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Summary
Optimal design and control of electrified powertrains

Electrified powertrains, which provide opportunities for the improvement of energy
efficiency, are emerging to meet unprecedented emissions regulations and energy
shortages. The energy management system (EMS) and thermal management system
(TMS) of an electrified vehicle are often treated independently in previous studies,
and an optimal solution may not be guaranteed. Moreover, energy and thermal
management systems are usually developed for a fixed powertrain. An optimal active
dynamical system, however, demands concurrent plant (e.g., the topology and size)
and controller optimization, considering the coupling between the physical system
and the control strategy. In view of the drawbacks in the current literature, this
study originally provides a comprehensive analysis of powertrain design and control
optimization of electrified vehicles considering both the energy and thermal domains.
The general problems of combined topology, component size and control optimization
of electrified powertrains from energy and thermal perspectives are introduced. Energy
and thermal management systems for electrified vehicles, which only started to appear
recently, are then classified to highlight the importance of integration. The state-of-the-
art combined energy and thermal management systems (CETMSs) are also surveyed
in terms of optimality and causality. Moreover, it aims to identify potential research
directions of combined design and control optimization of electrified powertrains
with respect to energy saving and cost reduction. Based on the opportunities found,
two case studies are conducted to demonstrate the effectiveness of integrated design
approach, as electrified vehicles comprise hybrid electric vehicles (HEVs) and electric
vehicles (EVs). For the second case study, extensive experiments have been conducted
for model development and validation of the energy consumption.

In the first case study, for a plug-in HEV (PHEV) with a continuously variable
transmission (CVT), an integrated energy and thermal management system (IETMS)
is proposed. The IETMS aims to quantify the benefit of adopting a dual-source
waste heat recovery (DSWHR) system on the ultimate fuel savings of the CVT-based
PHEV, which is subject to a cold-start. A cold-start implies a low engine temperature,
which increases the frictional power dissipation in the engine, leading to excess fuel
usage. The DSWHR system recuperates waste heat from exhaust gases. The energy
harvested is stored in a battery and can be retrieved when needed. Moreover, it
recovers waste heat from an electric machine (EM) and a CVT, to boost the heating
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performance of a heat pump for cabin heating. This results in a decrease in the load
on the battery. The IETMS aims at maximizing the fuel efficiency. Based on validated
component models, by using dynamic programming (DP), simulation results show
that cold-start conditions have a significant impact on the fuel usage, up to around
7.1%. The DSWHR system has a significant improvement on the fuel economy, up
to around 13.1%, from which the design of WHR technologies and dimensioning of
powertrain components can be derived. The recovered power from the DSWHR system
can potentially downsize the battery pack.

In the second case study, for an EV with a CVT, a combined design and control
optimization (co-design) method on the basis of convex programming (CP) is proposed
to minimize the total-cost-of-ownership (TCO), focusing on the integration of the
EM and the CVT. Moreover, the co-design approach is extended by an integrated
energy and thermal management design. A single-speed transmission (SST)-based
EV model with reference to a series production vehicle is firstly created, which is
experimentally validated. A CVT-based EV model is subsequently developed based
on the SST-based EV model, where only the SST is replaced by a CVT (on the basis
of an off-the-shelf component, which is not optimized). The CVT-based EV model is
then convexified and optimized with the co-design optimization method. The strong
coupling between the EM and CVT from design and control perspectives is presented.
It is shown that the optimized system with the co-design approach decreases the TCO
by around 2% compared with the SST-based EV and by around 5.9% compared with
the non-optimized CVT-based EV (based on off-the-shelf component). The optimal
design parameters: the battery, EM and CVT sizes; and control inputs: the CVT
speed ratio and air-flow rate of the cooling system, are found simultaneously, by taking
advantage of the control and design freedom provided by the CVT. Thereby, the drive
train component models for the vehicle load, EM, CVT and SST (including thermal
models) are developed based on experiments with sufficient accuracy and used for
verification and validation of the developed integrated design methodology. Moreover,
the advantages of the co-design method are highlighted by comparing to a sequential
design, where the EM size is fixed. Insights into the design of a low-power EV that
is energy-efficient and cost-effective for urban driving are also provided. The result
shows that even though the current EV market is dominated by SSTs, multi-speed
transmissions, for instance, CVTs, can be considered as competitive alternatives. For
future EV applications, a highly and thermally integrated EM-CVT system, which is
efficient, low-cost, and lightweight, through joint forces of automotive suppliers can be
expected.
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Nomenclature

Acronyms

Acronym Description

AC – alternating current
AMT – automated manual transmission
AOD – actuation on demand
AT – automatic transmission
BA – battery
BER – brake energy recuperation
CAB – cabin
CAC – charge air cooler
CADC – common artemis driving cycle
CAN – controller area network
CECMS – complete energy consumption minimization strategy
CETMS – combined energy and thermal management system
CH – charging
CP – convex programming
COP – coefficient of performance
CVT – continuously variable transmission
DC – direct current
DCT – dual clutch transmission
DDP – deterministic dynamic programming
DHT – dedicated hybrid transmission
DIRECT – dividing rectangles
DNR – drive, neutral and reverse
DO – distributed optimization
DP – dynamic programming
DSWHR – dual source waste heat recovery
ECMS – equivalent consumption minimization strategy
EGWHR – exhaust gas waste heat recovery
ELOP – electric oil pump
EM – electric machine
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EMS – energy management system
EPWHR – electric path waste heat recovery
EV – electric vehicle
FCEV – fuel cell electric vehicle
FD – final drive
FHEV – full hybrid electric vehicle
FL – fuzzy logic
FT – fuel tank
FTP – federal test procedure
GA – genetic algorithm
GEN – generator
HEV – hybrid electric vehicle
HP – heat pump
HVAC – heating, ventilation, and air conditioning
ICDC – intercity drive cycle
ICE – internal combustion engine
ICEV – internal combustion engine vehicle
IETMS – integrated energy and thermal management system
JC08 – japanese cycle ’08
KPI – key performance indicator
MA – motor assist
MDSDO – multidisciplinary dynamic system design optimization
MHEV – mild hybrid electric vehicle
MINP – mixed integer nonlinear programming
MPC – model predictive control
NEDC – new european driving cycle
OB – optimization-based
OEM – original equipment manufacturer
OOL – optimal operating line
ORC – organic rankine cycle
PF – power follower
PHEV – plug-in hybrid electric vehicle
PID – proportional-integral-derivative
PMP – pontryagin’s minimum principle
PMSM – permanent magnet synchronous machine
PSO – particle swarm optimization
RB – rule-based
SA – simulated annealing
SDP – stochastic dynamic programming
SETMS – separate energy and thermal management system
SOC – state of charge
SOD – start of development
SOE – state of energy
SOP – start of production
SQP – sequential quadratic programming
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SS – standstill
SST – single speed transmission
TC – thermostat control
TCO – total cost of ownership
TEG – thermoelectric generator
TMS – thermal management system
TR – transmission
VA – variator
VCU – vehicle control unit
WH – wheel
WHR – waste heat recovery
WLTC – worldwide harmonized light vehicles test cycles

Greek

Symbol Description Unit

α road grade, or pulley angle ◦

β unit interval -
γ speed ratio -
ε effectiveness -
ζ fitting accuracy -
η efficiency -
θ temperature ◦C
ι a small positive number -
λ co-state -
µ coefficient -
ξ state -
Π control policy -
ρ price, or density e/kWh, or kg/m3

σ torque split -
τ torque Nm
φ air-flow rate kg/s
ω rotational speed rpm

Roman uppercase

Symbol Description Unit

A area m2

C cost, or heat capacity e, or J/K
D diameter m
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E energy J
F force N
G terminal cost -
H hamiltonian -
I current A
J cost function, or inertia -, or kgm2

N countable number -
P power W
Q capacity Ah
R resistance, or radius Ω, or m
S distance m
T topology -
U control space -
V voltage, or volume V, or m3

X state space -
Z surface -

Roman lowercase

Symbol Description Unit

a coefficient, or specific cost -, or e/kg
b specific cost e
c coefficient, or specific heat capacity -, or J/kgK
f function, or safety factor -, or -
g inequality constraint -
h equality constraint, or coefficient -, or W/m2K
k stiffness coefficient, or heat transfer coefficient N/m, or W/K
m mass kg
p pressure bar
q flow rate lpm
r radius m
s design variable -
t time s
u control variable -
w external variable -
x state variable -
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Subscripts

Symbol Description

a ambient
b battery, or pushbelt
c cvt, or center
d aerodynamic drag, or power demand
e energy, or engine
f fuel, or final drive
g exhaust gas
h electric path, or heating
i inlet, or index
j index
m electric machine
o outlet
p primary pulley
r rolling resistance, or pushbelt element rocking edge-saddle
s secondary pulley, or single-speed transmission
t thermal
v vehicle, or variator
w wheel
x cabin

Superscripts

Symbol Description

ad admissible
fe feasible
p possible
s small

Accents and operators

Symbol Description

y upper bound of y
y lower bound of y
ẏ derivative of y
yo optimum of y

xiii
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Chapter 1

Introduction

Electrified powertrains are emerging to meet stringent emissions regulations and en-
ergy shortages. The continuously variable transmission (CVT) is gaining popularity,
which improves energy efficiency and driving comfort of an electrified vehicle, due
to the continuous ratio adjustment functionality. An optimal electrified powertrain
design demands integrated design (e.g., the topology and component sizes) and control
optimization considering both energy and thermal domains to minimize the energy
consumption and system cost. This thesis aims to investigate the effectiveness of using
this integrated design approach for electrified vehicles with the CVT technology. As
electrified powertrains mainly comprise hybrid electric vehicles (HEVs) and electric
vehicles (EVs), two case studies are conducted. From optimal control perspective, inte-
grated energy and thermal management of a CVT-based plug-in hybrid electric vehicle
(PHEV) with cabin heating, which is subject to a cold-start, is explored to identify
the ultimate fuel savings of utilizing a dual-source waste heat recovery (DSWHR)
system. From optimal design and control perspective, simultaneous powertrain de-
sign and control optimization of a CVT-based EV is investigated to minimize the
total-cost-of-ownership (TCO) consisting of the energy consumption and system cost,
which is extended by an integrated energy and thermal management design. Research
questions related to the integrated design approach and these two case studies are
formulated, which motivates the research objectives and scientific contributions, as
will be discussed in this chapter.

1.1 Future of sustainable mobility

Faced with stringent emissions regulations and unprecedented energy shortages, various
original equipment manufacturers (OEMs) have mapped out their electrification plans
to reduce energy consumption and CO2 emissions [2–4]. A recent forecast of new
sales of passenger cars worldwide by 2030 is shown in Figure 1.1. It can be seen
from Figure 1.1 that there are generally six types of passenger cars, namely internal

1
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Figure 1.1: Market share of electrified vehicles in 2030 [1], where FCEV represents fuel cell
electric vehicle, FHEV full hybrid electric vehicle, MHEV mild hybrid electric vehicle, and
PHEV plug-in hybrid electric vehicle.

combustion engine vehicle (ICEV), mild hybrid electric vehicle (MHEV), full hybrid
electric vehicle (FHEV), plug-in hybrid electric vehicle (PHEV), electric vehicle (EV),
and fuel cell electric vehicle (FCEV). Furthermore, electrified powertrains will grow
rapidly. Around half of the new passenger cars will have some form of electrification,
and around one fifth of that will be an EV in 2030.

Automated transmissions, which let the electric machine (EM) and/or engine (e.g.,
hybrid system) operate at efficient regions by changing gear ratios, have the potential
to increase the energy efficiency further [6]. Among them, owing to the continuous ratio
adjustment functionality, increased energy efficiency, and improved driving comfort,
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Chapter 1. Introduction 3

the continuously variable transmission (CVT), as an advanced automated transmission,
is gaining popularity [7], as demonstrated in Figure 1.2.

One of the most commonly developed CVT technologies is based on a pushbelt. The
key component of the CVT is the variator, where two pulleys are connected by a
pushbelt, as shown in Figure 1.3. Each pulley has a fixed sheave and a moveable
sheave. The size of the pulleys can alter, resulting in infinite ratios within its ratio
coverage. This allows the power source(s), e.g., internal combustion engine (ICE)
and/or EM, to be independent of the power demand of the driver to optimize the
operating point of the ICE and/or EM. Therefore, CVT-based electrified vehicles are
considered as solutions for the future of sustainable mobility.

Figure 1.3: Pushbelt variator for CVT [8].

1.2 Integrated design approach

In order to obtain an optimal electrified vehicle design in the early design stage, in prin-
ciple, three optimization layers should be considered, including topology, component
size, and control optimization [9, 10], as illustrated in Figure 1.4. For example, control
optimization refers to optimizing control performance using optimization (energy and
thermal management). A topology that represents the connections between powertrain
components influences the power flow (control). To realize a specific hybrid func-
tionality, certain connections between components are needed [11]. Furthermore, the
powertrain component size, e.g., the battery size, affects the control strategy, e.g., the
power split between the engine and the battery, and vice versa [12]. Earlier studies have
been mainly concerned with the energy domain, which only takes into consideration
mechanical and electrical energy flows [13–16], and may not yield the optimal solution.
Recent research has shown that the thermal domain, e.g., thermal management system
(TMS), should also be taken into account, as it is an integral part of an electrified
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Control optimization

(energy and thermal)

Design optimization

(energy and thermal)

• Topology

• Size

Topology generation

(energy and thermal)

Figure 1.4: Design and control of electrified vehicles including both energy and thermal
domains (Chapter 2). (Outer to Inner) Topology generation, plant, and controller.

powertrain (e.g., heat generation due to component power losses) and influences the
overall energy consumption [7, 17, 18]. Hence, to arrive at an optimal active dynamical
system design, these optimization layers should apply to both the energy and thermal
domains. For instance, different powertrain topologies would require distinct thermal
management architectures. This integrated design approach aims at optimizing the
total-cost-of-ownership (TCO) comprising the energy consumption and system cost
of an electrified vehicle. To minimize the energy consumption of an EV, the optimal
power sharing between the powertrain and the cabin heating system is investigated in
[19]; however, component sizing is not taken into account. For a double planetary gear
hybrid powertrain, a combined topology and size optimization problem to minimize
the fuel consumption is solved iteratively in [20], but the powertrain cost and the
thermal domain are not considered. The thermal response and power consumption
of the cooling system of a series HEV are investigated in [21]; however, the energy
management system (EMS) is not optimized. Based on the current literature [12, 17,
20–26], a generic and systematic way to analyze and link those optimization layers for
electrified vehicles has yet to be established, in consideration of both the energy and
thermal domains. Therefore, the first set of research questions of this thesis regarding
the integrated design approach for electrified vehicles (R1a and R1b) is the following:
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• R1a: What are the interconnections between the various optimization layers (i.e.,
topology, component size, and control), considering both the energy and thermal
domains; and,

• R1b: How do they influence the optimality of an electrified vehicle design?

Identifying the interconnections between the optimization layers can provide insights
into the selection of optimization strategies for different layers and opportunities for
reducing the TCO of an electrified vehicle considering both the energy and thermal
domains. Electrified vehicles, in this case, mainly comprise (P)HEVs and EVs.

1.3 Integrated energy and thermal management

For an HEV with a chosen powertrain topology, which means that the design layer is
fixed, of particular importance is to develop an EMS to fulfill its potential in reducing
the fuel consumption. The EMS represents the controller design at supervisory level.
The primary goal of the EMS is to determine the power flow of the HEV (e.g.,
the torque split between the ICE and EM) in an optimal manner so that the fuel
efficiency (CO2 and/or other pollutant emission reductions) is maximized. To solve
this control problem, a vast amount of literature exists, including both rule-based
(RB) and optimization-based (OB) strategies, such as dynamic programming (DP),
Pontryagin’s minimum principle (PMP), and equivalent consumption minimization
strategy (ECMS) [14, 16, 26, 27]. Note that a RB strategy provides a feasible solution
but not the optimal one. Among OB strategies, DP is widely chosen, as it finds a
globally optimal solution, while handling nonliear and non-convex constraints [13, 15,
16, 24]. However, one of the hidden assumptions of developing EMSs in these studies is
that the engine is already at its operating temperature at the beginning of the driving
mission (a warm-start), which is not realistic. The impact of cold-start conditions
should be taken into consideration [7]. A cold-start implies a low engine temperature,
which increases frictional losses in the engine, leading to excess fuel consumption due
to high-viscosity effects. Due to efficient and intermittent engine operation, this effect
holds for a longer time in an HEV than for its traditional equivalent. The difference in
fuel consumption between a warm-start and a cold-start is regarded as the fuel-saving
potential. Few attempts can be found to close this gap [28]; that is, to improve fuel
efficiency with cold-start conditions and thereby quantify the ultimate fuel savings
that could be realized in reality.

In order to gain qualitative insights into areas where most of the fuel economy
improvements could be obtained, a numerical simulation was carried out to analyze
the energy losses of a PHEV, as illustrated in Figure 1.5. The vehicle is subject to a
cold-start. It can be observed that the engine accounts for most of the energy losses.
A large part of the fuel energy is wasted into the surroundings, in the form of exhaust
gases. Hence, recuperating a certain amount of that energy, which would otherwise be
dissipated into the environment, is a promising way to improve powertrain efficiency



6 1.3. Integrated energy and thermal management

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

F
u

el
 c

o
n

su
m

p
ti

o
n

 [
L

/1
0
0

k
m

]

ICE

BA

DC-DC

Auxiliary

EM

Pump

Clutch

DNR

Variator

Input gear

EM gear

Final drive

Brakes

Acceleration force

Rolling resistance

Air drag

Exhaust gases

Engine coolant

EM + TR

Figure 1.5: Typical energy balance of a PHEV in charge-sustaining mode, where BA
represents the battery, DC-DC the DC (direct current) to DC converter, DNR the drive,
neutral, and reverse set, EM the electric machine including inverter, and TR the transmission
[29].

[30–33]. Harvesting waste heat from exhaust gases is termed exhaust gas waste heat
recovery (EGWHR). It has been reported that EGWHR systems have an efficiency of
up to 15% [31, 34–36]. This technology is mainly adopted for ICEVs [33, 37], even
though a few applications can be found in HEVs. It can also be seen from Figure
1.5 that auxiliary power demand (cabin heating, in this case) consumes a significant
amount of energy from the battery, which eventually leads to fuel consumption with
charge sustenance. Obviously, using electricity from the battery directly, conventional
electric heaters are not able to provide an economic solution. To reduce energy
consumption, a heat pump (HP), owing to higher coefficient-of-performance (COP),
has proved to be a promising alternative [38–40]. Traditionally, an HP only extracts
heat from the outside air to heat the cabin. As is made evident by Figure 1.5, the
amount of waste heat from EM (including inverter) and TR is significant as well.
Recuperating a certain percentage of that power, which would otherwise be wasted
ambiently, rather than using additional power from the battery, is a promising way
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to promote energy efficiency. Recuperating waste heat from EM and TR is termed
electric path waste heat recovery (EPWHR). It has been shown that, the heating
capacity and COP increase by around 31.5% and 9.3% [41], respectively, by employing
an EPWHR system. HPs are mostly used in EVs [41, 42].

An HEV, especially a PHEV, can be identified as a mixture of an ICEV and an EV,
which benefits from the technological advancements on both sides. Yet, a combination
of selected technologies—an EGWHR system and an EPWHR system—have hardly
been investigated in the (P)HEV context. Thus, the second research question of this
thesis with respect to integrated energy and thermal management of HEVs (R2) is
formulated as follows:

• R2: What is the fuel efficiency improvement of using a DSWHR system com-
prising an EGWHR sub-system and an EPWHR sub-system in a CVT-based
PHEV with cabin heating and cold-start conditions?

Figure 1.6 shows a schematic representation of the considered CVT-based parallel
PHEV with an EGWHR sub-system and an EPWHR sub-system. There are three
main types of HEVs, namely series, parallel, and series-parallel hybrids. Compared to a
series hybrid, a parallel hybrid eliminates the need for conversion of engine mechanical
power to electrical power. A parallel hybrid is also simpler than a series-parallel
hybrid. The considered PHEV has five different driving modes: engine (ICE), charging
(CH), electric vehicle (EV), motor assist (MA), and brake energy recuperation (BER).
The ICE mode represents when only the engine is used to propel the vehicle. The
CH mode indicates that the engine not only drives the wheels, but also charges the
battery. The EV mode means that the EM is the only power source and the engine is
off. The MA mode reflects when the EM is utilized to assist the engine to meet the
driving demand. The BER mode is a mode where the braking energy is recuperated
and stored into the battery. It is important to determine the driving mode to reduce
the fuel consumption, by controlling the torque split between the ICE and EM. A
cold-start is considered, which represents the thermodynamics heating of the engine, as
indicated by the dashed block. The EGWHR sub-system represented by HX1 recovers
waste heat from exhaust gases, which is converted into electricity and stored in the
battery as the energy storage system of the PHEV. It is advantageous to store that
energy in the energy buffer from a control point of view. The EPWHR sub-system
represented by HX2 recuperates waste heat from the EM (including inverter) and a
CVT, to boost the heating performance of an HP for cabin heating. The underlying
fuel consumption (JI) minimization problem for a known drive cycle starting at t0
and ending at tf is mathematically formulated by

JI(xI(t),uI(t), t) =
∫ tf

t0
PI(xI(t),uI(t), t) dt, (1.1)

s.t. ẋI(t) = f(xI(t),uI(t), t), (1.1a)
hI(xI(t),uI(t), t) = 0, (1.1b)
gI(xI(t),uI(t), t) ≤ 0, (1.1c)
xI(tf) = xI(t0), (1.1d)
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where I represents the first case study regarding integrated energy and thermal
management. PI denotes the fuel power. The state vector xI denotes the dynamics of
the system (1.1a), for instance, the state-of-charge (SOC) of the battery that changes
over time and the engine temperature. Equation (1.1d) constrains the dynamic states,
such as charge-sustaining. This means the SOC of the battery at the beginning of a
driving mission is equal to the SOC at the end of the trip. It is feasible, as there are
multiple power sources in an HEV and the engine can be used to charge the battery.
The battery is utilized as an energy buffer, and the energy is ultimately from the fuel
tank. Charge-sustaining is a common way to evaluate the performance of the control
strategy. uI denotes the control inputs, e.g., the torque split between the ICE and
EM. The remaining equality constraint hI(·) denotes the power balance of the vehicle
(1.1b). gI(·) denotes the inequality constraints (1.1c), such as the torque limits of the
EM,

τm,0(t) ∈ [τm,0(ωm(t)), τm,0(ωm(t))], (1.2)

where ωm is the EM speed.

Mechanical

Electrical

Thermal

Chemical

CVT WHEMICE

BA

DC-AC

CAB

HX1

HX2

FT

Figure 1.6: Schematic representation of the considered CVT-based plug-in hybrid electric
vehicle with a dual-source waste heat recovery system (Chapter 3), where CAB represents
the cabin, DC-AC the DC to AC (alternating current) inverter, FT the fuel tank, WH the
wheel, HX1 the exhaust gas waste heat recovery sub-system, and HX2 the electric path
waste heat recovery sub-system.

1.4 Integrated design and control

Section 1.3 focuses on the controller layer for a fixed powertrain. However, in addition
to integrated energy and thermal management, an optimal active dynamical system
demands combined design (e.g., powertrain topology and component size) and control
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optimization, taking into account the coupling between the physical system and the
control strategy [11, 43]. For a given vehicle configuration, the component size, e.g., the
EM size in power, affects the control decision, and vice versa. Moreover, the component
size influences the system cost. The combined design and control optimization aims to
optimize the TCO. This is especially the case for EVs. In order to increase the market
penetration of EVs, it is important to reduce both energy consumption and system
cost [44, 45].

Currently, the emerging EV market is mainly dominated by the single-speed trans-
mission (SST) due to its system simplicity. Despite its simplicity, an SST poses
conflicting requirements for an EM. At low speeds, the EM has to offer a good drive-
off performance, resulting in large dimensions and magnetic forces, which have a
negative impact on their ability, at high speeds, to achieve the vehicle top speed.
This leads to a relatively large and heavy design, which influences power density,
energy consumption, driving range, and cost [45]. To address this issue, studies on
multi-speed transmissions, such as two-speed transmissions and CVTs, are emerging,
focusing on energy efficiency, system cost, and performance [45–51]. Porsche Taycan
features a two-speed transmission [50]. Automotive supplier ZF presents a two-speed
transmission for EVs, which promises increasing either the driving range by up to 5%
or the vehicle top speed, compared to its single-speed counterpart [51]. Compared
with an EV equipped with an SST, a CVT can improve the EM cycle efficiency by
more than 3% [52]. Figure 1.7 shows the historical and future trends of the maximum
number of speeds for ICEVs and EVs. It can be observed that, for EVs, the number
of speeds is expected to increase, by analogy with ICEVs. A CVT can be used to
solve the problem as mentioned above, due to ratio variation between the underdrive
(UD) and overdrive (OD) ratio, as shown in Figure 1.8. At low vehicle speeds, the
UD ratio can be used to increase the torque, and at high vehicle speeds, the OD ratio
can be utilized to reduce the EM speed [53]. A CVT can reduce the nominal torque,
maximum speed, and active materials of the EM, and because of a large speed range,
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successful suppression of the so-called rubber band feeling and the 
introduction of new shift algorithms [3]. 

 

 

 

 

 

 

 

Figure 2. Relative fuel economy US market (OEM data 2018). 

Although OEMs offer multiple variants on the market today, the 
penetration of hybrid and electric vehicles in absolute numbers has 
been relatively modest. After 2020 this is expected to change. 

Figure 3 displays the expected worldwide shares of drivelines for 
passenger cars from 2020 to 2030. A strong growth of 48V systems is 
foreseen towards 2030. By that time, the EV is expected to have 
made its breakthrough. Strong and plug-in hybrids will retain a 
modest but stable market share. By 2030, roughly every second 
vehicle is expected to be electrified in some way. 

 

 

 

 

 

 

Figure 3. Expected global electrification share of personal cars (PC). 

With the prospects of the Battery Electric Vehicle (BEV) becoming 
the most relevant EV driveline option in the next years, the question 
arises which transmission would be optimal for this type of driveline. 
In the next sections a CVT based driveline is configured for a carrier 
electric vehicle. The new design is compared with three alternative 
driveline designs on several levels. 

A CVT based driveline for electric vehicles 

Background 

In electric vehicles on the market today the driveline based on the 
single speed transmission is dominant. Multi speed transmission 
designs are however under discussion. From a technical point of view 
there is a broad consensus on their benefit in the launch and top speed 
range of the vehicle. 

Optimization of energy consumption, performance and cost is likely 
to initiate their introduction to provide downsizing opportunities for 
the electric machine, power electronics and battery. For electric 
passenger cars the estimate of the future number of speeds ranges 
from one to four [4]. Multi speed transmissions currently are 
proposed by a number of suppliers and investigated by several 
research institutes and universities [5][6][7][8]. 

A historical analogy can be found with the number of speeds for the 
conventional passenger car driveline. Figure 4 shows the start of 
development (SOD) and production (SOP) for the consecutive gear 
numbers for the conventional driveline. 
A single speed transmission was already used in the first produced 
electric vehicle in 1884. Also first modern highway capable EVs 
were and are equipped with a single speed transmission. 

 

 

 

 

 

 

Figure 4. Historical and future trend of the maximum number of speeds for 
ICE and EV based passenger car drivelines. Future expectation is based on 
several expert viewpoints, some are included in the reference list ([4] – [8]). 

The development of multi speed transmissions started some years 
ago. A first market application is the electric rear axle of the BMW 
i8, a plug-in hybrid. During this and next year, introductions are 
expected in several vehicle classes with China as a main market. 

The question whether a CVT can offer a benefit for electric vehicles 
is a trade-off question between several KPIs of the transmission and 
driveline such as energy consumption, performance, cost, NVH and 
comfort. The development strategy of the electric machine affects the 
benefit of a CVT in the electric driveline. The system integration of 
these components is therefore key to the development of the variable 
ratio electric driveline. 

Carrier vehicle 

The driveline study in this paper is based on a compact class electric 
vehicle with a range of 400 [km]. The main vehicle parameters are 
included in table 1. The performance requirements of the vehicle are 
given in table 2. 

Table 1. Overview of main vehicle parameters. 

Vehicle parameters Unit Value 
Mass WLTC [kg] 1415 

Payload [kg] 400 

Trailer mass [kg] 2715 

Aerodynamic Coefficient (Cw) [-] 0.24 

Frontal Area (A) [m²] 2.13 

Dynamic wheel radius [m] 0.3065 
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Figure 1.7: Historical and future trends of the maximum number of speeds for ICEVs and
EVs, where SOD represents start-of-development and SOP start-of-production [45].
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the EM can reduce the required ratio coverage of the CVT, leading to a compact
design [52, 54]. A CVT can thus partly compensate the additional actuation losses.

Bosch Transmission Technology | 20-03-2019
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Transmission selection: CVT
Electric powertrain requirements

1

 With CVT with ratio coverage of 4, the 
motor speed can be reduced 
significantly in OD ratio, while increasing 
the traction force in LOW.
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Figure 1.8: The continuously variable transmission technology for an electric vehicle, where
UD represents the underdrive ratio of the CVT and OD the overdrive ratio [53].

