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Chapter 1
Introduction

We spend approximately one third of our lives asleep. Sleep is a vital process,
with many important functions, including energy conservation, immune system
regulation and memory consolidation. [1] A substantial number of people suffer
from disorders of sleep, and in our current 24-hours society these problems are
likely to further increase. [2] The most common sleep disorder is insomnia, with
an estimated prevalence of 6-30%, depending on the criteria used for diagnosis.
[3] If the criteria of the fourth edition of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV) are applied, stating that insomnia symptoms
persist for at least 1 month and do not exclusively occur in the presence of
another disorder, the prevalence is approximately 6%. [4] However, almost one
third of the general population reports one or more symptoms of insomnia. [4]
People with insomnia have trouble with falling asleep, maintaining sleep or
awakening too early in the morning; or a combination (see text box 1). Apart
from an unsatisfactory sleep pattern, insomnia additionally involves daytime
complaints such as fatigue, attentional disturbances and mood disturbances.
These complaints can cause serious problems for quality of life, general health
and labor productivity. [4]

Insomnia has been hypothesized to be a general term for a number of subtypes
consisting of different sleep complaints and having different causes (box 2).
[5, 6] The effectiveness of treatment is likely to be strongly dependent of the
patient’s individual characteristics and the underlying mechanisms of their sleep
problem. However, despite ongoing research, part of the etiology of insomnia
is still unknown. As such, important characteristics of insomnia remain to be
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further investigated. Insomnia has been associated with both psychological
and physiological symptoms. [7] Viewing those symptoms together can help
to understand the big picture of the sleep disorder. Specifically, little is known
about objective sleep parameters reflecting sleep quality.

Box 1 : Insomnia

Symptoms and diagnostic criteria

People with insomnia have trouble with falling asleep or maintaining sleep, or they
wake up too early in the morning. They can also experience a combination of these
complaints. Many people periodically experience an incidental night of poor sleep.
When sleeping poorly becomes a more chronic problem, medical attention may be
required. Insomnia is usually diagnosed based on either Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) [8] or International Classification of Sleep
Disorders (ICSD-3) [9] criteria (Table 1.1). Both the diagnosis and treatment of
insomnia are largely based on subjective complaints. [4] In clinical practice, the
diagnosis is mostly based on questionnaires, sleep diaries and an interview with a
sleep specialist. In part of the patients, the sleep is measured using polysomnography,
for example to exclude other possible sleep disorders.

Cognitive Behavioral Therapy for insomnia

The treatment of choice for insomnia is Cognitive Behavioural Therapy for insomnia
(CBT-I). [10,11] CBT-I is a combination of different interventions, often including
sleep restriction, stimulus control, sleep hygiene education and cognitive therapy.
[12] People with insomnia often tend to increase their time in bed to increase the
possibility of getting enough sleep. However, this strategy usually has an adverse
effect, since spending a lot of time in bed without sleeping may decrease the sleep
drive, as well as increasing the association of the sleep environment with wakefulness,
anxiety and frustration. [10] These negative emotions further impair the sleep and
can cause a vicious cycle. Sleep restriction limits the amount of time spent in
bed. [10] Stimulus control in turn encourages people to only go to bed when they
feel sleepy, and to leave their bed when they do not fall asleep within a specific time,
for example fifteen minutes. [10] Together, these two interventions aim to increase
sleep pressure and re-associate the sleeping environment with sleepiness instead
of wakefulness and negative emotions. [10] Sleep hygiene focuses on eliminating
bad habits that may negatively affect sleep and creating good circumstances for
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sleeping. Finally, cognitive therapy can help to challenge negative thoughts about
sleep. Additionally, CBT-I can involve relaxation techniques. CBT-I leads to remission
of the insomnia disorder in an estimated 70-80% of the patients [13], implicating
that 20-30% do not show improvement of their symptoms. [14] The success of a
treatment intervention for insomnia may be partly dependent on the characteristics
of the patient, and the underlying mechanisms of his or her insomnia complaints.
This is further described in box 2.

Sleep medication

Alternatively, patients with insomnia may be treated using prescribed medication.
The drugs mostly used include benzodiazepines and benzodiazepine agonists, which
have a similar mechanism of action. [15] A widely used class of benzodiazepine-
agonists is formed by the so-called z-drugs (zopiclone, zolpidem and zaleplon).
Benzodiazepines and benzodiazepine agonists can induce changes in sleep architec-
ture. [15] For example, zopiclone is known to reduce the amount of time spent in
REM sleep, and to delay the onset of REM sleep. [16] Additionally, benzodiazepines
in general often decrease the percentage of deep sleep, and increase the number of
sleep spindles. [17,18] Sleep medication can result in a temporary relief of the sleep
complaints, and an increase of perceived sleep quality. However, sleep medication is
only indicated for short time use, to avoid long-term dependency. [19] Additionally,
sleep medication may have negative side effects, such as drowsiness, confusion and
impaired coordination. [19]
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Table 1.1: Criteria for the diagnosis of insomnia.

DSM-V

A

A predominant complaint of dissatisfaction with sleep quantity or quality, associated
with one (or more) of the following symptoms:
1. Difficulty initiating sleep.
2. Difficulty maintaining sleep, characterized by frequent awakenings or problems
returning to sleep after awakenings.
3. Early-morning awakening with inability to return to sleep.

B
The sleep disturbance causes clinically significant distress or impairment in social,
occupational, educational, academic, behavioral, or other important areas of
functioning.

C The sleep difficulty occurs at least three nights per week.

D The sleep difficulty is present for at least three months.

E The sleep difficulty occurs despite adequate opportunity for sleep.

F
The insomnia is not better explained by and does not occur exclusively during the
course of another sleep-wake disorder.

G
Coexisting mental disorders and medical conditions do not adequately explain the
predominant complaint of insomnia.

ICSD-3

A

The patient reports, or the patient’s parent or caregiver observes, one or more of the
following:
1. Difficulty initiating sleep
2. Difficulty maintaining sleep
3. Waking up earlier than desired
4. Resistance to going to bed on appropriate schedule
5. Difficulty sleeping without parent or caregiver intervention

B

The patient reports, or the patient’s parent or caregiver observes, one or more of the
following related to the nighttime sleep difficulty: Fatigue/malaise; attention, concentration
or memory impairment; impaired social, family, occupational or academic performance;
mood disturbance/irritability; daytime sleepiness; behavioural problems (e.g. hyperactivity,
impulsivity, aggression); reduced motivation/energy/initiative; proneness for errors/accidents;
concerns about or dissatisfaction with sleep

D The sleep disturbance and associated daytime symptoms occur at least three times per week

E
The sleep disturbance and associated daytime symptoms have been present for at least three
months.

C
The reported sleep/wake complaints cannot be explained purely by inadequate opportunity
(i.e. enough time is allotted for sleep) or inadequate circumstances (i.e. the environment is
safe, dark, quiet and comfortable) for sleep.

F The sleep/wake difficulty is not explained more clearly by another sleep disorder.
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Box 2 : Subtypes of insomnia

The success of a treatment intervention for insomnia may be partially dependent
on the characteristics of the patient, and the underlying mechanisms of his or her
insomnia complaints. We may distinguish patients with different characteristics, or
even distinct subtypes.

The previously used ICSD-1 and ICSD-2 classifications distinguished nine sub-
types of insomnia, which were classified based on their presumed underlying patho-
logy. [20] Examples of subtypes were psychophysiological insomnia, i.e., the ‘classical’
type of insomnia in which worrying is an important part of the sleep problem; para-
doxical insomnia, i.e., a type of insomnia in which people severely underestimate
their total sleep duration; insomnia due to mental illness and insomnia with in-
adequate sleep hygiene. [20] Additionally, a distinction was made between primary
insomnia and insomnia due to a secondary cause. [20] Nowadays, in the third
version of the ICSD, less emphasis is given to these subtypes, because their clinical
implications are not always exactly known. [9] The identification of characteristics
of insomnia potentially relevant for treatment strategies is still subject of ongo-
ing research. For instance, Miller et al. reported that insomnia with an objective
sleep duration below six hours may be a subtype of insomnia with distinct patho-
physiology [21,22], and a worse outcome of CBT-I compared to other patients with
insomnia. [22] Additionally, Blanken et al. reported five distinct subtypes based on
life history and traits of affect and personality in a very large population cohort of
people with insomnia complaints. [5] Because of the complex nature of insomnia,
it can be expected that objective sleep characteristics, psychological characteristics
and demographic characteristics are all important for characterizing subtypes of
insomnia.

1.1 Objective parameters of insomnia

Gold-standard polysomnography (PSG; box 3-4) measurements are often per-
formed to study sleep. When viewing insomnia as a medical problem of in-
sufficient or non-restorative sleep, we would expect that the sleep problem could
be quantified with objective measurements. Indeed, part of the patients have
a reduced amount of sleep as reflected by standard PSG-derived parameters,
such as total sleep time and sleep onset latency. However, in other cases, these
parameters do not fully explain the complaints of the patient. [23] Sometimes a
correlation between these general parameters and the symptoms of insomnia
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is even almost completely lacking. Therefore, it is assumed that not only sleep
quantity is important for perceiving a good night of sleep. Instead, a broader
concept of sleep quality can be defined, which may be reflected by an inter-
action between sleep quantity and many other different objectively measurable
parameters (box 5).

Here, we focus on the relation between objective and subjective sleep qual-
ity in people with insomnia. As mentioned before there is currently limited
knowledge about the relation between sleep quality and objectively measured
parameters other than the amount of sleep. Therefore, we especially focus on
identifying objectively measurable sleep characteristics that may be important
for understanding the perception of impaired sleep quality. In this introduction,
first we introduce the concepts of subjective and objective sleep quality. Subse-
quently, we discuss possible objective parameters to reflect sleep quality, as well
as approaches used in this thesis to overcome some of the current challenges
within the research field. Finally, we discuss the outline of this thesis.

1.2 Aspects of sleep quality

In Figure 1.1, several aspects of sleep quality are illustrated. In this figure, we
distinguish subjective and objective sleep quality. Arrows I-V indicate possible
interactions, which are also summarized in Table 1.2. Subjective sleep quality
refers to the person’s impression about his or her sleep, and includes a quanti-
tative and a non-quantitative aspect. The non-quantitative aspect of subjective
sleep quality is often enquired using multiple-choice questions such as ‘how
would you rate the quality of your sleep?’ and ‘how refreshed did you feel in the
morning after awakening?’ The answers to these questions may be influenced by
subjective sleep quantity (arrow I), since people who experienced a short night
of sleep usually tend to also report a poor night of sleep. [24] Furthermore, it is
thought that certain mechanisms of objective sleep may also influence having
the impression of a good night of sleep and feeling refreshed (II), although this
relationship is often weaker than expected. [24,25]

Subjective sleep quantity refers to a person’s experienced sleep duration.
This subjective sleep duration can be measured using a sleep diary (box 6),
and may be expressed using total sleep time, sleep onset latency and wake
after sleep onset. As such, subjective sleep quantity can be directly compared
with objective sleep quantity. A marked discrepancy between the two, which is
observed in part of the people with insomnia, is called sleep state misperception
or paradoxical insomnia. [26] It is assumed that sleep state misperception can
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Feeling refreshed, 
having a good night 

of sleep

Subjective Sleep 
Quantity

Other measurable 
aspects of sleep 

quality

Objective sleep 
quantity

Sleep state 
misperception

I

II
III

IV

V

Objective sleep qualitySubjective sleep quality

Figure 1.1: Four categories of parameters we can use to describe sleep. Arrows indicate the
presumed influence of these concepts on each other.

be influenced by certain objectively measurable sleep mechanisms, causing parts
of the sleep to be experienced as wake. [26] Thus, subjective sleep quantity
can probably be influenced by a combination of objective sleep quantity and
other, undefined objective sleep mechanisms (III and IV). For completeness,
we also mention that aspects of objective sleep probably influence objective
sleep quantity (V). For example, it was hypothesized that certain micro-events
could act as protection mechanisms of sleep, thus reducing the number of
awakenings, and potentially resulting in a longer total sleep time. [27, 28]
Finally, insomnia is a sleep disorder with a major psychological component. [12]
Therefore, sleep is probably influenced by a combination of psychological and
objectively measurable components, which may in turn be interrelated.

1.3 Previous research on sleep quality

Sleep quality in relation to objective sleep parameters is directly or indirectly
studied in different types of sleep research, including studies of general sleep
differences between people with insomnia and healthy controls, studies of PSG-
derived parameters influencing feeling refreshed and reporting a good night of
sleep (Figure 1.1, arrow II), and studies of PSG-derived parameters influencing
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sleep state misperception (IV). Since these studies all concern aspects of objective
sleep quality, it may be useful to combine knowledge from different research
protocols to learn more about objective sleep parameters reflecting impaired
sleep. Relevant findings from previous research are briefly discussed in the next
section.

Table 1.2: Summary of presumed influence of aspects of sleep quality on each other. The
numbers in this table refer to numbers of arrows shown in Figure 1.1

# Description

I
Influence of subjective sleep quantity on the experience of having a good night of
sleep. People who experienced a short night of sleep tend to also report not feeling
refreshed and experiencing a poor night of sleep.

II
Influence of objective sleep characteristics on the experience of a good night of sleep.
It is assumed that certain objectively measured characteristics of sleep can influence
its perception. The identification of such characteristics is a topic of research.

III

Influence of objective sleep quantity on sleep quantity reported by the patient.
Logically, it is often assumed that people are aware of their amount of sleep.
However, in some people with insomnia a marked discrepancy between the objective
and subjective amount of sleep can be observed. This discrepancy is called sleep
state misperception.

IV
It is assumed that certain objectively measurable sleep mechanisms can cause parts
of the sleep to be experienced as wake. Thus, this may be an explanation for sleep
state misperception.

V
Aspects of objective sleep could probably influence objective sleep quantity. For
example, impaired sleep protection mechanisms could lead to interrupted, and
therefore possibly shorter, sleep.

