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Chapter 1

Introduction

1.1 Modern online markets
In the current economy goods and services are increasingly sold via the internet.
Online retailers, such as Amazon, offer millions of products for sale including books,
mobile phones, computers, clothes and various other electronics. Some companies (e.g.
Nike and even some supermarkets) have both physical stores and an online channel
in order to sell their products. There are also companies, for example companies like
eBay, that operate entirely via the internet.

There are multiple ways to sell goods and services via the internet. In some cases,
potential consumers can browse through the various pages on the website of the seller,
where different products are listed together with their prices. If the consumer finds
the product that he is looking for and is willing the pay the displayed price, he can
proceed to purchase the item by making a payment via the internet. Another popular
way to purchase goods on the internet is via an online auction. An auction is a way of
selling items, which can be goods or services, that are put up for bid by an auctioneer.
In an auction the potential buyers (or bidders) compete with each other by placing
bids for an item. The value of the bid indicates the price they are willing to pay for an
item. The higher the bid, the better the chance that a bidder will win. For example,
the company eBay offers owners of products the opportunity sell their products to
potential buyers via an auction and eBay acts as a market where demand meets
supply.

With the rise of the internet, auctions have become increasingly important in the
domain of online advertising. In the online display advertising market, publishers
(owners of websites) sell page views or impressions to interested advertisers. This
market has grown rapidly over the last ten years. This growth is associated with a
new online selling channel through which publishers can sell impressions to advertisers
called the Real-Time Bidding (RTB) market. In the RTB market publishers auction
off impressions in real-time as users visit their websites.

1



2 Chapter 1

The design of the online marketplaces and technological advances have a number
of implications for companies that operate on or sell products on online markets.
First, it has become possible to store large amounts of information related to various
business operations. Second, a lot of transactions in online markets are high volume
transactions with a repeated nature. Third, it has become easier and less costly for
companies to change key parameters (e.g. prices, website design etc.) that effect sales
and revenues.

These developments present both opportunities and challenges for the practice of
revenue management. The fact that outcomes at various parameter settings can be
logged and stored results in a lot of information. This information provides companies
with opportunities in the sense that this information can be leveraged in order to
design models and algorithms that can be used for improved decision making in
various revenue management problems. However, leveraging this information can
also be a challenging task. Most decisions in revenue management problems are
made in uncertain environments and often only partial feedback of these decisions is
received. As a consequence, designing models and algorithms that leverage available
information is not a straightforward task.

The topic of this thesis is revenue management in online markets. We study a
number of revenue management problems that arise in online markets such as online
advertisement markets and online retail markets. The revenue management prob-
lems that are considered in this thesis can be broadly organized in three categories:
allocation decisions, pricing decisions, and buying decisions. In the context of on-
line advertising, these decisions are often related to the decisions of buyers and sellers
that participate in online auctions for advertisements and to the interaction of various
selling mechanisms that are used in order to sell online advertisements. Furthermore,
some pricing decisions are also studied in the context of online retail markets. Most
of the revenue management problems that are studied involve decision making under
some form of uncertainty and where the decisions affect the (partial) feedback that is
obtained from the environment.

The rest of this Chapter is organized as follows. In Section 1.2 and Section 1.3
some background information is provided related to the main topics and concepts that
are discussed in this thesis. Section 1.2 provides background information on online
advertising markets and Section 1.3 provides background information on auctions and
dynamic pricing problems. In Section 1.4 the main contributions of this thesis are
discussed. Section 1.5 provides an outline of the rest of this thesis.

1.2 Online advertising markets
The two main types of online advertising are display advertising and sponsored search
advertising [57, 161]. Display advertising refers to advertisements that are displayed
when users visit websites in browsers and are typically displayed in banners located in
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specific ad slots on a website. Sponsored search advertising refers to advertisements
that are displayed when users search for keywords on search engines. In this thesis
we focus on online display advertising.

In online display advertising there are buyers and sellers. The sellers are called
publishers and they can be thought of as owners of websites. Publishers sell impres-
sions to potential buyers: when a user visits a webpage with an advertisement slot,
an impression is generated and this means that there is an opportunity to display
an advertisement to this user in this advertisement slot. The buyers correspond to
advertisers that are interested in the procurement of impressions on the websites of
publishers in order to reach an intended audience (e.g. potential consumers).

There are a number of channels through which publishers can sell their inventory of
impressions. The two main categories are the guaranteed selling channel and the non-
guaranteed selling channel. In the guaranteed selling channel a number of impressions
are sold in advance at a fixed price that is negotiated up front. In the non-guaranteed
selling channel (also called the Real-Time Bidding or Real-Time Buying market)
impressions are sold in real-time via auctions on ad exchanges.

In the rest of this section we provide some background information about the
various selling channels and discuss the main properties that are relevant for this
thesis.

1.2.1 Guaranteed selling channel
In the guaranteed selling channel impressions are bought and sold via guaranteed
contracts. Guaranteed contracts are agreed upon ahead of time: the arrangements
are made before the users visit the websites of the publisher. A guaranteed contract
specifies the number of impressions that will be sold, when these impressions will be
sold, at what price they will be sold, and the advertisement that will be displayed.

Guaranteed contracts are often useful when advertisers have a long-standing rela-
tionship with the publisher that facilitates the customization of ad formats and price
negotiations (e.g., quantity discounts, bundling). If advertisers are risk averse, pay-
ing a premium to buy a guaranteed inventory in advance helps mitigate uncertainty
in either the auctions’ outcomes or the amount of impressions that will be available
in RTB on specific dates. Finally, advertisers highly concerned with ensuring brand
safety will choose guaranteed contracts so their ads appear on high-quality, reputable
websites [57].

1.2.2 Real-Time Bidding market
In the Real-Time Bidding (RTB) market impressions are sold in real-time as users
arrive on the websites of the publisher. The RTB market is a non-guaranteed selling
channel because the buyer (the advertiser) is not guaranteed to win a fixed number
impressions. More specifically, for each impression, the buyer bids against other
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buyers in an online auction and he only wins the impression if he wins the auction.
Initially, the RTB market was considered a useful alternative selling channel in

addition to the guaranteed selling channel. In the early days, it was mostly used to sell
the remnant inventory of impressions that could not be sold via the guaranteed selling
channel. However, due to technological advances and the possibility of advanced
targeting of users, the RTB market has become an important selling channel in its
own right. According to a report by the Interactive Advertising Bureau1, digital
revenues for the full year 2018 surpassed 100 billion US Dollars for the first time.
Internet advertising revenues in the United States totaled 107.5 billion US Dollars
for the full year of 2018, with Quarter 4 of 2018 accounting for approximately 31.4
billion and Quarter 3 of 2018 accounting for approximately 26.6 billion. Furthermore,
revenues for the full year 2018 increased 21.8% over the full year 2017.

The main players in the RTB market are the advertisers, the publishers and the
various intermediaries (see Figure 1.1 for a schematic overview). These intermediaries
provide the infrastructure, tools and algorithms that needed in order to buy, sell and
serve ads. In RTB there are three main intermediaries: Supply Side Platforms (SSPs),
Demand Side Platforms (DSPs) and an Ad Exchange (ADX) which connects SSPs and
DSPs. Publishers operate on the RTB market via SSPs. The SSPs are intermediaries
that provide publishers with the infrastructure and tools to manage their inventory of
impressions and to sell their impressions on Ad Exchanges (ADX). Advertisers which
are interested in displaying advertisements are connected to DSPs. The DSPs are
intermediaries that facilitate the advertisers in the ad buying process. Advertisers
can provide DSPs with extra information related to their advertising campaigns. For
example, advertisers can specify how much budget they have available for bidding on
impressions in specific periods, targets for the amount of impressions that they want
to win, and various targeting criteria related to their intended audience (i.e., the users
that visit websites of publishers). The DSPs subsequently take this information into
account when bidding on behalf of the advertisers on the Ad Exchange.

When a user visits a webpage with an advertisement (ad) slot an impression is
generated and the publisher sends a request to the ADX (via an SSP) indicating
that an ad can potentially be displayed in this particular ad slot. At the same time,
advertisers that are connected to DSPs send bid requests to the ADX indicating that
they are willing to bid for this impression. A real-time auction then decides which
advertiser is allowed to display its ad and the amount that the advertiser needs to
pay.

There are several ways for publishers to sell their impressions via the RTB market.
Two of the most common approaches are by using the waterfall mechanism and by
using Header Bidding. These approaches differ with respect to how the publisher
interacts with the different selling channels and intermediaries. These approaches are
discussed in more detail below.

1See https://www.iab.com/insights/2018-full-year-iab-internet-ad-revenue-report/

https://www.iab.com/insights/2018-full-year-iab-internet-ad-revenue-report/
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Figure 1.1: Overview of RTB market.

1.2.3 Waterfall mechanism
Publishers are typically connected to multiple SSPs and can choose any one of these
SSPs in order sell an impression on the RTB market. The waterfall mechanism is a
way to make this decision in a systematic way.

In Figure 1.2 a schematic overview of the waterfall mechanism is presented. In the
waterfall mechanism the SSPs are ordered or prioritized in hierarchical levels [12, 97,
129]. When an impression becomes available, the publisher first contacts SSP number
1. If the impression is not sold, then SSP number 2 is contacted. If the impression
is not sold, then SSP number 3 is contacted. This process continues until either the
impression is sold or when the publisher exhausts the list of available SSPs. If at the
end of the process the impression is not sold, the impression can be offered for sale
on a sales channel specific for remnant inventory (this is called the backfill option) or
by placing an in-house ad.

The revenue from selling an impression can vary due to differences in SSPs. Some
SSPs are connected to more advertisers and may be able to obtain higher revenues
from these advertisers. Typically, the list of SSPs in the waterfall mechanism is
ordered based on the historical performance of SSPs (e.g. average revenue obtained
from impressions sold in the past).
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SSP 1

SSP 2

SSP ...

backfill/ in-house ad

Figure 1.2: Overview of waterfall mechanism.

1.2.4 Header Bidding
Header Bidding (HB) is an alternative approach to sell impressions on the RTB market
that has been recently proposed [12, 57, 129]. The main purpose of header bidding
was to address some of the drawbacks associated with the waterfall mechanism [12,
57, 129]. One drawback of the waterfall mechanism is related to the publisher side
of the market: SSPs are contacted one-by-one and in some cases some SSPs are not
contacted at all, and this could lead to missed revenue for the publisher since the
publisher does not know the revenue associated with each SSP. In other words, the
publisher may potentially not get the best deal for each impression. Another drawback
is related to the advertiser side of the market: some advertisers are not connected to
all SSPs, and as a consequence, the advertisers that are connected to SSPs that have
a high priority in the waterfall have an advantage because they have the opportunity
to bid on more impressions.

In Figure 1.3 a schematic overview of the header bidding process is presented.
In header bidding, the publisher connects to multiple SSPs simultaneously in order
to sell an impression. Each SSP connects to an ADX and is involved in a separate
auction (we refer to this as the internal auction of the SSP) and reports a value (a
bid) back to the publisher indicating the revenue for the publisher. The publisher
observes the reported bids from each SSP and determines a winner among the SSPs
(the header bidding auction). In practice, the SSP that returns the highest bid is
the winner. The winning SSP will notify the winning advertiser and the winning
advertiser will then be able to show its advertisement in the ad slot.
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1.3 Auctions and dynamic pricing
Auctions have been a central tool in selling goods and services across history.
Nowadays, auctions are used in many of industries. Governments for instance use
auction to sell public goods such as spectrum licenses. Auctions are also used to sell
unique and historical art pieces. Given the rise of technology and new industries, auc-
tions have gained even more prevalence. In online advertisement, there are millions
of auctions taking place daily.

There are three main players in an auction: the seller, the auctioneer (auction
organizer), and a set of potential buyers. In most cases the seller and the auctioneer
are the same entity but this need not be the case.2 The seller owns the item and wants
to sell it to a potential buyer. The auctioneer organizes (or conducts) the auction
on behalf of the seller by using a specific auction format. There are many auction
formats: two common formats are the English auction and the sealed-bid first-price
auction.

In one variant of the English auction [108], the sale is conducted by an auctioneer
who begins by calling out a low price and raises it, typically in small increments, as
long as there are at least two interested bidders. The auction stops when there is only
one interested bidder. Each bidder indicates an interest in purchasing at the current

2In online advertising markets the publisher is the seller, but the auction is organized by (and
takes place on) the Ad Exchange. Furthermore, the auction format is also decided by the Ad
Exchange and not the seller.
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price in a manner apparent to all by, say, raising a hand. Once a bidder finds the
price to be too high, he signals that he is no longer interested by lowering his hand.
The auction ends when only a single bidder is still interested. This bidder wins the
object and pays the auctioneer an amount equal to the price at which the second-last
bidder dropped out.

In the sealed-bid first-price auction bidders submit bids in sealed envelopes and
the bidder submitting the highest bid wins the object and pays what he bid [108].

While there are many auction formats, all auctions tend to have some common
properties. A common property of auctions is that they elicit information (typically
in the form of bids)3, from potential buyers regarding their willingness to pay, and
the outcome—that is, who wins what and pays how much—is determined solely on
the basis of the received information and the rules of the auction [108].

As was mentioned before, auctions arise in many settings and there are a number
of different auction formats. The auction formats that are relevant for this thesis are
discussed in more detail in the next sections.

1.3.1 Second-price auctions
With the rise of the internet, auctions have become increasingly important in the do-
main of online advertising. Most of the inventory of impressions in display advertising
is sold via second-price auctions. Consider the following setting. There is a seller that
wants to sell an item and there are a number of buyers (or bidders) that are inter-
ested in the item. In a single item sealed-bid second-price auction, the protocol is as
follows: (i) each buyer submits a bid for the item; (ii) the buyer with the highest bid
will receive the item; (iii) the buyer that receives the item pays an amount equal to
the second highest bid; (iv) the revenue for the seller equals the second highest bid.

There is another variant of the second-price auction that is often used in online
advertisement markets and this variant is called the second-price auction with a re-
serve price. In a second-price auction with a reserve price4, the seller specifies a value
(called the reserve price) which represents the minimum price that he wants for the
item. The revenue for the seller at a particular reserve price depends on bids placed in
the auction and the value of the reserve price. The revenue of the seller is determined
according to the following rules: (i) if the highest bid in the auction is at least as
large as the reserve price, then the revenue equals the maximum of the reserve price
and the second highest bid; (ii) if the highest bid in the auction is smaller than the
reserve price, then the revenue equals zero (and the item is not sold).

In Figure 1.4 and Figure 1.5 numerical examples are given of second-price auctions
in the context of online advertising on the RTB market. In Figure 1.4 an example

3An example where information is not elicited using bids, is the English auction. In the example
of the English auction, potential buyers provided the required information by raising and lowering
their hands.

4In online advertising applications, the reserve price may or may not be disclosed to the bidders
(see e.g., [169]).
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DSP 1:
$2

DSP 2:
$3

DSP 3:
$5

Auction result: DSP 3 wins and pays $3

SSP via ADX

Figure 1.4: Example of second-price auction.

Reserve Price: $4

DSP 1:
$2

DSP 2:
$3

DSP 3:
$5

Auction result: DSP 3 wins and pays $4

SSP via ADX

Figure 1.5: Example of second-price auction with a reserve price.

of a second-price auction is presented and in Figure 1.5 an example of a second-price
auction with a reserve price is presented. In these examples, the DSPs submit bids
to an SSP (via an ADX) on behalf of the connected advertisers (the buyers). In the
examples, DSP 3 is the winner of the auction. When there is no reserve price, the
revenue for the seller (the publisher) equals the second highest bid. In the auction
with a reserve price, the revenue equals the reserve price.

The numerical examples show the impact that a reserve price can have on the
revenue of the seller. The reserve price provides the seller with a parameter that he
can adjust in order to influence the revenue from the auction. By properly adjusting
the reserve price the seller can increase his revenue and this is especially beneficial in
situations where there is a large gap between the second highest bid and the highest
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bid [108].

1.3.2 Posted-price auctions
In a posted-price auction [20, 106] the protocol is much simpler compared to second-
price auctions. In a posted-price auction, the protocol is as follows: (i) the seller
announces (or posts) a price; (ii) the buyer decides to buy or decides not to buy; (iii)
if the buyer decides to buy, the revenue for the seller equals the announced price; (iv)
if the buyer decides not to buy, the revenue for the seller equals zero.

Posted-price auctions can be seen as a special case of a second-price auction with
a reserve price when the reserve price is announced to the bidders. Consider a second-
price auction with a reserve price where there is a single buyer. If the buyer places
a bid that is at least as high as the reserve price, then the item will be sold and the
revenue for the seller equals the reserve price. If the buyer places a bid below the
reserve price, then the item is not sold and the revenue for the seller equals zero.
The link with posted-price auctions is made by interpreting the reserve price as the
posted price in a posted-price auction. Thus, placing a bid that is at least as high as
the reserve price is equivalent to accepting the posted price. Similarly, placing a bid
below the reserve price is equivalent to not accepting the posted price.

1.3.3 Floor prices and auction formats in online advertising
Publishers typically specify a minimum price – called the floor price – for their im-
pressions when selling on the RTB market (via an ad exchange or header bidding).
For example, if the publisher thinks that the final result (i.e., the offered revenue) of
the header bidding auction is too low, the publisher can use a floor price to indicate
that he is not willing to sell the impression for that revenue. Floor prices allow pub-
lisher some control on the revenues they receive: if a publisher thinks its inventory is
undervalued (and it does not want to sell) it can enforce this via the floor price.

Most of the inventory of impressions in display advertising is sold via second-price
auctions with a reserve price [123, 161]. In these auctions, the “reserve price” is
actually the floor price: (i) the publisher selects a value for the floor price and this
value is passed along as information to the SSP; (ii) the value of the reserve price
that is used in the auction is set equal to the value of the floor price. The problem of
determining the optimal floor price is then referred to as the reserve price optimization
problem. This process is illustrated in Figure 1.6. In Figure 1.6 the value of the floor
price equals $4 and this value is passed to the SSP. The reserve price is set equal
to the value of the floor price and the result of the auction and the revenue for the
publisher are exactly the same as in Figure 1.5.

In this thesis, when the publisher is using a floor price and the auction format is
the second-price auction, it is understood that the auction format is the second-price
auction with a reserve price in which the value of the reserve price equals the value
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of the floor price.

Reserve Price = Floor price= $4

DSP 1:
$2

DSP 2:
$3

DSP 3:
$5

Auction result: DSP 3 wins 

SSP via ADX

Final result: impression sold and revenue of publisher
equals $4

Floor price:
$4

Figure 1.6: Example of second-price auction with a floor price.

Note that the concept of a floor price is separate from the specific auction format
that is used: floor prices can also be used in combination with auction formats besides
the second-price auction with a reserve price. Figure 1.7 gives an example of a floor
price with a first-price auction. In Figure 1.7, the publisher selects a floor price of
$6 and this value is passed to the SSP. The highest bid in the auction is $5. Since
the value of the highest bid ($5) is lower than the floor price of $6, the impression is
not sold and the revenue for the publisher is zero. Note that in this example, since
the auction format is the first-price auction, the floor price does not influence amount
that any bidder shall pay (should they win the impression). The floor price is merely
“applied” to the outcome of the auction and is used to decide if the payment that
results from the bid of the winning bidder is acceptable to the publisher (i.e., whether
it is high enough). In the example in Figure 1.7, the bid of the winning bidder was
not high enough.

Whenever floor prices are involved in this thesis, we will always specify: (i) what
the auction format is; (ii) whether the floor price is passed along to the auction
organizer or not; (iii) if the floor price is visible to the bidders or not; (iv) how the
final revenue of the auction is determined.
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Floor price= $6

DSP 1:
$2

DSP 2:
$3

DSP 3:
$5

Auction result: DSP 3 is highest bidder 

SSP via ADX

Final result: impression not sold and revenue of
publisher equals $0

Floor price:
$6

Figure 1.7: Example of first-price auction with a floor price.

1.3.4 Dynamic pricing
In many practical situations the seller of an item does not directly interact with the
buyer in order to sell the item, but instead merely offers the buyer the opportunity
to buy the item. Loosely speaking, in a dynamic pricing problem, the seller sets a
price for the item and afterwards the seller observes a market response. This market
response can have different interpretations and the precise interpretation depends on
the context and the modeling assumptions. For example, the market response can
represent the demand, sales, revenues or profits. One of the main questions from the
seller perspective is how to determine the best price.

Note that in many auction settings there can also be a pricing component. For
example, in second-price auctions with a reserve price, the seller is interested in de-
termining the best or optimal reserve price. Similarly, in posted-price auctions, the
seller wants to figure out what the optimal posted-price is. The problem of finding
the best price (i.e., reserve price or posted-price) can therefore be interpreted as a
dynamic pricing problem. Note however, that dynamic pricing problems also arise in
other settings besides auctions.

In order to illustrate the differences between a posted-price auctions and dynamic
pricing problems, consider the following example. Consider a small webshop that
only sells two items, item A and item B, and where item A has price pA and item
B has price pB . Suppose that we are interested in tracking the sales of item A. In
practice, when buyers arrive at the webshop, the seller does not ask them “Are you
willing to buy item A at a price of pA?” and “Are you willing to buy item B at a
price of pB?”. Instead, buyers browse in the webshop and the seller observes a market
response afterwards: the seller might observe that item A was purchased 10 times
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today. In this example, the fact that item A was purchased 10 times, implies that 10
buyers accepted the take-it-or-leave-it price pA. However, there is no formal “auction
protocol” that is used in the transactions.

Auctions are common and useful in the domain of online advertising, since one
item (e.g. an advertisement slot) is sold at a time, and buyers and sellers directly
interact in order to buy/sell a specific item. Dynamic pricing problems on the other
hand, are more general and can model scenarios that arise in different e-commerce
settings, such as online retail markets for clothes, electronics. For example, on the
website of the sports brand Nike, there are hundreds of products (items) for sale and
there are millions of potential buyers. Asking a potential buyer whether he wants
to purchase an item at a specific price is not feasible or practical, since there are
too many items and buyers would not enjoy the shopping experience on the website.
Instead, online retailers observe a market response: for every item, they observe the
number of times that it is sold and at what particular price during, say, an hour or a
day.

1.4 Contributions of thesis
In this thesis the focus is on revenue management problems in online markets. Sec-
tion 1.2 and Section 1.3 provided background information on some common online
market places and the processes that are involved when selling products on these
market places. A common feature of the processes that were discussed, was the fact
that there are often key parameters that the decision makers have at their disposal
in order to influence certain outcomes (e.g., the revenue from sales). The ability to
adjust these key parameters and observe the outcomes of these adjustments gives rise
to a number of revenue management problems. The central question in these revenue
management problems is: what is the best way to adjust these parameters over time
and how do these adjustments depend on the available information? The fact that
outcomes at various parameter settings can be logged and stored results in a lot of
information that can be useful for the design of algorithms that can be used in various
revenue management problems. This thesis provides models and algorithms that aim
to leverage this information in order to improve decision making in various revenue
management problems.

In this thesis the focus is mostly on revenue management problems where decisions
need to be made under some form of uncertainty. The revenue management prob-
lems that are considered in this thesis can be broadly organized in three categories:
allocation decisions, pricing decisions, and buying decisions. These three categories
are discussed in more detail below.
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1.4.1 Allocation decisions
Two popular selling channels that publishers can use to sell their impressions are the
guaranteed selling channel (by using guaranteed contracts) and the RTB market. In
Chapter 2 of this thesis, we consider a publisher that uses both guaranteed contracts
and a waterfall mechanism in order to sell impressions. These two channels for selling
impressions leads to an allocation decision: (i) what fraction of its inventory should
be sold on the RTB market and (ii) which SSPs should the publisher select in order
to sell its inventory of impressions? This problem setting has a number interesting
features. The first feature is related to the trade-off associated with the allocation
of an impression: a specific impression that is allocated to a guaranteed contract
cannot be sold via an SSP in the waterfall mechanism (and vice versa). The second
feature is related to the uncertainty associated with the ability of an SSP to sell a
particular impression and the risk of ending up with unsold inventory: ideally, in a
feasible allocation all of the impressions should be sold, but due to the uncertainty of
sales on the RTB market there is a risk that an impression is not sold and remains
unused. Furthermore, the publisher has to take into account a constraint that ensures
that enough impressions are allocated to meet the requirements of the guaranteed
contracts.

Previous works do not specify how publishers should make decisions when they
have access to both the RTB market (using a waterfall) and use guaranteed contracts.
Furthermore, the uncertainty of sales on the RTB market is not taken account. There-
fore, in Chapter 2, we address this gap in the literature. In Chapter 2, we propose
a model that takes into account both the guaranteed selling channel and the water-
fall mechanism, and that also takes the uncertainty of sales on the RTB market into
account.

1.4.2 Pricing decisions
Reserve prices in second-price auctions

The first pricing decision that is considered in this thesis is related to the reserve
price optimization problem of publishers in online advertising markets. Most of the
inventory of impressions in display advertising is sold via second-price auctions with
a reserve price [123, 161]. The revenue for the publisher at a particular reserve price
depends on bids placed in the auction and the value of the reserve price. Notice that
the reserve price is a parameter that the publisher can control and by controlling
the reserve price, the publisher can influence the revenue from the auction. Thus,
the publisher needs to make a pricing decision: he needs to decide which reserve
price is the best one to use. The reserve price optimization problem refers to the
problem of how to select the reserve price in order to maximize expected revenue for
the publisher.

There is a lot of existing research on second-price auctions with reserve prices and
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there are several well-known results [108, 120, 126, 143]. For example, [126] shows
how the optimal reserve price can be determined assuming that the distribution of
the bids is known. However, this assumption is not realistic because in practice the
distribution of the bids is unknown. Also, most of the previous literature studies
the reserve price optimization problem from the perspective of the auction designer
(or the auction organizer) that has access to the bids that are placed in the auction.
This may be a reasonable assumption to make for big companies such as Facebook
and Google that own ad exchanges, but it is not a reasonable assumption for most
publishers.

Chapter 3 of this thesis takes the perspective of publishers that are small and
medium sized enterprises (SMEs), and studies the reserve price optimization problem
where the distribution of the bids is unknown and where the bids are not revealed to
the publisher. The only feedback that the publisher receives is whether the impression
was sold or not and the associated revenue. This setting matches the situation of SME
publishers that do not see the bids that are placed on their inventory of impressions
(as they are not the auction organizer). In Chapter 3 we propose a method that
incorporates knowledge about the rules of second-price auctions into a multi-armed
bandit framework for optimizing reserve prices in our limited information setting.

Reserve prices and header bidding

The second pricing decision that is considered in this thesis is related to revenue
management in the setting of header bidding. In particular, we consider a situation
where the publisher uses header bidding in order to connect to multiple SSPs in order
to sell his impressions and where each SSP runs a second-price auction. After the SSPs
run their auctions, they return a value back indicating the revenue for the publisher
if he sells the impression on that particular SSP. The revenue of the publisher equals
the maximum of the values returned back by the SSPs.

Chapter 4 of this thesis studies the following reserve price optimization problem
in the context of header bidding: how should the publisher choose a vector of reserve
prices (one for each SSP) in order to maximize his expected revenue?

This problem has two challenging aspects. First, the set of possible choices is large
and trying each alternative separately would only be useful if the sales horizon (the
number of impressions that will be sold) is very large. Second, the optimal vector
of reserve prices can in general not be found by finding the best reserve price at the
(individual) SSP level and then combining these reserve prices. In Chapter 4 we
take both of these aspects into account and we model the reserve price optimization
problem on a header bidding platform as slate bandit problem with a non-separable
reward function. In a slate bandit problem, a slate consists of a number of slots and
each slot has a number of base actions. At the slot level, every base action leads
to a reward. The slate-level reward is a function (a combination) of the rewards at
the slot level. In the context of header bidding, the slots are the SSPs, the base
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actions are the reserve prices for each SSP, and the slate-level reward is obtained
by taking the maximum of the rewards at the slot level. The first challenging aspect
mentioned above means that the number of slates is large relative to the sales horizon.
The second challenging aspect means that reward function is such that the optimal
slate-level action cannot be determined by learning the optimal slot-level for each slot
individually. We refer to such a reward function as non-separable.

In Chapter 4 we propose algorithms for the slate bandit problem with a non-
separable reward function. To the best of our knowledge, existing algorithms for
slate bandits (see e.g. [70, 99, 132]) do not have performance guarantees when the
slate-level reward function is non-separable, and so in Chapter 4, we address this gap
in the literature. We are mainly interested in cases where the number of slates is
large relative to the time horizon, so that trying each slate as a separate arm in a
traditional multi-armed bandit, would not be useful. In Chapter 4 we show that the
regret – the performance loss compared to the optimal algorithm – of our proposed
algorithms is sub-linear with respect to the time horizon, despite the large number of
slates.

Revenue management with header bidding and ad exchanges

The third pricing decision that we study in this thesis is motivated by the fact that
publishers typically have access to multiple selling mechanisms. More specifically,
some publishers use both header bidding and an ad exchange in order to sell impres-
sions [73, 100, 133].

In Chapter 5, we study how publishers should make decisions in order to maximize
revenues when they have access to both header bidding and an ad exchange in order
to sell impressions. Previous works typically focus on a single selling mechanism (ad
exchanges that use second-price auctions [18, 41, 124, 146, 171]), or focus on revenue
maximization from the perspective of the ad exchange or header bidding partner [97,
133]. These papers, however, do not specify how publishers should make decisions
when they have access to both an ad exchange and header bidding. Therefore, in
Chapter 5, we address this gap in the literature. We consider a publisher that first
observes an offer from header bidding and can accept or reject this offer. If the offer
is rejected, the publisher can try to sell the impression on an ad exchange. In this
problem, the publisher needs to make two decisions: (i) when to accept the offer from
header bidding and when to use the ad exchange; and (ii) if the publisher uses the ad
exchange, which floor price it should use on the ad exchange. In Chapter 5, we study
how publishers should set their floor prices in order to maximize expected revenues
when they have access to both selling mechanisms. We propose two algorithms for this
problem based on techniques from the multi-armed bandit literature, and show that
their regret – the performance loss compared to the optimal algorithm – is sub-linear
in the time horizon.
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Dynamic pricing in e-commerce

The fourth pricing decision that we study in this thesis is related to dynamic pricing
problems in e-commerce settings such as online markets for fashion and electronics.
Many e-commerce companies have the ability to change prices at little costs and this
price experimentation is useful in order to learn the best price. However, frequent
price changes are not always desirable, because it may confuse customers and lead to
negative customer feedback [55]. In practice, companies also have limited inventories
on hand during a selling period. Due to limited inventories, the observed sales are
not equal to demand anymore. As a consequence the true underlying demand is only
partially observed, that is, demand is censored.

Motivated by these observations, Chapter 7 of this thesis studies a dynamic pricing
problem with demand censoring and limited price changes. More specifically, we
consider a seller that faces demand uncertainty and has to adjust his selling price over
the selling horizon in order to learn the optimal price and maximize his cumulative
revenue over the selling horizon. The seller faces a business constraint on the number
of price changes allowed during the selling horizon and the seller only has a limited
(finite) amount of inventories on hand in each selling period. The seller can only
observe the sales (minimum between realized demand and available inventory) and
thus demand is censored. In each period the seller can replenish his inventory to
a particular level. The objective of the seller is to set the best price and inventory
level in each period of the sales horizon in order to maximize his profit. The profit
is determined by the revenue of the sales minus holding costs and costs for lost sales
(unsatisfied demand). In Chapter 7 of this thesis, we propose a policy that adjust
prices and inventory levels for this problem.

1.4.3 Buying decisions
The revenue management problems discussed above take the perspective of the seller.
In this thesis we also study decisions that buyers need to make in online markets.
More specifically, we consider the buying decision of advertisers in online advertising
markets.

Most impressions in online advertising are sold via second-price auctions, however
as indicated by e.g. [10, 11, 122], a non-trivial fraction of auctions only involve a single
bidder and this reduces to a posted-price auction [106] when reserve prices are known:
the seller sets a reserve price and the buyer decides whether to accept or reject it. A
single publisher can track a large number of visitors with similar properties over time
and sell the impressions that are generated by these visitors to buyers. Buyers are
typically involved in a large number of auctions, and if they repeatedly interact with
the same seller, there is an incentive for them to act strategically [10, 11, 78, 122].
These observations have led to the study of repeated posted-price auctions between
a single seller and single (strategic) buyer.
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Previous work (e.g., [10, 11, 75, 76, 122, 159]) has only studied repeated posted-
price auctions from the perspective of the seller that aims to maximize his revenue
and not from the buyer side. Furthermore, previous works assume that the buyer
knows his own valuation with certainty in each round. However, in many practical
situations, the buyer may have a stochastic valuation which is only revealed after he
buys the item. For example, in online advertising applications the buyer (advertiser)
generally does not know the exact value of showing ads to a set of users: some users
may click on the ad and in some cases the ad may lead to a sale, but the buyer only
observes a response after he displays the advertisement to the user.

In Chapter 6 of this thesis, we consider a repeated posted-price auction between
a single seller and a single utility maximizing buyer. In every round, the seller posts
a price and the buyer decides to buy or not at that price. The buyer does not know
the probability distribution of his valuation and only observes a sample from the
valuation distribution after he purchases the item. Moreover, the buyer does not
know the seller’s pricing algorithm or the seller’s price set. Furthermore, the seller
does not know the valuation distribution and needs to learn how to set the price over
time. If the buyer purchases the item, he derives utility from item which is defined as
the difference between his valuation and the price paid. If the buyer does not purchase
the item, the utility is zero. The goal of the buyer is to make buying decisions in
order to maximize his expected utility.

We provide algorithms for buying decisions in posted-price auctions and we study
two types of buyers: strategic buyers and non-strategic buyers. Non-strategic buyers
are only interested maximizing expected utility and given the prices that are observed
and do not attempt to manipulate or influence the observed prices. Strategic buyers
are also interested in maximizing expected utility given the observed prices, but they
also actively attempt to influence future prices that will be offered. We first consider
non-strategic buyers and derive algorithms with performance guarantees that hold
irrespective of the observed prices offered by the seller. These algorithms are then
adapted into algorithms with similar guarantees for strategic buyers.

1.5 Thesis outline and summary
In this dissertation we use a combination of techniques from operations research and
computer science to tackle different revenue management problems that arise in online
markets. The common theme across the Chapters in this thesis is that the decisions
in the revenue management problems are made under uncertainty. The revenue man-
agement problems that are considered in this thesis can be broadly organized in three
categories: allocation decisions, pricing decisions, and buying decisions. Chapters 2,
3, 4, 5, 7 focus on the perspective of a seller and tackles allocation decisions and
pricing decisions. In Chapter 6, the emphasis is on the buyer perspective and studies
buying decisions.
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The chapters of this dissertation are based on papers that have been published in
or have been submitted to peer-reviewed journals and conferences. As a result, all
chapters can be read independently from each other. Below we list the topic of each
Chapter of this thesis and give a brief summary of the content of each Chapter.

In Chapter 2 we consider a display-ad allocation problem where an online publisher
needs to decide which subset of impressions for advertisement slots should be used
in order to fulfill guaranteed contracts and which subset should be sold on supply
side platforms (SSPs) in order to maximize the expected revenue. Our modeling
approach also takes the uncertainty associated with the sale of an impression by
an SSP into account. The way that information is revealed over time allows us to
model the display-ad allocation problem as a two-stage stochastic program. Numerical
experiments are used to assess the performance of our model and to compare it with
a heuristic allocation policy that is used in practice.

In Chapter 3 we consider an online publisher that sells advertisement space via
second-price auctions with a reserve price. We study a limited information setting
where the probability distribution of the bids from advertisers is unknown and the
values of the bids are not revealed to the publisher. Furthermore, we do not assume
that the publisher has access to a historical data set with bids. In Chapter 3 we pro-
pose a method that incorporates knowledge about the rules of second-price auctions
into a multi-armed bandit framework for optimizing reserve prices in our limited
information setting. The proposed method can be applied in both stationary and
non-stationary environments. We conduct extensive experiments in order to compare
our approach with state-of-the-art bandit algorithms. The experiments show that the
proposed method outperforms state-of-the-art bandit algorithms in both stationary
and non-stationary environments.

In Chapter 4 we study a slate bandit problem with a non-separable reward func-
tion and is motivated by the reserve price optimization problem on a header bidding
platform. We are mainly concerned with cases where the number of slates is large
relative to the time horizon, so that trying each slate as a separate arm in a traditional
multi-armed bandit, would not be feasible. Our main contribution is the design of al-
gorithms that still have sub-linear regret with respect to the time horizon, despite the
large number of slates. Experimental results on simulated data and real-world data
show that our proposed method outperforms popular benchmark bandit algorithms.

In Chapter 5 we study how publishers should set their floor prices in order to
maximize expected revenues when they have access to two selling mechanisms, namely
an ad exchange and header bidding, in order to sell impressions on the real-time
bidding market. We propose two algorithms for this problem based on techniques from
the multi-armed bandit literature, and show that their regret – the performance loss
compared to the optimal algorithm – is sub-linear in the time horizon. Experiments
using simulated data and real-world data illustrate the effectiveness of our algorithms.

In Chapter 6 we study buying decisions in repeated posted-price auction where
a seller repeatedly interacts with a single (strategic) utility maximizing buyer for a
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number of rounds. We first consider non-strategic buyers and derive algorithms with
sub-linear regret bounds that hold irrespective of the observed prices offered by the
seller. These algorithms are then adapted into algorithms with similar guarantees
for strategic buyers. We provide a theoretical analysis of our proposed algorithms
and support our findings with numerical experiments. Our experiments show that,
if the seller uses a low-regret algorithm for selecting the price, then strategic buyers
can obtain much higher utilities compared to non-strategic buyers. Only when the
prices of the seller are not related to the choices of the buyer, it is not beneficial to
be strategic, but strategic buyers can still attain utilities of about 75% of the utility
of non-strategic buyers.

In Chapter 7 we study a dynamic pricing problem with demand censoring and
limited price changes. We consider a seller that faces demand uncertainty and has to
adjust his selling price over the selling horizon in order to learn the optimal price and
maximize his cumulative revenue over the selling horizon. The seller faces a business
constraint on the number of price changes allowed during the selling horizon and the
seller only has a limited amount of inventories on hand in each selling period. We
propose a heuristic policy for this problem and study its performance using numerical
experiments. The results are promising and indicate that the regret of the policy is
sub-linear with respect to the sales horizon.

In Chapter 8 we conclude with the main findings of this dissertation. First, we
provide an overview of the main contributions of this thesis. Next, we discuss some
limitations of the approaches used and we indicate some directions for future research.
Finally, we put the contributions of this thesis in a broader context and relate them to
other topics and research areas that relate to revenue management in online markets.
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Display-ad allocation with
guaranteed contracts and
supply side platforms*

In this Chapter we study an allocation problem – the display-ad alloc-
ation problem – that publishers face in online advertising. We consider
a publisher that sells impressions via guaranteed contracts and via the
RTB market by using a waterfall mechanism. In the display-ad allocation
problem, the publisher needs to take the uncertainty of the RTB mar-
ket into account and decide which impressions to allocate to guaranteed
contracts and which impressions to allocate to the RTB market.

*This chapter is based on Rhuggenaath et al. [141].
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2.1 Introduction
In this Chapter, we study the display-ad allocation problem faced by online web
publishers. Many online publishers such as news sites have multiple pages (homepage,
sports, financial, etc.) where they display different advertisements (ads). Ads can
be displayed in different ways such as images, video or text ads and these ads are
displayed on specific ad-slots that are on specific webpages. Each time a user visits a
webpage that contains ad-slots a number of impressions are generated. Two options
that these small online publishers usually have to allocate impressions are to (i) enter
in guaranteed contracts with advertisers, or to (ii) sell an impression on the online ad
auction market via supply side platforms. In this Chapter we focus on the practical
problem faced by our industry partner and other online publishers that are small and
medium size enterprises (SMEs): determining the optimal allocation of impressions
over guaranteed contracts and supply side platforms that maximizes expected revenue.

A guaranteed contract requires a minimum number of impressions to be allocated
to an advertiser (the entity that delivers the content of the ad). The online publisher
usually enters in guaranteed contract with multiple advertisers and these contracts
are specified ahead of time. For example, advertisers can already secure contracts
in January for the upcoming holiday season in December. In addition to allocating
impressions to meet the requirements of guaranteed contracts, online publishers also
have the option to sell the impressions on the online ad auction market. Online
publishers at the SME level typically do not enter directly into this market but operate
via supply side platforms (SSPs). The online publisher offers the impression to the
SSP and the SSP will try to sell it in the online ad market via an auction. Revenue
from such a sale to an SSP varies due to the differences in SSPs such as the connected
advertisers and the organization of the auctions. In addition, if a particular SSP
has been chosen and the auction does not yield a winning advertiser, the publisher
may face a risk of not selling the impression. Many possible factors could determine
the success of an auction such as the relevant advertisers being out of budget or a
particular impression being uninteresting for the connected advertisers. There are
several popular SSPs in the market such as Google, LiveRail, OpenX, Appnexus,
Smaato, and Rubicon, with possibly different pricing models and with connections
to heterogeneous groups of advertisers. Since the SSPs differ with respect to their
connections to advertisers, some SSPs are ‘safer’ than others in the sense that they
are almost always able to sell an impression but at a lower price.

A common heuristic (we refer to this as the Priority Assignment (PA) heuristic)
that SME publishers use is to first meet all the requirements of the guaranteed con-
tracts, and then sell the remaining inventory on the auction market using a waterfall
approach. In this approach the publisher has a list with a ranking of different SSPs
and the publisher tries to sell the impression to the SSP that is as high as possible
on the list. If it is not possible to sell an impression on a particular SSP, then the
publisher tries to sell the impression on the next SSP on the list. Usually, as we get
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lower on the list the probability of successfully selling the impression increases but
at lower prices. At the very bottom the last SSP is usually able to sell almost all
the impressions allocated to it, but at substantially lower prices. We refer to such an
SSP as a ‘safe’ SSP. In this Chapter we present a modeling framework that is suitable
for publishers, who use a waterfall approach combined with guaranteed contracts, to
improve their allocation decisions of impressions.

There are a number constraints that a feasible allocation of impressions needs to
satisfy. The first type of constraints stem from the fundamental trade-off associated
with the allocation of an impression: a specific impression that is allocated to a
guaranteed contract cannot be sold to an SSP (and vice versa). The uncertainty
associated with the ability of an SSP to sell a particular impression and the risk of
ending up with unsold inventory lies at the heart of the second type of constraints.
Ideally, in a feasible allocation all of the impressions should be sold, but due to this
uncertainty there is a risk that an impression is not sold and remains unused. This
uncertainty is another interesting property of the display-ad allocation problem that
is addressed in this work.

Contributions and organization The allocation problem of the online publisher
consists of finding a feasible allocation of impressions, between guaranteed contracts
and SSPs, that maximizes the expected revenue. There are a limited number of
studies on the allocation of impressions to guaranteed contracts and SSPs, but these
studies make restrictive assumptions on the available information that the publisher
has (for example, that the publisher has information about the bids placed in the
online auction). The work in this Chapter therefore aims to fill a gap in the current
literature on internet advertisement allocation. We list our contributions as follows.

• We study the display-ad allocation problem by taking both the trade-off between
the allocation to guaranteed contracts and allocation to multiple SSPs into
account. Our modeling approach also takes the uncertainty associated with
the sale of an impression by an SSP into account. The way that information is
revealed over time allows us to model the display-ad allocation problem as a two-
stage stochastic program. We refer to our model as the Stochastic Programming
(SP) model.

• We investigate the quality of the solutions obtained by the SP model. We find
that one of the key parameters of the model is the fraction of total impres-
sions that need to be allocated to the guaranteed contracts. The gap between
the upperbound and lowerbound of the objective value of the SP model varies
considerably with this parameter and is large enough so that it is worthwhile
to solve the SP model. We find that the SP model performs very well with a
performance gap relative to an upperbound of about 2-3 % in most cases.

• We show the SP model outperforms the allocation policy that is used in prac-
tice by our industry partner. Furthermore, we find that the performance gap
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between the PA heuristic and SP model also shows a clear relationship with
fraction of impressions that are allocated to the guaranteed contracts.

• The results suggest that the benefit of using the SP model is highest in periods
where the website traffic is relatively high compared with the targets for the
guaranteed contracts. An example of such a situation is when there are seasonal
patterns in the demand of advertisers. Another example is when the website
traffic varies depending on the time of the day.

The rest of this Chapter is organized as follows. In Section 2.2 we provide a literature
review. In Section 2.3 we formally state the advertisement allocation problem. In
Section 2.4 we present a stochastic programming formulation and our proposed SP
model for the problem. Section 2.4 also discusses bounds for the SP model. Section 2.5
discusses a practical allocation policy that is used in practice. Section 2.6 investigates
the properties of the solutions returned by running numerical experiments. Finally,
Section 2.7 provides some concluding remarks and directions for future research.

2.2 Related literature
The literature has studied various aspects of internet advertisement allocation. While
our problem has some features in common with previously studied problems, the
developed methods in the literature cannot be applied to our problem.

Online algorithms for matching between advertisers and ad-slots

Part of the literature approaches the advertisement allocation problem as an online
bipartite matching problem where the nodes can be partitioned in two disjoint sets
that correspond with the advertisers and the available ad-slots. The ad-slots arrive
online and need to be assigned to an advertiser (subject to capacity restrictions) and
the objective is to maximize the total number of assigned ad-slots. There are different
variations of this problem, see also [117] for an overview. [102] provide a randomized
online algorithm that has an approximation ratio of 1− 1

e , where e ≈ 2.71828. They
further show that the result is tight: in the adversarial model no algorithm can
achieve a better ratio. In the random order stochastic model where arriving nodes
are drawn repeatedly from a known distribution [80] show that it is possible to achieve
an approximation ratio that beats 1− 1

e . Subsequent papers generalize various aspects
of this online bipartite matching problem. For example, [118] generalize the results
of [80] by considering the case where a match can succeed with a certain probability
that can be different for each advertiser.