To date, design of EVs (including CVT-based) is largely based on off-the-shelf com-
ponents due to cost, and powertrain components are typically not optimized [44].
The component size, e.g., the EM size in kW and battery size in kWh, is associated
with the component cost. Finding optimal component sizes would contribute to cost
reduction. Moreover, EV energy consumption is largely influenced by the driveline
efficiency. In this respect, the integration of the EM and the CVT, plays a key role [45].
The CVT could provide opportunities of optimizing the EM, thanks to the continuous
ratio adjustment functionality, and the wider power availability of the EM, in turn,
could offer opportunities of optimizing the CVT. In literature, however, the EM and
the CVT are often treated independently and standard CVT controllers developed
for conventional ICEVs are used, where the speed ratio of the CVT is controlled to
reduce the EM power losses. The influence of the EM size, CVT size, and the CVT
efficiency are not always considered simultaneously [44]. In order to maximize system
(combined EM and CVT) efficiency and minimize system cost, the coupling between
the EM and the CVT from design and control perspectives has yet to be investigated.
In order to address these issues, design and control frameworks are required.

This type of design problem can be tackled by different approaches. For instance,
the optimal component sizes can be found iteratively, by using RB control [55, 56].
However, these methods do not guarantee a globally optimal solution. To overcome
this limitation, DP, as an OB strategy, can be used to find the optimal control inputs
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[57]. DP can also be utilized in combination with an evolutionary algorithm to
find component sizes [24]. However, the computation time increases rapidly with
complexity and the number of state variables, which may not be tractable [10, 58].
An alternative is to use convex programming (CP), which finds optimal component
sizes and control trajectories simultaneously without the need of checking optimality,
and it is computationally efficient [59]. It enables optimization of problems with
many dynamic states (e.g., thermal states), extensive parameter variation studies,
and evaluation of diverse design aspects. CP requires the problem and models to
be convex. Additionally, employing a CVT for an EV is a novel concept. Applying
advanced optimization methods to optimize CVT-based EVs and providing design
considerations for EVs including the thermal domain have hardly been found. Hence,
the third set of research questions of this thesis regarding integrated design and control
of CVT-based EVs (R3a and R3b) is the following:

• R3a: What are the interconnections between the CVT and EM in an EV including
the thermal domain; and,

• R3b: How can they be efficiently and optimally designed and controlled in order
to minimize the TCO?

Identifying the interconnections between the CVT and EM can provide insights into the
design of a CVT controller that controls the CVT speed ratio to reduce the powertrain
losses. They can also provide insights into determining the CVT, EM and battery
sizes to reduce the system cost. Figure 1.9 illustrates a schematic representation of
the considered CVT-based EV. The CVT speed ratio over time (control) influences
the EM and CVT operation and their sizes (design). The EM size has an effect on the
CVT speed ratio and its size (e.g., ratio coverage). The EM size also influences the
battery size. The CVT size affects its speed ratio and the EM size. There is a trade-off
between the EM size, EM operation, CVT size, and CVT operation. Component sizes
are associated with component costs. Moreover, a TMS is designed to remove heat
(power losses) generated by the EM and CVT, maintain their temperatures below
prescribed thermal limits, and reduce cooling power consumption. Finding the desired
air-flow rate (control) of the cooling system is essential. Therefore, it is important
to find the optimal design and control variables to reduce the TCO. The underlying
design and control optimization problem to minimize the TCO (JII) for a given drive
cycle starting at t0 and ending at tf is mathematically formulated by

JII(sII ,xII(t),uII(t), t) =
∫ tf

t0
(ρe PII(sII ,xII(t),uII(t), t)) dt+ CII(sII),

(1.3)
s.t. ẋII(t) = f(sII ,xII(t),uII(t), t), (1.3a)

hII(sII ,xII(t),uII(t), t) = 0, (1.3b)
gII(sII ,xII(t),uII(t), t) ≤ 0, (1.3c)
sII ∈ [sII , sII ], (1.3d)

where II represents the second case study regarding integrated design and control.
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sII denotes the design variables, e.g., the EM size, ρe the price of electricity, PII the
battery power, and CII the powertrain cost, e.g., the EM price Cm, which depends on
the EM size represented by a scaling factor sτ , i.e.,

Cm = sτ Cm,0, (1.4)

where Cm,0 is the initial EM cost. As an example, referring to (1.2), the component
size influences the control strategy as follows:

τm(t) ∈ sτ [τm,0(ωm(t)), τm,0(ωm(t))]. (1.5)

CVTEM

Mechanical

Electrical

Thermal

Hydraulic

VA FD WHEMDC-AC

BA DC-DC ELOP

TMS

Figure 1.9: Schematic representation of the considered CVT-based electric vehicle (Chapter
4), where ELOP represents the electric oil pump, FD the final drive, and VA the variator.
The EM and DC-AC inverter are combined together. The VA and FD are combined together.

1.5 Research objectives and contributions

In order to answer the first set of research questions of the thesis with respect to the
integrated design approach for electrified powertrains (R1a and R1b), the following
objectives are defined:

• O1: Introduce the general problem of design (topology and component size)
and control optimization of electrified powertrains taking into account both the
energy and thermal domains.

• O2: Identify the challenges and opportunities in obtaining an optimal electrified
vehicle design with respect to TCO.

The following objectives are defined to find a solution to the second research question
of the thesis regarding integrated energy and thermal management of HEVs (R2):
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• O3: Quantify the benefit of adopting a DSWHR system on the ultimate fuel
savings of a CVT-based PHEV with cabin heating, which is subject to a cold-
start.

• O4: Analyze the effects of engine temperature, driving conditions, and DSWHR
efficiency on the fuel consumption of the CVT-based PHEV.

To tackle the third set of research questions of the thesis with respect to integrated
design and control of CVT-based EVs (R3a and R3b) leads to the following objectives:

• O5: Develop a computationally efficient and optimal design and control opti-
mization strategy for a CVT-based EV to minimize its TCO.

• O6: Analyse the optimized CVT-based EV and provide design considerations
for EVs including the thermal domain.

In order to realize these objectives, this study originally investigates design and control
optimization methods for electrified powertrains taking into account both energy
and thermal domains to reduce the energy consumption and TCO, resulting in the
following contributions (C1 - C5).

• C1: The general problem of combined topology, size and control optimization of
electrified powertrains is introduced from both energy and thermal perspectives
and how they can be connected mathematically is revealed. Current energy
and thermal management systems are also surveyed and classified in terms of
optimality and causality. Potential research directions of design and control of
electrified vehicles are identified to further reduce the energy consumption and
system cost, considering both the energy and thermal domains (Chapter 2).

• C2: In order to investigate the effect of a WHR system on a CVT-based PHEV
with a cold-start, a set of nonlinear and non-convex models is built, including
energy dynamics and thermodynamics based on measurements. An integrated
energy and thermal management system (IETMS) is proposed to identify the
gain of employing a DSWHR system on the ultimate fuel savings of the CVT-
based PHEV, by using DP. The DSWHR system is constituted of an EGWHR
sub-system and an EPWHR sub-system (Chapter 3).

• C3: For the CVT-based PHEV with cabin heating and cold-start conditions,
insights into reducing the impact of a cold-start, design of a DSWHR system,
and dimensioning of powertrain components are provided (Chapter 3).

• C4: For an SST-based EV1, an experimentally2 validated driveline model in-
cluding energy dynamics and thermodynamics is created to replicate the vehicle
behavior. A CVT-based EV model is then developed on the basis of the SST-

1The SST-based EV model is with reference to a series production vehicle.
2Measurement data are obtained from a real-world drive cycle within Netherlands.
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based EV model3. Based on measurements, a set of convex models of the
CVT-based EV including component cost models is subsequently developed,
especially the coupling between the EM and the CVT from design and control
perspectives (Chapter 4).

• C5: On the basis of the developed convex models, a combined optimal design
and control (co-design) optimization method based on convex programming
(CP) is originally proposed to find the optimal CVT speed ratio and air-flow
rate of the cooling system reducing the TCO. It also simultaneously identifies
the optimal component sizes of the battery (kWh), EM (kW) and CVT (ratio
coverage). The optimized CVT-based EV is then analyzed to provide design
considerations for EVs including the thermal domain (Chapter 4).

1.6 Outline of the thesis

This thesis consists of an introductory chapter (Chapter 1), three research chapters
(i.e., Chapters 2-4), and a final chapter (Chapter 5) that summarizes research findings
and presents future work, as shown in Figure 1.10.

Chapter 1

Chapter 2

[60, 61]

Chapter 3 (xI)

[29, 62]

Chapter 4 (xII)

[63, 64]

Chapter 5

JI

uI sII, uII

Modeling methodology

Motivation

JII

Solutions

Figure 1.10: Outline of the thesis.

3Only the SST is replaced by the CVT (based on off-the-shelf component, which is not optimized)
and other components remain the same. The CVT model is developed based on experiment data
from a test rig.
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Motivated by the above discussion, a review of the integrated design and control of
electrified powertrains considering both energy and thermal domains is presented
in Chapter 2. The content of Chapter 2 is based on [60, 61]. Specifically, from
energy perspective, the problem definition of combined topology, size and control
optimization of electrified vehicles is given mathematically, which is then introduced
to the thermal domain. The connections between the optimization layers, coordination
methods, energy domain, and the thermal domain are provided. Afterwards, energy
and thermal management systems, which only started to appear recently, are surveyed
and classified into separate energy and thermal management systems (SETMSs) and
combined energy and thermal management systems (CETMSs). The importance
of integration is highlighted. In order to reduce TCO further, potential research
directions in this field are identified.

Based on the opportunities found in Chapter 2, as electrified powertrains comprise
(P)HEVs and EVs, two case studies are conducted so as to demonstrate the effectiveness
of integrated design approach, which are given as follows:

• Integrated energy and thermal management: From optimal control perspective
(JI in (1.1)), an IETMS is presented to quantify the benefit of using a DSWHR
system in a CVT-based PHEV (Figure 1.6) with cold-start conditions (Chapter
3).

• Integrated design and control: From optimal design and control perspective (JII
in (1.3)), a simultaneous powertrain (e.g., component size) and control design
optimization method is proposed to optimize a CVT-based EV (Figure 1.9),
which is extended by integrated energy and thermal management (Chapter 4).

The content of Chapter 3 is based on [29, 62]. Specifically, in Chapter 3, for a CVT-
based PHEV with cabin heating, a set of nonlinear and non-convex models including
the coupling between energy dynamics and thermodynamics (xI) is firstly developed to
investigate cold-start and WHR. Based on the models created, an IETMS is designed
to identify the influence of cold-start conditions on the fuel-saving potential and the
gain of utilizing the DSWHR system. The optimal control input (uI) to minimize the
fuel consumption is obtained by using DP. The effects of parameter variation on the
fuel consumption are also explored. Insights into reducing the impact of cold-start
conditions, design of WHR technologies, and dimensioning of powertrain components
are provided as well.

The content of Chapter 4 is based on [63, 64]. Specifically, in Chapter 4, an SST-based
EV model comprising energy dynamics and thermodynamics (xII) is firstly created
(Appendix C), which follows the same modeling methodology as Chapter 3. This
model is validated against measurement data obtained from a series production vehicle.
A CVT-based EV model is then developed based on the SST-based EV model, where
only the SST is replaced by a CVT (based on off-the-shelf component), which is
presented in Appendix D. The CVT-based EV model is subsequently convexified,
where the coupling between the CVT and the EM from design and control perspectives
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is given in detail. Convex cost models are also developed. On the basis of these convex
models, a co-design optimization method based on CP is developed. It simultaneously
finds the optimal design and control variables (sII ,uII) to minimize the TCO. The
optimized CVT-based EV with co-design is also analyzed in detail to provide design
considerations for EVs including the thermal domain.

The research findings are summarized in Chapter 5, which also gives recommendations
for future research.
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Chapter 2

A review of the integrated design
and control of electrified vehicles

This chapter1 gives an overview of design and control optimization of electrified vehicles
including energy and thermal domains. An introduction to the topic is given in Section
2.1. Section 2.2 analyzes the optimization layers and coordination schemes from energy
perspective, which are investigated from thermal viewpoint in Section 2.3. Recent
combined energy and thermal management systems (CETMSs) proposed in literature
are discussed in detail in Section 2.4. Section 2.5 presents opportunities found for
future developments. Finally, conclusions are drawn in Section 2.6.

2.1 Introduction

Powertrain electrification plays a crucial role in reducing the unsustainable consumption
of natural resources to tackle energy and environmental issues. To fulfill the potential
of an electrified vehicle, it is important to develop an energy management system
(EMS). The main goal of the EMS is to maximize powertrain efficiency, by optimizing
the power flow, such as the power split between the internal combustion engine
(ICE) and the battery in a parallel hybrid electric vehicle (HEV). While electrified
powertrains bring opportunities of improving energy efficiency, due to added heat
source components and distinct driving modes, they introduce complexities to the
associated thermal management systems (TMSs) [65–67]. A TMS is essential to
maintain powertrain components at predefined temperatures to guarantee efficiency,

1The content of this chapter is based on the following publications:
Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Evolution and Classification of Energy and
Thermal Management Systems in Electrified Powertrains. In Proceedings of the 2019 IEEE Vehicle
Power and Propulsion Conference, Hanoi, Vietnam, 14-17 October 2019.
Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. A Review of the Integrated Design and Control
of Electrified Vehicles. Energies 2020, 13, 5454.
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comfort, safe operation, and reliability. Earlier works have shown that a TMS has a
significant impact on the energy consumption of an electrified vehicle, e.g., heating,
ventilation, and air conditioning (HVAC) [68, 69]. The EMS and the TMS of an
electrified powertrain were often treated independently in previous studies, as shown
in Figure 2.1. In this scheme, the TMS requests a certain amount of power from the
EMS, but whether the control decision of the TMS is energy beneficial is not verified
by the EMS. It may not yield the optimal solution [66]. Therefore, it is imperative to
integrate these two systems.

Energy management system

Engine (ICE) Battery/EM

DriverVehicle status

Thermal management system

Figure 2.1: Separate energy and thermal management.

The EMS and the TMS are referred as control algorithms, which are often developed for
fixed configurations and parameters [70, 71]. However, concurrent design and control
optimization is required to arrive at an optimal system, considering the coupling
between the physical system and the control algorithm [11, 43]. In principle, there are
three optimization layers for designing an electrified vehicle, including topology, size
and control optimization [9, 10], as illustrated in Figure 1.4. Hence, these optimization
layers should apply to both energy and thermal domains. In this respect, the thermal
domain was usually not considered in previous research, which may not arrive at an
optimal solution [72]. For instance, different powertrain configurations would require
distinct thermal management topologies.

As far as the coupling between the plant (topology and size) and the controller
is concerned, there are generally four coordination schemes, including sequential,
iterative, nested, and simultaneous [11, 43], as demonstrated in Figure 2.2. Sequential
indicates that the dependency between the plant and the controller is not taken
into consideration, and the controller is developed for a fixed plant, where only the
operational cost (e.g., fuel consumption) is considered. Iterative means that the plant
that determines the component cost (e.g., battery price) is first designed, and the
controller that determines the operational cost is built based on the given plant. The
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Plant design

(energy and thermal)

Controller design

(energy and thermal)

Sequential Iterative SimultaneousNested

Controller design

(energy and thermal)

Plant design

(energy and thermal)

Controller design

(energy and thermal)

Plant design

(energy and thermal)

Controller design

(energy and thermal)

Plant and controller design

(energy and thermal)

Figure 2.2: Coordination schemes between the plant and the controller.

loop repeats until the coupled variables converge. Nested implies that the controller
is optimized for each evaluation of the plant. Simultaneous represents that the plant
and the controller are optimized simultaneously. Based on the current literature [12,
17, 20–26], a systematic way to analyze and to link those optimization layers for
electrified powertrains has yet to be established, in consideration of both energy and
thermal aspects. For example, from energy perspective, an iterative coordination
scheme to solve a combined topology and size optimization problem is proposed for
double planetary gear hybrid powertrains in [20], but the thermal domain is not taken
into consideration. The thermal response and power consumption of the cooling system
and its sizing of a series HEV are investigated in [21] with a sequential approach;
however, the energy aspect has yet to be considered.

Energy-efficient and cost-effective electrified powertrains, however, demand a holistic
and integrated approach to synthesize design and control aspects in consideration of
both energy and thermal domains. Motivated by the above discussion, this study origi-
nally provides a comprehensive overview of those optimization layers and coordination
methods for electrified vehicles considering both energy and thermal aspects.

2.2 Energy-aware design and control optimization

If a system is optimized from energy point of view, e.g., identifying an optimal
powertrain configuration with optimized component sizes and power flow, neglecting
the thermal domain, it is termed energy-aware design and control optimization.

As illustrated in Figure 1.4, normally, a design process starts with choosing an
architecture to focus on. A configuration that defines the connections between
components influences efficiency, cost, comfort, performance, complexity, and durability.
The best topology can be identified with the lowest total-cost-of-ownership (TCO),
consisting of operational cost, e.g., the battery energy consumption, and component
cost, such as the engine price, subject to various constraints, for example, performance
requirements. The operational cost is related to the control algorithm, for instance,
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how the battery is used, and the component cost is associated with the component size,
e.g., the electric machine size in kW. Topology optimization is therefore often coupled
with the control and size layers [22]. Additionally, for a given vehicle architecture,
there is a strong dependency between the size and control layers [12]. For example,
the battery would be used differently depending on the battery size of an electrified
powertrain.

2.2.1 Topology generation

Common electrified powertrain architectures are depicted in Figure 2.3, including
series, parallel, and series-parallel hybrids. Eliminating the engine path, an electric
vehicle (EV) configuration is built. Descriptions of the driving modes are defined in
Section 1.3. Each topology has its advantages and disadvantages [73–75]. Selecting
a suitable architecture is essential, as it influences efficiency and cost. Topology
generation, essentially a feasibility search problem, can be formulated as follows [76]:

Find T f
e ⊆ T p

e , (2.1)
s.t. ge(T f

e) ≤ 0, (2.1a)

where subscript e represents the energy domain, T f
e the feasible architectures, and T p

e
the possible configurations. It should be noted that if a minimal cost is considered,
(2.1) becomes an optimization problem.

In reality, an HEV configuration is typically chosen based on expert knowledge, taking
into account, for example, application, component availability, and market trend.
The chosen configuration is likely not optimal. As reported in [77], for power-split
hybrids with one planetary gear, a thorough analysis of all possible architectures
shows that small design changes can bring significant cost and energy benefits, where
Toyota Prius and Chevy Volt are modified into Prius+ and V olt−. It should be
noted that in this study, the design space is still small, i.e., there are only 12 possible
configurations for power-split hybrid powertrains with a single planetary gear, which
make enumeration of topologies possible. When the design space is large, however, it
is intractable, as exploring feasible architectures is combinatorial in nature. Therefore,
a systematic and efficient way is required to evaluate all possible topologies. In
this context, automatic topology generation that aims to find feasible architectures
is emerging [22, 76, 78–82]. For power-split hybrids with multiple planetary gears,
clutches and brakes, automated modeling techniques are developed, which capture
the fundamental dynamics of the vehicle based on physics to represent modes and
configurations [22, 79–82] . Subsequently, various constraints, such as kinematics,
complexity and redundancy constraints, are utilized to eliminate infeasible topologies.
In [78], a bond graph is used to represent an architecture and constraints are employed
to arrive at feasible configurations. But these studies are limited to power-split hybrids
with multiple planetary gears. For a predefined set of 16 components, feasible series,
parallel, and series-parallel hybrid topologies are found in [76], by using constraint
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logic programming, which automatically generates all possible HEV architectures
efficiently and in a structured way. Specially, each component is a node of an undirected
connected finite graph that represents an architecture. Afterwards, functionality and
cost constraints are applied, essentially a screening process, to filter out infeasible
configurations. Functionality constraints mean that, for instance, to realize hybrid
functions, certain connections between components are required. Cost constraints
indicate that component redundancy is restricted. Finally, the initial search space of
5.7 · 1045 possible topologies is reduced to 4779 feasible topologies in less than 5 min.
However, the generated feasible configurations have yet to be assessed based on TCO
and vehicle performance, by integrating with control and size layers.

Mechanical

Electrical

ICE

CH

EV/MA

BER

EM

T
R WH

DC-ACBA

ICE
Parallel

GEN Series

Figure 2.3: Common electrified powertrain architectures, where BA represents the battery,
DC-AC the DC (direct current) to AC (alternating current) inverter, GEN the generator, TR
the transmission, WH the wheel, ICE the engine only mode, CH the charging mode, EV the
electric vehicle mode, MA the motor assist mode, and BER the brake energy recuperation
mode. The series and parallel HEVs are indicated with "series" and "parallel". The main
powertrain components are shown as blocks connected via bi-directional mechanical (solid)
and electrical (dashed) energy flows.

2.2.2 Control optimization

In this respect, earlier works mainly focused on the control layer for a given architecture
T f

e generated by (2.1) and fixed powertrain parameters represented by se. The main
objective of the controller (EMS) is to determine the power flow of the electrified
powertrain in an optimal manner so that the energy efficiency is maximized, such
as the torque split between the engine and the EM in a parallel HEV. For a known
drive cycle starting at t0 and ending at tf , the EMS aims to find the optimal control
variables to minimize a cost function Je, for example, fuel consumption of an HEV or
electricity of an EV, given by
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min Je(xe(t),ue(t), t | (T f
e, se)) =

∫ tf

t0
Pe(xe(t),ue(t), t) dt, (2.2)

s.t. ẋe(t) = f(xe(t),ue(t), t), (2.2a)
he(xe(t),ue(t), t) = 0, (2.2b)
ge(xe(t),ue(t), t) ≤ 0, (2.2c)
xe(tf) = xe(t0), (2.2d)

where xe denotes the energy dynamics of the system, for instance, the state-of-charge
of the battery, which is defined as the available capacity (in Ah) relative to its rated
capacity. ue denotes the control inputs, e.g., the power sharing between the engine
and the battery. For a given control input at each time instance, the battery power,
current and efficiency can be obtained. With the rated capacity of the battery, the
state-of-charge can thus be calculated. he(·) denotes the equality constraints, for
example, the power balance of the vehicle, and ge(·) the inequality constraints, such
as the torque limits of the electric machine,

τm,0(t) ∈ [τm,0(wm(t)), τm,0(wm(t))]. (2.3)

Equation (2.2d) constrains the dynamic states, such as charge-sustaining for HEVs,
which would be different for plug-in HEVs (PHEVs) and EVs. Charge-sustaining
implies that the initial and final values of the state-of-charge of the battery are the
same. The initial value of the state-of-charge is typically known. Therefore, the
optimization problem (2.2) has a fixed final state. In this case, the final time is also
fixed, as the drive cycle is known a priori.

This problem can be solved by two main categories of methods: Rule-based and
optimization-based (OB), as illustrated in Figure 2.4. Rule-based approaches use a set
of rules, e.g., if-then conditions, derived from engineering intuition, to make decisions,
e.g., let power sources operate at their efficient regions [83–85]. These strategies are
easy to implement and computationally efficient. However, the rules are configuration-
dependent. In addition, they require tuning of many parameters and cannot obtain
the optimal solution [86, 87]. These drawbacks necessitate the development of optimal
controllers. Optimization-based methods can be categorized into offline [13, 18, 59, 88,
89] and online [27, 90, 91] algorithms. For example, dynamic programming is widely
adopted for handling non-linear constraints and finding a global optimal solution
[13]. But it is not implementable. This disadvantage motivates the development of
online controllers, such as equivalent consumption minimization strategy (ECMS). It
translates the battery electricity into its equivalent fuel cost using an equivalence factor,
which can be used in real-time control [27]. However, it may lose optimality, since
ECMS is derived using Pontryagin’s minimum principle conditions. More analyses of
EMSs can be found in [92, 93].

It should be noted that all these energy management strategies are developed for
given design parameters. For a fixed vehicle configuration, however, the powertrain
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component size, e.g., the battery size, affects the control decision, e.g., the torque split
between the engine and the electric machine, and vice versa. Previous studies have
reported that energy efficiency can be improved remarkably by integrating the control
and size layers [15, 57, 59, 94]. Moreover, the component size influences the system
cost and performance. To obtain better designs, the size layer should be included.

Energy management systems

Rule-based Optimization-based

Offline Online

DP [13]

PMP [88]

CP [59]

SDP [90]

ECMS [27]

MPC [91]

DP-PMP [96]

DP-CP [97]

TC [83]

PF [84]

FL [85]

RB-DP [16]

RB-ECMS [95]

DO [18]

MDSDO [89]

Figure 2.4: Energy management systems [95–97], where TC represents thermostat control,
PF power follower, FL fuzzy logic, DO distributed optimization, MDSDO multidisciplinary
dynamic system design optimization, and MPC model predictive control.

2.2.3 Combined size and control optimization

Generally, there are two ways to size the components, i.e., rule-based and optimization-
based strategies. Rule-based approaches based on experience and simple calcula-
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tions often fail in view of optimality and large numbers of plant variables [98–101].
Optimization-based algorithms in this regard can be classified into derivative-free and
gradient-based methods, as demonstrated in Figure 2.5. Derivative-free strategies [24,
102–104] can generally deal with nonlinear cost functions and constraints, but require
more function evaluations and parameter tuning, compared to gradient-based ones
[59, 89, 105].

For generality, assuming a PHEV context, the main goal of a combined size and
control method is to find the optimal set-point of the power source to increase the
energy efficiency and the optimal component sizes to reduce the powertrain cost, by
minimizing

min Je(se,xe(t),us
e(t), t | T f

e)

=
∫ tf

t0
[ρf Pf(se,xe(t),us

e(t), t) + ρe Pb(se,xe(t),us
e(t), t)] dt+ Ce(se), (2.4)

s.t. ẋe(t) = f(se,xe(t),us
e(t), t), (2.4a)

he(se,xe(t),us
e(t), t) = 0, (2.4b)

ge(se,xe(t),us
e(t), t) ≤ 0, (2.4c)

se ∈ [se, se], (2.4d)
xe(tf) = xe(t0), (2.4e)

where se represents the design parameters, e.g., the electric machine size, ρf the price
of gasoline, Pf the fuel power, ρe the price of electricity, Pb the battery power, and
Ce the powertrain cost, e.g., the battery price Cb, which depends on the battery size
represented by a scaling factor sb [106], i.e.,

Cb = Cb,0 + sb C1, (2.5)

where Cb,0 is the initial battery cost and C1 the linear cost coefficient. As an example,
referring to (2.3), the component size influences the control strategy in the sense that

τm(t) ∈ sm [τm,0(wm(t)), τm,0(wm(t))], (2.6)

where sm is the scaling factor for the electric machine. Therefore, the control input
ue in (2.2) is changed to us

e in (2.4) due to the influence of design parameters se
introduced, which is reflected by the superscript s.

Theoretically, the combination of the size layer from Figure 2.5 and the control layer
from Figure 2.4 yield different solution methods to (2.4), which are connected with the
four coordination schemes as shown in Figure 2.2, sequential [14, 107], iterative [106],
nested [24, 102–105], and simultaneous [59, 89]. For given component sizes, a real-time
power split control strategy based on ECMS for an HEV is developed in [14], which
uses a sequential approach. Obviously, the coupling between the component sizes and
the controller is ignored in this case, which finds a sub-optimal solution. To consider
this dependency, for a parallel PHEV, the energy management problem is solved by
using dynamic programming and the battery, engine and electric machine sizes are
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optimized by utilizing convex programming with an iterative scheme, which is one
step forward from the sequential method, resulting in a near-optimal solution [106].
In order to obtain an optimal solution, a nested approach is used in [24] for a parallel
HEV, where particle swarm optimization is employed in the outer loop to optimize
the component sizes and the optimal control input for each candidate is selected by
adopting dynamic programming to minimize the fuel consumption. Furthermore, the
authors report that compared to a rule-based strategy, particle swarm optimization
using optimal control improves energy efficiency by around 11% and reduces cost by
around 14% [24]. However, the computation time is high. To overcome this limitation,
simultaneous optimization of torque split, charging, and component sizes is solved via
convex programming [59], which achieves the optimal solution. Yet, both the optimal
control problem and the quasi-static models are required to be convex.

Component sizing strategies

Derivative-free Gradient-based

SQP [105]

CP [59]

DIRECT [102]

SA [103]

GA [104]

PSO [24]

MDSDO [89]

Figure 2.5: Component sizing strategies, where DIRECT represents dividing rectangles,
PSO particle swarm optimization, GA genetic algorithm, SA simulated annealing, and SQP
sequential quadratic programming.

Notice that all these combined size and control methods are developed for a given
vehicle configuration. Topology layer will influence design parameters and control
variables. For example, as described in [11], the design and control variables of a
parallel HEV are very different from that of a series or a series-parallel topology. Each
configuration results in a TCO. Therefore, the generated powertrain architectures T f

e
from (2.1) should be compared based on TCO.
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2.2.4 Combined topology, size and control optimization

To fully consider the design aspect and to obtain an optimal system, topology opti-
mization should also be taken into consideration. Integrated topology, size, and control
optimization can be formulated by combing (2.1), (2.2), and (2.4). The goal is to find
the best design that has the lowest TCO, while satisfying performance requirements,
e.g.,

min Je(T f
e , s

T
e ,xe(t),uT

e (t)), (2.7)
s.t. v(T f

e , s
T
e ,xe(t),uT

e (t)) ≥ vd, (2.7a)
ta(T f

e , s
T
e ,xe(t),uT

e (t)) ≤ ta,d, (2.7b)
α(T f

e , s
T
e ,xe(t),uT

e (t)) ≥ αd. (2.7c)

Je(T f
e , s

T
e ,xe(t),uT

e (t)) represents the effect of topology on (2.4). Specifically, the
design parameters se and control vector us

e in (2.4) are updated to sT
e and uT

e in (2.7),
respectively. Performance requirements are in this example the top speed, acceleration
time, and gradability, which are enforced by (2.7a), (2.7b), and (2.7c), respectively.
Other constraints on control and size optimization are associated with (2.2) and (2.4).