1.3.1 Differences between insomnia and healthy sleepers

A lot of effort has been devoted to identifying differences between objectively
measurable sleep parameters of people with insomnia and healthy controls.
Because people experience impaired sleep, this type of research can be seen
as an indirect way to study effects of objective sleep mechanisms on subjective
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sleep quality (III and IV). A popular hypothesis is that people with insomnia have
an increased activation of the sympathetic nervous system during both the day
and the night. [29] This is called hyperarousal. [29] Hyperarousal may lead to
alterations of sleep architecture. [23] However, results are often not consistent
across studies. [23] In a meta-analysis, Baglioni et al. showed that people with
primary insomnia had an increased number of awakenings compared to healthy
sleepers, and reduced percentages of slow wave sleep and REM sleep. [23] Thus,
it seems that disturbed continuity of the sleep could possibly lead to complaints of
impaired sleep in people with insomnia. Alternatively, it has been proposed that
parameters extracted from the hypnogram do not provide sufficient detail to fully
assess and understand objective sleep quality. [27] Instead of parameters that
can be calculated from the hypnogram, also called macrostructural parameters,
more detailed microstructural parameters can be obtained directly from the EEG
signals. Parameters that were reported to differ between insomnia patients and
healthy controls include spectral power within the delta and beta frequency
bands, which can be an expression of hyperarousal [30]; arousals, which are
disruptions of sleep too short to be scored as awakenings [31]; and k-complexes
and sleep spindles, which may have a sleep-protecting function. [27,28]

1.3.2 Sleep state misperception

In addition to differences between insomnia and healthy controls, the phe-
nomenon of sleep state misperception, i.e., a discrepancy between objectively
measured and subjectively perceived sleep, has been extensively researched.
Sleep state misperception can possibly be explained by worrying, memory bias,
or a reduced time estimation ability. [26] Additionally, several objectively measur-
able sleep parameters have been studied in relation to sleep state misperception.
People with sleep state misperception were reported to have increased spectral
power in the beta frequency range [32], shorter sleep spindles [33], and a larger
number of arousals. [34] Sleep fragmentation is another promising parameter,
because the experience of being asleep seems to be dependent on the length of
uninterrupted sleep fragments. [35] Sleep fragmentation may be particularly
important for the perception of the sleep onset. In this thesis, we examine and
quantify the relation between sleep fragmentation and sleep onset misperception.

1.3.3 Correlates of subjective sleep quality

Finally, research of objective sleep parameters influencing feeling refreshed and
reporting a good night of sleep can be informative. Objective TST and sleep
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efficiency are often mentioned as the main PSG-derived parameters influencing
perceived sleep quality. [25, 36, 37] Additionally, subjective sleep quality was
reported to be negatively influenced by the number of awakenings [24,37], the
amount of wake after sleep onset, [24,37], and the number of sleep stage transi-
tions. [25] Subjective sleep quality was positively influenced by the percentage
of slow wave sleep. [37,38] Interestingly, microstructural parameters are mostly
not among the parameters with the largest correlation with subjective sleep
quality. [25,37] Thus, subjective sleep quality seems to be mainly influenced by
parameters that can be extracted from the hypnogram. Still, studies consistently
report that objective sleep parameters only explain a small part of the variability
of the subjective sleep quality. [24,25]

1.4 Goals and considerations for this thesis

New research into objective sleep quality parameters should take into account
a number of challenges that are present in the research field. First, sleep is a
very complex process, in which many different psychological and physiological
factors play a role. Therefore, we may expect large interindividual variability
of psychological profiles, sleep deprivation during previous nights, sleep habits
and comorbid disorders. This variability may also partly explain the different
results across different studies. Furthermore, we still do not fully understand all
the functions and mechanisms of sleep. Gold-standard PSG recordings yield ap-
proximately 8 hours of multi-channel signals, recorded with a sample frequency
between 200 and 500 Hz. Therefore, the number of parameters that we can
possibly extract from PSG recordings is larger than we will ever be able to eval-
uate. Often, different research protocols study different parameters, making it
challenging to compare outcomes. For example, even a relatively simple concept
such as sleep fragmentation can be described using many different parameters,
including number of awakenings, number of transitions between sleep stages,
and percentage of deep sleep. As a further complication, it is possible that sleep
quality varies over time during the night.

Although challenging, identifying objective sleep parameters influencing
sleep quality is potentially a very useful way to increase our understanding of
the mechanisms underlying insomnia, and the functions of sleep in general.
Furthermore, such parameters could potentially be used to identify clinically
meaningful subtypes within the patient population, and possibly even aid in the
choice of the best treatment options for individual patients.
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Box 3 : Polysomnography

Polysomnography (PSG) is the gold standard diagnostic tool in sleep medicine.
PSG recordings include multiple signals. One of these signals is electroencephalog-
raphy (EEG); a noninvasive method to record electrical activity caused by neural
oscillations from the brain. The EEG is recorded on different locations on the head,
usually with six electrodes. The number of EEG electrodes may differ per sleep center.
Additionally, the electrical potentials caused by movements of the eyes are measured
using two electrodes. This is called electro-oculography (EOG). Electrical activity of
the muscles of the chin and legs is measured using electromyography (EMG), and the
activity of the heart using electrocardiography (ECG). [39] Additionally, breathing
movements, respiratory airflow, and body movement are measured. [39]

To annotate sleep stages, the current method is based on periods (epochs) of
30 seconds. These epochs are individually classified by a sleep technician. [39]
Nowadays, it is also possible to perform automated sleep staging. The classification
of sleep and wake stages is based on standardized guidelines using three channels of
EEG, two channels of EOG and two channels of chin EMG. According to the most
recent scoring guidelines of the American Academy of Sleep Medicine (AASM), each
30-second epoch is scored as either wake, Rapid Eye movement (REM) sleep, or one
of three Non Rapid Eye Movement (NREM) sleep stages. [40] REM sleep or ‘dream
sleep’ refers to a stage with EEG activity similar to wake, which can be distinguished
from wake by a suppression of the muscle tone. [41] During REM sleep, typical
vertical and horizontal eye movements can be observed. [41] The exact function of
REM sleep is unclear [42], but it possibly plays a role in memory consolidation. [43]
Although the most vivid dreams occur during REM sleep, dreams are not limited to
this sleep stage [41]. NREM sleep in turn is divided into three substages: NREM1,
NREM2 and NREM3. [44] During NREM sleep, a gradual slowing of the EEG activity
can be observed. NREM1 is observed shortly after falling asleep. During NREM2,
distinct EEG patterns can be seen, such as k-complexes and sleep spindles. NREM3
is the deepest sleep stage, also called slow wave sleep (SWS). During NREM3, high
amplitude EEG activity with a frequency of 0.5-2 Hz can be observed. During this
sleep stage, the brain is less responsive to external stimuli and the sleep is more
difficult to disturb compared to lighter sleep. [44]

The progression of sleep stages during the night can be visualized using a hypno-
gram (Figure 1.2). Sleep stages usually occur in ordered sleep cycles, progressing
from light to deep NREM stages and ending with REM sleep. [44] A sleep cycle has a
duration of approximately 90 minutes. [44] A whole night typically consists of three
to five sleep cycles.
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Figure 1.2: Example of a hypnogram. Occasional awakenings during the night can often be
observed, and are considered normal. In general, NREM3 sleep mostly occurs during the first
part of the night, and REM sleep mostly occurs during the second part of the night.

Box 4 : Parameters derived from PSG

We can distinguish parameters that can be derived from the hypnogram, also called
‘macrostructural parameters’, and parameters directly derived from the EEG signal,
e.g. ‘microstructural parameters’.

Macrostructural parameters

• Sleep onset latency (SOL) – Time between the moment the participant started
trying to sleep and the first instance of any epoch scored as sleep.

• Total sleep time (TST) – Total duration of all epochs scored as sleep during
the night.

• Wake after sleep onset (WASO) – The total length of all epochs scored as wake
after the first sleep fragment has occurred.

• Number of awakenings – The total number of awakenings during the night.

Microstructural parameters

• Spectral power – The magnitude of EEG waves, divided into different frequency
bands. These frequency bands can be analyzed using Fourier analysis. Relevant
frequency bands include delta (0.5-2 Hz), theta (4-8 Hz), alpha (8-12 Hz),
sigma (12-15 Hz), and beta (15-30 Hz). Wake periods are usually dominated
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by alpha and beta activity. During NREM sleep, the frequency gradually slows
down to the theta and delta frequency bands.

• Sleep spindles - Sudden bursts of oscillatory brain activity with a frequency
in the theta band. They mostly occur during NREM2 sleep, and are believed
to protect the sleep from external stimuli19. The most-used parameter is the
number of sleep spindles per minute of NREM sleep.

• Microarousals – A sudden increase of EEG frequency, which is usually associ-
ated with an internal or external disturbance of sleep.

Box 5 : The sleep diary

The sleep diary is an important tool for both research and clinical practice. In a sleep
diary, people can register their sleep and wake times over multiple days or weeks.
Often used is the international ‘consensus sleep diary’, which consists of questions
about the time going to bed, the time waking up, sleep onset, awakenings, total sleep
time and perceived sleep quality. Alternatively a graphical sleep diary can be used,
in which people can indicate their sleep and wake over the night using colored bars.
Such a diary provides a more complete overview of the sleep period and enables the
patients to indicate the timing of their awakenings. Examples of the two types of
sleep diaries are shown in figure 1.3.
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What time did you get into bed? 22:45 PM

What time did you try to go to sleep? 23:00 PM

How long did it take you to fall asleep? 30 minutes

How many times did you wake up, not counting 

your final awakening?

1

In total, how long did these awakenings last? 30 minutes

What time was your final awakening? 6:30 AM

After your final awakening, how long did you spend 

in bed trying to sleep?

30 minutes

Did you wake up earlier than you planned? Yes

If yes, how much earlier? 30 minutes

What time did you get out of bed for the day? 7:00 AM

In total, how long did you sleep? 6 hours 30 minutes

Figure 1.3: Examples of two types of sleep diaries. Top: part of the international consensus
sleep diary. The international consensus sleep diary additionally consists of questions about
perceived sleep quality, and about alcohol and caffeine use. Bottom: example of graphical
sleep diary. In the graphical sleep diary, patients can additionally indicate the timing of their
awakenings. For example, this patient woke up at 2:00 AM. Like the consensus sleep diary,
graphical sleep diaries can include additional questions.
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1.5 Outline of this thesis

The overall aim of the research described in this thesis is to identify new ob-
jectively measurable sleep parameters reflecting sleep quality in people with
insomnia. We use different strategies to overcome the previously mentioned
limitations of the complexity of sleep and the presumed large variations within
the patient population.

In chapter 2, we describe an explorative analysis to identify sleep parameters
measured during the first sleep cycle that may influence the perception of the
sleep onset latency. We mainly focus on sleep onset misperception, because
the perception of the sleep onset is localized in time, and therefore easier to
study. Additionally, we propose a model to quantify the influence of the length
of uninterrupted sleep fragments on the perception of the sleep onset.

In chapter 3, we validate the model developed in chapter 2 on a large indepen-
dent dataset, including people with insomnia and healthy controls. We compare
model parameters between groups, and across insomnia subgroups with respect
to sleep onset misperception, medication use, age and sex. Furthermore, we
introduce the sleep fragment perception index (SFPI), a metric to quantify the
relation between sleep fragmentation and sleep onset perception in individual
subjects.

In chapter 4, we apply our knowledge of the relation between sleep fragmenta-
tion and sleep onset misperception to reduce interindividual variability caused
by sleep architectural differences. To do so, we divide sleep onset mispercep-
tion into a component explained by sleep fragmentation, as estimated by the
model, and an unexplained component, represented by the residual error of
the model. Because time estimation and pre-sleep arousal are characteristics
possibly influencing sleep onset misperception, we examine the influence of time
estimation and pre-sleep arousal on the unexplained component of sleep onset
misperception in patients with insomnia.

In chapter 5, we explore potential mechanisms of sleep fragmentation that
influence alterations of perceived sleep quality, using a pharmacological sleep
intervention. We analyze standard in-lab polysomnography (PSG) recordings
with one night of sleep medication and one night of placebo, in elderly people
with complaints of insomnia and healthy controls. We apply survival curve
analysis to explore potential whole-night mechanisms co-occurring with im-
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proved subjective sleep quality and quantity when using the sleep medication.
Co-occurring changes in sleep fragmentation and perceived sleep quality can be
very informative, but do not prove that these two phenomena really influence
each other. Therefore, we use the sleep length model to examine if the positive
effect of sleep medication on sleep onset (mis)perception can be attributed to
predictable changes of sleep fragmentation.

In chapter 6, the survival curve parameters identified in chapter 5 are compared
between people with insomnia and healthy controls. We use Weibull distributions
to represent sleep and wake survival dynamics of individual study participants.
Then, we use a linear model to analyze the combined influence of participant
group, age, sex and total sleep time on the Weibull parameters.

In chapter 7, we conclude the thesis with an integrative discussion of the findings
with suggestions for future research.
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2.1 Abstract

Study Objective - To study sleep EEG characteristics associated with mispercep-
tion of the sleep onset latency (SOL).

Methods - Data analysis was based on secondary analysis of standard in-lab
polysomnographic recordings in 20 elderly people with insomnia and 21 el-
derly good sleepers. Parameters indicating sleep fragmentation, such as num-
ber of awakenings, WASO and percentage of NREM1 were extracted from the
polysomnogram, as well as spectral power, microarousals and sleep spindle index.
The correlation between these parameters during the first sleep cycle and the
amount of misperceived sleep was assessed in the insomnia group. Additionally,
we made a model of the minimum duration that a sleep fragment at sleep onset
should have in order to be perceived as sleep, and we fitted this model to subjec-
tive SOLs of both subject groups.

Results - Misperception of SOL was associated with increased percentage of
NREM1 and more WASO during sleep cycle 1. For insomnia subjects, the best
fit of modelled SOL with subjective SOL was found when assuming that sleep
fragments shorter than 30 minutes at sleep onset were perceived as wake. The
model indicated that healthy subjects are less sensitive to sleep interruptions and
perceive fragments of 10 minutes or longer as sleep.

Conclusions - Our findings suggest that sleep onset misperception is related
to sleep fragmentation at the beginning of the night. Moreover, we show that
people with insomnia needed a longer duration of continuous sleep for the
perception as such, compared to controls. Further expanding the model could
provide more detailed information about the underlying mechanisms of sleep
misperception.
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2.2 Introduction

Chronic insomnia is a widespread problem, affecting about ten percent of the
adult population. [3, 4] Insomnia does not only involve unsatisfactory sleep,
but also daytime complaints such as fatigue, attentional disturbances and mood
disturbances. These complaints can cause significant decreases in quality of life,
general health and labour productivity. [4]

People with insomnia often underestimate their amount of sleep compared
to objectively scored sleep, described as sleep state misperception. [45] Different
types of sleep state misperception can be distinguished, for example with respect
to total sleep time (TST), wake after sleep onset (WASO) or sleep onset latency
(SOL).

Delays in sleep onset are among the most common complaints of insomnia,
leading us to focus on the underlying mechanisms of misperception of SOL in
this study. Results from multiple studies suggest that sleep is possibly interpreted
as wakefulness due to physiological changes in the nature of the misperceived
sleep. [26, 46, 47] However, it is not exactly known what such changes might
entail. Different factors may play a role in the misperception of sleep onset, such
as cortical hyperarousal, sleep fragmentation, and changes in sleep protection
mechanisms such as sleep spindles.