There are also papers ([50, 79, 160]) that design two-phase online algorithms that
have access to a sample of the arriving nodes in a first stage where an offline problem
is solved. In the second phase (the online phase) the algorithm decides which ad
to serve based on some information obtained from the offline phase. [79] design an
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online algorithm that achieves a 1 − ε approximation ratio where ε is a function of
the parameters of the optimization model that measures how large a fraction of any
resource can be demanded by a single agent, or how much a single agent’s value
contributes to the total objective. Their algorithm observes the first ε fraction of
the input and then solves an offline problem on this instance. In the second phase
the algorithm uses the dual solution of the first phase problem to determine which
ads to serve. They prove that if the demand of each advertiser is large and the
contribution of any one impression does not have a big impact on total value of the
objective function, then their algorithm provides a 1−ε approximation which is nearly
optimal. [160] focus on a slightly more general problem called the online assignment
problem and their two-phase online algorithm also assumes that a forecast of the
underlying bipartite graph is available. In the offline phase the forecast graph is used
as input and produces an allocation plan. They prove that if the (possibly non-linear)
objective function satisfies some conditions, then there is a concise representation of
the solution of the first phase which they refer to as a compact allocation plan that
is just a few numbers per contract, independent of the number of impressions. The
online phase repeatedly takes as input a user visit and decides which ad to serve
based on the compact allocation plan. They provide conditions such that the serving
decisions made using this allocation plan are nearly optimal, even when the allocation
plan was computed on a sampled graph with imperfect forecasts. In [50] a heuristic is
developed that is based on the ideas in [160] but is more robust to incorrect forecasts.
The work done by [29] further improve upon the methods in [50, 160].

This part of the literature has not (yet) considered the trade-off between allocation
to SSPs and guaranteed contracts, therefore these results cannot be applied directly
to the problem considered in this Chapter.

Offline algorithms for guaranteed contracts

Another part of the literature uses an offline optimization approach and models the
allocation problem as a one-period planning problem. These papers focus on the op-
timal allocation of ad-slots to guaranteed contracts in order to meet certain targeting
and quality constraints. [90] focus on designing predetermined fixed length streams
of ads (which they call patterns) that satisfy a number of conditions. They define
a pattern as a finite permutation of ads from different advertisers and classify each
visitor of a webpage into different types. The key issue is to decide which pattern is
to be shown to each type of visitor. In particular they focus on the optimal length
of the pattern, the minimum/maximum number of times that a specific ad should
appear in a pattern, and the spacing of ads over time. In [158] the allocation problem
is modeled as a transportation problem and the key problem is to determine which
fraction of visitors of a specific type should be allocated to which guaranteed contract.
The author uses a quadratic objective function and derives sufficient conditions that
state when this is a good surrogate for several ad delivery performance metrics. In
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[69] a chance constrained optimization model for the fulfillment of targeted guaran-
teed display ad is developed that takes the uncertainty of the supply of viewers into
account. These papers focus on the fulfillment of the guaranteed contracts, while
explicitly taking the characteristics of the ads and the types of visitors into account.
However the trade-off between allocation of ad-slots to SSPs and guaranteed contracts
is not addressed.

Trade-off between SSPs and guaranteed contracts

There are very few papers that jointly consider the problem of allocating impressions
to guaranteed contracts and selling them in online auctions. In [167] a multi-objective
optimization approach is used to determine the fraction of impressions allocated to
guaranteed contracts and the fraction to be sold in an online auction. However that
approach is not quite suitable for the setting of a small online publisher that we
consider in this Chapter since they do not consider the possibility of allocating im-
pressions to different/ multiple SSPs and there is no uncertainty with respect to the
ability of an SSP to sell an impression. In [24] a model for yield maximization is
developed that takes both guaranteed contracts and SSP’s into account. The model
determines which impressions should be allocated to guaranteed contracts and which
reserve price should be used when selling on the SSP. The objective is to jointly max-
imize revenue from the AD exchange and some measure for the ad placement quality
for impressions allocated to the guaranteed contracts. However their model is not
suitable for the problem we consider here since it makes some restrictive assumptions
on the information that the publisher has available. The authors assume that the pub-
lisher can observe bids on their inventory of impressions and the proposed method
exploits this information in order to set optimal reserve prices. In [96] and [47] both
guaranteed contracts and SSP’s are taken into account and take a more data-driven
approach, but they make similar assumptions as in [24]. SME publishers in general
do not have access to the information regarding bids and it may be too costly for
them to acquire this information, and therefore these methods cannot be applied in
our setting. Recent work by [145] proposes a framework that combines guaranteed
delivery and pay-per-click auctions in sponsored search. While [145] does combine
online auctions and guaranteed contracts, the setting of sponsored search advertising
in search engines is quite different from the display ad problem that we address in
this Chapter.

Other related problems

Other studies focus on the optimal allocation of advertisements on websites [2, 33, 60,
82, 109, 119]. The focus is on time scheduling (or space sharing) of advertisements
on a banner. The banner has multiple time slots through which it is cycled over
time, and every slot has a different allocation pattern of advertisements. In some
studies, the authors are concerned only with the placement of one advertisement on
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a banner or some advertisements side-by-side, with the height of the advertisements
equal to the height of the banner. In other studies advertisements are placed in a
two-dimensional way. In order to solve these complex optimization problems various
approaches have been used such as approximation algorithms ([2, 82]), heuristics ([33,
60, 109]), Lagrangean decomposition and column generation [119]. Some studies also
study the effectiveness of certain design choices of advertisements on websites (see
e.g. [113]).

We also mention that there is literature that focusses on optimal design of auctions
([71, 86, 101]), the relation between ad auction design and strategies for publishers
and advertisers ([23, 54]), the relation between reserve prices and revenues from ad
auctions ([3, 4, 42, 44, 123, 127, 137]), and revenue management and optimization in
sponsored search advertising ([19, 85, 103, 172]).

2.3 Problem description
The online publisher owns a set N of unique webpages on a domain. Each webpage
n has a set Mn of ad-slots, and |Mn| impressions are generated each time a user
visits webpage n of the publisher, that is, each ad-slot generates one impression. We
assume that the online publisher knows how many users will visit the webpages during
the planning period, where the planning period could be for example one hour. For
notational convenience, without loss of generality, we consider the case where there is
one visitor on each webpage. Note that in general there can be multiple visitors on a
particular webpage. However, this can be reduced to the case where there is only one
visitor on each webpage by adjusting the total number of webpages, i.e, if webpage n
has Vn visitors the adjusted total number of webpages will be

∑
v∈N Vn.

The online publisher has in total a set C of guaranteed contracts, and each guar-
anteed contract c ∈ C is associated with a target level of αc ∈ Z+ impressions which
need to be allocated to it during the planning period. The online publisher can choose
from a set S of SSPs to sell an impression.

Since the planning period is typically shorter than the period for which the guar-
anteed contract has been negotiated (the contract period), the target level of each
contract is determined upfront as a common practice. For example, assume that an
advertiser enters into a guaranteed contract with a publisher for 500.000 impressions
during a contract period of 3 months and assume a planning period of 12 hours (alloc-
ation decisions for impressions are made twice a day). Then the publisher can decide
on the amount of impressions to be allocated during the first day of this contract
period and thus can decide on appropriate (and possibly distinct) values of αc for
each of the 2 planning periods on the first day of the contract period. Typically, the
advertisers want the amount of impressions to be evenly divided during the contract
period, that is, roughly the same amount of impressions should be allocated each
day of the contract period. In order to achieve this balanced allocation during the
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contract period, the publisher decides (based on patterns of user visits, experience
and targeting criteria of the guaranteed contracts) on the appropriate values of αc for
each planning period of 12 hours.

An important characteristic of the display-ad allocation problem is the uncertainty
on the outcome of selling an impression on an SSP, i.e. the SSP can be unsuccesful
in filling the order. We let Ω denote the finite set of possible scenarios to represent
this uncertainty. We define Hω

nms ∈ {0, 1} ∀n ∈ N,m ∈ Mn, s ∈ S, ω ∈ Ω, and let
Hω
nms = 1 indicate that the request to sell impression m on webpage n on SSP s,

was successful in scenario ω. For the SSP s ∈ S we define s ∈ SRisky if and only if
there exists an ω ∈ Ω such that Hω

nms = 0. SSafe is defined as SSafe = S \ SRisky.
The online publisher can estimate the scenarios and the probability of each scenario
using historical data. It is known that some SSPs are ‘safer’ than others in the
sense that they are always able to sell an impression. The SSPs in SRisky have the
property that they are not always able to sell an impression, whereas the SSPs in
SSafe are always able to sell an impression (the Google SSP is an example). The
revenue from selling impression m on webpage n to SSP s is Rnms. We assume that
the revenue parameters Rnms are known because, revenue typically does not change
in the planning horizon and they can be easily estimated from historical data. The
publisher receives a revenue of λc per impression allocated to guaranteed contract c.

Definition 2.1 (The display-ad allocation problem ). Refers to the publisher’s ques-
tion of finding a feasible allocation of the impressions such that its expected revenue
over all the scenarios is maximized. Furthermore a feasible allocation must satisfy
the following conditions: (i) each impression needs to be sold in each scenario; (ii)
impressions must be allocated to precisely one SSP or to precisely one guaranteed
contract; and (iii) the requirements of each guaranteed contract must be fulfilled.

We illustrate the display-ad allocation problem with an example.

Example 2.1. We consider the situation where there is 1 webpage with 3 ad slots,
2 guaranteed contracts, 1 “risky” SSP, 1 “safe” SSP and 2 scenarios, i.e, |N | =
1, |Mn| = 3 ∀n ∈ N, |S| = 2, |SSafe| = 1, |C| = 2, |Ω| = 2 and αc = 1 ∀c ∈ C.
Furthermore, for each guaranteed contract the publisher needs to allocate 1 impression.
The revenue for each ad-slot is given in the Table 2.1. If the impression associated with
ad-slot 1 is sold on SSP 2, the publisher will receive a revenue of 3 units. Table 2.2
describes the two possible scenarios. Note that there exists a scenario ω ∈ Ω such that
SSP 1 is not able to sell an impression (this is indicated with a zero in the table). In
this example, SSP 1 is therefore the “risky SSP” and SSP 2 is the “safe SSP”. Note
furthermore that in each scenario any impression can be used in order to fulfill the
requirements of the guaranteed contract. That explains why there is always a “1” for
each combination of ad-slot and guaranteed contract.
The task here is to find a feasible allocation of the impressions such that the expected
revenue is maximized while satisfying the conditions described above. 2
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Table 2.1: Revenue for impression associated with each ad-slot.

slot 1 slot 2 slot 3
SSP 1 6 7 10
SSP 2 3 4 5
Contract 1 5 5 5
Contract 2 2 2 2

Table 2.2: Scenarios and realizations.

Scenario 1: probability 0.7 Scenario 2: probability 0.3
slot 1 slot 2 slot 3 slot 1 slot 2 slot 3

SSP 1 1 1 0 0 0 1
SSP 2 1 1 1 1 1 1
Contract 1 1 1 1 1 1 1
Contract 2 1 1 1 1 1 1

Notes: Scenario 1 corresponds to the left half of the table and Scenario
2 corresponds to the right half of the table. A “1” indicates that a
sale is successful and a “0” indicates that a sale is unsuccessful.

2.4 Proposed Stochastic Programming (SP) model
In this section we formulate the display-ad allocation problem of the online publisher
as a two-stage stochastic programming model. We will refer to this model as the
Stochastic Programming (SP) model. We also discuss upper- and lowerbounds for
the objective value of the SP model that can be used to assess the solution quality of
the SP model.

2.4.1 Modeling approach
The objective of the online publisher is to find a feasible allocation of impressions
between guaranteed contracts and SSPs that maximizes the expected revenue where
the expectation is taken over the scenarios. In order to ensure that all impressions
are sold (that is, no ad-slots remain unused) we need a solution that balances the
impact of the various scenarios on both the revenue and the feasibility of the alloc-
ation. Because information is revealed sequentially over time, we adopt a stochastic
programming approach in order to model and solve the display-ad allocation prob-
lem. We distinguish two stages where the online publisher needs to make decisions,
as illustrated in Figure 2.1.

First stage In the first stage, the publisher makes an initial decision about which
impressions to sell on which SSP and which impressions to allocate to which guar-
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Begin of first stage

Make initial allocation between 
guaranteed contracts and SSPs

End of first stage/ begin of second stage

Receive feedback from SSPs
Make second-stage allocation

End of second stage

Collect revenues

T = 0 T = 1 T = 2

Figure 2.1: Timeline of events in the display-ad allocation problem.

anteed contracts. Impressions allocated to guaranteed contracts cannot be allocated
to SSP’s later (that is, in the second stage). After the first-stage decisions have been
made, there are two possibilities (and one of these must occur) for each impression:
(i) the impression has either been allocated to a guaranteed contract; or (ii) the
impression has been allocated to an SSP.

Second stage The second stage begins when the publisher receives feedback
from the SSP regarding the sale of the impressions. More specifically, the publisher
observes whether the SSP was able to sell the impression (that is, the sale was
successful) or not (that is, the sale was rejected). In terms of the terminology
used in stochastic programming, it means that the publisher observes the realiz-
ation of a specific scenario. After observing the realization of the scenario, the
publisher can make a “corrective” second-stage decision. In the second stage the
publisher has to make decisions regarding the rejected impressions. There are two
options for each rejected impression: (i) allocate the impression to another SSP;
or (ii) allocate the impression to a guaranteed contract. Note that (similar to the
situation in the first stage) after the second-stage decisions have been made, each
impression has to be allocated and only (i) or (ii) can hold for a particular impression.

In our model, we assume without loss of generality, that the sales to SSP’s are
always successful in the second stage. In other words, we assume that there is a set
of ‘risky SSPs’ and ‘safe SSPs’ and in the second stage allocations to ‘risky SSPs’ are
not allowed. This assumption ensures that no impression remains unsold after the
second-stage decisions have been made.

Example 2.2. Consider Example 2.1. We now illustrate a feasible allocation of
impressions that is consistent with the two-stage stochastic programming framework.
At each stage we need to determine how to allocate impressions to SSPs and guaranteed
contracts in order to end up with a feasible allocation.
Table 2.3 shows the first-stage decisions and Table 2.4 shows the second-stage de-
cisions corresponding to a feasible allocation (i.e, 1 represents an allocation). Here
we observe that initially (in the first stage) the publisher attempts to sell the impres-
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Table 2.3: First-stage allocation of impressions.

slot 1 slot 2 slot 3
SSP 1 0 1 1
SSP 2 0 0 0
Contract 1 1 0 0
Contract 2 0 0 0

Table 2.4: Second-stage allocation of impressions.

Scenario 1: probability 0.7 Scenario 2: probability 0.3
slot 1 slot 2 slot 3 slot 1 slot 2 slot 3

SSP 1 0 0 0 0 0 0
SSP 2 0 0 0 0 0 0
Contract 1 0 0 0 0 0 0
Contract 2 0 0 1 0 1 0

sions associated with ad-slot 3 on SSP 1. However, if scenario 1 occurs, the publisher
learns that SSP 1 was not able to sell the impression and the impression is re-allocated
to guaranteed contract 2 (in the second stage). Note that no impressions can be al-
located to SSP 1 in the second stage since it is a risky SSP and because the publisher
does not want to end up with unsold inventory. 2

2.4.2 Two-Stage Stochastic Programming Model
Based on the characteristics of the display-ad allocation problem presented so far, we
now present a two-stage stochastic programming formulation of the problem.

Decision variables There are two types of decision variables: first-stage and
second-stage. The first-stage decision variables are given by:

xnmc ∈ {0, 1} ∀n ∈ N,m ∈Mn, c ∈ C
xnms ∈ {0, 1} ∀n ∈ N,m ∈Mn, s ∈ S

xnmc = 1 indicates that impression m on webpage n has been allocated to contract c,
and xnms = 1 indicates that impression m on webpage n has been allocated to SSP
s. The second-stage decision variables are given by:

yωnmc ∈ {0, 1} ∀n ∈ N,m ∈Mn, c ∈ C,ω ∈ Ω
yωnms ∈ {0, 1} ∀n ∈ N,m ∈Mn, s ∈ SSafe, ω ∈ Ω

yωnmc = 1 indicates that impression m on webpage n has been allocated to contract
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c in scenario ω, and yωnms = 1 indicates that impression m on webpage n has been
allocated to SSP s in scenario ω.

Objective function The objective function is given by:

max z =
∑
w∈Ω

P(ω) ·
(∑
n∈N

∑
m∈Mn

∑
s∈S

(xnms ·Rnms ·Hω
nms)

)

+
∑
w∈Ω

P(ω) ·
∑
n∈N

∑
m∈Mn

∑
s∈SSafe

(yωnms ·Rnms)

+
∑
w∈Ω

P(ω) ·
(∑
c∈C

(∑
n∈N

∑
m∈Mn

(yωnmc + xnmc)
)
λc

) (2.1)

The first line in (2.1) represents the expected revenue from the first-stage alloca-
tions to SSPs. Note the role that the random variable Hω

nms plays in the first term:
if SSP s fails to sell impression m on webpage n in scenario ω, then Hω

nms = 0 and
there is no revenue. The second line in (2.1) represents the expected revenue from
the second-stage allocation of impressions to SSPs. Notice that an SSP can always
sell the impression in the second stage because it is a safe SSP and hence there is no
randomness. The third line in (2.1) represents the expected revenue from allocating
impressions to the guaranteed contracts.

Constraints The constraints in the display-ad allocation problem are as follows.∑
s∈S

xnms +
∑
c∈C

xnmc = 1 ∀n,m (2.2)

∑
n∈N

∑
m∈Mn

(xnmc + yωnmc) = αc ∀c, ω (2.3)

∑
s∈S

(xnms ·Hω
nms) +

∑
c∈C

xnmc +
∑

s∈SSafe

yωnms +
∑
c∈C

yωnmc = 1 ∀n,m, ω (2.4)

xnmc ∈ {0, 1} ∀n ∈ N,m ∈Mn, c ∈ C
xnms ∈ {0, 1} ∀n ∈ N,m ∈Mn, s ∈ S
yωnmc ∈ {0, 1} ∀n ∈ N,m ∈Mn, c ∈ C,ω ∈ Ω
yωnms ∈ {0, 1} ∀n ∈ N,m ∈Mn, s ∈ SSafe, ω ∈ Ω

(2.5)

Constraint (2.2) represents the trade-off between guaranteed contracts and SSPs in
the first-stage decisions. This constraint indicates that impression m on webpage
n has to be allocated to precisely one SSP or has to be allocated to precisely one
contract. Constraint (2.3) indicates that the number of impressions that are allocated
to a contract type, must meet a certain target value in the planning period under
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consideration, and this needs to hold under all scenarios. Note that the target values
αc are set by the publisher in such a way that, over the course of the contract period,
enough impressions are allocated to each contract. Since the publisher does not receive
any additional revenue for impressions allocated beyond the contracted amount, we
have an equality in Constraint (2.3). Constraint (2.4) is similar to Constraint (2.2)
and represents the trade-off between guaranteed contracts and SSPs in the second-
stage decisions. This constraint ensures that after the second-stage decision has been
made, impressionm on webpage n has to be allocated to precisely one SSP or has to be
allocated to precisely one contract, and this needs to hold under all scenarios. It thus
links the first-stage decisions with the second-stage decisions. More specifically, this
contraint implies that if impression m on webpage n was allocated to any contract c,
then it cannot be allocated to an SSP or guaranteed contract in the second stage (and
therefore

∑
s∈SSafe yωnms +

∑
c∈C y

ω
nmc = 0). Similarly, if in the first stage impression

m on webpage n was allocated to any SSP s and the impression was sold by the
SSP (such that

∑
s∈S xnms · Hω

nms = 1), then it is again not possible to allocate
the impression to an SSP or guaranteed contract in the second stage (and therefore∑
s∈SSafe yωnms +

∑
c∈C y

ω
nmc = 0). Finally, Constraint (2.5) states that the decision

variables are binary.
The model formulation using Constraints (2.3) and (2.4) reflects the preference of

the publisher to fulfill the guaranteed contracts in all scenarios in order to maintain a
good reputation among advertisers. Nevertheless, the formulation can be adjusted in
a straightforward way in order to allow allocations to risky SSPs in the second stage,
i.e. by modifying Constraint (2.3) so that at least a certain percentage of guaranteed
contracts are fulfilled.

In our model we assume that the online publisher has specified the scenarios in
such a way that given a choice of first-stage variables the online publisher will be able
to deduce the scenario that has occurred in the second stage. If this is not the case,
then so-called nonanticipativity constraints should be added to the formulation. More
specifically, let ω1, ω2 ∈ Ω with ω1 6= ω2. If

∑
s∈S,n∈N,m∈Mn

xnms ·|Hω1
nms−Hω2

nms| = 0,
then yω1

nms = yω2
nms ∀s ∈ S, n ∈ N,m ∈ Mn. That is, if given a choice of first-stage

variables the online publisher cannot distinguish between two scenarios, then the
second-stage decisions should be the same in each of these two scenarios.

2.4.3 Bounding the objective value of the SP model
In order to assess the solution quality of the SP model, we calculate the objective
value of the solution of the so-called ‘Expected Value problem’ (ExpVal) and the
objective value of the solution of the so-called ‘Wait-and-see problem’ (WS).
The objective value of ExpVal is calculated as follows. First, we replace the random
variables by their expected value, that is, we calculate the expectation of the random
variables Hω

nms given by H̄+
nms =

∑
ω∈Ω P(ω) ·Hω

nms. Next, we solve the model given
by (2.1)-(2.5) by setting |Ω| = 1 and replacing the random variables with the values of
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H̄+
nms. Let xEV denote the values of the first-stage variables in the resulting solution.

For each ω ∈ Ω let EVω denote the objective value that is obtained by solving the
model given by (2.1)-(2.5) with |Ω| = 1 and imposing xEV . The objective value of
ExpVal can now be calculated as EV =

∑
ω∈Ω P(ω) · EVω.

In the WS problem we calculate the optimal allocation given perfect information (that
is, prior knowlegde of ω ∈ Ω). Given the realizations of a specific scenario ω ∈ Ω,
we calculate the optimal allocation of impressions over SSPs and the guaranteed
contracts. Let us denote the obtained objective value by WSω. Next, we calculate
the expectation over the distribution of the scenarios in order to get the objective
value of the WS problem, that is, WS =

∑
ω∈Ω P(ω) · WSω. Note that, given a

specific scenario ω ∈ Ω, the display-ad allocation problem reduces to a much simpler
allocation problem since it is known which SSPs will be able to sell the impressions
allocated to them. Intuitively, WS is an upperbound for the objective value of SP
since the optimal allocation can be determined for each scenario ω ∈ Ω whereas in the
SP model there are first-stage variables that force some part of the allocation to be
the same across all scenarios. This comparison between WS, ExpVal and SP is useful
since the objective value of ExpVal is a lowerbound and the objective value of WS is an
upperbound of the objective value for SP, see for example [30]. Note that in ExpVal
only the expected scenario is used in order to determine the first-stage decisions
(and not the individual scenarios themselves) and, in the second stage, decisions are
made depending on the observed scenario. If the gap between the objective value of
ExpVal and WS is large, then this is an indication that it might be worthwhile to
solve SP (which is more complicated to solve) since taking the individual scenarios
themselves into consideration leads to additional benefits compared to just looking at
the expected scenario.

2.5 Benchmark algorithm: Priority Assignment
(PA) heuristic

In this section we discuss a practical allocation policy that is used in practice by
our industry partner. We refer to this practical allocation policy as the Priority
Assignment (PA) heuristic.

The PA heuristic is based on the idea that the fulfillment of guaranteed contracts
has priority during the planning period. As impressions are generated by users, the
publisher first focusses on achieving the targets for the guaranteed contracts and after
these targets have been reached, the remaining impressions that are generated during
the planning period are allocated to SSPs. More specifically, we first select a random
subset of the webpages and use the impressions of these webpages in order to meet
the demands of the guaranteed contracts. Given this allocation to the guaranteed
contracts, we then proceed to allocate the remaining impressions to the SSPs for each
specific scenario such that the revenue is maximized. Let us denote the obtained
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objective value under scenario ω ∈ Ω by PAω. Finally, we take the expectation
over the distribution of the scenarios in order to calculate the expected revenue of
the PA heuristic, that is, PA =

∑
ω∈Ω P(ω) · PAω. The PA heuristic is also called

a ‘waterfall’ approach in practice, because typically the publisher ranks the SSPs
(based on (expected) revenue) and allocates the remaining impressions according to
this ranking in order to maximize revenue. The pseudocode for the PA heuristic is
provided in Algorithm 2.1.

Algorithm 2.1 Pseudocode for PA heuristic
Require: A set of scenarios Ω, SSPs S, guaranteed contracts C, webpages N , impressions

Mi, i ∈ N , revenues Rnms, n ∈ N,m ∈ Mn, s ∈ S, targets for guaranteed contracts
αc, c ∈ C, sale outcomes Hω

nms, n ∈ N,m ∈ Mn, s ∈ S, ω ∈ Ω and a probability
distribution P(ω), ω ∈ Ω.

1: Make a list L where element L[i] = i, i = 1, . . . , |N | represents webpage i ∈ N .
2: Make a random permutation P of the list L.
3: Set N∗ := inf{m ∈ Z |

∑m

i=1 |MP [i]| ≥
∑

c∈C αc}. {Random selection of visitors.}
4: Set G∗ := {P [1], . . . , P [N∗]}. {Random selection of webpages.}
5: for ω ∈ Ω do
6: Set PAω := 0.
7: for i ∈ G∗ do
8: Allocate impressions from webpage i ∈ G∗ to the guaranteed contracts until the

demands of all the guaranteed contracts have been met.
9: end for
10: if Some subset M̄ ⊆ MP [N∗] of impressions from webpage P [N∗] have not been

allocated. then
11: for k ∈ M̄ do
12: Allocate impression k from webpage P [N∗] to the SSP s∗ with the highest return

such that Hω
P [N∗],k,s∗ = 1 and collect revenue RP [N∗],k,s∗ .

13: Set PAω := PAω +RP [N∗],k,s∗

14: end for
15: end if
16: Set PAC :=

∑
c∈C αc · λc. {Revenue from guaranteed contracts.}

17: for i ∈ N \G∗ do
18: for k ∈Mi do
19: Allocate impression k from webpage i to the SSP s∗ with the highest return such

that Hω
i,k,s∗ = 1 and collect revenue Ri,k,s∗ .

20: Set PAω := PAω +Ri,k,s∗

21: end for
22: end for
23: Set PAω := PAω + PAC {Revenue of PA heuristic in scenario ω.}
24: end for
25: Set PA :=

∑
ω∈Ω P(ω) · PAω.

26: return PA
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2.6 Experiments
In this section we construct various instances of the display-ad allocation problem and
run experiments in order to assess the performance of the SP model. We measure the
performance using the expected revenue relative to an upperbound and relative to a
practical allocation policy (the PA heuristic) that is used in practice by our industry
partner.

2.6.1 Setup of experiments
We consider the situation where there are 10000 webpages that each have 3 ad-slots.
We assume that there are 3 SSPs, one of which is a ‘safe’ SSP and we assume that there
are 3 guaranteed contracts, i.e., |N | = 10000, |Mn| = 3 ∀n ∈ N, |S| = 3, |SSafe| =
1 and |C| = 3. In the experiments, the values for αc are given by:

αc =
⌊
γ · |N | · |M |

|C|

⌋
, 0.1 ≤ γ ≤ 0.9 ∀c ∈ C (2.6)

The expression for αc indicates that a fraction γ of all available impressions is dis-
tributed equally over the |C| guaranteed contracts.

Generating returns for each ad-slot In order to generate the returns for each
ad-slot/impression we assume that the revenue from the sale by the SSPs are normally
distributed. More specifically we have the following return structure for website n.

Rn =


N(µ1, σ1) N(µ2, σ1) N(µ3, σ1)
N(µ4, σ2) N(µ5, σ2) N(µ6, σ2)
N(µ7, σ3) N(µ8, σ3) N(µ9, σ3)

κ1 κ1 κ1

κ2 κ2 κ2

κ3 κ3 κ3


The columns denote the 3 ad-slots that are associated with the impressions that need
to be allocated. The first 3 rows of Rn are the revenues for the 3 SSPs, where the
third row gives the revenues for the safe SSP. The last 3 rows of Rn are the revenues
for the 3 guaranteed contracts. The relationship between the standard deviations are
given by σ2 = 0.85σ1 and σ3 = 0.65σ1 and we set σ1 = 3. The difference in standard
deviations is meant to model the heterogeneity in the distribution of revenues and to
capture the property that the revenues from “safe” SSPs are less variable. The returns
for the other webpages are independent and identically distributed (i.i.d.) with the
same distribution as Rn. The random differences in revenues between Rn+1 and Rn
captures the property that some webpages generate more revenue than others.
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Generating the scenarios Initially we assume that the realizations of the random
variables in the different scenarios are generated from an i.i.d. Bernoulli distribution
with success parameter equal to p. More specifically, for a scenario ω we can encode
the random variables as follows:

H+
ωn =

 Hω

1|SSafe|
1|C|

 ∀ω, n (2.7)

Here Hω is an |SRisky| × |M | matrix where each element is a draw from an i.i.d.
random variable that follows a Bernoulli distribution with parameter p. 1|SSafe| is a
|SSafe| × |M | matrix where each element equals 1. 1|C| is a |C| ×M matrix where
each element equals 1. The interpretation of the resulting matrices H+

ωn is similar to
the description given by Table 2.2 in Example 2.1. During the experiments we also
test the sensitivity of the results with respect to the independence assumption and
the probability of success p.

Generating the probability distribution of the scenarios The probability
distribution of the scenarios for the base case are generated as follows:

P(ωv) = Iv∑v=|Ω|
v=1 Iv

(2.8)

Here Iv is a draw from an i.i.d. random variable that follows a uniform distribution
on the interval (0,1). In this specification we assume that each scenario is equally
likely in expectation. We also consider the case where one particular scenario is more
likely than others. By adjusting the distribution and the success probability we can
model a situation where there is a high probability scenario that in general most SSPs
(if p is low) or few SSPs (if p is high) are able to sell impressions.

Set of cases to consider In the experiments we consider four cases: Case A, B,
C and D. In our experiments, we are interested in analyzing how the performance of
the SP model and PA heuristic depends on: (i) revenues from SSPs and guaranteed
contracts; (ii) success probabilities in different scenarios; (iii) correlation of success
probabilities between SSPs.

• Impact of revenues. In Case A and B we analyze the impact of revenues on the
performance of the algorithms. Case A represents a situation that is commonly
observed in practice where guaranteed contracts have a higher revenue compared
to ad slots sold on SSPs. In Case A we assume that the mean revenues from the
different SSPs are relatively close in expectation except for the safe SSP. In Case
B we allow for more overlap between revenues from the guaranteed contracts
and SSPs.
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• Impact of scenarios. In Case C we adjust the probability distribution of the
scenarios such that a particular scenario ω1 ∈ Ω has a higher probability of
occurring. In this case we model a situation where there is a high probability
scenario that in general most SSPs or few SSPs are able to sell impressions.

• Impact of correlation. One might expect the ability of SSPs to sell impressions
to be correlated, since advertisers can be connected to multiple SSPs. Therefore,
in Case D we relax the assumption of independence when generating Bernoulli
random variables in H+

ωn.

Parameter settings of cases In the experiments we use the following parameter
settings for the cases.

• Case A. For the revenues in Rn we set µ1 = µ2 = µ3 = 15, κ1 = 35, κ2 =
30, κ3 = 25. In order to generate the random variables for the scenarios, we
use a Bernoulli distribution with parameter p = 0.5 in H+

ωn. The probability
distribution of the scenarios is generated according to Eqn. (2.8). We investigate
Case A with |Ω| = 4 and |Ω| = 8 and for various values of γ from the range
specified in Eqn. (2.6).

• Case B. This case is similar to Case A except for the revenues such that we
allow for more overlap between revenues from the guaranteed contracts and
SSPs. In Case B we set µ1 = 25, µ2 = 20, µ3 = 10, κ1 = 35, κ2 = 25, κ3 = 20.

• Case C. We now adjust the probability distribution of the scenarios. We bias
the distribution such that a particular scenario ω1 has a higher probability of
occurring. We use the following distribution P(ωv) = Iv∑v=|Ω|

v=1
Iv

. Here Iv is a

draw from an i.i.d. random variable that follows a uniform distribution on the
interval (0.6, 1) for v = 1 and on (0, 0.2) for v 6= 1. In order to generate the
random variables for scenario ω1 we use a Bernoulli distribution with parameter
p∗ ∈ {0.2, 0.8} in H+

ωn and for the remaining scenarios we use p = 0.5. These
settings model a situation where there is a high probability scenario that in
general most SSPs (if p∗ = 0.8) or few SSPs (if p∗ = 0.2) are able to sell
impressions. The other settings are similar to Case B.

• Case D. In Case D we relax the assumption of independence when generating
Bernoulli random variables inH+

ωn. We instead let the linear correlation between
risky SSPs vary from 0.1 to 0.9. The other settings are similar to Case C.

Motivation for parameters in experiments Publishers typically update their
allocation decisions every hour, and for each domain separately, as they have hourly
estimates of revenues and website traffic. Typically there are 2 - 3 slots on a wegpage
(above the fold, below the fold and next to a video being displayed). Based on data
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from our industry partner, there are about 8000 - 10000 visitors on a particular domain
(which has a number of webpages) per hour. Therefore the choice of 10000 webpages
and 3 ad slots in our experiments is realistic. In our experiments we considered cases
with 4 and 8 scenarios. As there are about 3 slots on a webpage, there are 23 = 8
possibilties for these slots to be sold on a particular SSP. Based on empirical data,
it is often the case that only a subset of these 8 cases (about 2-3) take up most of
the probability mass. Therefore, for two risky SSPs there are about 4 - 9 possible
scenarios to consider for each arriving visitor of a webpage. Therefore the choice for
4 and 8 scenarios is reasonable.

General scheme for generating instances The general scheme for generating
multiple instances is presented in Algorithm 2.2.

Algorithm 2.2 Pseudocode for generating instances
Require: a case from C = {A,B,C,D}

for i = 1 to 30 do
Step 1: Generate the returns Rn for each AD-slot.
Step 2: Generate the scenarios using Eqn. (2.7).
Step 3: Generate the probability distribution of the scenarios using Eqn. (2.8).
Step 4: Calculate the objective values of WS, SP, PA and ExpVal.
Step 5: Scale the objective values of SP, PA and ExpVal by the objective value of WS,
i.e. divide SP , PA and EV by WS.

end for
return Objective values of SP, PA and ExpVal for 30 instances scaled by objective value
of WS.

2.6.2 Results of the experiments
In this section, we report about computational experiments to evaluate the different
models. The algorithms are coded in Python 2.7 and run on Intel(R) Core(TM)
CPU i5-6300U @ 2.40GHz with 8GB RAM under Windows 7 environment. The
mathematical formulation (Equations 2.1-2.5) presented in Section 2.4 is solved by
calling IBM ILOG CPLEX 12.6.1 from Python.

Results for Case A and B

We solve 30 instances of Case A. The results are presented in Table 2.5 and Figure
2.2. The results indicate that the SP model performs very well in the sense that it
is very close to the best possible solution with a performance gap relative to WS of
about 2-3% in most cases.

One of the key parameters of the model is the fraction of impressions that need
to be allocated to the guaranteed contracts. Both the gap between the objective
value of ExpVal and WS, and the performance gap between the PA heuristic and SP
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varies considerably with this parameter. If the fraction of impressions that need to
be allocated to guaranteed contracts is relatively low, the gap between the objective
value ExpVal and WS is larger and this gap decreases as more impressions need to
be allocated to guaranteed contracts. If very few contracts need to be allocated to
guaranteed contracts, the PA heuristic outperforms the SP model slightly. The largest
performance gap between SP model and the PA heuristic is when a moderate fraction
(around 40% - 50%) of the impressions are allocated to guaranteed contracts. In this
case the gap is about 8% - 10%.

Table 2.5: Statistics of SP, PA and ExpVal solutions for Case A and B.

Panel A: results for Case A

|Ω| = 4 and γ = 0.4 |Ω| = 4 and γ = 0.8
min max mean median std min max mean median std

SP 98.64 99.06 98.86 98.85 0.13 99.98 99.99 99.98 99.98 0.00
PA 90.04 90.27 90.15 90.14 0.06 95.65 95.80 95.71 95.70 0.03
ExpVal 76.98 77.40 77.17 77.17 0.08 95.31 95.50 95.39 95.39 0.04

|Ω| = 8 and γ = 0.4 |Ω| = 8 and γ = 0.8
min max mean median std min max mean median std

SP 97.66 98.41 98.00 98.02 0.14 99.97 99.97 99.97 99.97 0.00
PA 90.08 90.24 90.15 90.15 0.04 95.66 95.76 95.71 95.71 0.03
ExpVal 72.18 72.39 72.29 72.28 0.05 92.18 92.26 92.22 92.22 0.02

Panel B: results for Case B

|Ω| = 4 and γ = 0.4 |Ω| = 4 and γ = 0.8
min max mean median std min max mean median std

SP 98.60 99.14 98.88 98.86 0.16 100.00 100.00 100.00 100.00 0.00
PA 88.94 89.17 89.05 89.03 0.06 94.07 94.26 94.16 94.15 0.04
ExpVal 73.85 74.29 74.03 74.03 0.08 93.23 93.50 93.36 93.36 0.07

|Ω| = 8 and γ = 0.4 |Ω| = 8 and γ = 0.8
min max mean median std min max mean median std

SP 97.51 98.34 97.88 97.88 0.16 100.00 100.00 100.00 100.00 0.00
PA 88.99 89.13 89.05 89.06 0.04 94.09 94.20 94.15 94.15 0.03
ExpVal 68.62 68.82 68.71 68.71 0.04 88.97 89.06 89.02 89.02 0.02

Notes: This table shows the results over 30 experiments with the settings of Case A and
B. The rows with SP, PA and ExpVal report the objective value of SP, PA and ExpVal as
a percentage of the objective value of WS.

In order get a better understanding of this relationship, Figure 2.2 (panels (a) -
(d)) shows how various choices for γ affects the performance of the models. Here we
see that the SP model performs well. In particular, for γ ≥ 0.5 the objective value of
the SP model is within 0.5 % of the objective value of WS. The PA heuristic displays a
non-linear relationship with γ. This can be explained by noting that for γ ≈ 0 the PA
heuristic boils down to selling each impression on the SSP with the highest revenue



Chapter 2 41

and this is why it outperforms SP for small values of γ. For γ ≈ 1 the total revenues
are almost completely determined by the revenues for the guaranteed contracts, which
are fixed and known in advance and so in this case the revenue from WS and PA are
also close to each other. From Figure 2.2 we also observe that the performance of
ExpVal shows a clear increasing relationship with γ. For small values of γ, the first-
stage solution from solving the expected value problem is likely to be sub-optimal for
the individual scenarios and since most impressions are to be allocated to SSPs, this
stochastic component of the problem has a relatively large impact. When γ is large,
this stochastic component does not play a large role and the objective value of WS
and ExpVal are closer to each other.

The overall results for Case B are very similar to Case A. For γ = 0.4 we now
observe a gap between SP and PA of about 8-9% which is an increase of about 1%
relative to Case A. For γ = 0.8 we see a similar pattern.

We also investigate the relationship between the running time in CPLEX of the
SP model and the problem size (i.e., in terms of the number of websites |N | and the
number of scenarios |Ω|). The results in Figure 2.2 (panel (e)) indicate that for a
fixed number of scenarios with |Ω| = 16, the running time is roughly linear in the
number of websites |N |. Figure 2.2 (panel (f)) shows how the running time varies
with the number of scenarios |Ω| for a fixed number of websites (|N | = 10000). The
pattern suggests that for a fixed number of websites, the running time is polynomial
in the number of scenarios. The results indicate that the SP model can be solved in
a reasonable amount of time (within 10 minutes) for instances with realistic problem
sizes (16 scenarios and 12000 visitors on a domain). Publishers typically update their
allocation decisions every hour and for each domain separately as they have hourly
estimates of revenues and website traffic. Based on data from our industry partner,
there are about 8000 - 10000 visitors on a particular domain per hour. Therefore our
model is able to handle real-world cases.
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(a) Case A, |Ω| = 4.
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(b) Case A, |Ω| = 8.
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(c) Case B, |Ω| = 4.
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(d) Case B, |Ω| = 8.
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Figure 2.2: Panel (a) - (d): objective value of SP, PA and ExpVal relative to WS
objective value over 30 experiments with settings of case A and B for different values
of γ. Panel (e): running time of SP with settings of case A for a different number of
websites |N | and |Ω| = 16. Panel (f): running time of SP with settings of case A for
a fixed number of websites |N | = 10000 and for a different number of scenarios |Ω|
with γ = 0.4. Error bars indicate the maximum, median and minimum values.
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Results for Case C and D

Figure 2.3 (panels (a) - (d)) shows results for the settings of Case C. We see that
the performance of SP does not change considerably since the gap between SP and
WS is at most about 2-3% for most cases considered and is hardly affected by the
value of p∗. The performance of PA improves for higher values of p∗. In Table 2.6
we see that for p∗ = 0.8 the performance of PA is about 3% higher than for p∗ = 0.2.
For example, if |Ω| = 4, γ = 0.4 and p∗ = 0.2 then the gap between PA and SP
based on the median is about 8%-9% compared a gap of 5%-6% with |Ω| = 4, γ = 0.4
and p∗ = 0.8. The finding that PA performs better for higher values of p∗ can
be explained by noting that higher values of p∗ imply that the negative impact of
the initial allocation to guaranteed contracts has a smaller contribution to the total
expected revenue, compared with the case of lower values of p∗.

In Case D we relax the assumption that the ability of SSPs to sell the impressions
are independent from each other. Figure 2.3 (panels (e) - (f)) shows results for different
values of γ and for |Ω| = 4. The lines in the figures are relatively flat (with sometimes
a slightly negative trend) indicating that the performance does not vary systematically
with the correlation between SSPs. The results for other parameter values and for
|Ω| = 8 are very similar.
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Table 2.6: Statistics of SP, PA and ExpVal solutions for Case C.

|Ω| = 4, γ = 0.4 and p∗ = 0.2 |Ω| = 4, γ = 0.8 and p∗ = 0.2
min max mean median std min max mean median std

SP 98.59 99.49 99.13 99.15 0.26 99.77 99.95 99.87 99.87 0.04
PA 89.00 89.41 89.25 89.27 0.10 91.89 92.79 92.35 92.30 0.22
ExpVal 77.40 80.63 79.29 79.44 0.87 91.59 92.17 91.89 91.87 0.15

|Ω| = 8, γ = 0.4 and p∗ = 0.2 |Ω| = 8, γ = 0.8 and p∗ = 0.2
min max mean median std min max mean median std

SP 97.59 98.48 98.01 98.00 0.24 99.70 99.83 99.75 99.74 0.03
PA 89.06 89.30 89.20 89.20 0.05 92.48 93.20 92.88 92.89 0.15
ExpVal 73.08 75.78 74.47 74.50 0.66 89.49 89.95 89.69 89.69 0.10

|Ω| = 4, γ = 0.4 and p∗ = 0.8 |Ω| = 4, γ = 0.8 and p∗ = 0.8
min max mean median std min max mean median std

SP 97.93 99.05 98.55 98.56 0.31 99.82 99.96 99.89 99.89 0.04
PA 92.03 93.28 92.76 92.81 0.33 95.37 96.03 95.72 95.74 0.17
ExpVal 74.83 75.48 75.11 75.08 0.19 95.14 95.51 95.33 95.32 0.09

|Ω| = 8, γ = 0.4 and p∗ = 0.8 |Ω| = 8, γ = 0.8 and p∗ = 0.8
min max mean median std min max mean median std

SP 96.97 97.91 97.34 97.27 0.28 99.74 99.85 99.78 99.77 0.02
PA 91.27 92.37 91.75 91.68 0.31 94.99 95.64 95.25 95.26 0.13
ExpVal 67.21 67.84 67.50 67.50 0.17 88.77 88.99 88.90 88.90 0.05

Notes: This table shows the results over 30 experiments with the settings of Case C.
The rows with SP, PA and ExpVal report the objective value of SP, PA and ExpVal as
a percentage of the objective value of WS.



Chapter 2 45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fraction of impressions allocated to guaranteed contracts

40

50

60

70

80

90

100

o
b

je
c
ti

v
e
 v

a
lu

e
 a

s
 %

 o
f 

W
S

 s
o

lu
ti

o
n

SP PA ExpVal

(a) Case C, p∗ = 0.2 and |Ω| = 4.
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(b) Case C, p∗ = 0.2 and |Ω| = 8.
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(c) Case C, p∗ = 0.8 and |Ω| = 4.
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(d) Case C, p∗ = 0.8 and |Ω| = 8.
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(e) Case D, p∗ = 0.2, |Ω| = 4 and γ = 0.4.
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(f) Case D, p∗ = 0.8, |Ω| = 4 and γ = 0.8.

Figure 2.3: Objective value of SP and GH relative to WS objective value over 30
experiments with settings of case C (in panels (a) - (d)) and case D (in panels (e)
- (f)) with p∗ = 0.2 and p∗ = 0.8. Error bars indicate the maximum, median and
minimum values.
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2.7 Conclusion
In this Chapter we model the display-ad allocation problem faced by online publish-
ers as an integer linear programming problem. Our modeling approach takes the
uncertainty associated with the sale of an impression by a SSP into account in the
allocation of display ads. The way that information is revealed over time allows us to
model the display-ad allocation problem as a two-stage stochastic program. We refer
to our model as the Stochastic Programming (SP) model. We investigate the quality
of the solutions obtained by the SP model in numerical experiments. We find that
one of the key parameters of the model is the fraction of total impressions that need
to be allocated to the guaranteed contracts. We show the SP model outperforms the
allocation policy (Priority Assignment (PA) heuristic) that is used in practice by our
industry partner. Furthermore, we find that the performance gap between the PA
heuristic and SP model also shows a clear relationship with fraction of impressions
that are allocated to the guaranteed contracts.