Recent studies have attempted to investigate the influence of architecture layer [20, 108–
110]. Note that the four coordination schemes introduced before are also applicable here
to solve the combined optimization problem. A layered control strategy is proposed in
[108], where a supervisory controller is used to determine the powertrain configuration,
including series and parallel types, and an EMS is utilized to determine the power split.
Optimal topologies are designed for HEVs with different transmission technologies
in [109], which include precoupled, postcoupled, and switching topologies, by using
dynamic programming. A reduction of up to around 8% in CO2 emission is shown, by
finding the optimal fixed topology. For a torque-assist and a full-parallel topology, [110]
presents a method to identify the best configuration based on minimization of fuel usage
and powertrain cost by using dynamic programming and particle swarm optimization
with a nested approach. Constraints on top speed and acceleration time are taken into
account. However, all those studies only consider a small number of configurations,
which may not be optimal. For double planetary gear hybrid powertrains, [20] generates
and evaluates 3.4 · 109 possible configurations. The integrated optimization problem
is solved with two methods, namely nested optimization and iterative optimization.
The nested approach based on exhaustive search finds the optimal solution, but it is
computationally heavy. The iterative method can converge to the optimal design found
by the nested one much faster, as shown in Figure 2.6. It starts from an initial design
(T 0

e , s0
e), and topology optimization and component sizing are executed alternately.

The best design is determined based on the minimum fuel consumption. This study
shows that integrated configuration, size and control optimization can improve energy
efficiency by around 16.6%, compared to only combined size and control optimization.
However, this research does not consider the influence of topology on design and
control variables. In addition, only few powertrain parameters are optimized and
powertrain cost is not taken into account.
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Figure 2.6: Flowchart of integrated topology, size, and control optimization via an iterative
approach, where Te represents the topology and se the component size.
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It should be noted that a similar analysis of integrated optimization applies to EVs, see
[63, 78, 111, 112]. Current studies mainly focus on the energy domain. The thermal
domain is also important as it influences vehicle energy efficiency and cost, but it is
often not considered in optimization problems.

2.3 Thermal-aware design and control optimization

If a system is only optimized from thermal viewpoint for a given EMS, for example,
finding an optimal thermal management architecture with optimized thermal system
size and heating/cooling power flow, it is termed thermal-aware design and control
optimization.

A thermal management system may be defined as a system, which is capable of main-
taining specified component temperatures for efficiency and comfort with minimum
power consumption, recovering waste heat energy, and exchanging heat between com-
ponents efficiently. As far as the thermal domain is concerned, combined control, size
and configuration optimization is generally not available in the literature. Therefore,
these design layers are analyzed separately.

2.3.1 Topology generation

Typical temperature levels of electrified powertrain components, also termed heat
source components, can be seen in Figure 2.7. It can be observed that there are
relatively three temperature levels in an electrified vehicle and three cooling circuits
can thus be created. A common thermal management configuration for an electrified
powertrain is shown in Figure 2.8, including both transient and steady-state behaviors.
Here, the battery is cooled with an air conditioning (AC) system onboard [67]. The
transmission is cooled with the electric drive circuit [65]. For example, the engine is
not only a power source but also a heat source. When θe < θe, indicating the transient
behavior, the engine heats up itself and the radiator as the heat sink is bypassed.
When θe ≥ θe, representing the steady-state phase, the fluid circulated by the pump
as the fluid delivery device flows through the radiator to remove heat from the engine.
This process is controlled by the thermostat as the control device. The same analysis
can be applied to other powertrain components.

From thermal perspective, automatic topology generation is not available in the
literature. If automatic generation of thermal management architectures is considered,
similar to the energy domain in Section 2.2.1, feasible thermal management topologies
can be found by

Find T f
t ⊆ T p

t , (2.8)
s.t. gt(T f

t) ≤ 0, (2.8a)



Chapter 2. A review of the integrated design and control of electrified vehicles 31

Engine

T(◦C)

Electric machine

Battery
20

100

Transmission

Cabin

40

60

80

Inverter

120

Figure 2.7: Typical temperature levels of electrified vehicle components.

where subscript t represents the thermal domain, T p
t the possible thermal management

architectures, and T f
t the feasible thermal management configurations. Equation (2.8a)

represents constraints, for example, each cooling circuit should have at least a heat
source component, a heat sink, and a fluid delivery device, to filter out infeasible
topologies. The generated feasible architectures have yet to be evaluated based on
TCO and packaging constraints, by combining with control and size layers.

2.3.2 Control optimization

In this regard, previous studies mostly concentrated on the control layer for a given
thermal management configuration T ft generated from (2.8) and fixed thermal system
parameters (e.g., heating/cooling capacity in kW) denoted by st. The main goals of
the controller (TMS) are to improve temperature tracking with respect to a prescribed
threshold of the component and to reduce heating/cooling power consumption Jt [113],
i.e.,

min Jt(xt(t),ut(t), t | (T f
t, st)) =

∫ tf

t0
[(xt − xt,d)T Rx (xt − xt,d)+

(ut − ut,d)T Ru (ut − ut,d)] dt, (2.9)
s.t. ẋt(t) = f(xt(t),ut(t), t), (2.9a)

xt ∈ [xt,xt], (2.9b)
ut ∈ [ut,ut], (2.9c)

where xt represents the thermodynamics of the system, e.g., the electric machine
temperature, which depends on how the electric machine is used from the EMS (ue), see
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Figure 2.8: A common thermal management configuration for electrified vehicles, where the
blue line represents the cold cooling medium, the red line the hot cooling medium, which
can be gaseous and liquid (water and oil), θe the engine temperature, and θe the desired
engine temperature.

(2.2), resulting in different power losses (heat generation) and temperatures. However,
the electric machine temperature is constrained by (2.9b). Therefore, cooling power is
required to keep the electric machine temperature below its thermal limit. ut denotes
the control variables, for example, the cabin heating power Pc,

Pc(t) ∈ [P c, P c]. (2.10)

xt,d and ut,d are the references of the state vector and control vector, respectively.
xt,d can be determined based on the component specification (optimal temperature
for efficiency or comfort), for instance, maintaining the battery temperature at around
25 ◦C (temperature tracking) for improved efficiency or the cabin temperature at
around 22 ◦C for improved passenger thermal comfort. ut,d can be determined
depending on the use case. For example, it can be set to zero when minimizing the
cooling power for the electric machine. Rx and Ru are the weighting matrices.

This control problem can be tackled by two major groups of strategies: Rule-based and
optimization-based, as shown in Figure 2.9. Rule-based approaches utilize a set of rules
to compute the control signals on the basis of predefined thresholds. These thresholds
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are often determined based on expert knowledge. An On/Off control method is
utilized in [114] for battery cooling. The cooling system is triggered On with maximum
speed, when the battery temperature is greater than the prescribed upper threshold.
The cooling system is switched Off when the battery temperature is lower than the
predefined lower limit. Rule-based methods are easy to understand and implement. But
they generally require tuning effort [115] and yield non-optimal solution. Moreover,
the On/Off control strategy is typically related to mechanical actuators, such as
mechanical fans and pumps that are coupled with the engine through clutches, which
have only two states, open and closed. Because of engine speed-dependent actuation,
this kind of system often provides more than necessary, leading to parasitic losses and
excess energy usage. To reduce energy consumption, of particular importance is to
adopt electrified actuators, e.g., electronic thermostats, electric fans, electric water
pumps, and electric compressors, instead of their mechanical counterparts. Continuous
adjustment of thermal actuators is now possible, for example, with motors. Costs of
electrified actuators are higher, which depend on their sizes [116]. Note that the price
difference is decreasing. In this context, optimization-based controllers can be used
to provide heating/cooling on demand, depending on driving conditions. An electric
radiator fan matrix of an engine cooling system is controlled to minimize the cooling
power consumption by using mixed integer nonlinear programming in [117]. It should
be noted that, however, the control action of the TMS is not checked by the EMS,
which may not be optimal. The TMS has yet to be integrated into the EMS, where
the control signal of the TMS is generated from the EMS, considering overall energy
consumption from both energy and thermal aspects.

Thermal management systems

Rule-based Optimization-based

On/Off [114]

PID [115]

DP [23]

MINP [117]

MPC [118]

PMP [69]

Figure 2.9: Thermal management systems [118], where PID represents proportional-integral-
derivative and MINP mixed integer nonlinear programming.
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Additionally, all these thermal management strategies are developed for a given
thermal system size. However, the thermal system size influences the control strategy
and vice versa. For example, a large radiator would reduce the need of providing
more cooling power. The control algorithm helps optimize the thermal system size
[119]. Furthermore, the thermal system size affects the system cost. From thermal
perspective, the control layer has yet to be integrated with the size layer.

2.3.3 Size optimization

All powertrains have tight packaging constraints. It is desirable to reduce cooling
system size, resulting in reduced volume, weight, air drag, parasitic losses, and cost,
while meeting cooling requirements. The main sizing methods can be categorized into
rule-based and optimization-based strategies.

As described in [120], the cooling capacity of a radiator is proportional to the tem-
perature difference between the component coolant temperature and the cooling air
temperature. Moreover, [120] shows that for the engine cooling system of a minivan,
increasing the temperature difference by around 20◦C can reduce the radiator size by
around 30%. This can be achieved by increasing the component coolant temperature
through technology advancements [121], where powertrain components can work at
elevated temperatures but lower than their allowable limits to avoid failure. For the
engine cooling system of a class 3 pickup truck, [122] demonstrates that the pump
power can be reduced significantly by around 87% and the radiator can be downsized
by around 27% under a grade load condition on Federal Test Procedure (FTP) 74
driving cycle. This is realized by upgrading the mechanical water pump to an electric
one. However, solution optimality in terms of radiator size cannot be guaranteed in
these studies, which motivates the development of optimization-based strategies.

For a series hybrid heavy duty vehicle under a grade load condition, [123] takes
a reference to a similar class conventional vehicle to obtain initial cooling system
parameters. The optimal pump and radiator sizes are found by using sequential
quadratic programming to minimize power consumption, subject to temperature and
packaging constraints. Taking into account cooling power consumption and heat
removal capability, a search-based optimization algorithm is implemented in [124] to
minimize the heat exchanger size of the engine cooling system of a heavy duty military
truck, subject to a power constraint. However, the size layer and the control layer
have yet to be coupled to obtain better thermal system designs.

For a fixed thermal management topology, if the control and size loops are integrated,
the optimal control problem may be formulated as follows:

min Jt(st,xt(t),us
t(t), t | T f

t) =
∫ tf

t0
(ρe Pt(st,xt(t),us

t(t), t)) dt+ Ct(st),
(2.11)

s.t. ẋt(t) = f(st,xt(t),us
t(t), t), (2.11a)
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xt ∈ [xt,xt], (2.11b)
us

t ∈ [us
t,u

s
t], (2.11c)

st ∈ [st, st], (2.11d)

The thermal power Pt is converted to cost using ρe. st denotes the thermal design
parameters, e.g., the pump scaling factor, and Ct the thermal system cost. Because
of the effect of st, the control variable ut in (2.9) is updated to us

t in (2.11), which
reveals the strong coupling between them.

Note that the component sizing strategies (Figure 2.5) from the energy domain can
theoretically also be employed here. Hence, the combination of the size layer from
Figure 2.5 and the control layer from Figure 2.9 yield different solution methods to
(2.11), which are connected with the four coordination schemes as introduced in Figure
2.2. Furthermore, the size of the powertrain component influences its cooling system
size. For example, a downsized and more efficient engine would imply a compact
and smaller cooling system, i.e., st ∝ se. It indicates that the thermal system size
is proportional to the powertrain component size. Moreover, similar to (2.6), the
thermal system size affects the control decision of the thermal management system.
Additionally, topology optimization needs to be considered, as thermal management
configurations are important for efficiency, comfort, cost, and reliability.

2.3.4 Topology optimization

In general, design of thermal management architectures for electrified vehicles is
less available, compared to design of powertrain configurations. Compared with
conventional vehicles, thermal management of power electronics and electric machine
adds a new challenge to electrified ones. Normally, power electronics (inverter) and
electric machine are combined together with a dedicated water or oil cooling circuit
because the coolant temperature is in a similar range, as illustrated in Figure 2.7. In
order to reduce size, weight and cost, two ways of integration of cooling circuits for
a parallel HEV are proposed in [65]. The first method is to incorporate the power
electronics and electric machine cooling loop into the engine cooling circuit and the
second approach is to combine it with the AC circuit. The criteria to combine systems
are having similar temperature levels and exhibiting misalignment of peak heat loads
after integration. For the first strategy, even though it seems possible to combine them
with respect to misalignment of peak heat loads, the issue remains on the different
temperature specifications of engine and power electronics and electric machine as
mentioned before. It is reported that future technologies may be possible to increase
the temperature of electronic modules [121]. However, currently it is still an obstacle.
Regarding the second approach, it appears that this integration meets the requirements
as stated above, for instance, with a low temperature liquid coolant, but a thorough
analysis is required to verify such concepts.

A comprehensive thermal modeling and architecture design guidelines are given in [66]
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for a heavy-duty series HEV, where two induction motors are used to drive the wheels.
Two main design guidelines derived can be summarized as follows. Heat sources with
different temperature specifications should not share the same cooling loop. Moreover,
powertrain components working in different operation groups should not share the
same cooling circuit. Based on these guidelines and simulation results in terms of
power consumption of the cooling system, the authors propose the following topology
[125], as demonstrated in Figure 2.10. Obviously, this system is modular because
almost all the components have their own cooling loops. However, in consideration of
cost, weight and size, this configuration is hardly appealing. The authors report that
in this case, parasitic losses can be reduced significantly, resulting in a fuel saving of
up to around 6.1%, because of the separate loops compared with combined circuits.
In combined loops, powertrain components are cooled in a single circuit, where the
coolant temperature is limited by the component that has the lowest temperature
specification, resulting in over-cooled components and unnecessary power consumption.
However, one of the reasons may be that not all the components in this system are
electronically controlled, leading to this conclusion. Here, the simulation results are
dependent on the simulation conditions, assumptions and the vehicle type.
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Figure 2.10: Thermal management topology for a series hybrid electric vehicle, where CAC
represents the charge air cooler.

In [126], a variable thermal management topology is proposed for EVs to optimize
driving range and minimize power derating, which switches between different architec-
tures by utilizing one or more 4-way valves during operation. Here, a chiller activated
by the compressor of an AC system is used to assist radiators and fans in cooling
the battery pack and powertrain. It is more efficient than a fixed configuration, as it
continuously switches to the most efficient cooling circuit, depending on the driving
conditions and cooling requirements. For example, when the heat generation from the
battery and powertrain is low, they are cooled in a single loop, while they are cooled
separately in two circuits when the heat generation is high. But there are only three
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configurations to switch.

Overall, current thermal management topologies for electrified vehicles are designed
based on expert knowledge, and the identified architecture is likely sub-optimal because
of limited choices. Moreover, in order to obtain an optimal thermal management
configuration, topology optimization has to be coupled with the size and control layers.
If these layers are integrated, e.g., by combining (2.8), (2.9), and (2.11), for simplicity,
the optimization problem may be described as

min Jt(T f
t , s

T
t ,xt(t),uT

t (t)), (2.12)
s.t. θi(T f

t , s
T
t ,xt(t),uT

t (t)) ≤ θi,d, (2.12a)
V (T f

t , s
T
t ,xt(t),uT

t (t)) ≤ V0, (2.12b)

where Jt(T f
t , s

T
t ,xt(t),uT

t (t)) represents the influence of topology on (2.11). To be
more specific, the design parameters st and control vector us

t in (2.11) are changed
to sT

t and uT
t in (2.12), respectively. Equation (2.12a) ensures that the component

temperature is always maintained below its thermal limit and (2.12b) means that the
thermal system should respect the packaging constraint. Other constraints are related
to (2.9) and (2.11). This optimization problem can be solved in a similar fashion as
(2.7).

This study mainly focuses on system-level thermal management. For overview of
thermal management of individual powertrain components, interested readers are
referred to [62, 113, 127–135]. Additionally, given the strong coupling between energy
and thermal domains, a suitable thermal management topology should be determined
in combination with energy-aware design and control optimization.

2.4 Energy- and thermal-aware design and control
optimization

Taking into account design and control aspects, if a system is optimized from both
energy and thermal perspectives, it is termed energy- and thermal-aware design and
control optimization.

2.4.1 Topology generation

Choosing a suitable powertrain and thermal management configuration is vital, since
it affects vehicle energy efficiency, cost, performance, comfort and reliability. From
both energy and thermal viewpoints, automatic topology generation is not available
in the literature. If automatic generation of powertrain and thermal management
architectures is taken into consideration, feasible powertrain and thermal management
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configurations can be identified by combing (2.1) and (2.8), given by

Find T f
e,t ⊆ T p

e,t, (2.13)
s.t. ge,t(T f

e,t) ≤ 0, (2.13a)

where T f
e,t represents the feasible powertrain and thermal management topologies and

T p
e,t the possible powertrain and thermal management configurations. Equation (2.13a)

includes the constraints from (2.1) and (2.8). The generated feasible architectures
have yet to be compared based on TCO, by integrating with control and size layers.

2.4.2 Control optimization

In this respect, earlier works mainly focused on the control layer for a given topology
T f

e,t generated by (2.13) and fixed powertrain and thermal parameters represented
by se and st. The aim of an integrated energy and thermal controller is to optimally
decide the power flow of the electrified powertrain considering the energy and thermal
aspects to minimize the overall energy consumption, while satisfying the driver demand
and heating/cooling requirements. By combing (2.2) and (2.9), this control problem
can be expressed as

min Je,t(xe(t),xt(t),ue(t),ut(t), t | (T f
e,t, se, st)) = (2.14a)∫ tf

t0
[wp (Pe(xe(t),xt(t),ue(t),ut(t), t))+

wt (Pt(xe(t),xt(t),ue(t),ut(t), t))] dt, (2.14)
s.t. ẋe(t) = f(xe(t),xt(t),ue(t),ut(t), t), (2.14b)

ẋt(t) = f(xe(t),xt(t),ue(t),ut(t), t), (2.14c)
he,t(xe(t),xt(t),ue(t),ut(t), t) = 0, (2.14d)
ge,t(xe(t),xt(t),ue(t),ut(t), t) ≤ 0, (2.14e)

where wp and wt are the weights. The energy domain and the thermal domain are
coupled, as can be seen in the constraints.

The associated algorithm to solve (2.14) is referred to as the energy and thermal
management system. Recall that there are two categories for both EMSs and TMSs:
rule-based and optimization-based algorithms. Hence, the combination of the EMS
from Figure 2.4 represented by {RB,OB} and the TMS from Figure 2.9 represented
by {RB,OB} yields different solution methods represented by {RB,OB}×{RB,OB}
to (2.14). Consequently, energy and thermal management systems can be divided into
two principle groups, separate energy and thermal management systems (SETMSs)
and combined energy and thermal management systems (CETMSs), as shown in Table
2.1 with examples found in the literature [60]. The SETMS is denoted by EMS +
TMS, while the CETMS is denoted by (EMS,TMS). The key difference is that the
control variables are determined simultaneously at the supervisory level in a CETMS,
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considering whether the control decision of the thermal management system is energy
beneficial. The TMS receives the control signal from the EMS, which can be seen in
Figure 2.11. In a SETMS, however, there are explicitly two layers, and the energy
management system and the thermal management system are treated independently.

Table 2.1: Energy and thermal management strategies.

Control strategy Composition Optimality Causality Application

SETMS
PF + On/Off Sub-optimal Causal Heavy-duty series HEV powertrain [66]
TC + MPC Sub-optimal Causal Battery pack of a series HEV [136]
ECMS + On/Off Sub-optimal Causal Battery of a hybrid electric truck [17]
OB + MPC Sub-optimal Causal HEV powertrain [67]

CETMS
(RB, RB) Sub-optimal Causal Engine and electrical power equipment of an HEV [137]
(RB, OB) Sub-optimal Causal Engine and electrical power equipment of an HEV [137]
(DO, On/Off) Close-to-optimal Acausal Climate control system, refrigerated semitrailer, and air supply system [18]
(DP, MPC) Optimal Acausal Battery pack of a series HEV [23]
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Figure 2.11: Combined energy and thermal management.

Previous research mostly focused on SETMSs. For a heavy-duty series HEV powertrain,
a power follower control strategy is developed in [66] based on heuristics to decide
the operation of a power generation unit to meet the power request from the driver.
Powertrain components generate heat accordingly. A low-level On/Off controller is
utilized to remove the heat to keep the component temperatures below their prescribed
thermal limits. These controllers are easy to implement and can be used in real-
time control. However, they cannot provide an economic solution in terms of energy
consumption, because both control strategies are rule-based. An improved version is
presented in [136], even though the EMS is similar, a rule-based thermostat control,
the thermal management system is developed based on MPC, which reduces cooling
power consumption. A clear drawback of this study is that the EMS is a rule-based
method, which generates non-optimal set-point of the power source and has a negative
impact on the MPC result. To overcome this limitation, for an HEV powertrain, both
optimization-based algorithms are implemented for high-level energy management
and low-level thermal management in [67] to improve energy efficiency. However, the
EMS does not verify whether the control action of the thermal management system is
energy beneficial, resulting in a sub-optimal solution. This disadvantage of SETMSs
motivates the development of CETMSs, which started to appear recently and are
proved to be superior to their separate counterparts [17].
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In this respect, the EMS designed based on rules still cannot yield an optimal solution,
regardless of the TMS used [137]. To overcome this issue, an online energy and battery
thermal management system is presented in [138] to tackle multiple states with energy
dynamics and thermodynamics. The battery pack can be cooled down with a radiator
or chilled down with a chiller in association with an AC system, which maintains the
battery temperature within its optimal range. The switch between the cooling mode
and the chilling mode is decided by physics. The AC compressor can only be turned
On or Off, as it is linked to the engine with a clutch. The propulsion and cooling
requirements are eventually met by the engine. The main objective is to minimize
the fuel consumption, while keeping the battery temperature within its optimal range,
by finding the optimal control inputs. This problem is solved with ECMS (Figure
2.4). The optimal solution is found using necessary conditions and the initial values
of the co-states are calculated offline. Proportional controllers are employed to update
co-states in real-time. A fuel saving of around 1.8% is reported, compared to its
separate counterpart, where the EMS makes decisions without considering the battery
cooling power consumption, i.e., ECMS + On/Off [138]. Notice that, however, the
solution can be sensitive to the initial values of the co-states [27]. It is also sensitive
to the physics-based mode selection. Moreover, even though in this study only battery
thermal management is taken into account, this method can be extended to consider
other powertrain components. But as the number of states increases, many parameters
need to be tuned and the optimal solution cannot be obtained, which necessitates the
development of offline optimal control strategies.

In order to tackle these problems, a scalable distributed optimization (Figure 2.4)
approach is proposed in [18], concentrating on convex approximation of auxiliaries.
The auxiliaries consist of an air supply system, a refrigerated semitrailer, and a climate
control system, which can only be turned On or Off, as they are connected to the
engine with clutches. The complete problem can be seen as an energy network. Each
auxiliary is a subsystem of the energy network, comprising energy storage systems,
for example, the battery, and converters, for instance, the electric machine. The
aim is to minimize the fuel consumption of the whole system, which is equivalent
to minimizing the energy losses of the subsystems. The subsystems are connected
to meet the power demand. To preserve convexity, quadratic equality constraints
that describe the input and output power of the converter are relaxed to inequality
constraints. It should be noted that the equality holds at the optimum [59]. In the
presence of propulsion requirements, where power is aggregated in the energy network,
the problem cannot be separated and solved easily. The original problem is then
decomposed into several smaller optimization problems via dual decomposition, which
augments the cost function with the power demand. Owing to the one-on-one mapping
between the subsystem and the Lagrange dual function, the subsystems can be solved
individually and efficiently, by utilizing Lagrangian method and alternating direction
method of multipliers. Compared with its separate counterpart, where the energy
management system and the thermal management system are treated independently,
a fuel saving of around 1.08% is reported [18]. The presented method can be extended
to include more thermal systems. However, in this study, the thermal management
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system is limited to On/Off control, leading to a large number of switches and excess
power consumption, which needs to be upgraded to optimal controllers.

To address this issue, [23] presents an integrated DP and MPC approach. The system
architecture is similar to Figure 2.11, where the CETMS represented by DP consideres
both propulsion and battery cooling requirements. The TMS represented by MPC
receives the control signal from DP to regulate an AC system so as to maintain the
battery temperature within its optimal range. Specifically, the cooling air circulated by
an air pump, removes heat from the battery. The compressor that is attached to the
electric machine provides the desired coolant flow rate continuously. In view of high
computation time of DP, the battery cooling system is simplified as a static map, where
the compressor power of the AC system is described as a function of heat rejection and
cooling air temperature. The propulsion power and the cooling power are ultimately
met by the battery power and engine-generator power. Overall, the system has two
state variables, the state-of-charge of the battery and cooling air temperature, and two
control variables, the engine-generator power and compressor power. Discretization of
these variables is required, which entails a trade-off between accuracy and computation
time [10, 58]. The objective is to evaluate system dynamics and find optimal control
variables at each time instance to minimize the fuel consumption in charge-sustaining
mode. Compared to a SETMS as the baseline, where the energy management and
the thermal management are not integrated, up to around 5% fuel saving is achieved
[23]. Note that, however, the result can be sensitive to the discretization of those state
and control variables. In addition, simplified models are not representative in reality.
Moreover, as the number of states grows, it can be expected that the computation
time increases exponentially, which may not be tractable.

Although CETMSs are investigated mostly for HEVs, the same principles hold for
EVs as well. For example, in [19], DP is applied to find the optimal power sharing
between the powertrain and the cabin heating system, taking into account battery
health. However, the foregoing studies only consider control optimization and the
plant has yet to be incorporated to obtain an optimal system.

2.5 Observations and future trends

2.5.1 Controller design

From EMS point of view, optimization-based algorithms (Figure 2.4) are gaining
popularity, such as using DP as an offline strategy to obtain a global optimal solution
to benchmark online controllers [139]. Since DP is computationally heavy [58], to
shorten the computation time and achieve the same accuracy, CP is a promising
alternative [140]. Even though the online counterparts of the offline optimization-
based methods facilitate real-time implementation, to simplify the problem, rules can
be extracted from offline optimization-based algorithms to form control strategies, as
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shown in Figure 2.4. Examples are RB-ECMS [95] and RB-DP [16], which strike a
balance between optimality, computation time, and complexity. Moreover, taking into
account discrete variables, for example, engine on-off and gear shift [96], which results
in a mixed-integer optimization problem, necessitates the development of integrated
algorithms [97] and hybrid optimal control techniques [141]. In [97], the engine on-off
and gear shift are determined by DP in the outer loop, and the continuous variable,
power split, is solved by using CP in the inner loop. Apart from energy consumption
(fuel and electricity), the objective function to be minimized is also expected to consider
more factors to find the trade-off, such as emissions for eco-driving [142], battery aging
for cost reduction [143], and drivability for comfort [144, 145]. Additionally, to further
increase powertrain efficiency, it is essential to include the thermal domain.

From TMS perspective, since conventional mechanical actuators with On/Off control
method fail to provide an economic solution, current trend is to upgrade them to their
electrified counterparts, enabling heating/cooling on demand with optimization-based
algorithms [146–152]. For example, compared with a traditional control method, the
overall power consumption of the cooling system with advanced electromechanical
actuators and control strategies can be reduced by around 45% [152].

Regarding energy and thermal management systems, as CETMSs achieve better
performance than their separate counterparts, they will get more and more attention.
As is made evident by Table 2.1, there are eight ways of integrating energy and
thermal management systems, but limited comparisons can be found in the literature.
To identify energy saving in different scenarios, it is important to conduct more
comparisons. Furthermore, in CETMSs, there is a trade-off between optimality,
complexity, causality, and computation time. Such integrated systems can also
communicate with other electronic control units onboard and provide guidelines for
drivers via human machine interface to maximize efficiency.

Currently, however, only the control layer has been taken into consideration for energy
and thermal management systems. To obtain an optimal system and reveal the real
coupling between the energy and thermal domains, it is imperative to incorporate the
design layer.

2.5.2 Waste heat recovery

As described in Section 1.3, recovering a certain percentage of the engine exhaust
thermal energy is a promising way to improve energy efficiency. Two types of WHR
technologies can be found: Thermoelectric generators (TEGs) [153–157] and Organic
Rankine cycle (ORC)-based WHR systems [30–33]. A TEG consists of various P-type
and N-type semiconductor materials, which convert heat into electricity directly, based
on the Seebeck effect [158]. The Seebeck effect describes the voltage generated across
the junctions of two dissimilar materials, owing to a temperature gradient. It has the
advantages of no moving parts and no chemical reactions and, as long as there is a
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temperature difference, it produces electricity. Nevertheless, considering conversion
efficiency, technical readiness, and cost, Rankine cycle systems are preferable. It has
been shown that ORC systems have an efficiency of up to 15% [31, 34–36]. A PMP-
based EMS for controlling Rankine cycle systems is presented in [34]. Maximizing
the power output of a Rankine cycle system on board a diesel-electric railcar is
reported in [36], by using DP and dynamic real-time optimization. Furthermore, [159]
demonstrates a recovery efficiency of 10% for an electrified powertrain on the NEDC.
Additionally, the turbine in a Rankine cycle system can be coupled with a generator,
which constitutes a Rankine cycle-based electrical WHR system. From a control
point of view, it is advantageous to store the recovered waste heat energy in the
energy buffer. A Rankine cycle-based electrical WHR system is comprised of five main
components: Evaporator, expander, generator, condenser, and pump, as shown in
Figure 2.12. The working fluid is pumped from low pressure to high pressure, which
then absorbs heat from exhaust gases through the evaporator and undergoes a phase
change, from liquid to vapor. Expansion of the vaporized fluid subsequently produces
mechanical energy by the expander, which is converted into an electrical form by the
generator. The generated electricity is eventually stored in the energy buffer, which
can be retrieved when needed. Consequently, the working fluid dissipates heat to the
surroundings at the condenser and undergoes another phase change, from vapor to
liquid. This technology is mainly used in ICEVs [37].