First, sleep state misperception of the sleep onset might be related to hyper-
arousal, which is a key concept in the pathophysiology of insomnia. [48] Signs
of hyperarousal are normally observed during cognitive functions when someone
is awake. [49] In the PSG, cortical hyperarousal is reflected by an increased high
frequency spectral content of the EEG. [50] Common findings in insomnia are
increased high frequency spectral power over the night and a hampered decrease
of beta power during sleep onset compared to healthy subjects. [29,51] It was
proposed that cortical hyperarousal during the beginning of the night reduces
the differentiation between sleep and wakefulness [52] and interferes with the
usual decline of memory-related functions during sleep onset. [26,53] Indeed,
in one study a correlation was found between misperception of TST and NREM
beta activity within a mixed sample of subjects with primary insomnia, subjects
with insomnia secondary to depression and good sleepers. [32] In another study,
Krystal et al. compared spectral power during NREM sleep in three groups:
healthy subjects, subjects with subjective insomnia who slept normally according
to their PSG and subjects with objective insomnia who did not sleep normally
according to their PSG. [54] Subjects from the subjective insomnia group had
increased alpha, beta and sigma power and decreased delta power compared
to the other two groups. [54] A third study did not find an association of sleep
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state misperception with high frequent EEG activity. [55]
Second, sleep fragmentation might play a role in sleep onset misperception.

[56] It is known that in healthy subjects the sense of having been asleep prior
to awakening from NREM sleep is dependent on the length of the continuous,
prior sleep time. [35, 57] The perception of sleep may therefore be disturbed
when sleep is frequently interrupted. Interestingly, in 1988 a study reported
that perception of awakenings during sleep seemed to be disturbed in insomnia
patients. [58] The investigators asked insomnia patients and normal sleepers to
press a button each time they became aware of having just awakened during the
night, while their sleep was monitored using polysomnography. Results showed
that subjects with insomnia only reported awakenings when PSG showed they
had been sleeping continuously for at least 15 minutes prior to awakening.
[58] The authors explained these findings by assuming that a sleep duration
below 15 minutes was not long enough for the subjects with insomnia to have
experienced falling asleep. [58] In another study, Hauri et al. compared two
definitions of objective sleep onsets to subjective SOL in insomnia subjects:
according to the first definition sleep onset was defined as the start of the first
continuous 15 minutes of NREM2 sleep, and the second definition was according
to Rechtschaffen and Kales criteria, where sleep onset has been defined by the
first three consecutive sleep epochs. [59] A better agreement between subjective
and objective SOL was found when the first criterion was used. [59] These
findings might be particularly relevant for misperception of the sleep onset,
since some insomnia patients show many awakenings at the beginning of the
night, which might interrupt the process of falling asleep. [59] For this reason in
pharmaco-sleep studies the latency to the first consecutive 10 minutes of sleep is
usually reported [60], although this cutoff is still somewhat arbitrary.

Indications of a fragmented sleep on a macrostructural level are an increase
of Wake after Sleep Onset (WASO) and an increased number of awakenings.
Additionally, a higher percentage of light sleep stages and an increased number
of transitions between sleep stages could indicate sleep fragmentation. However,
sleep might also be disturbed by processes occurring on a too small timescale
to be visible in the hypnogram, such as microarousals or Cyclic Alternating
Patterns. [27, 34] For instance, when healthy sleepers wore a mask inducing
microarousals, they reported a longer SOL than a control group, while the SOL
calculated from the PSG was not longer than that of the control group. [61]

Finally, when looking at disturbances of sleep, studying sleep protection
mechanisms such as sleep spindles might provide additional information, since
it is hypothesized that these play a role in the protection of the stability of
sleep. [62] Thus, subjects with sleep state misperception might have less sleep
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spindles than subjects without sleep state misperception. Slow (9-12 Hz) and
fast (13-15 Hz) sleep spindles seem to represent different types and functions
and therefore should be examined separately. [28]

If indeed certain characteristics of sleep around sleep onset make it more
prone for misperception, we expect to find more of these parameters during the
first part of the night in people with sleep onset misperception. For example,
if sleep fragmentation is related to sleep onset misperception, we expect to
find an association between sleep fragmentation during the first sleep cycle and
sleep onset misperception. Subsequently, if we take these characteristics into
account, we should be able to model the influence of objective parameters on
the perception of the sleep onset, by fitting the parameters of the model to sub-
jective information about the sleep onset. Obtaining insight into the parameters
influencing the perception of sleep could also provide more information about
sleep in general and the factors determining its subjective quality.

Here, we further aimed to elucidate the mechanisms underlying mispercep-
tion of SOL, by analyzing an existing dataset comprising healthy elderly subjects
with insomnia and healthy age-matched subjects [63], We assessed the associa-
tion between the amount of sleep misperception expressed as SDSL and several
micro- and macrostructural parameters. Moreover, we modeled the perception
of sleep onset, to study the influence of sleep interruptions on subjective SOL in
more detail.

2.3 Methods

2.3.1 Design

Data for this paper were collected as part of a study by Leufkens et al., comparing
sleep macrostructure, on-the-road driving performance and driving related skills
between elderly insomnia patients frequently using hypnotics (n=22), elderly
insomnia patients infrequently using hypnotics (n=20), and age-matched healthy
subjects (n=20). [63] In the present study, sleep data from the insomnia patients
infrequently using hypnotics and the healthy subjects were re-analyzed.

2.3.2 Participants

Participants were recruited via newspaper advertisements and through a network
of local general practitioners in the region of Maastricht. The insomnia group
consisted of 20 patients with insomnia who did not use hypnotics or were using
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hypnotics no more than 3 nights per week. The control group consisted of 21
self-defined healthy subjects. [63]

As reported by Leufkens et al [63] all participants had to meet the follow-
ing inclusion criteria: aged between 50 and 75 years; good health based on a
pre-study physical examination, medical history, vital signs, electrocardiogram,
blood biochemistry, hematology, serology, and urinalysis. Exclusion criteria were
history of drug or alcohol abuse; presence of a significant medical, neurological,
psychiatric disorder, or sleep disorder other than insomnia; chronic use of medi-
cation that affects driving performance, except hypnotics; drinking more than 6
cups of coffee per day; drinking more than 21 units of alcohol per week; smoking
more than 10 cigarettes per day; and body mass index outside the range of 19 to
30 kg/m2. Additionally, insomnia patients had to meet the following inclusion
criteria , based onDSM-IV [63]: (1) subjective complaints of insomnia, defined
as difficulties initiating sleep (sleep latency >30 min) and/or maintaining sleep
(awakenings >30 min); (2) duration of more than 1 month; (3) the sleep dis-
turbance causes clinically significant distress or impairment; (4) insomnia does
not occur exclusively during the course of a mental disorder; and (5) insomnia
is not due to another medical or sleep disorder or effects of medication or drug
abuse. Volunteers were screened by a telephone interview, questionnaires, and a
physical examination to confirm that participants were healthy. Sleep complaints
were evaluated by a trained psychologist using Dutch versions of the Pittsburgh
Sleep Quality Index [64], the Sleep Wake Experience List [65], and the Gro-
ningen Sleep Quality Scale. [66] In addition, subjects completed a sleep log for
14 days. Major psychopathology was screened using the Symptom Checklist
90 Revised [67], the Beck Depression Inventory [68], the State-Trait Anxiety
Inventory [69], and the Multidimensional Fatigue Inventory. [70]

Seven patients from the insomnia group reported no history of using hyp-
notics. [63] The hypnotics used by the remaining 13 patients with insomnia were
temazepam (n=6), zopiclone (n=4), lorazepam (n=1), loprazolam (n=1) and
nitrazepam (n=1). [63] Their average duration of hypnotic use was 7.8 ± sd 7.9
years and their average frequency of hypnotic use was 4.1 ± sd 2.9 nights per
month. Hypnotics were used irregularly. All subjects had negative blood samples
the morning after the measurement night.

The study was conducted in accordance with the code of ethics on human
experimentation established by the World Medical Association’s Declaration of
Helsinki (1964) and amended in Edinburgh (2000). The protocol was approved
by the medical ethics committee of Maastricht University and University Hospital
of Maastricht. Participants were explained the aims, methods, and potential
hazards of the study and they signed a written informed consent prior to any
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study-related assessments.

2.3.3 Schedule

The study protocols of all participants were completed between December 2007
and February 2009. Sleep was evaluated during two nights of polysomnography
in the sleep laboratory: a habituation night and a test night. Participants arrived
at the sleep laboratory at 7.00 pm. The polysomnography electrodes were
attached at 9.00 pm and lights off time was at 11.30 pm. Participants were
awakened the next morning at 7.30. During study participation, caffeine use was
prohibited from 8 hour prior to arrival at the sleep laboratory. Alcohol intake was
prohibited from 24 hour prior to bedtime and smoking was prohibited from 1
hour prior to bedtime. Use of hypnotics was prohibited from one day prior to the
measurements night. This was confirmed by a blood test which was performed
on the morning after the measurement night, 15-20 minutes after awakening.

2.3.4 Assessments

Polysomnography - A four-channel electroencephalogram (C3, C4, F4, O2),
electrooculogram and electromyogram were performed. The data was recorded
with a Vitaport portable EEG recorder with a common average (A1-A2) and a
sample frequency of 256 Hz. Visual sleep staging was performed according to
R&K criteria [71] by experienced technicians from the sleep center of Stichting
Epilepsie Instellingen Nederland (Zwolle, the Netherlands). Technicians were
blinded for the group affiliations of the subjects. Each polysomnogram was
scored by one technician.

Subjective sleep – Subjective sleep was assessed on the morning after the PSG
measurements by asking subjects to report their subjective TST, SOL, number of
awakenings and time of early awakening.

2.3.5 Data Analysis

To determine the presence of physiological changes in sleep in patients with
insomnia disorder, we compared PSG data between the insomnia and the healthy
subject group, with respect to macro and microstructural parameters. We com-
pared the parameters during the whole night and during the first sleep cycle
separately. Macrostructural parameters consisted of number of awakenings,
WASO, number of sleep stage transitions, percentage of NREM1 and percentage
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of REM. Microstructural parameters consisted of delta/beta spectral power ratio
during each sleep stage, microarousals during REM, microarousals during nREM,
low-frequency sleep spindle index and high-frequency sleep spindle index.

To determine the relation of objective sleep with misperception of sleep
in patients with insomnia disorder, we assessed the correlation between the
aforementioned variables during sleep cycle 1 and the amount of sleep state
misperception at sleep onset in the insomnia group. The hypnogram was divided
into sleep cycles according to rules stated by Aesbach et al. [72]

2.3.6 Defining the amount of sleep misperception

The amount of sleep misperception at sleep onset was expressed in Sleep During
Subjective Latency (SDSL): the amount of sleep in minutes between the first
instance of any sleep stage and the subjective sleep onset (Figure 2.1). [56] This
metric was based on research of Saline et al., which proposed SDSL as a new
metric because large differences in the amount of sleep onset misperception
can be found, depending on which definition of sleep onset is used. [56] This
metric only focuses on the amount and characteristics of the sleep that has
been misperceived during the period of subjective sleep latency, rather than just
subtracting objective and subjective sleep onsets. [56] This way, epochs of WASO
will not be included in the SDSL.

Sleep
Wake

v

Objective sleep onset                    Subjective sleep onset

A

B

Figure 2.1: Example of calculation of Sleep During Subjective Latency (SDSL). A) Usually,
the amount of sleep misperception is calculated as the difference between subjective and
objective sleep onset, as indicated with the blue border. For this example, the amount of sleep
misperception is 25 minutes. B) When calculating SDSL, only the sleep during the difference
between subjective and objective sleep onset is taken into account. Any wake fragments are
ignored. In this case, the amount of sleep misperception is 10+3=13 minutes.
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2.3.7 Macrostructural parameters

Objective SOL was calculated as the time between lights off and the first epoch of
any sleep stage, according to AASM criteria. [40] The percentage NREM1 sleep
was calculated by dividing the number of epochs scored as NREM1 sleep by the
total number of epochs scored as sleep. The percentage of REM was calculated
using the same method.

2.3.8 Microstructural parameters

The microstructure of sleep was analyzed using Philips Somnolyzer software.
[73–76]

Power spectral analysis - For each subject the power spectra of the C4-A1 lead
were calculated. For one subject the C3-A2 lead was used because of artifacts
on the C4-A1 lead. Spectral power was calculated separately during manually
scored NREM2 sleep, Slow Wave Sleep (SWS) and REM, in order to eliminate
the influence of different stage distributions across subjects. The spectral power
during NREM1 sleep was not considered, because part of the subjects proceeded
directly from wake to NREM2 at the start of the first sleep cycle. Additionally,
the presence of movement artifacts in some other subjects lead to a very limited
availability of noise-free epochs in this sleep stage. For each 30s-epoch the
spectral power was an average of 15 mini-epochs of 4 seconds with 2-seconds
overlap. This way, a spectral resolution of 0.25 Hz within a frequency range of
0.25 to 40.0 Hz was obtained. Artifacts were automatically detected as described
by Anderer et al. [77] For each 30-s epoch, the number of artifact free mini-
epochs, ranging from zero to 15, was listed. In order to improve stability of the
spectral power calculations, only epochs with more than five artifact free mini-
epochs were considered for calculation of the spectral power. The delta/beta
spectral power ratio was calculated by dividing the activity in the delta frequency
band (0.5-4 Hz) by the activity in the beta frequency band (16.25-32.0 Hz),
thereby obtaining a relative index which was used as an indication of cortical
hyperarousal.

Arousals - Microarousals were detected by the Somnolyzer software package
based on AASM criteria. [40] In general, rather than deciding if a microstructural
element is present or not, Somnolyzer provides probabilities as output. Only
arousals with probabilities above 0.7 were selected. During REM sleep, arousals
additionally had to co-occur with a submental EMG increase of at least 75% in
order to be selected. The number of arousals during NREM sleep was divided
by the total number of hours of NREM sleep during that night. The number of
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arousals per hour during REM sleep was calculated using the same procedure.
Sleep spindles - Sleep spindles were only detected during the manually scored

NREM2 stages, in order to decrease the probability of incorrectly detecting other
events as sleep spindles. Additionally, only sleep spindles with a probability
above 0.95 were considered. Sleep spindles were separated in two groups: low
(<13 Hz) and high (>13 Hz) frequency sleep spindles. For both groups, the
sleep spindle index (SSI) was calculated as the number of sleep spindles per
minute of NREM2 sleep.

2.3.9 Modelling the perception of sleep onset

As a second step in the analysis we made a model of the influence of sleep
interruption on the perception of the sleep onset. In the model the following
hypothesis was tested: sleep bouts with too short duration at sleep onset are
perceived as wake. This assumption implies that the subject will perceive the
sleep onset as the start of the first sleep fragment of sufficiently long duration,
while ignoring preceding shorter sleep fragments. Because it is not known how
long an uninterrupted sleep fragment at sleep onset should be in order to be
perceived at sleep, this is the independent variable in the model, which we call
L. The model output was sleep onset, which was defined as the start of the first
continuous sleep fragment longer than L minutes, with L varying from 0.5 to
40. Any wake fragment of at least one epoch was considered as an interruption
of sleep. This procedure is illustrated in Figure 2.2. We compared the sleep
onset calculated from the model to the sleep onset perceived by the subject and
calculated the Mean Square Error (MSE) of the difference between the two.
We then selected the parameter L resulting in the smallest MSE. This was done
for each subject group separately. Importantly, it should be noted that in this
analysis we did not use SDSL, because for this analysis no measure of sleep onset
misperception was required.

