences between the included cohorts. Furthermore, it is shown that these
variations are larger within the fast-responding cohort, compared to the cohort
containing patients for which the treatment failed. This suggests that tumors that
are more difficult to segment, are expected to obtain a positive treatment outcome.
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RQ4: Selection and application of informative MRI-based quantitative fea-
tures for predicting the GKRS treatment response
RQ4a: Can quantitative tumor shape descriptors enable the prediction of the GKRS
treatment response?

In Chapter 5, the examination of the impact of shape descriptors on the treat-
ment response has revealed that shape is a weak predictor of the treatment out-
come, in the limited dataset of 20 fast-responding tumors and 20 failures. In the
conducted assessments, 19 two-dimensional and 6 three-dimensional shape de-
scriptors have been considered. First, we have evaluated whether each calculated
shape feature differed significantly between both cohorts. Visual inspection of
scatter plots, histograms, and boxplots have revealed that inter-class variations
are small, while intra-class variations are large. Only the roughness index pro-
vided a clear difference between both classes. Statistical analyses further showed
that perimeter, area, and four contour-sequence-moments features differed signif-
icantly among the two cohorts. However, none of the three-dimensional features
reached statistical significance. Implementing the resulting features in a machine
learning environment obtained accuracy values of around 65.0%. The best model
achieved accuracy, sensitivity, specificity, and area under the receiver operating
characteristic of 67.5%, 65.0%, 70.0%, and 0.70, respectively. Although this is an
improvement over random classification, the obtained results highlight that shape
can only be considered as weak predictor for the treatment response.

RQ4b: Which texture features are informative for the various treatment responses?
The evaluation of various texture features in Chapter 5 have exhibited that

popular second-order statistical metrics like GLCM and RLM, are suitable for
describing texture and predicting the Gamma Knife treatment response. These
metrics obtained accuracy values of 77.5% and 82.5%, respectively, using a broadly
accepted machine learning algorithm. The corresponding sensitivity and speci-
ficity values were 90.0% and 75.0%, respectively, for the GLCM-based model, and
75.0% and 80.0%, respectively, for the RLM-based model. Nevertheless, these met-
rics are slightly outperformed by simple first-order statistics (FOS), like mean,
standard deviation, and median. The best-performing FOS-based model obtained
accuracy, sensitivity, and specificity values of 85.0%.

RQ4c: What is the influence of the imbalance in data and the variations in tumor volumes
on the prediction results?

The conducted experiments in Chapter 6 have displayed that the imbalance in
the data can have an impact on the obtained prediction results. In the experiments
on FOS features and on Minkowski features, the inclusion of all data resulted in an
increased sensitivity, but a decreased specificity. This is most likely caused by the
fact that the imbalance in the data can result in trained models that have a large
preference for the majority class. As such, there are very few true negatives, result-
ing in a low specificity. However, for GLCM-trained models, both sensitivity and
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specificity values are increased. This suggests that the additional data improved
the trained model, thereby creating a more detailed decision boundary.

Chapters 6 and 7 have investigated the influence of the various tumor vol-
umes on the obtained prediction models. Both chapters have concluded that this
influence is present for the GLCM-based models. For FOS-based, Minkowski-
based, and GLSZM-based models, increasing the volume threshold resulted in
comparable accuracy, sensitivity, and specificity values, whereas the AUC values
decreased. This is most likely caused by the reduced number of tumors included
in the analyses. However, for GLCM-based models, all considered validation val-
ues increased with the volume threshold. This suggests that the models obtained
with GLCM features are robust.

RQ4d: Is it possible to develop models that can predict transient tumor enlargement and
the long-term treatment success, based on MRI texture features?

The experiments in Chapters 6 and 7 have achieved various results, where
most of the included features showed to have predictive value of the treatment
outcomes. However, GLCM-based models have produced the best results. For
TTE prediction, the best model realized sensitivity and specificity values of 0.82
and 0.69, respectively. For a minimum volume inclusion criterion of 6 cm3, the
highest sensitivity and specificity values of 0.77 and 0.89 have been obtained,
respectively. The resulting models achieved AUC values in the range 0.90 – 0.95,
with confidence intervals of approximately 0.80 up to 0.99.

For long-term tumor control, the same conclusions can be drawn. Features
from FOS, Minkowski, and GLSZM have realized interesting results, thereby high-
lighting their predictive value. However, GLCM-based models again outperform
the other feature extractors, obtaining accuracy, sensitivity, specificity, and AUC
values of 0.77, 0.71, 0.83, and 0.93, respectively. If additional volume thresholding
is applied, these results increase to 0.83, 0.83, 0.82, and 0.99, respectively, for tu-
mors larger than 5 cm3. Both results exhibit the possibility of creating a model that
enables the prediction of TTE and of long-term tumor control on an individual
patient-basis.