Evaporator

Condenser

Pump Expander

Engine
Exhaust gases

Electric 
machine BatteryInverter

Figure 2.12: A Rankine cycle-based electrical WHR system.

Furthermore, as presented in Section 1.3, recuperating a certain amount of the waste
heat from an electric drive by using an HP is a promising way to improve energy
efficiency of an electrified vehicle with cabin heating. It exchanges the heat with the
refrigerant circuit and cabin heating system to boost heating performance, resulting
in a decrease in battery load, as demonstrated in Figure 2.13. This, ultimately,
contributes to energy efficiency improvement. It has been reported that, by utilizing
the waste heat from ambient and electric devices, the coefficient-of-performance (COP)
and heating capacity increase by 9.3% and 31.5% [41], respectively. HPs are mostly
adopted for EVs [42]. Furthermore, observing the temperature levels of the major
components of an electrified powertrain, as shown in Figure 2.7, the EM can be
integrated into the same housing as the transmission. They can be combined into a
single heat source, by sharing the same cooling loop (e.g., with oil cooling) [160–162]
and contributing together to the heat which can be harvested by the HP, resulting in
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improved heating performance.

Note that design and control of ORC system and HP system have yet to be integrated
at system level to identify the energy saving. A detailed cost-benefit analysis would
also be required before mass production of these systems.
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Figure 2.13: Heat pump system utilizing waste heat from transmission and electric drive.

2.5.3 Heat exchange

At low temperatures, the engine has higher frictional losses because of increased
hydrodynamic effects and poor combustion. The difference in fuel consumption
between a warm engine and a cold one is around 12% [163]. The battery performance
deteriorates remarkably at low temperatures, which has a negative impact on reliability,
safety, and efficiency. Because of cabin heating, the driving range of an EV can be
reduced by up to around 68% [164]. It can be observed from Figure 1.5 that the
heat energy transferred to the engine coolant is significant, which can be utilized to
heat up lubrication oils, cabin, battery and so on [165–169]. As shown in Figure 2.15,
where electrified actuators are used, engine coolant is utilized to warm up engine oil,
transmission oil, and cabin heater core using a three-way valve. It is reported that
powertrain efficiency can be improved by around 4% due to fast warm-up [169].

Additionally, as illustrated in Figure 2.14, in EV mode, the electric drive and trans-
mission coolant can be utilized to heat up the engine and battery during cold-start
conditions to reduce power dissipation. Overall, the heat exchange between power-
train components can be summarized in Figure 2.16. Assume each cooling circuit is
self-contained, consisting of heat source, fluid delivery device, and heat sink. However,
optimal control strategies are needed to allocate and remove heat effectively, which
would increase efficiency and reduce the thermal system size and cost.
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Figure 2.14: Typical energy balance of a PHEV in charge-depleting mode [170].

2.5.4 Transition to electric vehicles

In the electrification of vehicles, the first front is HEVs. They have played a pivotal
role in reducing energy consumption in the past decades. Nowadays, EVs have an
increased positive impact on the environment, compared to HEVs, which accelerates
EV’s resurgence. There exists a variety of EV architectures, depending on the
transmission type, the number of EMs, and their locations [171, 172]. Even though
single-speed transmissions currently dominate the EV market, research on multi-
speed transmissions, such as two-speed and continuously variable transmission (CVT),
are emerging, focusing on cost function optimization, energy efficiency, and vehicle
performance [48, 173–176]. For example, depending on loading conditions, e.g., hill
climbing, EVs would benefit from various operational states provided by a CVT
without torque interruption. In this respect, the integration of such as the EM and
the transmission, plays an important role [64]. As shown in [45], a CVT could provide
opportunities of optimizing the EM due to continuous ratio adjustment. In turn,
the wider constant power region of the EM could help in the optimization of the
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Figure 2.15: Heat energy distribution between powertrain components [169].
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CVT. These would result in an optimized battery and thermal system. Finding
optimal component sizes and letting the system operate at high efficiency regions
would contribute to cost function reduction. An optimal thermal management with
electrified actuators also contributes to reducing the size and cost of the thermal
system. Additionally, if waste heat from electric drive and transmission is used in an
EV, the sizes of the heat pump and the battery pack would be reduced.

2.5.5 Plant design

For sizing of powertrain components, current studies mainly focus on optimization-
based methods (Figure 2.5), such as widely used GA and PSO [177, 178]. Limited
research can be found in terms of applying optimization-based algorithms to determine
the thermal system size. Moreover, to arrive at an optimal system design, component
sizing needs to be coupled with the control layer. Generally, in terms of optimality,
nested and simultaneous approaches outperform sequential and iterative ones. Simul-
taneous methods that require convex features of a system are computationally more
efficient than nested schemes relying on exhaustive search. Recent studies mostly
concentrate on nested and simultaneous schemes because of optimality. Each method
has its own strengths and limitations. For example, to find optimal energy management
and component sizes of a series PHEV, two methods are employed in [179], where
CP represents the simultaneous coordination scheme and PSO/DP represents the
nested approach. In [179], the same optimal solution is obtained, which achieves a fuel
efficiency improvement of around 10.4% compared to the initial powertrain design.
CP delivers superior performance to PSO by a factor of 20 in terms of computation
time. Tuning effort for PSO is also required. Nevertheless, heuristics or DP is needed
in CP to handle integer variables, e.g., engine on-off. Moreover, CP requires the
problem to be solved in a convex form. To strike a balance between computation
time and solution optimality, an iterative coordination method can be utilized, such
as DP/CP [106]. The (close-to) optimal solution is then obtained in a considerably
short time. Furthermore, topology dictates vehicle energy efficiency and cost. In order
to choose a suitable configuration with large design space, topology generation has
proven beneficial for design. However, current methods do not take into account the
thermal management architecture, which may not yield an optimal system. Topology
optimization needs to be integrated with size and control optimization so as to select
the best configuration based on minimum TCO. Additionally, integrated design and
control of a complete electrified vehicle considering both energy and thermal domains
to reduce the TCO has yet to be addressed, while satisfying performance, driving
comfort, passenger thermal comfort, and reliability requirements.
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2.6 Conclusions

A comprehensive analysis of design and control optimization layers and coordination
approaches for electrified powertrains including energy and thermal domains is pre-
sented in this chapter. By combing these optimization layers, energy consumption
reduction and cost saving can be obtained. Although depending on the coupling and
how sensitive the solution is to uncertainties in the design parameters, nested and
simultaneous schemes outperform sequential and iterative ones in terms of optimality.
Nested approaches are usually relying on exhaustive search, which is computationally
heavy, whereas simultaneous coordination schemes often demand the original problem
to be convex. Moreover, recent energy and thermal management systems are thor-
oughly surveyed and divided into two principle groups, SETMSs and CETMSs. With
respect to energy efficiency improvement, CETMSs deliver superior performance to
SETMSs, as control decisions are made only once at the supervisory level in CETMSs.
It is shown that a trade-off exists between optimality, causality, computation time, and
complexity. Additionally, an analysis of future trends in terms of improving energy
efficiency and reducing system cost is presented.

Based on the findings from this chapter, as electrified vehicles comprise HEVs and EVs,
two case studies are carried out to show the effectiveness of integral design approach in
Chapter 3 and Chapter 4, respectively. In Chapter 3, from optimal control perspective,
integrated energy and thermal management of a CVT-based PHEV is investigated,
where design considerations are also derived. In Chapter 4, from optimal design and
control viewpoint, simultaneous design and control optimization of a CVT-based EV
is explored, which is extended by integrated energy and thermal management.



Chapter 3

Integrated energy and thermal
management of CVT-based hybrid
electric vehicles

In this chapter1, for a continuously variable transmission (CVT)-based plug-in hybrid
electric vehicle (PHEV) with cabin heating, which is subject to a cold-start, an
integrated energy and thermal management system (IETMS) is proposed to identify
the gain of using waste heat recovery (WHR) technologies on the ultimate fuel
savings. Dynamic programming (DP) is used to maximize the fuel efficiency for
a pre-defined drive cycle. It is found that a cold-start has a significant impact
on the fuel consumption, up to around 7.1%, and a dual-source waste heat recovery
(DSWHR) system has a significant improvement on the fuel saving, up to around 13.1%.
Optimization results also provide insights into design of the DSWHR system and sizing
of powertrain components. Additionally, taking into account WHR, transient, and
steady-state thermal behavior, a complete energy consumption minimization strategy
(CECMS) framework is proposed to minimize the overall energy consumption, which
enables online implementation. An introduction to the topic is given in Section 3.1.
Optimization problem is then formulated in Section 3.2. Section 3.3 describes the
PHEV model required for solving the optimization problem. Based on the developed
PHEV model, numerical optimization is given in Section 3.4, by using DP. Optimization
results are subsequently presented in Section 3.5. On the basis of the optimal solution
found offline, the CECMS framework is presented in Appendix B. Finally, conclusions
are given in Section 3.6.

1The content of this chapter is based on the following publications:
Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Optimal Control of an Integrated Energy
and Thermal Management System for Electrified Powertrains. In Proceedings of the 2019 American
Control Conference, Philadelphia, PA, USA, 10-12 July 2019.
Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Integrated Energy and Thermal Management
for Electrified Powertrains. Energies 2019, 12, 2058.
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3.1 Introduction

Hybrid electric vehicles (HEVs) play a pivotal role in improving fuel economy, which
take advantage of advanced control freedom provided by hybridization, very different
from their traditional counterparts. As HEVs use multiple power sources, of particular
importance is the development of energy management systems (EMSs) for HEVs so as
to maximize their fuel economy [10, 61]. An EMS aims at controlling the power-flow
of the hybrid powertrain in an optimal way; for example, the torque split between
the internal combustion engine (ICE) and the electric machine (EM). As illustrated
in Figure 2.4, various energy management strategies have been proposed. Among
these control strategies, dynamic programming (DP) is widely chosen, thanks to its
advantages in obtaining a global optimal solution, handling nonlinear constraints, and
assessing online controllers, as discussed in [108]. However, the thermal domain is
often not taken into account.

A majority of researchers currently devise EMSs under the assumption that the engine
is already at its operating temperature at the outset; namely, a warm-start [13]. This
may not be realistic, and we may have the case where the vehicle has been parked for
a few hours, resulting in a cold-start; which is common in the real world. Cold-start
conditions imply a low engine temperature, which increases frictional losses in the
engine, leading to excess fuel consumption due to high-viscosity effects. Furthermore,
some drive cycles—for instance, the New European Driving Cycle (NEDC) and
the Worldwide Harmonized Light Vehicles Test Cycles (WLTC)—require cold-start
conditions to measure fuel consumption [180]. The required starting temperature is far
below the engine operating temperature. The impact is particularly high in the first
few minutes of driving. The fuel-saving potential can be obtained by extending the
design space of conventional EMSs with an extra continuous dynamic state, the engine
temperature. The fuel-saving potential has been reported to be large (12% [163]) for
the NEDC. It has also been shown, in [181], that cold-start conditions increase fuel
consumption by up to 14.6% in the urban part of the NEDC, which well-represents
the warm-up phase. This is particularly true for a plug-in HEV (PHEV) due to
intermittent operation. Furthermore, little attention has been paid to improve the
fuel economy with a cold-start and thereby quantify the ultimate fuel savings. Due
to such effects, original equipment manufacturers (OEMs) are also in the process of
defining and implementing more realistic drive cycles in their development processes.

As introduced in Section 1.3, a large portion of the fuel energy is wasted as exhaust
gases, and recovering a certain percentage of the exhaust thermal energy is a promis-
ing way to promote fuel efficiency. Furthermore, the amount of waste heat from
continuously variable transmission (CVT) and EM (including inverter) is significant,
and recovering a certain amount of that heat is a promising way to improve energy
efficiency. As presented in Section 2.5.2, an exhaust gas waste heat recovery (EGWHR)
system, namely a Rankine cycle-based electrical waste heat recovery (WHR) system,
can be utilized to recuperate the exhaust thermal energy. It convert that into an
electrical form, which is eventually stored in the battery and can be retrieved when
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needed. It increases the energy content of the battery. Moreover, an electric path
waste heat recovery (EPWHR) system can be used to recuperate the waste heat from
the CVT and EM to boost the heating performance of a heat pump (HP) for cabin
heating. It reduces the load on the battery. EGWHR systems are mostly used in
internal combustion engine vehicles (ICEVs) and EPWHR systems are mainly adopted
for electric vehicles (EVs) to improve vehicle energy efficiency. Since a PHEV benefits
from the features of an ICEV and an EV, a dual-source WHR (DSWHR) system
consisting of an EGWHR sub-system and an EPWHR sub-system can be employed.
It bridges the gap between a cold-start and a warm-start and improves fuel efficiency.

It has been widely acknowledged that the optimal solution obtained from DP is not
implementable. Earlier studies mainly focused on the transient behavior of powertrain
components, when it comes to thermal aspects (e.g., heating up the component from
a cold-start to its operating temperature) [7, 182]. After the cold-start, the operating
temperature is assumed to be well maintained, which is actually the main goal of the
corresponding thermal management system (TMS) in practice. It is obvious that in
this case, the cooling system is not integrated and the cooling power consumption
is neglected, which would influence the control strategy and the fuel consumption
measurement. A systematic approach, based on optimal control theory, to facilitate
an online implementation of complete energy and thermal management for PHEVs,
including WHR, transient, and steady-state behavior, has not yet been developed.

In view of the above discussion, this study proposes an integrated energy and thermal
management system (IETMS) for a CVT-based parallel PHEV to quantify the impact
of a cold-start on the fuel consumption. In addition, it identifies the benefit of
employing a DSWHR system on the ultimate fuel savings. The approach is as follows:

• A CVT-based PHEV model including the coupling between energy dynamics
and thermodynamics based on a concept vehicle is firstly created, by using
experimentally-based lookup tables.

• The thermodynamics models comprise a thermal ICE model and a DSWHR
model. The thermal ICE model obtains the engine temperature and cold factor
so as to adjust the nominal fuel consumption with a warm-start. The engine
cold factor represents the excess frictional power dissipation due to high-viscosity
effects at low engine temperatures. As the goal of this study is to gain qualitative
insights of fuel savings, a simplified DSWHR model is used. The DSWHR model
obtains the power recovered from the engine exhaust gases, and hence increasing
the energy content of the battery, and from the electric path (EM and CVT),
and thus decreasing the battery load for cabin heating.

• There is a trade-off between the ICE heating, and hence reducing the cold
impact, and the utilization of the DSWHR system, and thus increasing the
recovered power. DP is then applied to minimize the overall fuel consumption
for a pre-defined drive cycle. It controls the torque split between the ICE and
EM and the CVT speed ratio that aims at optimizing the operation of the power
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source.

• As the optimal solution is found by DP, which is an offline optimization strategy,
a complete energy consumption minimization strategy (CECMS) framework
that is online implementable is presented in Appendix B. It aims to minimize
the complete energy flow, taking into account WHR, transient, and steady-
state thermal behavior, by establishing relationships between DP, Pontryagin’s
minimum principle (PMP), and equivalent consumption minimization strategy.

3.2 Problem definition

The proposed IETMS for a CVT-based PHEV is shown in Figure 3.1. The engine can
be disengaged from the powertrain via a clutch, which is not depicted. PHEVs are best
characterized by their charge-sustaining and charge-depleting modes. In this study, a
charge-sustaining mode is assumed, as it is a common way to assess the performance
of the control strategy [159, 183]. The major components of the considered PHEV
are the engine, battery, DC-AC inverter, EM, CVT, and vehicle. The DC (direct
current)-AC (alternating current) inverter and EM are combined together. As can
be seen from Figure 3.1, apart from traditional chemical, mechanical, and electrical
energy flows, thermal energy (dash-dot lines) is added. In this system, the waste heat
from the engine is recovered by the EGWHR sub-system, and the recovered power is
stored into the battery. Further, the EM and CVT are combined, and the resulting
waste heat is recuperated by the EPWHR sub-system, which reduces the load on the
battery due to cabin heating demand.

The PHEV model is backward-facing (i.e., the drive cycle has to be known a priori), and
includes both energy dynamics and thermodynamics. As far as the energy dynamics
are concerned, the most relevant inertias are taken into account: The inertias of the
engine, EM, variator in the CVT, and the vehicle. CVT, ICE, and EM efficiency
models are represented by experimentally-based lookup tables, due to their non-linear
behavior. In terms of thermodynamics, it is assumed that, except for the engine,
the heat source components are in thermal equilibrium with the ambient conditions.
The engine thermodynamics model, utilizing first principles [138], is developed on the
basis of [7], in which the experiments are performed, and parameters are used where
applicable. Once the engine temperature reaches its operating temperature, after
which the cold effect on fuel consumption becomes negligible, the engine temperature
is assumed to be kept at this reference. Therefore, the effect of the radiator and the
cooling power consumption are neglected for now, but it will be taken into account in
Appendix B to design a CECMS. Kinematics, dynamics, and constraints are modeled
with a discrete time-step of one second, which is sufficient for the design of the
integrated energy and thermal controller. The key model parameters are listed in
Table 3.1 [7, 184]. The battery considered is a lithium-ion type battery with specific
energy density of 113 Wh/kg.
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Table 3.1: Main parameters of PHEV model[7, 184].

Parameter Value Unit Description
mv 1600 kg Vehicle mass
γv/γv 7 - Ratio coverage of CVT
τ e 239 Nm Maximum engine torque
ωe 4500 rpm Maximum engine speed
P e 99 kW Maximum engine power
τm 350 Nm Maximum EM torque
τm 210 Nm Continuous EM torque
ωm 7800 rpm Maximum EM speed
Pm 74 kW Maximum EM power
Pm 50 kW Continuous EM power
Qb 40 Ah Battery capacity
Vn 3.75 V Cell voltage
ce 630 J/kgK Engine specific heat
ch 0.62 - Engine heating coefficient
θe 80 ◦C Engine operating temperature
ce,1 0.0034 1/K Engine cold factor coefficient
ce,2 0.016 1/K Engine cold factor coefficient
cg,1 0.42 - Exhaust gas fraction coefficient
cg,2 0.0002 s/rad Exhaust gas fraction coefficient
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Figure 3.1: Integrated energy and thermal management system for a CVT-based plug-in
hybrid electric vehicle, where BA represents the battery, CAB the cabin, DC-AC the DC
(direct current) to AC (alternating current) inverter, FT the fuel tank, HX1 the exhaust
gas waste heat recovery sub-system, HX2 the electric path waste heat recovery sub-system,
and WH the wheel. Control and state variables are highlighted in bold.
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The main design criterion to identify the optimal control variables is the minimization
of the overall fuel consumption:

Minimize fuel consumption

with respect to
{
energy management
thermal management

subject to


drive cycle
powertrain model
thermal model
component limits

The overall fuel consumption is given in a discrete time format, using time index k,
by

min
x(k),u(k)

Jf(x(k),u(k) | w(k)), (3.1)

s.t. x(k + 1) = x(k) + f(x(k),u(k), w(k)) ∆t, (3.1a)
h(x(k),u(k)) = 0, (3.1b)
g(x(k),u(k)) ≤ 0, (3.1c)

where ∆t is the time step. The state variables x(k) consist of the state-of-charge (SOC)
of the battery, which represents the energy dynamics, and the engine temperature,
which reflects the thermodynamics; that is,

x(k) = [ξ(k), θe(k)]T . (3.2)

The control variables u(k) comprise the speed ratio of the CVT and the torque split
factor describing the torque split between the EM and the engine, i.e.,

u(k) = [γv(k), σs(k)]T . (3.3)

Equation (3.1b) represents the power balance of the vehicle and (3.1c) represents
the feasible design space, where the state and control variables are bounded, and
the component limits. The disturbance vector w(k) consists of vehicle speed and
acceleration, which are provided by the drive cycle, i.e.,

w(k) = [vv(k), av(k)]T . (3.4)

Note that the control variables u(k) are selected depending on the disturbance vector
w(k), which influence the state variables x(k). The consumed fuel Cf over the drive
cycle represented by w(k) starting at index value k = 1 and ending at k = N is
calculated by

Jf(x(k),u(k)) =
N∑
k=1

Hl ∆mf(x(k),u(k)) ∆t, (3.5)

where Hl is the lower heating value of gasoline in (J/g). The term ∆mf(x(k),u(k))
represents the fuel mass flow in (g/s).
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This section formulates the fuel consumption minimization problem of a CVT-based
PHEV with cold-start and WHR. To solve this optimal control problem, the required
PHEV model based on measurements, especially the mathematical coupling between
energy dynamics and thermodynamics, is described in the next section.

3.3 System modeling

This section presents the nonlinear and non-convex PHEV model needed for solving
the optimization problem defined in (3.1). Given the drive cycle in Section 3.3.1,
the vehicle longitudinal dynamics are described in Section 3.3.2, which is an input
to the CVT model (Section 3.3.3). Based on the total torque demand calculated,
the torque split strategy between the ICE and EM is formulated in Section 3.3.4.
Given the torque split, the ICE efficiency and thermal models are presented in Section
3.3.5 to calculate the required fuel power, and the EGWHR sub-system is described
in Section 3.3.6 to obtain the recovered power that can be stored into the battery.
Similarly, based on the torque split factor, the EM efficiency model including inverter
is presented in Section 3.3.7 to compute the demanded electric power. The EPWHR
sub-system is then provided in Section 3.3.8 to calculate the recovered power that
can be used to reduce the battery load for cabin heating. Eventually, the demanded
electric power including the cabin (Section 3.3.9) is supplied by the battery, which is
described in Section 3.3.10.

3.3.1 Drive cycle

As reported in [185], the average European driving distance is 10 km. The NEDC,
which is commonly used to measure fuel consumption, has a duration of 1180 s and
a length of 11 km. It describes the speed of a vehicle versus time. Moreover, it
well-captures the transient behavior of the engine, which is the main focus of this
chapter. Therefore, the NEDC is selected as the input for the control problem in this
study. For purposes of comparison, the WLTC is also used (Section 3.5.1). Notice
that, for other drive cycles, although the quantity (fuel consumption) might vary,
the methodology presented also applies.

3.3.2 Longitudinal dynamics

Taking into account the forces acting on the vehicle and assuming no variations in
wind, altitude and road surface, the required traction force to follow the drive cycle,
which is represented by vehicle velocity vv and acceleration av, is given by

Ft(k) = Fa(k) + Fr(k) + Fi(k), (3.6)
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where the aerodynamic drag force Fa is calculated by

Fa(k) = 1
2 ρa cd Af v

2
v(k), (3.7)

where ρa represents the density of air, cd the aerodynamic drag coefficient, and Af the
frontal area. The rolling resistance is obtained by

Fr(k) = cr mv g sign(vv(k)), (3.8)

where cr represents the rolling resistance coefficient, mv the vehicle mass, and g the
gravitational acceleration. The inertia force is given by

Fi(k) =
(
mv + 4 Jw

r2
w

)
av(k), (3.9)

where Jw represents the wheel inertia and rw the wheel radius.

Therefore, the demanded wheel torque τw and speed ωw can be expressed as follows:

τw(k) = Ft(k) rw, (3.10)

ωw(k) = vv(k)
rw

. (3.11)

3.3.3 Continuously variable transmission

The considered vehicle has a pushbelt CVT consisting of four main parts: Variator,
pump, DNR (drive, neutral, and reverse), and final drive. It provides a continuous
variable speed ratio γv between the primary pulley and the secondary pulley. This
allows the speed of the power source (e.g., engine) to be decoupled from the wheel
speed, in order to optimize the operating point of the power source. The required
minimum pump speed is 1000 rpm. Given the required torque and speed at the wheels,
the torque and speed of the final drive are obtained by

τf(k) =


τw(k)
ηf γf

, if τw(k) > 0,

ηf τw(k)
γf

, if τw(k) ≤ 0,
(3.12)

ωf(k) = ωw(k) γf , (3.13)
where γf is a constant ratio between the secondary pulley and the wheel (i.e., final
drive) and ηf is the efficiency of the final drive. Taking into consideration the inertia
effects (Jv,i and Jv,o), the torque and speed of the primary pulley are calculated by

τp(k) = Jv,i ∆ωp(k) + Jv,o ∆ωf(k) + τf(k)
γv(k) , (3.14)

ωp(k) = ωw(k) γf γv(k), (3.15)
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where ∆ωf and ∆ωp are the rotational acceleration of the final drive and the primary
pulley, respectively. The total torque demand is thus given by

τd(k) = τloss(ωp(k), τp(k), γv(k)) + τp(k), (3.16)

where τloss(ωp, τp, γv) represents the torque loss in the CVT, consisting of the torque
loss in the DNR, pump, and variator, which are computed using detailed loss-maps
based on measurement data.

Bounds on the CVT speed ratio and the primary pulley torque are

γv(k) ∈ [γv, γv], (3.17)

τp(k) ∈ [τp, τp]. (3.18)

Constraints on the primary pulley speed will be implicitly constrained by the engine
speed.

3.3.4 Torque split

The total torque demand (3.16) is met by the EM and the engine. The torque split
between them is determined by the torque split factor σs. Given the total torque
request, the torque provided by the engine and EM are expressed as

τe,t(k) = (1− σs(k)) τd(k), if τd(k) > 0, (3.19)

τm,t(k) = σs(k) τd(k), if τd(k) > 0 ∨ τd(k) ≤ 0 ∧ ωp(k) ≥ 1000 π
30 . (3.20)

Taking into account the constraints on the EM, battery, and charge sustenance, the
additional torque supplied by mechanical braking is written as

τb(k) = τd(k)− τm,t(k), if τd(k) < 0. (3.21)

The torque split factor is limited by

σs(k) ∈ [σs, σs], (3.22)

where σs = 1 and σs < 0, depending on the engine size. The relationship between the
driving modes and the torque split factor can be summarized as follows: When σs = 1,
it indicates that the engine is shut off and either the EV or brake energy recuperation
(BER) mode is activated (depending on the torque demand). The car is in the motor
assist (MA) mode if 0 < σs < 1, and σs = 0 represents that the engine (ICE) mode is
active. The vehicle is in the charging (CH) mode if σs < 0, with σs = σs representing
full recharge. Detailed descriptions of the driving modes can be found in Section 1.3.
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3.3.5 Internal combustion engine

In the considered PHEV, the crankshaft of the engine is coupled to the primary pulley
(CVT) shaft directly, which implies that the engine speed is equal to the primary
pulley speed. Moreover, engine speeds below 1000 rpm are prevented to avoid high
engine losses. In consideration of the engine inertia, the torque and speed of the engine
are given by

τe(k) = Je ∆ωp(k) + τe,t(k), (3.23)

ωe(k) = ωp(k), if τe(k) > 0. (3.24)

With warm-start conditions, a lookup table is utilized to obtain the fuel consumption
represented by the injected fuel mass flow ∆mf(k), i.e.,

∆mf(k) = ∆mf(ωe(k), τe(k)). (3.25)

The engine torque and speed are subject to the lower and upper limits

τe(k) ∈ [τ e(ωe(k)), τ e(ωe(k))], (3.26)

ωe(k) ∈ [ωe, ωe]. (3.27)

Subsequently, the consumed fuel power is calculated by

Pf(k) = ∆mf(k) Hl. (3.28)

With cold-start conditions, however, because of higher frictional losses, the fuel
consumption is higher than that of a warm-start. In order to mimic the real situation,
an engine cold factor is introduced to adjust the nominal fuel power Pf , which is a
function of the engine temperature that is always greater than or equal to one, as
illustrated in Figure 3.2. The engine cold factor is defined as

c(θe(k)) =


1 + ce,1 (θe − θe(k)) ece,2 (θe−θe(k)), if θe(k) < θe,

1, if θe(k) = θe,
(3.29)

where ce,1 and ce,2 are the cold factor coefficients to correct the nominal fuel con-
sumption, which are fitted parameters that are experimentally identified; and θe is
the operating temperature [7]. Figure 3.2 is representative for ICEs. Therefore, the
temperature-dependent fuel power is calculated by

Pc(k) = c(θe(k)) Pf(k). (3.30)

A significant portion (e.g., 36%) of the fuel power is converted into mechanical power
Pe to propel the vehicle, whereas another large part (e.g., 33%) is wasted as the
exhaust gases Pg, followed by a relatively small power dissipation; that is, thermal
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Figure 3.2: Engine cold factor as a function of its temperature [7].

convection to the ambient air Pa. The remainder of the power is converted into heat,
given by

Pt(k) = Pc(k)− Pe(k)− Pg(k)− Pa(k). (3.31)
The mechanical power produced is obtained by

Pe(k) = ωe(k) τe(k). (3.32)

The exhaust gas heat is approximated as a function of the injected chemical power
and the engine speed; that is,

Pg(k) = (cg,1 − cg,2 ωe(k)) Pc(k), (3.33)

where cg,1 and cg,2 are the exhaust gas fraction coefficients to estimate the engine
speed-dependent exhaust gas power, as described in [186]; and Pg decreases with ωe
linearly. The convection to the ambient air is given by

Pa(k) = he Ae (θe(k)− θa), (3.34)

where he is the heat transfer coefficient to the ambient air, Ae the heat exchange area,
and θa the ambient temperature. Therefore, the engine temperature can be calculated
by

θe(k + 1) =
{
θe(k) + Pt(k)

Cp
∆t, if θe(k) < θe,

θe(k), if θe(k) = θe,
(3.35)

where Cp is the engine heat capacity, given by

Cp = ch ce me, (3.36)

where ch is a heating coefficient, which compensates for the slower heating of the metal
parts than that of lubrication oil; ce is the engine specific heat; and me is its mass.
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3.3.6 Exhaust gas waste heat recovery

As discussed in Section 3.1, by using a EGWHR system, the fuel consumption of a
PHEV could be reduced. As shown in Figure 2.12, the EGWHR sub-system is utilized
to recuperate a certain amount (up to 10%) of the exhaust gas power Pg with recovery
efficiency ηg, and the recuperated power Pr,g is eventually stored in the battery. As the
objective of this study is to gain qualitative insights of fuel savings, a detailed EGWHR
model is not developed. Instead, a black-box approach is adopted [187], where a
lumped efficiency [188] taking into account the efficiencies of all the components of
the EGWHR sub-system [189] is used. Here, the maximum efficiency is 10% [159].
The EGWHR model is described as

Pr,g(k) = ηg Pg(k), (3.37)

where ηr,g ∈ [ηr,g, ηr,g].