2.4 Results

2.4.1 Subject characteristics

The insomnia group consisted of 10 males and 10 females (mean 60.8 ± sd 10.9
years old). The control group consisted of 13 males and 8 females (mean 61.7 ±
5.0 years old) [63].
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Both groups had a comparable objective SOL (insomnia mean 19 ± sd
13 minutes vs. healthy subjects mean 19 ± sd 15 minutes) [63]. However,
the untreated insomnia patients reported a significantly longer subjective SOL
than the healthy subjects (mean 68 ± sd 73 minutes vs. mean 35 ± sd 37
minutes) [63]. During the measurement night, out of 20 insomnia subjects 17
subjects reported a subjective sleep onset of 30 minutes or more, 9 subjects
reported waking more than 2 times at night and 13 subjects reported waking
up more than 30 minutes too early. We did not observe distinct subtypes during
this night, e.g. many patients had more than one complaint. The amount of
sleep misperceived at sleep onset was expressed as SDSL: the amount of sleep in
minutes between the first instance of any sleep stage and the subjective sleep
onset (Figure 2.1). Subjects with insomnia had an average SDSL of 40 ± 53
minutes and healthy controls had an average SDSL of 14 ± 28 minutes.

1            3   10                       

Sleep
Wake

v

1            3   10                       

1            3   10                       

Objective Sleep Onset

L=2 minutes

L=5 minutes

L=0.5 minutes

Figure 2.2: Follow-up analysis: definition of sleep onset according to our model. An imaginary
example of the sleep/wake pattern during a first sleep cycle is shown. A) If we assume that
sleep fragments with a length below 30 seconds are not perceived as sleep, the sleep onset
from the model is the same as the objective sleep onset according to the AASM definition. B)
If we assume that sleep fragments with a length below 2 minutes are not perceived as sleep,
the sleep onset from the model shifts to the second sleep bout. C) If we assume that sleep
fragments with a length below 5 minutes are not perceived as sleep, the sleep onset shifts past
the two shorter sleep bouts. Using this method, the sleep onset was defined for each value
of L between 0.5 and 40 minutes and compared to the sleep onset latency perceived by the
patient.
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2.4.2 Comparison between groups

For the parameters calculated from the whole night, no significant differences
were found between the insomnia group and the healthy subjects group at
p<0.01 (Table 2.1). However, during the first sleep cycle subjects with insomnia
had a lower delta/beta power ratio during NREM2 than healthy subjects (Table
2.2).

2.4.3 Associations with sleep state misperception

We found that a larger amount of sleep onset misperception expressed in SDSL
was correlated with a higher percentage of NREM1 and more WASO during the
first sleep cycle in the insomnia group (Table 2.3, Figure 2.3). In the healthy
subjects group, the spread of the sleep onset misperception was too small to
identify meaningful correlations.

Figure 2.3: The percentage of NREM1 and WASO in minutes versus the amount of sleep
onset misperception expressed in SDSL. Subjects with insomnia are shown by black circles
and healthy subjects are shown by red triangles. The healthy subjects show less variation in
SDSL compared to the subjects with insomnia.

When dividing all 41 subjects into two groups based on SDSL with a cut off of
20 minutes in order to be able to compare our results with earlier findings [56],
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we found that age and sex were very comparable between the groups (short
SDSL: age 60.6 ± 6.1 years, 5F 6M; long SDSL: age 60.7 ± 6.1 years; 5M 4F).

When examining the percentage of NREM1 during the first sleep cycle more
closely, we noticed that the NREM1 epochs were mostly present inside the SDSL
and to a lesser extend outside the SDSL (Figure 2.4). This effect was more
pronounced in subjects with a shorter SDSL than in subjects with a longer SDSL.
A longer duration of the SDSL was associated with a lower percentage of NREM1
during the SDSL (Spearman rho=-0.60, p<0.001). It should be noted that the
direction of this correlation was opposite to the correlation between the duration
of the SDSL and the percentage of NREM1 during the first sleep cycle.

SDSL<20 SDSL>20

0
10

20
30

40

Group

Pe
rc

en
ta

ge
 o

f N
R

EM
1

29
4

A First sleep cycle

SDSL<20 SDSL>20

0
10

20
30

40

Group

Pe
rc

en
ta

ge
 o

f N
R

EM
1

B SDSL

Figure 2.4: Comparison of two different methods to calculate the percentage of NREM1. A)
Percentage of NREM1 during the entire first sleep cycle. B) Percentage of NREM1 during the
Sleep During Subjective Latency (SDSL) only. The subjects are divided in two groups: subjects
with a SDSL of more than 20 minutes (N=15) and subjects with a SDSL of less than 20
minutes (N=21). Subjects with a SDSL shorter than one minute are not shown. Clearly,
in subjects with a short SDSL, a large part of the NREM1 epochs is concentrated within the
SDSL.

2.4.4 Modelling perception of sleep onset

We made a model of sleep onset perception, testing the following hypothesis:
sleep bouts with length under L minutes at sleep onset are perceived as wake.



30 Sleep EEG Characteristics Associated with Sleep Onset Misperception

Figure 2.5a shows the relation between SOL calculated from the model and
SOL perceived by the subjects of the insomnia group. The SOLs calculated for
L=0.5 minutes are shown in black. In this situation, the model assumes that the
subjective sleep onset occurs together with the first epoch of sleep, which has
a length of 30 seconds. This is equal to the objective SOL according to AASM
criteria. Clearly, a considerable mismatch between subjective and modelled
SOLs can be observed. The SOLs calculated for L=30 are shown in red. We
showed the results for L=30 because this proved to be the best model parameter
for the insomnia group (see next section). Applying the model with L=30
greatly reduced the mismatch between modelled and subjective SOL. Figure
2.5b shows the same information for the healthy controls. The initial mismatch
between subjective and modelled Sleep Onset Latencies for L=0.5 was smaller
than for the insomnia group. Applying the model with L=30 resulted in a large
mismatch between modelled SOLs and subjective SOLs, because the SOLs were
overestimated by the model. The minimum square errors for the difference
between modelled and subjective SOL for each value of L are shown in Figure
2.6. For insomnia, the closest match between subjective SOL and modelled SOL
was found for a length L of approximately 30 minutes. For the healthy subjects,
an optimum was found for a length L of approximately 10 minutes. However, no
clear improvement can be observed compared to L=0.5. For larger values than
L=20 minutes, the MSEs rapidly became larger than in the initial situation.

2.5 Discussion

We aimed to further elucidate the mechanisms involved in misjudgment of sleep
onset latency in patients with insomnia diagnosis according to DSM-IV criteria by
assessing the correlation of sleep misperception with macro and microstructural
parameters during the first sleep cycle. This approach provided additional
insight in factors that could play a role in the subjective quality of sleep and the
underlying mechanisms of misperception. In the insomnia group, sleep onset
misperception measured as SDSL was associated with increases in WASO and
a higher percentage of NREM1 sleep during the first sleep cycle. Moreover,
by making a model of the influence of frequent sleep interruptions on sleep
onset perception, we show that subjects with insomnia needed a longer time of
uninterrupted sleep to perceive it as such compared to controls.

The positive associations of sleep onset misperception with WASO and per-
centage of NREM1 during the first sleep cycle in the insomnia group confirm
the presence of lighter and more fragmented sleep. This is opposite to the
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Figure 2.5: Follow-up analysis: Subjective versus modelled Sleep Onset Latencies (SOLs) for
each subject group. A): Insomnia group. The Sleep Onset Latencies calculated for L=0.5,
assuming that subjective sleep onset occurs together with the first sleep epoch, are shown
by black circles. Another example of using the model, with parameter L=30, is shown by
red triangles. The hypothetical situation with equal modelled and subjective SOLs and a
MSE equal to zero is indicated with a dotted line. In the insomnia group, applying the
model with parameter L=30 reduces the mismatch between modelled and subjective SOLs.
B) Healthy subjects. In the healthy subjects group, the mismatch for L=0.5 was considerably
smaller than the mismatch in the insomnia group. Applying the model with parameter L=30
increased the mismatch.

study of Saline et al., who in a large retrospective dataset including subjects
with and without sleep apnea found that subjects with a SDSL of more than 20
minutes showed a lower percentage of NREM1, a higher percentage of NREM3
and a lower transition frequency than subjects with a SDSL of less than 20 min-
utes. [56] This difference can be explained by the fact that Saline et al examined
variables of sleep misperception during the SDSL, while we used the whole first
sleep cycle to calculate the variables. Since a sleep cycle starts with shallow sleep
which usually gets deeper as the sleep cycle progresses, subjects with a short
SDSL by default will show a lot of shallow sleep during their SDSL. This effect
is illustrated by our NREM1 data shown in Figure 2.4. These results show that
outcomes may greatly vary depending on the part of the night from which the
parameters are calculated. An advantage of calculating the parameters during
the first sleep cycle is that the data of subjects with a SDSL of zero still can be
included in the analysis. Additionally, the maximum SDSL that we found was
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Figure 2.6: Follow-up analysis: the minimum square errors (MSEs) for the difference between
modelled and subjective SOLs for each value of the model parameter L. Note that the two
plots have different scales on the y-axis. A) Insomnia group. A clear minimum is shown
at approximately L=30 minutes. B) Healthy subjects. The MSE shows a minimum at
approximately L=10 minutes, but no clear improvement is shown compared to L=0.5.

approximately equal to the length of an average sleep cycle.
Our results imply that, in our population, sleep onset misperception is related

to fragmentation of sleep on a macrostructural level; i.e. a subgroup of the
insomnia subjects showed significant sleep onset misperception and sleep frag-
mentation at sleep onset. However, no differences in percentages of NREM1 or
WASO were found between subjects with insomnia and healthy subjects. There-
fore, these variables appear to be correlated with sleep onset misperception,
without being a general characteristic of insomnia. In other words, we showed
that part of our insomnia subjects had biological characteristics which were
associated with sleep misperception, even while their sleep seemed objectively
normal on group level. This finding highlights the possibility that the same
amount of sleep fragmentation has different effects in insomnia patients than in
healthy sleepers.

Unlike some other studies [32,54], we did not find any associations of sleep
onset misperception with hyperarousal indicated by increased high frequency
spectral power. We also did not find any indications that REM sleep related
processes or disturbances on a small time scale, for example arousals, were
involved in sleep onset misperception in this group. Moreover, we did not find
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indications for impaired sleep protection mechanisms. However, because of a
limited number of subjects our analysis was limited to sleep spindle density at
the C4 electrode, although other characteristics like spindle length might play a
role in sleep state misperception. [33]

The only general difference we found between the PSG of subjects with
insomnia and healthy subjects was a lower delta/beta power ratio during NREM2
in the insomnia group, but only during the first sleep cycle. As mentioned before,
increased high frequency spectral power is a common finding in insomnia. [27]
Other differences in EEG parameters, such as microarousals and sleep spindles
vary greatly between studies, possibly because of the existence of different
subtypes within the insomnia population. [27]

Based on our results on the association between sleep fragmentation and
sleep onset misperception we hypothesize that a sleep fragment needs to have
a certain duration to be perceived as sleep, and that this duration is longer in
subjects with insomnia. Nevertheless, in a study of Bianchi a similar hypothesis
was not confirmed. [78] In their study two hypotheses were tested: epochs of
NREM1 are perceived as wake and sleep bouts under 10 minutes are perceived
as wake. [78] In both cases these hypotheses did not result in a match between
objective and subjective sleep duration. [78] We tested a somewhat more flexible
hypothesis: sleep bouts under L minutes at sleep onset are perceived as wake. In
our model, we tested varying lengths of L. Indeed, we found that the mismatch
between subjective and objective SOL in insomnia patients became smaller when
we applied the model. For insomnia patients, the best agreement between
modelled and subjective SOL was found when sleep epochs shorter than 30
minutes at sleep onset were not taken into account. This indicates that, in
insomnia patients, interruption of sleep after less than 30 minutes can reduce
the likelihood of its perception.

The healthy subjects group only showed a small discrepancy between sub-
jective and objective sleep onset latencies. As such the model only resulted
in very small improvements for approximately L=10 minutes. In a study of
Bonnet et al., 90 percent of the healthy subjects correctly estimated being asleep
after 16 minutes of continuous sleep. [57] This finding roughly corresponds to
the optimum found from our model, which was found for a sleep length of 10
minutes. Also, in the same study at 25 minutes of continuous sleep after sleep
onset, 100 percent of the subjects correctly estimated being asleep. [57] This is
an indication that including sleep lengths above 25 minutes most likely will not
result in any improvement of our model. Indeed, for larger values than L=20 the
MSEs rapidly became larger than in the initial situation. As far as we know the
aforementioned study protocol has not been repeated in people with insomnia
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and therefore these results cannot be compared. However, the different results
for the two groups suggest that, for the correct perception of sleep onset, subjects
with insomnia require longer continuous sleep fragments than healthy subjects.

One limitation of this study is that the study population contained only elderly
subjects. It is known that physiological changes of sleep occur with aging. For
example, sleep in elderly subjects is more fragmented, the number of arousals
increases and the density of sleep spindles decreases. [79, 80] Thus, elderly
subjects might consist of yet another subtype of insomnia with a different type
of sleep misperception and different sleep characteristics. Therefore, additional
research should be done in order to find out if our results can be generalized
to the whole population. Sleep changes occurring with age could also poten-
tially effect the correlation between SDSL and EEG parameters. Due to limited
statistical power we did not run a statistical analysis on the effects of age and
sex. However, the result that age and sex were very similar for subjects with
short and long SDSL leads us to believe that correlations were not confounded
by these parameters.

A second limitation is that most insomnia subjects in this study occasionally
used hypnotics at home, mostly temazepam and on average only on one night
per week. Although none of them used a hypnotic drug at the recording night,
it cannot be ruled out that some occasionally used a hypnotic drug at home
the week before. Therefore, withdrawal effects or rebound insomnia during
PSG nights might be a confounding factor. The sparse studies into the effect of
intermittent use of hypnotics suggest no rebound insomnia effect during ‘no-pill’
nights, but these studies are often limited to Z-drugs only. [81] Intermittent
and brief use of 7.5 mg Temazepam did not result in rebound insomnia in eight
elderly subjects with insomnia in one study. [82] Kales et al. did find moderate
rebound insomnia after withdrawal from intermittently used temazepam. [83]
However, this was tested in a group of only six subjects and the authors indicate
that according to their overall experience, “potential for rebound insomnia with
this drug is variable and relatively moderate”. [83] Together this suggests that it
is unlikely that our results are biased by medication withdrawal effects.