Our results suggest that the benefit of using the SP model is highest in periods
where the website traffic is high compared with the targets for the guaranteed con-
tracts. An example of such a situation is when there are seasonal patterns in the
demand of advertisers. If advertisers have high demand for (premium) guaranteed
campaigns for the month of December, then it is possible that a higher fraction of
available impressions is sold on the auction market in April. Another example is when
the website traffic varies depending on the time of the day. Consider the case of a
publisher where most of the users are kids that visit pages to play online games. In
this case it makes sense to allocate more impressions to guaranteed contracts in the
afternoon hours and allocate much less during the late hours because the guaranteed
contracts are primarily targeted towards kids.

In practice, publishers also need to make other decision problems which have not
been discussed in this Chapter. For example, publishers typically specify a minimum
price – called the floor price – for their impressions when selling on the RTB market.
The next Chapter considers a situation where impressions are sold via second-price
auctions and where the publisher needs to learn the best floor price over time.
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Setting reserve prices in
second-price auctions with
unobserved bids*

In this Chapter, we shift our attention to pricing decisions that publishers
need to make. Publishers typically specify a minimum price – called the
floor price – for their impressions when selling on the RTB market via
an ad exchange. This Chapter considers a situation where impressions
are sold via second-price auctions and where the publisher needs to learn
the best floor price over time. In second-price auctions, the floor price is
often referred to as the reserve price and so we refer to this problem as
the reserve price optimization problem.

*This chapter is based on Rhuggenaath et al. [137, 138].

47
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3.1 Introduction
One of the main mechanisms that web publishers use in online advertising to sell
their advertisement space is real-time bidding (RTB) [161]. In RTB there are three
main platforms: supply side platforms (SSPs), demand side platforms (DSPs) and an
ad exchange (ADX) which connects SSPs and DSPs. The SSPs collect inventory of
different publishers and thus serve the supply side of the market. Advertisers which
are interested in showing online advertisements are connected to DSPs. When a user
visits a webpage with an advertisement (ad) slot, the publisher sends a request to the
ADX (via an SSP) indicating that an impression can potentially be displayed in this
particular ad slot. At the same time, advertisers that are connected to DSPs send
bid requests to the ADX indicating that they are willing to bid for this impression.
A real-time auction then decides which advertiser is allowed to display its ad and the
amount that the advertiser needs to pay.

Most of the ad inventory is sold via second-price auctions with a reserve price
[123, 147, 161]. All bids below the reserve price are disregarded, and the auction has
no winner if there are no bids remaining (i.e., there is a possibility that an ad slot is
not sold). If the auction does have a winner, the winner pays the maximum of the
second highest bid and the reserve price. In this Chapter, we study the reserve price
optimization problem from the perspective of the publisher: the publisher submits
his inventory of advertisement space to an SSP and needs to set the reserve price.
In our problem the publisher does not observe the actual values of the winning bid
and second highest bid. After each sale attempt on the RTB market, the publisher
only knows whether the sale was successful and only observes the revenue that is
received from that sale. This setting is relevant for publishers that are small and
medium size enterprises (SMEs), since the ADX and connected SSPs typically do
not reveal the actual bids placed in the auction but only the result of the auction.
Due to the limited feedback, the publisher faces an exploration-exploitation trade-off.
He needs to experiment with different reserve prices to figure out which one works
best (exploration), but at the same time, he does not want to explore too much
since he wants to use the best reserve price as much as possible (exploitation). This
exploration-exploitation trade-off also arises in other settings, for example on auction
sites such as eBay. In eBay auctions, items are sold via second-price auctions where
sellers can set a reserve price and where sellers receive limited feedback, since the
highest bid is not revealed after a sale (see e.g., [144]).

To the best of our knowledge, there is no algorithm available for the aforemen-
tioned reserve price optimization problem with unobserved bids that uses the rules
of second-price auctions in order to set reserve prices. As we assume that the bids
are not observed, previous approaches based on machine learning techniques such
as in [18, 44, 123, 144, 147, 166] cannot be applied. Therefore, one approach is to
formulate it as a standard multi-armed bandit (MAB) problem [37] where the arms
are the different reserve prices that the publisher can choose, and the reward for each
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arm is the revenue at a particular reserve price. For this general multi-armed bandit
problem, there are existing algorithms with performance guarantees. However, these
algorithms do not take the properties of second-price auctions into account in order to
set the reserve prices. In the MAB algorithms each arm is treated as an independent
option with an unknown mean reward and the fact that the options represent prices
is not exploited. Furthermore, the algorithms do not take the link that exists in the
second-price auction mechanism between the observed revenue and the reserve price
into account. Our method, on the other hand, builds upon the multi-armed bandit
framework and explicitly takes the properties of second-price auctions into account
in order to set the reserve prices. By taking the properties of second-price auctions
into account, our method aims to improve upon the performance of standard bandit
algorithms.

The idea of improving multi-armed bandit algorithms by exploiting additional
information about the structure of the problem at hand has been successfully applied
in other settings. Some examples are, online pricing with discounted valuations [116],
bandits with trends in the reward distribution [34] and bandits with graph structured
feedback [40, 61, 115]. However, to the best of our knowledge, the idea combining
MAB algorithms with second-price auctions has not been considered before. We
summarize the main contributions of this Chapter as follows:

• We propose a method for learning reserve prices in a practically-relevant limited-
information setting where the probability distribution of the bids from advert-
isers is unknown and the values of the bids are not revealed to the publisher.
Furthermore, we do not assume that the publisher has access to a historical
data set with bids.

• Our method incorporates knowledge about the rules of second-price auctions
into a multi-armed bandit framework for optimizing reserve prices. To the best
of our knowledge, we are the first to consider this combination.

• We introduce an extension of our proposed method for non-stationary environ-
ments.

• Experiments using real-life ad auction data show that the proposed method
outperforms state-of-the-art bandit algorithms in both stationary and non-
stationary environments.

The remainder of this Chapter is organized as follows. In Section 3.2 we discuss
the related literature. Section 3.3 provides a formal description of the problem. In
Section 3.4 we present our proposed method for setting reserve prices. In Sections 3.6
and 3.7 we perform experiments and compare our method with baseline strategies
in order to assess the quality of our proposed method. Section 3.8 concludes this
Chapter and provides some directions for further research.
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3.2 Related Literature
We organize the related literature in three parts: reserve price optimization in second-
price auctions, dynamic pricing with demand learning, and multi-armed bandits.

Reserve price optimization in second-price auctions

The problem of maximizing revenues in online advertising has received increasing
attention in the machine learning literature over the last decade (see e.g. [1, 3, 18,
23, 24, 44, 161, 169]). Some studies use historical datasets containing the top two
bids and supervised machine learning techniques in order to set the optimal reserve
price. There are a number of studies that focus on incorporating the revenue function
of the auction with a prediction model, most of the time by defining a surrogate loss
function, in order to learn a mapping from features to a reserve price [18, 44, 123,
144, 147, 166]. In [169] a number of methods for reserve price optimization that use
historical bidding data are compared and the authors propose an algorithm based
on game theoretical arguments. As a key difference between this Chapter and the
aforementioned works, we assume that the bids are not observed and that there is a
no historical dataset available for the winning bid and/ or second highest bid.

In [42] an online learning approach is used to learn optimal reserve prices, but it is
assumed that the number of bidders is known and that all the bids in an auction are
independent draws from the same distribution. In this Chapter we do not make these
assumptions. Other related work is [135, 136, 137]. These papers also assume that the
values of the bids are not observed. However, different from them, we explicitly exploit
properties and feedback from second-price auctions. Furthermore, the aforementioned
papers make parametric assumptions on the distribution of the bids whereas we do
not make such assumptions.

Finally, we note that there is some work on reserve price optimization in sponsored
search advertising and keyword auctions which use another auction format called the
generalized second-price auction (see e.g. [127, 151]) and reserve price optimization
(in strategic settings) from the perspective of the organizer of auction (see e.g. [91]).
To summarize, the main difference between the work in this Chapter and previous
works are as follows. First, we do not assume that the publisher observes the top
two bids in the ad auction, but only observes the revenue of each auction. Second,
we explicitly take the properties of second-price auctions into account (and use a
multi-armed bandit framework) in order to set reserve prices.

Dynamic pricing with demand learning

In general, the problem considered in this Chapter can be interpreted as a dynamic
pricing problem with demand learning [63, 107]. In the standard dynamic pricing
problem there is a seller who wants to maximize revenue over some selling horizon
by choosing prices in an optimal way. However, the precise relationship between
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price demand in unknown. This gives rise to the so-called exploration-exploitation
trade-off.

There are different variations on the general dynamic pricing problem in terms
of the assumptions regarding the inventory [65, 66], the demand model [28] and the
market environment [64, 98, 105]. We refer the reader to [63] and [107] for a detailed
overview of the dynamic pricing problem.

The main differences between the work in this Chapter and the most of literature
on dynamic pricing is as follows. First, in a standard dynamic pricing problem, the
seller chooses a price and the revenue of a sale (if the item is sold) equals the quoted
price. However, in our problem, the seller needs to choose a reserve price and the
revenue of a sale (if the item is sold) need not be equal to this reserve price. This
implies that the revenue at a particular reserve price is a random variable, whereas in
a standard dynamic pricing problem it is deterministic. Second, most of the dynamic
pricing literature assumes that there is some functional form that relates prices and
demand, however, we do not assume any functional form that relates the demand or
sale probability at different prices. Third, in a dynamic pricing problem the seller
usually interacts with a single buyer at a time, but in our problem the result of a
sale depends on the (unobserved) bids from multiple bidders. Fourth, in terms of
methodology, we explicitly take the properties of second price auctions into account
in order to set reserve prices, and to the best of our knowledge, this is has not been
studied before in the literature on dynamic pricing.

Multi-armed bandits

In terms of methodology, the work in this Chapter is related to previous work on the
multi-armed bandit problem [17, 37] and studies that improve multi-armed bandit
algorithms by exploiting additional information and structure in different problem
settings. The idea of improving multi-armed bandit algorithms by exploiting addi-
tional information about the structure of the problem at hand has been successfully
applied in a number of settings (see e.g. [34, 40, 61, 115, 116]). In [116, 157] and [121]
bandit algorithms are used in dynamic pricing settings and they exploit properties of
the demand curve and the valuations of buyers. In [34] bandits with trends in the
reward distribution are studied and popular bandit algorithms are adapted in order
to exploit this extra information. In [58, 130] bandits are studied where the arms
have a specific graph structured unimodality property. In [40, 61, 115] bandits with
side observations are studied. However, the techniques of the aforementioned papers
cannot readily be applied to our problem. The algorithms in [116] and [157] are de-
signed for pricing problems without a reserve price. Furthermore, the assumptions
made by the algorithms in [40, 58, 61, 130], and [115] are not necessarily satisfied in
our reserve price optimization problem. For example, in the case of bandits with side
observations, the key assumption is that by pulling on some arm you get to observe
independently and identically distributed (i.i.d.) draws are observed from another
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arm. However, this is not the case in our problem. A related paper is [171] but their
algorithms cannot be applied to our problem since they assume that the seller can
see the bids and knows the number of participants in the auction.

3.3 Problem Statement
We consider a publisher that owns a single advertisement slot and sequentially sells
impressions arriving over time. There are a number of rounds and in each round one
impression becomes available. The total number of rounds is denoted by T ∈ N. In
each round t ∈ {1, . . . , T} the publisher has to decide on a reserve price pt ∈ P, where
P is the set of admissible prices. After setting the reserve price, the impression is
offered for sale on the RTB-market via a Supply Side Platform (SSP). A second-price
auction takes place on the RTB-market and the revenue of the publisher depends on
the outcome of this auction. Let Xt and Yt denote the highest and second highest bid
respectively in the auction for impression in round t. Then the revenue (or return)
of the publisher in round t is given by Rt(pt) = I{pt ≤ Xt} · max{Yt, pt}. Here
I{A} = 1 if A is true and I{A} = 0 otherwise. The expression for Rt(pt) says that
if the reserve price pt is too high (i.e. if pt > Xt) then the publisher receives zero
revenue. Otherwise (i.e. if pt ≤ Xt), the revenue is equal to the maximum of the
second highest bid and the reserve price. We assume that the bids are drawn from
a joint distribution Dt in round t where Dt does not depend on pt. This assumption
is common (see e.g., [42]) and it is reasonable when the auction is open to a wide
audience of potential bidders and where the pool of bidders can vary from auction to
auction. Since the publisher does not interact with the same set of bidders in every
round, it is reasonable to assume that the bidders and the publisher are not engaging
in strategic behaviour. In this case, it is plausible that the publisher’s strategy of
choosing reserve prices has no influence on the distribution of bids (see e.g., [10, 75,
76, 122]). We assume that the realized values of Xt and Yt are not revealed to the
publisher (we use the term unobserved bids to emphasize that the seller does not
observe the value of bids in the auction after each sale). However, as we describe in
Section 3.4, the publisher can sometimes infer the value of Yt.

In summary, we assume auctions proceed according to the following online pro-
tocol. For each round t ∈ {1, . . . , T}:

1. the publisher selects a reserve price pt ∈ P which is visible to the bidders.

2. the values for Xt and Yt are drawn, hidden from the publisher, from the joint
distribution of the bids Dt in round t, and this distribution is unknown to the
publisher.

3. the publisher observes I{pt ≤ Xt} and receives Rt(pt) = I{pt ≤ Xt}·max{Yt, pt}
as revenue.
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The objective of the publisher is to determine a sequence of reserve prices
p1, . . . , pT in order to maximize the expected cumulative revenue over T rounds. Thus
the revenue optimization problem over T rounds or impressions can be expressed as
follows:

max
p1,...,pT

T∑
t=1

EDt
{I{pt ≤ Xt} ·max{Yt, pt}} = max

p1,...,pT

T∑
t=1

EDt
{Rt(pt)} , (3.1)

where EDt
{·} denotes the expectation operator with respect to the joint distribution

of the bids Dt. For a generic random variable Z, we denote the expectation and
variance with E {Z} and V {Z}, respectively, when the distribution is clear from the
context.

In addition we make the following assumptions.

Assumption 3.1. We assume that the bids are bounded and that (Xt, Yt) ∈
{[0, 1]× [0, 1] | Xt ≥ Yt} and for all t.

Assumption 3.2. The set of admissible prices P is finite and |P| = K.

Assumption 3.3. Without loss of generality we assume that the prices are ordered
such that 0 ≤ p1 ≤ p2 ≤ · · · ≤ pK ≤ 1 with pk ∈ P for k = 1, . . . ,K.

Assumption 3.1 is common in the literature on multi-armed bandits, dynamic
pricing and learning in auctions (see e.g. [15, 17, 42, 91, 157]). Assumption 3.2 states
that the set of admissible prices is finite. This assumption is also fairly common in the
literature on multi-armed bandits and dynamic pricing [56, 121, 157]. In the setting
of reserve price optimization this is also reasonable as the reserve price is rounded to
cents in practice (see e.g. [127]). Assumption 3.3 is useful in order to simplify the
presentation.

Remark 3.1. In the literature on online advertising and the RTB-market, the reserve
price is sometimes also referred to as the floor price.

Remark 3.2. In order to simplify the exposition of our method, we focus on the case
where there is a single ad slot. However, in practice, the publisher may want to set a
reserve price depending on the characteristics of the user and the ad slot. Our method
can also be applied in such a setting by, for example, making segments of user and
slot pairs and applying our method for each segment.

Remark 3.3. It may happen at some bidders are not interested in the impression at
all (i.e., the impression receives less than two bids). If only one bidder submits a bid
in the auction, then it is assumed that Yt = 0. If zero bidders submit a bid in the
auction, then it is assumed that Xt = Yt = 0.

Remark 3.4. Reserve prices in second-price auctions can also be hidden from the
bidders. For example, in the context of eBay auctions, sellers have the option of
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choosing a hidden reserve price [77]. In online advertising applications, the reserve
price may or may not be disclosed to the bidders (see e.g., [169]). If the reserve price
is hidden, this will result in the same auction outcome and revenue for the publisher,
since we assume that the bids are drawn from a distribution that does not depend on
the reserve price. In order to simplify the exposition of our method, and since we use
the setting of online advertising as a running example, we follow the RTB specification
[94] and assume that the reserve price is visible.

3.4 Proposed Model: BMAB-SPAR
In this section we present a model for learning reserve prices. In Section 3.4.1 we give
a standard MAB formulation for pricing problems and explain how our ideas differ.
In Section 3.4.2 we present our model BMAB-SPAR (Bayesian Multi-Armed Bandit
for Second-Price Auctions with Reserve prices). In the remainder of this section we
make the additional assumption that all bids are drawn from a stationary (fixed) joint
distribution.

Assumption 3.4. The pairs of bids (Xt, Yt) are independently and identically dis-
tributed (i.i.d.) draws from an underlying stationary (fixed) joint distribution D for
all t. That is, Dt = D for all t.

3.4.1 Standard MAB formulation and main ideas
In the standard MAB formulation for pricing problems there is a finite set of actions
A = {a1, . . . , aK} which represent prices that can be selected. The revenue gained by
selecting price ai is a bounded random variable Vi = W (ai)·Zi, where Zi ∼ BN (µ(ai))
is a Bernoulli variable that represents the outcome (sale/no sale) of the transaction,
with µ(ai) the probability that the transaction leads to a sale when ai is selected and
W (ai) a random variable that denotes the revenue at price ai given that there is a sale
(in standard pricing problems we simply have that W (ai) = ai because the customer
pays the quoted price). The expected revenue at price ai is given by

E {Vi} = E {W (ai)} · µ(ai) (3.2)

and the optimal price is a∗ = argmaxa∈A E {W (a)} · µ(a). BMAB-SPAR builds on
this standard MAB formulation. Observe that, given a specific reserve price p, the
expected revenue can be written as follows

ED {Rt(p)} = P{p ≤ Xt} · ED {max{Yt, p}| p ≤ Xt} . (3.3)

Here ED {max{Yt, p}| p ≤ Xt} denotes the expectation of max{Yt, p} with respect
to the distribution D conditional on the event {p ≤ Xt}. Thus the expected revenue
at a reserve price depends on two components. First, the impression needs to be sold.
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Second, conditional on the impression being sold, the revenue equals the maximum
of the second highest bid and the reserve price. The probability that the impres-
sion will be sold, or the success probability, is given by P{p ≤ Xt}. The expected
revenue given success, is equal to ED {max{Yt, p}| p ≤ Xt}. Note the similarity in
structure of the decomposition of expected revenue in Equation (3.3) and the stand-
ard MAB formulation in Equation (3.2): (i) P{p ≤ Xt} plays the role of µ(ai) and
(ii) ED {max{Yt, p}| p ≤ Xt} plays the role of E {W (ai)}.

The solution to the optimization problem in Equation (3.1) is to use the reserve
price that maximizes the expectation given in Equation (3.3) in every round t. The
main idea in BMAB-SPAR is to learn approximations for each term in Equation (3.3)
as the number of rounds progresses and to select the reserve price based on these
approximations. A key difference with the standard MAB approach is that BMAB-
SPAR explicitly exploits the feedback of second-price auctions in order to update
these estimates, whereas standard MAB models assume that the reserve prices are
independent options.

3.4.2 BMAB-SPAR formulation
In BMAB-SPAR, there is a set K = {1, . . . ,K} of arms. Each arm k ∈ K is associated
with a reserve price pk ∈ P. The outcome of the sale using reserve price p in round
t is given by St(p) = I{p ≤ Xt} and it is modeled as a random variable with a
Bernoulli distribution, that is, St(p) ∼ BN (µ(p)). Here µ(p) = E{St(p)} represents
the probability that the impression will be sold if a reserve price p is used. We will
refer to this as the probability of success at a reserve price p. For ease of presentation,
we denote the probability of success associated with arm k by θk = µ(pk). The value
of θk is unknown and we take a Bayesian approach in order to update our knowledge
about θk. More specifically, the parameter θk is modeled as a random variable with
a Beta distribution as a prior: B(ak,0, bk,0). The prior distribution is subsequently
updated based on the feedback that is observed in each round.

Updating posterior distribution

For a given value of v, define P (v) = {pk ∈ P|pk ≤ v, k ∈ K}, and k+(v) = max{k ∈
K|pk = max{P (v)}}. The set P (v) represents the subset of prices in P that are at
most v and k+(v) is the index of the arm with the highest price in P (v). Let the
prior distribution of arm k at the end of round t− 1 be denoted by B(ak,t−1, bk,t−1).
Assume that arm k∗ ∈ K is played in round t (i.e., pt = pk

∗). After arm k∗ is played
the seller observes St(pk

∗) = st and Rt(pk
∗) = rt. We use the following procedure for

updating the priors associated with each arm j ∈ K:

• (Type A update). If st = 1, then for all j ∈ {1, . . . , k∗ − 1} ∪ {k∗, . . . , k+(rt)},
the posterior of arm j (at the end of round t) becomes B(aj,t−1 + 1, bj,t−1).
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• (Type B update). If st = 0, then for all j ∈ {k∗, k∗ + 1, . . . ,K}, the posterior
of arm j (at the end of round t) becomes B(aj,t−1, bj,t−1 + 1).

A Type A update occurs every time that a sale is successful and a Type B update
occurs every time that a sale is not successful. In standard bandit algorithms, only
the selected arm (arm k∗) would get updated. However, in BMAB-SPAR, the Type A
and B updates can also update arms with j 6= k∗ in a round. The updating procedure
basically adds pseudo-successes or pseudo-failures to arms j 6= k∗, depending on
whether the sale at price pk∗ was successful or not. The motivation for this update
scheme comes from two important properties of the problem at hand. The first
property stems from the fact that we are getting feedback from pricing problem. If
a sale was not successful at price pk∗ , then we know that the same sale would not
have been successful at any price p > pk

∗ (thus, the Type B updates add pseudo-
failures). Similarly, if a sale was successful at price pk∗ , then we know that the same
sale would also have been successful at any price p < pk

∗ (thus, the Type A updates
add pseudo-successes). We refer to this property as the pricing problem property.

The second property that is exploited is related to the structure of the second-price
auction mechanism. If a sale was successful at price pk∗ and the realized revenue is
rt, then we know that the same sale would also have been successful at any price
p < pk̂ with k̂ = k+(rt). We refer to this property as the structured revenue property.
Note that, if the realized revenue is higher than the reserve price (rt > pk

∗), then
the structured revenue property allows us to infer that reserve prices p̄ that satisfy
pk
∗ ≤ p̄ ≤ pk̂ also would have been successful in round t. Thus, the structured revenue

property allows us to potentially update arms with j > k∗ and this is reflected by
the set {k∗, . . . , k+(rt)} in the Type A update. This particular feedback follows from
the way that the revenue is determined and is specific to the second-price auction
mechanism.

Estimating the expected return for successful sales

We first define some notation. Let TA,j,t ⊆ {1, . . . , t} denote the indices of the rounds
that an update of type A took place for arm j until round t. Let TS,j,t = {l ∈
TA,j,t|pl = pj} denote the indices of the rounds where arm j was pulled and an update
of type A took place for arm j until round t. Let RS,j,t = {max{Yl, pj}|l ∈ TS,j,t}
denote the observed revenues for the rounds l ∈ TS,j,t.

The main idea is to impute a pseudo-revenue for arm j every time that a Type A
update takes place for arm j. The pseudo-revenue is an approximation of the revenue
that could be obtained if the sale in round l at reserve price pj would be successful.
Let RA,j,t ⊆ R denote the set of pseudo-revenues for arm j based on information
collected during rounds t ∈ TA,j,t. We now explain how the pseudo-revenues are
calculated.

Assume that arm nl ∈ K is played in round l ∈ TA,j,t with reserve price pnl and
that the observed revenue equals Rl(pnl) = rl. The pseudo-revenue R̃l,j ∈ RA,j,t for
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arm j in round l ∈ TA,j,t is defined as follows:

R̃l,j =


pj , if pnl = rl, j = nl

R̄l,j(pn), if pnl = rl, j < nl

Rl, if pnl 6= rl, j ≤ k+(rl),
(3.4)

where

R̄l,j(v) =


min{pj , v}, if TS,j,l = ∅∑
r∈RS,j,l

min{r, v}/|TS,j,l|, otherwise. (3.5)

Given the set TA,j,t , the set RA,j,t is then defined as

RA,j,t = ∪l∈TA,j,t
{R̃l,j} (3.6)

The pseudo-revenue in Equation (3.4) depends on three cases. In case 1 (if pnl =
rl, j = nl), the observed revenue equals the chosen reserve price and the pseudo-
revenue for arm nl simply equals the actual observed revenue for arm nl. In case 2
(if pnl = rl, j < nl), we do not know what the exact revenue (call this Re) would
have been had arm j < nl been selected instead of arm nl. However, from the
properties of the second-price auction, we can deduce that pj ≤ Re ≤ pnl needs
to hold for round l. The idea in case 2, is to approximate Re with Re(pj , pnl) =
ED
{

min{Z, pnl}| Z = max{Yt, pj}, pj ≤ Xt

}
. Since the distribution D is unknown,

Re(pj , pnl) is approximated by observed samples using Equation (3.5). In Equation
(3.5), the set RS,j,l contains observed rewards from the rounds when arm j was
selected and the sale was successful (these rounds are in the set TS,j,l). The set
RS,j,l thus contains samples from the distribution of max{Yt, pj}|pj ≤ Xt} and these
samples are used to approximate Re(pj , pnl). If TS,j,l is empty, then the reserve price
pj is used instead (since this is a lowerbound for the revenue in case of successful
sales). In case 3 (if pnl 6= rl, j ≤ k+(rl)), the second highest bid is higher than the
selected reserve price pnl , and from the properties of the second-price auction, we can
deduce that Re = rl needs to hold for round l. That is, the exact revenue Re had
arm j ≤ k+(rl) been selected instead of arm nl equals Re = rl.

BMAB-SPAR maintains an estimate of ED
{

max{Yt, pj}| pj ≤ Xt

}
based on in-

formation collected until round t, which is denoted by m(j, t). The set RA,j,t is used
to calculate m(j, t). Formally, m(j, t) is defined as

m(j, t) =


pj , if TA,j,t = ∅∑
r∈RA,j,t

r/|TA,j,t|, otherwise (3.7)

If TA,j,t = ∅, then no Type A update has occurred until round t andm(j, t) equals the
reserve price pj , since this is a lower bound for the revenue in case of successful sales.
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If TA,j,t 6= ∅, then RA,j,t is used to determine the value of m(j, t). Note how the
definition of m(j, t) also exploits the structured revenue property. More specifically,
in case 2 and case 3 in Equation (3.4) we can (approximately) infer what the revenue
would have been for an arm j even if j was not pulled in round t. Note that this
feedback is specific for the second-price auction.

Example 3.1. Here we give an example to illustrate the three cases described
above. Suppose that P = {p1, p2, p3, p4} = {0.1, 0.2, 0.4, 0.6}. Let’s assume that
BMAB-SPAR has been running for 4 rounds such that TA,1,t = TA,2,t = TA,3,t =
{1, 2, 3, 4}, TA,4,t = TS,4,t = ∅, TS,2,t = {1, 2}, TS,3,t = {3, 4}, RA,2,t = RA,3,t =
{0.45, 0.45, 0.5, 0.5}, RS,2,t = {0.45, 0.45}, RS,3,t = {0.5, 0.5}. Now suppose that in
round t = 5, reserve price p3 = 0.4 is selected and that R5 = 0.4.

• For the update of reserve price p3, case 1 applies and we have that TA,3,t =
{1, 2, 3, 4}∪{5}, RA,3,t = {0.45, 0.45, 0.5, 0.5}∪{0.4}, RS,3,t = {0.5, 0.5}∪{0.4},
and m(3, 5) = (2 · 0.45 + 2 · 0.5 + 0.4)/5.

• For the update of reserve price p2, case 2 applies and we have that TA,2,t =
{1, 2, 3, 4} ∪ {5}, RA,2,t = {0.45, 0.45, 0.5, 0.5} ∪ {x}, and m(2, 5) = (2 · 0.45 +
2 · 0.5 + x)/5. Here x is determined by Equation (3.5) (with TS,2,t 6= ∅) and
yields x = (2 ·min{0.45, 0.4})/2 = 0.4.

• For the update of reserve price p1, case 2 applies and we have that TA,1,t =
{1, 2, 3, 4} ∪ {5}, RA,1,t = {0.45, 0.45, 0.5, 0.5} ∪ {x}, and m(1, 5) = (2 · 0.45 +
2 · 0.5 + x)/5. Here x is determined by Equation (3.5) (with TS,1,t = ∅) and
yields x = min{0.1, 0.4} = 0.1.

• For the reserve price p4, no Type A update occurs (because p4 > p3) and there-
fore m(4, 4) = m(4, 5).

If instead R5 = 0.5, then case 3 applies to p1, p2 and p3, and we would have TA,1,t =
TA,2,t = TA,3,t = {1, 2, 3, 4} ∪ {5}, RA,1,t = RA,2,t = RA,3,t = {0.45, 0.45, 0.5, 0.5} ∪
{0.5}, m(1, 5) = m(2, 5) = m(3, 5) = (2 · 0.45 + 2 · 0.5 + 0.5)/5. 2

Arm selection procedure

In order to decide which arm or reserve price to select, we construct an index for each
arm. In general, UCB-like indexes (see e.g. [17]) depend on two components: (i) a
component that measures the mean of an uncertain quantity and (ii) a component
that adds an exploration bonus. In BMAB-SPAR, the index for arm j is defined as
I(j, t) = x̄j,t + vj,t. Here x̄j,t denotes the mean of the posterior distribution for arm
j after t rounds, and vj,t denotes the posterior variance of arm j after t rounds. As
the posterior distribution of arm j after t rounds follows a Beta distribution with
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parameters B(aj,t, bj,t), the index can be written as follows

I(j, t) = x̄j,t + vj,t = aj,t
aj,t + bj,t

+ aj,t · bj,t
(aj,t + bj,t)2(aj,t + bj,t + 1) . (3.8)

In round t+1, BMAB-SPAR selects arm j∗ such that j∗ = argmaxj∈K I(j, t) ·m(j, t).
The pseudo-code for BMAB-SPAR is presented in Algorithm 3.1.

Note that the index as defined above is strictly speaking not an UCB-index, since
it is not guaranteed to be an upper bound on the success probability that holds with
high confidence. However, the index is easy to compute, and the overall structure
(consisting of mean and exploration bonus) makes intuitive sense. Furthermore, this
index performs well in our experiments. However, there might be better indexes that
can be constructed.

3.5 Model for non-stationary environments:
BMAB-SPAR-NS

In this section we present an extension of BMAB-SPAR that can be used for learning
reserve prices in non-stationary environments. Accordingly, in the remainder of this
section, we no longer assume that Assumption 3.4 holds. We refer to our model
as BMAB-SPAR-NS (Bayesian Multi-Armed Bandit for Second-Price Auctions with
Reserve prices for Non-Stationary environments).

For an arbitrary set S = {p1, . . . , pQ} containing Q real numbers, define V̄(S) =∑Q
i=1

1
Q−1 (pi − p̄)2 and p̄(S) =

∑Q
i=1

1
Qpi. Furthermore, define the operator Mx(·)

that takes as input a set S and outputs a set Sx ⊆ S that contains the last x elements
that were added to the set S. If |S| ≤ x, then defineMx(S) = S.

3.5.1 Formulation of non-stationary environment
In this section we consider a piece-wise stationary environment (similar to e.g. [39])
with M segments in order to characterize a non-stationary environment. Each seg-
ment consists of a number of rounds and the distribution of the bids is constant in
each segment. However, the distribution can change from one segment to another.
For a sales horizon of length T , let T = {1, . . . , T}. Notice that there areM−1 change
points in a piece-wise stationary environment with M segments. We will denote the
change points by ν1, . . . , νM−1 with νi ∈ {1, . . . , T − 1} for i = 1, . . . ,M − 1 where
νi < νj if i < j. Furthermore, we define ν0 = 0 and νM = T . For each segment i,
the set Ti is of the form Ti = {νi−1 + 1, . . . , νi}. Given a segment i ∈ {1, . . . ,M}, the
joint distribution of the bids satisfies (i) Dt = Dk for all t, k ∈ Ti, and (ii) Dt 6= Dk if
t ∈ Ti and k ∈ Tj with j ∈ {i− 1, i+ 1}.
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Algorithm 3.1 BMAB-SPAR
Require: number of arms K, set of admissible prices P, set of arms K, parameters

of prior distribution {(aj,0, bj,0)}j∈K.
1: Set t = 0.
2: for j ∈ K do
3: Set TA,j = ∅. Set TS,j = ∅. Set RA,j = ∅. Set RS,j = ∅.
4: end for
5: while t ≤ T do
6: Set t = t+ 1.
7: if t ≤ K then
8: Set z = t.
9: else
10: Set z = argmaxj∈K I(j, t) ·m(j, t) .
11: end if
12: Use pt = pz as reserve price in round t.
13: Observe St = I{pt ≤ Xt} and Rt = I{pt ≤ Xt} ·max{Yt, pt}.
14: for j ∈ K do
15: if St = 1 and j ≤ k+(Rt) then
16: Update posterior to B(aj,t−1 + 1, bj,t−1).
17: Set TA,j = TA,j ∪ {t}. Set TA,j,t = TA,j .
18: if pz = Rt and j = z then
19: Set RS,j = RS,j ∪ {pj}. Set TS,j = TS,j ∪ {t}. Set RA,j = RA,j ∪ {pj}.
20: else if pz = Rt and j < z then
21: Set RS,j,t = RS,j . Set TS,j,t = TS,j . Set RA,j = RA,j ∪ {R̄t,j(pz)}

according to Equation (3.5).
22: else if pz 6= Rt and j ≤ k+(Rt) then
23: Set RA,j = RA,j ∪ {Rt}.
24: if j = z then
25: Set RS,j = RS,j ∪ {Rt}. Set TS,j = TS,j ∪ {t}.
26: end if
27: end if
28: Set RA,j,t = RA,j .
29: else if St = 0 and j ≥ z then
30: Update posterior to B(aj,t−1, bj,t−1 + 1).
31: end if
32: end for
33: for j ∈ K do
34: Set m(j, t) according to Equations (3.7) - (3.6). Set I(j, t) according to

Equation (3.8).
35: end for
36: end while

3.5.2 Description of algorithm
Recall that BMAB-SPAR maintains approximations of the two terms in Equation
(3.3). In BMAB-SPAR-NS, these approximations need to be able to adjust to a
changing environment. The structure of BMAB-SPAR-NS is similar to that of BMAB-
SPAR, except with some modifications for the non-stationary setting. Intuitively, the
purpose of these changes is to make the algorithm adjust to the changing environment
by (i) “forgetting” information obtained in previous rounds and by (ii) exploring the
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less used actions in order to learn if the optimal action has changed. The pseudo-code
for BMAB-SPAR-NS is presented in Algorithm 3.2.

Algorithm 3.2 BMAB-SPAR-NS
Require: number of arms K, set of admissible prices P, set of arms K, parameters

of prior distribution {(aj,0, bj,0)}j∈K, parameter q, parameter τ , parameter κ,
parameter w, 0 < pex < 1.

1: Set t = 0. Set A = ∅.
2: for j ∈ K do
3: Set TA,j = ∅. Set TS,j = ∅. Set RA,j = ∅. Set RS,j = ∅. Set nj = 0.
4: end for
5: while t ≤ T do
6: Set t = t+ 1.
7: if t ≤ K then
8: Set z = t.
9: else
10: Set z = argmaxj∈K I(j, t) ·m(j, t). Set At =Mq(A). Draw Z from BN (pex).

11: if V̄(At) < τ and Z = 1 then
12: Select a z ∈ K where z has probability n−1

z∑K

i=1
n−1

z

of being selected.

13: end if
14: end if
15: Use pt = pz as reserve price in round t. Set A = A ∪ {pt}.
16: Observe St = I{pt ≤ Xt} and observe Rt = I{pt ≤ Xt} ·max{Yt, pt}.
17: for j ∈ K do
18: Set aj,t−1 = κ · aj,t−1. Set bj,t−1 = κ · bj,t−1.
19: if St = 1 and j ≤ k+(Rt) then
20: Update posterior B(aj,t−1 + 1, bj,t−1). Set TA,j = TA,j ∪ {t}. Set TA,j,t =

Mw(TA,j).
21: Set nj = nj + 1.
22: if pz = Rt and j = z then
23: Set RS,j = RS,j ∪ {pj}. Set TS,j = TS,j ∪ {t}. Set RA,j = RA,j ∪ {pj}.
24: else if pz = Rt and j < z then
25: Set RS,j,t = Mw(RS,j). Set TS,j,t = Mw(TS,j). Set RA,j = RA,j ∪

{R̄t,j(pz)} using Eqn (3.5).
26: else if pz 6= Rt and j ≤ k+(Rt) then
27: Set RA,j = RA,j ∪ {Rt}.
28: if j = z then
29: Set RS,j = RS,j ∪ {Rt}. Set TS,j = TS,j ∪ {t}.
30: end if
31: end if
32: Set RA,j,t =Mw(RA,j).
33: else if St = 0 and j ≥ z then
34: Update posterior B(aj,t−1, bj,t−1 + 1). Set nj = nj + 1.
35: end if
36: end for
37: for j ∈ K do
38: Set m(j, t) according to Eqn (3.7) - (3.6). Set I(j, t) according to Eqn (3.8).
39: end for
40: end while
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BMAB-SPAR-NS employs three specific strategies in order to adjust to changing
environments. First, it uses a discounting procedure to adjust the parameters of
the posterior distribution of each arm. Second, it only uses information from the
last w updates to the sets RA,j,t and RS,j,t in order to determine m(j, t) using Equa-
tions (3.6) - (3.7). Third, it monitors the variance of the last q reserve prices that have
been used and conducts forced exploration if this variance is below some threshold.
We refer to this as price-variance weighted exploration.

The first strategy allows the estimate of the first term in Equation (3.3) to adjust to
changing environments. The second strategy allows the estimate of the second term in
Equation (3.3) to adjust to changing environments. Finally, the third strategy allows
both estimates to adjust to changing environments. We explain these strategies in
more detail below.

Discounting of posterior distribution

For each arm j, the parameters of the posterior distribution at the end of round t− 1
are discounted by a factor 0 < κ < 1 so that the posterior before round t equals
B(aj,t, bj,t) = B(κ · aj,t−1, κ · bj,t−1). Notice that the discounting procedure enables
the algorithm to “forget” information obtained in previous rounds. If there is no
discounting (κ = 1), the posterior distribution becomes more concentrated around
the posterior mean as the number of rounds increases. By discounting (0 < κ < 1),
this concentration is partially undone (that is, information is “forgotton”) after each
round.

The effect of this discounting procedure is to increase the posterior variance for
each arm, but at the same time, to maintain the original ranking (without discount-
ing) based on the posterior mean (because discounting does not change the mean).
Furthermore, this effect is stronger for arms that do not get updated very often.
As the posterior variance determines the exploration bonus of the index I(j, t) in
Equation (3.8), the discounting procedure essentially implements a mechanism that
promotes additional exploration as the number of rounds increases.

Local estimation of expected returns for successful sales

Due to the piece-wise stationary environment, the optimal reserve price can vary
across segments. Furthermore, the expected return of the optimal reserve price may
change, even if the optimal reserve price does not differ across segments. In BMAB-
SPAR, m(j, t) is used to approximate EDt

{
max{Yt, pj}| pj ≤ Xt

}
. Note, that m(j, t)

uses all of the information gathered up until round t. However, since Dt can vary
across segments, not all of the information gathered up until round t is relevant:
only information from the correct segment is relevant for the computation of the
approximation of EDt

{
max{Yt, pj}| pj ≤ Xt

}
.

BMAB-SPAR-NS uses only the last w elements that were added to the sets TS,j,t,
TA,j,t, RS,j,t and RA,j,t. More formally, BMAB-SPAR-NS applies the operatorMx(·)
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with x = w to the sets TS,j,t, TA,j,t, RS,j,t and RA,j,t in order to get Mx(TS,j,t),
Mx(TA,j,t), Mx(RS,j,t) and Mx(RA,j,t). Note that this local estimation procedure
enables the algorithm to “forget” information obtained in previous rounds. In partic-
ular, information from many rounds ago (more than w rounds) is not used, because it
is likely that the joint distribution of bids has changed in the meanwhile. Thus, this
procedure ensures that only recent and relevant information from the correct segment
is used for the computation of the approximation of EDt

{
max{Yt, pj}| pj ≤ Xt

}
.

Price-variance weighted exploration

The main idea behind price-variance weighted exploration is to keep track of the
variance of last q reserve prices that have been used. If the variance is below some
threshold, then with some small probability, we choose a reserve price pj at random
with a probability that is inversely proportional to the number of times arm j has
been updated. More formally, let nj denote the number of times that arm j has been
updated. If the variance falls below a threshold τ , then with probability 0 < pex < 1
we select a reserve price at random, where pj has probability n−1

j∑K

i=1
n−1

j

of being chosen

for j = 1, . . . ,K.
One would expect that, after a while, the algorithm would spend most of its time

exploiting the best reserve price for a particular segment. The price-variance weighted
exploration essentially enforces some additional exploration when the algorithm has
entered such an “exploitation phase” (within a segment) in order to check if other
reserve prices have possibly become more profitable (between segments). This is es-
pecially useful in scenarios where the optimal reserve price switches across segments
but where the expected revenue for some reserve prices does not change across seg-
ments. The additional exploration induced by the price-variance weighted exploration
procedure enables BMAB-SPAR-NS to detect changes in the optimal reserve price in
such settings, and this leads to information that can be used to update the estimates
of both terms in Equation (3.3).

Recommended parameter settings

For some of the parameters their values can be set to intuitively reasonable values.
The parameter κ can be set to 0.99, which is a commonly used value for discount rates.
The parameters w and q are harder to choose. These choices depend on the length
of the segments. Letting L denote the length of the segments, w should be chosen
as a fraction of L and q should be chosen as a fraction of w. In online advertising
applications (see e.g. [39]) a change occurs roughly every 20000-50000 (i.e., L ranges
roughly between 20000-50000). Therefore, assuming a rather conservative and low
value of L, w = 1000 and q = 500 could be considered as reasonable values. To
set the value for τ we follow the idea used in the controlled variance pricing (CVP)
policy of [63] and we use τ = 0.5 ·L0.500001−1 with L = 25000 with results in roughly
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τ = 0.003. Intuitively, pex should be set to a relatively low value since the probability
of the next round being in a new segment is relatively low. We set pex = 0.015. In
the experimental section, we perform a detailed sensitivity analysis with respect to
these choices.

3.6 Experimental analysis in stationary environ-
ments

In this section we perform experiments for the stationary environments. Section 3.6.1
discusses the data that is used. The benchmark algorithms are discussed in Sec-
tion 3.6.2. Settings and performance metrics are discussed in Section 3.6.3. Results
of experiments are presented in Section 3.6.4.

3.6.1 Data for experiments
In order to evaluate our method we use an eBay dataset that consists of collector
sport cards that was used in [123]. These cards were sold using a second price auction
with reserve and the full data set can be found at the following website: http:
//cims.nyu.edu/~munoz/data. The dataset contains information about the top two
bids and a number of extra features. These extra features include information about
the seller such as positive feedback percent, seller rating and seller country; as well
information about the card such as whether the player is in the sport’s hall of fame.
For the purposes of the experiments in this Chapter, these extra features are not
needed and will not be used. We refer the reader to [123] for detailed information
about this dataset.

The dataset contains 70213 rows and row j in the dataset is a pair (bj1, b
j
2) where

bj1 denotes the highest bid and bj2 denotes the second highest bid. We take all of the
70213 pairs B = ∪70213

j=1 {(b
j
1, b

j
2)} in the dataset to construct a joint distribution for

the highest bid and second highest bid. The main idea is to create a family of joint
distributions by first clustering the bids and then defining a probability distribution
over the obtained clusters.

The clustering is carried out as follows. First, we determine the 95-th percentile
of B1 = ∪70213

j=1 {b
j
1}. Denote the 95-th percentile by TP . Second, we remove outliers

by removing pairs (bj1, b
j
2) for which the value of the top bid bj1 exceeds the 95-th

percentile TP , that is, we remove pairs j for which bj1 > TP . Next, we calculate the
relative gap zj = (bj1−b

j
2)/bj1. Afterwards, we scale the remaining values of (bj1, b

j
2) by

the maximum value of bj1 the dataset so that all the bids are in the range [0, 1]. We
subsequently cluster the remaining bids using the features bj1, b

j
2, z

j with the k-means
clustering algorithm (see e.g. [31]) with M = 10 clusters. By removing extreme
values for the top bid (values that exceed TP ), we avoid that the normalized bids get
“squished” down to low values in [0, 1]. Figure 3.1 displays the resulting clustering of

http://cims.nyu.edu/~munoz/data
http://cims.nyu.edu/~munoz/data
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bids.
Given the clustering, we can define a joint distribution for the highest bid and

second highest bid. Let Pm ∈ R10 be a probability distribution over the clusters,
where element i is given by Pm(i) and denotes the probability that cluster i is selected.
Given the probability distribution Pm we use the following procedure to sample the
values for the highest bid and second highest bid at time t ∈ {1, . . . , T}:

1. Sample a cluster i ∈ {1, . . . , 10} using the probability distribution Pm. Let i∗
denote the sampled cluster.

2. Sample a pair (bj1, b
j
2) uniformly and at random from cluster i∗. The value for

the highest bid at time t is given by bj1 and the value for the second highest bid
at time t is given by bj2.

Notice that for a fixed Pm this procedure results in a stationary distribution for
the bids and by varying Pm can generate distributions with different properties.
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Figure 3.1: Clustering of bids in subset of eBay dataset.