3.3.7 Electric machine

The EM employed is a permanent magnet synchronous machine (PMSM), which is an
integrated motor-generator. These machines tend to have a large stator diameter to
axial length ratio to optimize the overall packaging. It is linked to the input shaft of
the CVT directly. Taking the EM inertia into account, the torque and speed of the
EM are obtained by

τm(k) = Jm ∆ωm(k) + τm,t(k), (3.38)

ωm(k) = max
(
ωp(k), 1000 π

30

)
, if ωp(k) > 0. (3.39)

The mechanical power generated by the EM is, then, calculated by

Pm(k) = ωm(k) τm(k). (3.40)

A lookup table is used to describe the power loss of the EM, including inverter:

Pm,loss(k) = Pm,loss(ωm(k), τm(k)). (3.41)

Consequently, the electrical power supplied to/by the EM is given by

Pm,el(k) = Pm(k) + Pm,loss(k). (3.42)

The constraints on the EM are

τm(k) ∈ [τm(ωm(k)), τm(ωm(k)], (3.43)

ωm(k) ∈ [ωm, ωm]. (3.44)
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3.3.8 Electric path waste heat recovery

The total heat production from the CVT and the EM—namely, the electric path—can
be computed by

Ph(k) = Pm,loss(k) + Pc,loss(k), (3.45)

where Pc,loss(k) is derived as follows:

Pc,loss(k) = Ploss(ωp(k), τp(k), γv(k)) + Pf,loss(k), (3.46)

where Ploss(ωp, τp, γv) consists of the power loss in the DNR, pump, and variator,
similar to (3.16). Pf,loss is the power loss of the final drive. Similar to EGWHR (Figure
2.12), Figure 2.13 shows how the EPWHR sub-system is employed to recover a certain
percentage of the waste heat Ph with recuperation efficiency ηh, and the waste heat
harvested Pr,h ultimately reduces the load on the battery. For the sake of simplicity and
to obtain qualitative insights, this work assumes a lumped efficiency [188] considering
heat exchange between the electric path cooling circuit, HP, and the cabin heater
system, where the maximum efficiency is 20% [41, 164, 190]. The reason for this is
that, first of all, liquid-to-liquid heat exchange is relatively efficient (e.g., when using
a liquid to liquid counter-flow plate fin heat exchanger) [169]. Furthermore, with
proper arrangement of the heat exchangers in the systems as mentioned above, the
heat exchange can be efficient [190]. The EPWHR model is given by

Pr,h(k) = ηh Ph(k), (3.47)

where ηh ∈ [ηh, ηh].

3.3.9 Cabin

For the purpose of this study, identifying the cost of cold-start conditions on the fuel
usage and the benefits of adopting a DSWHR system, a detailed cabin model is not
considered. Instead, the auxiliary power demand, represented by the cabin heating
request, is assumed to take a constant value [40]; that is,

Px = 1 [kW]. (3.48)

The cabin heating power is provided by the high-voltage battery.

3.3.10 Battery

The high-voltage battery is modeled by using an equivalent circuit approach; that is,
a voltage source in series with an internal resistance, as demonstrated in Figure 3.3.
The electric power supplied by the battery is obtained by
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Vb

Ib

Rb

Figure 3.3: Equivalent circuit of the battery.

Pb(k) = Pm,el(k) + Px. (3.49)

The battery current is, then, calculated by

Ib(k) =
Vb(k)−

√
V 2

b (k)− 4 Pb(k) Rb(k)
2Rb(k) , (3.50)

where Vb is the open circuit voltage of the battery and Rb is its internal resistance.
Both Vb and Rb are described by lookup tables, which are functions of the SOC.
Consequently, the battery SOC is given by

ξ(k + 1) = −ηb(Ib(k)) Ib(k)
3600 Qb

∆t+ ξ(k), (3.51)

where ηb is the battery charging efficiency and Qb is the battery capacity. The battery
current is bounded by

Ib(k) ∈ [Ib, Ib]. (3.52)

This section presents a PHEV model for the fuel optimization problem considering
cold-start and WHR. The CVT speed ratio that aims to optimize the operating point
of the power source and the torque split factor between the ICE and EM are the
decision variables. The modular component models are represented by experimentally-
based lookup tables (efficiency maps). In particular, the coupling between the energy
dynamics and thermodynamics is described in detail. A cold-start indicates a low
engine temperature, which increases the frictional losses in the engine, resulting
in excess fuel consumption because of high-viscosity effects. To compute the fuel
consumption with a cold-start, an engine cold factor is introduced to adjust the
nominal fuel consumption with a warm-start, which decreases with increasing engine
temperature. A significant part of the fuel power is wasted as exhaust gases. A
EGWHR model is developed to recover a certain amount of the exhaust gas power,
and the recovered power is stored in the battery, which increases the energy content of
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the battery. The waste heat from the EM (including inverter) and CVT is significant
as well. A EPWHR model is created to recuperate a certain percentage of the waste
heat from the EM and CVT, and the recuperated waste heat eventually reduces the
load on the battery for cabin heating. The developed PHEV model is highly nonlinear
and non-convex. By applying DP as an offline optimization algorithm, not only will
it find an optimal solution but also it will provide insights into design of an online
optimization strategy taking into account energy and thermal aspects, which will be
discussed in the next section.

3.4 Numerical optimization

In this study, the engine is not only a power source to propel the wheels, but also a
thermal accumulator. It accumulates thermal energy to bring its temperature to the
required operating temperature as fast as possible, so as to reduce the cold penalty, as
reflected by (3.30). Moreover, the battery is regarded as an energy storage system
(energy buffer), which stores energy from other sources and exchanges energy with
the driven load. In addition to the five driving modes described in Section 3.2, this
section introduces two additional thermal-related modes: ICE-Heating (ICEH) and
waste heat recovery (WHR). These modes can be described as follows. In ICEH, the
engine temperature is lower than its efficient operating temperature, which implies a
cold-start. The engine thermal energy level is lower than the desired level, and thermal
energy is accumulated by the thermal accumulator. In WHR, the recuperated energy
from the exhaust gases is stored in the battery, which increases the energy content of
the battery and can be retrieved for propulsion when needed. The recovered power
from the electric path results in a decrease in battery load to heat the cabin.

Due to the cold-start, the engine has to generate heat to warm up itself during the
ICEH mode to reduce the cold effect, leading to an additional fuel cost. The additional
fuel cost represents the fuel-saving potential, which shows the difference between a
cold-start and a warm-start; essentially, the cost of the ICEH mode. In Section 3.2,
with charge sustenance, the energy used in the MA and EV modes eventually came
from the CH and BER modes. Now, the energy harvested from the WHR mode
reduces the battery load directly, and can also be utilized for the MA and EV modes,
resulting in extra fuel savings. The extra fuel savings indicate the ultimate fuel savings
in reality, which demonstrates the discrepancy between a cold-start and a cold-start
with DSWHR; essentially, the benefit of the WHR mode. It is clear that there is
a trade-off between the ICE heating, and hence the cost on the fuel usage, and the
utilization of the DSWHR system, and thus the gain on the fuel economy. To be more
specific, in the presence of cold-start conditions, the IETMS attempts to generate not
only an optimal SOC profile but also an ideal warm-up trajectory of the engine. This
is achieved by controlling the driving modes and the ICEH mode. The fuel-saving
potential can then be identified. Featuring the DSWHR, the IETMS aims to minimize
the overall fuel consumption by optimally determining the driving modes and the
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thermal-related modes; namely, the ICEH and WHR modes. The ultimate fuel savings
can thus be quantified. Given a drive cycle (vehicle velocity and acceleration) starting
at time k = 0 and ending at k = N , the optimal control objective is to minimize the
following function

min Jf =
k=N∑
k=0

[
1 + ce,1 (θe − θe(k)) ece,2 (θe−θe(k))

]
∆mf(k). (3.53)

Apart from the constraints described in Section 3.3, additional constraints on the
system dynamic states are

ξ(0) = ξ(N), (3.54)

ξ(k) ∈ [ξ, ξ], (3.55)

θe(k) ∈ [θe, θe]. (3.56)

Equation (3.54) ensures charge-sustaining. Overall, the optimization problem has two
dynamics state, namely the SOC of the battery (ξ) and the engine temperature (θe),
and two control inputs, namely the CVT speed ratio (γv) and the torque split factor σs.
The initial value of the SOC (ξ(0)) is chosen as the average of the lower (ξ) and upper
(ξ) limits of the SOC, which is equal to the final value of the SOC (3.54). Other values
are determined based on (3.56), (3.17) and (3.22). These state and control variables
are discretized, which entails a trade-off between accuracy and computation time [10,
58]. Infeasible states are penalized by using a high cost, which is selected based on the
maximum value that can occur in the cost-to-go. The control inputs represented by the
CVT speed ratio γv ((3.15) and (3.16)) and the torque split factor σs (3.19) influence
the engine speed, torque and eventually the fuel mass flow (3.25). DP [58, 191] (based
on Bellman’s principle of optimality) is applied to obtain optimal control inputs, by
minimizing the objective function 3.53. An introduction to DP is given in Appendix A.
In this case, with backward iterations, DP finds the optimal control inputs (γv,σs) that
minimizes 3.53 by evaluating (ξ, θe) at each time instant. The global optimal solution
is found in approximately one hour. Although DP is an offline optimization method,
it provides insights into the design of online implementable strategies. The optimal
control inputs, decided by the optimization algorithm, determine the driving mode
(as defined in Section 3.3.4) and the thermal-related mode (as introduced above).

Recall that the aim of this study is to quantify the fuel-saving potential caused by
cold-start conditions and the ultimate fuel savings contributed by the DSWHR system
as introduced in Section 3.1. Therefore, the numerical optimization problem given by
(3.53) is solved for three simulation settings, which are described as follows:

S0 : The engine is already at its efficient operating temperature at the outset, which
indicates that there is no cold impact. This is the ideal scenario, which is usually
implemented in powertrain efficiency simulations based on drive cycles, such
as NEDC and WLTC. The system has only one continuous dynamic state, the
SOC of the battery, and the energy controller aims at finding an optimal SOC
trajectory;
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S1 : The engine is subject to a cold-start, which is a common case in real driving
conditions. The optimization problem contains two continuous dynamic states,
i.e., the SOC of the battery and the engine temperature. The optimization
strategy attempts to generate an optimal SOC profile and an ideal warm-up
trajectory of the engine simultaneously, by taking into account the ICEH mode;

S2 : On the basis of S1, the DSWHR system with ηr,g (Section 3.3.6) and ηh (Section
3.3.8) is included. The IETMS aims to maximize the overall fuel efficiency by
striking a balance between the driving modes, ICEH mode and the WHR mode.

It should be noted that S1 does not include the DSWHR system, which is the main
difference from S2. The fuel-saving potential can be obtained by comparing the results
between S0 and S1. With the aid of the WHR technologies, S2 attempts to bridge the
gap between S0 and S1. By comparing the outputs from S1 and S2, the ultimate fuel
savings can be quantified, which shows the upper bound of what can be achieved in
practice.

3.5 Optimization results and discussion

The results for the proposed integrated energy and thermal management in the PHEV
introduced in Section 3.2 for the NEDC are shown in Figure 3.4. The NEDC consists
of an urban portion ([0, 780] s), where the driving load is low, and a highway part
([780, 1180] s), which features a high power demand. All the strategies (S0, S1, and
S2) use the BER mode as much as possible to charge the battery, because braking
energy is considered to be free energy. Generally, inefficient engine operation in low
driving conditions restricts the driving mode in the urban region to the EV mode,
especially the first 160 s. The battery propels the wheels, leading to a decrease in the
SOC. This also reveals the fact that the battery (40 Ah) of the PHEV alone is able
to satisfy the driving demand. Less frequent engine operation results in a slow rise
of the engine temperature, which increases the cold impact on the fuel consumption.
The highway section, in contrast, is mainly dominated by the CH mode, where engine
driving is preferred. The engine drives the vehicle and charges the battery, which
increases the SOC to meet the final constraint, due to charge-sustaining. This results
in a rapid rise of engine temperature, which decreases the cold effect on the fuel usage.
Overall, however, intermittent and efficient engine operation prevents the engine from
heating up fast. It is clear that the engine operating temperature is reached almost at
the end of the drive cycle, around 994 s, which confirms the significance of considering
the cold impact. It is, therefore, imperative to alleviate this situation. Surprisingly,
the heating time of the engine in S2 is longer than that in both S0 and S1. This is
because the recuperated power from the EPWHR sub-system reduces the load on the
battery, thus reducing the power needed for charging, as made evident by Figure 3.5.

Note that, because of the resolution in Figure 3.5, the SOC (ξ) trajectory appears to be
a straight line. Moreover, the power recovered from the EGWHR sub-system is stored
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Figure 3.4: Integrated energy and thermal management for the NEDC using three simulation
settings. (Top to bottom) Vehicle velocity (vv), SOC of the battery (ξ), engine temperature
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power from the electric path (Pr,h).
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Figure 3.5: Hybrid mode visualization for three simulation settings on the NEDC, where SS
represents standstill. (Top to bottom) S0, S1, and S2.

into the battery temporarily and utilized efficiently at high driving load, resulting
in significant fuel consumption reduction. However, the impact of the cold-start on
the integrated energy and thermal controller is small. The reason for this is that the
optimal strategy aims at minimizing the energy loss of the engine, which is found
to be similar in all of the cases (S0, S1, and S2). This is in accordance with the
observation as above, where the engine accounts for most of the losses of a PHEV
and maintaining a high engine efficiency plays an important role. It also explains the
similarities between S0 and S1 in Figure 3.5, in terms of hybrid mode visualization. As
a result, a cold-start has a substantial influence on the fuel usage (up to around 7.1%
on the NEDC, S1 versus S0) and the DSWHR system has a significant improvement
on the fuel efficiency (up to around 13.1% on the NEDC, S2 versus S1). On average,
the recovered power from the exhaust gases is 523 W and from the electric path is
225 W in S2. Clearly, the gain of the WHR mode outperforms the pay of the ICEH
mode, to a large extent. It should be noted that the heating time of the engine and
the energy that can be recovered from the DSWHR system are dependent on driving
conditions.

3.5.1 Influence of driving conditions

In order to investigate the effect of the driving scenario, the real-world WLTC is used
for comparison purposes. In the WLTC, the engine temperature increases faster—in
particular, in the beginning phase—which reduces the cold impact substantially, as
shown in Figure 3.6. The heating time of the engine is 860 s. This is best explained
by the fact that the WLTC is more aggressive than the NEDC. As this work primarily
concentrates on the transient behavior of the engine, the first 780 s (the urban portion
of the NEDC) is chosen for both driving cycles, for fair comparison. It can be seen
that, first of all, the average speed of the WLTC is (slightly) higher than that of the
NEDC. Moreover, the engine-on time is significantly longer in the WLTC. Additionally,
the percentage of high driving power demand in the WLTC is significantly higher than
that in the NEDC. The percentage of high driving power demand is defined as the
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time instants in which the driving power demand Pd = τw ωw, referring to (3.10) and
(3.11), is greater than 10 kW, with respect to the duration of the drive cycle.

Comparing WLTC results to NEDC results, it can be inferred that, as the cold effect
is reduced, the fuel-saving potential on the WLTC is much less than that on the
NEDC. Furthermore, the WLTC contains more opportunities for recovering waste
heat, which results in larger fuel savings. However, the assumptions made in Section
3.2, where the heating period is taken into account and the effect of the radiator
is neglected, do not hold for the WLTC. In the WLTC, the operating temperature
is reached at 860 s with respect to the total duration of 1800 s and the radiator
would have a significant influence on the energy consumption. For the purpose of this
study—considering cold-start conditions and engine thermodynamics under transient
operating conditions—the NEDC is used for further analysis.

For the NEDC, it can also be observed that the average speed of the urban part is
much lower than that of the highway section. For the DSWHR system, the average
recuperated power is 338 W for urban conditions, while it is 1550 W for the highway
situations. As the optimal controller aims to maintain a high engine mechanical
efficiency, it is expected that, as the average speed increases, the waste heat power that
can be recovered increases. Notice that the fuel-saving potential obtained from the
NEDC is representative for similar driving scenarios; for example, the Japanese Cycle
’08 (JC08) and the urban part of the Common Artemis Driving Cycle (CADC). These
drive cycles have similar durations and average speeds for the urban sections, where
the engine transient behavior is well-captured. The ultimate fuel savings from the
NEDC is applicable to drive cycles that have similar speed trends. More importantly,
the methodology introduced in this study works the same for other drive cycles.

3.5.2 Analysis of engine temperature

In Section 3.5, a fuel-saving potential of 7.1% was found for the PHEV on the NEDC
by comparing S1 and S0. It should be noted that this fuel-saving potential on the
NEDC is identified when the initial engine temperature is 20 ◦C, as shown in Figure
3.7. In practice, the fuel-saving potential varies; for example, depending on how long
the car has been parked. The fuel economy improvement rate can be expressed as

∆FSθe(k0) =
FC

∣∣∣∣∣
θe(k0)=20◦C

− FCθe(k0)

FC

∣∣∣∣∣
θe(k0)=20◦C

, (3.57)

where θe(k0) ∈ [20◦C, 80◦C] represents the initial engine temperature. As illustrated
in Figure 3.7, the relationship between the initial engine temperature and the fuel
efficiency improvement rate can be approximated by a quadratic function as follows,

∆FSθe(k0) = c1 θ
2
e(k0) + c2 θe(k0) + c3, (3.58)
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Figure 3.6: Influence of driving conditions on the fuel-saving potential and the waste heat
recovery. (Top to bottom) Vehicle velocity of the WLTC (vv), engine temperature on the
WLTC (θe), comparison of the engine-on time between the NEDC and the WLTC for the
first 780 s (Engine on), comparison of the high driving power demand between the NEDC
and the WLTC for the first 780 s (∆Pd,h), and the average recovered power during the urban
and highway parts on the NEDC (Pr,a).
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with c1 = −0.0015, c2 = 0.2739, and c3 = −4.9. It can be seen that the fuel economy
increases while increasing the initial engine temperature, due to the cold factor (3.29).
Given an initial engine temperature, the corresponding fuel-saving potential can be
computed. The required thermal budget, that the system should provide to bring the
engine from an initial thermal state to the desired thermal energy level, is estimated
by

Et = Cp (θe − θe(k0)), (3.59)

where Et is a constant value, independent of drive cycles. It is only related to a specific
engine and its initial engine temperature. As long as the system can allocate the
demanded thermal energy to heat the engine, the impact of a cold-start on the fuel
consumption can be reduced. Using waste heat from the electric path to warm up the
engine during electric driving is a case in point.
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Figure 3.7: Effect of engine temperature on the fuel economy for the NEDC.

3.5.3 Effect of DSWHR efficiencies

In Section 3.5, a fuel efficiency improvement of 13.1% was identified for the PHEV
on the NEDC by comparing S2 and S1. Notice that this fuel efficiency improvement
represents the maximum recovering efficiencies, which may not be economically feasible
in practice. The relative fuel savings, represented by the surface Z2, with different
efficiencies of the DSWHR system (i.e., ηg × ηh), is shown in Figure 3.8. The relative
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fuel saving is calculated by

∆FS = FCS0 − FCS2

FCS1

, (3.60)

where FCS0 , FCS1 , and FCS2 are the fuel consumptions of S0, S1, and S2, respectively.
The part of Z2 above Z0 implies that the recuperated energy is able to cover the
heating energy required; namely, WHR > ICEH. The part of Z2 below Z0 indicates
that the recovered benefit is not sufficient enough to pay for the heating cost; namely,
WHR < ICEH. The surface Z0 = 0 is determined by ∆FS = 0. The intersection Lo
represents the combinations of harvesting efficiencies that satisfy ∆FS = 0—namely,
WHR = ICEH—which means that the heating cost is compensated for by the energy
harvested. It can be inferred, from WHR = ICEH, that, in reality, with a small
EGWHR sub-system and a small EPWHR sub-system, the fuel efficiency can be
improved remarkably. It achieves the same fuel economy as the ideal warm-start
condition, which serves as the first step towards the design of WHR technologies.
Furthermore, it provides insights into the sizing of electrified powertrain components.
For example, the recovered power from the DSWHR system can downsize the battery
pack.

Figure 3.8: Relative fuel savings of the PHEV with different efficiencies of the DSWHR
system on the NEDC.

3.6 Conclusions

An IETMS is presented to quantify the fuel-saving potential caused by cold-starting
a CVT-based PHEV with cabin heating. It also identifies the benefit of utilizing
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WHR technologies on the ultimate fuel savings. The engine has to bring its thermal
energy to the desired thermal energy level in a cold-start, resulting in additional
fuel usage. The DSWHR system recuperates waste heat from the engine exhaust
gases, which increases the SOC of the battery. In addition, it recovers waste heat
from the electric path (EM and transmission), which decreases the battery energy
consumption for cabin heating. These contribute to extra fuel savings. Based on
validated component models, optimization results, which are obtained by using DP,
show that a cold-start significantly increases the fuel consumption, up to around
7.1%, depending on the initial engine temperature. The DSWHR system remarkably
improves the fuel economy, up to around 13.1%, depending on the DSWHR efficiencies,
and insights are gained in the design of WHR technologies and sizing of powertrain
components. It is found that with a small EGWHR sub-system and a small EPWHR
sub-system, the fuel efficiency can be remarkably improved and it achieves the same
fuel economy as the ideal warm-start condition. The identified fuel-saving potential
and ultimate fuel savings are also dependent on driving conditions. The fuel efficiency
improvement of using the DSWHR system in the CVT-based PHEV is even higher on a
more aggressive drive cycle. Detailed WHR and cabin models have yet to be developed
and including the corresponding dynamics and constraints in the optimization problem
may change the control decision, leading to different fuel savings. A cost-benefit
analysis of the DSWHR system would also be required.

From optimal control perspective, integrated energy and thermal management of a
CVT-based PHEV is investigated in this chapter, which also gives insights into design
of WHR technologies and dimensioning of powertrain components. Combined optimal
design and control is applied to optimize a CVT-based EV in the next chapter, which
is extended by integrated energy and thermal management.



Chapter 4

Co-design of CVT-based electric
vehicles

For the development of this chapter1, an extensive analysis has been performed on
vehicle level using a series production vehicle under real driving conditions to derive
the essential powertrain models that are used here for design-in-simulation. For
an electric vehicle (EV) with a continuously variable transmission (CVT), a novel
and computationally efficient convex programming (CP)-based co-design method is
proposed to minimize the total-cost-of-ownership (TCO), focusing on the integration
of the electric machine (EM) and the CVT. The optimized system with co-design
reduces the TCO by around 5.9% compared to a non-optimized CVT-based EV (based
on off-the-shelf components) and by around 2% compared to the EV equipped with
a single-speed transmission (SST). By taking advantage of the control and design
freedom provided by the CVT, the optimal CVT, EM and battery sizes are found
to reduce the system cost. It simultaneously finds the optimal CVT speed ratio and
air-flow rate of the cooling system reducing the energy consumption. The strength
of co-design is highlighted and insights into the design of a low-power EV for urban
driving are provided. An introduction to the topic is presented in Section 4.1. Co-
design optimization problem is then defined in Section 4.2. Section 4.3 describes the
convex EV model needed for solving the co-design optimization problem. On the
basis of the developed EV model, numerical optimization is presented in Section 4.4.
Optimization results and discussion are subsequently given in Section 4.5. Finally,
conclusions are drawn in Section 4.6.

1The content of this chapter is based on the following publications:
Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Co-design of CVT-based Electric Vehicles,
submitted as journal article, currently under review.
Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Design and Analysis of CVT-based Electric
Vehicles, submitted as journal article, currently under review.
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4.1 Introduction

Growing concerns of environmental contamination and depletion of natural resources
have led to the resurgence of electric vehicles (EVs). Even though single-speed
transmissions (SSTs) currently dominate the EV market, research on multi-speed
transmissions to optimize key performance indicators (KPIs), e.g., energy consumption,
system cost, and performance, is gaining popularity, such as two-speed transmissions
and continuously variable transmissions (CVTs) [46–49, 192, 193].

The first attempts to design today’s EVs (including CVT-based) are largely based
on off-the-shelf components, which are typically oversized for drive cycles [44]. The
component size, for example, the electric machine (EM) size in kW and the battery
size in kWh, relates to the component cost, and identifying the optimal component
size would result in cost reduction. The component size also influences the vehicle
performance, such as top speed and acceleration time. Furthermore, EV energy usage
is largely affected by the driveline efficiency, such as the integration of the EM and
the CVT [45]. However, the EM and the CVT are often considered separately in the
literature, for example, using the CVT speed ratio (control) to reduce the EM power
losses. The influence of the CVT efficiency, CVT and EM size (design) are not always
taken into account simultaneously [44].

Moreover, employing multi-speed transmissions such as CVT for the next generation
of EVs is relatively new. In the literature, limited research can be found regarding
applying optimization algorithms to optimize KPIs of CVT-based EVs [45, 48]. Ad-
ditionally, current research mainly concentrates on the energy domain, taking into
account the mechanical and electrical energy flows, to increase the energy efficiency
[194–197]. The thermal domain, however, for instance, evaluation of cooling power
consumption and temperature profile, has yet to be explored. It is also an integral
part of an EV and would affect the total energy consumption.

To address these issues, integrated design and control frameworks are needed. An
overview of design and control optimization methodologies is given in [11]. As presented
in Chapter 2, there are generally four approaches to solve the design (plant) and control
(controller) problem. With respect to solution optimality, simultaneous and nested
coordination schemes outperform iterative and sequential ones, although depending on
the coupling and how sensitive the solution is to uncertainties in the design parameters.
Among them, convex programming (CP) as a simultaneous approach, which is also
a co-design optimization method, has gained popularity. It finds optimal design
parameters and control trajectories simultaneously without the need of checking
optimality, and it is computationally efficient [59]. Due to the low computation time,
CP enables optimization of problems with many dynamic states, such as thermal
states, which may not be tractable by using dynamic programming (DP) for example.

Considering the integration of the EM and CVT, as shown in Figure 4.1, the CVT
speed ratio over time (γv) for a use case changes the EM and CVT operating points,
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thus influencing the EM (Pm,loss) and CVT (Pc,loss) power losses. Furthermore, the
desired CVT speed ratio affects the CVT size (sγ), e.g., the ratio coverage of the
CVT, and the EM size (sτ ) to meet the power demand for example. The CVT and
EM sizes are related to their costs. The CVT size that determines the ratio range, in
turn, affects the CVT speed ratio and the EM size. The EM size also has an effect
on the CVT size and its speed ratio. In addition, the component size affects its own
efficiency. Moreover, the battery size and losses are affected indirectly. Hence, the
hypothesis is that there exists an optimal combination of the CVT speed ratio over
time, battery size, EM size, and the CVT size for an application, which results in the
lowest total-cost-of-ownership (TCO) consisting of energy consumption and system
cost. The system cost comprises the CVT, EM (including inverter) and battery prices.
Given the interactions between these variables, this optimal solution for a use case
can best be found by means of a simultaneous approach in an efficient manner.

CVT

Pc,loss(γv, sγ)

EM

     (sτ)Pm,lossPm,loss

Figure 4.1: Schematic representation of the coupling between the CVT and EM, where γv
represents the CVT speed ratio, sγ the CVT size, sτ the EM size, Pc,loss the CVT power
losses, and Pm,loss the EM power losses.

Motivated by the above discussion, this study originally proposes a CP-based co-design
optimization strategy for a CVT-based EV to reduce the TCO. It identifies the optimal
CVT speed ratio over time and the desired air-flow rate of a thermal management
system (TMS) to maintain the EM temperature below its thermal limit. Furthermore,
it finds the optimal sizes of the CVT, EM and battery. The approach is as follows:

S1 : An SST-based EV model including energy dynamic and thermodynamics with
reference to a series production vehicle is firstly created. It is developed based
on static efficiency maps represented by lookup tables, which is validated against
measurement data from real-world driving and replicates the physical behavior
of the vehicle in reality.

S2 : A CVT-based EV model is then developed based on S1, where only the SST is
replaced by a CVT (an off-the-shelf component, which is not optimized). Other
components, for example, the battery and EM, are the same. The CVT model
is created based on experimental data from a test rig.

S3 : Component models from S2 are convexified to fit the measurement data from
real-world driving and experimental data from the test rig. S2 is subsequently
optimized with the co-design optimization strategy.