We modeled the influence of sleep interruption on subjective SOL, taking the
length of continuous sleep fragments at sleep onset into account. Indeed, we
found evidence that too short sleep fragments interrupted by WASO are perceived
as a single experience of wakefulness. An important observation in this regard
is that the presence of short sleep fragments at sleep onset does not necessarily
lead to large changes in parameters like amount of WASO and the number of
awakenings. Instead, the result of the model point towards the importance
of the timing of the sleep fragments. We also found additional evidence from
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the model that subjects with insomnia needed a longer time of uninterrupted
sleep to perceive sleep onset compared to controls. The reason for this is not
clear. One explanation might be that the perception of sleep onset coincides with
reaching stages of sufficiently deep sleep. This would imply that the process
of falling asleep is much slower for subjects with insomnia than for healthy
subjects. However, such dramatic differences in sleep architecture were not
shown from our results on the differences between subjects with insomnia and
healthy subjects during the first sleep cycle. As mentioned before, it is possible
that more subtle differences play a role which do not show when analyzing
conventional parameters

Therefore, a future analysis could be to zoom in to the dynamics of falling
asleep, for example using spectral power as an index of sleep depth. Another
next step could be to look at sleep stage transition dynamics. For example,
it was shown that subjects with insomnia have a higher probability to move
from N2 to N1 than healthy subjects. [84] However, these sleep stage dynamics
might be more important for other types of sleep misperception than sleep onset
misperception. Third, comparing (spectral) characteristics of epochs of sleep
perceived as wake to epochs of sleep perceived as sleep over the whole night
in a dataset with more detailed subjective information could be an interesting
approach. This type of analysis could also aid in answering the question whether
misperception of sleep onset and other types of sleep misperception, for example
misperception of WASO, have the same underlying mechanisms. However,
this type of analysis is difficult to perform while overcoming the problems of
automatically comparing light sleep with deeper sleep, as demonstrated in this
study, and would require multiple nights of the same subject with different
amounts of misperceived sleep.

Our model of sleep onset misperception only considers the length of the
sleep fragments. Other factors could be implemented in order to make it more
realistic. For example, possibly the length of the wake fragment following the
sleep fragment plays a role in sleep state misperception. In a preliminary study
using actigraphy, the average length of wakefulness necessary for morning recall
of nocturnal awakenings in healthy adults was approximately 4.5 minutes. [85]
This might imply that shorter awakenings can in turn be misperceived in the
same way as short sleep fragments. Such an assumption requires a sufficiently
large dataset to be able to use different combinations of model parameters, and
it might be challenging to entirely disentangle sleep and wake misperception
effects.

Our results open up avenues to further study the perception and misper-
ception of sleep in the context of insomnia. Interesting questions include for
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example: why do people with insomnia need more uninterrupted sleep time
for the perception of sleep onset than healthy people and does this mechanism
play a role in all insomnia patients or is it only a subgroup? If yes, what are
the characteristics of this subgroup and could these findings potentially have
implications for their preferred treatment? Answers to these questions could
bring us closer towards identifying the biological mechanisms underlying sleep
state misperception and, ultimately, to tailoring the treatment of insomnia to the
needs of individual patients.
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Table 2.1: Differences between subject groups (whole night).

Variable
Insomnia
patients
(n=20)

Healthy
subjects
(n=21)

t-test
Mann-Whitney
U

Macrostructural parameters

# awakenings 20.4 ± 11.0 17.9 ± 11.2
t=0.719,
p=0.477

# transitions 104 ± 44 101 ± 35
t=0.292,
p=0.772

WASO (minutes) 60 ± 39 43 ± 27
t=1.70,
p=0.098

% NREM1 sleep 7.6 ± 3.7 6.2 ± 3.0
U=166,
p=0.251

% REM sleep 18.5 ± 4.7 20.3 ± 6.4
t= -1.042,
p=0.304

Microstructural parameters

Delta/beta nREM2 45.3 ± 19.0 65.8 ± 29.6
U=115,
p=0.013

Delta/beta SWS 271 ± 144 273 ± 120
U=191,
p=0.620

Delta/beta REM 15.6 ± 6.9 20.1 ± 17.4
U=200,
p=0.794

Arousals/hour (nREM) 17.0 ± 7.9 12.3 ± 6.2
t=2.138,
p=0.039

Arousals/hour (REM) 9.8 ± 5.3 9.6 ± 5.8
t=0.137,
p=0.892

SSI (high frequent) 0.73 ± 0.84 0.36 ± 0.47
U=131,
p=0.039

SSI (low frequent) 1.24 ± 1.20 0.71 ± 0.93
U=128,
p=0.032

Differences between PSG parameters of the insomnia group and the healthy subjects
group over the whole night.
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Table 2.2: Differences between subject groups (sleep cycle 1).

Variable
Insomnia
patients
(n=20)

Healthy
subjects
(n=21)

t-test
Mann-Whitney
U

Macrostructural parameters

# awakenings 6.3 ± 5.2 4.8 ± 4.5
U=166,
p=0.244

# transitions 31 ± 17 32 ± 12
U=186,
p=0.531

WASO (minutes) 17 ± 19 12 ± 15
U=168,
p=0.267

% NREM1 sleep 7.7 ± 4.0 7.1 ± 3.6
U=186,
p=0.531

% REM sleep 14.7 ± 8.5 14.9 ± 7.4
t=-0.070,
p=0.945

Microstructural parameters

Delta/beta nREM2 43.7 ± 14.3 69.3 ± 38.7
t=-2.844,
p=0.009*

Delta/beta SWS 277 ± 155 279 ± 124
U=162,
p=0.460

Delta/beta REM 15.4 ± 6.5 20.4 ± 17.1
U=174,
p=0.874

Arousals/hour (nREM) 12.9 ± 10.9 8.7 ± 6.8
U=162,
p=0.301

Arousals/hour (REM) 8.3 ± 8.4 7.3 ± 8.4
U=151,
p=0.558

SSI (high frequent) 1.4 ± 1.3 0.66 ± 0.98
U=111,
p=0.0102

SSI (low frequent) 0.91 ± 0.10 0.43 ± 0.61
U=122,
p=0.022

Differences between PSG parameters of the insomnia group and the healthy subjects
group during the first sleep cycle. Asterisks indicate significant correlations (p<0.01).



2.5 Discussion 39

Table 2.3: Associations of amount of sleep misperceived with PSG parameters during
sleep cycle 1.

Variable during sleep cycle 1
Spearman (n=41)
Rho p=

Macrostructural parameters

# awakenings 0.36 (p=0.023)
# transitions 0.17 (p=0.286)
WASO (minutes) 0.34 (p=0.030)
% NREM1 sleep 0.42* (p=0.007)
% REM sleep -0.06 (p=0.732)

Microstructural parameters

Delta/beta nREM2 -0.52* (p<0.001)
Delta/beta SWS -0.34 (p=0.028)
Delta/beta REM 0.05 (p=0.73)
Arousals/hour (nREM) 0.19 (p=0.234)
Arousals/hour (REM) 0.25 (p=0.142)
SSI (high frequent) -0.21 (p=0.197)
SSI (low frequent) 0.02 (p=0.891)

Associations of amount of sleep misperceived, expressed in Sleep During Subjective
Latenct (SDSL; minutes) with PSG parameters calculated during the first sleep cycle.
Asterisks indicate significant correlations (p<0.01).



40 Sleep EEG Characteristics Associated with Sleep Onset Misperception



Chapter 3
Modelling Sleep Onset
Misperception in Insomnia

Published as:
Hermans LWA, Gilst MM Van, Regis M, et al. Modelling Sleep Onset Mispercep-
tion in Insomnia. Sleep, vol. 43 no. 8, 2020.



42 Modelling Sleep Onset Misperception in Insomnia

3.1 Abstract

Study Objective - To extend and validate a previously suggested model of the
influence of uninterrupted sleep bouts on sleep onset misperception in a large
independent dataset.

Methods - Polysomnograms and sleep diaries of 139 insomnia patients and
92 controls were included. We modelled subjective sleep onset as the start of
the first uninterrupted sleep fragment longer than Ls minutes, were parameter
Ls reflects the minimum length of a sleep fragment required to be perceived
as sleep. We compared the so-defined sleep onset latency (SOL) for various
values of Ls. Model parameters were compared between groups, and across
insomnia subgroups with respect to sleep onset misperception, medication use,
age and sex. Next, we extended the model to incorporate the length of wake
fragments. Model performance was assessed by calculating Root Mean Square
errors (RMSEs) of the difference between estimated and perceived SOL.

Results - Participants with insomnia needed a median of 34 minutes of undis-
turbed sleep to perceive sleep onset, while healthy controls needed 22 minutes
(Mann Whitney U=4426, p<0.001). Similar statistically significant differences
were found between sleep onset misperceivers and non-misperceivers (median
40 vs 20 minutes, Mann Whitney U=984.5, p<0.001). Model outcomes were
similar across other subgroups. Extended models including wake bout lengths
resulted in only marginal improvements of model outcome.

Conclusions - Patients with insomnia, particularly sleep misperceivers, need
larger continuous sleep bouts to perceive sleep onset. The modelling approach
yields a parameter for which we coin the term Sleep Fragment Perception Index,
providing a useful measure to further characterize sleep state misperception.
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3.2 Introduction

Both the diagnosis and treatment of insomnia typically rely on self-reported data
instead of objective measurements. However, if objective recordings are carried
out, people with insomnia often overestimate their sleep onset latency (SOL)
compared to objectively measured sleep. [26,45] Such discrepancies between
the amount of subjective sleep and the amount measured using polysomno-
graphic recordings are described as sleep state misperception. [26,45] Earlier
results suggest that objectively measurable characteristics of sleep, such as sleep
fragmentation, might play a role in sleep state misperception. [26,45,86]

Sleep fragmentation might be particularly relevant for misperception of
the sleep onset, since some insomnia patients show many awakenings at the
beginning of the night, possibly interrupting the process of falling asleep. [59]
Indeed, in healthy sleepers, the sense of having been asleep prior to awakening
from NREM sleep was found to depend on the length of the uninterrupted prior
sleep time. [35,57] In a study by Hauri et al., three criteria were used for scoring
sleep onset in insomnia patients: the first epoch scored as stage 2 sleep, the
beginning of the first 15 minutes of stage 2 sleep and the beginning of the first
30 minutes of stage 2 sleep. [59] When using the second criterion, the smallest
difference between subjective SOL and objectively scored SOL was found. [59]
Thus, insomnia patients seem to require a certain amount of continuous sleep
to recall their sleep onset. Therefore, it is possible that assessing traditional
measures solely from sleep recordings, such as objective SOL, wake after sleep
onset (WASO) and number of awakenings, leads to overlooking other informative
characteristics influencing the quality of sleep, such as the length and timing of
individual wake and sleep bouts.

In a previous pilot study, we hypothesized that the length of uninterrupted
sleep fragments at sleep onset influences the perception of the SOL, i.e. that
too short sleep fragments are not perceived as sleep. [87] Based on polysomno-
graphic data of 20 elderly participants with insomnia and 21 elderly healthy
participants, we constructed a model to quantify the influence of polysomno-
graphically monitored sleep lengths on sleep onset perception. We defined
subjective sleep onset as the start of the first uninterrupted sleep fragment longer
than L minutes. Sleep length parameter L, defined as the minimum length of a
sleep fragment required to perceive sleep onset, was assigned a value between
0.5 and 60 minutes. We assessed the discrepancy between the objective measure
and the so-modelled perception of SOL. Results showed that insomnia patients
require longer uninterrupted sleep fragments to adequately perceive sleep on-
set than the healthy controls. Notably, the perception of sleep in insomnia
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patients could even be influenced by interruptions of sleep fragments within 30
minutes. [87]

These results were found in an elderly population of limited size. Thus, it is
not known whether the findings on the influence of the length of sleep fragments
on sleep onset misperception are generalizable to all insomnia patients or only
to this specific subgroup. In the normal aging process, changes in sleep pattern
occur, which might influence sleep fragmentation at sleep onset as well as sleep
state misperception. These changes include a decrease in the amount of slow
wave sleep, an increase in the amount of NREM1 and NREM2 sleep, a decrease in
REM latency, an increased number of spontaneous arousals and an advancement
of the circadian sleep cycle. [80,88,89] Besides age, medication use can induce
changes in sleep architecture. For instance, benzodiazepines are known to cause
a reduction of the amount of slow wave sleep. [17, 90, 91] Thus, individual
differences in age and medication use potentially influence the results from the
sleep length model.

Another factor that may influence results from the sleep length model is the
length of the awakenings. In our previous research, we only included the length
of sleep fragments, and assumed that wake fragments of any length disturb sleep.
It is possible that awakenings shorter than a certain threshold are misperceived in
the same way as short sleep fragments. This possibility is confirmed by the finding
that healthy people often underestimate their number of awakenings. [24,92]
Furthermore, in a preliminary study using actigraphy, the average length of
wakefulness necessary for morning recall was approximately 4.5 minutes. [85]
Taking the length of both sleep and wake fragments into account when modelling
sleep onset misperception could increase our understanding of its underlying
mechanisms.

Here, we aimed to validate the previously proposed model of the influence of
sleep bout lengths on the perception of sleep onset in a large independent dataset
containing patients with insomnia as well as healthy controls. We also tested the
sleep length model in subgroups of insomnia patients, with respect to different
age, gender and medication use. Additionally, to increase our understanding of
the factors mediating the perception of sleep, we developed and tested extended
models which include parameters reflecting the length of wake fragments.



3.3 Methods 45

3.3 Methods

3.3.1 Design

We validated the previously constructed sleep length model of the influence of
uninterrupted sleep bout lengths on sleep onset misperception. We analyzed a
retrospective dataset of polysomnography (PSG) recordings from 139 insomnia
patients and 92 healthy controls from Sleep Medicine Center Kempenhaeghe
Heeze, the Netherlands. The applicable protocol (20190523.3) was approved by
the medical ethics committee of Sleep Medicine Center Kempenhaeghe. The data
of the healthy controls was collected as part of the Healthbed study, of which the
protocol (W17.128) was approved by the medical ethics committee of Maxima
Medical Center, Veldhoven, the Netherlands.

3.3.2 Insomnia Patients

All PSGs of insomnia patients were recorded as part of usual clinical care between
2013 and 2017. The first PSG of a participant was selected when more than
one recording was available. We included patients with a clinical diagnosis of
“psychophysiological insomnia” or “paradoxical insomnia” according to ICSD-2
criteria [17], grouping them together in order to include a broad range of sleep
onset misperception. Additional inclusion criteria for the study were: 1) age
above 16, 2) complete PSG recording of at least one night available and 3) a
complete subjective sleep diary of the PSG night available. Exclusion criteria
were: 1) major medical comorbidities potentially influencing the PSG recording
(as determined by an experienced somnologist) and 2) major sleep-related co-
morbidities other than insomnia that could fully explain the sleep complaints
of the patient. For each participant, presence of psychiatric co-morbidities,
and sleep comorbidity (mainly mild OSA and restless legs syndrome) were
coded. Additionally, sleep influencing medication used was recorded and coded
into four categories: benzodiazepine and z-hypnotics, sedating antidepressants,
neuroleptics and melatonin or gabapentin. Medication from these four categories
is further referred to as ‘sleep medication’. Other medication was not coded.