3.6.2 Benchmark algorithms
As there is no algorithm available that is specifically designed for our reserve price
optimization problem, one approach to solve this problem is to formulate it as a
stochastic multi-armed bandit problem. For this reason, the class of multi-armed
bandit algorithms form a natural benchmark for BMAB-SPAR. We compare the per-
formance of BMAB-SPAR with the following benchmark bandit algorithms: UCB1,
UCB2, UCB-V, MOSSA, OCUCB, KL-UCB and TS, which are described in detail
below.
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The UCB1 algorithm is arguably the most popular version of a multi-armed ban-
dit algorithm and is developed in [17]. UCB-V was developed later in [14] and aims
to improve the performance of UCB1 by taking the empirical variance of the different
arms into account. MOSS [13] is a modified version of UCB1 that has a better worst-
case regret bound compared to UCB1. In [62] an improved version of MOSS called
MOSS-anytime (MOSSA) is developed that does not require the horizon T as input
is developed and experiments showed that it outperformed MOSS. For this reason we
include MOSSA in our evaluation. We also include an algorithm called Optimally
Confident UCB (OCUCB). This algorithm is based on UCB1, but uses a carefully
chosen confidence parameter in order to correctly balance the risk of failing confid-
ence intervals against the cost of excessive optimism [111]. The KL-UCB algorithm
[83] uses the Kullback–Leibler divergence in order to determine upper confidence
bounds and guide arm selection and showed that KL-UCB outperformed UCB-based
algorithms such as UCB1, UCB-V and MOSS. Thompson Sampling (TS) is a random-
ized algorithm based on Bayesian ideas and has become popular after several studies
demonstrated that it has empirical performance that is competitive with alternative
state-of-the-art methods. A theoretical analysis of TS was provided in [6] and we use
the TS algorithm for bounded rewards as described in [6] as a benchmark.

The benchmarks above are compared with an oracle policy called the best fixed
price in hindsight (BFPH). This policy looks at all of the draws of the bids, and then
determines which reserve price (in hindsight) would maximize the cumulative revenue,
and then uses that reserve price in every round. As such, it serves as an upper bound
for the maximal performance achievable by the other algorithms. Finally, we also
consider the benchmark that always set the reserve price equal to zero (denoted by
RPZB), and therefore always receives the second highest bid as revenue.

3.6.3 Settings and performance metrics
We set the prior of each arm j in BMAB-SPAR to (aj,0 = 1.0, bj,0 = 1.0). The
parameters of the benchmark algorithms are set according to the recommendations
in the respective papers. UCB1 is tuned according to Theorem 1 in [17]. UCB2 and
MOSSA are tuned according to Theorem 3 in [62]. UCB-V is tuned according to
Theorem 4 in [14]. OCUCB is tuned according to Section H in [111]. KL-UCB is
tuned according to Remark 5 in [83].

We consider a horizon of T = 40000. All of the aforementioned algorithms are run
with K ∈ {30, 60} arms which are equally spaced in the interval [0, 1].

In order to measure the performance of the methods, we consider two perform-
ance metrics. Our main performance metric is the revenue rate, which is defined as
RR(L) =

∑L
t=1 R̂t/

∑L
t=1Xt, where R̂t is the observed return in period t. This meas-

ures the rate at which the highest bid is extracted. This metric is useful, because it
shows how much revenue is extracted by an algorithm as a fraction of the maximal
revenue that is achievable. This metric enables us to rank different algorithms and in-
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terpret performance differences in terms of revenue impact. The second performance
metric is the average cumulative return, which is defined as ACR(L) =

∑L
t=1 R̂t/L.

We construct four synthetic datasets using the procedure of Section 3.6.1. In the
experiments we report results for the choices in Table 3.1 (additional experimental
results can be found in the Appendix (Section 3.C)). In Table 3.1, ηi is an i.i.d. draw
from an uniform distribution on [0.25, 0.75] for i = 1, . . . , 10 and Zi is a normalizing
constant. In other words, in order to construct the distribution Pj , we sample the
values of ηi for i = 1, . . . , 10 and then we normalize by dividing by Zi to get a valid
probability distribution. Dataset eBay-1 models a case where the gap between the top
two bids is relatively small (the clusters correspond to points close to the diagonal in
Figure 3.1). Dataset eBay-2 models a case where the gap between the top two bids is
relatively large (the clusters correspond to points far off the diagonal in Figure 3.1).
In dataset eBay-3 all clusters are equally likely to be sampled in expectation. In
dataset eBay-4 all clusters have a positive probability of each selected, but clusters
far off the diagonal in Figure 3.1 are more likely. Note that the publisher may not
have much information about the joint distribution of the bids. These four cases are
interesting since they allow us to investigate how performance varies with different
distributions.

Table 3.1: Description of eBay datasets

dataset distribution
eBay-1 P1 = (0, η2, η3, 0, 0, η6, 0, 0, 0, 0)/Z1
eBay-2 P2 = (0, 0, 0, 0, 0, 0, η7, η8, η9, η10)/Z2
eBay-3 P3 = (η1, η2, η3, η4, η5, η6, η7, η8, η9, η10)/Z3
eBay-4 P4 = (η1, η2, η3, η4, η5, η6, 4η7, 4η8, 4η9, 4η10)/Z4

3.6.4 Results
Figures 3.2-3.5 show the revenue rate for K = 30 and K = 60 averaged over 200
independent runs. Results for the average cumulative return can be found in the
Appendix (Section 3.C).

Overall, BMAB-SPAR shows a good performance across the different datasets.
For long horizons, BMAB-SPAR is as good as the best performing benchmark bandit
algorithms, as the revenue rate differs by at most 0.5%. However, there are also
instances where BMAB-SPAR outperforms the best bandit algorithms (MOSSA and
TS) by about 2% - 4% even after 40000 rounds. In all of the cases considered, BMAB-
SPAR outperforms UCB2, UCB-V and UCB1. In general, BMAB-SPAR outperforms
the benchmark bandit algorithms for the shorter horizons. Looking at the revenue
rate, we see that BMAB-SPAR extracts about 3%-5% more revenue compared to the
best benchmark algorithm (MOSSA and TS) up until round 5000. In some cases the
performance gap can be as large as 2% - 4% even after 10000 rounds. Furthermore,
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this gap is even larger (between 5% and 8% after 5000 rounds), if we compare BMAB-
SPAR with UCB2, UCB-V and UCB1.

The results also indicate that the performance of BMAB-SPAR is very close to
the oracle policy (BFPH) that uses the optimal reserve price in every period. In
particular, after about 5000 rounds, BMAB-SPAR earns about 94% - 98% of the
revenue of BFPH. Furthermore, as the number of rounds increases, the performance of
BMAB-SPAR stays close to that of the oracle policy. In contrast, the best benchmark
(MOSSA) only earns about 86% - 95% of the revenue of BFPH after 5000 rounds.

The results show that when the gap between the top two bids is small, then a
reserve price of zero tends to perform well, as RPZB and BFPH are very close. The
results also show that BMAB-SPAR is very useful when the distribution of the bids is
unknown: when gaps are small BMAB-SPAR outperforms the benchmarks and earns
about 94% - 98% of RPZB, however, when gaps are large, BMAB-SPAR outperforms
RPZB. Therefore, BMAB-SPAR adapts well to the underlying distribution of the
bids.

The results indicate that the performance of BMAB-SPAR is robust with respect
to the number of arms K. When K increases from K = 30 to K = 60, the per-
formance gap (measured by the revenue rate) between BMAB-SPAR and MOSSA
(after 5000 rounds) is in some cases up to about 2%-3% higher and the performance
gap after 10000 rounds about 1%-2% higher. Intuitively, this pattern is in line with
expectations, since BMAB-SPAR is able to update information about arm j based
on pulls from arms k 6= j. As K increases, the learning problem becomes harder, and
one would conjecture that this “cross-learning” feature has more added value. The
results indeed confirm this conjecture.

The results are promising and indicate that, explicitly taking the rules of second-
price auctions into account in order to set reserve prices, has added value for the seller.
The results indicate that BMAB-SPAR has the most added value compared to the
benchmark algorithms when the seller knows that the selling horizon will be relatively
short (without necessarily knowing how long the horizon will be). BMAB-SPAR is
especially useful if there is a high number of potential reserve prices and when the
gap between the top two bids is relatively large.
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Figure 3.2: Performance of the algorithms for dataset eBay-1, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.3: Performance of the algorithms for dataset eBay-2, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.4: Performance of the algorithms for dataset eBay-3, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.5: Performance of the algorithms for dataset eBay-4, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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3.7 Experimental analysis in non-stationary envir-
onments

In this section we perform experiments for non-stationary environments. Section 3.7.1
describes the data that is used. The benchmark algorithms are discussed in Sec-
tion 3.7.2. Parameter settings and performance metrics are discussed in Section 3.7.3.
Results of experiments are presented in Section 3.7.4.

3.7.1 Dataset Description
In order to evaluate our method we use real-life data from ad auction markets. We use
header bidding (HB) data from a SME publisher that owns online gaming websites.
Header bidding is an alternative way to sell impressions, where the publisher connects
to multiple HB partners (these are SSPs) for a single impression and each HB partner
submits a bid. The advertiser connected to the HB partner with the highest bid wins
the impression.

The data is from February 29, 2020 for two websites (referred to as website A
and B) and contains, for each impression, the highest bid and second highest bid
among the HB partners, and the hour of the day. We use these bids as proxies for
the top two bids in a second-price auction in order to construct the joint distribution
of the bids for the piece-wise stationary environment as described in Section 3.5.1.
We perform the following pre-processing steps on the raw data. Let LMAX denote a
list of numbers containing the maximum bid of all the HB partners for each auction.
First, we determine the 95-th percentile qMAX of the positive values in LMAX and
keep all the HB auctions where values in LMAX are at most qMAX . Next, to preserve
proprietary information, we shift the bids of all HB partners by a small positive
constant v. Finally, we normalize the bids of all the HB partners to the range [0, 1]
by dividing by qMAX + v. After these steps, we end up with a list LW,h for website
W and hour h. Each element in the list LW,h is a tuple (a, b) where a denotes the
highest bid and b denotes the second highest bid.

Let T = ∪Mi=1Ti be a partition of T as described in Section 3.5.1. We use the
following procedure to construct a time series of length T for the bids. First, we
define Ti = {(i − 1) · (T/M) + 1, . . . , (T/M) + (i − 1) · (T/M)} for segment i ∈
{1, . . . ,M}. Second, for round t ∈ Ti, we sample a tuple (at, bt) uniformly at random
with replacement from LW,h and the highest bid equals Xt = at and the second
highest bid equals Yt = bt.

3.7.2 Benchmark algorithms
We compare the performance of BMAB-SPAR-NS with the following benchmark
algorithms: MUCB, EXP3-S, EXP3-BGZ, EXP3-P and SHIFTBAND. These al-
gorithms are designed for non-stationary environments and adversarial environments
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and serve as natural benchmarks for our problem. MUCB was recently proposed by
[39] for piece-wise stationary environments. EXP3-S and EXP3-P were proposed by
[15] and are multi-armed bandit algorithms that have performance guarantees under
adversarial environments. The authors in [26] develop a variant of EXP3-S (which
we will refer to as EXP3-BGZ), which uses the concept of a variation budget that
describes the degree of non-stationarity of the reward distributions of the arms over
the horizon T . It is similar to EXP3-S but tuned in a different way based on the
variation budget. SHIFTBAND was proposed by [16] and is designed for adversarial
environments. In contrast to EXP3-S, SHIFTBAND uses upper confidence bounds
in order to manage the exploration-exploitation trade-off.

3.7.3 Settings and Performance Metrics
We consider a horizon of T = 450000 and M = 10 segments. For both website A and
B, we consider two settings for the non-stationary environment. More specifically,
for website A, we use LA,h with h ∈ {1, 2, . . . , 10} (this is denoted as Set A1) and
LA,h with h ∈ {13, 14, . . . , 23} (this is denoted as Set A2). In Set A1, LA,1 is used
in segment 1, LA,2 is used in segment 2, etc. Similarly, in Set A2, LA,13 is used
in segment 1, LA,14 is used in segment 2, etc. For website B, Set B1 and Set B2
are defined in a similar way. All of the aforementioned algorithms are run with
K = 15 arms which are equally spaced in the interval [0.0, 0.2]. We use the same
performance metrics as in the stationary case (see Section 3.6.3). All results are
averaged over 200 independent runs. We run EXP3-BGZ with a variation budget of
0.8. Following [16], we run SHIFTBAND (using notation from the original paper)
with δ = 0.05. The parameters of all other benchmark algorithms are set according
to the recommendations in the respective papers. We run BMAB-SPAR-NS with
(aj,0 = 1.0, bj,0 = 1.0) for all j, w = 1000, q = 500, κ = 0.99, τ = 0.003 and
pex = 0.015. A detailed sensitivity analysis with respect to the parameters can be
found in the Appendix (Section 3.D).

3.7.4 Results
Figures 3.6-3.7 show the revenue rate (averaged over 200 independent runs) for website
A and B. Results for the average cumulative return can be found in the Appedix).

In general, BMAB-SPAR-NS outperforms the benchmark algorithms. The dif-
ference in revenue rate relative to the best performing benchmark algorithm ranges
from 0.5% to 2.5% depending on the number of elapsed rounds and the website. The
best performing benchmark algorithms are EXP3-BGZ and EXP3-S. Note that, sim-
ilar to BMAB-SPAR, BMAB-SPAR-NS is able to update information about arm j

based on pulls from arms k 6= j. A possible explanation for the superior performance
of BMAB-SPAR-NS could be related to this “cross-learning” feature. Due to the
non-stationary environment, the learning problem becomes harder, and one would
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conjecture that this “cross-learning” feature has more added value since it allows
the algorithm to quickly detect changes in the environment. The results appear to
support this conjecture.

Recall that a piece-wise stationary environment is a special case of an adversarial
environment. Another possible explanation for superior performance of BMAB-
SPAR-NS could be that the bandit algorithms EXP3-BGZ, EXP3-S, EXP3-P and
SHIFTBAND are too conservative because they assume that the environment is ad-
versarial.

An explanation for the poor performance of MUCB could be related to the design
of the algorithm and the piece-wise stationary environment itself. Due to the piece-
wise stationary environment, the optimal reserve price can vary across segments.
Furthermore, the expected return of the optimal reserve price may change, even if
the optimal reserve price does not differ across segments. MUCB uses a change-point
detection test, and each time that a change is detected, all arms get “reset” and an
exploration phase with uniform sampling gets triggered. It could be that the piece-
wise stationary environment for the reserve optimization problem leads to too many
detected changes and to too many “resets”, which in turn leads to poor performance
of MUCB.
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Figure 3.6: Performance of the algorithms for website A, averaged over 200 runs.
Shaded region indicates 95% confidence interval.
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Figure 3.7: Performance of the algorithms for website B, averaged over 200 runs.
Shaded region indicates 95% confidence interval.
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3.8 Conclusion
The control of reserve prices in second-price auctions plays a key role in revenue
optimization in online advertising. In this Chapter, we studied the reserve price
optimization problem from the perspective of an online publisher. We considered
a limited information setting where the values of the bids are not revealed to the
publisher and no historical dataset containing the values of the bids is available. The
main contribution of this Chapter is a method that incorporates knowledge about the
rules of second-price auctions into a multi-armed bandit framework for optimizing
reserve prices. Furthermore, the ideas behind our proposed method can be applied
in both stationary and non-stationary environments. The experiments show that
by incorporating the rules of second-price auctions, one can often improve upon the
performance that can be obtained by traditional bandit algorithms.

In this Chapter we considered reserve price optimization on a single ad exchange.
The next Chapter tackles the problem of reserve price optimization when the publisher
can access multiple ad exchanges at the same time.

Appendix

3.A Additional results for Section 3.6
In this section we present tables that show the performance of the algorithms discussed
in Section 3.6 of the main text.
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Table 3.2: Performance of algorithms on eBay-1 dataset with K = 30.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.185 0.185 0.185 0.185 0.185 0.185 0.738 0.738 0.738 0.738 0.738 0.738
std 0.021 0.020 0.020 0.020 0.020 0.020 0.007 0.006 0.005 0.005 0.005 0.005

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.185 0.185 0.185 0.185 0.185 0.185 0.738 0.738 0.738 0.738 0.738 0.738
std 0.021 0.020 0.020 0.020 0.020 0.020 0.007 0.006 0.005 0.005 0.005 0.005

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.176 0.179 0.179 0.179 0.180 0.180 0.703 0.714 0.714 0.715 0.715 0.716
std 0.020 0.020 0.020 0.020 0.020 0.020 0.006 0.004 0.004 0.004 0.004 0.004

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.120 0.152 0.158 0.162 0.169 0.174 0.476 0.604 0.629 0.644 0.673 0.694
std 0.022 0.021 0.021 0.021 0.020 0.020 0.035 0.017 0.014 0.012 0.009 0.007

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.129 0.157 0.162 0.165 0.172 0.176 0.510 0.624 0.644 0.658 0.684 0.702
std 0.022 0.021 0.021 0.021 0.020 0.020 0.029 0.014 0.011 0.009 0.006 0.004

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.094 0.111 0.116 0.121 0.131 0.142 0.373 0.438 0.460 0.477 0.520 0.564
std 0.018 0.020 0.021 0.021 0.022 0.022 0.030 0.031 0.031 0.031 0.028 0.023

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.109 0.136 0.143 0.148 0.158 0.167 0.430 0.539 0.568 0.587 0.629 0.663
std 0.021 0.022 0.022 0.022 0.021 0.021 0.034 0.025 0.022 0.020 0.013 0.008

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.089 0.111 0.119 0.125 0.141 0.156 0.352 0.437 0.470 0.496 0.561 0.620
std 0.016 0.019 0.020 0.020 0.021 0.020 0.027 0.028 0.027 0.025 0.018 0.010

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.098 0.129 0.139 0.146 0.161 0.172 0.388 0.511 0.550 0.580 0.641 0.683
std 0.019 0.022 0.022 0.022 0.021 0.021 0.030 0.029 0.025 0.021 0.011 0.004

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.122 0.149 0.154 0.158 0.165 0.171 0.483 0.590 0.612 0.627 0.657 0.681
std 0.021 0.021 0.021 0.020 0.020 0.020 0.028 0.015 0.012 0.010 0.006 0.004
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Table 3.3: Performance of algorithms on eBay-2 dataset with K = 30.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.196 0.195 0.195 0.195 0.195 0.195 0.554 0.553 0.553 0.553 0.553 0.553
std 0.024 0.024 0.024 0.024 0.024 0.024 0.012 0.011 0.011 0.010 0.010 0.010

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.177 0.177 0.177 0.177 0.177 0.177 0.500 0.500 0.500 0.500 0.500 0.500
std 0.025 0.025 0.025 0.025 0.025 0.025 0.022 0.021 0.021 0.021 0.021 0.021

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.187 0.188 0.189 0.189 0.188 0.189 0.529 0.533 0.534 0.534 0.534 0.534
std 0.025 0.025 0.025 0.025 0.025 0.025 0.016 0.016 0.015 0.015 0.015 0.015

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.151 0.169 0.172 0.175 0.180 0.184 0.427 0.476 0.487 0.494 0.509 0.521
std 0.026 0.025 0.024 0.024 0.024 0.023 0.031 0.023 0.020 0.019 0.016 0.014

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.154 0.172 0.176 0.178 0.183 0.186 0.434 0.486 0.497 0.503 0.517 0.528
std 0.026 0.025 0.025 0.024 0.024 0.024 0.030 0.021 0.019 0.018 0.015 0.013

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.136 0.147 0.150 0.152 0.158 0.164 0.384 0.413 0.423 0.429 0.447 0.464
std 0.025 0.025 0.025 0.025 0.026 0.026 0.034 0.031 0.030 0.029 0.027 0.025

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.146 0.161 0.165 0.168 0.173 0.179 0.410 0.454 0.465 0.473 0.490 0.505
std 0.026 0.026 0.025 0.025 0.025 0.024 0.033 0.027 0.025 0.023 0.020 0.017

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.131 0.143 0.148 0.151 0.160 0.169 0.369 0.403 0.416 0.426 0.452 0.477
std 0.023 0.025 0.025 0.025 0.025 0.024 0.031 0.030 0.029 0.028 0.025 0.020

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.139 0.157 0.163 0.167 0.175 0.183 0.392 0.443 0.459 0.471 0.496 0.518
std 0.025 0.026 0.026 0.025 0.025 0.024 0.032 0.028 0.026 0.024 0.019 0.015

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.152 0.166 0.170 0.172 0.177 0.181 0.429 0.470 0.480 0.486 0.500 0.512
std 0.025 0.025 0.024 0.024 0.024 0.024 0.029 0.022 0.020 0.019 0.017 0.015
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Table 3.4: Performance of algorithms on eBay-3 dataset with K = 30.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.207 0.207 0.207 0.207 0.207 0.207 0.656 0.657 0.657 0.657 0.657 0.657
std 0.021 0.020 0.020 0.020 0.020 0.020 0.019 0.019 0.019 0.019 0.019 0.019

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.207 0.207 0.207 0.206 0.207 0.207 0.654 0.655 0.655 0.655 0.655 0.655
std 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.019 0.019 0.020 0.020

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.203 0.205 0.205 0.205 0.205 0.205 0.644 0.650 0.650 0.650 0.651 0.651
std 0.021 0.020 0.020 0.020 0.020 0.020 0.019 0.018 0.018 0.018 0.018 0.018

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.161 0.179 0.184 0.187 0.192 0.197 0.509 0.568 0.582 0.591 0.609 0.624
std 0.021 0.020 0.020 0.020 0.020 0.020 0.030 0.024 0.022 0.022 0.021 0.019

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.165 0.183 0.187 0.190 0.195 0.198 0.522 0.580 0.593 0.601 0.617 0.629
std 0.021 0.020 0.020 0.020 0.020 0.020 0.029 0.023 0.022 0.022 0.021 0.020

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.148 0.157 0.160 0.162 0.169 0.175 0.467 0.496 0.506 0.514 0.533 0.554
std 0.021 0.020 0.020 0.020 0.021 0.021 0.033 0.028 0.027 0.027 0.026 0.024

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.156 0.171 0.176 0.178 0.185 0.191 0.493 0.542 0.556 0.565 0.587 0.606
std 0.022 0.021 0.021 0.021 0.020 0.020 0.032 0.026 0.025 0.024 0.022 0.021

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.142 0.153 0.157 0.160 0.170 0.180 0.450 0.483 0.497 0.508 0.538 0.569
std 0.020 0.020 0.020 0.020 0.020 0.020 0.031 0.028 0.027 0.026 0.024 0.021

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.150 0.167 0.173 0.177 0.188 0.196 0.473 0.528 0.547 0.561 0.594 0.621
std 0.021 0.021 0.021 0.021 0.020 0.020 0.032 0.027 0.025 0.024 0.022 0.020

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.161 0.176 0.180 0.183 0.188 0.193 0.510 0.558 0.571 0.579 0.597 0.612
std 0.021 0.020 0.020 0.020 0.020 0.020 0.028 0.023 0.022 0.021 0.020 0.019
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Table 3.5: Performance of algorithms on eBay-4 dataset with K = 30.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.200 0.199 0.199 0.199 0.199 0.199 0.594 0.593 0.593 0.593 0.593 0.593
std 0.019 0.019 0.019 0.019 0.019 0.019 0.012 0.010 0.010 0.011 0.011 0.011

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.191 0.190 0.190 0.190 0.190 0.190 0.567 0.566 0.567 0.567 0.567 0.567
std 0.020 0.020 0.020 0.020 0.020 0.020 0.018 0.017 0.017 0.017 0.017 0.017

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.194 0.195 0.195 0.195 0.195 0.195 0.576 0.580 0.580 0.581 0.581 0.581
std 0.020 0.019 0.019 0.019 0.019 0.019 0.014 0.012 0.012 0.012 0.012 0.012

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.157 0.172 0.176 0.179 0.184 0.188 0.464 0.513 0.525 0.532 0.548 0.559
std 0.020 0.019 0.019 0.019 0.019 0.019 0.025 0.017 0.016 0.015 0.014 0.013

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.159 0.175 0.179 0.181 0.186 0.190 0.471 0.521 0.532 0.540 0.554 0.566
std 0.020 0.020 0.020 0.020 0.019 0.019 0.024 0.018 0.016 0.015 0.013 0.012

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.142 0.151 0.154 0.156 0.162 0.168 0.419 0.448 0.458 0.465 0.482 0.501
std 0.020 0.020 0.020 0.020 0.020 0.020 0.027 0.024 0.024 0.023 0.022 0.020

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.151 0.165 0.169 0.172 0.178 0.183 0.447 0.490 0.502 0.510 0.528 0.544
std 0.020 0.020 0.020 0.020 0.020 0.020 0.026 0.020 0.020 0.019 0.017 0.015

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.137 0.147 0.151 0.155 0.164 0.172 0.405 0.436 0.449 0.459 0.486 0.513
std 0.019 0.020 0.020 0.020 0.020 0.019 0.027 0.024 0.024 0.023 0.020 0.016

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.145 0.161 0.167 0.171 0.180 0.187 0.428 0.478 0.495 0.507 0.535 0.557
std 0.020 0.020 0.021 0.020 0.020 0.019 0.028 0.023 0.021 0.020 0.016 0.014

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.157 0.170 0.174 0.176 0.181 0.185 0.464 0.506 0.516 0.523 0.538 0.551
std 0.020 0.019 0.019 0.019 0.019 0.019 0.024 0.017 0.016 0.015 0.014 0.013
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Table 3.6: Performance of algorithms on eBay-1 dataset with K = 60.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.185 0.185 0.185 0.185 0.185 0.185 0.738 0.738 0.738 0.738 0.738 0.738
std 0.021 0.020 0.020 0.020 0.020 0.020 0.007 0.006 0.005 0.005 0.005 0.005

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.185 0.185 0.185 0.185 0.185 0.185 0.738 0.738 0.738 0.738 0.738 0.738
std 0.021 0.020 0.020 0.020 0.020 0.020 0.007 0.006 0.005 0.005 0.005 0.005

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.174 0.179 0.179 0.180 0.180 0.180 0.692 0.713 0.714 0.715 0.716 0.717
std 0.020 0.020 0.020 0.020 0.020 0.020 0.006 0.004 0.003 0.003 0.003 0.004

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.106 0.137 0.145 0.150 0.160 0.168 0.419 0.543 0.574 0.594 0.636 0.668
std 0.020 0.021 0.021 0.021 0.020 0.020 0.033 0.024 0.021 0.018 0.011 0.007

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.115 0.146 0.152 0.156 0.165 0.171 0.455 0.579 0.605 0.621 0.656 0.682
std 0.021 0.022 0.021 0.021 0.021 0.021 0.031 0.021 0.017 0.015 0.009 0.006

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.090 0.102 0.106 0.110 0.119 0.129 0.355 0.404 0.420 0.434 0.471 0.512
std 0.017 0.019 0.020 0.020 0.021 0.022 0.029 0.031 0.031 0.032 0.032 0.030

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.099 0.122 0.129 0.134 0.146 0.156 0.393 0.482 0.510 0.530 0.577 0.621
std 0.019 0.022 0.022 0.022 0.022 0.021 0.034 0.031 0.029 0.027 0.021 0.015

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.085 0.098 0.104 0.109 0.123 0.139 0.336 0.388 0.411 0.430 0.486 0.550
std 0.015 0.018 0.019 0.019 0.021 0.021 0.022 0.028 0.029 0.029 0.027 0.020

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.093 0.117 0.126 0.133 0.151 0.165 0.367 0.463 0.499 0.527 0.600 0.658
std 0.018 0.021 0.022 0.022 0.022 0.021 0.030 0.032 0.031 0.028 0.018 0.009

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.109 0.135 0.142 0.146 0.156 0.163 0.432 0.536 0.562 0.580 0.619 0.650
std 0.020 0.021 0.021 0.021 0.020 0.020 0.032 0.022 0.019 0.016 0.011 0.007
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Table 3.7: Performance of algorithms on eBay-2 dataset with K = 60.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.199 0.198 0.199 0.198 0.198 0.198 0.563 0.563 0.563 0.563 0.563 0.562
std 0.024 0.023 0.023 0.023 0.023 0.023 0.010 0.009 0.009 0.009 0.008 0.008

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.177 0.177 0.177 0.177 0.177 0.177 0.500 0.500 0.500 0.500 0.500 0.500
std 0.025 0.025 0.025 0.025 0.025 0.025 0.022 0.021 0.021 0.021 0.021 0.021

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.185 0.188 0.188 0.188 0.188 0.189 0.524 0.532 0.533 0.533 0.534 0.534
std 0.025 0.025 0.025 0.025 0.025 0.025 0.018 0.017 0.017 0.017 0.017 0.017

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.144 0.161 0.165 0.168 0.174 0.179 0.405 0.454 0.467 0.475 0.493 0.508
std 0.026 0.025 0.025 0.024 0.024 0.024 0.033 0.025 0.023 0.021 0.018 0.015

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.147 0.166 0.170 0.173 0.179 0.184 0.414 0.468 0.480 0.489 0.507 0.522
std 0.026 0.025 0.025 0.025 0.024 0.024 0.032 0.024 0.021 0.019 0.016 0.013

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.134 0.142 0.145 0.147 0.152 0.158 0.377 0.400 0.408 0.413 0.428 0.445
std 0.025 0.025 0.025 0.025 0.026 0.026 0.033 0.031 0.031 0.031 0.030 0.028

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.140 0.154 0.157 0.160 0.166 0.173 0.395 0.433 0.444 0.452 0.470 0.488
std 0.026 0.026 0.026 0.026 0.025 0.025 0.034 0.030 0.028 0.027 0.024 0.021

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.129 0.137 0.140 0.143 0.150 0.159 0.363 0.385 0.394 0.402 0.423 0.449
std 0.024 0.024 0.024 0.024 0.025 0.025 0.032 0.030 0.030 0.030 0.028 0.025

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.136 0.151 0.156 0.160 0.170 0.179 0.383 0.425 0.440 0.452 0.480 0.507
std 0.025 0.026 0.026 0.026 0.025 0.024 0.032 0.030 0.029 0.027 0.022 0.016

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.146 0.160 0.163 0.166 0.171 0.176 0.410 0.451 0.461 0.468 0.484 0.499
std 0.025 0.025 0.025 0.025 0.024 0.024 0.031 0.025 0.024 0.022 0.019 0.017
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Table 3.8: Performance of algorithms on eBay-3 dataset with K = 60.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.208 0.208 0.208 0.208 0.208 0.208 0.658 0.659 0.659 0.659 0.659 0.659
std 0.021 0.020 0.020 0.020 0.020 0.020 0.019 0.018 0.018 0.018 0.018 0.018

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.207 0.207 0.207 0.206 0.207 0.207 0.654 0.655 0.655 0.655 0.655 0.655
std 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.019 0.019 0.020 0.020

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.202 0.205 0.205 0.205 0.205 0.205 0.638 0.649 0.650 0.650 0.651 0.651
std 0.021 0.020 0.020 0.020 0.020 0.020 0.019 0.018 0.018 0.018 0.018 0.018

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.154 0.171 0.175 0.178 0.185 0.191 0.487 0.541 0.555 0.565 0.587 0.606
std 0.021 0.020 0.020 0.020 0.020 0.020 0.031 0.024 0.023 0.022 0.021 0.020

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.158 0.176 0.181 0.184 0.190 0.195 0.500 0.558 0.572 0.581 0.602 0.618
std 0.021 0.020 0.020 0.020 0.020 0.020 0.031 0.024 0.023 0.022 0.021 0.020

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.146 0.152 0.155 0.157 0.162 0.168 0.461 0.482 0.490 0.496 0.512 0.531
std 0.021 0.020 0.020 0.020 0.020 0.020 0.033 0.029 0.028 0.027 0.027 0.026

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.151 0.163 0.167 0.170 0.177 0.184 0.478 0.517 0.530 0.539 0.561 0.583
std 0.021 0.021 0.021 0.021 0.021 0.020 0.032 0.027 0.027 0.026 0.024 0.022

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.141 0.147 0.150 0.152 0.160 0.169 0.446 0.465 0.474 0.482 0.505 0.533
std 0.020 0.019 0.019 0.019 0.020 0.020 0.032 0.028 0.027 0.027 0.026 0.024

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.147 0.161 0.166 0.170 0.181 0.191 0.465 0.508 0.525 0.538 0.573 0.606
std 0.020 0.020 0.021 0.021 0.020 0.020 0.030 0.028 0.027 0.026 0.023 0.020

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.155 0.168 0.172 0.175 0.181 0.187 0.490 0.533 0.545 0.554 0.574 0.593
std 0.021 0.020 0.020 0.020 0.020 0.020 0.030 0.024 0.023 0.022 0.021 0.020
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Table 3.9: Performance of algorithms on eBay-4 dataset with K = 60.

BFPH
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.203 0.202 0.202 0.202 0.202 0.202 0.602 0.601 0.602 0.602 0.602 0.602
std 0.019 0.018 0.019 0.019 0.018 0.019 0.012 0.011 0.011 0.011 0.011 0.011

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.191 0.190 0.190 0.190 0.190 0.190 0.567 0.566 0.567 0.567 0.567 0.567
std 0.020 0.020 0.020 0.020 0.020 0.020 0.018 0.017 0.017 0.017 0.017 0.017

BMAB-SPAR
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.192 0.194 0.194 0.195 0.195 0.195 0.570 0.578 0.579 0.580 0.580 0.580
std 0.019 0.019 0.019 0.019 0.019 0.019 0.014 0.012 0.012 0.013 0.013 0.013

TS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.148 0.164 0.169 0.172 0.178 0.183 0.439 0.489 0.502 0.511 0.530 0.546
std 0.020 0.020 0.020 0.020 0.019 0.019 0.026 0.020 0.019 0.018 0.016 0.014

MOSSA
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.152 0.169 0.173 0.176 0.182 0.188 0.451 0.502 0.515 0.524 0.543 0.559
std 0.020 0.020 0.020 0.020 0.019 0.019 0.027 0.019 0.018 0.017 0.015 0.013

UCB1
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.139 0.146 0.149 0.151 0.156 0.162 0.413 0.435 0.442 0.448 0.464 0.481
std 0.019 0.020 0.020 0.020 0.020 0.020 0.026 0.025 0.025 0.025 0.024 0.022

UCB2
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.146 0.157 0.161 0.164 0.171 0.177 0.432 0.468 0.479 0.487 0.507 0.526
std 0.020 0.020 0.021 0.021 0.020 0.020 0.027 0.023 0.023 0.022 0.019 0.017

UCB-V
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.136 0.141 0.144 0.147 0.154 0.162 0.402 0.420 0.428 0.436 0.457 0.483
std 0.019 0.019 0.019 0.019 0.020 0.020 0.026 0.024 0.024 0.024 0.022 0.020

OCUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.141 0.155 0.160 0.164 0.174 0.183 0.418 0.460 0.475 0.487 0.518 0.546
std 0.019 0.020 0.021 0.021 0.020 0.019 0.026 0.024 0.023 0.022 0.018 0.014

KL-UCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 1000 5000 7500 10000 20000 40000 1000 5000 7500 10000 20000 40000
mean 0.149 0.163 0.167 0.169 0.175 0.180 0.443 0.484 0.496 0.503 0.521 0.536
std 0.020 0.020 0.020 0.020 0.019 0.019 0.027 0.020 0.019 0.018 0.016 0.014
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3.B Additional results for Section 3.7
In this section we present tables that show the performance of the algorithms discussed
in Section 3.7 of the main text.

Table 3.10: Performance of algorithms for set A1.

BMAB-SPAR-NS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.081 0.080 0.071 0.064 0.058 0.055 0.548 0.535 0.521 0.528 0.520 0.519
std 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.078 0.078 0.069 0.062 0.056 0.054 0.528 0.518 0.505 0.513 0.506 0.506
std 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

EXP3-BGZ
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.081 0.081 0.071 0.063 0.058 0.055 0.549 0.538 0.521 0.526 0.518 0.516
std 0.001 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.002 0.002 0.002 0.002

EXP3-S
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.080 0.080 0.070 0.062 0.057 0.054 0.542 0.530 0.513 0.516 0.508 0.505
std 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

EXP3-P
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.080 0.079 0.069 0.060 0.055 0.052 0.538 0.524 0.505 0.502 0.492 0.487
std 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

SHIFTBAND
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.080 0.079 0.069 0.060 0.055 0.051 0.538 0.524 0.504 0.499 0.489 0.484
std 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

MUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.080 0.079 0.069 0.061 0.055 0.052 0.541 0.527 0.508 0.505 0.496 0.491
std 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.001 0.001 0.001 0.001
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Table 3.11: Performance of algorithms for set A2.

BMAB-SPAR-NS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.033 0.041 0.054 0.061 0.062 0.064 0.495 0.538 0.547 0.538 0.528 0.526
std 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.001 0.001 0.001 0.001

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.032 0.039 0.053 0.059 0.060 0.062 0.481 0.524 0.535 0.525 0.515 0.512
std 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.002 0.001 0.001 0.001

EXP3-BGZ
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.029 0.038 0.053 0.060 0.062 0.064 0.437 0.509 0.535 0.530 0.524 0.524
std 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.002 0.002 0.001 0.001

EXP3-S
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.027 0.036 0.051 0.059 0.061 0.063 0.406 0.479 0.519 0.520 0.515 0.515
std 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.001 0.001 0.001

EXP3-P
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.026 0.034 0.049 0.057 0.058 0.061 0.391 0.451 0.493 0.500 0.497 0.499
std 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

SHIFTBAND
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.026 0.034 0.048 0.056 0.058 0.060 0.390 0.446 0.488 0.496 0.494 0.496
std 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.001 0.001 0.001 0.001

MUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.026 0.035 0.049 0.057 0.059 0.061 0.401 0.461 0.499 0.505 0.502 0.504
std 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.001 0.001 0.001
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Table 3.12: Performance of algorithms for set B1.

BMAB-SPAR-NS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.012 0.011 0.012 0.013 0.014 0.419 0.391 0.351 0.352 0.369 0.372
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.004 0.002 0.002 0.001 0.001

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.012 0.011 0.012 0.013 0.013 0.411 0.380 0.338 0.340 0.358 0.361
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.004 0.002 0.002 0.001 0.001

EXP3-BGZ
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.014 0.012 0.011 0.012 0.013 0.014 0.393 0.369 0.343 0.348 0.363 0.366
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.004 0.002 0.002 0.002 0.002

EXP3-S
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.014 0.012 0.011 0.012 0.013 0.013 0.391 0.364 0.338 0.343 0.355 0.358
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.001 0.001

EXP3-P
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.014 0.011 0.011 0.012 0.013 0.013 0.390 0.362 0.336 0.341 0.352 0.355
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.001 0.001

SHIFTBAND
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.014 0.011 0.011 0.012 0.013 0.013 0.390 0.362 0.336 0.341 0.352 0.355
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.001 0.001

MUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.014 0.011 0.011 0.012 0.013 0.013 0.391 0.363 0.337 0.342 0.353 0.356
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.001 0.001
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Table 3.13: Performance of algorithms for set B2.

BMAB-SPAR-NS
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.016 0.016 0.016 0.015 0.015 0.015 0.411 0.412 0.404 0.394 0.387 0.386
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.002 0.002

RPZB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.015 0.015 0.015 0.014 0.014 0.404 0.404 0.396 0.383 0.375 0.374
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.002 0.001

EXP3-BGZ
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.015 0.015 0.015 0.015 0.014 0.387 0.392 0.390 0.386 0.383 0.382
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.003 0.002 0.002 0.002

EXP3-S
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.015 0.015 0.015 0.014 0.014 0.385 0.389 0.384 0.380 0.376 0.375
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.002 0.001

EXP3-P
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.015 0.015 0.015 0.014 0.014 0.385 0.387 0.382 0.378 0.374 0.373
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.002 0.001

SHIFTBAND
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.015 0.015 0.015 0.014 0.014 0.385 0.387 0.381 0.378 0.374 0.372
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.002 0.001

MUCB
Average Cumulative Return (ACR) Revenue Rate (RR)

horizon 40000 100000 200000 300000 400000 450000 40000 100000 200000 300000 400000 450000
mean 0.015 0.015 0.015 0.015 0.014 0.014 0.385 0.388 0.382 0.379 0.375 0.373
std 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.003 0.002 0.002 0.002 0.001
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3.C Impact of alternative clustering
In this section we perform additional experiments related to Section 3.6 of the main
text. In this section we study how the performance of the algorithms change if the
clustering of the bids is performed in a different way. Similarly as in the main text,
we define probability distributions over the clusters. However, in contrast with the
main text, we do not use the relative gap between the second highest bid and the
highest bid as a feature in the clustering.

The clustering is carried out as follows. First, we determine the 95-th percentile
of B1 = ∪70213

j=1 {b
j
1}. Denote the 95-th percentile by TP . Second, we remove outliers

by removing pairs (bj1, b
j
2) for which the value of the top bid bj1 exceeds the 95-th

percentile TP , that is, we remove pairs j for which bj1 > TP . We subsequently
cluster the remaining bids (bj1, b

j
2) using the k-means clustering algorithm withM = 6

clusters. Next, we scale the remaining values of (bj1, b
j
2) by the maximum value of bj1

the dataset so that all the bids are in the range [0, 1]. Figure 3.8 displays the resulting
clustering of bids.
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Figure 3.8: Clustering of bids in subset of eBay dataset.

The description of these probability distributions can be found in Table 3.14. In
Table 3.14, ηi is defined as ηi = η̂i∑6

i=1
η̂i

, where η̂i is an i.i.d. draw from an uniform

distribution on [0.25, 0.75] for i = 1, . . . , 6. In other words, in order to construct the
distribution Pj , we sample the values of η̂i for i = 1, . . . , 6 and then we normalized
these values so that they sum up 1. We perform 200 independent runs of the above
procedure and in each run we sample new values for η̂i.

Dataset eBay-5 models a case where the joint distribution is (in expectation) more
evenly spread across [0, 1], dataset eBay-6 models a case where the joint distribution
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Table 3.14: Description of eBay datasets

dataset distribution
eBay-5 P5 = (η1, η2, η3, η4, η5, η6)
eBay-6 P6 = (η1, η2, 0.00, 0.00, 0.00, 0.00)
eBay-7 P7 = (0.00, 0.00, 0.00, 0.00, η1, η2)
eBay-8 P8 = (0.00, 0.00, η1, η2, 0.00, 0.00)

is concentrated in the lower part of [0, 1], dataset eBay-7 models a case where the joint
distribution is concentrated in the upper part of [0, 1], and dataset eBay-8 models a
case where the joint distribution is concentrated in the middle of [0, 1].

We consider a horizon of T = 40000. We consider the same set of algorithms as
in the main text and all of the algorithms are run with K ∈ {30, 60} arms which are
equally spaced in the interval [0, 1]. All results are averaged over 200 independent
runs.

The results of the experiments can be found in Figures 3.9-3.12. The results are
qualitatively similar to those reported in the main text. We again see that BMAB-
SPAR tends to outperform the benchmark bandit algorithms. Furthermore, we again
see that the revenue rate of BMAB-SPAR approaches that of BFPH rather quickly.
Also, we see that the performance of BMAB-SPAR is not very sensitive with respect
to the number of arms K.
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(b) K = 60.

Figure 3.9: Performance of the algorithms for dataset eBay-5, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.10: Performance of the algorithms for dataset eBay-6, averaged over 200
runs. Lines indicate the mean and shaded region indicates 95% confidence interval.



Chapter 3 95

0 5000 10000 15000 20000 25000 30000 35000 40000
Sale number

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Re
ve

nu
e 

Ra
te

 (R
R)

BMAB-SPAR
TS
MOSSA
UCB1
UCB2

UCB-V
OCUCB
KL-UCB
BFPH
RPZB

(a) K = 30.

0 5000 10000 15000 20000 25000 30000 35000 40000
Sale number

0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800

Re
ve

nu
e 

Ra
te

 (R
R)

BMAB-SPAR
TS
MOSSA
UCB1
UCB2

UCB-V
OCUCB
KL-UCB
BFPH
RPZB

(b) K = 60.

Figure 3.11: Performance of the algorithms for dataset eBay-7, averaged over 200
runs. Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.12: Performance of the algorithms for dataset eBay-8, averaged over 200
runs. Lines indicate the mean and shaded region indicates 95% confidence interval.
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3.D Sensitivity analysis for BMAB-SPAR-NS
In this section we perform additional experiments related to Section 3.7 of the main
text. In this section we present the results of a sensitivity analysis with respect
to the parameters of BMAB-SPAR-NS. The experimental setting is identical to the
setting in Section 3.7 of the main text, but we adjust several of the parameters of the
BMAB-SPAR-NS algorithm in order to investigate the impact of these parameters on
the performance. Table 3.15 below shows the parameter settings that are used in the
sensitivity analysis and relates these to an abbreviation. In all of of the experiments
we set κ = 0.99.

The results are presented in Figures 3.13 to 3.18. Figure 3.13 to 3.15 shows the
performance for website A and Figure 3.16 to 3.18 shows the performance for website
B. Overall, the results are qualitatively similar to those reported in the main text.
The results indicate that, in general, the settings for BMAB-SPAR-NS lead to the
best performance. Furthermore, we observe that performance of BMAB-SPAR-NS is
competitive with the performance of the best performing benchmark algorithms for
all of the parameter values considered.