All the systems (S1, S2 and S3) have the same maximum EM power and similar vehicle



76 4.2. Problem definition

performance (i.e., 0-100 km/h acceleration time below 11 s, top speed above 165 km/h,
gradability above 30%). Therefore, the goal of this study is to show the advantages of
the co-design approach in optimizing a CVT-based EV (e.g, sizing) and to compare
TCO between S1, S2 and S3. System cost comprising the expenses of the battery, EM
and CVT are solely given for the implementation of the co-design approach. Moreover,
the strengths of the co-design method are highlighted, by comparing with a sequential
approach, where the EM size is fixed to meet performance requirements. Additionally,
for urban driving that does not require high performance, insights into the design of a
low-power EV are provided.

4.2 Problem definition

The configuration of the considered EV is demonstrated in Figure 4.2. The integration
of the EM and the CVT is the primary focus, which are highlighted in bold. The major
components of the EV are the battery, DC (direct current)-DC converter, DC-AC
(alternating current) inverter, EM, CVT, electric oil pump (ELOP), and vehicle. If not
specified, the DC-AC inverter and EM are combined together in this study. The final
drive (FD) that takes a constant value and a fixed efficiency is lumped into the variator
(VA), which together is regarded as CVT. In order to change the CVT speed ratio,
hydraulic actuation power is required from the ELOP. The ELOP power is supplied
by the DC-DC converter onboard, which is assumed to be always charged. The EM is
directly connected to the input shaft of the CVT without a pre-reduction gear. The
heat generated by the EM and CVT is removed by a TMS, which is described in
Section 4.3.7. The battery is assumed to provide the power requested by the EM. The
EV model describes the longitudinal dynamics and is backward-facing, i.e., the drive
cycle is given, with a discrete time-step of one second using time index k, which is
sufficient for this study. The vehicle inertia is considered. The main model parameters
are listed in Table G.1 (Appendix G). The main design criterion to find the optimal
control and design variables is the minimization of the TCO:

Minimize TCO

with respect to


component sizes
energy management
thermal management

subject to



drive cycle
powertrain model
thermal model
component limits
performance requirements
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Figure 4.2: A CVT-based electric vehicle, where BA represents the battery, DC-AC the
DC (direct current) to AC (alternating current) inverter, DC-DC the DC to DC converter,
ELOP the electric oil pump, FD the final drive, VA the variator, and WH the wheel. Design,
control, and state variables are highlighted in bold.

TCO consists of the consumed electricity Je and system cost Js, given by

min
s,x(k),u(k)

Je(s,x(k),u(k) | w(k)) + Js(s | w(k)), (4.1)

s.t. x(k + 1) = x(k) + f(s,x(k),u(k), w(k)) ∆t, (4.1a)
h(s,x(k),u(k)) = 0, (4.1b)
g(s,x(k),u(k)) ≤ 0, (4.1c)

where ∆t is the time step. The design variables s consist of the ratio coverage of the
CVT sγ, the scaling factor sτ for scaling the maximum EM torque and the scaling
factor sb for scaling the battery cells, i.e.,

s = [sγ, sτ , sb]T . (4.2)

The state variables x(k) are the state-of-energy (SOE) of the battery and temperature
states of the TMS, which are described in Section 4.3.7, given by

x(k) = [Eb(k), θm(k), θc(k), θo(k), θi(k)]T . (4.3)

The control variables u(k) are the speed ratio of the CVT (γv) and the air-flow rate
of the TMS (φa) to keep the EM temperature below its prescribed thermal limit, i.e.,

u(k) = [γv(k), φa(k)]T . (4.4)

The power balance of the vehicle is represented by (4.1b), and (4.1c) represents the
feasible design space, where the design, state and control variables are bounded.
Equation (4.1c) also represents the component limits. The disturbance vector w(k)
contains vehicle speed (vv) and acceleration (av), which are prescribed by the drive
cycle, given by

w(k) = [vv(k), av(k)]T . (4.5)
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The consumed electricity Je over the drive cycle represented by w(k) starting at k = 1
and ending at k = N is obtained by

Je(s,x(k),u(k)) =
N∑
k=1

ρe Pb(s,x(k),u(k)) ∆t, (4.6)

where ρe is the price of electricity (e/kWh). The term Pb(s,x,u) represents the
battery output power. The system cost Js over the drive cycle is calculated by

Js(s) = Sd

Sv
(Cc(sγ) + Cm(sτ ) + Cb(sb)), (4.7)

where Sd is the length of the drive cycle (km) and Sv the traveled distance of the
vehicle in its lifetime. The variable Cc(sγ) represents the CVT cost, Cm(sτ ) the EM
cost (including inverter) and Cb(sb) the battery cost.

Based on the configuration shown in Figure 4.2, three systems, namely S1, S2 and S3,
are developed and compared in terms of TCO as in (4.1). S1 is developed with reference
to the series production vehicle, which is described in Appendix C. S2 is created based
on S1, where only the SST is replaced by the CVT, which is presented in Appendix D.
In S1 and S2, the component models are represented by experimentally-based lookup
tables (efficiency maps), which describe the power generation or power dissipation
of each component. The design variables are fixed. In S2, the CVT speed ratio is
predetermined by a low-level CVT controller, which is developed based on [186]. The
goal of the CVT controller is to reduce the EM power losses depending on the power
demand, which is common in literature, such as [44]. The air-flow rate of the TMS is
tuned to maintain the EM temperature below its thermal limit. In S3, convex models
are developed based on measurements. The design and control variables are to be
determined by the co-design optimization strategy.

This section formulates the co-design optimization problem of a CVT-based EV. To
solve this co-design optimization problem, the required convex EV model based on
measurements, especially the mathematical coupling between the CVT and EM from
design and control perspectives, is presented in more detail in the next section.

4.3 System modeling

This section presents the convex EV model and cost models needed for solving the
co-design problem defined in (4.1). An introduction to CP is first given in Appendix
E, which serves as a guideline for developing convex models. A data-driven approach
used to derive the convex models is then provided in Section 4.3.1. Subsequently,
given the drive cycle in Section 4.3.2, the vehicle longitudinal dynamics are described
in Section 4.3.3, which is an input to the convex models in S3. Given the input,
however, the torque input to the CVT is not available. Because the CVT speed
ratio is a control variable, which is not known in advance and will be determined
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by the co-design optimization strategy. Dealing with torque information will lead
to non-convexity (Appendix E), e.g., the speed ratio over time as a variable in the
denominator. Therefore, to preserve convexity for the co-design optimization problem,
all the relations are converted to power level. By utilizing the data-driven approach
as mentioned above, three convex models are consequently developed, namely the
CVT power loss model (Section 4.3.4), EM power loss model (Section 4.3.5), and
the EM power limitation model (Section 4.3.6). Equality constraints are also relaxed
with inequalities where applicable, and the equality holds at the optimum. Notice
that, this study mainly focuses on the CVT, EM and battery sizing, and the ELOP
sizing is not required at this level. Therefore, the ELOP is only considered in the
calculation of energy consumption, and no convex representation is required. The
ELOP power losses are computed offline using the equations in Section D.2, meaning
the ELOP power losses are obtained based on the optimal CVT speed ratio found by
the optimization algorithm and then added to the energy consumption. Furthermore,
to remove the heat (power losses) generated by the EM and CVT, the TMS and its
associated thermal model are presented in Section 4.3.7. Eventually, the required
power is supplied by the battery, which is described in Section 4.3.8. The convex
battery model is developed based on physics [198]. Additionally, in Section 4.3.9,
convex mass and cost models related to CVT, EM and battery sizes are developed for
the implementation of the co-design approach.

4.3.1 Derivation of convex models

As mentioned in Appendix E, the component models, for example, the power loss
models, are required to be convex for the CP algorithm. The general idea to derive the
convex models can be seen in Figure 4.3. This study adopts a data-driven approach,
where measurements are used as inputs for the modeling. The measurement data
(top) about the CVT and EM, e.g., power losses, torque, speed, and ratio over time,
are first served as inputs. Based on these measurements, a set of convex expressions
capturing input and output relationships with sufficient accuracy is created. With
different combinations of those expressions, e.g., CVT and EM power loss models, are
then developed. These parameterized models are subsequently fitted to capture the
loss behaviors of components with sufficient accuracy (≥ 95%), which have a small
influence on the result. The comparison between the approximated convex model and
the original model based on measurements is done by means of goodness of fit, which
is defined by

ζ = 1−
∑n
i=1(yo,i − yc,i)2∑n

i=1(yo,i − 1
n

∑n
i=1 yo,i)2 , (4.8)

where yo,i represents the original model, yc,i the convex model, and n the sample size.
The higher the ζ, the better the fit. Fourth, the convex models are utilized by the
co-design optimization method to find the optimal solution of the system.
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Measurement data

Fitting of coefficients

Convex models

Convex programming

Figure 4.3: A data-driven approach to derive convex models. In order to apply convex
programming, constraints and cost function are also required to be convex.

4.3.2 Drive cycle

In this work, a realistic and representative real-world drive cycle, Worldwide Harmo-
nized Light Vehicles Test Cycles (WLTC), as shown in Figure 4.4, is chosen, because
it is currently widely adopted in the automotive sector to certify energy consumption.
It includes low, medium, high, and extra high speed scenarios, which can represent,
for example, urban, rural, and highway driving conditions. The methodology pre-
sented applies to other drive cycles as well. In order to show the thermal effect,
two repeated WLTC is used. The drive cycle contains the vehicle speed vv(k) and
acceleration av(k). Note that, although the quantity (e.g., energy consumption) might
vary, the methodology presented also applies to other drive cycles.

4.3.3 Longitudinal dynamics

Note that, in this case the total vehicle mass is a variable because of the scaling
factors for the CVT, EM and battery, which will be presented in the next sections.
Considering all the forces acting on the vehicle, the power demand for the known
WLTC can be obtained by

Pd(k) =
(

1
2 ρa cd Af v

2
v(k)+cr mv g sign(vv(k))+

(
mv + 4 Jw

r2
w

)
av(k)

)
vv(k), (4.9)

where the total vehicle mass mv is given by

mv = mcw +mc +mm +mb +md, (4.10)
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Figure 4.4: Worldwide Harmonized Light Vehicles Test Cycles.

where mcw is the curb weight excluding the CVT (mc), EM (mm) and battery (mb)
mass. md is the driver mass.

4.3.4 Convex CVT model

Based on the measurement data, the CVT torque losses τc,loss can be expressed as a
function of its input torque τc, input speed ωp, and ratio over time γv. As shown in
Figure 4.2, the relationships in S3 are converted to the power domain. At given input
speeds to the CVT, the CVT torque losses τc,loss are converted to their corresponding
power losses Pc,loss, i.e.,

Pc,loss(k) = τc,loss(k) ωp(k). (4.11)
On the basis of these inputs (τc, ωp, and γv) to the CVT, the outputs (Pd and ww) of
the CVT can be determined as

Pd(k) = τc(k) ωp(k)− Pc,loss(k), (4.12)

ww(k) = ωp(k)
γv(k) . (4.13)

The input-output relationship of the CVT implies that the CVT power losses can also
be formulated on system level as (Figure 4.5a):

Pc,loss(k) = Pc,loss(Pd(k), ww(k), γv(k)). (4.14)

Clearly, the CVT power dissipation is influenced by the control variable γv. However,
while Pd and ww are known here, the CVT speed ratio γv will be decided by the
optimization algorithm, and dealing with this speed ratio alone would lead to non-
convexity, e.g., the speed ratio over time as a variable in the denominator (Appendix
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Figure 4.5: Convex modeling of the CVT.

E). Hence, considering the co-design problem and in order to preserve convexity, the
information of γv is embedded in another variable Ec, by applying a change of variables
[199], given by

Ec(k) = γ2
v(k) ω2

w(k). (4.15)
Notice that there is no information loss and the optimization strategy will assess every
possible combination of γv and ωw. There are also two other reasons of selecting Ec.

• Firstly, the CVT is a rotating mechanical component, and this term is closely
related to its kinetic energy.

• Secondly, in practice, the CVT speed ratio is often determined based on the EM
speed γv ωw and wheel speed ωw, since there is always torque loss in between,
but there is no speed loss.

Therefore, the CVT power dissipation is affected by Ec(γv) (Figure 4.5a), as it contains
the information of speed ratio. Furthermore, the variable Ec(γv) is influenced by the
ratio coverage of the CVT sγ , the range that the CVT can actually shift, as illustrated
in Figure 4.6, which is defined by

sγ = γv/γv. (4.16)

The CVT sizing is carried out on the basis of the design variable sγ (Figure 4.5a),
because it is one of the most influencing factors that affect cost, efficiency, drivability,
and packaging of CVT and powertrain [45]. Note that there are other factors that
affect the variator efficiency and hence the CVT loss, such as the center distance of
the pulleys and variator asymmetry [200]. Since this study focuses on system-level
representation and there is no pre-reduction between the EM and CVT, these factors
are not considered. The underdrive ratio γv and the overdrive ratio γv are known. In
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order to avoid non-convexity for the co-design problem, e.g., a product of two variables
(Appendix E), the overdrive ratio γv is fixed in this study. Therefore, constraints on
γv, Ec, and sγ are

γv(k) ∈ [γv, sγ γv], (4.17)

Ec(k) ∈ [γ2
v ω

2
w(k), s2

γ γ
2
v ω

2
w(k)], (4.18)

s2
γ ∈ [s2

γ, s
2
γ]. (4.19)

The CVT power dissipation in (4.11) is measured based on an original CVT product
(sold on the current market) with a full ratio range of [0.38, 2.63] and hence large ratio
coverage, which has a large torque capacity (τ c) and power capacity (P c). In case of
a CVT with reduced ratio coverage (sγ), smaller ELOP and on-demand actuation,
resulting in a compact and small CVT (superscript "s") with smaller power capacity
(P s

c ), a higher CVT efficiency is expected [7, 45]. This higher efficiency potential
means a lower power dissipation. Compared with the original CVT power losses Pc,loss
in (4.14), this lower power dissipation can be modeled by a multiplier µc, which is a
function of the EM scaling factor, giving

P s
c,loss(k) = µc(sτ ) Pc,loss(k). (4.20)

This multiplier is sensitive to many parameters and technological advances. For
example, as reported in [5], the maximum efficiency of the current variator could
be above 98%. Notice that, the final drive does not benefit from this loss reduction.
Additionally, the current CVT and EM are designed separately, which leads to a
mismatch between the specifications. In this work, as shown in Figure 4.2, the EM
is connected to the CVT without a pre-reduction gear. The required CVT torque
capacity is determined by the output of the EM sτ τm, as demonstrated in Figure 4.5b.
Here, sτ , the scaling factor for the EM, is a design variable, which will be explained in
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Section 4.3.5. Thus, the multiplier µc(sτ ) can be obtained by [7]

µc(sτ ) =0.7 + 0.3P
s
c

P c

=0.7 + 0.3sτ τm ωm,b

τ c ωm,b

=0.7 + 0.3sτ τm

τ c
,

(4.21)

where τm is the maximum EM torque when sτ = 1 and ωm,b is the EM base speed.
Similar to [7], this multiplier can be interpreted as a proportional improvement of the
more efficient variator, which typically accounts for thirty percent of the total power
losses in previous applications.

Consequently, the factors that influence the CVT power losses are Pd, ww, Ec(γv, sγ),
and sτ (Figure 4.5a and Figure 4.5b). Taking into account convexity and possible
combinations of expressions, various models are developed to represent the CVT power
losses. The models are fitted to capture the loss behavior of the CVT. Based on the
evaluated fitting accuracy, the convex CVT model is identified as follows:

P s
c,loss(k) = cc,0

(
Pd(k)
ww(k)

)2

+ cc,1 Ec(k) + cc,2 |Pd(k)|+ cc,3 sτ ww(k) + cc,4 sτ + cc,5,

(4.22)

where cc,0, cc,1, cc,2, cc,3, cc,4, and cc,5 are the coefficients found, which are shown
in Table G.1. Notice that the power losses are always constrained to be equal to
(i.e., vehicle velocity vv = 0) or larger than zero. This model has a fitting accuracy
of around 98% based on (4.8). It should be noted that, information is exchanged
between the terms. For example, the information of sτ is not only explicitly expressed
in sτ and sτ ww, but also implicitly embedded in other terms. The term sτ ww is
important for CVT applications, as generally CVT does not operate at very high
speeds, yet would lead to lower friction losses of the EM. Another design variable
(sγ) and control variable (γv) are reflected in Ec. While the information of speed
and torque are conveyed already by |Pd| and sτ ww, it is further reinforced by torque
squared ( Pd

ww
)2 and speed squared Ec to capture essential CVT dynamics. An example

of γv = 0.7 and sτ = 1 is shown in Figure 4.7. Such correlations in data analysis can
be done by clustering the data sets for certain physical attributes. In this case, the
CVT power dissipation is considered as the attribute.

4.3.5 Convex EM model

To obtain the convex EM model, the steps in Figure 4.3 are followed, as it is done for
the CVT in Section 4.3.4. As shown in Figure 4.2, the EM is directly linked to the
input shaft of the CVT and provides the power requested by the CVT, referring to
(4.20), i.e.,

Pm(k) = Pd(k) + P s
c,loss(k). (4.23)
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Figure 4.7: Convex CVT power loss model for γv = 0.7 and sτ = 1. The absolute error
represents the difference in power loss between the convex model and the original model.
This model has a fitting accuracy of around 98%, i.e., ζ=98% (4.8).

Based on the measurement data, the EM power losses can be expressed as a function
of its output torque τm and speed ωm. The EM power dissipation is given by

Pm,loss(k) = Pm,loss(τm(k), ωm(k)). (4.24)

On the basis of the output torque and speed of the EM, its output power can be
calculated by

Pm(k) = τm(k) ωm(k). (4.25)
Combing (4.24) and (4.25), as depicted in Figure 4.8, leads to

Pm,loss(k) = Pm,loss(τm(k), ωm(k), Pm(k)). (4.26)

Moreover, the EM power dissipation Pm,loss is influenced by its size (in torque and
speed). In this work, the maximum EM torque (τm) is scaled down by using the
scaling factor sτ and the base speed is increased (ωsm,b) such that the maximum output
power is maintained, as shown in Figure 4.9, i.e.,

Pm = τm ωm,b = sτ τm ωsm,b. (4.27)

The EM sizing is performed based on the design variable sτ , because it affects the EM
efficiency, weight and cost. For example, reducing the maximum EM torque decreases
the usage of active materials of the EM. Note that because of physical limitations
of the CVT, the EM speeds above 6500 rpm are not used for the CVT application,
which has a negligible impact on the result. The EM scaling factor sτ influences the
EM torque, optimal operating line (OOL), and power losses, which is bounded by

sτ ∈ [sτ , sτ ]. (4.28)
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Figure 4.8: Convex modeling of the EM.
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Figure 4.9: Scaling factor of the EM including the DC-AC inverter, where the solid lines
represent the original EM, dashed lines the scaled EM while keeping the same output power,
and OOL the optimal operating line minimizing the EM losses for every power demand.

As illustrated in Figure 4.5b, the scaling of EM has a direct effect on the CVT design
requirements. Furthermore, as explained before, the EM power dissipation Pm,loss
is influenced by another design variable sγ and control variable γv, which change
its operating point and hence the power losses. The information of sγ and γv are
represented by Ec.

To sum up, the identified parameters that affect the EM power losses are Pm, sτ , and
Ec(γv, sγ), which are shown in Figure 4.8. Models that contain these parameters and
their combinations, which are also potentially convex, are built. In a similar fashion as
with the convex CVT modeling (Section 4.3.4), the EM models are fitted to capture
the loss behavior of the EM. On the basis of fitting accuracy, the convex EM model is
found as follows:

Pm,loss(k) = cm,0
P 2

m(k)
Ec(k) + cm,1 Ec(k) + cm,2 |Pm(k)|+ cm,3 sτ + cm,4, (4.29)

where cm,0, cm,1, cm,2, cm,3, and cm,4 are the coefficients found, which are provided in
Table G.1. The information of speed and torque are conveyed already by |Pm|, and it is
further reinforced by torque squared P 2

m
Ec

and speed squared Ec to capture essential EM
dynamics. An example of sτ = 1 is illustrated in Figure 4.10. This model has a fitting
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accuracy of around 95% based on (4.8). Notice that all the EM torque and speed
combinations are taken into consideration in constructing the model, and some of
them result in higher losses, leading to a larger discrepancy in the upper part of Figure
4.10. The EM, in practice, however, will not operate at those points, because these
points are outside the torque-speed envelope, which will be constrained by the EM
power limitation model and will be described next. The relatively lower correlation
accuracy in the lower part is due to the fact that both motoring and generating modes
are considered. Taking into account limited operating points in this part for a long
drive cycle in practice, the impact is small. Note that Figure 4.10 appears more dense
than Figure 4.7, because there are more data in the EM data set.

Figure 4.10: Convex EM power loss model for sτ = 1. The absolute error represents the
difference in power loss between the convex model and the original model. This model has a
fitting accuracy of around 95%, i.e., ζ=95% (4.8).

4.3.6 Convex EM power limitation model

As sτ varies, the EM power limits change as well, referring to (4.27), as shown in
Figure 4.11. Note that the EM power limits also consider the effect of the CVT
(Ec(γv, sγ)). Regarding the EM power limits, as can be seen from Figure 4.9, they
mainly relate to two parts, i.e., one before the base speed and the other after the
base speed (ωm,b). Hence, the speed information is important. As speed information
is mostly conveyed by Ec, it is identified as one of the key parameters. As a result,
factors that influence the EM power limits could be, e.g., sτ and Ec(γv, sγ). Based on
these parameters, possible models that preserve convexity are developed, which are
fitted to represent the EM power limitation. Based on fitting accuracy, the convex
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EM power limitation model including motoring and generating modes is identified as
follows:

Pm = min{(c+
m,0 Ec(k) + c+

m,1

√
sτ Ec(k) + c+

m,2 sτ + c+
m,3), sτ Pm}, (4.30)

Pm = max{(c−m,0 Ec(k) + c−m,1

√
sτ Ec(k) + c−m,2 sτ + c−m,3), sτ Pm}, (4.31)

where c+
m,0, c+

m,1, c+
m,2, c+

m,3, c−m,0, c−m,1, c−m,2, and c−m,3 are the coefficients identified,
which are shown in Table G.1. The plus sign (+) represents the motoring mode and
the minus sign (-) the generating mode. This model has a fitting accuracy of around
99% based on (4.8). The terms Pm and Pm represent the maximum and minimum
power of the original EM, respectively, which can be obtained from Figure 4.9a. An
example of this model for sτ = 1 in motoring mode (Pm) is depicted in Figure 4.12,
which can be mirrored for generating mode (Pm). Note that while the approximated
convex model appears as straight lines in Figure 4.12 for sτ = 1, they may not be for
other scaling factors, depending on (4.30) and (4.31). Note that this model is mainly
used in Section 4.5.3.

CVT
EM

Pm(sτ) / Pm(sτ)

Ec(γv,sγ)

Figure 4.11: Convex modeling of the EM power limits.

4.3.7 Thermal EM-CVT model

The heat (power losses) generated by the CVT (P s
c,loss in (4.22)) and EM (Pm,loss in

(4.29)) is removed by a TMS, as demonstrated in Figure 4.13. The main difference
between Figure 4.13 and Figure C.4 is that there is an extra small off-the-shelf heat
exchanger in Figure 4.13, which enables heat exchange between the CVT cooling
medium and the EM cooling medium. The EM and the CVT are physically attached.
The heat from the CVT is removed directly by its cooling medium, which exchanges
that with the EM cooling medium. Furthermore, the heat from the EM is taken away
by its cooling medium driven by a pump, which is eventually removed by the radiator
with a fan providing the required air-flow rate. The EM and CVT dissipate heat to the
ambient air due to convection. The aim of the TMS is to find the desired air-flow rate
(φa) that maintains the EM temperature (θm) below its prescribed thermal limit (65◦C)
dictated by the manufacturer. A lumped-parameter approach is utilized to describe
the thermal behavior of the EM and CVT. Based on first principles of thermodynamics,
referring to Section C.4, the thermal EM-CVT model is given by

cm mm θ̇m(k) =Pm,loss(k)− hm Am (θm(k)− θo(k))− km (θm(k)− θc(k))
− ha Aa (θm(k)− θa),

(4.32)
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Figure 4.12: Convex EM power limitation model for sτ = 1 in motoring mode (Pm). The
dash-dot lines represent the approximated convex model before and after the base speed.
This model has a fitting accuracy of around 99%, i.e., ζ=99% (4.8).
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cf mf θ̇o(k) = hm Am (θm(k)− θo(k))− φf cf (θo(k)− θi(k)), (4.33)

cf mf θ̇h(k) = kh (θc(k)− θh(k))− φf cf (θh(k)− θo(k)), (4.34)

ch cc mc θ̇c(k) =P s
c,loss(k) + ke (θm(k)− θc(k))− kh (θc(k)− θh(k))
− hc Ac (θc(k)− θa),

(4.35)

cf mf θ̇i(k) = φc cf (θh(k)− θi(k))− ε φa(k) ca (θh(k)− θa). (4.36)

The thermal variables are restricted by

θm(k) ∈ [θm, θm], (4.37)

θo(k) ∈ [θo, θo], (4.38)

θi(k) ∈ [θi, θi]. (4.39)

This model is validated against measurement data in terms of temperature, which
is presented in Appendix C.4. Note that since detailed pump and fan signals are
not available in the measurement data, validation of cooling power consumption is
not performed. Hence, the cooling power consumption is not added to the overall
energy consumption, which does not influence the purpose of this study, focusing on
evaluation of thermal performance (Section 4.5.4).

4.3.8 Convex battery model

The electric power of the EM is provided by the battery. The battery model is based
on lithium-ion (nickel manganese cobalt oxide) technology with identical cells. The
required battery power is given by

Pb(k) =Pel(k) + Pb,loss(k)
=Pm(k) + Pm,loss(k) + Pb,loss(k),

(4.40)

where Pb,loss represents the battery losses, which is calculated by

Pb,loss(k) =sb N0 I
2
c (k) Rc

= P 2
b (k)Rc

sb N0 V 2
c (k) ,

(4.41)

where Ic is the cell current and Rc its resistance. The battery sizing is performed
based on the scaling factor sb for scaling the battery cells, which linearly influences
the battery energy, weight and cost. N0 is the original number of battery cells when
sb = 1. To preserve convexity for the co-design problem, the open circuit voltage of
a battery cell (Vc) is approximated as a linear function of the state-of-charge of the
battery (ξ), as shown in Figure 4.14, given by

Vc(k) = Qc

Fc
ξ(k) + V0, (4.42)
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where Qc is the cell capacity and Fc the capacitance. The battery energy can then be
calculated by

Eb(k) =sb N0

∫ ξ

0
Vc(k) Qcdξ

=Fc

2 sb N0 (V 2
c (k)− V 2

0 ).
(4.43)

Taking the derivative of Eb yields

Ėb(k) = −Pb(k). (4.44)

In order to model the battery on a pack level instead of a cell level, which does not
require information of series-parallel connection, the cell voltage Vc is replaced by a
new variable Ub, by applying a change of variables, given by

Ub(k) = sb N0 V
2

c (k) = 2
Fc

Eb(k) + sb N0 V
2

0 . (4.45)

The battery power losses can then be expressed as

Pb,loss(k) =P
2
b (k) Rc

Ub(k)

= P 2
b (k) Rc Fc

2 Eb(k) + sb N0 Fc V 2
0
.

(4.46)

The battery energy and power are constrained by

Eb(k) ∈ [Fb

2 sb N0 (V 2
c − V 2

0 ), Fb

2 sb N0 (V 2
c − V 2

0 )], (4.47)

Pb(k) ∈ [Ic Vb(k), Ic Vb(k)], (4.48)
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where Vb is given by

Vb(k) =sb N0 Vc(k)

=
√
sb N0 Ub(k).

(4.49)

Note that the effect of the battery temperature is not considered, as the battery power
losses are low in this case.

4.3.9 Convex mass and cost models

Apart from powertrain and thermal models, mass and cost models are required for
the implementation of the co-design method. This section describes convex mass and
cost models associated with CVT and EM sizes. The CVT mass includes the mass of
the variator and final drive. The EM mass includes the mass of the EM and inverter.

For a generic CVT, its weight can be approximated as a function of its torque capacity
τ c based on existing CVTs [201]. As shown in Figure 4.15, the CVT weight mc is
modeled by

mc = 0.28 τ c + 23.21. (4.50)
The original production CVT with a full ratio range of [0.38, 2.63], implying a
ratio coverage of around 7, has a torque capacity of 250 Nm. On the basis of this
CVT, assume the ratio affects the torque capacity proportionally. For each torque
capacity (ratio coverage), the corresponding weight can be computed based on (4.50).
Specifically for the CVT in this study, a one-on-one mapping between the weight mc
and ratio coverage sγ can thus be expressed as

mc = 1.19 s2
γ + 39.12. (4.51)

Therefore, given the specific cost of CVT [7] (ac in Table G.1), the CVT cost Cc (in
e) is given by

Cc = ac (1.19 s2
γ + 39.12). (4.52)

The prediction (4.52) is valid on the basis of this CVT, since the ratio coverage is
scaled down.

The EM weight is estimated as a function of its scaling factor [202], i.e.,

mm = sτ mm, (4.53)

where mm is the original EM mass when sτ = 1, which is provided in Table 4.1.

The EM cost Cm (in e) is estimated as a function of its scaling factor [203, 204], giving

Cm = bm sτ . (4.54)

The battery weight is described as a function of its scaling factor, given by

mb = sb mb, (4.55)
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Figure 4.15: CVT weight as a function of its torque capacity.

where mb is the original battery mass when sb = 1, which is provided in Table 4.1.
The battery cost Cb (in e) is approximated by [204, 205]

Cb = sb cb Eb. (4.56)

Note that, the price of CVT could be lowered, as some parts of the CVT for conventional
applications are not needed in EVs, such as torque converter and DNR (drive, neutral
and reverse). However, since part of this information is taken into account in (4.51)
and the exact weight is not known before optimization, it is not further addressed.
Moreover, currently, there is no consensus on the component price. The numbers used
in this study are only indicative figures (e.g., bm, cb Eb), which have no direct relation
to possible market prices. They do not affect the comparison, as the same scale is
employed in all the systems (S1, S2 and S3).