3.3.3 Healthy Controls

PSGs of healthy controls were recorded as part of the Healthbed study, which
aimed to obtain sleep recordings in healthy people to develop new technologies
for sleep assessment. Inclusion criteria were: 1) age between 18 and 65 and 2)
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the ability to read and speak Dutch. Exclusion criteria were: 1) any diagnosed
sleep disorders 2) a Pittsburgh Sleep Quality Index [64] ≥ 6 or Insomnia Severity
Index [93] > 7, 3) indication of depression or anxiety disorder measured with
the Hospital Anxiety and Depression Scale [94] (score >8) 4) pregnancy, shift
work, use of any medication except for birth control medicine, and 5) presence
of clinically relevant neurologic or psychiatric disorders or other somatic disorder
that could influence sleep.

3.3.4 Assessments

Polysomnography - A clinical video-polysomnography was performed according
to the AASM recommendations. Visual sleep staging was performed according
to AASM criteria [40] by experienced and certified sleep technicians from Sleep
Medicine Center Kempenhaeghe. Insomnia recordings were scored by various
technicians (including BH) as part of usual clinical care. Healthy controls were
scored by one technician (BH). In a previous institutional sleep scoring reliability
check, inter-scorer reliability of BH compared to other technicians was assessed
as 85.6% on average (range 83-88%).There were no systematic differences
between recordings scored by different technicians for SOL, WASO or number
of awakenings. Additionally, there were no systematic differences between
recordings scored by BH and other technicians.

Subjective sleep – Subjective sleep was assessed on the morning after the PSG
measurements by asking the participants to indicate time awake in bed, lights
off time, time asleep, time awake and time outside of bed using a graphical sleep
diary with a time resolution of 15 minutes.

3.3.5 Sleep Length Model

General

The goal of the sleep length model was to estimate perceived sleep onset based
on sleep architecture from the hypnogram. In the model, it was assumed that
sleep bouts with insufficient length at sleep onset are perceived as wake. [87]
Therefore, sleep onset was defined as the start of the first sleep fragment longer
than Ls minutes, where sleep length Ls was the independent parameter of the
model, varying from 0.5 to 60 minutes, with an increase of 0.5 minutes. Any
wake fragment of at least one 30s epoch was considered as an interruption
of sleep. This procedure is illustrated in Figure 2.2. We compared the sleep
onset calculated from the model to the sleep onset perceived by the participants
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and calculated the root Mean Square Error (RMSE), where the error was the
difference between the two values of sleep onset. We then selected the parameter
Ls resulting in the smallest RMSE. RMSE could be regarded as an indicator of
model performance, where a lower value indicates better model performance.
Occasionally participants reported a subjective total sleep time of zero minutes,
resulting in an unavailable subjective SOL. In these cases, the subjective SOL
was set to the total time spent in bed according to the lights off time of the sleep
recording. This methodological choice may influence the results of the model.

Calculating Individual Model Outcomes

Since individuals with more sleep onset misperception have the highest RMSE,
pooling all individuals together leads to obtaining parameter estimates that are
driven by data from individuals with large sleep misperception. Therefore, as an
alternative, we applied the sleep length model on each individual participant,
calculating an individual estimated sleep onset for each model parameter Ls.
Subsequently, we selected the individual Ls parameter resulting in the smallest
absolute difference between estimated and perceived sleep onset for the indi-
vidual participant, and aggregated the differences on the group level. Often,
multiple values of Ls resulted in an optimal model performance for an individual,
since typically not all lengths of sleep fragments are available at sleep onset.
Therefore, for each participant the average of all Ls parameters with the smallest
error was calculated.

Analyzing Subgroups of Insomnia

First, the sleep length model was applied to insomnia patients and healthy con-
trols separately. Subsequently, the model was applied to several subgroups of
insomnia patients separately. We created various subgroups by dichotomizing
the insomnia cohort with respect to sex, age, medication use or not, indicating
subjective sleep on the sleep diary or not and amount of misperceived sleep
at sleep onset. With respect to age, the dataset was divided into participants
younger than 50 and participants of 50 years or older. This cutoff was chosen
because architectural sleep changes are already present at middle age. [79] The
amount of misperceived sleep at sleep onset was defined as the difference be-
tween the subjective sleep onset and the objective sleep onset from the PSG. The
dataset was divided into participants with more than 30 minutes of misperceived
sleep and participants no more than 30 minutes of misperceived sleep. Healthy
controls were not divided into subgroups.
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Assessing Model Performance

Model performance was assessed by leave-one-out cross-validation to avoid over-
fitting. This was done separately for the insomnia group and the healthy controls.
For each participant, the model was applied to the other N-1 participants, and
individual model parameters were calculated as described in the section ’Cal-
culating Individual Model Outcomes’. Then, the median of these individual Ls
parameters was used to estimate subjective SOL for the participant that was left
out. Subsequently, the error committed on such individual was calculated as the
difference between estimated subjective SOL and actual subjective SOL.

Inclusion of wake parameter

The combined influence of the lengths of sleep and wake fragments on the
perception of the sleep onset was assessed for all insomnia patients using two
different methods. The first method was to add an independent parameter Lw to
the sleep length model. This wake parameter Lw consists of the length of wake
fragments at sleep onset in minutes, with Lw varying from 0.5 to 5 minutes. We
assumed that awakenings shorter than Lw minutes are too short to be perceived
as a disturbance of sleep and, therefore, they were not taken into account in
the perception of the length of the sleep fragments. The second method was
to introduce an alternative model, assuming that, instead of a minimum sleep
length, a minimum percentage of sleep within a certain window is required
to perceive sleep onset. The independent variable of the model was called
windowed Sleep Efficiency (SEwin). Both combined sleep/wake models are
explained in more detail in the supplemental section.

Statistical Analysis

Unless stated otherwise, demographic data are presented as mean /pm SD (min –
max) or n (%). Sleep length parameters Ls were reported using median and Inter
Quartile Ranges because of non-normality of the data. Sleep length parameters
were compared between insomnia patients and healthy controls and between
dichotomized insomnia subgroups, using a Mann Whitney U test. Statistical
analyses were done using R software. [95] A p-value below 0.05 was set to
implicate statistical significance.
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3.4 Results

3.4.1 Characteristics of Participants

Demographic characteristics of the included healthy subjects and insomnia pa-
tients are listed in Table 3.1, together with overall subjective and objective sleep
characteristics. In total, 86 insomnia patients had a diagnosis of psychophysio-
logical insomnia and 53 patients had a diagnosis of insomnia with sleep state
misperception. All patients were grouped together as one insomnia group. Table
3.2 lists the characteristics of the insomnia patients regarding age, medication
use and sleep-related and psychiatric co-morbidities. Other co-morbidities, for
example cardiovascular, were not labeled. In total, 50 insomnia patients (35.9%)
used medication within one of the four predefined medication categories. Of
these, 11 participants used more than one type of sleep medication. A large
range of SOL misperception was found in the insomnia group: the differences
between subjective and objective SOL was median 37 IQR 120 minutes (-82
- 478). In total, 12 people with insomnia reported no subjective sleep at all.
However, their objective SOL had a median 33.7 and an IQR of 26.3 (4 - 118)
minutes and their objective TST was 324.7 ± 125.6 minutes (104 - 533). For
the healthy controls, the difference between subjective and objective SOL had
a median of 10.5 and an IQR of 31 minutes (-67 - 209). Among the healthy
controls, 18 participants overestimated their SOL by more than 30 minutes, and
eight participants overestimated their SOL by more than 60 minutes.

3.4.2 Modelling perception of Sleep Onset

Insomnia versus Healthy Controls

Figure 3.1 shows the RMSEs corresponding to various values of Ls. For the
insomnia patients, the best model performance i.e. the lowest RMSE was ob-
tained for Ls=38 minutes (Figure 3.1a). The RMSEs between Ls=33 and Ls=38
were very similar. For the healthy controls, the minimum RMSE was at Ls=21,
but RMSEs were very comparable between Ls=0.5 and Ls=21 (Figure 3.1b).
When the optimal parameters were calculated for each individual participant
and then averaged on the group level, a significant difference between insomnia
patients and healthy controls was found (Figure 3.1c); insomnia median 34.0,
IQR 23.1 minutes; healthy controls median 21.8, IQR 35.3 minutes. Mann
Whitney U=8234.5, p<0.001). To assess whether the difference was primarily
caused by the subgroup not reporting any subjective sleep in their diary, we
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Table 3.1: General characteristics of subjective and objective sleep.

Healthy Participants Insomnia Patients

N 92 139

Age (years) 36.0 ± 13.7 46.7 ± 13.7

Males (%) 38 (35 M, 57 V) 32 (45 M, 93 V)

Objective SOL (min)
Median 7 IQR 9
(0 - 67)

Median 15 IQR 25
(1 - 149)

Subjective SOL (min)
Median 17 IQR 36
(0 - 209)

Median 65 IQR 123
(0 – 480, i.e. no sleep)

Objective TST (min)
Median 438 IQR 59
(229 - 511)

Median 393 ± IQR 76
(376 - 511)

Subjective TST (min)
Median 420 IQR 60
(180 - 522)

Median 240 IQR 165
(0 - 465)

Table 3.2: Medication use and comorbidity in insomnia patients.

Medication # (%) Co-morbidities # (%)

Hypnotics 27 (19.4) Depression 21 (15.1)

Antidepressants 14 (10.0) Anxiety 13 (9.3)

Melatonin or gabapentin 10 (7.2) ADHD 7 (5.0)

Neuroleptics 10 (7.2)
Other psychiatric
diagnosis 16 (11.5)

Increased PLM index 11 (7.9)

Mild OSA 4 (2.9)
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excluded this group from the analysis, and still found a significant difference
(insomnia sub selection 31.0 IQR 22.5 minutes, healthy controls median 21.8
IQR 35.3 minutes, Mann Whitney U=7138.5, p=0.008).
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Figure 3.1: Model outcomes for all participants. A) Insomnia patients (n=139). The
optimum of the model is at Ls=38 minutes. B) Healthy controls (n=92). The optimum
of the model is at Ls=21 minutes, but the improvement of the RMSE compared to Ls=0.5
minutes is very small. C) Individual parameters per group.

Model Performance

When using leave-one-out cross-validation to assess the performance of the
model, the error of the insomnia group had a median of 11.5 and an IQR of
77 minutes. In contrast, the difference between subjective and objective SOL
using Ls=0.5, i.e. according to AASM criteria, had a median of 37 and an IQR of
120 minutes, as reported before. The improvement of the error was statistically
significant (Mann Whitney U=12704, p<0.001). In the healthy group, the error
had a median of -2 and an IQR of 32. Figure 3.2 shows histograms of individual
differences between subjective SOL and objective SOL according to AASM criteria
for the insomnia group and healthy controls, and histograms of individual errors
resulting from the cross-validation. This figure shows that for insomnia patients,
after applying the model, the errors were centered around zero. However, still a
large variability between individuals is visible. In the healthy controls, applying
the model did not result in a large improvement.
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Figure 3.2: Model performance. A) Difference between individual subjective Sleep Onset
Latencies (SOLs) and objective SOLs according to AASM criteria in the insomnia group.
Clearly, most participants with insomnia overestimate their sleep onset compared to the
objective SOL that was obtained using AASM criteria. B) Error between perceived SOL and
estimated SOL, resulting from leave-one-out cross-validation in the insomnia group. The
errors are now centered around zero. However, still a large variability between individuals is
visible. C) Difference between individual subjective Sleep Onset Latencies (SOLs) and objective
SOLs according to AASM criteria in the healthy controls. Here, the error is centered around
zero, and the variability is lower than in the insomnia group. D) Error between perceived
SOL and estimated SOL, resulting from leave-one-out cross-validation in the healthy controls.
Applying the model to healthy controls did not greatly improve the results.

Insomnia Subgroups

We calculated individual model parameters for different subgroups of insomnia
patients, dichotomized with respect to sex, age (< or >= 50 years) and use of
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sleep medication. No differences were found between any of the groups (Table
3.3).

Figures 3.3a) and 3.3b) show model outcomes for participants reporting
subjective sleep in their sleep diary and participants reporting no subjective sleep
at all. Clearly, the model results for participants reporting no sleep were very
different from the results for the other subgroups. The optimum was shifted
maximally to the right, which could be expected since these participants did
not perceive any of their sleep fragments. When only applying the model to
participants reporting subjective sleep (Figure 3.3a), the optimum Ls shifted to
the left at approximately 23 minutes. Additionally, as expected, the baseline
sleep onset misperception at group level decreased and the difference between
baseline sleep onset misperception and estimated sleep onset misperception
became smaller. As expected, a significant difference was found between average
individual sleep parameters of participants reporting no subjective sleep and
participants reporting subjective sleep (Table 3.3). It should be noted that partic-
ipants reporting no subjective sleep did show an increased sleep fragmentation
and lighter sleep compared to the remaining participants, indicated by increased
WASO (no subjective sleep 140.3 ± 86.9 minutes vs. subjective sleep 80.3 ±
53.2 minutes; p=0.037) and a higher percentage of NREM1 (no subjective sleep
group 16.4 ± 7.5 % vs. subjective sleep group 11.4 ± 5.7 %; p=0.039).

Figures 3.3c) and 3.3d) show model outcomes for participants with no more
than 30 minutes of sleep onset misperception and participants with more than
30 minutes of sleep onset misperception. Sleep onset misperception was defined
as the difference between subjective and objective SOL. The optimum of the
group with less misperception was found at Ls=12.5 minutes and the shape
of the graph was very similar to the graph of the healthy controls in Figure
3.1b). The optimum for the group with more misperception was found at Ls=46
minutes. Average individual parameters for the two groups were significantly
different (Table 3.3). Histograms of individual optimal model parameters are
shown in Figure 3.4 for participants with no more than 30 minutes of sleep onset
misperception, participants with more than 30 minutes of sleep misperception
and participants reporting no subjective sleep.

Adding Wake Length Parameter to the Model

In the first combined sleep/wake lengths model, only Lw=1 minute resulted
in a slightly better performance of the model compared to Lw=0.5, which is
equal to the initial model described in section 1.1 (Lw=1, Ls=38, RMSE=139.8
vs. Lw=0.5, Ls=45, RMSE=142.4). Other Lw parameters did not improve the
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Table 3.3: Averaged individual model outcomes for different insomnia subgroups.