Table 3.15: Parameter values for sensitivity analysis.

parameter values Abbreviation
pex = 0.015, τ = 0.003, q = 500, w = 1000 BMAB-SPAR-NS
pex = 0.005, τ = 0.005, q = 500, w = 1000 BMAB-SPAR-NS-A
pex = 0.005, τ = 0.005, q = 1000, w = 2000 BMAB-SPAR-NS-B
pex = 0.05, τ = 0.001, q = 500, w = 1000 BMAB-SPAR-NS-C
pex = 0.05, τ = 0.001, q = 1000, w = 2000 BMAB-SPAR-NS-D
pex = 0.05, τ = 0.001, q = 500, w = 2000 BMAB-SPAR-NS-E
pex = 0.005, τ = 0.001, q = 500, w = 2000 BMAB-SPAR-NS-F
pex = 0.05, τ = 0.005, q = 500, w = 2000 BMAB-SPAR-NS-G
pex = 0.05, τ = 0.005, q = 1000, w = 3000 BMAB-SPAR-NS-H
pex = 0.005, τ = 0.001, q = 750, w = 4000 BMAB-SPAR-NS-I
pex = 0.005, τ = 0.001, q = 1000, w = 4000 BMAB-SPAR-NS-J
pex = 0.005, τ = 0.001, q = 500, w = 4000 BMAB-SPAR-NS-K
pex = 0.005, τ = 0.001, q = 1500, w = 4000 BMAB-SPAR-NS-L
pex = 0.05, τ = 0.005, q = 1500, w = 4000 BMAB-SPAR-NS-M
pex = 0.05, τ = 0.005, q = 1000, w = 4000 BMAB-SPAR-NS-N
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(b) Set A2.

Figure 3.13: Performance of the algorithms for website A, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.14: Performance of the algorithms for website A, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.15: Performance of the algorithms for website A, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.16: Performance of the algorithms for website B, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.17: Performance of the algorithms for website B, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.
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Figure 3.18: Performance of the algorithms for website B, averaged over 200 runs.
Lines indicate the mean and shaded region indicates 95% confidence interval.





Chapter 4

Slate bandits with
non-separable reward
functions*

This Chapter builds on Chapter 3 and studies reserve price optimization
in the setting of header bidding. Note that, in the reserve price optimiza-
tion problem of Chapter 3, the publisher received a single offer at a time
for each impression. However, in this Chapter, we consider a publisher
that receives multiple offers for a single impression and where each offer
is the result of a second-price auction with a reserve price. The goal of
the publisher is to learn the best reserve price for each second-price auc-
tion (i.e., a vector of reserve prices) in order to maximize his expected
revenue.

*This chapter is based on Rhuggenaath et al. [139].
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4.1 Introduction
In many practical problems an agent needs to choose an action from a set where each
action leads to a random reward with the objective of maximizing expected cumulative
rewards over a finite time horizon. Often the reward distribution is unknown, and
as a consequence, the agent faces an exploration-exploitation trade-off. The multi-
armed bandit problem [37] is a standard framework for studying such exploration-
exploitation problems.

Many problems in the domain of web-services, such as e-commerce, online advert-
ising and streaming, require the agent to select not only one but multiple actions at
the same time. After the agent makes a choice, a collective reward characterizing the
quality of the entire selection is observed. Problems of this type are typically referred
to as slate bandits or combinatorial bandits [43, 59]. In a slate bandit problem, a slate
consists of a number of slots and each slot has a number of base actions. Given a
particular action for each slot, a reward function defined at the slate-level determines
the reward for each slate.

One example of a slate bandit problem is when a seller can simultaneously access
different markets in order to sell an item and accepts the best offer among the markets.
The seller has to specify (and learn) the best price for each market and the revenue
from a sale equals the maximum revenue over all markets. This can be interpreted as
a slate bandit problem where the slots are the different markets and the base actions
are the prices in each market. The goal is to select a set of prices such that the
expected revenue is maximized. One example from the domain of online advertising
which can be modeled as such a problem, is the reserve price optimization problem
using header bidding (see Section 4.3.2 for more details).

Another example of a slate bandit problem, arises in the context of selection
problems where fairness considerations are important. Suppose for example, that
there are a number of distinct groups and that a decision-maker has to choose an
option from a set for each group (each group has its own set of options) and where
each option yields an uncertain reward for each group. Choosing the alternative
with the highest expected reward for each group may not be desirable, since some
groups might receive much higher expected rewards than others and which may be
considered as unfair. One popular objective function that decision-maker can use
that takes fairness into account is the max-min objective function, where each group
receives a reward that equals the minimum reward over all groups. This selection
problem faced by the decision-maker can be interpreted as a slate bandit problem
where the slots are the different groups, the base actions are the options for each
group, and the slate-level reward is the minimum reward over all groups.

Previous studies (see e.g. [70, 99, 132]) assume that the reward function at the
slate level is additive or that the expected reward at the slate-level is a non-decreasing
function of the expected rewards at the slot-level (this is also called the monotonicity
assumption). This implies that the optimal action at the slate level can be found by
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finding the optimal base action for each individual slot. Whether the monotonicity
assumption holds or not, depends on the slate-level reward function and the slot-level
distributions. In some applications the monotonicity assumption might be reasonable,
but in some cases it might not hold (see Example 4.1 for more details). For example,
if the slate-level reward is the maximum (or minimum) of the rewards at the slot
level, then the monotonicity assumption does not hold in general. We refer to this as
a non-separable slate-level reward function. The reserve price optimization problem
mentioned above is thus a concrete example of a slate bandit problem with a non-
separable reward function. The selection problem with fairness mentioned above is
another example where non-separable reward functions arise. With the max-min
objective function, the slate-level reward equals the minimum of the rewards at the
slot level and the goal is to maximize the expected value. However, there are many
more possible aggregation functions (many of which are non-linear) that can be used in
order to construct the slate-level reward (see e.g. [25]), and these functions generally
do not satisfy the monotonicity assumption.

In this Chapter we study slate bandits with non-separable reward functions. To
the best of our knowledge, this variant of the slate bandit problem has not been
studied before and existing algorithms either cannot be applied or do not have per-
formance guarantees for our problem. We are mainly concerned with cases where the
number of slates is large relative to the time horizon, so that trying each slate as
a separate arm in a traditional multi-armed bandit, would not be efficient. In such
cases it is not immediately clear whether sub-linear regret is possible, and therefore
we study the design of algorithms that have sub-linear regret. We summarize the
main contributions of this Chapter as follows:

• To the best of our knowledge, we are the first to study slate bandits with non-
separable reward functions.

• We provide a theoretical analysis and derive problem-dependent and problem-
independent regret bounds. We provide algorithms that have sub-linear regret
with respect to the time horizon.

• Experimental results on simulated data and using real-world data show that our
proposed method outperforms popular benchmark bandit algorithms.

The remainder of this Chapter is organized as follows. In Section 4.2 we discuss
the related literature. Section 4.3 provides a formal description of the problem. In
Section 4.4 we present the our proposed algorithms for the slate bandit problem and
provide a theoretical analysis. In Section 4.5 we perform experiments and compare
our method with baseline strategies in order to assess the quality of our proposed
algorithms. Section 4.6 concludes our work and provides some interesting directions
for further research.
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4.2 Related Literature
The slate bandit problem has been studied before in multiple prior papers and these
papers study different variants of the problem and make different assumptions. The
main variants of the slate bandit problem center around three properties of the prob-
lem: (i) whether the slot-level rewards in the slate are observed or not (the situation
where the slot-level rewards are observed is often referred to as semi-bandit feedback
in the literature); (ii) whether the function that determines the slate-level reward
is known or not; (iii) the structural properties of the function that determines the
slate-level reward.

In [43, 52, 59, 99, 110, 112, 132, 164, 165] slate bandits with semi-bandit feedback
are studied. In [99, 110, 152, 165] it is assumed that the slate-level reward is an
additive function of the rewards of the individual slots. In [152] the slot-level rewards
are assumed to be unobserved, while [99] assumes that slate-level reward function is
known. Some papers make other structural assumptions about the slate-level reward
function. In [52, 53, 112, 132] two key structural assumptions are made: a monoton-
icity assumption and a bounded smoothness (or Lipschitz continuity) assumption. In
addition, [52, 112, 132] do not assume that the slate-level reward function is known.
Instead, they assume that an α-approximation oracle is available.

In related work [70] do not assume that the slot-level rewards are observed and
that the slate-level reward function is known. They exploit a monotonicity assumption
(similar to [52, 53, 112, 132]) that relates the slot-level rewards to the slate-level
rewards and propose a heuristic based on Thompson sampling in order to balance
exploration and exploitation. However, they do not provide performance guarantees
for their algorithms.

Similar to previous works, we also consider a setting with semi-bandit feedback.
The main difference between the work in this Chapter and the aforementioned works,
is that we do not assume that the slate-level reward is additive or that the expected
reward at the slate-level is a non-decreasing function of the expected rewards at the
slot-level. However, unlike in [70], we assume that the slate-level reward function is
known. Furthermore, we do not make use of approximation oracles as in [52, 53, 112,
132].

To the best of our knowledge, this variant of the slate bandit problem has not
been studied before and existing algorithms either cannot be applied or do not have
performance guarantees for our problem.

4.3 Problem formulation

4.3.1 Problem definition and notation
We consider a slate bandit problem that is similar to [70]. The set of actions (the
slates) is given by B with |B| = K̄. If action b ∈ B is selected, then the reward is a
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random variable Y (b). A slate consists of M ∈ N slots, where M > 1. Each action is
a vector in RM . That is, b ∈ RM for all b ∈ B. Slot i ∈ {1, . . . ,M} has a set of base
actions Bi with |Bi| = Ki. The set of slates B is given by B = B1 × B2 × · · · × BM .
We make the following assumptions regarding the slot-level action sets.

Assumption 4.1. Without loss of generality we assume that Bi = {1, . . . ,Ki} for
i = 1, . . . ,M and |Bi| = Ki = K for i = 1, . . . ,M .

Given an action b ∈ B the random variable Y (b) satisfies Y (b) =
f(Y1(b1), . . . , YM (bM )), where bi ∈ R is the i-th element of action b and where Yi(bi)
for i = 1, . . . ,M is a random variable. We make the following assumptions regarding
the slate-level reward function.

Assumption 4.2. Let b ∈ B and Y (b) = f(Y1(b1), . . . , YM (bM )). Then, Yi(bi) is
independent from Yj(bj) for all j 6= i.

Assumption 4.3. The function f is known and satisfies f : RM → [0, 1].

For b ∈ B define the quantity µ(b) = E {Y (b)} and let b∗ = argmaxb∈B µ(b).
The optimality gap for action b ∈ B is defined as ∆(b) = µ(b∗) − µ(b). Define
∆min = min{∆(b)|b ∈ B, b 6= b∗}. Here ∆min measures the optimality gap between
the best action and the second-best action. We assume that the optimality gaps
satisfy ∆min ≥ ε > 0 for some ε ∈ R. This assumption enforces that the optimality
gap is bounded from below and ensures that the notion of ‘the best action’ and ‘the
second-best action’ is well-defined.

We assume that decisions need to be made for T ≥ 2 rounds. We assume that the
decisions are implemented according to the following online protocol: for each round
t ∈ {1, . . . , T}

1. the agent selects a slate b ∈ B.

2. for each i ∈ {1, . . . ,M}, the agent observes an i.i.d. (independent over rounds)
realization ri from the distribution of Yi(bi). The agent receives rt where rt =
f(r1, . . . , rM ). That is, rt ∼ Y (b) where Y (b) = f(Y1(b1), . . . , YM (bM )). The
rewards rt are independent over the rounds.

For a fixed sequence i1, . . . , iT of selected actions, the pseudo-regret over T rounds
is defined as RT = T · µ∗ −

∑T
t=1 µ(it). The expected pseudo-regret is defined as

RT = E {RT }, where the expectation is taken with respect to possible randomization
in the selection of the actions i1, . . . , iT .

The slate bandit problem is challenging due to the number of actions growing
exponentially in M , and due to the non-separable reward function which implies that
E {Y (b)} cannot necessarily be maximized by choosing the action with the highest
expected reward at the slot-level for each slot individually. Note that we allow for an
arbitrary function f in Assumption 4.3 and that the reward distributions at the slot-
level can also be arbitrary (as long as they are mapped to values in [0, 1]). Existing
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papers [51, 52, 53, 70, 112, 132] assume that f is an additive function or that E {Y (b)}
satisfies a monotonicity property. In Example 4.1 below we give a concrete example
that shows that this monotonicity property does not hold in all instances of the slate
bandit problem. The example shows that, if an instance of the slate bandit problem is
not compatible with the monotonicity assumption, the optimal action may not always
be correctly identified by an algorithm that exploits the monotonicity assumption. As
a consequence, existing algorithms that rely on the monotonicity assumption may fail
to identify the optimal action, and are therefore in general not guaranteed to solve
our problem. Furthermore, Example 4.1 also shows that the performance guarantees
of algorithms that rely on the monotonicity assumption do not hold for all instances
of the slate bandit problem. The example illustrates that, whether the monotonicity
assumption holds or not, depends on the slate-level reward function and the slot-
level distributions. As the reward distributions are unknown, it is valuable to have
algorithms (like the one proposed in this Chapter) with performance guarantees that
do not depend on prior knowledge about the reward distributions and do not rely
on the monotonicity assumption. Assumption 4.2 is a common assumption (see e.g.,
[51, 163]) and may seem restrictive, but even under this assumption, this problem is
still non-trivial and, to the best of our knowledge, existing algorithms are not able
to solve this problem. Example 4.1 shows that, even under Assumption 4.2, existing
algorithms can fail to learn the best slate.

Example 4.1. Consider a simple instance of the slate bandit problem where there
are M = 2 slots. Let B1 = {a, b}, B2 = {c, d}. Let Y1(a) ∼ U(0.4, 0.5), Y1(b) ∼
U(0.0, 0.1), Y2(c) ∼ U(0.4, 0.5), Y2(d) ∼ U(0.15, 0.7). Here U(v, w) denotes a uniform
distribution on [v, w]. For each slot, there are 2 actions. There are 4 slates in total
and the slates are given by B = {{a, c}, {a, d}, {b, c}, {b, d}}.
The rewards at the slate level are given by:

Y ({a, c}) = max{Y1(a), Y2(c)}, Y ({a, d}) = max{Y1(a), Y2(d)},
Y ({b, c}) = max{Y1(b), Y2(c)}, Y ({b, d}) = max{Y1(b), Y2(d)}.

Let µa = E {Y1(a)}, µb = E {Y1(b)}, µc = E {Y2(c)} and µd = E {Y2(d)}.
Existing algorithms [51, 52, 53, 70, 112, 132] make a monotonicity assumption. This
assumption states that if the vector of mean rewards of the slots in a slate (say slate
A) dominates the vector of mean rewards of the slots in another slate (say slate
B), then the expected reward of slate A is at least as high as the expected reward
of slate B. A vector W ∈ Rn dominates a vector Z ∈ Rn if, for all i = 1, . . . , n,
the i-th component of W is at least as large as the i-th component of Z. In this
example the monotonicity assumption implies that, if µc ≥ µd, then it must be that
E {Y ({a, d})} ≤ E {Y ({a, c})}.
Note that from the properties of the uniform distribution we have that E {Y1(a)} =
E {Y2(c)} > E {Y2(d)}. Therefore, the monotonicity assumption implies that
we should have E {Y ({a, d})} ≤ E {Y ({a, c})}. However, it can be shown that
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E {Y ({a, d})} > E {Y ({a, c})} in this example (a proof can be found in the Appendix).
Therefore, the monotonicity assumption implies that slate {a, c} has an expected re-
ward that is at least as high as the expected reward of slate {a, d} and this implication
is false. Note that the vector of expected rewards of slate {a, c} dominates the vector
of expected rewards of all other slates. Therefore, under the monotonicity assumption,
the slate {a, c} is actually the optimal slate and thus the best action. In this example,
the optimal action is thus not correctly identified. Existing algorithms that rely on the
monotonicity assumption are therefore not guaranteed to learn the best action in this
slate bandit problem. 2

4.3.2 Example application: reserve price optimization and
header bidding

One of the main mechanisms that web publishers use in online advertising in order
to sell their advertisement space is the real-time bidding (RTB) mechanism [162].
In RTB there are three main platforms: supply side platforms (SSPs), demand side
platforms (DSPs) and an ad exchange (ADX) which connects SSPs and DSPs. The
SSPs collect inventory of different publishers and thus serve the supply side of the
market. Advertisers which are interested in showing online advertisements are con-
nected to DSPs. A real-time auction decides which advertiser is allowed to display
its ad and the amount that the advertiser needs to pay. Most of the ad inventory is
sold via second-price auctions with a reserve price [125, 146, 162]. In this auction,
the publisher specifies a value pt (the reserve price) which represent the minimum
price that he wants for the impression. The revenue for the publisher (at a par-
ticular reserve price) is random and depends on the highest bid (Xt) and second
highest bid (Wt) in the auction. The revenue of the publisher in round t is given by
Rt(pt) = I{pt ≤ Xt} ·max{Wt, pt}.

In header bidding (see e.g. [97]), the publisher can simultaneously connect to
multiple header bidding partners (these are SSPs and ad exchanges but for simplicity
we call each partner an SSP) for a single impression. The publisher specifies a reserve
price for each SSP. Each SSP is involved in a separate auction and reports a value (a
bid) indicating the revenue for the publisher. The publisher observes the individual
revenues and subsequently chooses a winner among the SSPs (the SSP with the highest
revenue wins). The slate bandit problem studied in this Chapter can be used to
model a reserve price optimization problem with header bidding. The connection is
as follows. There are M SSPs and in every round t the publisher needs to choose a
vector of reserve prices from the set B. The revenue from header bidding when action
b ∈ B chosen is given by Y (b) = f(Y1(b1), . . . , YM (bM )) = max{Y1(b1), . . . , YM (bM )}.
Note that Assumption 4.2 is reasonable in this setting since (i) the pool of advertisers
and their bidding strategies can differ across DSPs, (ii) advertisers do not observe
the bids (of their competitors) on other DSPs, and (iii) SSPs can be connected to
different DSPs.
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4.4 Algorithm and Analysis

4.4.1 The ETC-SLATE algorithm
In this section we discuss our proposed algorithm. We refer to our algorithm as ETC-
SLATE (Explore then Commit slate bandit algorithm). The main idea that is used in
our proposed algorithm relies on exploiting Assumption 4.2. This is best illustrated
using an example.

Example 4.2. Consider a simple instance of the slate bandit problem where there are
M = 3 slots. Assume that B1 = {x1, x2}, B2 = {y1, y2}, B3 = {z1, z2}. Therefore, we
have that

B = {(x1, y1, z1), (x1, y1, z2),
(x1, y2, z1), (x1, y2, z2),
(x2, y1, z1), (x2, y1, z2),
(x2, y2, z1), (x2, y2, z2)}.

Suppose that, for every b ∈ B, we want to have N i.i.d. (independent and identic-
ally distributed) samples from the distribution of Y (b) = f(Y1(b1), . . . , Y3(b3)) where
bi ∈ Bi. The straightforward way to do this is to collect N i.i.d. samples from the
distribution of Y (b) by selecting every action b ∈ B exactly N times. Thus you would
need N · |B| samples in total.

A more efficient approach is simply to sample action (x1, y1, z1) and action
(x2, y2, z2) exactly N times and save the values of Y1(x1), Y1(x2), Y2(y1), Y2(y2),
Y3(z1), Y3(z2). By Assumption 4.2, we can use these samples to obtain N i.i.d.
samples from the distribution of Y (b) for all b ∈ B. To get an i.i.d. sample from
the distribution of Y ((x2, y1, z2)) = f(Y1(x2), Y2(y1), Y3(z2)), we simply use a sample
from the distribution of Y1(x2), Y2(y1) and Y3(z2). Note that this approach only re-
quires N · 2 samples in total and this is less than the N · |B| samples of the previous
approach. Note in particular that this approach allows us to obtain samples for actions
b ∈ B that have not been selected. In our example above, action (x2, y1, z2) was not
selected. However, by selecting action (x1, y1, z1) and action (x2, y2, z2) we do obtain
the necessary information that allows us to construct an artificial i.i.d. sample from
the distribution of Y ((x2, y1, z2)). 2

The pseudo-code for ETC-SLATE is given by Algorithm 4.1. The main idea is
to divide the horizon T into two phases. The first phase (the exploration phase) has
length N = N̂K and the second phase (the commit phase) has length T −N . In the
first phase, the algorithm determines the best action b̂ in action set B. In the second
phase, the algorithm commits to using action b̂ in each round.

In the first phase, the algorithm takes a subset BF = {∪Kl=1(l, . . . , l)|(l, . . . , l) ∈ B}
of actions from the set B and selects each action in this subset N̂ times. Each time
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that action b ∈ BF is selected, the rewards of the slots are observed (Line 6) and
stored for later use (Line 7). In Lines 11-16, the stored rewards for the slots are used
in order to generate N̂ i.i.d. samples from the distribution of the random variable Y (b)
which are given by Ŷ 1(b), . . . , Ŷ N̂ (b). In Line 17, the empirical mean of the N̂ values
Ŷ 1(b), . . . , Ŷ N̂ (b) is determined for each action b ∈ B. The action b̂ is then chosen as
the action b ∈ B with the highest empirical mean. The value of N̂ is determined by
the following parameters: the horizon T , κ, γ, and action set B. In Section 4.4.2 and
4.4.3 we will show that this choice for N̂ leads to sub-linear regret for suitably chosen
values of κ and γ.

Algorithm 4.1 ETC-SLATE
Require: horizon T , κ, γ, action sets B.

1: Set N̂ =
⌈

2
κ2 · (log (|B|)− log (γ))

⌉
. Set t = 1.

2: Set Vi,j = ∅ ∀ i ∈ {1, . . . ,M} and j ∈ Bi.
Explore Phase.

3: for l ∈ {1, . . . ,K} do
4: for n ∈ {1, . . . , N̂} do
5: Select action (l, . . . , l) ∈ B.
6: Observe rewards zl,i,n ∼ Yi(l) for i = 1, . . . ,M .
7: Set Vi,l = Vi,l ∪ {zl,i,n} for i = 1, . . . ,M .
8: Set t = t+ 1.
9: end for
10: end for
11: for b = (l1, . . . , lM ) ∈ B do
12: for n ∈ {1, . . . , N̂} do
13: Select zli,i,n ∈ Vi,li for i = 1, . . . ,M .
14: Set Ŷ n(b) = f(zl1,1,n, . . . , zlM ,M,n).
15: end for
16: end for

Find best arm in B.
17: Find b̂ ∈ B such that

∑N̂

n=1 Ŷ
n(b̂) 1

N̂
≥
∑N̂

n=1 Ŷ
n(b) 1

N̂
for all b 6= b̂.

Commit Phase.
18: for t ∈ {N̂K + 1, . . . , T} do
19: Play action b̂.
20: end for

4.4.2 Problem-dependent regret bounds
Lemma 4.1 ([88]). Let X1, . . . , Xn be independent random variables such that
Xi ∈ [a, b] for i = 1, . . . , n. Let X̄ = 1

n ·
∑n
i=1Xi, and let ε ≥ 0. Then,

P
{
X̄ − E

{
X̄
}
≥ ε
}
≤ exp

{
−2ε2n2

n(b−a)2

}
.

Proposition 4.1. Let Y 1(b), . . . , Y n(b) be n i.i.d. draws from the distribution of
Y (b) for an action b ∈ B. Assume that Y j(b) and Y k(l) are independent if b 6= l
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and j 6= k. Let µ̄(b∗) =
∑n
i=1 Y

i(b∗) · 1
n and µ̄(b) =

∑n
i=1 Y

i(b) · 1
n for b 6= b∗. Let

b̂ = argmaxb∈B µ̄(b), where ties are broken arbitrarily if there are multiple candidates
for b̂. Then, P

{
b̂ 6= b∗

}
≤ K̄ exp

{
− 1

2n(∆min)2
}
.

Proof. Define B− = {b ∈ B|µ̄(b) ≥ µ̄(b∗), b 6= b∗}. Then we have that,

P
{
b̂ 6= b∗

}
= P

{
b̂ ∈ B−

} (a)
≤
∑
b∈B−

P
{
b̂ = b

} (b)
≤
∑
b∈B−

P {µ̄(b∗) ≤ µ̄(b)}

(c)
≤
∑
b∈B−

exp
{
−n2 (∆(b))2

} (d)
≤ K̄ exp

{
−n2 (∆min)2

}
.

Inequality (a) follows from applying a union bound over the set B−. Inequality (b)
follows from the fact that I

{
b̂ = b

}
= 1 ⇒ I {µ̄(b∗) ≤ µ̄(b)} = 1. Inequality (c)

follows from applying Lemma 4.1 to the differences Y i(b∗) − Y i(b) for i = 1, . . . , n.
Inequality (d) follows from the fact that |B−| ≤ K̄ = |B| and (∆min)2 ≤ (∆(b))2 for
b ∈ B. This completes the proof.

Recall that b̂ denotes the action in B that is identified as b∗ by Algorithm 4.1.
The following proposition bounds the probability that b∗ is incorrectly identified.

Proposition 4.2. Let m > 0. Let b̂ denote the action in B that is identified as b∗ by
Algorithm 4.1. If Algorithm 4.1 is run with the inputs: T , κ = ∆min, γ = 1

Tm , and
action set B, then P

{
b̂ 6= b∗

}
≤ γ.

Proof. From the description of Algorithm 4.1, it follows that N̂ = 2(∆min)−2 ·
(log (K̄) − log (γ)). Given this choice of N̂ , we are able to generate N̂ i.i.d.
draws from the distribution of Y (b) for each b ∈ B. Let b̂ denote the action
that has the highest empirical mean based on the N̂ samples and recall that b∗
is the action with the highest expected return. By Proposition 4.1 it follows that
P
{
b̂ 6= b∗

}
≤ K̄ exp

{
− N̂2 (∆min)2

}
= 1

Tm = γ. This completes the proof.

We can now state the main result of this subsection (Theorem 4.1).

Theorem 4.1. Let m > 0. If Algorithm 4.1 is run with inputs: T , κ = ∆min,
γ = 1

Tm , and action set B, then RT ≤ 2K
(∆min)2 · (log (K̄) + m log (T )) + T 1−m with

K̄ = |B|.

Proof. Note that the regret RT can be decomposed as RT = RN +RT−N . Here RN
denotes the regret over the first N rounds and RT−N denotes the regret over the last
T −N rounds. In order to bound RT it suffices to bound each term.

Note that RN is trivially bounded by N · 1 since by Assumption 4.3 the regret
for any period is at most 1. From the description of Algorithm 4.1, it follows
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that N̂ = 2
(∆min)2 · (log (K̄) − log (γ)). Given N̂ , it follows that Phase I has

length N = K · N̂ . By substituting the quantities for γ and κ, we conclude that
RN ≤ 2K

(∆min)2 · (log (K̄) +m log (T )).

We decompose RT−N according to two cases:

(i) b̂ 6= b∗. If case (i) occurs, then RT−N is trivially bounded by (T − N) · 1.
Therefore we conclude that in case (i) RT−N ≤ T −N .

(ii) b̂ = b∗. If case (ii) occurs, then RT−N = 0. This follows from the fact that,
∆(b∗) = 0.

By combining the results for the two cases above and noting that by Proposition 4.2
we have P

{
b̂ 6= b∗

}
≤ γ, we obtain

RT−N ≤ (T −N) · P
{
b̂ 6= b∗

}
+ P

{
b̂ = b∗

}
· 0 ≤ (T −N) · 1

Tm
≤ T · 1

Tm
= T 1−m.

This completes the proof.

Corollary 4.1. Let K̄ = |B| ≤ T and m = 1. Suppose that Algorithm 4.1 is run with
inputs: T , κ = ∆min, γ = 1

Tm , and action set B. Then, RT ≤ 2K
(∆min)2 · (2 log (T ))+1.

If ∆min is not precisely known, we can still run Algorithm 4.1 using a lower bound
for ∆min if this is available. In Theorem 4.1, the dependence of regret on T would
then still be logarithmic in T but with a different problem-dependent constant.

4.4.3 Problem-independent regret bounds
The results of the previous section show that expected regret of order O(log T ) is
possible if the gaps are known. However, as ∆min → 0, the regret bounds in The-
orem 4.1 and Corollary 4.1 becomes vacuous. Therefore, it is useful to study whether
sub-linear regret is possible when the gaps are unknown. In this section we prove
problem-independent regret bounds and show that sub-linear regret is still achiev-
able.

Theorem 4.2. Let m > 0. If Algorithm 4.1 is run with inputs: T , κ =
T−1/3

√
K
√

log (T ), γ = 1
Tm , and action set B, then RT ≤ 2T 2/3

log (T ) · (log (K̄) +
m log (T )) + T 1−m + T 2/3

√
K
√

log (T ) with K̄ = |B|.

Proof. The proof uses similar arguments as in Proposition 4.2 and Theorem 4.1.
Define the set BH = {b ∈ B|∆(b) ≥ κ}. Let b̂ denote the action in B that is
identified as b∗ by Algorithm 4.1. Using similar arguments as in the proof of
Proposition 4.2, we conclude that P

{
b̂ ∈ BH

}
≤ γ. We again decompose the regret

RT as RT = RN +RT−N .
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Note that RN is trivially bounded by N · 1 since by Assumption 4.3 the regret
for any period is at most 1. From the description of Algorithm 4.1, it follows
that N̂ = 2κ−2 · (log (K̄) − log (γ)). Given N̂ , it follows that Phase I has length
N = K · N̂ . By substituting the quantities for γ and κ, we conclude that
RN ≤ 2T 2/3

log (T ) · (log (K̄) +m log (T )).

We decompose RT−N according to two cases:

(i) b̂ ∈ BH . If case (i) occurs, then RT−N is trivially bounded by (T − N) · 1.
Therefore, we conclude that in case (i) RT−N ≤ T −N .

(ii) b̂ /∈ BH . If b̂ /∈ BH , then from the definition of BH , it follows that ∆(b̂) ≤ κ.

By combining the results for the two cases above and noting that P
{
b̂ ∈ BH

}
≤ γ,

we obtain

RT−N ≤ (T −N) · P
{
b̂ ∈ BH

}
+ P

{
b̂ /∈ BH

}
· (T −N)κ

≤ T · 1
Tm

+ Tκ = T 1−m + Tκ

≤ T 1−m + T · T−1/3
√
K
√

log (T ).

Putting everything together, we obtain

RT ≤
2T 2/3

log (T ) · (log (K̄) +m log (T ) + T 1−m + T 2/3
√
K
√

log (T ).

This completes the proof.

Corollary 4.2. Let K̄ = |B| ≤ T and m = 1. Suppose that Algorithm 4.1 is run
with inputs: T , κ = T−1/3

√
K
√

log (T )
√

(1 +m), γ = 1
Tm , and action set B. Then,

RT ≤ T 2/3 · (2 +
√

2K log (T )) + 1.

It is useful to compare the obtained bounds with previously known results. If we
consider every slate as a separate action in a standard multi-armed bandit algorithm
such as UCB1, then regret of orderO(

√
T log (T )

√
KM ) is possible [37]. If we compare

this with Corollary 4.2, then we have a worse dependence on T (we have T 2/3
√

log (T )
instead of

√
T log (T )) but a better dependence on K.

When K̄ is large compared to T (the case we are interested in) UCB1 will perform
very poorly. Also, UCB1 can only be applied if K̄ ≤ T since it needs to sample each
of the slates are least once. In contrast, our algorithm can even be applied when
K̄ > T and it will still have T 2/3 regret (see Corollary 4.3 and 4.4), since it does not
need sample each slate. Therefore, our algorithm provides a substantial improvement
relative to what is possible based on the current state-of-the-art (e.g. can also be
used when UCB1 cannot). It is an open problem whether the dependence on T can
be improved further without needing to sample each slate at least once.
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Corollary 4.3. Let K̄ = |B| > T ≥ 3 and m = 1. Suppose that Algorithm 4.1 is run
with inputs: T , κ = T−1/3

√
K
√

log (T )
√

(M +m), γ = 1
Tm , and action set B.

Suppose that T ≥ K2κ−2 · (log (K̄)− log (γ)).
Then, RT ≤ T 2/3 · (

√
2 + 2

√
M log (K) +

√
(M + 1)K log (T )) + 1.

Proof. The proof uses similar arguments as in Theorem 4.2. Define the set
BH = {b ∈ B|∆(b) ≥ κ}. Let b̂ denote the action in B that is identified as b∗ by
Algorithm 4.1. Using similar arguments as in the proof of Proposition 4.2, we con-
clude that P

{
b̂ ∈ BH

}
≤ γ. We again decompose the regretRT asRT = RN+RT−N .

Note that RN is trivially bounded by N · 1 since by Assumption 4.3 the regret for
any period is at most 1. From the description of Algorithm 4.1, it follows that
N̂ = 2κ−2 ·(log (K̄)− log (γ)). Given N̂ , it follows that Phase I has length N = K ·N̂ .
Note that by assumption we have T ≥ K2κ−2 · (log (K̄) − log (γ)), so that N ≤ T .
Therefore, Phase I can be executed. By substituting the quantities for γ and κ, we
conclude that

N = K · N̂ = K2T 2/3

K log (T )
√
M +m

· (M log (K) +m log (T ))

= K2T 2/3

K log (T )
√
M +m

·M log (K) + K2T 2/3

K log (T )
√
M +m

·m log (T )

(a)
≤ 2T 2/3

√
M log (K) + 2T 2/3

√
M + 1

(b)
≤ 2T 2/3

√
M log (K) +

√
2T 2/3.

Inequality (a) follows from the fact that log (T ) ≥ 1 if T ≥ 3, and by using that
m = 1, and from the fact that M√

M+1 ≤
M√
M

=
√
M . Inequality (b) follows from the

fact that M ≥ 1.
Therefore, we conclude that RN ≤ N ≤ 2T 2/3

√
M log (K) +

√
2T 2/3.

We decompose RT−N according to two cases:

(i) b̂ ∈ BH . If case (i) occurs, then RT−N is trivially bounded by (T − N) · 1.
Therefore, we conclude that in case (i) RT−N ≤ T −N .

(ii) b̂ /∈ BH . If b̂ /∈ BH , then from the definition of BH , it follows that ∆(b̂) ≤ κ.

By combining the results for the two cases above and noting that P
{
b̂ ∈ BH

}
≤ γ,

we obtain
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RT−N ≤ (T −N) · P
{
b̂ ∈ BH

}
+ P

{
b̂ /∈ BH

}
· (T −N)κ

≤ T · 1
Tm

+ Tκ

≤ T 1−m + T · T−1/3
√
K
√

log (T )
√

(M +m)

≤ 1 + T 2/3
√
K
√

log (T )
√

(M + 1).

Putting everything together, we obtain

RT ≤ T 2/3 · (
√

2 + 2
√
M log (K) +

√
(M + 1)K log (T )) + 1.

This completes the proof.

Corollary 4.4. Let K̄ = β ·T with β > 1 and let m = 1. Suppose that Algorithm 4.1
is run with inputs: T , κ = T−1/3

√
K
√

log (T )
√

(1 +m), γ = 1
Tm , and action set B.

Suppose that T ≥ K2κ−2 · (log (K̄)− log (γ)).
Then, RT ≤ T 2/3 · (2 + log (β) +

√
2K log (T )) + 1.

Proof. The proof follows the same steps as in Corollary 4.3. Define the set
BH = {b ∈ B|∆(b) ≥ κ}. Let b̂ denote the action in B that is identified as b∗ by
Algorithm 4.1. Using similar arguments as in the proof of Proposition 4.2, we con-
clude that P

{
b̂ ∈ BH

}
≤ γ. We again decompose the regretRT asRT = RN+RT−N .

Note that RN is trivially bounded by N · 1 since by Assumption 4.3 the regret for
any period is at most 1. From the description of Algorithm 4.1, it follows that
N̂ = 2κ−2 ·(log (K̄)− log (γ)). Given N̂ , it follows that Phase I has length N = K ·N̂ .
Note that by assumption we have T ≥ K2κ−2 · (log (K̄) − log (γ)), so that N ≤ T .
Therefore, Phase I can be executed. By substituting the quantities for γ and κ, we
conclude that

N = K · N̂ = K2T 2/3

K log (T )(1 +m) · (log (β) + log (T ) +m log (T ))

= K2T 2/3

K log (T )(1 +m) · log (β) + 2KT 2/3

K log (T )(1 +m) · ((1 +m) log (T ))

(a)= 2T 2/3

log (T )(1 +m) · log (β) + 2T 2/3

(b)
≤ 2T 2/3

(1 +m) · log (β) + 2T 2/3

(c)
≤ T 2/3 log (β) + 2T 2/3.

Inequality (b) follows from the fact that T ≥ N implies that log (T ) ≥ 1. Too see
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this, note that the assumption that T ≥ N implies that T ≥ 2T 2/3 (this follows from
equality (a)). Since T ≥ 2, we have that T ≥ 2T 2/3 > 2.72. Therefore log (T ) ≥ 1.
Inequality (c) follows from the fact that m = 1.
Therefore, we conclude that RN ≤ N ≤ T 2/3 log (β) + 2T 2/3.

We decompose RT−N according to two cases:

(i) b̂ ∈ BH . If case (i) occurs, then RT−N is trivially bounded by (T − N) · 1.
Therefore, we conclude that in case (i) RT−N ≤ T −N .

(ii) b̂ /∈ BH . If b̂ /∈ BH , then from the definition of BH , it follows that ∆(b̂) ≤ κ.

By combining the results for the two cases above and noting that P
{
b̂ ∈ BH

}
≤ γ,

we obtain

RT−N ≤ (T −N) · P
{
b̂ ∈ BH

}
+ P

{
b̂ /∈ BH

}
· (T −N)κ

≤ T · 1
Tm

+ Tκ

≤ T 1−m + T · T−1/3
√
K
√

log (T )
√

(1 +m)

≤ 1 + T 2/3
√
K
√

log (T )
√

2.

Putting everything together, we obtain

RT ≤ T 2/3 · (2 + log (β) +
√

2K log (T )) + 1.

This completes the proof.

4.5 Experiments
In this section we conduct experiments in order to test the performance of our pro-
posed algorithm. We conduct experiments using both simulated data and real-world
data.

4.5.1 Experiments using simulated data
The main purposes of the experiments with simulated data are to verify the theoretical
results that were derived, and to investigate the effects of ignoring the non-separability
of the slate-level reward function on the regret.

Experimental settings

In the experiments we set M = 5 and Bi = {1, . . . , 10} for i = 1, . . . ,M . Let
max{x, y} = x ∨ y. We consider three choices for the slate-level reward function.
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These choices are:
f1 = 1

4 (Y1(b1)∨ Y2(b2)) + 1
4 (Y2(b2)∨ Y3(b3)) + 1

4 (Y3(b3)∨ Y4(b4)) + 1
4 (Y4(b4)∨ Y5(b5))

f2 = 1
4 (Y1(b1) ∨ Y2(b2)) + 1

4Y3(b3) + 1
4Y4(b4) + 1

4 (Y4(b4) ∨ Y5(b5))
f3 = 1

4 (Y1(b1)∨Y2(b2)) + 1
4 (Y1(b1)∨Y3(b3)) + 1

4 (Y1(b1)∨Y4(b4)) + 1
4 (Y1(b1)∨Y5(b5)).

In our experiments the rewards for b ∈ Bi follow a uniform distribution on [a −
c, a + c] where a is chosen uniformly from [0.4, 0.6] independently for i = 1, . . . ,M
and for all b ∈ Bi, and c is chosen uniformly from [0.1, 0.3] independently from a.
In total we have three experimental settings: Exp1, Exp2, Exp3. The abbreviation
Exp1 means that f1 is used. The other abbreviations have a similar interpretation.

The main motivation for the choice of slate-level reward functions and the reward
distributions is that, the slate-level reward functions are non-separable, but since
the reward distributions are uniform, the optimal slate and the regret can still be
calculated analytically. In order to measure the performance of the methods, we also
look at the per period reward, which is defined as PPR(T ) =

∑T
t=1 R̂t/T . Here R̂t

is the observed reward in round t.

Benchmarks

To the best of our knowledge, there are no existing algorithms (with performance
guarantees) for our slate bandit problem with non-separable rewards. For this reason
we use the following two benchmarks. First, we run a standard multi-armed bandit
algorithm on the base actions at the slot-level (for each slot independently), and
we then combine the base actions chosen by these independent bandits in order to
form the action at the slate-level. This is a reasonable benchmark, in the sense that
assuming a non-decreasing reward function at the slate-level (i.e., a function that
satisfies the monotonicity assumption in [52, 53, 70, 112, 132]), this should allow this
benchmark to learn the optimal action over time. In the experiments we use the UCB1
[17] and Thompson sampling (TS) with Gaussian priors [8] as the multi-armed bandit
algorithms at the slot-level. The second benchmark is the marginal posterior sampling
(MPS) algorithm proposed in [70]. There are no formal performance guarantees for
MPS, but under the monotonicity assumption, the authors in [70] show that MPS
performs well in experiments. While the monotonicity assumption does not hold in
general in our setting (as we consider non-separable reward functions), MPS can still
be implemented and may perform differently compared to UCB1 and TS because
MPS only uses slate-level rewards in order to determine with action to select.

In the experiments, ETC-SLATE is tuned according to Corollary 4.2, as this
requires the least information about the problem instance. MPS is implemented
using Thompson sampling with Gaussian priors, as recommended by [70].

Results

In Figure 4.1 the cumulative regret is shown for different experimental settings and
different values for the problem horizon. Each point in the graph shows the cumulative
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Figure 4.1: Performance of algorithms averaged over 200 runs. Lines indicate the
mean and shaded region indicates 95% confidence interval.

regret over T rounds for a slate bandit problem of horizon T averaged over 200 simu-
lations. The results indicate that ETC-SLATE clearly outperforms the benchmarks.
The regret of UCB1 is at least twice as high as ETC-SLATE. TS tends to outperform
UCB1, but the regret is still at least 50% higher compared to ETC-SLATE for short
horizons, and twice as high for large horizons. MPS outperforms UCB1 and TS for
longer horizons, but performs worse for short horizons. The regret of MPS is at least
2.5 times as high as the regret of ETC-SLATE. Also, we note that ETC-SLATE per-
forms similarly on all the test functions, but for UCB1 and TS the performance in
Exp1 and Exp3 differs from Exp2.

Figure 4.2 shows the per period reward. Here we again observe that ETC-SLATE
outperforms the benchmarks. For Exp1 and Exp3, the per period reward for ETC-
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Figure 4.2: Performance of algorithms averaged over 200 runs. Lines indicate the
mean and shaded region indicates 95% confidence interval.

SLATE is about 2%-2.5% higher compared to UCB1 and TS for the shorter horizons
and about 1% higher for longer horizons. For Exp2 the differences are smaller: the
per period reward for ETC-SLATE is about 1% higher compared to UCB1 and TS for
the shorter horizons and about 0.5% higher for longer horizons. MPS performs worse
than UCB1 and TS for short horizons and performs similarly for large horizons. The
results show that small differences in per period reward can be associated with large
differences in regret.

Finally, the results in Figure 4.1 also confirm that the regret bound from Corol-
lary 4.2 indeed holds. However, by comparing the regret curve with the expression
for the regret bound, it appears that the bound is not tight and this suggests that
the bound could be improved further.
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4.5.2 Experiments using real-world data
In this section we perform experiments on the reserve price optimization problem with
header bidding. In this problem, there are M SSPs on the header bidding platform.
In every round t, the publisher needs to choose a reserve price bi from the set Bi.
The revenue on the header bidding platform when action b ∈ B chosen is given by
Y (b) = f(Y1(b1), . . . , YM (bM )) = max{Y1(b1), . . . , YM (bM )}.

Dataset description

In order to evaluate our method we use real-life data from ad auction markets from
the publicly available iPinYou dataset [170]. It contains bidding information from the
perspective of nine advertisers on a Demand Side Platform (DSP) during a week. The
dataset contains information about the top bid and the second bid if the advertiser
wins an auction. We use the iPinYou dataset to construct synthetic data for the top
bid and second bid in order to test our proposed approach.

We use data from the advertisers to model the bids from an SSP. Fix an advertiser
(say advertiser m) and fix an hour of the day (say hour h). For advertiser m we take
the values of the second highest bid in hour h and we filter these values by the ad
exchange (there are two ad exchanges) on which the bids were placed. Next, we
sample (with replacement) 10000 values for each ad exchange to approximate the
distribution of the second bid. After these steps we end up with 2 lists Lm,h,1 and
Lm,h,2 of size 10000 for each ad exchange for advertiser m in hour h. Define Lmaxm,h as
the maximum value of all values in Lm,h,1 and Lm,h,2. We use the following procedure
to construct the bids for a horizon of length T . For round t ∈ {1, . . . , T} we draw
At uniformly at random from Lm,h,1 and Bt uniformly at random from Lm,h,2. The
highest bid in round t is given by Xt = max{At, Bt}/Lmaxm,h and the second-highest
bid is given by Yt = min{At, Bt}/Lmaxm,h . Denote the resulting joint distribution by
Dm,h.

Experimental settings

In the experiments we assume that there areM = 4 SSPs. The action sets Bi for SSP
i is given by K = 15 reserve prices which are equally spaced in the interval [0.1, 0.8].
We consider three experimental settings and in each setting the distributions Dm,h

are different. The different experimental settings are summarized as follows: (i) in
setting Exp1 we use data from advertisers 1458, 3358, 3386 and 3427 on day 2 and
from hour 18; (ii) in setting Exp2 we use data from advertisers 1458, 3358, 3386 and
3427 on day 2 and from hour 15; (iii) in setting Exp3 we use data from advertisers
1458, 2261, 2821 and 3427 on day 3 and from hour 18. In the experiments, ETC-
SLATE is tuned according to Corollary 4.2 and we use the same benchmarks as in
the previous experiments.
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Results

Figure 4.3 shows the per period reward. We again see that ETC-SLATE outperforms
all of the benchmarks. From this figure we observe that the difference in performance
is quite substantial as ETC-SLATE has a reward that is on average 10% higher than
the UCB1 and TS benchmarks. MPS tends to outperform UCB1 and TS, and the
performance is better for large horizons T . The per period reward for ETC-SLATE is
about 2%-2.5% higher than MPS for the shorter horizons (depending on the specific
experimental setting) and about 1%-1.5% higher than MPS for longer horizons. As
small differences in per period reward can be associated with large differences in
regret (see Figure 4.1 and Figure 4.2), the results indicate that the benefits of using
ETC-SLATE can be substantial.