8.3 Future outlook on Gamma Knife treatment prediction
Based on the continuous improvement in machine learning, the application of
advanced imaging techniques, such as perfusion and diffusion MRI and/or multi-
spectral sensing, may provide additional and valuable data for improving the pre-
diction models. Combining multi-modal imaging sequences increases the amount
of information obtained, since each imaging sequence highlights different bio-
logical aspects of the tumor tissue. Therefore, the combination could prove to
be crucial in creating models that provide highly accurate treatment outcome
predictions.

In the case of vestibular schwannomas, several innovation developments are
already happening. Various research groups are investigating the possibility to
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predict the treatment response, and these are increasingly based on individual
patient-specific information. However, since VS is a rare pathology, it is necessary
to undertake large multi-center investigations. This will lead to an increased num-
ber of included patients and it will make the data more heterogeneous. Each med-
ical center has its own strategy and methods for treating a patient. Each treatment
planning has many parameters and is therefore highly heterogeneous and possi-
bly dependent on which center is creating and executing the treatments. Therefore,
collaboration is of paramount importance and will lead to an improvement of the
prediction models, as proposed in this thesis. Enabling accurate prediction of the
treatment results will in the end further improve overall treatment outcomes for
vestibular schwannomas.

Furthermore, in this work, we have shown that the pre-treatment growth rate
can predict the risk at loss of tumor control. This is an easy model to implement
in a clinical workflow. However, there are studies suggesting that up-front ac-
tive treatment leads to improved cranial nerve functions, when compared to a
wait-and-see approach. Others advocate against active treatment, since it may not
be necessary to treat a tumor that is not growing. It would be therefore highly
interesting to investigate the possibility of predicting the natural growth rate of a
tumor. If possible, a wait-and-scan policy may become obsolete, and the predicted
tumor growth rate can be used for determining the risk at loss of tumor control,
thereby enabling a clinical decision-support system.

The ever-increasing abilities of machine learning methods enable the further
enhancement of the already developed models. In the past years, deep learning
techniques have clearly proven to outperform the conventional machine learning
models in many fields of research, including medicine. These developments are
so strong, that their results surpass the expert assessments already in well-defined
cases. This suggests that these techniques will most likely become important tools
not only for medical image analysis, but also for medical experts and general
physicians. However, the explainability of these advanced AI techniques is cur-
rently hampering their implementations in the clinical workflow. It is therefore
expected that this field will further grow in the coming years, so that the accep-
tance for using AI techniques is further broadened. The technology will develop
so rapidly and broadly that the solutions will be very advanced and sophisticated,
thereby making AI an medical expert field of its own. This implies that collabo-
rations should expand beyond the border of medical experts and physicians and
should involve technical AI experts as well.

In the last decade, the technology and the involved applications of AI have
been increasing rapidly. This trend is also visible in medicine, where the data is
abundantly available on multiple diseases, conditions, and treatments. Machine
learning and the availability of so-called big data enable physicians and researchers
to develop models that lead to significant improvements of the various care paths
available. These models can detect for instance diseases earlier on, improve dis-
ease classifications, and enable the risk assessments of the actions taken in the
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clinical care path by predicting the results. Furthermore, the inclusion of meta-
data, multi-modal data processing, and multi-dimensional decision-making are
actual developments taking place in clinical research. Currently, several clinical
applications have been and are proposed, including those from large technology
companies like Google, Apple and IBM. In the next decade, the number of AI
applications in medicine will increase even further, due to the awareness of possi-
bilities and increased exposure of the developed applications and their results.

In summary, while this thesis has presented the first promising results in pre-
dicting the various Gamma Knife treatment responses of vestibular schwannomas,
the obtained models need to be validated on multiple external datasets. Further-
more, the availability of additional data from these external datasets can improve
the prediction models, since more complex machine learning methods can be
explored. Moreover, the results in this thesis are based on individual features,
calculating first- and second-order statistics on the gray-level MRI intensities.
Combining the various features on multi-modal MRI sequences may further im-
prove the results. Also the implementation of advanced imaging protocols may
provide valuable information on the intrinsic tumor biology, thereby possibly im-
proving the predictability of the various treatment outcomes. Additionally, since
we have concluded that GLCM-based patterns are informative for Gamma Knife
treatment responses, frequency-based features may improve upon the existing
features. Nevertheless, the obtained results highlight the possibilities of predict-
ing the various treatment outcomes, thereby enabling the improvement of the
overall treatment results. Finally, the ability to predict the treatment outcome on
an individual basis will significantly aid patients and their treating physicians in
selecting the optimal treatment strategy and follow-up care path.
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