Group
Number of
participants

Median parameter Ls
(min)

Mann Whitney U

Sex

Male 45 34.0 IQR 23.9

U=2263.5, p=0.505Female 93 33.9 IQR 23.8

Age

< 50 years 76 34.4 IQR 23.7

U=2629, p=0.321<= 50 years 63 31.0IQR 23.1

Use of sleep medication

No 89 33.5 IQR 24.4

U=2294.5, p=0.764Yes 50 33.8 IQR 22.3

Subjective TST

> 0 min 89 31.0 IQR 22.5

U=1480.5, p<0.001= 0 min 50 67.1 IQR 10.1

Misperceived SOL

< 30.5 min 89 20.3 IQR 29.8

U=984.5, p<0.001> 30 min 50 39.8 IQR 26.3

performance of the model.
In the second sleep/wake model, assuming that sleep onset is perceived the

first moment a threshold percentage of sleep is reached, the lowest RMSE was
obtained for a SEwin of 98% and a window of 60 minutes. Again, there was an
improvement, but this improvement was small compared to the initial model
(RMSE SEwin model 141.8 vs. sleep length model 142.4). The results of both
sleep/wake models are further discussed in the supplemental materials. On the
group level, 67% of the wake fragments had a duration of one minute or shorter.
Moreover, only approximately 10% of the awakenings had a duration longer
than 5 minutes.
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Figure 3.3: Model outcomes for insomnia subgroups with different characteristics of sleep
onset misperception. A) Participants with a subjective Total Sleep Time (TST) above zero
(n=127). B) Participants with a subjective Total Sleep Time of zero, who did not indicate
subjective sleep on their sleep diary (n=12). C) Participants with a sleep onset misperception
(subjective – objective SOL) of 30 minutes or less (n=61). D) Participants with a sleep onset
misperception of more than 30 minutes (n=78). Please note that the y-axis differs across
figures.

3.5 Discussion

In this study we aimed to increase our understanding of the underlying mech-
anisms of sleep state misperception by quantifying the influence of objectively
measured sleep fragmentation on sleep onset perception. We validated a pre-



56 Modelling Sleep Onset Misperception in Insomnia

Optimal Sleep Length Ls

F
re

q
u
e
n
c
y

0 20 40 60 80

0
5

1
0

1
5

2
0

A Misperceived Sleep < 30 min

Optimal Sleep Length Ls

F
re

q
u
e
n
c
y

0 20 40 60 80

0
5

1
0

1
5

B Misperceived Sleep > 30 min

Optimal Sleep Length Ls

F
re

q
u
e
n
c
y

55 60 65 70 75 80

0
1

2
3

4
5

Subjective TST = 0
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misperception (n=61). B) Participants with more than 30 minutes of sleep misperception
(n=78). C) Participants reporting no subjective sleep (n=12). This latter group is overlapping
with the participants with more than 30 minutes of sleep onset misperception in B.

viously proposed model of the influence of the length of uninterrupted sleep
fragments on the perception of sleep onset [87], here referred to as the sleep
length model, in a large independent dataset including insomnia patients as
well as healthy people. Moreover, we extended the model to also include the
influence of the length of wake fragments.

Application of the sleep length model to insomnia patients and healthy
controls confirmed earlier findings that the perception of sleep onset is influenced
by the length of uninterrupted sleep fragments [35,57,59], and strengthened our
previous hypothesis that insomnia patients require longer uninterrupted sleep
fragments to adequately perceive sleep onset compared to healthy controls. [87]
Patients with insomnia required a median of 34 minutes of undisturbed sleep to
adequately perceive their sleep onset. Importantly, this number is approximately
similar to the average time of 30 minutes that we found in the initial small study
using a separate dataset. [87] Results on model outcomes show that applying
the model to the insomnia group reduced the median error in the prediction of
subjective SOL, compared to only using objective SOL according to the AASM
criteria. For the healthy controls, there was no large reduction of the median
error. After applying the model, still a large variability between individuals
was present, particularly in the insomnia group. This was as expected, since
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sleep misperception is most likely influenced by multiple different factors. [26]
Additionally, from early research it was shown that explaining the subjective
experience of sleep using objective parameters from the PSG is difficult. For
example, Bianchi et al. tested three different hypothesis about the perception
of sleep: N1 is perceived as wake; sleep bouts under 10 minutes are perceived
as wake; or N1 and N2 are perceived in a weighted fashion. [78] None of
these hypotheses resulted in a match between objective and subjective sleep
duration. [78] In another study, it was found that parameters obtained from
polysomnography, such as sleep stage percentages and sleep transitions, did only
explain very little of the variance of subjective ratings of sleep quality. [25] In
that light, the fact that misperception of the SOL could partly be explained by
sleep fragmentation in our study seems quite promising.

We showed that the sleep length model is broadly applicable to insomnia
patients with different characteristics, considering that there was no difference in
subgroups of the insomnia group regarding age, sex and sleep medication used.
Although no differences were found for age, sex and sleep medication, model
outcomes did differ based on the subjective perception of sleep. In general,
participants with more sleep onset misperception required longer uninterrupted
sleep fragments to perceive sleep onset. In agreement with this, we observed that
participants with less than 30 minutes of sleep onset misperception had model
outcomes visually similar to healthy controls. This leads to the conclusion that
the actual distinction should be made between sleep onset misperceivers and
people with a normal perception of sleep, instead of between insomnia patients
and healthy people.

A rather extreme subgroup of insomnia patients overestimating their SOL was
formed by 12 participants reporting no subjective sleep at all, i.e., they did not
perceive any of their sleep fragments. Although these participants constitute less
than 10% of our population, they largely influenced the RMSE of the model on
the group level due to the large difference between objective and subjective SOL.
However, when these participants were excluded from the model calculations,
still a significant difference in model parameters was found between insomnia
patients and healthy controls. Besides largely influencing model results, people
reporting no subjective sleep are challenging to model because subjective SOL
is required as an input. However, rather than leaving them out of the analysis
and reducing the applicability of the model, the subjective SOL was set to the
time spent in bed. Based on the reasoning applied in the model, one could
hypothesize that these participants have a whole night of fragmented sleep with
only sleep fragments shorter than approximately 34 minutes, which was the
median threshold for perceiving sleep onset in insomnia patients. Indeed, an
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increased sleep fragmentation was found in this subgroup, but in general still
sleep fragments longer than 34 minutes were present.

We explored two alternative, extended models reflecting the combined in-
fluence of the lengths of both sleep and wake fragments. Both resulted only
in marginal improvements of model performance. From these results we can
conclude that short and long awakenings influence sleep misperception to the
same extent. In other words, the length of the sleep fragments seems to have
a larger influence on the perception of sleep onset than the length of the wake
fragments. Results from the second extended model, in which we assumed that
a minimum windowed sleep efficiency was required to perceive sleep onset,
were not considered an improvement, since most wake fragments were very
short. Similar results were found by Dijk et al., who studied the regulation of
frequency and duration of awakenings in older and younger healthy people. [96]
They found that elderly people (>63 years old) had an increased frequency of
awakenings compared to younger people (<31 years old), but the distribution
of wake lengths was similar across the two groups. [96] Approximately 50% of
the awakenings had a length of 0.5 minutes and only 5-10% of the awakenings
was longer than 4 minutes. [96] Since this relatively infrequent occurrence of
long wake fragments heavily influenced the model results and does not seem
unique to our dataset, we expect that modelling the influence of wake lengths
on sleep onset misperception in general will not provide better results, even if
other assumptions were used or other groups of participants were studied.

This study has several limitations. First, due to the small sample sizes of the
medication subgroups, it was not possible to run separate analyses for specific
medication types, even though different types of medication can influence sleep
architecture in different ways. [17] Furthermore, we did not have full specific
information about the frequency and timing of medication intake. Second,
calculating optimum parameters for individual participants presents a large
uncertainty due to the limited number of sleep fragments that were available
for our calculations. Nevertheless, as shown before, this approach has several
advantages over immediately calculating the RMSE on the group level, such as
reducing overestimation of the sleep length parameter caused by individuals with
considerably large sleep misperception. Additionally, it provides the possibility
to easily compare groups by using statistical analysis. To make the calculation
for individuals more accurate, it might be fruitful to consider either multiple
moments of falling asleep or multiple nights of sleep measurements for each
individual participant. Multiple nights per individual are difficult to obtain
from retrospective clinical datasets, and prospective studies are required for
this purpose. In our case, repeated PSG recordings were done in only a very
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small percentage of participants, and those were all recorded after a treatment
intervention such as CBT-I. We did not include these recordings, because of
the possibility that the interventions altered the individual’s perception of sleep
onset.

In future studies, calculating individual model parameters to quantify the
influence of sleep fragmentation on sleep onset misperception of individuals,
for example using multiple nights of sleep recordings, may yield valuable op-
portunities. We propose to name the optimum sleep length parameter for an
individual the Sleep Fragment Perception Index (SFPI). For example, the SFPI
could provide an opportunity to more precisely assess the part of sleep onset
misperception not related to sleep fragmentation, by identifying whether model
outcomes are dependent on factors other than the amount of sleep onset mis-
perception. These factors could for example include time estimation, pre sleep
arousal and polysomnographic characteristics other than sleep fragmentation.
Another possibility could be to apply the model to assess differences between
model parameters before and after treatment.

To conclude, we modelled sleep onset misperception in a large set of insomnia
patients and healthy controls. We showed a robust difference between groups,
with a median of 34 minutes of uninterrupted sleep required to perceive sleep
onset in insomnia patients versus the 22 minutes required by healthy controls.
We also show that results within the insomnia population do not depend on
age, sex and sleep medication use. Additionally, we showed that our initial
sleep lengths model was already reasonably complete in terms of describing
the influence of sleep fragmentation on sleep onset perception, since the length
of the awakenings was of limited importance compared to the length of the
sleep fragments. These results confirm the existing hypothesis that objectively
measurable sleep disturbances can influence the perception of sleep. [34, 48,
56,97] Thus, we showed that, while the amount of objectively scored sleep is
not always indicative of people’s perception, there might be additional value in
assessing the objectively measurable fragmentation of the sleep, as quantified by
the Sleep Fragment Perception Index. These findings may aid in viewing sleep
misperception as an actual problem of impaired sleep quality, rather than a mere
erroneous perception of wakefulness.
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3.6 Supplemental section

3.6.1 Combined sleep/wake lengths model

The combined influence of the length of sleep and wake fragments on the
perception of the sleep onset was assessed for all insomnia patients, in two
different ways. First, we added an independent parameter Lw to the sleep length
model. This wake parameter Lw consists of the length of wake fragments at
sleep onset in minutes, with Lw varying from 0.5 to 5 minutes (Figure 3.5).
The upper boundary was set to 5 minutes because we did not expect to find
many awakenings longer than 5 minutes. We assumed that awakenings shorter
than Lw minutes are too short to be perceived and, therefore, are not taken
into account in the perception of the length of the sleep fragments. This means
that, if a wake fragment shorter than Lw minutes is found, its neighboring sleep
fragments are merged together to one long sleep fragment, as illustrated in
Figure 3.5. Any wake fragments longer than Lw minutes were processed as
usual in the next steps of the model. The sleep length model with Ls as only
independent parameter corresponds to the combined sleep/wake model with
Lw=0.5, since all awakenings have a duration of at least 30 seconds.

A

B

Sleep
Wake

v

Lw=3 minutes

11       4   2           8                  4                       15       

16                              4                       15       

Preprocessing step

Apply model as usual

Figure 3.5: Example of adding wake length parameter Lw to the existing model of sleep onset
misperception. In this case, we assume that awakenings shorter than 3 minutes are too short
to be perceived. Thus, all wake fragments shorter than 3 minutes are transformed to sleep
fragments, resulting in the occurrence of one long sleep fragment of 16 minutes.
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Figure 3.6a shows model outcomes for different lengths of wake fragments
Lw for all insomnia patients together. Only Lw=1 minute resulted in a slightly
better performance of the model compared to Lw=0.5, which is equivalent
to not accounting for Lw (Lw=1, Ls=38, RMSE=139.8 vs. Lw=0.5, Ls=45,
RMSE=142.4). Other Lw parameters did not improve the performance of the
model.
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Figure 3.6: Model outcomes of combined sleep/wake model for different wake length pa-
rameters LW. a) Model outcomes for Lw=0.5, Lw=1 and Lw=4. Lw=0.5 minutes is equal
to the sleep length model described in section 3.3.5., since by default no wake fragments
shorter than 30 seconds are present in the hypnogram. Lw=1 minute shows a slightly better
performance than Lw=0.5. b) Minimum RMSE values for all Lw parameters from 0.5 to
5 minutes. Overall, LW=1 has the lowest RMSE. c) Minimum values of Ls for each Lw
parameter. These values initially increase as expected, because uninterrupted sleep lengths
become longer as a consequence of ignoring short awakenings. At a certain point, most of the
sleep during the night is merged together into one sleep fragment, causing the minimum to
shift to the left again.

3.6.2 Windowed sleep efficiency model

Additionally, we introduced an alternative model assuming that, instead of a
minimum sleep length, a minimum percentage of sleep within a certain window
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is required to perceive sleep onset (Figure 3.7). In the model described in the
previous paragraph, we only considered the length of a sleep fragment and
the length of the immediately following wake fragment, without taking the
context of the rest of the night into account. However, including the lengths
of the following sleep and wake fragments would result in an increasingly
complex model with many parameters. Instead, calculating the influence of the
percentage of sleep within a certain window on the perception of sleep allows for
a combined assessment of the influence of multiple sleep and wake fragments.
The percentage of sleep was calculated within a sliding window. Because this
approach is equal to calculating a sleep efficiency within a certain time window,
this independent variable was called windowed Sleep Efficiency (SEwin). The
length of the sliding window varied from 20 to 80 minutes and had a step size
of one minute. We modelled sleep onset as the start of the first window with a
sleep efficiency of more than SEwin % (Figure 3.7). Once again, we calculated
the RMSE of the difference between estimated SOL and subjective SOL from
the sleep diary. The RMSEs were used to compare the performance of different
models.

A

Sleep
Wake

v

1    5     3   7                 10  1                     SEwin = 55%

B 1    5     3   7                 10  1                     SEwin = 60%

C 1    5     3   7                 10    1                   SEwin = 95%

Figure 3.7: Example of alternative model using windowed sleep efficiency (SEwin) as inde-
pendent variable. SEwin is calculated each minute within a sliding window. While the sliding
window moves to the right, the percentage of sleep increases. Please note that not all steps of
1 minute are shown in this figure.