Furthermore, the results indicate that the difference in performance is not sensitive
with respect to the underlying distributions at the slot-level.
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Figure 4.3: Performance of algorithms averaged over 200 runs. Lines indicate the
mean and shaded region indicates 95% confidence interval.

4.6 Conclusion
In this Chapter we study slate bandits with a non-separable reward function at the
slate-level. In a slate bandit problem, a slate consists of a number of slots and each
slot has a number of base actions. At the slot level, every base action leads to a
reward. The slate-level reward is a function (a combination) of the rewards at the
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slot level. The non-separability property of the reward function implies that choosing
the base action with the highest expected reward at the slot level and combining
these base actions to form the action at the slate level, does not necessarily lead to
the highest expected reward at the slate-level. Previous papers have only considered
the case where the reward function satisfies a monotonicity property. We show that
existing approaches that rely on the monotonicity property are not suitable for the
slate bandit problem considered in this Chapter. We provide a theoretical analysis
of our proposed algorithms and derive problem-dependent and problem-independent
regret bounds. We show that our proposed algorithms have sub-linear regret with
respect to the time horizon. In addition, we show that our algorithms can even
be applied when the number of slates is larger than the horizon and that they will
still have regret of order T 2/3. This is in contrast with benchmark algorithms such
as UCB1, which cannot be applied in that case. Our solution therefore provides a
substantial improvement relative to what is possible based on the current state-of-
the-art.

The work presented in this Chapter can be extended in a number of ways. In our
analysis we made the assumption that the slot-level rewards are independent from each
other. It is not clear how to tackle the slate bandit problem when this independence
assumption is relaxed and future research can be directed towards deriving sub-linear
regret bounds for this case. Our algorithms have an explore-then-commit type of
structure. Another interesting question is whether techniques such as Thompson
Sampling can be used to guide the exploration-exploitation trade-off.

Appendix

4.A Proofs for Example 4.1
In this section we provide some missing details related to Example 4.1 in the main
text. For convenience, Example 4.1 is restated below as Example 4.3.

Example 4.3. Consider a simple instance of the slate bandit problem where there
are M = 2 slots. Let B1 = {a, b}, B2 = {c, d}. Let Y1(a) ∼ U(0.4, 0.5), Y1(b) ∼
U(0.0, 0.1), Y2(c) ∼ U(0.4, 0.5), Y2(d) ∼ U(0.15, 0.7). Here U(v, w) denotes a uniform
distribution on [v, w]. For each slot, there are 2 actions. There are 4 slates in total
and the slates are given by B = {{a, c}, {a, d}, {b, c}, {b, d}}.
The rewards at the slate level are given by:

Y ({a, c}) = max{Y1(a), Y2(c)}, Y ({a, d}) = max{Y1(a), Y2(d)},
Y ({b, c}) = max{Y1(b), Y2(c)}, Y ({b, d}) = max{Y1(b), Y2(d)}.

Let µa = E {Y1(a)}, µb = E {Y1(b)}, µc = E {Y2(c)} and µd = E {Y2(d)}.
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Existing algorithms in [52, 53, 70, 112, 132] make a monotonicity assumption. This
assumption states that if the vector of mean rewards of the slots in a slate (say slate
A) dominates the vector of mean rewards of the slots in another slate (say slate
B), then the expected reward of slate A is at least as high as the expected reward
of slate B. A vector W ∈ Rn dominates a vector Z ∈ Rn if, for all i = 1, . . . , n,
the i-th component of W is at least as large as the i-th component of Z. In this
example the monotonicity assumption implies that, if µc ≥ µd, then it must be that
E {Y ({a, d})} ≤ E {Y ({a, c})}.
Note that from the properties of the uniform distribution we have that E {Y1(a)} =
E {Y2(c)} > E {Y2(d)}. Therefore, the monotonicity assumption implies that
we should have E {Y ({a, d})} ≤ E {Y ({a, c})}. However, it can be shown that
E {Y ({a, d})} > E {Y ({a, c})} in this example. Therefore, the monotonicity assump-
tion implies that slate {a, c} has an expected reward that is at least as high as the
expected reward of slate {a, d} and this implication is false. Note that the vector of
expected rewards of slate {a, c} dominates the vector of expected rewards of all other
slates. Therefore, under the monotonicity assumption, the slate {a, c} is actually the
optimal slate and thus the best action. In this example, the optimal action is thus not
correctly identified. Existing algorithms that rely on the monotonicity assumption are
therefore not guaranteed to learn the best action in this slate bandit problem. 2

The claim that was not proven in the main text is given by Proposition 4.3 below.

Proposition 4.3. In Example 4.3 we have E {Y ({a, d})} > E {Y ({a, c})}.

The proof of Proposition 4.3 makes use of Fact 4.1, which is stated below.

Fact 4.1. If X is a non-negative random variable, then E {X} =
∫∞

0 P{X ≥ z} dz.

The proof of Proposition 4.3 makes use of Lemma 4.2 and Lemma 4.3, which are
proven below. The proof of Proposition 4.3 will then follow from these Lemmas.

Lemma 4.2. Let X ∼ U(a, b) and Y ∼ U(a, b) with X independent of Y , then
E {max{X,Y }} = a+ 2

3 (b− a).

Proof. Let Z = max{X,Y }. Note that P{Z ≤ z} = P{X ≤ z} · P{Y ≤ z}, because
X and Y are independent.

Using the properties of the Uniform distribution we get that, P{Y ≤ z} = z−a
b−a and

P{X ≤ z} = z−a
b−a , if a ≤ z ≤ b.

If z ≤ a, we have P{X ≤ z} = P{Y ≤ z} = 0.
If z ≥ b, we have P{X ≤ z} = P{Y ≤ z} = 1.

Using Fact 4.1, we obtain E {Z} =
∫∞

0 1−P{Z ≤ z} dz =
∫ a

0 1 dz+
∫ b
a

1− ( z−ab−a )2 dz.
This yields E {Z} = a+ 2

3 (b− a). This completes the proof.
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Lemma 4.3. Let X,W ∼ U(0.4, 0.5) and Y ∼ U(0.15, 0.7) with X, W and Y all
independent of each other, then E {max{X,Y }} > E {max{X,W}}.

Proof. Let Z = max{X,Y }. We can write:

E {Z} = E {Z|Y ≤ 0.4} · P{Y ≤ 0.4}+ E {Z|Y ≥ 0.4} · P{Y ≥ 0.4}.

Now, for E {Z|Y ≥ 0.4} we can write:

E {Z|Y ≥ 0.4} = E {Z|0.4 ≤ Y ≤ 0.5, Y ≥ 0.4} · P{0.4 ≤ Y ≤ 0.5|Y ≥ 0.4}
+ E {Z|0.5 ≤ Y ≤ 0.7, Y ≥ 0.4} · P{0.5 ≤ Y ≤ 0.7|Y ≥ 0.4}.

Note that conditional on the event {0.4 ≤ Y ≤ 0.5}, we have that Y ∼ U(0.4, 0.5).
Using Lemma 4.2, we get E {Z|0.4 ≤ Y ≤ 0.5, Y ≥ 0.4} = 0.4+ 2

3 (0.5−0.4) = 0.4+ 0.2
3 .

Note that conditional on the event {0.5 ≤ Y ≤ 0.7}, we have that Z = Y .
Therefore, we obtain E {Z|0.5 ≤ Y ≤ 0.7, Y ≥ 0.4} = 0.6.
This yields:

E {Z|Y ≥ 0.4} = E {Z|0.4 ≤ Y ≤ 0.5, Y ≥ 0.4} · P{0.4 ≤ Y ≤ 0.5|Y ≥ 0.4}
+ E {Z|0.5 ≤ Y ≤ 0.7, Y ≥ 0.4} · P{0.5 ≤ Y ≤ 0.7|Y ≥ 0.4}

=
(

0.4 + 0.2
3

)
· 1

3 + 0.6 · 2
3

Note that conditional on the event {Y ≤ 0.4}, we have that Z = X with
X ∼ U(0.4, 0.5).
Therefore, we obtain E {Z|Y ≤ 0.4} = E {X} = 0.45.

Putting everything together we obtain:

E {Z} = 0.45 · 0.25
0.55 +

[(
0.4 + 0.2

3

)
· 1

3 + 0.6 · 2
3

]
· 0.30

0.55 ≈ 0.5076.

Now, using Lemma 4.2, we obtain E {max{X,W}} = 0.4 + 0.2
3 ≈ 0.4667 < E {Z}.

This completes the proof.

Proof (of Proposition 4.3). The assertion in the statement of Proposition 4.3 follows
directly from Lemma 4.3.
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Maximizing revenue for
publishers using header
bidding and ad exchange
auctions*

In practice publishers may have access to multiple selling mechanisms.
More specifically, some publishers use both header bidding and an ad
exchange in order to sell impressions. This Chapter builds on the ideas
and problem settings of Chapter 3 and 4 and studies how publishers
should should set their floor prices in order to maximize revenues when
they have access to both header bidding and an ad exchange.

*This chapter is based on Rhuggenaath et al. [134].

129



130 Chapter 5

5.1 Introduction
One of the main selling channels in online display advertising is the Real-Time Bidding
(RTB) selling channel, where impressions are sold in real-time via auctions when users
visit websites the are owned by publishers [162]. In this Chapter, we focus on two
popular selling mechanisms [73, 97] that can be used to sell impressions via RTB: (i)
ad exchange (ADX) auctions, and (ii) Header Bidding (HB).

In RTB there are three main platforms: supply side platforms (SSPs), demand side
platforms (DSPs) and an ad exchange which connects SSPs and DSPs. The SSPs (e.g.,
DoubleClick for Publishers, Rubicon Project for Sellers and MoPub) collect inventory
of different publishers and thus serve the supply side of the market. Advertisers
which are interested in showing online advertisements are connected to DSPs. ADX
auctions proceed as follows. When a user loads a page, the publisher’s ad server calls
(typically, the publisher uses an SSP for this purpose) the ad exchange. The DSPs
(e.g., MediaMath and Criteo) receive the bid requests from the ad exchanges they are
connected to, and bid on behalf of the advertisers. Once the ad exchange has received
the bids from the DSPs, it sends the clearing price back to the publisher.

Header bidding (e.g., [73, 97]) is a relatively new mechanism, where the publisher
can simultaneously connect to multiple header bidding partners (these are SSPs and
ad exchanges) for a single impression. Each header bidding partner is involved in a
separate auction and reports a value (a bid) indicating the revenue for the publisher.
The publisher observes the individual revenues and subsequently chooses a winner
among the header bidding partners (the partner with the highest revenue wins).

Publishers typically specify a floor price (a minimum amount they want to receive
for the impression) when selling on the RTB market. If the price returned by the
ADX auction or HB auction is lower than the floor price, the impression is not sold.
Floor prices allow publisher some control on the revenues they receive: if a publisher
thinks its inventory is undervalued (and it does not want to sell) it can enforce this
via the floor price.

Publishers typically have access to both selling mechanisms: they first observe the
offered price from header bidding and can accept or reject this price [73, 100, 133].
If the price is rejected, they can try to sell the impression on an ADX (typically via
their primary/ default SSP). In this Chapter, we study how publishers should set
their floor prices in order to maximize expected revenues when they have access to
both selling mechanisms. In particular, we study (i) when a publisher should sell via
header bidding and when he should use the ADX; and (ii) if the publisher uses ADX,
which floor price it should use on the ADX. We summarize the main contributions of
this Chapter as follows:

• To the best of our knowledge, we are the first to study the joint optimization
of revenues for publishers that use both a header bidding platform and ADX
auctions. We show how floor prices should be adjusted in order to carefully
manage the exploration-exploitation trade-offs.
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• We propose two algorithms and provide a theoretical analysis that shows that
they have sub-linear regret with respect to the time horizon.

• We perform experiments using simulated data and using real-world data in order
to validate our proposed algorithms.

The remainder of this Chapter is organized as follows. In Section 5.2 we discuss the
related literature. Section 5.3 provides a formulation of the problem. In Section 5.4
we present our proposed algorithms and provide a theoretical analysis. In Section 5.5
we perform experiments in order to assess the quality of our proposed algorithms.
Section 5.6 concludes our work.

5.2 Related Literature
In the last decade there has been a lot of research on online auctions and revenue
management in online advertising, see e.g. [46, 87, 114, 162, 168]. However, to the
best of our knowledge, we are the first to study the joint optimization of revenues
for publishers that use both a header bidding platform and ad exchange auctions.
Previous works typically focus on a single selling mechanism (ad exchanges that use
second-price auctions [18, 41, 124, 146, 171]), or focus on the perspective of the ad
exchange or header bidding partner [97, 133]. Revenue optimization in second-price
auctions (using reserve prices) has been studied in [18, 41, 124, 146, 171]. These
studies either assume that the bids are observed or that the number of bidders is
known, and attempt to use prediction models from machine learning or use online
learning techniques in order to learn the optimal reserve price. These papers, however,
do not consider header bidding, and therefore, do not specify how publishers should
make decisions when they have access to both an ad exchange and Header Bidding.
In [100] both ad exchange auctions and header bidding are studied, however, the
focus is not on revenue maximization. Revenue optimization using header bidding
has been studied before by [97, 133], but these papers consider the perspective of the
ad exchange or an SSP and not the perspective of the publisher.

In terms of methodology, the work in this Chapter is related to works that combine
techniques from the literature of multi-armed bandits (MAB) [37, 148, 154] with online
advertising auctions. Some papers [72, 81, 155] study bidding strategies or buying
decisions for advertisers. For example, in [72, 155] the focus is on buying decision
in order to maximize clicks when click-through-rates are unknown and typically with
budget constraints. There is also a stream of literature that uses multi-armed bandit
algorithms in order to design (auction) mechanisms, see e.g. [22, 32, 67, 68, 84]. The
goal in such studies is to design (truthful) mechanisms that either maximize revenue
of the seller or welfare, when decisions are made based on low-regret algorithms. This
is not the focus of this Chapter as the publisher is not a mechanism designer.

We refer the reader to the papers cited above for additional references. The main
difference between the work in this Chapter and the aforementioned works, is that (i)
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we focus on revenue optimization when the publisher has access to both ad exchange
auctions and a header bidding platform; and (ii) we focus on the publisher perspective
(and not the perspective of the buyer or ad exchange or mechanism designer).

5.3 Problem Formulation
We consider a publisher that owns a single advertisement slot and sequentially sells
impressions arriving over time. There are a number of rounds and in each round one
impression becomes available (i.e., every time a user loads a webpage an impression
becomes available and a new round begins). The total number of rounds is denoted
by T ∈ N. In each round t ∈ {1, . . . , T} the publisher has access to an ADX and
access to HB in order to sell this impression. In each round t, the publisher specifies
a floor price ht ∈ R to decide whether an impression is sold via HB. If the impression
is not sold via HB, then the publisher specifies a floor price ft ∈ P for ADX, where
P is the set of admissible prices.

We assume that the decisions and sequence of events proceed according to the
following online protocol. In each round t ∈ {1, . . . , T}:

1. the publisher specifies a floor price ht ∈ R for the HB auction.

2. the publisher observes the result (i.e., the revenue mt) of the HB auction.

3. the publisher decides to accept or reject the offer from the HB auction. If
mt ≥ ht, the impression is sold via HB and the revenue for the publisher equals
mt, and round t ends. Otherwise, the HB offer is rejected and the impression
is not sold via HB. If the HB offer is rejected, then go to step 4.

4. if the offer from HB was rejected, the publisher selects a floor price ft ∈ P and
offers the impression for sale on ADX with a floor price ft.

5. the publisher observes the result (i.e., the revenue vt) of the ADX auction. The
observed revenue vt satisfies the following relations: either vt = 0, or vt ≥ ft.

We make the following assumptions regarding the revenue distributions.

Assumption 5.1. We assume that 2 ≤ |P| = K ≤ T and that 0 ≤ p1 < p2 < · · · <
pK ≤ 1 with pk ∈ P for k = 1, . . . ,K.

Assumption 5.2. The revenues are bounded such that mt ∈ [0, 1] and vt ∈ [0, 1] for
all t.

Assumption 5.3. If floor price ft = pk is selected in round t, then vt is an i.i.d.
draw from the distribution Xk and this is denoted by vt ∼ Xk.

In our formulation, the sequence m1, . . . ,mT can be any arbitrary sequence such
that mt ∈ [0, 1]. Let K = {1, . . . ,K}. For pk ∈ P define the quantity µk = E {Xk},



Chapter 5 133

let k∗ = argmaxk∈K µk and let µ∗ = µk∗ . In every round t, the publisher makes a
decision at = (ht, it), where ht ∈ R denotes the floor price for the HB auction, and
it ∈ K denotes the index of the floor price for the ADX auction.

For a fixed sequence −→m = m1, . . . ,mT of observed revenues and a fixed sequence
of decisions a1, . . . , aT by the publisher, the pseudo-regret over T rounds is defined
as RT (−→m) =

∑T
t=1 max{µ∗,mt} −

∑T
t=1 I{ht > mt} · µit −

∑T
t=1 I{ht ≤ mt} · mt.

The first term represents the highest expected reward that can be obtained in round
t, the second term represents the expected reward if the publisher uses ADX, and
the third term represents the expected reward if the publisher accepts the HB offer.
An algorithm A is a (possibly randomized) decision rule that, to every past decisions
a1, . . . , at−1 and observed values of v1, . . . , vt−1 and m1, . . . ,mt−1 associates the next
choice at (note that vt is not observed if mt ≥ ht).

The expected pseudo-regret over T rounds is defined as RT (−→m) = E {RT (−→m)},
where the expectation is taken with respect to possible randomness in the selected
actions a1, . . . , aT using A. In the remainder, the expected pseudo-regret will simply
be referred to as the regret. The notation using −→m makes it clear that the regret
depends on the sequence of observed revenues. We will omit this dependence when
the meaning is clear from the context or when a relation is understood to hold for
all possible revenue sequences. For example, we write RT ≤ O(

√
T ) when RT (−→m) ≤

O(
√
T ) for all possible values of −→m.

The objective of the publisher is to devise an algorithm that makes decisions such
that the regret is as low as possible. Intuitively, the publisher only wants to accept
the revenue from the HB auction if mt ≥ µ∗. Otherwise, the publisher want to use
ADX with floor price equal to pk∗ , since this yields the highest expected reward µ∗.

In our formulation, the ADX auction is essentially treated as a black-box that takes
the floor price as input, and where each floor price has its own revenue distribution.
This is motivated by the following (combination of) reasons: (i) the ADX auction
format is possibly unknown to the publisher (in our formulation the format can be
arbitrary); (ii) impressions with different floor prices may get allocated to auctions of
different quality by the ADX.

The online protocol captures a number of salient features of the selling process
that are relevant for publishers that are small and medium sized enterprises (SMEs).
The first feature relates to the timing of events. Publishers usually first receive an
offer from the HB auction, and then need to decide if they accept or reject this offer5.
If the offer is rejected, then the ad server attempts to sell the impression via an ADX
auction. The second feature relates to the limited feedback that publishers receive. If
the publisher never sells via ADX auctions, he cannot estimate the expected reward
from ADX auctions. Moreover, if the publisher uses an ADX auction, he can only
observe the revenue for the chosen floor price. Also, in ADX auctions, the publisher

5We consider a setting where the header bidding auction takes place directly inside the browser
of the website visitor (this is called client-side header bidding [129]). In this setting, the publisher
observes the outcome of the header bidding auction (mt) and applies the floor price to this outcome.
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does not observe the actual offer made (bids placed) but only observes the end result
of the auction6. Finally, publishers need to make decisions under uncertainty. In
the protocol, the revenue distributions and the sequence of revenues from the HB
auction are not known in advance. As a consequence, the publisher needs to devise
an algorithm that learns these unknown quantities over time and makes decisions
based on the accumulated information.

Our main contribution is that we propose algorithms that have regret bounds that
are sub-linear in T and K and that hold for all possible values of −→m. To the best of
our knowledge, we are the first to derive such regret bounds for our problem.

5.4 Algorithms and Analysis
In this section we discuss our proposed algorithms and provide a theoretical analysis.

5.4.1 Proposed algorithms
Let nt,k denote the number of times that floor price pk has been used before the start
of round t. Let v̄t,k denote the empirical mean of observed revenues for floor price
pk after selecting it nt,k times. Let B(x, y) denote a Beta distribution with mean
x/(x+ y) and let BN (x) denote a Bernoulli distribution with success probability x.

Our first algorithm, referred to as UCB-HB-ADX, is given by Algorithm 5.1. The
main idea in the UCB-HB-ADX algorithm is as follows. At the ADX auction level,
the choices are made based on a UCB-type algorithm based on the UCB1 algorithm
by [17]. The floor price ht for the HB auction is then set equal to the highest index
(or upper confidence bound) in the UCB algorithm at the ADX level. The algorithm
is initialized by using each floor price pk once in the first K rounds.

Our second algorithm, TS-HB-ADX, is based on Thompson Sampling [7, 154] and
is given by Algorithm 5.2. It has a similar structure as UCB-HB-ADX, but instead
of using upper confidence bounds, it samples from a posterior distribution and uses
the highest sampled value as the floor price ht.

5.4.2 Regret bounds
In this section we provide a theoretical analysis of the algorithms proposed in the
previous section. First, we discuss a lower bound on the regret (Proposition 5.1).
Next, we provide upper bounds for the regret of UCB-HB-ADX (Proposition 5.2) and
TS-HB-ADX (Proposition 5.3), and relate these to the lower bound.

Proposition 5.1. Suppose that A is an algorithm that always accepts the offer of
the HB auction when mt ≥ µ∗ and always rejects the offer when mt < µ∗. Then

6In ADX auctions the publisher needs to send the value of the floor price to the ADX, the auction
takes place on the ADX, and the ADX applies the floor price to the auction outcome. The publisher
only observes the feedback as described in step 5 of the protocol.
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Algorithm 5.1 UCB-HB-ADX
Require: horizon T .
1: Set t = 1. Set nt,k = v̄t,k = 0 ∀k ∈ K.
2: for k ∈ {1, . . . ,K} do
3: Use ft = pk on ADX auction and observe vt.
4: Set v̄t,k = (nt,k · v̄t,k + vt)/(nt,k + 1).
5: Set nt,k = nt,k + 1. Set t = t+ 1.
6: end for
7: for t ∈ {K + 1, . . . , T} do
8: Set rt,k =

√
(1.5 log t)/nt,k. Set It,k = v̄t,k + rt,k.

9: Set k̂ = argmaxk∈K{It,k}. Set ht = It,k̂.
10: if mt ≥ ht then
11: Accept offer from HB auction at price mt.
12: else
13: Reject offer from HB auction at price mt.
14: Use ft = pk̂ on ADX auction and observe vt.
15: Set v̄t,k̂ = (nt,k̂ · v̄t,k̂ + vt)/(nt,k̂ + 1).
16: Set nt,k̂ = nt,k̂ + 1.
17: end if
18: end for

Algorithm 5.2 TS-HB-ADX
Require: horizon T .
1: Set t = 1. Set αk = βk = 1 ∀k ∈ K.
2: for k ∈ {1, . . . ,K} do
3: Use ft = pk on ADX auction and observe vt.
4: Draw x ∼ BN (vt).
5: Set αk = αk + x. Set βk = βk + (1− x).
6: Set t = t+ 1.
7: end for
8: for t ∈ {K + 1, . . . , T} do
9: Draw It,k from B(αk, βk).
10: Set k̂ = argmaxk∈K{It,k}. Set ht = It,k̂.
11: if mt ≥ ht then
12: Accept offer from HB auction at price mt.
13: else
14: Reject offer from HB auction at price mt.
15: Use ft = pk̂ on ADX auction and observe vt.
16: Draw x ∼ BN (vt).
17: Set αk̂ = αk̂ + x. Set βk̂ = βk̂ + (1− x).
18: end if
19: end for

there exists a sequence of revenues −→m = m1, . . . ,mT such that RT (−→m) ≥ Ω(
√
KT )

for algorithm A.

Proof. Let −→m = m1, . . . ,mT be such that mt < µ∗ for all t. In this case, the optimal
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decision is to go to ADX in all rounds. The problem then reduces to a standard
stochastic multi-armed bandit problem for which a lower bound of RT ≥ Ω(

√
KT ) is

known [148].

Proposition 5.2. If Algorithm 5.1 is used on a problem instance with horizon T ,
then RT ≤ O(

√
TK log (T )).

Proof. If I {µ∗ > mt ≥ ht} = 1 then the publisher did not go to the ADX
when instead he should have. Similarly, if I {µ∗ < mt < ht} = 1, then the publisher
did not accept the revenue of the HB auction when instead he should have accepted it.

Define A =
∑T
t=1 E {(µ∗ −mt) · I {µ∗ > mt ≥ ht}} and define

B =
∑T
t=1 E {(mt − µ∗) · I {µ∗ < mt < ht}}.

Note that we can bound the regret as follows RT ≤ K + A + B. The first term
reflects the fact that Algorithm 5.1 plays each floor price once in the first K rounds
and that the regret in these rounds is bounded by K · 1 by Assumption 5.2.

We will bound each term separately. Define the events, Ft = {µ∗ > mt ≥ ht},
Et = {ht > µ∗}, Ht = {∀k : |v̄t,k − µk| ≤

√
1.5 logT
nt,k

}, and HC
t = {∃k : |v̄t,k − µk| >√

1.5 logT
nt,k

}.

For term A we have,

A ≤
T∑
t=1

E {(µ∗ −mt) · I {Ft}} ≤
T∑
t=1

E {1 · I {Ft}}

≤
T∑
t=1

P {Ft} ≤
T∑
t=1

P {µ∗ > ht} ≤
T∑
t=1

P {µ∗ > It,k∗} .

Using Hoeffding’s inequality [89] and a union bound we obtain
P {µ∗ > It,k∗} ≤ 2

t2 . This yields
∑T
t=1 P {µ∗ > It,k∗} ≤

∑∞
t=1

2
t2 = 2 · π

2

6 .
Therefore, we conclude that

∑T
t=1 P {µ∗ > It,k∗} ≤ π2

3 .

Define T̄ = {t ∈ T | ht > mt}. For term B we have,

B ≤
∑
t∈T̄

E {(mt − µ∗) · I {µ∗ < mt < ht}}

≤
∑
t∈T̄

E {(ht − µ∗) · I {Et}} ≤ B1 +B2,

where B1 =
∑
t∈T̄ E {(ht − µ∗) · I {Et ∩Ht}} and where

B2 =
∑
t∈T̄ E

{
(ht − µ∗) · I

{
Et ∩HC

t

}}
.
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Let k̂t = argmaxk∈K{It,k} and note that ht = It,k̂t
.

We bound B1 as follows.

B1 ≤
∑
t∈T̄

E {|ht − µ∗| · I {Ht}}

≤
∑
t∈T̄

E
{
|ht − µ∗|

∣∣∣ Ht

}
· P {Ht}

≤
∑
t∈T̄

E
{
|ht − µ∗|

∣∣∣ Ht

}
≤
∑
t∈T̄

E
{
|It,k̂t

− µk̂t
|
∣∣∣ Ht

}

≤
∑
t∈T̄

2
√

3 log T
2nt,k̂t

≤
∑
t∈T

2
√

3 log T
2nt,k̂t

≤
K∑
k=1

∑
t∈Tk

2

√
3 log T
2nt,k

≤
K∑
k=1

2 · 2
√
|Tk|

3 log T
2

(a)
≤ 2 · 2

√
TK

3 log T
2 ,

where Tk = {t : k̂t = k}.

Inequality (a) follows from
∑K
k=1

1
K

√
|Tk|

(b)
≤
√∑K

k=1
1
K · |Tk| =

√
1
K

∑K
k=1 |Tk|

(c)
≤√

1
KT . Inequality (b) follows from noting that

√
x is a concave function and by ap-

plying Jensen’s inequality and inequality (c) follows from the fact that
∑K
k=1 |Tk| ≤ T .

For B2 we have, B2 ≤
∑
t∈T̄ P

{
HC
t

}
≤ T · 2

T .

Putting everything together we obtain RT ≤ K + π2

3 + 4
√

1.5 log T
√
TK + T · 2

T .
Therefore, we conclude that RT ≤ O(K +

√
KT log T ). Assuming that T ≥ K, we

have that RT ≤ O(
√
KT log T ).

Proposition 5.3 bounds the regret of TS-HB-ADX. It uses Lemma 5.1 and
Lemma 5.2, which are presented below. Lemma is Fact 1 in [6] and Lemma 5.2
is based on Lemma 1 in [104].

Lemma 5.1. Let FBetaa,b (·) denote the cumulative distribution function (CDF) of a
Beta distribution with parameters a and b. Let FBv,w(·) denote the CDF of a Binomial
distribution with v trials and success parameter w. Then, FBetaa,b (y) = 1−FBa+b+1,y(a−
1).

Lemma 5.2. Suppose that Algorithm 5.2 is used on a problem instance with T ≥ 2
and let nt,k denote the number of times that floor price k has been used before round
t. If t ≥ K, then P

{
|µk − It,k| ≥

√
32 logT
nt,k

}
≤ 2

T 3 .

Proof. Let t ≥ K. In this case, each floor price on ADX has been used at least
once. Let αt,k denote the value of αk before round t. Let BIN (n, p) denote a
Binomial distribution with n trials and success probability p. Define the following
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events At = {nt,k ≥ 1}, Bt = {It,k ≤ µk−
√

32 logT
nt,k

} and Ct = {It,k ≥ µk+
√

32 logT
nt,k

}.
Let (Ut) denote a sequence of i.i.d. uniform random variables. Now in round t ≥ K,

P {Bt} = P

{
Ut ≤ FBetaαk+1,nt,k−αk+1(µk −

√
32 log T
nt,k

)
}

(a)= P


Ut ≤ 1− FB

nt,k+1,µk−
√

32 log T
nt,k

(αk)

 ∩At


= P


FBnt,k+1,µk−

√
32 log T

nt,k

(αk) ≤ Ut

 ∩At


≤ P
{
∃s ∈ {1, . . . , t} : FB

s+1,µk−
√

32 log T
s

(αs,k) ≤ Ut
}

(b)
≤

t∑
s=1

P
{
αs,k ≤ (FB)−1

s+1,µk−
√

32 log T
s

(Ut)
}
.

Here (F )−1 denotes the inverse CDF of the CDF F . Equality (a) follows from
Lemma 5.1 and inequality (b) follows from a union bound. Note that Vs =
(FB)−1

s+1,µk−
√

32 log T
s

(Ut) ∼ BIN (s + 1, µk −
√

32 logT
s ) and is independent from

αs,k ∼ BIN (s, µk).
For a fixed value of s, define two i.i.d. sequences of Bernoulli random variables
W1,l ∼ BN (µk −

√
32 logT

s ) and W2,l ∼ BN (µk) and let Zl = W2,l − W1,l with

E{Zl} =
√

32 logT
s .
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Now,

P {αs,k ≤ Vs} = P

{
s∑
l=1

W2,l ≤
s+1∑
l=1

W1,l

}

≤ P

{
s∑
l=1

Zl ≤W1,s+1

}

≤ P

{
s∑
l=1

Zl ≤ 1
}

= P

{
s∑
l=1

(Zl −
√

32 log T
s

) ≤ −(
√
s32 log T − 1)

}
(c)
≤ P

{
s∑
l=1

(Zl −
√

32 log T
s

) ≤ −
√
s8 log T

}
(d)
≤ exp{−2(

√
8s log T )2

4s } = 1
T 4 .

Inequality (c) follows from 0.5
√
s32 log T ≥

√
s8 log T > 1 for T ≥ 2 and s ≥ 1.

Inequality (d) follows from Hoeffding’s inequality. Therefore, it follows that
P {Bt} ≤

∑t
s=1 P {αs,k ≤ Vs} ≤

T
T 4 = 1

T 3 .

Define W+
1,l ∼ BN (µk +

√
32 logT

s ) and let Z+
l = W+

1,l − W2,l. Using a similar
approach one can show that P {Ct} ≤

∑t
s=1 P {αs,k ≥ V +

s } ≤ T
T 4 = 1

T 3 , where
V +
s = (FB)−1

s+1,µk+
√

32 log T
s

(Ut) ∼ BIN (s + 1, µk +
√

32 logT
s ). By taking a union

bound, we obtain P
{
|µk − It,k| ≥

√
32 logT
nt,k

}
≤ 2

T 3 .

Proposition 5.3. If Algorithm 5.2 is used on a problem instance with horizon T ,
then RT ≤ O(

√
KT log T )).

Proof. The proof is similar to the proof of Proposition 5.2.
Define A =

∑T
t=1 E {(µ∗ −mt) · I {µ∗ > mt ≥ ht}} and define

B =
∑T
t=1 E {(mt − µ∗) · I {µ∗ < mt < ht}}.

Note that we can bound the regret as follows RT ≤ K +A+B.

We will bound each term separately. Let nt,k denote the number of
times that floor price k has been used before round t. Define the events,
Ft = {µ∗ > mt ≥ ht}, Et = {ht > µ∗}, Ht = {∀k : |µk − It,k| ≤

√
32 logT
nt,k

} and

HC
t = {∃k : |µk − It,k| >

√
32 logT
nt,k

}. Note that, by Lemma 5.2 and by using a
union bound over the K floor prices and using the fact that K ≤ T , we have that
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P
{
HC
t

}
≤ 2

T 2 .

Define T̂ = {t ∈ T | ht ≤ mt}. For term A we have,

A ≤
∑
t∈T̂

E {(µ∗ −mt) · I {Ft}} ≤
∑
t∈T̂

E {|µ∗ − It,k∗ | · I {Ft}} ≤ A1 +A2,

where A1 =
∑
t∈T̂ E {|µ∗ − It,k∗ | · I {Ft ∩Ht}} and where

A2 =
∑
t∈T̂ E

{
|µ∗ − It,k∗ | · I

{
Ft ∩HC

t

}}
.

For A1 we have,

A1 ≤
∑
t∈T̂

E {|µ∗ − It,k∗ | · I {Ht}}

≤
∑
t∈T̂

E
{
|µ∗ − It,k∗ |

∣∣∣ Ht

}

≤
∑
t∈T̂

√
32 log T
nt,k̂t

(a1)
≤ 2

√
KT32 log T .

Here inequality (a1) follows from similar arguments used for inequality (a) in
Proposition 5.2.

For A2 we have, A2 ≤
∑
t∈T̂ P

{
HC
t

}
≤ T · 2

T 2 .

Define T̄ = {t ∈ T | t > N, ht > mt}. For term B we have,

B ≤
∑
t∈T̄

E {(mt − µ∗) · I {µ∗ < mt < ht}}

≤
∑
t∈T̄

E {(ht − µ∗) · I {Et}} ≤ B1 +B2,

where B1 =
∑
t∈T̄ E {(ht − µ∗) · I {Et ∩Ht}} and where

B2 =
∑
t∈T̄ E

{
(ht − µ∗) · I

{
Et ∩HC

t

}}
.

Let k̂t = argmaxk∈K{It,k} and note that ht = It,k̂t
. Following similar steps as in the
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proof of Proposition 5.2, we obtain

B1 ≤
∑
t∈T̄

E {|ht − µ∗| · I {Ht}}

≤
∑
t∈T̄

E
{
|ht − µ∗|

∣∣∣ Ht

}
· P {Ht}

≤
∑
t∈T̄

E
{
|ht − µ∗|

∣∣∣ Ht

}
≤
∑
t∈T̄

E
{
|It,k̂t

− µk̂t
|
∣∣∣ Ht

}

≤
∑
t∈T̄

√
32 log T
nt,k̂t

(a2)
≤ 2

√
KT32 log T .

Here inequality (a2) follows from inequality (a1).

For B2 we have, B2 ≤
∑
t∈T̄ P

{
HC
t

}
≤ T · 2

T 2 .

Putting everything together we obtain RT ≤ K + 4
√

32KT log T + T · 4
T 2 .

Therefore, we conclude that RT ≤ O(K +
√
KT log T ). Assuming that T ≥ K, we

have that RT ≤ O(
√
KT log T ).

If we compare the upper bounds on the regret with the lower bound, then we
observe the following. Proposition 5.1 shows that, in general, the problem considered
in this paper is in a sense at least as hard as a standard stochastic multi-armed bandit
problem. In Proposition 5.2 and 5.3 the regret scales with

√
TK log T which matches

the lower bound of Proposition 5.1 up to logarithmic factors. Therefore, our proposed
algorithms are optimal up to logarithmic factors.

Proposition 5.2 and 5.3 show that our TS-based and UCB-based algorithms have
similar regret guarantees (up to constant factors), but it is still useful to consider both,
because TS-based approaches have often been reported to perform better (e.g. [104]).
In our experiments, TS-HB-ADX outperforms UCB-HB-ADX, which is consistent
with the empirical performance of TS-based approaches in the literature (e.g. [104]).

5.5 Experiments
In this section we conduct experiments in order to test the performance of our pro-
posed algorithms. We conduct experiments using both simulated data and real-world
data.
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5.5.1 Experiments using simulated data
Experimental settings

We consider a setting with K = 5 floor prices for the ADX auction. In the experi-
ments, Xk follows a uniform distribution on [µk−x, µk +x] with x chosen at random
from {0.1, 0.2, 0.3}. We set µ1 = 0.5, µ2 = 0.6, µ3 = 0.7, µ4 = 0.65 and µ5 = 0.6.
With these choices, we have that µ∗ = 0.7. We consider three settings for the process
that generates the revenues from the HB auction. In setting A, mt is an i.i.d. draw
from B(u, v), where u = 2 · w and v = 2 · (1 − w) and w = µ∗ + 0.1. Setting B is
the same as setting A, except that w = µ∗ − 0.1. Setting C is the same as setting A,
except that w = µ∗ − 0.1 for rounds t ≤ T/2 and w = µ∗ + 0.1 for rounds t > T/2.

Setting A represents a scenario where the average revenue from header bidding is
on average higher than on the ad exchange. In setting B, the average revenue from
header bidding is lower on average. Finally, in setting C, the average revenue from
header bidding is initially lower than on the ad exchange, but afterwards, a change
occurs and the average revenue from is on average higher than on the ad exchange.
By analyzing these three settings, we can test whether the results depend heavily on
the process the generates the revenues from header bidding.

We run TS-HB-ADX and UCB-HB-ADX for a horizon of T = 50000.

Results

In Figure 5.1 the cumulative regret is shown for different experimental settings and
different values for the problem horizon. As the algorithms do not require knowledge
of T , each point in the graph with round number t ≤ T can be interpreted as the
cumulative regret after t rounds for a problem of horizon t averaged over 200 simula-
tions. In all figures the shaded region indicates the 95% confidence interval, but since
it is too small in some figures, some intervals are not visible. The results indicate that
the regret is sub-linear in the horizon T for both algorithms. The results show that
TS-HB-ADX generally outperforms UCB-HB-ADX, as the regret is much lower for all
experimental settings. In Figure 5.2 the fraction of rounds in which the optimal action
is taken is displayed. The results confirm what we already saw in Figure 5.1, namely
that as the number of rounds increases, the optimal action is played more often.
Moreover, we again observe that TS-HB-ADX generally outperforms UCB-HB-ADX.

5.5.2 Experiments using real-world data
Dataset

We use header bidding data from a SME publisher that publishes gaming content.
The data is from February 22, 2020 (day 1) and February 21, 2020 (day 2) and
contains the bids placed by the Header Bidding partners and the final result of the
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Figure 5.1: Cumulative regret using UCB-HB-ADX and TS-HB-ADX.
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Figure 5.2: Fraction of rounds best action selected using UCB-HB-ADX and TS-HB-
ADX.

HB auction (maximum of the bids). We use this data to construct the distributions
Xk for the revenue on the ADX auction.

We perform the following pre-processing steps on the raw data. Let LMAX de-
note a list of numbers containing the observed results of the HB auctions. First, we
determine the 95-th percentile qMAX of the positive values in LMAX and keep all the
HB auctions where values in LMAX are at most qMAX . Next, to preserve propriet-
ary information, we shift the bids of all HB partners by a small positive constant c.
Finally, we normalize the bids of all the HB partners to the range [0, 1] by dividing
by qMAX + c. Let M denote the resulting empirical distribution of the values LMAX
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(after normalizing). Let HB1 and HB2 denote the empirical distributions of the bids
from Header Bidding partner 1 and 2 (after normalizing), respectively.

Experimental settings

The set of floor prices for the ADX auction is P =
{0.025, 0.05, 0.1, 0.125, 0.175, 0.2, 0.25, 0.3}. In the experiments we assume that
vt is an i.i.d. draw: (i) from HB1 if pk ≤ 0.1; (ii) from M if 0.1 < pk ≤ 0.2; from
(iii) HB2 if 0.2 < pk ≤ 0.3. In the experiments mt is an i.i.d. draw from M . With
these settings E{mt} ≈ 0.1583 and µ∗ ≈ 0.1325 for day 1, and E{mt} ≈ 0.1349 and
µ∗ ≈ 0.1058 for day 2. Figure 5.3 displays the distribution for mt for both days.
Figure 5.4 displays the expected reward for each floor price on the ADX for both
days. We run TS-HB-ADX and UCB-HB-ADX for a horizon of T = 100000.
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(a) Distribution of mt for Day 1.
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(b) Distribution of mt for Day 2.

Figure 5.3: Distribution of mt.
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(a) Expected rewards for Day 1.
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(b) Expected rewards for Day 2.

Figure 5.4: Expected rewards for floor prices.
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Results

The results are displayed in Figures 5.5 to 5.7. The results in Figure 5.5 and 5.6 are
qualitatively similar to those reported in Figure 5.1 and 5.2: we again observe that
regret is sub-linear in T and that TS-HB-ADX generally outperforms UCB-HB-ADX.

Figure 5.7 displays the average cumulative revenue for both TS-HB-ADX and
UCB-HB-ADX. The results show that the average cumulative revenue, for both al-
gorithms and for both days, exceeds both µ∗ and E{mt} as the number of rounds
increases. This shows that optimization of revenues that takes both selling mechan-
isms into account leads to a substantial improvement over the expected revenue that
can be obtained by using just one selling mechanism.
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Figure 5.5: Cumulative regret using UCB-HB-ADX and TS-HB-ADX.
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Figure 5.6: Fraction of rounds best action selected using UCB-HB-ADX and TS-HB-
ADX.
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Figure 5.7: Average cumulative revenue using UCB-HB-ADX and TS-HB-ADX.

5.6 Conclusion
In this Chapter, we study how publishers should set their floor prices in order to max-
imize expected revenues when they have access to both an ad exchange and header
bidding in order to sell impressions on the Real-Time Bidding market. We formulate
the problem as a regret minimization problem and develop algorithms based on tech-
niques from the multi-armed bandits literature. We provide a theoretical analysis of
our algorithms and verify our results on simulated data and real-world data. Our
experiments show that optimization of revenues that takes both selling mechanisms
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into account leads to a substantial improvement over the expected revenue that can
be obtained by using just one selling mechanism.

We present algorithms with regret guarantees that hold for all possible revenue
sequences on the header bidding platform. Our analysis shows that our proposed
algorithms match a lower bound up to logarithmic factors. Therefore, our proposed
algorithms are optimal up to logarithmic factors. Future work can be directed towards
algorithms that take additional information into account in the form of features,
similar to for example contextual bandits. It would be interesting to study whether
optimal algorithms exist and which assumptions are needed in order to derive such
performance guarantees. Another direction would be to investigate whether it is
possible to derive performance guarantees when the rewards on the ad exchange are
adversarial instead of stochastic.
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Algorithms for strategic
buyers with unknown
valuations in repeated
posted-price auctions*

The previous Chapters of this thesis have studied revenue management
problems from the perspective of the seller. This Chapter switches per-
spectives and instead focuses on buying decisions in online advertising
auctions. More specifically, we consider buying decisions in repeated
posted-price auction where a seller repeatedly interacts with a buyer for
a number of time periods and where the buyer wants to maximize his
expected utility over time. In this problem, the buyer needs to learn at
what prices it is worthwhile to purchase an item when her valuation for
the item is unknown.

*This chapter is based on Rhuggenaath et al. [142].
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6.1 Introduction
A growing fraction of online advertisements are sold via ad exchanges. In an ad
exchange, after a visitor arrives on a webpage, advertisers compete in an auction
to win the impression (the right to deliver an ad to that visitor). Typically, these
auctions are second-price auctions, where the winner pays the second highest bid or
a reserve price (whichever is larger), and no sale occurs if all of the bids are lower
than the reserve price. However, as indicated by e.g. [10, 11, 122], a non-trivial
fraction of auctions only involve a single bidder and this reduces to a posted-price
auction [106] when reserve prices known: the seller sets a reserve price and the buyer
decides whether to accept or reject it. A single publisher can track a large number of
visitors with similar properties over time and sell these to buyers. As buyers typically
are involved in a large number of auctions, there is an incentive for them to act
strategically [10, 11, 78, 122]. These observations have led to the study of repeated
posted-price auctions between a single seller and strategic buyer.

In this Chapter we consider a repeated posted-price auction between a single seller
and a single buyer similar to that considered in [10, 122]. In every round, the seller
posts a price and the buyer decides to buy or not at that price. The buyer does not
know the distribution of his valuation, the seller’s pricing algorithm or the seller’s
price set. Furthermore, the seller does not know the valuation distribution and needs
to learn how to set the price over time. There are a number of differences between
the work in this Chapter and previous work on repeated posted-price auction such
as [10, 11, 122]. First, unlike in previous work, we study the problem from the
perspective of a buyer that aims to maximize his expected utility or surplus, instead
of the perspective of the seller that aims to maximize his revenue. Second, previous
papers assume that the buyer knows his valuation in each round. In this Chapter,
we relax this assumption and assume the buyer does not know the distribution of his
valuation and the valuation is only revealed after he buys the item. This is motivated
by applications in online advertising where the buyer (advertiser) does not know the
exact value of showing the ads to a set of users: some users may click on the ad and
in some cases the ad may lead to a sale, but the buyer only observes a response after
he displays the advertisement to the user.