Additionally, notice that the component specifications appear large in this case. The
components are scaled down, which means that, for example, sτ > 1 and γv > 2.63,
are not necessary. The models are always valid within their feasible ranges based on
the measurement data. The right combination of the speed ratio of the CVT over
time γv, air-flow rate of the cooling system φa, ratio coverage sγ , the scaling factor for
the EM sτ and the scaling factor for the battery sb will be determined simultaneously
by the optimization algorithm, which is discussed in the next section.

This section presents a convex EV model and its associated cost models for the
co-design optimization problem. A data-driven approach is used to derive the convex
CVT and EM models. In particular, the coupling between the EM and CVT from
design and control perspectives is described in detail. Compared to the original
model based on measurements, the convex CVT power loss model is developed with
a correlation accuracy of 98%. The convex EM power loss and power limitation
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models are developed with correlation accuracies of 95% and 99%, respectively. An
experimentally validated thermal EM-CVT model is subsequently presented. Finally,
convex mass and cost models that are size-dependent for the CVT and EM are created.
The overall system has a large number of states, and there is strong coupling between
the CVT and EM. By applying CP, not only will it find an optimal solution but also
it will find the solution in a computationally efficient manner, allowing for extensive
parameter variation studies and evaluation of diverse design aspects on system and
component level, which will be discussed in the next section.

4.4 Numerical optimization

On the basis of the convex models developed in the last chapter, the objective of the
co-design optimization strategy is to minimize the TCO. It aims at generating an
optimal control trajectory of the speed ratio of the CVT (γv) and finding the desired
air-flow rate of the cooling system (φa). Furthermore, it aims to identify the optimal
sizes of the CVT (sγ), EM (sτ ) and battery (sb). Based on (4.1), the overall co-design
optimization problem in S3 can be formulated as follows:

min
N∑
k=1

ρe Pb(sγ, sτ , sb, Eb(k), θm(k), θc(k), θo(k), θi(k), φa(k), γv(k) | vv(k),

av(k)) ∆t+ Sd

Sv
(Cc(sγ) + Cm(sτ ) + Cb(sb)), (4.57)

s.t. (4.9)− (4.54). (4.57a)

The final time is fixed, as the drive cycle is given. The final state of the battery
energy is not constrained, considering the battery capacity and the power demand
of the drive cycle. The overall optimization problem is convex, including convex
cost function, models and constraints. Basic convex functions, e.g., linear, quadratic,
quadratic-over-linear and opposite of geometric mean functions, and operations that
preserve convexity, e.g., nonnegative weighted sums and pointwise maximum, are used
to verify model convexity. For example, the battery mass model (4.55) is linear and
the CVT cost model (4.52) is quadratic. A quadratic-over-linear term is used in the
EM loss model (4.29). This optimization problem is solved by using SDPT3 [206].
Implementation of the co-design optimization method is provided in Appendix F.

4.5 Optimization results and discussion

4.5.1 Control and design freedom

The co-design optimization method tends to obtain a globally optimal solution by
simultaneously optimizing the design and control variables to minimize the TCO. As
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illustrated in Figure 4.16, the EM operation in S1 is relatively fixed, which has no
control freedom because of the fixed gear ratio. The EM has to operate according to
the driving conditions, which can hardly be efficient in consideration of real-world
dynamic behavior. In contrast, the EM in S2 has relatively more freedom to adjust
operating points to reduce the power dissipation, by changing the speed ratio of the
CVT, depending on the loading conditions. Yet, implementing the standard CVT
controllers developed for conventional vehicles (with internal combustion engine) would
reduce only the EM power losses (Section 4.2), regardless of the CVT efficiency. While
the EM operation in S2 is efficient, which follows its OOL, the system (combined
EM and CVT) is not able to operate efficiently over a dynamic cycle (WLTC). The
combined EM and transmission losses are thus higher in S2 than that in S1, as shown
in Figure 4.17. The co-design optimization strategy, however, takes full advantage of
control freedom (continuous ratio adjustment depending on the driving conditions)
provided by the CVT. Specifically, apart from the EM power dissipation, the CVT
power losses are also monitored in S3. The CVT speed ratio over time γv (4.17) is
selected to improve the overall system efficiency. Ratio variation that results in a
higher loss is penalized. Smooth ratio change improves efficiency, drivability and
reduced ELOP power losses. This effect can be seen in Figure 4.17, where the CVT
power dissipation in S3 is significantly lower than that in S2 and the system efficiency
is higher. The EM efficiency is also high in S3, as demonstrated in Figure 4.16.

Additionally, the control freedom offered by the CVT creates design flexibility, which
is not explored by S2, as the component sizes are fixed. The design space is larger
in S3, with different combinations of CVT (4.19) and EM (4.28) sizes, which bring
opportunities of optimizing the system from design perspective. The optimal com-
ponent sizes, namely the right combination of the scaling factor for the battery (so

b),
scaling factor for the EM (so

τ ) and the ratio coverage of the CVT (so
γ), are eventually

determined by the co-design optimization method based on the coupling between the
EM and CVT, cost function, and the drive cycle.

As shown in Table 4.1, the maximum EM torque is reduced from sτ = 1 in S1 and S2
to sτ = 0.79 in S3. Reduced EM torque and increased base speed decrease the EM
losses (Figure 4.16). The optimal battery size is found and the number of battery
cells is reduced because of improved efficiency. The EM in S3 has the same maximum
power as the other systems. Because the same EM from the SST-based EV on the
market (S1) is utilized in S2, which is not optimized for the CVT application. Even if
the EM is made smaller in S2, the overall system efficiency is not necessarily always
be higher, see Figure 4.9 about the OOL, as the CVT efficiency is not considered.

This reduced EM size is achieved due to a variable ratio coverage. The right ratio
coverage of the CVT can also thus be determined in combination with the EM size in
terms of torque and power. It is reduced from [0.7,2.63] with a ratio coverage of 3.76
before optimization to [0.7,2.34] with a ratio coverage of 3.34 after optimization. In
S2, the CVT is oversized considering the WLTC. First, the CVT used in S2 is based
on an off-the-shelf component, which is not optimized. Second, the CVT is controlled
only to reduce the EM power dissipation, regardless of the CVT size. The system
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Figure 4.16: EM operating points on the WLTC. (Top to bottom) S1, S2, and S3.
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Figure 4.17: Comparison of energy consumption between S1 (with a total vehicle mass of
1670 kg), S2 (with a total vehicle mass of 1700 kg) and S3 (with a total vehicle mass of 1666
kg) on the WLTC, where RL represents road load. The transmission (TR) losses include
the ELOP power dissipation, which is zero in S1. The EM power losses include the effect of
the DC-AC inverter.

mass (Table 4.1) is thus reduced in S3 due to the reduced component sizes, resulting
in a decrease in power demand (Figure 4.17).

Table 4.1: Comparison of component parameters between S1, S2 and S3.

Parameter Unit S1 S2 S3

Transmission ratio - 9.02 [4.47,16.8] [3.5,11.68]
EM scaling factor - 1 1 0.79
Battery cells - 264 264 253
Maximum EM torque Nm 290 (τm) 290 228
EM base speed rpm 3293 (ωm,b) 3293 4188
Maximum EM power kW 100 (Pm) 100 100
Curb weight kg 1252 (mcw) 1252 1252
Transmission mass kg 26 (ms) 56 (mc) 52
EM mass kg 74 (mm) 74 58
Battery mass kg 318 (mb) 318 303
Driver mass kg 90 (md) 90 90

Owing to high CVT power losses in S2, the energy consumption is reduced by around
3.1% in S1. Compared with S2, because of the reduction in the system power losses
(Figure 4.17), the energy consumption is decreased by around 5.1% in S3. The
decrease in the CVT power dissipation contributes more to the energy saving. Given
the component sizes, the component costs are calculated based on (4.52), (4.54) and
(4.56). As shown in Figure 4.18, compared with S1, the system cost is increased
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by around 5.1% in S2, as the CVT cost is higher than the SST price. Due to the
reduction in the component sizes (Table 4.1), compared to S1, the system cost is
reduced by around 1.8% in S3. Reduced EM torque decreases the EM mass and cost.
The decrease in the battery and EM prices contributes more to the cost saving.
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Figure 4.18: Comparison of normalized system cost between S1, S2 and S3, where the EM
cost includes the DC-AC inverter.

Overall, as shown in Figure 4.19, S3 has the lowest TCO because of reduced energy
consumption and system cost, which is around 2% lower than S1. The optimization
results demonstrate that the optimized EM-CVT system can be compact, lightweight,
energy-efficient, and cost-effective, very different from its traditional image. Addi-
tionally, it can be suggested that automotive suppliers could greatly benefit from
highly integrated components and systems to maximize their system efficiency and
minimize cost targets. It can also be observed that for CVT-based EVs, reducing
the maximum EM torque and increasing the base speed while having a higher slope
of OOL compared with that of SST are beneficial. Most importantly, it shows the
importance of cycle-driven (Section 4.3.2) and co-design (Section 4.4) in identifying
the optimal control trajectories and component sizes. Specifically, it finds the trade-off
between CVT power losses (4.22), CVT size (4.19), EM power losses (4.29), and EM
size (4.28), based on the combined EM-CVT characteristics (Figure 4.8) and cost
function (4.57).

4.5.2 Sequential design versus simultaneous design

The strength of co-design (simultaneous design in this case) lies in the fact that it
finds the optimal design and control variables simultaneously to minimize the cost
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Figure 4.19: Comparison of normalized TCO between S1, S2 and S3.

function for a strongly coupled problem, which is the case for the integration of the
EM and CVT (Figure 4.1). The CVT speed ratio (control) influences the CVT and
EM sizes (design/plant), and vice versa (e.g., (4.22) and (4.29)). The cost function,
namely the minimization of the TCO (4.1), consists of the energy consumption (4.6)
and system cost (4.7), and both are affected by the design and control variables. In
order to demonstrate the effectiveness of the co-design approach in S3, it is compared
to a sequential design (SD) method. Background information on sequential approach
can be found in Chapter 2. Note that for purposes of comparison, not all the plant
parameters are predetermined. SD is defined as follows:

• SD: Based on S3, assuming that the EM size is fixed (i.e., sτ = 1) in order to
achieve the required performance (Section 4.1), the goal is to find the CVT
speed ratio over time, CVT and battery size reducing the TCO.

Referring to (4.57), the corresponding cost function is given by

min
N∑
k=1

ρe Pb(sγ, sb, x(k), u(k) | sτ ) ∆t+ Sd

Sv
(Cc(sγ) + Cm + Cb(sb)), (4.58)

where Cm is a constant because of the fixed EM size. Other constraints remain the
same, which can be found in Table F.1. The comparison between SD and S3 is shown
in Figure 4.20.

It can be seen from Figure 4.20 that the energy consumption and system cost are
reduced in S3 compared with SD. Overall, the TCO is decreased by around 3.4% in
S3. The primary reason is that the control and design freedom provided by the CVT
cannot be fully exploited in SD because of the fixed EM size. Admittedly, the CVT
is optimized in SD, especially the CVT cost because of a reduced ratio coverage of
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Figure 4.20: Comparison of normalized EC, SC and TCO between SD (with a total vehicle
mass of 1677 kg) and S3, where EC represents the energy consumption and SC the system
cost.

around 2, which is significantly lower than that of 3.34 in S3. Nevertheless, the EM
and battery optimization are not taken into account, leading to a higher system cost.
The control trajectory identified may not be efficient for the overall system. In SD,
the problem is decoupled and the interconnections between the CVT (4.22), EM (4.29)
and battery (4.40) are not considered, resulting in a higher TCO. For an inherently
coupled problem (i.e., the integration of the EM and CVT), SD creates a separation
and cannot guarantee an optimal solution. This issue is tackled by the co-design
approach (S3), where the right combination of the control policy and component sizes
reducing the TCO is identified considering the coupling between the components from
design and control perspectives.

4.5.3 Towards a low-power application

As illustrated in Figure 4.16, the usage of the available EM torque is low considering
WLTC. It implies that powertrain components are typically oversized (considering
WLTC) to meet certain vehicle performance requirements. The selection of electric
powertrain components (e.g., EM) for future EV applications is still an ongoing
question. Current selection criteria are largely based on performance requirements,
such as top speed, acceleration time and gradability (Section 4.1), which usually lead to
oversized components, considering drive cycles used for efficiency indicators. Therefore,
even with the co-design approach, the downsizing potential is limited (Section 4.5.1).
High performance, however, may not be required in urban driving. In order to see the
downsizing potential, a low-power (LP) design is utilized as an example. Note that
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for purposes of comparison, the EM design is not restricted by (4.27). LP is defined
as follows:

• LP: Based on S3, assuming that there are no performance requirements (Section
4.1), the aim is to find the optimal design and control variables reducing the
TCO while satisfying drive cycle requirements.
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Figure 4.21: Comparison of normalized EC, SC and TCO between LP (with a total vehicle
mass of 1635 kg) and S3, where EC represents the energy consumption and SC the system
cost.

The objective function in this case is similar to (4.57). The comparison between LP
and S3 is shown in Figure 4.21. It can be observed from Figure 4.20 that compared
with LP, the energy consumption and system cost are decreased in S3. Overall, in S3,
the TCO is reduced by around 4%. The main reason is that LP takes full advantage of
the control and design freedom provided by the CVT without performance constraints.
Compared to S3, all the parameters as presented in Table 4.1, Figure 4.17 and Figure
4.18 are reduced in LP, e.g., the maximum EM power is reduced from 100 kW in S3 to
54 kW in LP with a CVT ratio coverage of around 2.06. The battery size is decreased
in LP as well. The minimum required component size is found in LP. For a specific use
case (WLTC) and a given EM-CVT system (combined EM-CVT characteristics), there
is a lower bound for the system (i.e., the CVT, EM and battery) so as to complete the
driving mission. The result also demonstrates the importance of co-design optimization
in determining the system size for a representative use case, considering the coupling
between the EM and CVT (combined EM-CVT characteristics). Although reduction
of peak power has a negative effect on vehicle performance (e.g., the 0-50 km/h and
0-100 km/h acceleration times of LP are around 6 s and 18 s, respectively), LP is
energy-efficient and cost-effective, which can be used for urban driving that does not
require high performance.
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4.5.4 Thermal performance

The EM is a power source. It is also a heat source, and so does the transmission.
They generate heat during operation, which needs to be taken away efficiently by a
cooling system. For purposes of comparison, S1, S2 and S3 have the same control
target, maintaining the EM temperature below its thermal limit 65◦C dictated by the
manufacturer at the end of the drive cycle. All the other conditions are the same,
including the coolant flow rate. For simplicity, the problem is translated to finding
a constant air-flow rate for each system over the WLTC. Assume the air-flow rate
is proportional to the cooling power consumption. They are compared in terms of
cooling power consumption and temperature profile.

It is found that φa(S2) = 0.89 φa(S1), which means that compared to S1, the cooling
power consumption is reduced in S2, as shown in Figure 4.22. Recall that the system
losses are higher in S2 (Figure 4.17). The EM power dissipation in S2 is less than
that in S1 but the transmission power dissipation is much higher. In this case, the
EM is more dominant in determining the level of the cooling power consumption.
Another reason is that the thermal mass (EM and CVT) is higher in S2 (Table 4.1).
Moreover, because of topology difference, the extra small off-the-shelf heat exchanger
in S2 enables heat exchange between the EM and CVT and changes the overall thermal
behavior of the cooling system. It is also calculated that φa(S3) = 0.78 φa(S2), which
implies that compared to S2, the cooling power consumption is decreased in S3. They
have the same topology. The primary reason is that the power losses are less in S3,
which requires less cooling power to remove the heat, although the system mass is
reduced in S3. The corresponding temperature profiles are illustrated in Figure 4.23.
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Figure 4.22: Comparison of normalized cooling power consumption between S1, S2 and S3.

Additionally, an important finding from Figure 4.23 is that due to extra heat exchange
between the EM and the CVT, provided by a small heat exchanger, the EM temperature
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Figure 4.23: Comparison of temperature profile between S1, S2 and S3.

and the CVT temperature are very similar in S3. It is a crucial step towards a thermally
integrated EM and CVT, for example, using a combined cooling loop with a dedicated
cooling medium, taking into account such as corrosion, viscosity and conductivity
[160–162]. It would make the system even more compact and efficient.

Note that as the systems overall are efficient, this amount of reduction will not
significantly influence the total energy consumption, although depending on the use
case. Furthermore, the exact value of cooling power is not provided, because detailed
pump and fan signals are not available in the controller area network (CAN) data, as
mentioned in Section 4.3.7. However, based on physics and model validation (Appendix
C.4), the result is representative. Previously, it is shown that there is a strong coupling
between the EM and CVT, and the combined system can be lightweight, efficient and
low-cost. Now, it is demonstrated that they can also be integrated thermally, and a
further reduction in weight, energy usage and cost can be expected. In the future, a
highly integrated EM-CVT system can be anticipated for EV applications.

4.6 Conclusions

A co-design optimization method based on CP is proposed for a CVT-based EV to
minimize the TCO, focusing on the integration of the EM and CVT. The co-design
optimization method finds the optimal CVT speed ratio, air-flow rate of the cooling
system, CVT size, EM size and battery size simultaneously, by taking full advantage of
the control and design freedom provided by the CVT. The optimized system with the
co-design approach decreases the TCO by around 2% compared with an SST-based
EV with reference to a series production vehicle and by around 5.9% compared with a
non-optimized CVT-based EV (based on off-the-shelf components). The advantages
of the co-design approach are also highlighted by comparing to a sequential method.
Moreover, for urban driving, insights into the design of a low-power EV are given
based on the co-design approach, which finds the minimum required component size.
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It can be concluded that although the current EV market is dominated by SSTs,
multi-speed transmissions, e.g., CVTs, are competitive alternatives for EVs in terms
of TCO, due to continuous ratio adjustment depending on driving conditions and
the resulting design freedom. For EV applications, a highly and thermally integrated
EM-CVT system, which is low-cost, efficient, and lightweight, can be anticipated.



Chapter 5

Conclusions and recommendations

This chapter presents the main conclusions of the thesis and gives recommendations
for future developments.

5.1 Conclusions

This thesis has investigated design and control optimization methods for electrified
powertrains considering both the energy and thermal domains. In Chapter 2, an
extensive overview of design and control optimization layers and the related coordina-
tion schemes for electrified powertrains is provided. On the basis of the findings from
Chapter 2, as electrified powertrains comprise hybrid electric vehicles (HEVs) and
electric vehicles (EVs), two case studies are then carried out to show the effectiveness of
the integrated design approach. In Chapter 3, from a control point of view, integrated
energy and thermal management of a continuously variable transmission (CVT)-based
plug-in HEV (PHEV) is explored, from which design considerations are also derived.
In Chapter 4, from optimal design and control perspective, combined optimal design
and control optimization of a CVT-based EV is investigated, which is extended by an
integrated energy and thermal management design. In the introduction, three research
questions have been posed. The answers to the research questions are given below.

5.1.1 Review of design and control of electrified vehicles

In the introduction, the first set of research questions of the thesis regarding the
integrated design approach for electrified vehicles (R1a and R1b) has been posed as
follows:

105
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• R1a: What are the interconnections between the various optimization layers (i.e.,
topology, component size, and control), considering both the energy and thermal
domains; and,

• R1b: How do they influence the optimality of an electrified vehicle design?

The answer to the first set of research questions is summarized as follows: in Chapter 2,
a comprehensive overview of design (topology and size) and control optimization layers
and coordination schemes for electrified powertrains is presented. Both the energy and
thermal domains are taken into account. The general problem of combined topology,
size and control optimization is summarized mathematically. The relationships between
different optimization levels are revealed. Energy saving and cost reduction can
be achieved, by integrating these optimization layers. For optimality, nested and
simultaneous approaches deliver superior performance to sequential and iterative
ones, depending on the coupling and how sensitive the solution is to uncertainties
in the design parameters. Nested coordination methods are often computationally
heavy, whereas simultaneous schemes usually require convexification of the original
problem. From control perspective, current energy and thermal management systems
are classified into separate energy and thermal management systems (SETMSs) and
combined energy and thermal management systems (CETMSs). In CETMSs, control
decisions are made only once at the supervisory level, which outperform SETMSs
with respect to energy efficiency improvement. These improvements are investigated
in detail with examples. It is found that there is a trade-off between optimality,
complexity, computation time, and causality. To reduce the total-cost-of-ownership
(TCO) further, opportunities for future research are identified, such as utilizing
waste heat recovery (WHR) systems, upgrading mechanical actuators, exchanging
heat between powertrain components, and developing integrated plant and controller
optimization methods.

5.1.2 Control of hybrid electric vehicles

In the introduction, the second research question of this thesis with respect to integrated
energy and thermal management of HEVs (R2) has been posed as follows:

• R2: What is the fuel efficiency improvement of using a DSWHR system com-
prising an EGWHR sub-system and an EPWHR sub-system in a CVT-based
PHEV with cabin heating and cold-start conditions?

The answer to this research question is given as follows: in Chapter 3, an integrated
energy and thermal management system (IETMS) is proposed to quantify the impact
of cold-start conditions on the fuel-saving potential and the benefit of employing
WHR technologies on the ultimate fuel savings of a CVT-based PHEV with cabin
heating. In cold-start conditions, the engine has to bring its thermal energy to the
desired thermal energy level, leading to excess fuel consumption. The dual-source
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waste heat recovery (DSWHR) system recovers waste heat from the engine exhaust
gases and the electric path, which increases the battery energy content and decreases
the battery load, resulting in additional fuel savings. The optimal solution is identified
by using dynamic programming (DP). On the basis of validated component models, it
is shown that a cold-start increases the fuel consumption significantly, up to around
7.1%, depending on the initial engine temperature. The DSWHR system improves
the fuel economy remarkably, up to around 13.1%, which provides insights into the
design of WHR technologies and the dimensioning of electrified powertrain components.
During electric driving, waste heat from the electric path can be used to heat the
engine to reduce the impact of a cold-start on the fuel consumption. Utilizing a small
exhaust gas waste heat recovery (EGWHR) sub-system and a small electric path waste
heat recovery (EPWHR) sub-system can obtain the same fuel economy as the ideal
warm-start condition. The battery size can be reduced due to the recovered power
from the DSWHR system. The cold impact and recovered power also depend on the
driving conditions. The fuel saving of using the DSWHR system is even higher on a
more aggressive drive cycle.

5.1.3 Co-design of electric vehicles

In the introduction, the third set of research questions of the thesis regarding integrated
design and control of CVT-based EVs (R3a and R3b) has been posed as follows:

• R3a: What are the interconnections between the CVT and EM in an EV including
the thermal domain; and,

• R3b: How can they be efficiently and optimally designed and controlled in order
to minimize the TCO?

The answer to the third set of research questions is summarized as follows: in Chapter
4, a convex programming (CP)-based co-design optimization approach is proposed
for a CVT-based EV, concentrating on the integration of the electric machine (EM)
and CVT. A single-speed transmission (SST)-based EV model in reference to a series
production vehicle is firstly built, which is experimentally validated. A CVT-based
EV model is then created on the basis of the SST-based EV model, where only the
SST is replaced by a CVT (based on off-the-shelf component, which is not optimized).
The CVT-based EV model is subsequently optimized with the co-design optimization
method. Convexification procedures, especially the dependencies between the EM
and CVT from design and control perspectives, are presented in detail. Although
convex modeling introduces approximation error, it is small in this case due to the
small discrepancy between the convex and original models based on measurements.
The optimized system with the co-design method reduces the TCO by around 5.9%
compared to the non-optimized CVT-based EV (based on off-the-shelf component) and
by around 2% compared to the SST-based EV. The co-design optimization strategy
identifies the optimal CVT speed ratio and air-flow rate of the cooling system to
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reduce the TCO, by taking full advantage of the control and design freedom provided
by the CVT. It simultaneously finds the optimal sizes of the battery, EM and CVT.

Moreover, the strengths of the co-design method are highlighted, by comparing with a
sequential approach. For urban driving, insights into the design of a low-power EV
are provided as well, which is energy-efficient and cost-effective. The results show
that even though SSTs currently dominate the EV market, multi-speed transmissions,
for example, CVTs, are suitable for EVs. A CVT can be a competitive alternative in
terms of TCO, thanks to the continuous ratio adjustment functionality depending on
the driving conditions and the resulting design freedom. The strong coupling between
the EM and CVT recommends that these two components should be designed together
by automotive suppliers. A highly and thermally integrated EM-CVT system that is
efficient, affordable, and lightweight can thus be anticipated for EV applications.

5.2 Recommendations

This thesis has addressed various topics in optimal design and control of electrified
powertrains. To further fulfill the potential of an electrified vehicle and reduce the
TCO, the design and control optimization as presented in this thesis can be extended,
by taking into account extra relevant aspects. Several research directions are identified
below.

5.2.1 Design and control optimization

Based on the review in Chapter 2, it is found that integrated design and control of
a complete electrified powertrain taking into account both the energy and thermal
domains to reduce the TCO has yet to be addressed, while satisfying performance,
driving comfort, passenger thermal comfort, and reliability requirements. In order
to formulate this optimization problem, an integrated powertrain and thermal man-
agement configuration based on the latest technologies is required. There are many
variants of this architecture. For example, different powertrain topologies would require
distinct thermal management architectures. There are also many ways of exchanging
heat between the powertrain components. An interesting extension to this thesis is to
develop a tool, which automatically generates all possible and feasible powertrain and
thermal management configurations for different applications. In order to select the
best topology that results in the lowest TCO, the generated feasible powertrain and
thermal management architectures should be evaluated. The objective is to find the
trade-off between the energy consumption, system cost, passenger thermal comfort,
reliability, vehicle performance, and driving comfort. It can provide insights into the
design and control of electrified powertrains in an optimal manner.
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5.2.2 Control optimization

In Chapter 3, the aim is to gain qualitative insights into the order of fuel savings that
could be achieved on system level. Hence, detailed EGWHR and EPWHR models are
not developed. A black-box approach is adopted instead, where lumped efficiencies are
used. Furthermore, the cabin heating power is assumed to be a constant. Developing
detailed WHR and cabin models is recommended for future work. Including the
dynamics and constraints of the WHR and cabin systems in the optimization problem
may change the control decision of the energy and thermal controller, resulting in
different fuel savings. A cost-benefit analysis would also be required for the DSWHR
system.

Moreover, a framework for designing complete energy consumption minimization
strategy (CECMS) is created in Appendix B, which aims at minimizing the overall
energy consumption, including WHR, transient, and steady-state thermal behavior.
This strategy obtains a close-to-optimal solution and it is online implementable. But
it is necessary to implement the CECMS with a case study to verify its optimality, by
using DP as a baseline. A sensitivity analysis of the co-states should also be conducted
in the presence of driving condition uncertainties.

5.2.3 Design optimization

In Chapter 4, for the purpose of this study, decreasing the maximum EM torque
and increasing the EM base speed are taken into account. To better represent the
EM dynamics depending on the size in reality, an extension to the current study is
to investigate other scaling techniques for the EM, for example, axial scaling, radial
scaling, and rewinding. This would influence the control and design. Moreover,
implementing a combined EM-CVT cooling circuit with a dedicated cooling medium
is recommend to identify its energy-saving potential compared with current thermal
management topologies. Additionally, electric oil pump (ELOP) sizing can also be
included in the optimization problem and finding the right size for an application
would further increase the overall driveline efficiency.





Appendix A

Dynamic programming

Given a system, dynamic programming (DP) can be employed to find the optimal
control input by minimizing a cost function. The main ingredients of a DP problem
are summarized here, and interested readers are referred to [10, 58], where a rigorous
treatment of this subject is given. Considering a discrete-time dynamic system:

xk+1 = fk(xk, uk, wk), k = 0, 1, ..., N − 1, (A.1)

where k represents discrete time, xk ∈ Xk the state of the system, uk ∈ Uk the control
input, wk the disturbance, N the control horizon, and fk the system update.

Let the initial condition be x0. The cost of using a specific control policy π =
{µ0, µ1, µ2..., µN−1} on the system is written as

Jπ(x0) = gN(xN) +
N−1∑
k=0

gk(xk, µk, wk). (A.2)

The optimal sequence πo is the one that minimizes Jπ:

Jo(x0) = min
π∈Π

Jπ(x0), (A.3)

where Π represents all admissible sequences.

Next, suppose a given state xi occurs at time i. The cost-to-go from time i to time N
can be expressed as

Jπ(xi) = E

{
gN(xN) +

N−1∑
k=i

gk(xk, µk(xk), wk)
}
. (A.4)

The truncated policy πo(xi) = {µo
i , µ

o
i+1, µ

o
i+2, ...µ

o
N−1} is the optimal solution for this

sub-problem. This is Bellman’s principle of optimality.

Assume wk is known in advance, referring to deterministic dynamic programming
(DDP). For every x0, Jo(x0) is equal to J0(x0), which is given by the last step of the
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algorithm described below. Proceeding backwards, the terminal cost is calculated by

JN(xN) = gN(xN). (A.5)

Then, the intermediate step is computed by

Jk(xk) = min
uk∈Uk(xk)

gk(xk, uk) + Jk+1(fk(xk, uk)). (A.6)

Moreover, if uo
k = µo

k(xk), which minimizes (A.6) for each xk and k, the control
sequence πo = {µo

0, µ
o
1, ..., µ

o
N−1} is optimal.