As the valuation distribution is unknown, buyers face an exploration-exploitation
trade-off and their decisions lead to regret: (i) accepting a price that is at most the
mean valuation leads to positive expected utility and accepting a price above it leads
to negative utility; (ii) buying the item leads to additional information about the
mean valuation (at the risk of negative utility), but by not buying there is a risk
of missing out on positive utility. We study two types of buyers: strategic buyers
and non-strategic buyers. Non-strategic buyers are only interested achieving sub-
linear regret given the prices that are observed and do not attempt to manipulate or
influence the observed prices. Strategic buyers are also interested in sub-linear regret
given the observed prices, but they also actively attempt to influence future prices
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that will be offered. If non-strategic buyers knew the mean valuation they would
use the following rule: always accept a price that is at most the mean valuation and
always reject a price above it. Strategic buyers on the other hand, would sometimes
deviate from this rule in an attempt to influence future prices that will be offered.
If non-strategic buyers knew the mean valuation, then their decisions would have
low regret but the seller could learn to ask a price very close to the mean valuation,
resulting in low utility for the buyer [10, 122]. Strategic buyers attempt to influence
the learning process of the seller in order to lower the price and to increase the utility.
However, as these attempts are not guaranteed to succeed (as buyers don’t know the
seller’s pricing algorithm or price set), strategic buyers still want to ensure sub-linear
regret for all possible prices sequences.

In our setting, the seller needs to learn to set his prices because he does not know
the valuation distribution. To the best of our knowledge, there are no existing ‘op-
timal’ algorithms with performance guarantees (specifically) for repeated posted-price
auctions with a single seller and a single strategic buyer that doesn’t know his valu-
ation: existing algorithms (e.g., [10, 11, 75, 76, 122, 159]) assume that buyers know
their valuation and thus lose their performance guarantees. In our experiments (see
Section 6.5) we therefore assume that the seller uses an off-the-shelf low-regret learning
algorithm for adaptive adversarial bandit feedback as these have known performance
guarantees [37, 106, 148].

Our main contributions are as follows. First, to the best of our knowledge, we
are the first to study repeated posted-price auctions in strategic settings from the
perspective of the buyer. We do not assume that the buyer knows his valuation dis-
tribution. Second, we construct algorithms with sub-linear (in the problem horizon)
regret for both non-strategic and strategic buyers by using ideas from popular multi-
armed bandit algorithms UCB1 [17] and Thompson Sampling [8]. Our algorithms do
not require knowledge about the seller’s pricing algorithm or price set. Third, we use
experiments to support our theoretical findings. Using experiments we show that, if
the seller is using a low-regret learning algorithm based on weights updating (such as
EXP3.P [15, 37]), then strategic buyers can obtain much higher utilities compared to
non-strategic buyers.

The remainder of this Chapter is organized as follows. In Section 6.2 we discuss
the related literature. Section 6.3 provides a formal description of the problem. In
Section 6.4 we present the our proposed algorithms and provide a theoretical analysis.
In Section 6.5 we perform experiments in order to assess the quality of our proposed
algorithms. Section 6.6 provides a conclusion and some directions for further research.

6.2 Related Literature
The work in this Chapter is mainly related to the following areas of the literature:
posted-price auctions, low-regret learning by sellers and buyers, and decision making
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for buyers in auctions. We discuss these areas in more detail below.
Repeated posted-price auctions with the goal of maximizing revenue for the seller

and assuming that the feedback from buyers is i.i.d. distributed was studied in [106].
Other works [10, 11, 75, 76, 95, 122, 159] instead study repeated posted-price auctions
with strategic buyers. However, these papers all study the seller side of the problem
and assume that buyers know their valuations in each round.

On a high level, work in this Chapter is related to works that study repeated
auctions where either the seller and/or the buyer is running a low-regret learning
algorithm [32, 35, 67] and the interaction between bandit algorithms and incentives
of buyers [21, 22, 68, 84]. The goal in such studies is to design (truthful) mechanisms
that either maximize revenue of the seller or welfare, when decisions are made based
on low-regret algorithms. This is not the focus of this Chapter.

The aforementioned works focus on either the seller side or on mechanism design,
but there is also work that considers the perspective of buyers or bidders. In [72,
155, 156] the focus is on maximizing clicks when click-through-rates are unknown
and typically with budget constraints. In this Chapter, rewards for buyers are not
determined by the number of clicks, instead the buyer aims to maximize cumulative
utilities or his net surplus as in e.g., [10, 11, 122]. In [81] the focus is on designing
bidding strategies for buyers that compete against each other and where the buyer
valuation is unknown. However, these studies do not focus on repeated posted-price
auctions and strategic behaviour of buyers is not considered.

6.3 Problem Formulation
We consider a single buyer and a single seller that interact for T rounds. An item,
such as an advertisement space, is repeatedly offered for sale by the seller to the buyer
over these T rounds. In each round t ∈ T = {1, . . . , T}, a price pt ∈ P is offered by
the seller and a decision at ∈ {0, 1} is made by the buyer: at = 1 when the buyer
accepts to buy at that price, at = 0 otherwise. The buyer holds a private valuation
vt ∈ [0, 1] for the item in round t. The value of vt is an i.i.d. draw from a distribution
D and has expectation ν = E {vt}. The buyer does not know D and ν. Also, the
buyer does not know P or the seller’s pricing algorithm. The value vt is only revealed
to the buyer if he buys the item in round t, i.e., the buyer only observes the value
after he buys the item. The seller also does not know D or ν and does not observe vt.

The utility of the buyer in round t is given by ut = at · (vt−pt). In other words, if
the buyer purchases the item the utility is the difference between the valuation and the
price. Otherwise, the utility is zero. For a fixed sequence −→p = p1, . . . , pT of observed
prices and a fixed sequence of decisions a1, . . . , aT by the buyer, the pseudo-regret of
the buyer over T rounds is defined as RT (−→p ) =

∑T
t=1 max{ν−pt, 0}−

∑T
t=1 at·(ν−pt).

The term max{ν − pt, 0} represents the expected utility of the optimal decision in
round t and the term at · (ν−pt) represents the expected utility of the actual decision
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that is made by the buyer in round t. The expected pseudo-regret over T rounds
is defined as RT (−→p ) = E {RT (−→p )}, where the expectation is taken with respect to
possible randomization in the selection of the actions a1, . . . , aT . In the remainder,
the expected pseudo-regret will simply be referred to as the regret. The notation
using −→p makes it clear that the regret depends on the sequence of observed prices.
We will omit this dependence when the meaning is clear from the context or when a
relation is understood to hold for all possible price sequences. For example, we write
RT ≤ O(

√
T log T ) when RT (−→p ) ≤ O(

√
T log T ) for all choices of −→p .

We consider two types of buyers: non-strategic buyers and strategic buyers. Non-
strategic buyers are interested in achieving sub-linear regret for all possible price
sequences, but they treat the price sequence as exogenous. That is, if non-strategic
buyers knew ν, then they would follow this rule: buy if and only if pt ≤ ν. Strategic
buyers also want sub-linear regret for all possible prices sequences, but they would
sometimes deviate from this rule in an attempt to influence (i.e., lower) future prices
that will be offered. If non-strategic buyers knew ν, then their decisions would have
low regret but the seller could learn to ask a price just below ν, resulting in low utility
for the buyer [10, 122]. Strategic buyers actively attempt to influence the learning
process of the seller in order to lower the price and to increase the utility. However,
as these attempts are not guaranteed to succeed (recall that buyers do not know
the seller’s pricing algorithm or P), strategic buyers still want to ensure sub-linear
regret for all possible prices sequences. The seller does not know D or ν and does
not observe vt, and so he has to learn how to set his price over time under bandit
feedback. This Chapter focuses on the buyer side and the regret bounds that we
derive do not depend on the seller’s pricing algorithm. However, in order to test our
algorithms, some assumption about the seller’s algorithm is required. To the best of
our knowledge, there are no existing ‘optimal’ algorithms for sellers with performance
guarantees (specifically) for repeated posted-price auctions with a single seller and a
single strategic buyer that doesn’t know his valuation: existing algorithms (e.g., [10,
11, 75, 76, 95, 122, 159]) assume that buyers know vt and thus lose their performance
guarantees. In our experiments (see Section 6.5) we therefore assume that the seller
uses an off-the-shelf low-regret learning algorithm for adaptive adversarial bandit
feedback as these have known performance guarantees [37, 106, 148].
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Algorithm 6.1 UCB-NS
Require: horizon T .
1: Set V = ∅. Set t = 1.
2: Set n = 1.
3: Buy item at price pt.
4: Observe vt. Set V = V ∪ {vt}.
5: for t ∈ {2, . . . , T} do
6: Set nt = n.
7: Set v̄t = 1

nt

∑
v∈V v.

8: Set rt =
√

(2 log t)/nt.
9: Set It = v̄t + rt.

10: if It ≥ pt then
11: Buy item at price pt.
12: Observe vt. Set V = V ∪ {vt}.

13: Set n = n+ 1.
14: end if
15: end for

Algorithm 6.2 TS-NS
Require: N ∈ N, horizon T .
1: Set V = ∅. Set t = N .
2: Set n = N .
3: Buy item in first N rounds.
4: Observe VN = ∪Nk=1{vk}.
5: Set V = V ∪ VN .
6: for t ∈ {N + 1, . . . , T} do
7: Set nt = n.
8: Set v̄t = 1

nt

∑
v∈V v.

9: Sample It ∼ N (v̄t, 1
nt

)
10: if It ≥ pt then
11: Buy item at price pt.
12: Observe vt. Set V = V ∪ {vt}.

13: Set n = n+ 1.
14: end if
15: end for

6.4 Algorithms and Analysis
In this section we present our proposed algorithms for strategic and non-strategic
buyers and we provide a theoretical analysis of these algorithms.

6.4.1 Non-strategic buyers
We provide two algorithms for non-strategic buyers that have sub-linear regret. The
first algorithm, UCB-NS, is based on UCB (upper confidence bound) style bandit al-
gorithms [17] and the second algorithm, TS-NS, is based on the Thompson sampling
principle [9]. In every round, UCB-NS maintains an optimistic estimate of the un-
known mean ν and decides to buy the item if the estimate is at least as large as the
offered price pt. TS-NS samples from a posterior distribution and decides to buy the
item if the sampled value is at least as large as the offered price pt. Proposition 6.1
and 6.2 bound the regret of UCB-NS and TS-NS, respectively.

Proposition 6.1. If Algorithm 6.1 is run with inputs: T , then RT ≤ O(
√
T log T ).

Proof. If I {ν > pt > It} = 1 then the buyer did not buy the item when instead he
should have bought it. Similarly, if I {ν < pt ≤ It} = 1, then the buyer did buy the
item when instead he should not have bought it.
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Note that we can bound the regret as follows RT ≤ 1 +∑T
t=1 E {(ν − pt) · I {ν > pt > It}}+

∑T
t=1 E {(pt − ν) · I {ν < pt ≤ It}}.

Define A =
∑T
t=1 E {(ν − pt) · I {ν > pt > It}} and B =∑T

t=1 E {(pt − ν) · I {ν < pt ≤ It}}. We will bound each term separately.

Define the following events Ft = {ν > pt > It}, Et = {It > ν},
Ht = {|v̄t − ν| ≤

√
2 logT
nt
} and HC

t = {|v̄t − ν| >
√

2 logT
nt
}.

For term A we have,

A ≤
T∑
t=1

E {(ν − pt) · I {Ft}} ≤
T∑
t=1

E {1 · I {Ft}}

≤
T∑
t=1

P {Ft} ≤
T∑
t=1

P {ν > It}

Using Hoeffding’s inequality (and a union bound) we obtain P {ν > It} ≤ 1
t3 ≤

1
t2 .

Therefore, we conclude that
∑T
t=1 P {ν > It} ≤ π2

6 .

Define B = {t ∈ T | It ≥ pt}. For term B we have,

B ≤
∑
t∈B

E {(pt − ν) · I {ν < pt ≤ It}} ≤
∑
t∈B

E {(It − ν) · I {It > ν}}

≤
∑
t∈B

E {(It − ν) · I {Et ∩Ht}}+
∑
t∈B

E
{

(It − ν) · I
{
Et ∩HC

t

}}
.

Define B1 =
∑
t∈B E {(It − ν) · I {Et ∩Ht}}. We bound B1 as follows:

B1 ≤
∑
t∈B

E {|It − ν| · I {Ht}} ≤
∑
t∈B

E
{
|ν − It|

∣∣∣ Ht

}
· P {Ht}

≤
∑
t∈B

E
{
|ν − It|

∣∣∣ Ht

}
≤
∑
t∈B

2
√

2 log T
nt

≤
∑
t∈T

2
√

2 log T
t

≤ 2
∫ T

0

√
2 log T
t

dt ≤ 4
√

2 log T
√
T .
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Define B2 =
∑
t∈B E

{
(It − ν) · I

{
Et ∩HC

t

}}
. We bound B2 as follows:

B2 ≤
∑
t∈B

P
{
HC
t

}
≤
∑
t∈B

P

{
|v̄t − ν| >

√
2 log T
nt

}
(a)
≤ T · 2

T 4 .

Inequality (a) follows from applying Hoeffding’s inequality and from the fact that
|B| ≤ T .

Putting everything together we obtainRT ≤ 1+ π2

6 +4
√

2 log T
√
T+T · 2

T 4 . Therefore,
we conclude that RT ≤ O(

√
T log T ).

Proposition 6.2. If Algorithm 6.2 is run with inputs: T and N = dcN · T
2
3 e, then

RT ≤ O(T 2
3
√

log T ).

Proof. We can bound the regret as follows RT ≤ N · 1 +∑T
t=N+1 E {(ν − pt) · I {ν > pt > It}}+

∑T
t=N+1 E {(pt − ν) · I {ν < pt ≤ It}}.

Define A =
∑T
t=N+1 E {(ν − pt) · I {ν > pt > It}} and B =∑T

t=N+1 E {(pt − ν) · I {ν < pt ≤ It}}. We will bound each term separately.
Define the event Ft = {ν > pt > It}.

A ≤
T∑

t=N+1
E {(ν − pt) · I {Ft}} ≤

T∑
t=N+1

E {(ν − It) · I {Ft}}

≤
T∑

t=N+1
E {|ν − It| · I {Ft}} ≤

T∑
t=N+1

E
{
|(ν − v̄t)− (It − v̄t)|

∣∣∣ Ft } · P {Ft}
≤

T∑
t=N+1

E
{
|ν − v̄t|

∣∣∣ Ft } · P {Ft}+
T∑

t=N+1
E
{
|It − v̄t|

∣∣∣ Ft } · P {Ft}
≤

T∑
t=N+1

E {|ν − v̄t|}+
T∑

t=N+1
E {|It − v̄t|}

Using Hoeffding’s inequality we obtain, for t > N , that E {|ν − v̄t|} ≤ 2
T 4 +2

√
2 logT
N .

Using the fact that N = dcN · T
2
3 e and that T − (N + 1) ≤ T , this yields∑T

t=N+1 E {|ν − v̄t|} ≤
2
T 3 + T

2
3 2
√

2 logT
cN

. Using the fact that, for t > N ,

It − v̄t ∼ N (0, σ2) with σ2 = 1
nt
≤ 1

N , we obtain that E {|It − v̄t|} ≤
√

2
π·cN

T−
1
3 and

this yields
∑T
t=N+1 E {|It − v̄t|} ≤

√
2

π·cN
T

2
3 .



Chapter 6 157

Define B = {t ∈ T | t > N, It ≥ pt}. Let Et = {It > ν}, let Ht = {|v̄t−ν| ≤
√

2 logT
nt
}

and let HC
t = {|v̄t − ν| >

√
2 logT
nt
}. Let v̂s denote the sample mean of s i.i.d. draws

from distribution D and let Îs ∼ N (v̂s, 1
s ). For term B we have,

B ≤
∑
t∈B

E {(pt − ν) · I {ν < pt ≤ It}} ≤
∑
t∈B

E {(It − ν) · I {It > ν}}

≤
∑
t∈B

E {(It − ν) · I {Et ∩Ht}}+
∑
t∈B

E
{

(It − ν) · I
{
Et ∩HC

t

}}
.

Define B1 =
∑
t∈B E {(It − ν) · I {Et ∩Ht}}. We bound B1 as follows:

B1 ≤
∑
t∈B

E {|It − ν| · I {Ht}} ≤
∑
t∈B

E
{
|ν − It|

∣∣∣ Ht

}
· P {Ht}

≤
∑
t∈B

E
{
|It − v̄t|

∣∣∣ Ht

}
· P {Ht}+

∑
t∈B

E
{
|v̄t − ν|

∣∣∣ Ht

}
· P {Ht} .

Define B11 =
∑
t∈B E

{
|It − v̄t|

∣∣∣ Ht

}
· P {Ht} and B12 =

∑
t∈B E

{
|v̄t − ν|

∣∣∣ Ht

}
·

P {Ht}.

We bound B11 as follows:

B11 ≤
∑
t∈B

E
{
|It − v̄t|

∣∣∣ Ht

}
· P {Ht}+

∑
t∈B

E
{
|It − v̄t|

∣∣∣ HC
t

}
· P
{
HC
t

}
=
∑
t∈B

E{|It − v̄t|} =
∑
t∈B

E
{
|Înt − v̂nt |

}
≤
∑
t∈T

E
{
|Ît − v̂t|

}
≤
∑
t∈T

√
2
πt
≤
∫ T

0

√
2
πt

dt = 2
√

2
π
T .

We bound B12 as follows:

B12 ≤
∑
t∈B

E
{
|v̄t − ν|

∣∣∣ Ht

}
· P {Ht} ≤

∑
t∈B

E
{
|v̄t − ν|

∣∣∣ Ht

}
≤
∑
t∈T

E

{
|v̂t − ν|

∣∣∣ |v̂t − ν| ≤√2 log T
t

}

≤
∑
t∈T

√
2 log T
t

≤
∫ T

0

√
2 log T
t

dt ≤ 2
√

2 log T
√
T .
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Define B2 =
∑
t∈B E

{
(It − ν) · I

{
Et ∩HC

t

}}
. We bound B2 as follows:

B2 ≤
∑
t∈B

P
{
HC
t

}
≤
∑
t∈B

P

{
|v̂nt
− ν| >

√
2 log T
nt

}

≤
∑
t∈T

P

{
|v̂t − ν| >

√
2 log T
t

}
≤ T · 2

T 4 .

Putting everything together we obtain RT ≤ N · 1 + 2
T 3 + 2T 2

3

√
2 logT
cN

+
√

2
π·cN

T
2
3 +

2
√

2T
π + 2

√
2T log T + T · 2

T 4 . So, we conclude that RT ≤ O(T 2
3
√

log T ).

6.4.2 Strategic buyers
In this section we show how the algorithms for non-strategic buyers can be converted
into algorithms for strategic buyers with the same growth rate (up to constant factors)
for the regret. Our proposed approach BUYER-STRAT is presented in Algorithm 6.3.
The main idea behind BUYER-STRAT is to take a base algorithm Abase for non-
strategic buyers (e.g. UCB-NS or TS-NS) and modify it using what we refer to as
strategic cycles.

We now give a description of how Algorithm 6.3 works. In BUYER-STRAT the
buyers make decisions according to Abase for the first N1 rounds. Afterwards, in the
next N2 rounds, we enter a so-called strategic cycle. In this strategic cycle, the buyer
only buys the item if the price is below some threshold, that is, if pt ≤ v∗ − c1. Here
v∗ is an estimate of the unknown mean ν and 0 < c1 < 1 is a parameter chosen by
the buyer (e.g. c1 = 0.1). The purpose of this strategic cycle is to entice the seller
into asking prices that are lower than ν. After this strategic cycle comes to an end,
we start another strategic cycle of length L with some small probability pcycle. If
another strategic cycle has been triggered, we set a new parameter 0 < ctarget < 1
and only prices pt ≤ v∗ − ctarget are accepted. If no strategic cycle is triggered, the
buyer makes decisions according to Abase. In the next round, we start a strategic
cycle of length L with probability pcycle and the aforementioned process is repeated.

Algorithm 6.3 makes use of the functions F1, F2, F3, F4, F5, F6. The intuition
behind these functions is as follows. In every strategic cycle, only prices that satisfy
pt ≤ v∗ − c are accepted, where c ∈ C for some set C. The value of v∗ is selected
using the function F5(·) which takes as input a base algorithm Abase. The value c ∈ C
is selected by using the function F1(·) which depends on a counter of the number
strategic cycles that have passed Cphase. Initially, the number of strategic cycles in
which values c ∈ C are used, is equal to Nphase. When F2(x) = 1, this indicates that
the last strategic cycle in which a value c ∈ C is used has just been completed, and
the function F3(·) is used to collect information about the price trajectory. When
F6(x) = 1, a final value for ptarget is chosen (using F4(·)) and only prices with pt ≤
ptarget are accepted in all subsequent strategic cycles. In Section 6.5 we discuss these
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functions in more detail and give specific examples that are used in our experiments.
The key parameters to control the regret of Algorithm 6.3 are the cycle probability

pcycle and the cycle length L. Proposition 6.3 shows that BUYER-STRAT with Abase
chosen as UCB-NS has regret of order O(

√
T log T ) if the probability pcycle and the

cycle length L is carefully chosen. Proposition 6.4 shows an analogous result for
BUYER-STRAT with TS-NS.

Proposition 6.3. Let Ap, AL and AN be positive real constants. Assume that
Algorithm 6.3 is run with Abase chosen as UCB-NS and with inputs: T , N1 =
dT 2

3 (log T )
1
2 e, N2 = dAN

√
T log T e, pcycle = ApT

− 1
2 and L = AL

√
log T , then

RT ≤ O(
√
T log T ).

Proof. We will decompose the regret in two parts: the regret incurred in rounds that
are part of strategic cycles and rounds that are not. For a arbitrary subset T ∗ ⊆ T , let
RT,T ∗ =

∑
t∈T ∗ E {(ν − pt) · I {ν > pt > It}} +

∑
t∈T ∗ E {(pt − ν) · I {ν < pt ≤ It}}.

Let TS ⊆ T denote the indices of the rounds that are part of strategic cycles and
let TNS = T \ TS denote the indices of the rounds that are not. Then we can write,
RT = RT,TNS

+RT,TS
.

For RT,TS
we have that RT,TS

≤ N2 + T · pcycle · L. This follows from the fact
that the expected number of triggered strategic cycles (after round N1 + N2) is at
most T · pcycle and the regret in every such cycle is at most L. Furthermore, the first
strategic cycle has length N2. For RT,TNS

we have that RT,TNS
≤ 5 + 4

√
2 log T

√
T .

This follows from the fact that RT,TNS
represents the regret after |TNS | ≤ T rounds

in a problem with horizon T , and by Proposition 6.1, this quantity is bounded by 5 +
4
√

2 log T
√
T . By plugging in the values we getRT = RT,TNS

+RT,TS
≤ O(

√
T log T ).

Proposition 6.4. Let Ap, AL and AN be positive real constants. Assume that
Algorithm 6.3 is run with Abase chosen as TS-NS and with inputs: T , N1 =
dT 2

3 (log T )
1
2 e, N2 = dAN

√
T log T e, pcycle = ApT

− 1
2 and L = AL

√
log T . Assume

that TS-NS is run with inputs: T and N = dcN · T
2
3 e. Then RT ≤ O(T 2

3
√

log T ).

Proof. The proof uses similar arguments as the proof of Proposition 6.3.
We will decompose the regret in two parts: the regret incurred in rounds that are
part of strategic cycles and rounds that are not. For a arbitrary subset T ∗ ⊆ T , let
RT,T ∗ =

∑
t∈T ∗ E {(ν − pt) · I {ν > pt > It}} +

∑
t∈T ∗ E {(pt − ν) · I {ν < pt ≤ It}}.

Let TS ⊆ T denote the indices of the rounds that are part of strategic cycles and
let TNS = T \ TS denote the indices of the rounds that are not. Then we can write,
RT = RT,TNS

+RT,TS
.

For RT,TS
we have that RT,TS

≤ N2 +T ·pcycle ·L. This follows from the fact that
the expected number of triggered strategic cycles (after round N1 + N2) is at most
T ·pcycle and the regret in every such cycle is at most L. Furthermore, the first strategic
cycle has length N2. For RT,TNS

we have that RT,TNS
≤ O(T 2

3
√

log T ). This follows
from the fact that RT,TNS

represents the regret after |TNS | ≤ T rounds in a problem
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with horizon T , and by Proposition 6.2, this quantity is bounded by O(T 2
3
√

log T ).
By plugging in the values we get RT = RT,TNS

+RT,TS
≤ O(T 2

3
√

log T ).

Algorithm 6.3 BUYER-STRAT
Require: F1, F2, F3, F4, F5, F6, L, pcycle, Nphase, N1, N2, c1, T , Abase.
1: Set Lp = ∅, Ltarget = ∅, Cphase = 0, t = 1.
2: for t = 1, . . . , N1 do
3: Observe price pt. Choose to buy or not based on Abase.
4: end for
5: v∗ = F5(Abase).
6: for t = N1 + 1, . . . , N1 +N2 do
7: Observe price pt. Buy if pt ≤ v∗ − c1.
8: end for
9: while t ∈ {N1 +N2 + 1, . . . , T} do
10: Draw D from Bernoulli distribution with success parameter pcycle.
11: if D = 1 then
12: v∗ = F5(Abase).
13: if Cphase ≤ Nphase then
14: Set ctarget = F1(Cphase). Set ptarget = v∗ − ctarget.
15: end if
16: for l ∈ {1, . . . , L} do
17: Observe price pt.
18: Lp = Lp ∪ {pt}.
19: Buy if pt ≤ ptarget.
20: Set t = t+ 1.
21: end for
22: if F2(Cphase) = 1 then
23: Set ce = F3(Lp). Set Ltarget = Ltarget ∪ {ce}.
24: end if
25: Set Cphase = Cphase + 1.
26: if F6(Cphase) = 1 then
27: ptarget = F4(Ltarget)
28: end if
29: end if
30: if D = 0 then
31: Observe price pt.
32: Choose to buy or not based on Abase.
33: Set t = t+ 1.
34: end if
35: end while

Remark 6.1. In order to derive the results of Proposition 6.3 and 6.4, we only used
the fact that the regret for Abase is bounded by O(

√
T log T ) or O(T 2

3
√

log T ). The
same proof is also valid for any other base algorithm that satisfies these bounds. Also,
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the exact choices for functions F1, F2, F3, F4, F5, F6 do not effect the regret guarantee
(in Section 6.5 we discuss these functions in more detail).

In which setting is BUYER-STRAT useful? As the seller does not know D,
it is reasonable to assume (as argued in Section 6.3) that the seller uses a low-
regret algorithm to learn how to set prices. Note that many online learning al-
gorithms (e.g. EXP3 and its variants) are weight-based algorithms: at round t, there
are weights wk,t, . . . , wK,t and an action k ∈ {1, . . . ,K} is chosen with probability
wk,t/

∑K
k=1 wk,t. We call an algorithm a pure weight-based algorithm if in round t,

only the weight of the selected action gets updated and if weights can only increase
due to positive rewards (note that EXP3 is an example, see the Appendix for a gen-
eral definition). Proposition 6.5 shows that, if the seller uses a pure weight-based
algorithm, then BUYER-STRAT tends to encourage lower prices by using strategic
cycles.

Proposition 6.5. Assume that the buyer uses Algorithm 6.3, that the seller is using a
pure weight-based algorithm and that the price set P is finite. Suppose that a strategic
cycle runs from round t+ 1 to round t+ L with ptarget, then P {pt+L+1 ≤ ptarget} ≥
P {pt+1 ≤ ptarget}.

Proof. The proof can be found in the Appendix.

6.5 Experiments
In this section, we perform experiments in order to verify the theoretical results that
were derived, and to investigate the effects of strategic behaviour on the regret in
different scenarios.

6.5.1 Setup of experiments
In the experiments vt is drawn from an uniform distribution on [a−0.3, a+0.3], where a
is drawn from an uniform distribution on [0.4, 0.7] independently for each run. We con-
sider two settings for the set of prices used by the seller and these are given by P1 and
P2: P1 = {a + x | x ∈ {−0.35,−0.3,−0.25,−0.2,−0.1,−0.05,−0.02, 0.0, 0.1, 0.3}},
P2 = {a + x | x ∈ {−0.05,−0.02, 0.0, 0.1, 0.3}}. We will use the following abbrevi-
ations: P1 and P2. The abbreviation P1 means that P1 is used. The other abbrevi-
ations have a similar interpretation.

We consider three options for the seller pricing algorithm: (i) the seller chooses a
price at random from the price set (RAND seller); (ii) the seller uses the low-regret
learning algorithm EXP3.P (EXP3.P seller); (iii) the seller uses the full-information
algorithm HEDGE (HEDGE seller). RAND seller is included because it models a
situation where the buyer has no influence over the prices. EXP3.P seller is included
because it is a bandit algorithm designed for adaptive adversaries and it enjoys high-
probability regret bounds [15, 37]. It models a seller that is learning which prices
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to use based on bandit feedback that is non-stochastic. HEDGE seller is included in
order to investigate whether the restriction to bandit feedback has a major impact
on the performance of BUYER-STRAT. HEDGE seller is tuned according to Remark
5.17 in [148] and EXP3.P according to Theorem 3.2 in [37].

In the experiments, BUYER-STRAT is tuned with N1 = dT 2
3 log T e, N2 =

d2
√
T log T e, L = b25

√
log T c, pcycle = 5√

T
, c1 = 0.1. We set Nphase = 4 · N3,

where N3 = d0.1 ·
√
T e. TS-NS is tuned with N = d0.005 · T 2

3 e. We will refer
to BUYER-STRAT with Abase chosen as UCB-NS, as UCB-S (Upper Confidence
Bound Strategic). Similarly, We will refer to BUYER-STRAT with Abase chosen as
TS-NS, as TS-S (Thompson sampling Strategic). The functions F1, F2, F3, F4, F5,
F6 are chosen as follows.

F1(x) =


0.2 if x ≤ N3

0.3 if 1 ·N3 < x ≤ 2 ·N3

0.4 if 2 ·N3 < x ≤ 3 ·N3

0.5 if 3 ·N3 < x ≤ 4 ·N3

(6.1)

For F2(x) we take F2(x) = I{x ∈ {N3, 2 · N3, 3 · N3, 4 · N3}}. The function
F3(Lp) takes the last 100 elements added to the input list Lp and then calculates the
25-th percentile of these 100 values. The function F4(·) is defined as F4(Ltarget) =
min{Ltarget}+ε. The function F4(Ltarget) takes the smallest number in the set Ltarget
and adds a small value to it. In our experiments we use ε = 0.005. The function F5(·)
takes as input a base algorithm and returns the value of v̄t in the base algorithm. For
F6(x) we take F6(x) = I{x = 4 ·N3}.

The intuition behind these choices is as follows. In every strategic cycle, only
prices that satisfy pt ≤ v∗ − c are accepted, where c ∈ C = {0.1, 0.2, 0.3, 0.4, 0.5}
and where c is chosen in increasing order (to try to reduce the price in stages) as the
number of strategic cycles increases (this is specified by the function F1(·)). Initially,
the number of strategic cycles in which every c ∈ C is used, is proportional to N3.
When F2(x) = 1, this indicates that the last strategic cycle in which c = x has just
been completed, and the function F3(·) is used to collect information about the price
trajectory. When F6(x) = 1, a final value for ptarget is chosen (using F4(·)) and only
prices with pt ≤ ptarget are accepted in all subsequent strategic cycles.

We perform 100 independent simulation runs in order to calculate our per-
formance metrics. We use three performance metrics in order to evaluate our al-
gorithm. In each run, we calculate the cumulative regret RT =

∑T
t=1 max{ν −

pt, 0} −
∑T
t=1 at · (ν − pt), the cumulative utility UT =

∑T
t=1 at · (ν − pt) and the

scaled cumulative regret RST = RT /
∑T
t=1 max{ν − pt, 0}. In the experiments we set

T ∈ {25000, 50000, 75000, 100000, 200000, . . . , 1000000}.
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6.5.2 Results: non-strategic buyers vs. strategic buyers
Non-strategic buyers

In Figures 6.1a and 6.1b the cumulative regret is shown for different experimental
settings and different values for the problem horizon. Each point in the graph shows
the cumulative regret over T rounds for a problem of horizon T averaged over 100
simulations. In all figures, the lines indicate the mean and the shaded region indicates
a 95% confidence interval. The results indicate that the expected regret indeed grows
as a sub-linear function of T and that this pattern holds for both RAND seller and
EXP3.P seller. An interesting finding is that the regret for TS-NS is lower than
UCB-NS: based on the theoretical analysis one would expect the opposite pattern.
Figures 6.1e and 6.1f show the scaled cumulative regret and provides further evidence
that the expected regret is a sub-linear function of the horizon T , as the curve shows a
monotonically decreasing pattern. Figures 6.1c and 6.1d show the cumulative utility
against different sellers. Here we observe that the utility tends to be higher if the
seller uses P1, which makes intuitive sense as this price set contains lower prices.

Strategic buyers

Figures 6.2a to 6.2f show the same performance metrics as for the non-strategic bid-
ders. Figures 6.1a and 6.1b show that the level of the expected regret for strategic
bidders is higher compared to the non-strategic bidders. Figures 6.2e and 6.2f again
indicate that the expected regret is sub-linear in T , as the curves show a monotonically
decreasing pattern (from Figure 6.2a it is hard to tell) . Thus, we observe sub-linear
regret for both UCB-S and TS-S regardless of the seller algorithm and this is in line
with the theoretical analysis. If we compare the cumulative utility in Figures 6.2c
and 6.2d with those in Figures 6.1c and 6.1d, then we observe some interesting res-
ults. First, when strategic buyers are facing RAND seller (Figure 6.2c), then we see
that the cumulative utility is about 70%-80% of the cumulative utility if non-strategic
buyers are facing RAND seller (Figure 6.1c). Second, we see that if the seller is using
EXP3.P (i.e, a low-regret learning algorithm), then the cumulative utility for strategic
buyers is much higher compared to the cumulative utility for non-strategic buyers.
In scenario P1 utilities are about 2.5-3 times higher and in scenario P2 utilities are
about 2 times higher. The results for scenario P2 imply that, even when the lowest
price is very close to the unknown mean valuation (absolute distance at most 0.05), it
is still beneficial to act strategically. Additional experimental results when the seller
uses EXP3.S [15] can be found in the Appendix.
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(a) RT with RAND seller.
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(b) RT with EXP3.P seller.
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(c) UT with RAND seller.
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(d) UT with EXP3.P seller.
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(e) RST with RAND seller.
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(f) RST with EXP3.P seller.

Figure 6.1: Results for non-strategic buyers with RAND seller and EXP3.P seller.
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(a) RT with RAND seller.
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(b) RT with EXP3.P seller.
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(c) UT with RAND seller.
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(d) UT with EXP3.P seller.
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(e) RST with RAND seller.
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(f) RST with EXP3.P seller.

Figure 6.2: Results for strategic buyers with RAND seller and EXP3.P seller.
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6.5.3 Explanation of differences
In order to study the impact of the quality of feedback that the seller observes, we
give the seller full-information feedback instead of bandit feedback. More specifically,
we assume the seller uses the algorithm HEDGE. Figures 6.3a-6.3c show results for
TS-S and TS-NS against HEDGE seller. Even with full-information the results are
qualitatively similar as before: the regret for the strategic buyers is sub-linear and
cumulative utility is much higher for strategic buyers. Thus, the results indicate that
the feedback type is not the main driver for the observed patterns.

Figures 6.4a and 6.4b display the gap ν−pt for a problem with horizon T = 200000
averaged over the 100 simulation runs. If the seller is using a low-regret algorithm
in order to set prices and buyers are non-strategic, then we observe that prices tend
to increase towards the mean valuation ν. This effect is stronger for HEDGE seller
compared to EXP3.P seller and this is in line with expectations as HEDGE uses
full-information feedback. Furthermore, we see a qualitatively similar pattern for the
price sets P1 and P2, although the increase in price with P2 is slightly larger. For
HEDGE seller, we hardly see any difference for different price sets. If buyers are
strategic then we see the opposite pattern. The algorithms for strategic buyers tend
to lower the price over time and the magnitude of this reduction depends on the price
set of the seller (reduction for P1 is larger than for P2). However, even with price set
P2 where the lowest prices are very close to ν, strategic behaviour is beneficial and
strategic buyers can induce prices that are almost twice as far from ν.
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(a) RT with HEDGE seller.
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(b) UT with HEDGE seller.
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(c) RST with HEDGE seller.

Figure 6.3: Results for strategic buyers with HEDGE seller.
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Figure 6.4: ν − pt with EXP3.P seller and HEDGE seller.
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6.6 Conclusion
This is Chapter we study repeated posted-price auctions with a single seller from the
perspective of a utility maximizing buyer that does not know the distribution of his
valuation. Previous work has only focused on the seller side and does not study how
buyers should make decisions. Furthermore, in previous work it is assumed that the
buyer knows his valuation in each round. Hence, in this Chapter, we address these
gaps in the literature. We study two types of buyers (strategic and non-strategic)
and derive sub-linear regret bounds that hold for all possible sequences of observed
prices. Our algorithms are based on ideas from UCB-type bandit algorithms and
Thompson Sampling. Our experiments show that, if the seller is using a low-regret
learning algorithm based on weights updating, then strategic buyers can obtain much
higher utilities compared to non-strategic buyers. Only when the prices of the seller
are not related to the choices of the buyer, it is not beneficial to be strategic, but
strategic buyers can still attain utilities of about 75% of the utility of non-strategic
buyers.

In practice, buyers have limited budgets for purchasing items. However, the mod-
els and algorithms presented in this Chapter do not take budget constraints into
account. Future work can be directed towards analyzing the repeated posted-price
problem studied in this Chapter with budget constraints. In particular, it would be
interesting to analyze how a budget constraint would affect the regret guarantees
derived in this Chapter and whether budget constraints make it easier or harder to
engage in strategic behavior.

Appendix
Section 6.A contains proofs that are omitted from the main text. Section 6.B presents
some additional experimental results.

6.A Proofs for Section 6.4
This part contains the proofs of the Propositions are omitted from the main text. For
convenience, we restate the Propositions here.

6.A.1 Proof of Proposition 6.5
In this section we give a proof of Proposition 6.5. We first give a definition of a pure
weight-based algorithm.

Definition 6.1. Let there be K actions in total and let K = {1, . . . ,K}. Let wk,t ∈ R
denote the weight of action k at the beginning of round t. Suppose that action j is
selected in round t and that the observed reward for action j in round t equals rj,t.
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Let p̂k,t denote the probability that action k is selected in round t. An algorithm A is
called a pure weight-based algorithm if the following conditions are satisfied:

1. if rj,t > 0, then wj,t+1 > wj,t.

2. if rj,t = 0, then wj,t+1 = wj,t.

3. if k 6= j, then wk,t+1 = wk,t.

4.
∑
k∈K∗ p̂k,t = F (

∑
k∈K∗ wk,t/

∑K
k=1 wk,t) for all subsets K∗ ⊆ K, where

F (·) is an increasing function. That is, for all subsets K∗ ⊆ K, if a =∑
k∈K∗ wk,t/

∑K
k=1 wk,t, b =

∑
k∈K∗ w

′
k,t/

∑K
k=1 w

′
k,t and a > b, then F (a) >

F (b).

Note that if p̂k,t = wk,t/
∑K
k=1 wk,t then condition 4 in Definition 6.1 is satisfied.

Also note that EXP3 of [15] uses p̂k,t = (1 − γ)wk,t/
∑K
k=1 wk,t + γ/K for some

0 < γ < 1 and this choice also satisfies condition 4 in Definition 6.1.

Proposition 6.5. Assume that the buyer uses Algorithm 6.3, that the seller is using a
pure weight-based algorithm and that the price set P is finite. Suppose that a strategic
cycle runs from round t+ 1 to round t+ L with ptarget, then P {pt+L+1 ≤ ptarget} ≥
P {pt+1 ≤ ptarget}.

Proof. Let |P| = K, K = {1, . . . ,K}, pmax = max{P} and pmin = min{P}. Assume,
without loss of generality, that P = {p1, . . . , pK} and that 0 < pmin = p1 ≤ p2 ≤ · · · ≤
pK−1 ≤ pK = pmax. Let P̂ = {p ∈ P| p ≤ ptarget}. Let P̄ = {p ∈ P| p > ptarget}.
Let K̂ = {k ∈ K| pk ∈ P̂}. Let K̄ = {k ∈ K| pk ∈ P̄}. Let wk,t denote the weight of
action k at the beginning of round t.

We now proceed to prove the statement in the Proposition. We prove the Propos-
ition for L = 1. The case for general L follows by repeatedly applying the result for
L = 1.

We distinguish the following cases. Case 1: ptarget ≥ pmax. Case 2: ptarget < pmin.
Case 3: pmin ≤ ptarget < pmax.

• Case 1: ptarget ≥ pmax. In this case, p ≤ ptarget for all p ∈ P. Therefore,
P {pt+1 ≤ ptarget} = 1 and P {pt+2 ≤ ptarget} = 1 and the statement in the
Proposition holds.

• Case 2: ptarget < pmin. In this case, p > ptarget for all p ∈ P. Therefore,
P {pt+1 ≤ ptarget} = 0 and P {pt+2 ≤ ptarget} = 0 and the statement in the
Proposition holds.

• Case 3: pmin ≤ ptarget < pmax. There are 2 subcases to consider. Case A:
pt+1 > ptarget and Case B: pt+1 ≤ ptarget.
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– In Case A, none of the weights get updated. This is true because none
of the prices in P̂ are selected since pt+1 > ptarget. By condition 3 in
Definition 6.1, it follows that none of the weights corresponding to the
prices in P̂ will get updated.

Also, none of the prices in P̄ will get a positive reward because they will
all be rejected by the buyer. By condition 2 in Definition 6.1, it follows
that none of the weights corresponding to the prices in P̄ will get updated.
As none of the weights will get updated after round t+ 1 is completed, we
have that P {pt+2 ≤ ptarget} = P {pt+1 ≤ ptarget}. So we conclude that the
statement in the Proposition holds.

– In Case B, there exists a j ∈ {1, . . . ,K} such that pt+1 = pj and the reward
for action j satisfies rj,t+1 > 0. This is true because the price pt+1 = pj

will be accepted by the buyer and the reward rj,t+1 equals the price pj
which (by assumption) satisfies pj ≥ pmin > 0.
By condition 1 in Definition 6.1, it follows that wj,t+2 > wj,t+1. By condi-
tion 3 in Definition 6.1, it follows that wk,t+2 = wk,t+1 for all k 6= j, since
these prices/actions are not selected in round t+ 1.
This yields the following:∑

k∈K̂

wk,t+2 >
∑
k∈K̂

wk,t+1 (6.2)

∑
k∈K̄

wk,t+2 =
∑
k∈K̄

wk,t+1 (6.3)

K∑
k=1

wk,t+2 >

K∑
k=1

wk,t+1 (6.4)

Note that we also have:

P {pt+2 ≤ ptarget} = 1− P {pt+2 > ptarget} , (6.5)

P {pt+1 ≤ ptarget} = 1− P {pt+1 > ptarget} . (6.6)

By combining (6.3) and (6.4), and by condition 4 in Definition 6.1, we ob-
tain that P {pt+2 > ptarget} < P {pt+1 > ptarget}. As a consequence, by us-
ing (6.5) and (6.6), it follows that P {pt+2 ≤ ptarget} > P {pt+1 ≤ ptarget}.
So we conclude that the statement in the Proposition holds.
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The case for general L follows from repeatedly applying the above argument. Note
that the argument above works every initial weight vector. By repeatedly applying
the above argument, one can show that P {pt+1 ≤ ptarget} ≤ P {pt+2 ≤ ptarget} ≤
· · · ≤ P {pt+L ≤ ptarget} ≤ P {pt+L+1 ≤ ptarget}. This concludes the proof.

6.B Additional experiments
This part contains additional results related to the experiments in the main text. We
show results for non-strategic and strategic buyers against another (more powerful)
seller algorithm. We assume the seller uses the EXP3.S algorithm from [15]. We
will refer to this as EXP3.S Seller. This algorithm has sub-linear regret with respect
to action sequences with at most S switches. EXP3.S Seller is tuned according to
Corollary 8.2 in [15].

Figures 6.5a, 6.5c and 6.5e display the results for non-strategic buyers and Fig-
ures 6.5b, 6.5d and 6.5f display the results for strategic buyers. In all figures, the lines
indicate the mean and the shaded region indicates a 95% confidence interval. The res-
ults are qualitatively similar to those reported in the main text. The results indicate
that the proposed algorithms for strategic and non-strategic buyers have sub-linear
regret in all cases considered.

In scenario P1 utilities are about 2.0-2.5 times higher. In scenario P2 the differ-
ences are smaller, which is in line with expectations since the lowest price of the seller
is very close to the unknown mean valuation. In general, the strategic buyers tend
have higher utilities.
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(a) RT with EXP3.S seller.
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(b) RT with EXP3.S seller.

0 20 40 60 80 100
Horizon T [x10000]

0

5

10

15

20

25

Cu
m

ul
at

iv
e 

Ut
ilit

y 
[x

10
00

] P1: UCB-NS
P1: TS-NS
P2: UCB-NS
P2: TS-NS

(c) UT with EXP3.S seller.
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(d) UT with EXP3.S seller.
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(e) RST with EXP3.S seller.
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(f) RST with EXP3.S seller.

Figure 6.5: Results for non-strategic (left column) and strategic (right column) buyers
with EXP3.s seller.
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Dynamic pricing with limited
price changes and censored
demand*

Chapter 7 moves away from decisions in auction settings and instead
studies a more general dynamic pricing problem. More specifically, we
consider a seller that has to adjust his selling prices and inventory levels
over time in order to maximize his expected revenue. In addition, the
seller faces a business constraint on the number of price changes allowed
during the selling horizon and the seller only has a limited amount of
inventories on hand in each selling period.