Appendix B

Towards an online implementable
strategy

It is known that the computation time of dynamic programming (DP) increases
exponentially with the number of states (e.g., thermal states), the so-called curse
of dimensionality [58]. Furthermore, DP demands that the driving profile is known
a priori, which is not implementable. In real situations, driving conditions are not
available in advance, which requires the control strategy to calculate the solution
online. Therefore, it is important to devise an online implementable strategy that
preserves optimality, taking into consideration both energy and thermal aspects. This
is realized by establishing relationships between DP, Pontryagin’s minimum principle
(PMP), and equivalent consumption minimization strategy (ECMS).

B.1 Dynamic programming

DP offers sufficient conditions for the global optimality and provides insights into
the design of an online energy and thermal management system. In DP, the optimal
control policy is found using an exhaustive search by evaluating the following value
function, referring to (3.53), in which the dynamic states are embedded,

minu(k)∈U : J(x(k), k) =

G(x(kn), kn)

+
kn−1∑
k0

(1 + ce,1 (θe − θe(k)) ece,2 (θe−θe(k))) ∆mf(k) ∆t Hl

,
(B.1)

where U represents the admissible controls and G(x(kn), kn) represents the terminal
cost. The intermediate cost can be calculated by

113



114 B.2. Pontryagin’s minimum principle

J(x(k), k) = min
u(k)∈U

J(x(k + 1), k + 1)

+ (1 + ce,1 (θe − θe(k)) ece,2 (θe−θe(k))) ∆mf(k) Hl

.
(B.2)

B.2 Pontryagin’s minimum principle

Mathematically, DP, which is a numerical representation of the Hamilton–Jacobi–
Bellman (HJB) equation, has a close relation with PMP, which originates from
the Calculus of Variations [88]. The computing time is reduced significantly, as
PMP evaluates second-order differential equations. Note that PMP yields necessary
conditions that the optimal solution must satisfy. Using convex models (which can
be derived from the nonlinear models described in Section 3.3) and a convex cost
formulation the existence of sufficient conditions for global optimality can be proved.
Moreover, in the context of energy management problems, the solution computed
is very close to the DP outcome, as made evident by [88]. The optimal control law
minimizes the Hamiltonian function at each instant,

H(x(k), λ(k), u(k), k) ≥ H(x(k), λ(k), uo(k), k), (B.3)

where λ represents the co-state vector. Traditionally, the Hamiltonian comprises a
cost criterion (e.g., the fuel power (B.1)), and the battery dynamics (3.51), which
strikes the balance between the fuel consumption and the battery electricity. In the
presence of the engine thermodynamics (3.35) corresponding to cold-start conditions,
the engine heating cost is added to the Hamiltonian. The extended PMP can be
formulated as

H =(1 + ce,1 (θe − θe(k)) ece,2 (θe−θe(k))) ∆mf(k) Hl

+ λξ(k) ξ̇(k) + λθe(k) θ̇e(k), (B.4)

where the co-state λξ can be interpreted as the weight of the battery electricity. In this
case, the price of using the battery is reduced, due to the DSWHR system. Normally,
necessary conditions for solution optimality reduce the original optimization problem
to a boundary value problem, which is then solved by a shooting algorithm [207].
The initial values of the co-states, thus, play a crucial role in obtaining the optimal
solution. In charge sustenance mode, the battery operates in a very narrow range,
which implies that the open circuit voltage and the internal resistance are almost
constants [139]. Hence, the state-of-charge (SOC) dynamics ξ̇ does not depend on the
SOC itself, giving

dλξ
dk = −∂H

∂ξ
= 0. (B.5)

Therefore, λξ is a constant, which is equal to the initial value (i.e., λξ(k) = λξ(k0)).
Similar to the approach used in [208, 209], the initial co-state can be obtained from
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the DP results, which can be computed by

λξ(k) = − 1
Vb Qb

∂J(ξ, θe, k)
∂ξ

∣∣∣∣∣
ξo(k),θo

e (k),k
. (B.6)

Equation (B.6) generates the trace of the SOC, which is expected to fluctuate around
a constant, and this reference value can be calculated in a least-squares sense. While
λξ is typically a constant, the co-state of the engine temperature changes over time.
For instance, as the engine temperature increases, the heating cost decreases. The
engine temperature trajectory can also be attained from the DP algorithm; that is,

λθe(k) = − 1
ch ce me

∂J(ξ, θe, k)
∂θe(k)

∣∣∣∣∣
ξo(k),θo

e (k),k
. (B.7)

Denote the heating interval as [k0, kw] and the warm interval as [kw, kn]. The engine
temperature is represented by θe,w during the warm interval and kw represents the
time instant when the engine temperature reaches its operating temperature for the
first time. As the engine temperature increases and reaches its operating temperature,
the cold impact vanishes and the corresponding co-state value approaches zero; that is

λθe(kw) = 0. (B.8)

The relationship between the co-state λθe and the engine temperature can be identified
through post-analysis (referring to Section 3.5.2) by utilizing polynomial functions:

λθe = an θ
n
e + an−1 θ

n−1
e + ...+ a0, (B.9)

where an, an−1, and a0 are the fitting coefficients. The co-state values of the engine
temperature can be pre-calculated and stored.

B.3 Complete energy consumption minimization
strategy

It should be noted that PMP still demands the future drive cycle to be given beforehand.
To deal with driving condition uncertainties, ECMS, which is essentially derived from
PMP, is often used; in which, the battery electricity is translated into its equivalent
fuel cost [70]. ECMS and PMP share almost the same structure, with the equivalence
factors being the co-states [210]. Admittedly, it is difficult to use ECMS as an online
strategy to replicate the optimal solution obtained from PMP. Nevertheless, a close-
to-optimal solution can be expected. Using results from DP and PMP, this study
proposes a complete energy consumption minimization strategy (CECMS) framework,
including both energy and thermal aspects. As the driving condition is not known in
advance, the equivalence factor λξ changes over time; furthermore, λξ can be regulated
with a PI controller [211], by tracking a reference,

λξ(k) = λξ(k0)− kξ,p (ξ(k)− ξr)− kξ,i
∫ kn

k0
(ξ(λξ)− ξr) dλξ, (B.10)
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where kξ,p and kξ,i are the proportional and integral gains of λξ, respectively. The
reference value can be chosen as the final SOC, which is equal to the initial SOC. More
advanced adaptation methods can be found in [212, 213]. The co-state of the engine
temperature can be retrieved from the pre-stored tables, as mentioned above. Note
that, so far, only the transient behavior of the engine—namely, the cold interval—has
been taken into consideration. For the warm interval, it is assumed that θe,w = 80 ◦C
for [kw, kn]. In practice, however, the engine temperature often fluctuates around
the operating temperature, and the temperature variation corresponds to the energy
consumption of the cooling system. The power request is non-negligible and should
be determined at the supervisory level. In contrast, conventional control strategies
treat them separately, where the energy management system and the engine cooling
system are not combined. The goal of the integrated controller is to keep the engine
temperature as close as possible to the operating temperature with minimum power
consumption. The equivalence factor of the warm interval is different from that of the
cold period, which can be updated by

λθe,w(k) = θe(kw)− ke,p (θe,w(k)− θe,r)− ke,i

∫ kn

kw

(θe,w(λθe,w)− θe,r) dλθe,w , (B.11)

where ke,p and ke,i are the proportional and integral gains of λθe,w , respectively. Initially,
when the engine temperature is lower than the desired temperature θe, it follows the
temperature dynamics of (3.35). Once the operating temperature is reached, assume
that its dynamics are subject to θ̇e,w, where the cooling power is considered. Moreover,
a new control input is added to the control vector, which controls the actuator of the
cooling system, associated with the cooling power consumption [138]. The optimization
problem during the warm interval is formulated as

H(ξ, θe,w, λξ, λe,w, u, k) = ∆mf(k) Hl + λξ ξ̇ + λθe,w θ̇e,w, (B.12)

where θ̇e,w represents the corresponding cooling power consumption. Therefore, in
reality, in order to achieve optimal performance, the CECMS is defined as

H =


(1 + ce,1 (θe − θe(k)) ece,2 (θe−θe(k))) ∆mf(k) Hl

+ λξ ξ̇ + λθe θ̇e, if k ∈ [k0, kw],
∆mf(k) Hl + λξ ξ̇ + λθe,w θ̇e,w, if k ∈ [kw, kn].

(B.13)

The control variable is decided by

u(k) ∈ argmin
u∈Uad

H(ξ, θe, θe,w, λξ, λθe , λθe,w , u, k). (B.14)

Since the optimal solution is found offline in Section 3.5, to preserve optimality and
enable online implementation, a CECMS framework considering both energy and
thermal domains is proposed, by establishing relationships between DP, PMP, and
ECMS. The real-time implementable CECMS make decisions (e.g., on the power split
and heating/cooling power) only once at the supervisory level to minimize the overall
energy consumption, which can also be extended to consider multiple thermal systems.



Appendix C

SST-based EV model

The single-speed transmission (SST)-based EV model (S1) is validated by measurement
data obtained from a series production vehicle driven on a real-world drive cycle,
namely intercity drive cycle (ICDC). The measurement data are extracted from the
controller area network (CAN) signals of the vehicle control unit (VCU) in the series
production vehicle driven on the ICDC. The sampling time is 0.01 s. The vehicle
specification is provided in Table G.1.

C.1 Longitudinal dynamics

The drive cycle introduced in Section 4.3.2 is also used in S1. Given the drive
cycle represented by vehicle velocity vv and acceleration av and taking into account
aerodynamic drag force, rolling resistance, and inertia force, the demanded wheel
torque τw and speed ww can be calculated by

τw(k) =
(

1
2 ρa cd Af v

2
v(k) + cr mv g sign(vv(k)) +

(
mv + 4 Jw

r2
w

)
av(k)

)
rw, (C.1)

ωw(k) = vv(k)
rw

, (C.2)

where the total vehicle mass mv is given by

mv = mcw +ms +mm +mb +md, (C.3)

where ms is the SST mass (Table 4.1).
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C.2 Single-speed transmission

The SST including the final drive provides a fixed speed ratio γs between the EM and
the wheel. To meet the torque and speed at the wheels given by (C.1) and (C.2), the
required torque and speed of the SST are obtained by

τs(k) =


τw(k)
ηs γs

, if τw(k) > 0,

ηs τw(k)
γs

, if τw(k) ≤ 0,
(C.4)

ωs(k) = γs ωw(k), (C.5)
where ηs is the combined efficiency of the fixed gear ηg and the final drive ηf .

C.3 Electric machine

The electric machine (EM) is a permanent magnet synchronous machine (PMSM),
featuring motoring and generating modes. Its specification is provided in Table 4.1.
The torque and speed of the EM are computed by

τm(k) = τc(k), (C.6)

ωm(k) = ωp(k). (C.7)
Given the same inputs (vehicle speed and acceleration) from the ICDC on which the
series production vehicle is driven, the outputs of the EM from the developed model
(simulation), namely the EM torque and speed, are compared with the corresponding
CAN signals regarding EM torque and speed (measurement), as shown in Figure
C.1 and Figure C.2, respectively. It should be noted that the measurement data are
presented as they are in this study. In consideration of noise, driving environment,
data recording, and effect of CAN signals, the simulation and measurement resemble
well.

The mechanical power of the EM is then given by

Pm(k) = τm(k) ωm(k). (C.8)

An efficiency map as shown in Figure C.3 is used to calculate the power losses of the
EM, i.e.,

Pm,loss(k) = Pm,loss(τm(k), ωm(k)). (C.9)
Therefore, the electrical power supplied to/by the EM is expressed as

Pm,el(k) = Pm(k) + Pm,loss(k). (C.10)

The EM torque and speed are bounded by

τm(k) ∈ [τm(ωm(k)), τm(ωm(k))], (C.11)

ωm(k) ∈ [ωm, ωm]. (C.12)
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Figure C.1: Validation of the EM torque for the ICDC.
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Figure C.2: Validation of the EM speed for the ICDC.
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Figure C.3: Efficiency map of the EM including the DC-AC inverter.
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C.4 Thermal EM-SST model

The SST (Ps,loss) and EM (Pm,loss) power losses appear as heat, which is removed by a
thermal management system (TMS), as demonstrated in Figure C.4. The EM and the
SST are physically attached, and the SST is cooled based on oil splashing, where its
heat is taken away by the EM cooling medium indirectly and the ambient air directly
due to convection. The EM dissipates heat to the ambient air. Moreover, the cooling
medium driven by a pump removes heat from the EM. When the EM temperature is
higher than a predefined threshold, the EM is cooled down with a radiator. The goal
of the TMS is to maintain the EM temperature below its prescribed thermal limit. A
lumped-parameter method is used to capture the thermal behavior of the EM and
SST. On the basis of first principles, the thermal EM-SST model is described by

EM (θm)

Pump (ϕf)

EM cooling medium

R
ad

ia
to

r/
 F

an
 (
ϕ

a)
 

θi

Pm,loss

Heat exchange

Convection to ambient

SST (θs)

Convection to ambient 

Switchover valve
θo

Ps,loss (θa)

Figure C.4: Thermal management architecture for the EM-SST.

cm mm θ̇m(k) =Pm,loss(k)− hm Am (θm(k)− θo(k))− km (θm(k)− θs(k))
− ha Aa (θm(k)− θa),

(C.13)

cf mf θ̇o(k) = hm Am (θm(k)− θo(k))− φf cf (θo(k)− θi(k)), (C.14)

ch cs ms θ̇s(k) = Ps,loss(k) + km (θm(k)− θs(k))− hc Ac (θs(k)− θa), (C.15)

cf mf θ̇i(k) = φf cf (θo(k)− θi(k))− ε φa(k) ca (θo(k)− θa). (C.16)
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The thermal EM-SST model is validated by measurement data. Since the SST
temperature is not available in the CAN data, the EM temperature is used for
validation. The measurement data are extracted from the CAN signal regarding the
EM temperature of the VCU in the series production vehicle driven on the ICDC, as
described in Appendix C. The estimated thermal parameters are provided in Table
G.1. As shown in Figure C.5, a good resemblance can be seen between the model and
measurement.
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Figure C.5: Validation of the EM temperature for the ICDC.
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Figure C.6: Validation of the battery output power for the ICDC.
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C.5 Battery

The battery provides the power required by the EM, i.e.,

Pb(k) = Pm,el(k), (C.17)

Ėb(k) = −Pb(k). (C.18)

For the same inputs from the ICDC on which the series production vehicle is driven,
the battery output power from the model is compared to the corresponding CAN signal
regarding the battery output power in terms of voltage and current (measurement).
The comparison can be seen in Figure C.6, where the model and measurement resemble
well.



Appendix D

CVT-based EV model

As presented in Section 4.1, a continuously variable transmission (CVT)-based EV
model (S2) is created based on S1 (Appendix C). The main difference is that the SST
model as described in Section C.2 is replaced by a CVT model and its associated
electric oil pump (ELOP) model. The SST mass in (C.1) is replaced by mc (Table
4.1). The thermal model is the same as that in Section 4.3.7. All the other component
models remain the same as S1.

D.1 Continuously variable transmission

In this context, the variator of the pushbelt CVT has two pulleys, a primary pulley
(subscript "p") and a secondary pulley (subscript "s"), which are connected by a
pushbelt. The CVT provides a continuous variable speed ratio γv between the primary
pulley and the secondary pulley, which permits the EM speed to be independent of
the wheel speed to optimize its operating point. Given the required torque τw (C.1)
and speed ωw (C.2) at the wheels, the torque and speed of the primary pulley are
obtained by

τp(k) =


τw(k)
ηf γv(k) , if τw(k) > 0,

ηf τw(k)
γv(k) , if τw(k) ≤ 0,

(D.1)

ωp(k) = γv(k) ωw(k), (D.2)
The total torque input to the CVT is thus given by

τc(k) = τp(k) + τc,loss(k), (D.3)

where τc,loss represents the torque loss in the CVT, which is described by a lookup
table, as shown in Figure D.1, i.e.,

τc,loss(k) = τc,loss(τp(k), ωp(k), γv(k)). (D.4)
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Figure D.1: CVT torque loss at γv = 0.7.

The power losses of the CVT can thus be calculated by

Pc,loss(k) = τc,loss(τp(k), ωp(k), γv(k)) ωp(k). (D.5)

The primary torque and speed ratio are constrained by

τp(k) ∈ [τp, τp], (D.6)

γv(k) ∈ [γv, γv], (D.7)
where γv is the overdrive ratio and γv the underdrive ratio. Bounds on the primary
speed will be implicitly taken into consideration in the constraints on the EM speed.

D.2 Electric oil pump

Hydraulic actuation power is needed from the ELOP to vary the CVT speed ratio
γv. A general schematic of an actuation system can be found in [214]. Given a CVT
speed ratio γv, the running radii of the primary pulley, secondary pulley, secondary
pulley at overdrive ratio and secondary pulley at underdrive ratio can be obtained by

Rp(k) = 2 (Lb − 2 Sc)

π (γv(k) + 1) +
√
π2 (γv(k) + 1)2 + 4 (γv(k)− 1)2

(
Lb
Sc
− 2

) , (D.8)

Rs(k) = γv(k) Rp(k), (D.9)

Rs = 2 (Lb − 2 Sc)

π (γv + 1) +
√
π2 (γv + 1)2 + 4 (γv − 1)2

(
Lb
Sc
− 2

) , (D.10)
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Rs = 2 (Lb − 2 Sc)

π (γv + 1) +
√
π2 (γv + 1)2 + 4 (γv − 1)2

(
Lb
Sc
− 2

) , (D.11)

where the belt length is given by

Lb = (Db − 2 Sr) π. (D.12)

The sheave position of the secondary pulley can then be calculated by

Ss(k) = 2 tan(αp) (Rs(k)−Rs), (D.13)

Ss = 2 tan(αp) (Rs −Rs). (D.14)
To maintain the CVT speed ratio, the secondary clamping force including spring and
centrifugal forces, the primary clamping force including centrifugal force, the spring
force of the secondary pulley, and the centrifugal forces of the primary pulley and
secondary pulley can be computed by

Fs,c(k) = max(|τp(k)|, τc) cos(αp) f
2 µb Rp(k) , (D.15)

Fp,c(k) = kpks(k) Fs,c(k), (D.16)
Fs,s(k) = ks (Ss − Ss(k)) + Fs,p, (D.17)

Fp,ce(k) = µp

(
3 ωp(k)

100π

)2

, (D.18)

Fs,ce(k) = µs

(
3 ωp(k)

100 π γv(k)

)2

, (D.19)

where kpks is described by a lookup table, assuming a constant safety factor, i.e.,

kpks(k) = kpks

(
τp(k), 30 ωp(k)

π
, γv(k)

)
. (D.20)

The clamping forces resulting from applied pressure for both pulleys can thus be
obtained by

Fp(k) = Fp,c(k)− Fp,ce(k), (D.21)
Fs(k) = max(Fs,c(k), Fs,s(k))− Fs,s(k)− Fs,ce(k). (D.22)

Therefore, the required ELOP pressure can be calculated by

pe(k) = max
(

max
(
Fp(k)
105 Ap

,
Fs(k)
105 As

)
, pe

)
. (D.23)

Moreover, given the ratio change, the primary pulley flow and secondary pulley flow
can be computed by

kp(k) = 60 cp(k) dRp(k)
dγv(k) , (D.24)
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ks(k) = 60 cs(k) dRs(k)
dγv(k) , (D.25)

where the flow coefficients for both pulleys are given by

cp(k) = −2000 Ap tan(αp), (D.26)

cs(k) = −2000 As tan(αp). (D.27)

Hence, in consideration of leakage and lubrication ql, the demanded ELOP flow rate
can be obtained by

qe(k) = max(−kp(k) ∆γv(k),−ks(k) ∆γv(k)) + ql. (D.28)

The ELOP hydraulic actuation power is then computed by

Pe(k) = pe(k) qe(k). (D.29)

Consequently, the ELOP power dissipation is calculated, by using an efficiency map,
i.e.,

Pe,loss(k) = Pe,loss(pe(k), qe(k)). (D.30)



Appendix E

Convex programming

Convex programming (CP) demands all the models to be convex. A brief introduction
to CP is given here, and interested readers are referred to [199] for a rigorous treatment.
A convex optimization problem can be formulated as follows:

min f0(x),
s.t. fi(x) ≤ 0, i = 1, ...,m,

hj(x) = ATj (x)−Bj = 0, j = 1, ..., n,
(E.1)

where fi(x) are convex functions and hj(x) are affine functions. The feasible set of
this optimization problem is convex with m convex sublevel sets and n hyperplanes.
A convex function can be described as

f(β x1 + (1− β) x2) ≤ β f(x1) + (1− β) f(x2), (E.2)

where β ∈ [0, 1], and it means that the line segment between any two points lies
above the graph, as illustrated in Figure E.1. Models that are originally non-convex

(x1,f(x1))

(x2,f(x2))

Figure E.1: A typical convex function.

can be reformulated based on approximations, relaxations, and change of variables.
Model convexity can be verified, by using basic convex functions, e.g., linear functions,
quadratic functions, quadratic-over-linear functions, and opposite of geometric mean
functions, and operations that preserve convexity, such as nonnegative weighted sums
and pointwise maximum. A product of two variables is generally not a convex function.
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Appendix F

Implementation of co-design
optimization method

As described in Section 4.4, the overall co-design optimization problem is solved by
employing SDPT3. A general and high-level representation of the optimization method

Drive cycle 

WLTC

Satisfy 

convergence 

criteria?

Initialize parameters 

and variables

Evaluate cost function

TCO
Change design/ 

control variables

Obtain battery, EM and CVT sizes

CVT speed ratio and air-flow rate

Battery state of energy and component temperatures

Energy consumption, system cost and TCO

Y

N

Input

Procedure

Output

Figure F.1: Flowchart of the co-design optimization method, where TCO is the total-cost-of-
ownership, EM the electric machine, and CVT the continuously variable transmission.
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consisting of input, procedure and output associated with the co-design problem can
be seen in Figure F.1.

The main procedure is shown in Table F.1. The problem can be recognized as a
semidefinite program, which is translated automatically by a tool CVX into a form
required by SDPT3 [206], permitting the problem to be written in a natural and
readable form, e.g., using expressions/symbols to hold operations over variables. It
solves the dual problem with 161906 variables and 68119 constraints for improved
computation efficiency (see [199] for duality). It is solved in around 95 s.
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Table F.1: Co-design optimization method.

cvx_precision high
cvx_solver sdpt3
cvx_quiet false
cvx_begin
Optimization variables sτ , sγ, sb, γv, Ec, Pd, P s

c,loss, Pm,loss, Pm, Pm, Pm, Pb, Eb,
φa, θm, θc, θo, θi
minimize Je(sb, sτ , sγ, γv(k), φa(k)) + Js(sb, sτ , sγ)

subject to Pd(k) =
(

1
2ρacdAfv

2
v(k) + crmvgsign(vv(k))

+
(
mv + 4Jw

r2
w

)
av(k)

)
vv(k)

P s
c,loss(k) =c0

(
Pd(k)
ww(k)

)2

+ c1Ec(k) + c2|Pd(k)|+ c3sτww(k)

+ c4sτ + c5
Pm(k) = Pd(k) + P s

c,loss(k)
Pm,loss(k) = e0

P 2
m(k)
Ec(k) + e1Ec(k) + e2|Pm(k)|+ e3sτ + e4

Pm = min{(m0Ec(k) +m1

√
sτEc(k) +m2sτ +m3), sτPm}

Pm = max{(g0Ec(k) + g1

√
sτEc(k) + g2sτ + g3), sτPm}

cmmmθ̇m(k) =Pm,loss(k)− hmAm(θm(k)− θo(k))
− ke(θm(k)− θc(k))− haAa(θm(k)− θa)

cfmf θ̇o(k) = hmAm(θm(k)− θo(k))− φfcf(θo(k)− θi(k))
chccmcθ̇c(k) =P s

c,loss(k) + ke(θm(k)− θc(k))
− hcAc(θc(k)− θa)

cfmf θ̇i(k) = φccf(θo(k)− θi(k))− εrφa(k)ca(θo(k)− θa)
Pb(k) = Pm(k) + Pm,loss(k) + +Pb,loss(k)
Pb,loss(k) = P 2

b (k)RcFc
2Eb(k)+sbN0FcV 2

0

Ėb(k) = −Pb(k)
mc = 1.19s2

γ + 39.12
mm = sτmm
mb = sbmb
Cc = acmc
Cm = bmsτ
Cb = sbcbEb
γv(k) ∈ [γv, sγγv]
Ec(k) ∈ [γ2

vω
2
w(k), s2

γγ
2
vω

2
w(k)]

Eb(k) ∈ [Fb
2 sbN0(V 2

c − V 2
0 ), Fb

2 sbN0(V 2
c − V 2

0 )]
s2
γ ∈ [s2

γ, s
2
γ]

sτ ∈ [sτ , sτ ]
sb ∈ [sb, sb]
θm(k) ∈ [θm, θm]
θo(k) ∈ [θo, θo]
θi(k) ∈ [θi, θi]

cvx_end





Appendix G

Main parameters of EV model

The main EV model parameters are provided in the following table.
Table G.1: Main parameters of EV model.

Parameter Value Unit Description

ρa 1.18 kg/m3 Density of air
cd 0.27 - Aerodynamic drag coefficient
Af 2.21 m2 Frontal area
cr 0.00724 - Rolling resistance coefficient
Jw 1 kgm2 Wheel inertia
rw 0.312 m Wheel radius
ηg 0.98 - Fixed gear efficiency
ηf 0.985 - Final drive efficiency
γv 2.63 - Underdrive ratio
γv 0.7 - Overdrive ratio
Db 0.2294 m Pushbelt inner diameter
Sr 0.001 m Pushbelt element rocking edge-saddle distance
Sc 0.1715 m Variator centre distance
f 1.3 - Safety factor
αp 11 ◦ Pulley sheave angle
τc 28 Nm Minimum torque for safety calculation
µb 0.1 - Friction coefficient between belt and pulley
ks 20000 N/m Spring stiffness of secondary pulley
Fs,p 500 N Spring preload of secondary pulley
µp 312.93 N/1000rpm2 Centrifugal force coefficient of primary pulley
µs 30.06 N/1000rpm2 Centrifugal force coefficient of secondary pulley
Ap 0.01833 m2 Plunger area of primary pulley
As 0.009541 m2 Plunger area of secondary pulley
pe 5 bar Minimum pump pressure for solenoid feed
ql 2 lpm Miscellaneous ELOP flow rate
pe 20 bar Maximum ELOP pressure
qe 25 lpm Maximum ELOP flow rate
Ve 12 V ELOP voltage
Ie 65 A ELOP current
cc,0 0.000061 W/Nm2 Fitting coefficient of convex CVT model
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cc,1 0.0034 W/rpm2 Fitting coefficient of convex CVT model
cc,2 0.045 - Fitting coefficient of convex CVT model
cc,3 -7.13 Nm Fitting coefficient of convex CVT model
cc,4 479.6 W Fitting coefficient of convex CVT model
cc,5 -365.65 W Fitting coefficient of convex CVT model
cm,0 0.067 W/Nm2 Fitting coefficient of convex EM model
cm,1 0.000016 W/rpm2 Fitting coefficient of convex EM model
cm,2 0.028 - Fitting coefficient of convex EM model
cm,3 583.89 W Fitting coefficient of convex EM model
cm,4 447.4 W Fitting coefficient of convex EM model
c+

m,0 -0.049 W/rpm2 Fitting coefficient of convex EM power limitation model
c+

m,1 231.45 Nm Fitting coefficient of convex EM power limitation model
c+

m,2 21258.88 W Fitting coefficient of convex EM power limitation model
c+

m,3 -11711.25 W Fitting coefficient of convex EM power limitation model
c−

m,0 0.049 W/rpm2 Fitting coefficient of convex EM power limitation model
c−

m,1 -231.45 Nm Fitting coefficient of convex EM power limitation model
c−

m,2 -21258.88 W Fitting coefficient of convex EM power limitation model
c−

m,3 11711.25 W Fitting coefficient of convex EM power limitation model
cm 430 [186] J/kgK Specific heat capacity of EM
cc 630 [7] J/kgK Specific heat capacity of CVT
cs 630 [7] J/kgK Specific heat capacity of SST
cf 4090 J/kgK Specific heat capacity of EM cooling medium
ca 1000 J/kgK Specific heat capacity of air
ch 0.62 [7] - CVT heating coefficient
hm 2000 W/m2K Heat transfer coefficient between EM and its cooling

medium
ha 10 W/m2K Heat transfer coefficient between EM and ambient air
hc 10 W/m2K Heat transfer coefficient between CVT and ambient air
km 111 W/K Heat transfer coefficient between EM and CVT
kh 125 W/K Heat transfer coefficient between EM cooling medium

and CVT oil
Am 0.2 m2 Heat exchange area between EM and its cooling medium
Aa 0.32 m2 Heat exchange area between EM and ambient air
Ac 0.17 m2 Heat exchange area between CVT and ambient air
mf 1.5 kg Cooling medium mass
φf 0.35 kg/s Coolant flow rate
ε 0.6 [115] - Radiator effectiveness
θm 65 ◦C Maximum EM temperature
θo 65 ◦C Maximum cooling medium temperature at EM outlet
θi 65 ◦C Maximum cooling medium temperature at EM inlet
Sd 46.532 km Two repeated WLTC length
Sv 300000 km Traveled distance of vehicle in its lifetime
ρe 0.23 e/kWh Price of electricity
ac 13 [7] e/kg Specific cost of CVT
bm 1000 e Specific cost of EM
cb 250 e/kWh Specific cost of battery
Eb 25.4 kWh Battery energy
N0 264 - Battery cells
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