*This chapter is based on Rhuggenaath et al. [140].
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7.1 Introduction
In this Chapter, we consider a dynamic pricing and learning problem with demand
censoring and limited price changes. The typical approach when tackling dynamic
pricing problems with uncertain demand in revenue management, is to conduct price
experimentation. By using price experimentation the seller of a product can learn the
optimal price to charge for his product. Many e-commerce companies have the ability
to change prices at little costs, but frequent price changes are not always desirable.
For example in [55], the authors note that Groupon (a large e-commerce marketplace)
does not approve of charging different prices to each arriving customer because it may
confuse customers and lead to negative customer feedback.

In practice, companies also have limited inventories on hand during a selling
period. Due to limited inventories, the observed sales are not equal to demand any-
more. As a consequence the true underlying demand is only partially observed, that
is, demand is censored.

In this Chapter, we consider a seller that faces demand uncertainty and has to
adjust his selling price over the sales horizon in order to learn the optimal price and
maximize his cumulative revenue over the sales horizon. The seller faces a business
constraint on the number of price changes allowed during the selling horizon and the
seller only has a limited (finite) amount of inventories on hand in each selling period.
The goal of the seller is to design a pricing and inventory policy that has low regret,
defined as the gap between the revenue of a clairvoyant who has full information on
the demand function and the revenue achieved by a seller facing unknown demand.
Demand censoring has three important implications for a seller that sets prices based
on observed sales data. First, it makes demand learning harder since he does not
observe true demand at a particular price. Second, the seller needs to optimize the
inventory level as well, since it affects (via demand censoring) the observed sales.
Third, demand censoring can lead to lost sales since some potential demand is not
satisfied and this leads to lost revenues for the seller.

In this Chapter, we propose a heuristic policy called HPI-LPC-CD (heuristic pri-
cing and inventory policy with limited price changes and censored demand) for the
aforementioned problem of the seller. We summarize the main contributions of this
Chapter as follows:

• We study a dynamic pricing problem with limited price changes and censored
demand. In contrast with previous work, we do not assume that we can observe
true demand and lost sales. Furthermore, in our setting, the lost sales is part
of the objective function that the seller aims to optimize.

• We propose a pricing policy that adjust prices and inventory levels for this
problem.

• We conduct numerical experiments in order to test the performance of our policy.
Experimental results are promising and show that the growth rate of regret is
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sub-linear with respect to the sales horizon.

The remainder of this Chapter is organized as follows. In Section 7.2 we discuss
the related literature. Section 7.3 provides a formal formulation of the problem. In
Section 7.4 we present our proposed policy. In Section 7.5 we perform experiments
in order to assess the performance of our policy. Section 7.6 concludes this Chapter
and provides some interesting directions for further research.

7.2 Related Literature
The work in this Chapter is related to studies about dynamic pricing and learning
with demand uncertainty, newsvendor problems, pricing with limited inventories, and
pricing with limited price changes. Dynamic pricing and learning with demand uncer-
tainty has received increasing attention in the recent years, see [63] for an extensive
review. In the general dynamic pricing problem with demand learning, there is a
seller that needs to decide on the optimal selling price to charge for a product. The
seller, however, does not know the precise relationship between price and demand.
Most of the literature (e.g. [28, 36, 65, 66, 98, 105]) assumes that there is some func-
tional form that relates prices and demand, but that the parameters of this model
are unknown, and hence, needs to be estimated from sales data. This unknown rela-
tionship between price and demand, and the objective of revenue maximization gives
rise to the so-called exploration-exploitation trade-off. In order to learn the demand
at various prices the seller needs to use price experimentation (exploration), but due
to this price experimentation the seller is not setting the optimal price in each period
and this experimentation comes at the cost of revenue maximization (exploitation).

The studies that are most relevant for the work presented in this Chapter are [45,
48, 49, 55]. In [55] the authors study a dynamic pricing problem with limited price
changes but there is no demand censoring and no inventory decisions. The authors
present a policy for this problem and characterize the regret as a function of the
number of price changes. In [48], a multi-period stochastic inventory system with
backlogs and demand uncertainty is considered. Although [48] do consider a setting
with limited price changes, they make the assumption that potential demand (and
thus the lost sales) is observed and can be backlogged. In this Chapter we do not
make such an assumption. In [45, 49] a problem similar to the one in this Chapter is
considered, but in [45, 49] there are no restrictions on the number of price changes.
We note that demand censoring has also been studied in the setting of (repeated)
newsvendor and stochastic inventory problems (e.g. [27, 92, 93]) but in these studies
the demand is assumed to be stationary and there is no pricing component.
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7.3 Problem Formulation
In this section we give a formal description of the problem statement. The model
considered here is based on the demand assumptions made in [55], but is extended to
include a stochastic inventory control component similar to [45, 49, 92, 93].

Remark 7.1. We will use (x)+ to denote max{x, 0}. We use dxe to denote the ceiling
function applied to x. We will occasionally use the symbol x ∧ y to denote min{x, y}
and the symbol ∨ to denote max{x, y}.

We consider a monopolist seller that sells a single nonperishable product over
time horizon of T ∈ N periods. At the beginning of each period the seller can order
products to adjust the on hand inventory. Furthermore, at the beginning of each
period the seller has to decide on a price pt ∈ P = [pL, pH ]. The prices pL < pH

are the minimum and maximum prices that are acceptable to the seller. Demand is
stochastic and the seller does not know the true underlying demand model. Demand is
also unobserved due to censoring, because we assume that only the sales are observed.
That is, if demand exceeds the available inventory in period t, then the sales equals
the inventory in that period. The objective of the seller is to set prices and inventories
in order to maximize revenues over the sales horizon.

7.3.1 Demand assumptions
In each period t the demand for the product is given by D(p) = λ(p) + εt. Here
λ(p) = E{D(p)} is the expected demand at price p and εt, t = 1, . . . T are identically
and independently distributed (i.i.d) random variables with E{εt} = 0 and with cu-
mulative distribution function (CDF) given by F (·). We assume that εt is bounded
with known bounds [l, u]. The function λ(p) gives the expected demand at price p
and we assume that λ(·) is a non-increasing function. The function λ(·) and the dis-
tribution of εt is unknown to the seller and the seller has to learn these during the
sales horizon.

Although the demand model is unknown to the seller, we assume that the seller
does have some prior knowledge about demand. In particular, we assume that the
seller has a finite hypothesis set Λ = {λ1(p), . . . , λK(p)} consisting of |Λ| = K mean
demand functions. The demand according to hypothesis λk(p) ∈ Λ is given by D(p) =
λk(p) + εt. We assume that the true mean demand function is an element of the set
Λ. In order to distinguish between the different demand models in the hypothesis set,
we make the assumption that a set of discriminative prices PD is available. A price
pD ∈ PD is called discriminative if λk(pD) 6= λj(pD) for all λk(·), λj(·) ∈ Λ. That is,
a price is called discriminative if the mean demand at that price is different for all
demand functions in Λ. The assumptions on demand that are made in this section
are similar to the assumptions made in [55]. In the next subsection we discuss the
assumptions made on the inventory.
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7.3.2 Inventory assumptions and dynamics of the system
Let xt and yt denote the inventory levels at the beginning of period t before and
after an inventory replenishment decision, respectively. We assume that the system
is initially empty, i.e., x1 = 0. We assume that inventory lies in a bounded interval,
that is, yt ∈ Y = [yL, yH ] with yH ≥ λ(0) + u. Under these assumptions there is no
demand censoring if yt = yH .

An admissible or feasible policy is represented by a sequence of prices and order-up-
to levels, {(pt, yt), t ≥ 1} with yt ≥ xt, where (pt, yt) depends only on the demand and
decisions made prior to time t, that is, (pt, yt) is adapted to the filtration generated
by {(pt, yt), t ≥ 1} under censored demand.

Given an admissible policy π, the following sequence of events occurs in each
period t:

• At the beginning of period t the seller observes the current inventory level xt.

• The seller decides to increase the inventory level to yt ∈ Y and decides on the
price pt that will be charged in period t. Similar to previous studies (e.g. [48,
92, 93]), we assume that replenishment occurs instantly without any delay.

• The demand during period t, denoted by dt(pt) is realized and the seller tries to
satisfy as much of this demand as possible using the inventory available during
the period.

• Demand that is not satisfied is lost and unobservable. More specifically, the
seller only observes the sales min{dt, yt} during period t.

• At the end of period t, the seller incurs a profit given by:

Rt(pt, yt) = pt ·min{dt, yt} − b · (dt − yt)+

− h · (yt − dt)+

= pt · dt − (b+ pt) · (dt − yt)+

− h · (yt − dt)+

(7.1)

Here b is a parameter that represents the costs due to lost sales and h represents
the holding costs due to inventory that is left over at the end of period t. Similar
to previous studies (e.g. [48, 92, 93]), ordering costs are assumed to be zero.
Note that the profit given by Equation (7.1) is unobserved since it depends on
the unobserved realized demand dt(pt).

7.3.3 Objective function under full information
The objective of the publisher is to maximize the cumulative revenue over the sales
horizon of length T :
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max
(pt,yt)∈P×Y,yt≥xt

E

{
T∑
t=1

Rt(pt, yt)
}
. (7.2)

Note that if λ(p) and the distribution of εt was known and the seller could observe
lost sales, then the optimal policy can be found by solving the following optimization
problem:

max
(pt,yt)∈P×Y,yt≥xt

T∑
t=1

pt · E {Dt(pt)}

−
T∑
t=1

(b+ pt) · E
{

(Dt(pt)− yt)+
}

−
T∑
t=1

h · E
{

(yt −Dt(pt))+
}

(7.3)

However, in our setting the seller knows neither the function λ(p) nor the distribution
of εt and cannot observe lost-sales.

Suppose that the seller knows the function λ(p) and the distribution of εt. In
this case it has been shown [149] that a myopic policy is optimal. We can define the
single-period profit function as follows:

Q(p, y) = p · E {Dt(p)} − (b+ p) · E
{

(Dt(p)− y)+
}

− h · E
{

(y −Dt(p))+
} (7.4)

To find the optimal pricing and inventory decision we thus need to optimize
Q(p, y). The full information optimization problem (FI-OPT) that assumes that
the seller knows the function λ(p) and the distribution of εt, can be written more
compactly using (7.5) and (7.6):

Z(p, λ(p)) = −min
y∈Y

{
(b+ p) · E

{
(λ(p) + ε− y)+

}
− h · E

{
(y − λ(p)− ε)+

}}
+ (p · λ(p))

(7.5)

max
p∈P,y∈Y

Q(p, y) = max
p∈P
{Z(p, λ(p))} (7.6)
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7.3.4 Regret
Let the optimal solution to FI-OPT be denoted by (p∗, y∗) and the optimal single-
period profit by Q(p∗, y∗). The regret of an admissible policy π that generates
{(pt, yt), t ≥ 1} can now be defined as follows

R(π, T ) = T ·Q(p∗, y∗)− E

{
T∑
t=1

Rt(pt, yt)
}
. (7.7)

The regret measures the expected difference in revenue that arises from the fact
that the seller is using policy π instead of the optimal policy that uses (p∗, y∗) in each
period. Note that minimizing (7.7) is equivalent to minimizing the per period regret
given by:

RP (π, T ) = Q(p∗, y∗)− 1
T
E

{
T∑
t=1

Rt(pt, yt)
}
. (7.8)

7.4 Proposed policy
In this section we discuss our proposed pricing and inventory policy. First we define
some preliminary notation and concepts that are needed for our policy.

7.4.1 Preliminaries
Define for each λk(p) ∈ Λ the following counterpart to FI-OPT, which we denote by
k-OPT:

max
p∈P,y∈Y

Qk(p, y) = max
p∈P
{Z(p, λk(p))} (7.9)

Here Qk(p, y) represents the expected single-period profit (with respect to the
distribution of εt) when using the mean demand function λk(p) ∈ Λ instead of the
true mean demand function λ(p).

Next, we define a counterpart to k-OPT that uses samples drawn from the dis-
tribution of ε. Suppose that we have access to M samples {ε̂t, t = 1, . . . ,M} from
the distribution of ε. In that case we can define the sampled version of Qk(p, y),
which we denote by Q̂SAMk (p, y). Using Q̂SAMk (p, y) we define a sampled version of
the optimization problem k-OPT, denoted by k-SAM:

max
p∈P,y∈Y

Q̂SAMk (p, y) = max
p∈P

Ẑ(p, λk(p)) (7.10)
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Ẑ(p, λk(p)) = −min
y∈Y

{
1
M

M∑
t=1

(b+ p) · (λk(p) + ε̂t − y)+

− h · (y − λk(p)− ε̂t)+
}

+ (p · λk(p))

(7.11)

Note that, in general, the true demand is not observed due to possible censoring.
Since the true demand is not observed due to censoring, it is useful to define a coun-
terpart to k-SAM that is not based on samples from the distribution of ε. Suppose
that we have access to M samples {η̂t, t = 1, . . . ,M} that are not necessarily from
the distribution ε. We define another sampled version of the optimization problem
k-OPT, denoted by k-APPROX:

max
p∈P,y∈Y

Q̂APPROXk (p, y) = max
p∈P

Z̄(p, λk(p)) (7.12)

Z̄(p, λk(p)) = −min
y∈Y

{
1
M

M∑
t=1

(b+ p) · (λk(p) + η̂t − y)+

− h · (y − λk(p)− η̂t)+
}

+ (p · λk(p))

(7.13)

7.4.2 Heuristic policy
After having defined some preliminary concepts in the previous subsection, we now
proceed to present our heuristic policy. The full procedure for the heuristic policy is
described in Algorithm 7.1. The policy takes the following parameters as input:

1. The sales horizon T and an upperbound m ∈ N on the number of price changes
that are allowed.

2. The price set P = [pL, pH ] and the order-to-levels Y = [yL, yH ].

3. An initialization parameter ystart ∈ Y.

4. An initialization parameter pstart ∈ P.

5. A fixed parameter 0 < v < 1.

6. A set of demand functions Λ = {λ1(p), . . . , λK(p)}.

7. A set of discriminative prices PD.

8. A constant CT that only depends on T .

The main idea of the algorithm behind our policy is to split the sales horizon into
a number of phases. More specifically, the algorithm splits the sales horizon in m+ 1
phases. For each 0 ≤ ` ≤ m, a single price P ∗` is offered through phase `, which starts
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at period τ` + 1 and ends at period τ`+1. We call phases 0 to m− 1 learning phases
and phase m is called the earning phase.

Except for a constant factor, the lengths of the phases are iterated-exponentially
increasing. Suppose we are in phase ` and that it runs from period t1 to period t2.
In our policy we have that t1 = τ` + 1 and t2 = τ`+1 = τ` + CT dlog(m−`) T e for
some constant CT that only depends on T . Here log(m) T denotes m iterations of
the (natural) logarithm. We define log(m) T = 0 if m > m∗ where m∗ is the smallest
integer such that 0 < log(m∗) T ≤ 1. This setup of partitioning the sales horizon is
similar to the approach used in [55].

The inventory decisions are made according to the following rule:

yt =


ystart, if t = 1
yt−1, if yt−1 > dt−1, t > 1
min{yt−1 · (1 + v), yH}, otherwise

(7.14)

The main idea behind (7.14) is to adjust the order-up-to level upwards by a fixed
factor v, if a stock-out occurs. If no stock-out occurs, then we keep the order-up-to
level the same as in the previous period. We note that a similar rule was also used
by [93] in a stochastic inventory problem with no pricing decisions and by [45, 49] in
a pricing problem with inventory decisions and unlimited price changes.

At the end of learning phase ` the policy computes the sample mean of the observed
sales under price P ∗` . Since P ∗` is a discriminative price, the seller gains information
about the identity of the true demand function in this learning phase. In particular,
the seller compares the observed mean sales with the mean demand at the price P ∗`
for each demand model in the hypothesis set Λ (Line 15). The demand model k that
has a mean demand (at price P ∗` ) that is the closest to the observed mean sales, is
then selected to generate samples of the error-term of the demand model (Line 15
and 16). The intuition behind this procedure is that the mean demand (at price P ∗` )
under the true demand model should be close to the mean of the observed sales if
the effect of demand censoring is not too severe. The update rule for the inventory
decisions given by (7.14) ensures that the observed sales does not suffer too much
demand censoring. The seller subsequently (Line 17) determines the optimal solution
(p∗, y∗) to the optimization problem given by (7.12) and (7.13). If we are not yet
in the last learning phase, we select the next price to be equal to the discriminative
price that is the closest to p∗ (Line 19). The next value for the order-up-to level is
then optimized conditional on the discriminative price that is closest to p∗ (Line 20).
If we are at the end of the last learning phase, then the price p∗ will be used in all
subsequent periods. The order-up-to level for all subsequent periods is then equal to
y∗.
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Algorithm 7.1 Heuristic Policy: HPI-LPC-CD
Require: v, m, pstart, T , ystart, CT , PD, P, Y.
1: Set ` = 0.
2: Set τ` = 0.
3: Set P ∗` = pstart.
4: Set y1 = ystart.
5: for ` = 0 to m− 1 do
6: Set τ`+1 = τ` + CT dlog(m−`) T e.
7: Set ts = τ` + 1.
8: Set te = τ`+1.
9: if te > ts then
10: for t = ts to te do
11: Set inventory equal to yt using (7.14).
12: Set pt = P ∗` .
13: end for
14: At the end of period te compute X̄` =

∑te
t=ts

min{dt(P∗
`

),yt}
te−ts .

15: Compute the index i` = argmini∈{1,...,K}|X̄` − λi(P ∗` )|.
16: Set k = i`, η̂t = min{dt(P ∗` ), yt} − λk(P ∗` ).
17: Set (p∗, y∗) = argmaxp∈P,y∈Y Q̂APPROXk (p, y) using (7.12) and (7.13).
18: if ` < m− 1 then
19: Set P ∗`+1 as the price in PD that is closest to p∗.
20: Set yt+1 = Z̄(P ∗`+1, λk(P ∗`+1)).
21: end if
22: if ` = m− 1 then
23: Set P ∗`+1 = p∗.
24: ` = `+ 1.
25: end if
26: else
27: Set τ`+1 = τ`.
28: end if
29: end for
30: for t = te + 1 to T do
31: Set yt = y∗.
32: Set pt = P ∗` .
33: end for

7.5 Numerical experiments
We conducted a number of numerical experiments in order to assess the performance
of the policy.

7.5.1 Setup of experiments
We used the following parameter settings: P = [0.0, 50.0], Y = [0.0, 200.0], K = 8,
v = 0.1, discriminative prices PD = {5, 15, 12.5, 20, 10, 35}. The value of ystart is
randomly chosen from the set {10, 20, 30} and the value of pstart is randomly chosen
from the set PD.
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We used the following demand functions for the hypothesis set Λ:

exp (7.0− 0.2p) + ε (7.15)
exp (6.0− 0.2p) + ε (7.16)
exp (6.0− 0.15p) + ε (7.17)
exp (5.0− 0.1p) + ε (7.18)
exp (4.0− 0.2p) + ε (7.19)
exp (5.5− 0.2p) + ε (7.20)
exp (5.5− 0.15p) + ε (7.21)
exp (4.5− 0.2p) + ε (7.22)

In our experiments the true demand model is given by (7.17). This choice for the
hypothesis set Λ models a scenario where there are multiple mean demand functions
that are similar but distinct, which in turn makes it harder to the policy to identify
the correct demand model.

In the experiments the errors are taken from an uniform distribution with ε ∼
U(−5, 5). We let b ∈ {4, 6}, h ∈ {2, 4}, T ∈ {250, 500, 750, 1000, 5000, 10000} and
m ∈ {3, 4}. These choices for the parameter values of b and h model a scenario
where lost sales are more costly to the seller than holding costs. Furthermore, in our
experiments test two rules in order set the length of the learning and earning phases:
the first rule uses CT = d10 · log T e and the second rule uses CT = d

√
T e.

In order to interpret the results, we report the estimated scaled per-period regret
which is given by:

R̂S(π, T ) =
|Q̂(p∗, y∗)− 1

T

∑T
t=1 R̂t(pt, yt)|

Q̂(p∗, y∗)
· 100. (7.23)

Here Q̂(p∗, y∗) is an estimate of Q(p∗, y∗) based on simulation and R̂t(pt, yt) is the
observed revenue in period t.
R̂S(π, T ) is an estimate of the scaled per-period regret RS(π, T ) which is given

by:

RS(π, T ) =
Q(p∗, y∗)− 1

T E
{∑T

t=1Rt(pt, yt)
}

Q(p∗, y∗) · 100 (7.24)

In the remainder the estimated scaled per-period regret will simply referred to
as the scaled per-period regret. For a particular choice of parameter settings, we
average the scaled per-period regret over 250 simulations. The results are displayed
in Table 7.1 and 7.2.
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7.5.2 Results
The main insights from the experiments are as follows. The scaled per-period regret
is decreasing with respect to the sales horizon which indicates that the per-period
regret is decreasing with respect to the sales horizon. The scaled per-period regret
tends to be larger for smaller sales horizons, and this makes sense, since the policy
has less sales periods to determine the true underlying demand model. For smaller
sales horizons the scaled per-period regret is relatively high, but as the sales horizon
increases, it decreases relatively quickly for most of the parameter values considered.
This indicates that, as the sales horizon increases, the policy is better able to make
decisions that are close to optimal.

The magnitude of the scaled per-period regret depends on rule that is used to
determine CT . The results indicate that the rule CT = d

√
T e performs much better

than CT = d10 · log T e. The differences in performance between the two rules is
especially noticeable for smaller sales horizons. For smaller sales horizons the scaled
per-period regret with CT = d10 · log T e can be as high as 15% - 18% and this is about
twice as high compared to CT = d

√
T e. For larger horizons, the performance of the

two rules are very similar.
The rate at which the scaled per-period regret decreases with the horizon appears

to be related to (the difficulty of) the problem instance. In particular, when h = b = 4
the scaled regret decreases at a slower rate compared to the case when h = 2 and
b = 4. One possible explanation is that, when h = 2 and b = 4, the policy recognizes
that lost sales are more costly and it more obvious for the policy that it needs to learn
the right values for the inventory decisions quickly. However, when h = b = 4, their
is less incentive for the policy to learn the right values for inventory decisions quickly.

Overall, the results suggest that the growth rate of regret is sub-linear in the sales
horizon T . The results are promising and indicate that the policy is able to learn the
true demand model and set the right values for the price and inventory.
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Table 7.1: Performance of heuristic policy with CT = d10 · log T e.

h b m T mean std h b m T mean std
2 4 3 250 15.87 6.38 4 4 3 250 17.47 7.76
2 4 3 500 10.25 3.68 4 4 3 500 11.71 4.48
2 4 3 750 7.73 2.63 4 4 3 750 9.11 3.23
2 4 3 1000 5.79 2.08 4 4 3 1000 7.02 7.02
2 4 3 5000 0.98 0.60 4 4 3 5000 1.81 0.80
2 4 3 10000 0.26 0.26 4 4 3 10000 0.90 0.44
2 4 4 250 15.24 6.18 4 4 4 250 16.95 7.52
2 4 4 500 9.86 3.54 4 4 4 500 11.35 4.33
2 4 4 750 7.47 2.52 4 4 4 750 8.83 3.11
2 4 4 1000 5.60 2.00 4 4 4 1000 6.78 2.47
2 4 4 5000 0.94 0.60 4 4 4 5000 1.76 0.77
2 4 4 10000 0.25 0.25 4 4 4 10000 0.87 0.42
2 6 3 250 16.05 6.57 4 6 3 250 18.33 7.85
2 6 3 500 10.18 3.73 4 6 3 500 12.08 4.47
2 6 3 750 7.59 2.66 4 6 3 750 9.27 3.25
2 6 3 1000 5.65 2.09 4 6 3 1000 7.08 2.58
2 6 3 5000 0.75 0.62 4 6 3 5000 1.64 0.81
2 6 3 10000 0.34 0.10 4 6 3 10000 0.68 0.45
2 6 4 250 16.34 6.20 4 6 4 250 18.14 7.36
2 6 4 500 10.34 3.53 4 6 4 500 11.93 4.23
2 6 4 750 7.70 2.54 4 6 4 750 9.16 3.03
2 6 4 1000 5.70 2.01 4 6 4 1000 6.97 2.41
2 6 4 5000 0.76 0.59 4 6 4 5000 1.56 0.73
2 6 4 10000 0.32 0.09 4 6 4 10000 0.64 0.40



186 Chapter 7

Table 7.2: Performance of heuristic policy with CT = d
√
T e.

h b m T mean std h b m T mean std
2 4 3 250 7.95 3.43 4 4 3 250 8.89 3.24
2 4 3 500 4.86 1.70 4 4 3 500 5.89 1.86
2 4 3 750 3.48 1.20 4 4 3 750 4.32 1.32
2 4 3 1000 2.74 1.06 4 4 3 1000 3.61 1.22
2 4 3 5000 0.69 0.48 4 4 3 5000 1.49 0.66
2 4 3 10000 0.29 0.32 4 4 3 10000 0.98 0.48
2 4 4 250 7.89 3.38 4 4 4 250 9.18 3.44
2 4 4 500 4.82 1.71 4 4 4 500 5.95 1.86
2 4 4 750 3.45 1.21 4 4 4 750 4.36 1.32
2 4 4 1000 2.69 1.04 4 4 4 1000 3.64 1.24
2 4 4 5000 0.66 0.47 4 4 4 5000 1.43 0.62
2 4 4 10000 0.27 0.31 4 4 4 10000 0.96 0.45
2 6 3 250 8.15 4.23 4 6 3 250 8.87 3.72
2 6 3 500 4.76 2.01 4 6 3 500 5.70 1.99
2 6 3 750 3.32 1.38 4 6 3 750 4.21 1.43
2 6 3 1000 2.55 1.17 4 6 3 1000 3.45 1.26
2 6 3 5000 0.48 0.46 4 6 3 5000 1.29 0.65
2 6 3 10000 0.35 0.14 4 6 3 10000 0.76 0.49
2 6 4 250 8.36 4.36 4 6 4 250 9.58 4.57
2 6 4 500 4.93 2.04 4 6 4 500 5.97 2.22
2 6 4 750 3.43 1.38 4 6 4 750 4.34 1.50
2 6 4 1000 2.66 1.20 4 6 4 1000 3.57 1.40
2 6 4 5000 0.49 0.45 4 6 4 5000 1.24 0.60
2 6 4 10000 0.33 0.13 4 6 4 10000 0.72 0.43
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7.6 Conclusion
In this Chapter we studied a dynamic pricing problem with limited price changes
and censored demand. In contrast with previous work, we did not assume that we
can observe true demand and lost sales. Furthermore, in our setting, the lost sales
is part of the objective function that the seller aims to optimize. We proposed a
heuristic pricing policy that adjust prices and inventory levels for this problem. Using
numerical experiments we tested the performance of our policy. Experimental results
are promising and suggest that the growth rate of regret is sub-linear with respect to
the sales horizon.

Future work could be directed towards deriving analytical results related to the
dynamic pricing problem studied in this Chapter. In particular, it would be interesting
to study upper and lower bounds on the growth rate of regret and how these bounds
depend on the number of price changes and the sales horizon.
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Summary and conclusions

In this Chapter we provide an overview of the main contributions of this thesis. Next,
we discuss some limitations of the approaches used and we indicate some directions for
future research. Finally, we put the contributions of this thesis in a broader context
and relate them to other topics and research areas that relate to revenue management
in online markets.

8.1 General overview
In this dissertation we have focused on revenue management in online markets. The
revenue management problems that are studied apply to decision making problems
that arise in online markets such as online advertisement markets and in e-commerce
settings such as online retail markets.

The common theme across the Chapters in this thesis is that the decisions in the
revenue management problems are made under uncertainty. The revenue manage-
ment problems that are considered in this thesis can be broadly organized in three
categories: allocation decisions, pricing decisions, and buying decisions. Chapters 2,
3, 4, 5, 7 focus on the perspective of a seller and tackles allocation decisions and
pricing decisions. In Chapter 6, the emphasis is on the buyer perspective and studies
buying decisions.

In Chapters 2, 3, 4, 5, 6 the focus is on decision making in the context of on-
line advertising. The revenue management problems studied in these chapters are
related to the decisions of buyers and sellers that participate in online auctions for
advertisements and to the interaction of various selling mechanisms that are used in
order to sell online advertisements. Chapter 2 starts with an allocation problem –
the display-ad allocation problem – that publishers face in online advertising. We
consider a publisher that sells impressions via guaranteed contracts and via the RTB
market by using a waterfall mechanism. In this problem, the publisher needs to take
the uncertainty of the RTB market into account and decide which impressions to
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allocate to guaranteed contracts and which impressions to allocate to the RTB mar-
ket. In Chapter 3, we shift our attention to pricing decisions that publishers need to
make. Publishers typically specify a minimum price – called the floor price – for their
impressions when selling on the RTB market via an ad exchange. Chapter 3 considers
a situation where impressions are sold via second-price auctions (one of the dominant
auction formats used in online advertising) and where the publisher needs to learn the
best floor price over time. In second-price auctions, the floor price is often referred to
as the reserve price and so we refer to this problem as the reserve price optimization
problem. Chapter 4 builds on Chapter 3 and studies reserve price optimization in the
setting of Header Bidding. Note that, in the reserve price optimization problem of
Chapter 3, the publisher received a single offer at a time for each impression. How-
ever, in Chapter 4, we consider a publisher that receives multiple offers for a single
impression and where each offer is the result of a second-price auction with a reserve
price. The goal of the publisher is to learn the best reserve price for each second-price
auction (i.e., a vector of reserve prices) in order to maximize his expected revenue.
Chapter 5 builds on the ideas and problem settings of Chapter 3 and 4 and studies
how publishers should make decisions in order to maximize revenues when they have
access to both header bidding and an ad exchange. Chapter 6 switches perspectives
and focuses on buying decisions in online advertising auctions. More specifically, we
consider buying decisions in repeated posted-price auction where a seller repeatedly
interacts with a buyer for a number of time periods and where the buyer wants to
maximize his expected utility over time. In this problem, the buyer needs to learn
at what prices it is worthwhile to purchase an item when her valuation for the item
is unknown. Chapter 7 moves away from decisions in auction settings and instead
studies a more general dynamic pricing problem. More specifically, we consider a
seller that has to adjust his selling prices and inventory levels over time in order to
maximize his expected revenue. In addition, the seller faces a business constraint on
the number of price changes allowed during the selling horizon and the seller only has
a limited amount of inventories on hand in each selling period.

8.2 Detailed overview of main results
Below we present a detailed overview of the main results and conclusions for each
Chapter in this dissertation.

In Chapter 2 we consider a display-ad allocation problem where an online pub-
lisher needs to decide which subset of impressions for advertisement slots should be
used in order to fulfill guaranteed contracts and which subset should be sold (in a
waterfall mechanism) via Supply Side Platforms (SSPs) in order to maximize the ex-
pected revenue. The way that information is revealed over time allows us to model
the display-ad allocation problem as a two-stage stochastic program. Moreover, our
modeling approach also takes the uncertainty associated with the sale of an impres-
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sion by an SSP into account. The experiments indicate that by carefully modeling
the sequential nature of decisions in the waterfall mechanism and incorporating this
in a stochastic programming framework, it is possible to outperform greedy heuristics
that ignore uncertainty and give priority to guaranteed contracts. Our results suggest
that the benefit of using our proposed method is highest in periods where the website
traffic is high compared with the targets for the guaranteed contracts.

In Chapter 3, we study reserve price optimization in second-price auctions in a
setting where the publisher has limited information. In particular, we study a limited
information setting where the probability distribution of the bids from advertisers is
unknown and the values of the bids are not revealed to the publisher. Furthermore,
we do not assume that the publisher has access to a historical data set with bids.
The experiments in Chapter 3 show that by incorporating the rules of second-price
auctions into a multi-armed bandit framework, one can often improve upon the per-
formance that can be obtained by traditional bandit algorithms. More specifically,
algorithms that exploit the rules of the second-price auction tend to learn better ac-
tions much quicker than state-of-the-art bandit algorithms that ignore these rules.
In non-stationary environments, algorithms that exploit the rules of the second-price
auction tend to adapt much quicker to new environments compared to bandit al-
gorithms that ignore these rules.

In Chapter 4, we study the reserve price optimization problem in the context of
Header Bidding. We show that the reserve price optimization problem can be modeled
as slate bandit problem with a non-separable reward function (i.e., the optimal value
of the function cannot be determined by learning the optimal action for each slot).
We are mainly interested in cases where the number of slates is large relative to the
time horizon, so that trying each slate as a separate arm in a traditional multi-armed
bandit, would not be feasible. In Chapter 4, we first show that existing algorithms are
not suitable for the slate bandit problem with non-separable reward functions. Next,
we propose algorithms that have sub-linear regret with respect to the time horizon
and that avoid trying each slate. In addition, we show that our algorithms can even
be applied when the number of slates is larger than the horizon and that they will still
have regret of the same order. This is in contrast with benchmark algorithms such
as UCB1, which cannot be applied in that case. Our solution therefore provides a
substantial improvement relative to what is possible based on the current state-of-the-
art. Experiments using simulated data and real-world data illustrate the effectiveness
of our algorithms. Our experiments show that ignoring non-separability can have a
large effect on the regret.

In Chapter 5, we study how publishers should make decisions in order to maximize
revenues when they have access to both header bidding and an ad exchange in order
to sell impressions. More specifically, we consider a publisher that first observes an
offer from header bidding and can accept or reject this offer. If the offer is rejected,
they can try to sell the impression on an ad exchange. In this problem, the publisher
needs to make two decisions: (i) when to accept the offer from header bidding and
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when to use the ad exchange; and (ii) if the publisher uses the ad exchange, which
floor price it should use on the ad exchange. In Chapter 5, we study how publishers
should set their floor prices in order to maximize expected revenues when they have
access to both selling mechanisms. We propose two algorithms for this problem based
on techniques from the multi-armed bandit literature, and show that their regret
– the performance loss compared to the optimal algorithm – is sub-linear in the
time horizon. Experiments using simulated data and real-world data illustrate the
effectiveness of our algorithms. Our experiments show that optimization of revenues
that takes both selling mechanisms into account leads to a substantial improvement
over the expected revenue that can be obtained by using just one selling mechanism.

In Chapter 6, we study buying decisions in repeated posted-price auction where a
seller repeatedly interacts with a buyer for a number of rounds. We study a setting
where the buyer does not know the distribution of his valuation and must learn this
over time. We study two types of buyers: non-strategic buyers and strategic buyers.
We first consider non-strategic buyers and derive algorithms with sub-linear regret
bounds that hold irrespective of the observed prices offered by the seller. These
algorithms are then adapted into algorithms with similar guarantees for non-strategic
buyers. We provide a theoretical analysis of our proposed algorithms and support
our findings with numerical experiments. Our experiments, confirm our theoretical
findings and show that buyers can indeed learn to make optimal buying decisions that
minimize their regret. Our experiments also show that, if the seller uses a particular
class of low-regret learning algorithms for selecting the price, then strategic buyers
can obtain much higher utilities compared to non-strategic buyers.

In Chapter 7, we study a dynamic pricing problem with demand censoring and
limited price changes. More specifically, we consider a seller that faces demand un-
certainty and has to adjust his selling price over the selling horizon in order to learn
the optimal price and maximize his cumulative revenue over the selling horizon. The
seller faces a business constraint on the number of price changes allowed during the
selling horizon and the seller only has a limited (finite) amount of inventories on hand
in each selling period. This is a challenging problem and it is not immediately clear
whether the seller can learn the right actions over time. We propose a policy that
adjust prices and inventory levels and study its performance using numerical exper-
iments. The experiments show that, despite the difficulty of the problem, the seller
can still learn to take good actions in a variety of problem instances. In particular,
the experiments indicate that the proposed policy has sub-linear regret with respect
to the sales horizon.

8.3 Limitations and future research
The models and algorithms developed in this thesis can be extended in a number of
ways. Here we give an overview of some interesting directions for future research.
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In Chapter 2, we study a revenue management problem where publishers needs
to balance between allocating impressions to guaranteed contracts and allocating
impressions in order to sell them on the RTB market via Supply Side Platforms (SSPs)
in a waterfall mechanism. The model presented in Chapter 2 assumes that SSPs can be
ordered according to expected revenue and the main source of uncertainty is associated
with the probability of a sale by an SSP. However, in practice, publishers can also
specify a reserve price when they sell impressions on the RTB market. Future work can
be directed towards incorporating reserve prices in the allocation decisions between
guaranteed contracts and sales on the RTB market using a waterfall mechanism.

In Chapter 3, we study reserve price optimization in second-price auctions in a set-
ting where the publisher has limited information. The experiments in Chapter 3 show
that by incorporating the rules of second-price auctions, one can often improve upon
the performance that can be obtained by traditional bandit algorithms. However, the
algorithms presented in Chapter 3 have not been analyzed theoretically. Future work
can be directed towards deriving theoretical guarantees for algorithms that incorpor-
ate the rules of second-price auctions with multi-armed bandit algorithms. Such an
analysis would provide extra insight about the reserve price problem.

In Chapter 4, we study reserve price optimization in the context of header bidding.
The optimization problem is formulated as a slate bandit problem and a theoretical
analysis of the proposed algorithms is provided. Future work can be directed to-
wards deriving similar or improved theoretical guarantees for algorithms that make
less restrictive assumptions. For example, it would be interesting to derive efficient
algorithms that do not require the independence assumption between the slots. Our
algorithms have an explore-then-commit type of structure. Another interesting ques-
tion is whether techniques such as Thompson Sampling can be used to guide the
exploration-exploitation trade-off. Moreover, the analysis in Chapter 4, does not take
any additional features related to online advertisement auctions (such as character-
istics of the ad slot and users) into account. Future research can be directed towards
extending the algorithms in Chapter 4 in order that such contextual information can
also be taken into account.

In Chapter 5, we study how publishers should make decisions in order to maximize
revenues when they have access to both header bidding and an ad exchange in order
to sell impressions. Two algorithms are proposed and analyzed both theoretically
and using numerical experiments. Also, a lower bound on the regret is provided.
Our analysis showed that our algorithms near-optimal since the upper bound on the
regret matches the lower bound up to logarithmic factors. The analysis in Chapter
5, does not take any additional features related to online advertisement auctions
(such as characteristics of the ad slot and users) into account. Future work can be
directed towards algorithms that take additional information into account in the form
of features, similar to for example contextual bandits. It would be interesting to study
whether optimal algorithms exist and which assumptions are needed in order to derive
such performance guarantees. Another direction would be to investigate whether it is
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possible to derive performance guarantees when the rewards on the ad exchange are
adversarial instead of stochastic.

In Chapter 6, we study repeated posted-price auctions between a single seller and
a single buyer. Several algorithms are proposed and analyzed both theoretically and
using numerical experiments. In practice, buyers also face budget constraints when
making their purchasing decisions. However, the models and algorithms presented in
Chapter 6 do not take budget constraints into account. Future work can be direc-
ted towards deriving algorithms that can take both strategic behaviour and budget
constraints into account.

In Chapter 7, we study a dynamic pricing problem with limited price changes
and censored demand. We proposed a heuristic pricing policy that adjust prices
and inventory levels for this problem. Using numerical experiments we tested the
performance of our policy. Experimental results suggest that the regret is sub-linear
with respect to the sales horizon. Future work could be directed towards deriving
analytical results related to this pricing problem. In particular, it would be interesting
to study upper and lower bounds on the regret and how these bounds depend on the
number of price changes and the sales horizon.

8.4 General discussion
In this dissertation we have focused on revenue management in online markets. The
revenue management problems that we study are related to situations that arise in
online markets such as online advertisement markets and online retail markets. In
this section we put the contributions of this thesis in a broader context and relate
them to other topics and research areas that relate to revenue management in online
markets.

The research in this thesis focuses on online display advertising, but there is an-
other area in online advertising called sponsored search advertising. Display ad-
vertising refers to advertisements that are displayed when users visit websites in
browsers and are typically displayed in banners located in specific ad slots on a web-
site. Sponsored search advertising refers to advertisements that are displayed when
users search for keywords on search engines. In sponsored search advertising, the
advertisers bid for their positions in the ranking of displayed search results, and the
slots are also sold in real-time via auctions (similar to display advertising). However,
there are also some fundamental differences between the two types of advertising. For
example, in sponsored search advertising the auction format (generalized second-price
auction) and the payment model (the seller only gets revenue if the user clicks on the
advertisement) are different. As a consequence, sponsored search advertising requires
different models and algorithms than those presented in this thesis.

In Chapter 7 we considered a dynamic pricing problem which is applicable to
the setting of online retail markets. While pricing is an important aspect of revenue
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management for online retail markets, another important aspect is assortment optim-
ization [5, 131]. Assortment optimization is a critical decision that is regularly made
by retailers. The decision involves a trade-off between offering a larger assortment
of products but smaller inventories of each product and offering a smaller number of
varieties with more inventory of each product. Assortment optimization decisions are
important, because sub-optimal assortment decisions lead to missed sales or increased
inventory costs and these have a negative impact on revenues.

Looking beyond online advertising and online retail markets, we note that there are
other online markets where revenue management is a challenging task. One example
is related to the sharing-economy and is given by companies that provide ride-sharing
services. Ride-sharing companies such as Uber and Lyft in the USA and Didi Chuxing
in China face a number of challenges with respect to revenue management. Two
key aspects that determine the revenue for ride-sharing companies are pricing and
matching [128]. Pricing determines both customer demand and driver supply because
lower prices attract customers and higher prices attract drivers. Meanwhile, matching
connects a customer requesting a ride with a driver, and that determines how long the
customer must wait for driver pick-up. Together, the pricing and matching decisions
affect the geospatial distribution of the drivers at any given point in time. In turn, that
geospatial distribution determines the set of drivers who are available to be matched
with an arriving customer. However, a customer offered a far-away driver may not
accept the ride due to the long pick-up time. Revenue management in this context
is a challenging problem, since firms need to decide on the right pricing mechanism
and contracts to offer the suppliers [38, 153], and also take other considerations into
account such as flexibility [150] and participation behaviour of passengers [74].

The examples mentioned above show that there are many more revenue manage-
ment problems other than those discussed in this thesis. However, a common property
of the revenue management problems outlined above and those studied in this thesis,
is that they involve decision making under uncertainty. In particular, some of the
problems mentioned above involve decision making with partial feedback. We believe
that the techniques and results developed in this thesis can therefore be of interest
when solving aforementioned revenue management problems.

8.5 Final remarks
In this thesis we have focused on revenue management in online markets. The
revenue management problems that are studied apply to decision making problems
that arise in online markets such as online advertisement markets and in e-commerce
settings such as online retail markets. The revenue management problems that are
considered in this thesis can be broadly organized in three categories: allocation
decisions, pricing decisions, and buying decisions. This thesis proposes models and
algorithms that can be used for each of these decisions. Our techniques and results
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are of interest to anyone that wants to make decisions that involve uncertainty in
revenue management problems.

You have just finished reading this dissertation. We hope it was an enjoyable
experience.
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Summary

Revenue management in online markets: pricing and online advertising

In the current economy goods and services are increasingly sold via the internet.
Online retailers offer millions of products for sale including books, mobile phones,
computers, clothes and various other electronics. There are different types of goods
and services that are sold via the internet and there are multiple ways to sell goods
and services via the internet. In some cases, potential consumers can browse through
the various pages on the website of the seller, where different products are listed
together with their prices. If the consumer finds the product that it is looking for and
is willing the pay the displayed price, it can proceed to purchase the item by making
a payment via the internet. Another popular way to purchase goods on the internet
is via an online auction. An auction is a way of selling items, which can be goods or
services, that are put up for bid by an auctioneer. In an auction the potential buyers
(or bidders) compete with each other by placing bids for an item. The value of the bid
indicates the price they are willing to pay for an item. The higher the bid, the better
the chance that a bidder will win. With the rise of the internet, auctions have become
increasingly important in the domain of online advertising where publishers (owners
of websites) sell page views – these are called impressions – to interested advertisers.

The design of the online marketplaces and technological advances have a number
of implications for companies that operate on or sell products on online markets.
First, it has become possible to store large amounts of information related to various
business operations. Second, a lot of transactions in online markets are high volume
transactions with a repeated nature. Third, it has become easier and less costly for
companies to change key parameters (e.g. prices, website design etc.) that effect sales
and revenues.

These developments present both opportunities and challenges for the practice of
revenue management. The fact that outcomes at various parameter settings can be
logged and stored results in a lot of information. This information provides companies
with opportunities in the sense that this information can be leveraged in order to
design models and algorithms that can be used for improved decision making in
various revenue management problems. However, leveraging this information can
also be a challenging task. Most decisions in revenue management problems are
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made in uncertain environments and often only partial feedback of these decisions is
received. As a consequence, designing models and algorithms that leverage available
information is not a straightforward task.

This dissertation studies revenue management in online markets. The revenue
management problems that are studied apply to decision making problems that arise
in online markets such as online advertisement markets and in e-commerce settings
such as online retail markets. The common theme in this thesis is that the decisions
in the revenue management problems are made under uncertainty. The revenue man-
agement problems that are considered in this thesis can be broadly organized in three
categories: allocation decisions, pricing decisions, and buying decisions. In the context
of online advertising, these decisions are often related to the decisions of buyers and
sellers that participate in online auctions for advertisements and to the interaction of
various selling mechanisms that are used in order to sell online advertisements. Some
concrete problems that are studied are: (i) how should sellers divide their inventory
of impressions (allocation decision) over different selling mechanisms?; (ii) what is the
minimum price that sellers should ask (pricing decision) for their impressions?; (iii)
at which prices should a buyer purchase (buying decision) an item?

This thesis proposes models and algorithms that can be used for each of these
decisions. This thesis uses a combination of techniques from the operations research
and computer science communities to tackle the aforementioned revenue management
problems. The techniques and results are of interest to anyone that wants to make
decisions that involve uncertainty in revenue management problems.
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