As shown in Figure 3.8, the lowest RMSE was obtained for a SEwin of 98%
and a window of 60 minutes. Again, the improvement was small compared
to the initial model (RMSE SEwin model 141.8 vs. sleep length model 142.4).
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When looking at individual sleep patterns, we observed that in the majority
of the participants the windowed sleep percentage progressed towards almost
100% very quickly due to the absence of long awakenings (Figure 3.9a). We also
observed that the awakenings are often regularly distributed over time, causing
the SEwin to remain approximately constant over the course of the night. In this
case, the optimum SEwin of approximately 100% mainly reflects the maximum
windowed sleep efficiency that on average is reached during the night and does
not seem to provide additional information about sleep and wake lengths. In
participants who severely overestimate their sleep onset latency, the estimated
SOL should be as long as possible. Thus, the lowest RMSE is achieved when
sleep onset is estimated as late in the night as possible (Figure 3.9b). This again
leads to estimating the maximum SEwin possible in these participants.
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Figure 3.8: Model outcomes for alternative model of sleep onset misperception, using sleep
efficiency within a time window as independent variable. We assume that sleep onset is
perceived when a threshold sleep efficiency is reached. a) Model outcome for three different
windows: 20 minutes, 60 minutes and 80 minutes. The best model outcomes was found for a
window of 60 minutes. Within this window a windowed Sleep Efficiency of 98% was required
to perceive sleep onset. B) Minimum RMSE values for each window length. c) Minimum
values of SEwin for each window length.
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Figure 3.9: Two examples of the progress of windowed Sleep Efficiency in a window of 60
minutes over time during the night. In the bar below an overview of the sleep and wake
fragments of the same participants is provided. Sleep is indicated with black and wake is
indicated with white. A) Example of a participant with relatively regular short awakenings.
The maximum SEwin of approximately 99.2% indicates an average frequency of 1 awakening
of 30 seconds per hour, which does not seem to change largely during the course of the night.
Since this participant overestimated sleep onset and maximum SEwin for this night coincides
with objective sleep onset, the optimum of the model is equal to maximum SEwin. B) A
participant who did not indicate any subjective sleep. In this recording, the frequency of
awakenings clearly declines after the first part of the night. As a consequence, windowed
sleep efficiency reaches its maximum later than in participant A. Since estimated sleep onset
is at the end of Time in Bed in this participant, once again the maximum SEwin will be the
optimum parameter.
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4.1 Abstract

Study Objective - To elucidate the contribution of time estimation and pre-sleep
arousal to the component of sleep onset misperception not explained by sleep
fragmentation.

Methods - At-home ambulatory polysomnograms of 31 people with insomnia
were recorded. Participants performed a time estimation task and completed the
Pre Sleep Arousal Scale (PSAS). Based on previous modelling of the relationship
between objectively measured sleep fragmentation and sleep onset mispercep-
tion, the subjective sleep onset was estimated for each participant as the start
of the first uninterrupted sleep bout longer than 30 minutes. Subsequently, the
component of misperception not explained by sleep fragmentation was calcu-
lated as the residual error between estimated sleep onset and perceived sleep
onset. This residual error was correlated with individual time estimation task
results and PSAS scores.

Results - A negative correlation between time estimation task results and the
residual error of the sleep onset model was found, indicating that participants
who overestimated a time interval during the day also overestimated their sleep
onset latency. No correlation was found between PSAS scores and residual error.

Conclusions - Interindividual variations of sleep architecture possibly obscure
the correlation of sleep onset misperception with time estimation and pre-sleep
arousal, especially in small groups. Therefore, we used a previously proposed
model to account for the influence of sleep fragmentation. Results indicate that
time estimation is associated with sleep onset misperception. Since sleep onset
misperception appears to be a general characteristic of insomnia, understanding
the underlying mechanisms is probably important for understanding and treating
insomnia.
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4.2 Introduction

Many people with insomnia overestimate their sleep onset latency (SOL) and
underestimate their total sleep time (TST) compared to objective sleep record-
ings. [6, 98] This is referred to as sleep state misperception. The underlying
mechanisms of sleep state misperception remain to be elucidated. [26] For sleep
onset misperception, multiple factors have been proposed to play a role, in-
cluding sleep fragmentation, an altered time estimation ability and pre-sleep
arousal. [26]

Time estimation has been hypothesized to be associated with sleep onset
misperception. The underlying idea is that people who overestimate time in-
tervals during the day, are thought to also overestimate their time awake in
bed. [26,99,100] Time estimation in insomnia was tested in three studies, com-
paring patients with insomnia to healthy controls, using various time estimation
paradigms. [99–101] However, in none of these studies a significant difference
was found between the time estimation ability of insomnia patients and healthy
controls. [99–101] In addition, Rioux et al. reported that they did not find a
correlation between time estimation and the severity of insomnia. [100] These
findings led Harvey and Tang to conclude in their review that the hypothesis of
a time estimation deficit in insomnia has negative evidence of moderate qual-
ity. [26] However, not all patients with insomnia misperceive their sleep, and
severe complaints of insomnia do not necessarily co-occur with severe sleep state
misperception. Therefore, it could be argued that a better approach would be
to take into account the actual discrepancy between objective and subjective
sleep when assessing the influence of time estimation [100]. In other words,
if time estimation is an underlying mechanism of sleep onset misperception, it
is plausible that the ability of an individual to estimate time is correlated with
that individual’s amount of sleep misperception, rather than the seriousness
of the insomnia complaints. Thus, in general, not taking the amount of sleep
misperception into account as an outcome variable could result in overlooking
relevant contributing factors. This probably also applies for factors other than
time estimation.

Increased pre-sleep arousal is found in approximately 40% of insomnia
patients. [102] It has been hypothesized that worrying before falling asleep can
lead to an overestimation of the SOL. [26,103] This hypothesis was based on
the fact that psychological distress can cause a magnification of complaints in
somatic and psychiatric disorders. [104] Additionally, results of early research
show that people estimate elapsed time as longer when they have to process
more information. [105] Indeed, a positive correlation between subjective SOL
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and pre-sleep arousal assessed with an interview was found in 34 subjects, of
which 13 had complaints of insomnia. [106] In the same study no correlation
between pre-sleep arousal and objective SOL was found. [106] Since an increased
pre-sleep arousal influenced the perception of the sleep onset without altering
objective SOL [106], it seems likely that pre-sleep arousal influences the amount
of sleep onset misperception. However, this hypothesis has not been confirmed.

Correlating time estimation and pre-sleep arousal with the amount of sleep
state misperception is challenging, because sleep state misperception is most
probably a multifactorial process, which is also influenced by objective character-
istics of sleep. [26,45,86] Recently, we quantitatively modelled the relationship
between sleep fragmentation and sleep onset misperception. [87] We identified
sleep fragmentation as the most important objectively measurable characteristic
influencing sleep onset misperception. [87] This conclusion fits with previous
research, where the sense of being asleep prior to awakening from NREM sleep
was shown to depend on the length of the preceding uninterrupted sleep frag-
ment. [35,57,59] Thus, a certain minimum amount of continuous sleep seems
to be required for people to recall falling asleep. It is possible that large interindi-
vidual variations of sleep architecture obscure the correlation of the amount of
sleep onset misperception with time estimation and pre-sleep arousal. This could
especially be important in small groups of participants.

In previous work, we modelled perceived sleep onset as a function of the
minimum length that an uninterrupted sleep fragment requires to be perceived
as sleep. [87] In the model, it was assumed that sleep fragments at sleep onset
are not perceived as sleep if they are interrupted too soon. [87] In a follow
up study, we applied this so-called sleep length model in a larger group of 139
people with insomnia with various degrees of sleep state misperception, and
93 healthy controls. [107] We also calculated optimum model parameters for
individual participants. For these individual optimal parameter we proposed
the name Sleep Fragment Perception Index (SFPI). [107] Comparing SFPIs on
the group level showed significant differences between participants with and
without sleep onset misperception. [107] Furthermore, the model did not fully
predict the amount of sleep onset misperception based on sleep fragmentation
only. This supports the notion that sleep misperception is multifactorial.

We hypothesize that the predictive ability of the sleep length model in indi-
vidual study participants could be applied to identify other contributing factors.
For example, if a participant has more sleep onset misperception than could be
expected from sleep architecture alone, it is likely that other factors play a role.
Thus, a correlation with the prediction error of the model could indicate such
factors, including an influence of pre-sleep arousal and time estimation. In this
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study, we aim to elucidate the contribution of time estimation and pre-sleep
arousal to sleep onset misperception, by specifically assessing the correlation
with the component of sleep onset misperception not explained by sleep fragmen-
tation. This approach enables us to take into account interindividual variations
of sleep architecture.

4.3 Methods

4.3.1 Participants

Data for this study were collected as part of a prospective study of sleep archi-
tecture in people with insomnia. We analyzed ambulatory PSG recordings of 31
participants with insomnia, who were on the waiting list of the Kempenhaeghe
Center for Sleep Medicine to receive cognitive behavioral therapy for insomnia
(CBT-I). Subjects were included if a complete sleep diary was available. To
make sure that the objective sleep onset was recorded in all participants, PSG
recordings were excluded when starting later than the lights off time reported by
the participant or when recording started with an epoch scored as sleep. In order
to be eligible to participate, subjects had to meet the following criteria: age older
than 18, a diagnosis of insomnia according to DSM-IV criteria, and using sleep
medication for less than 3 times per week. Exclusion criteria were pregnancy,
conditions preventing taking part in neuropsychological tests, patients who lack
the functional capacity to provide informed consent and patients who are not
able to adhere to the study protocol.

The study was conducted in accordance with the code of ethics on human
experimentation established by the World Medical Association’s Declaration
of Helsinki (1964) and amended in Edinburgh (2000). The study protocol
(W17.043) was approved by the medical ethics committee of Maxima Medical
Center, Veldhoven, the Netherlands. All subjects provided written informed
consent.

4.3.2 Study design

The measurements consisted of one night of ambulatory PSG at home. Electrodes
were attached between 19:30 and 21:30 in the evening of the PSG night and
participants were free to choose their own bedtimes. Participants were asked
to not take occasionally-used psychoactive drugs whose primary function is to
induce sleep, including over-the-counter-available melatonin, from one week
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preceding the sleep measurement night until the night of the measurements.
Coffee and alcohol were prohibited on the day preceding the PSG recording. One
week before the night of the sleep recording, an additional appointment was
scheduled to perform a time estimation task and complete several questionnaires.

4.3.3 Measurements

PSG - A six-channel electroencephalogram (C3, C4, F3, F4, O1, O2), electroocu-
logram and electromyogram were performed, using a Natus Embletta MPR
recorder, interfaced with a ST+ Proxy. Additionally, ECG, abdominal and tho-
racic respiration effort, SpO2 from finger pulse-oximetry and body position and
activity were recorded. Visual sleep staging for all recordings was performed
according to AASM criteria by an experienced somnotechnologist.

Electronic sleep diary – At the morning after the sleep recording, participants
completed an electronic version of the consensus sleep diary [108].

Time estimation task - During the time estimation task, subjects were asked
to indicate the end of a 10-minutes waiting period by pressing a key on a laptop.
We chose to ask the participants to press a key, which is similar to the study
design of Harrow et al. [99], rather than asking participants to estimate the
length of a fixed time interval. This approach has the advantage of preventing
people’s tendency to call rounded numbers. [99] We chose a time interval of
ten minutes, because this time interval is probably long enough to resemble
the actual situation when lying in bed. Before the start of the test, patients
were asked to cover all clocks in the room and to sit back and relax. The time
estimation tasks were performed at the participant’s home, under supervision
of a researcher. Time estimation tasks were not performed on a fixed time
during the day. All time estimation tasks were performed between 10:00 in the
morning and 19:30 in the evening. The output of the time estimation task was
the amount of seconds elapsed before pressing the key. Thus, a number of less
than 600 seconds could be interpreted as an overestimation of elapsed time, e.g.
the participant experiences an elapsed time of ten minutes, while in reality the
elapsed time was shorter.

PSAS – Participants completed the PSAS [109] to indicate arousal prior to
falling asleep. A higher score on the PSAS indicates more pre-sleep arousal.
Scores for the somatic and cognitive subscales were combined into one total
score. This total score was used for further analysis.

ISI – Participants completed the Insomnia Severity Index (ISI) [93] to indicate
the severity of their insomnia complaints. The results of the ISI questionnaire
were used to verify that all participants had at least subthreshold insomnia,
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indicated by an ISI score of at least eight.

4.3.4 Data analysis - sleep length model

In the sleep length model, it was assumed that sleep bouts with insufficient
length at sleep onset are perceived as wake. [87] Thus, it was assumed that sleep
onset was perceived as the start of the first sleep fragment longer than L minutes.
Sleep length parameter L was the independent parameter of the model, i.e., the
length a continuous sleep fragment should have in order to be perceived as sleep.
Any wake fragment of at least one 30s epoch was considered as an interruption
of sleep. This procedure is illustrated in Figure 2.2. In a previous study, we varied
parameter L from 0.5 to 60 minutes in a cohort of 139 people with insomnia
and 92 healthy controls to test different model assumptions. [107] We found a
median optimal parameter L of approximately 30-35 minutes for participants
with insomnia, with small differences depending on the exact criteria of the
subgroup that was selected. [107] The optimal parameter L was referred to as
SFPI. In the current study, we assigned the same reference SFPI of 30 minutes to
all participants and used the model to estimate perceived sleep onset for each
participant as the start of the first uninterrupted sleep fragment longer than
30 minutes. This is illustrated in Figure 4.1. Subsequently, the residual error
between estimated sleep onset and actual perceived sleep onset was calculated.
This residual error was referred to as ‘sleep onset misperception not explained
by sleep fragmentation’.

4.3.5 Statistical analysis

All outcomes were reported as mean ± standard deviation (sd) unless stated
otherwise. The residual error of the sleep length model was correlated with
the results of the time estimation task and the PSAS. Participants tended to
round off their subjective SOL to ten or fifteen minutes. In total, 14 participants
reported their subjective SOL as a multiplicity of fifteen minutes, and all but one
participant reported SOL as a multiplicity of 5 minutes. Therefore, the SOLs from
the consensus sleep diary were considered categorical variables. Because these
subjective SOLs were used for the calculation of the residual error of the model,
all correlation with this variable were assessed using Spearman’s correlation test.
Spearman’s correlation test was also used in case of non-linearity of the other
variables.
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Figure 4.1: Hypothetical example of sleep onset misperception in an individual. We assigned
a Sleep Fragment Perception Index (SFPI) of 30 minutes to each individual. From this
assumption, the predicted sleep onset is the start of the first uninterrupted sleep fragment
longer than 30 minutes. The actual perceived sleep onset is the subjective sleep onset of the
participant, as obtained from the consensus sleep diary. The residual error, which can be
viewed as the part of sleep onset misperception not explained by sleep fragmentation, is the
difference between predicted sleep onset and actual sleep onset, indicated by a blue line. In
this individual, after taking into account the presumed influence of sleep fragmentation, the
Sleep Onset Latency (SOL) is still overestimated. Therefore, one could hypothesize that either
poor time estimation or high pre-sleep arousal plays a role in this situation.

4.4 Results

4.4.1 Demographics and sleep characteristics

Sleep was recorded in 31 participants (14M, 17F, age 50.8 ± 15.1 (range 18-71)).
Participants had an ISI score of 17.9 ± 3.5 (range 9 21). Time estimation task
results were available in 29 participants and PSAS scores were available in 27
participants. The objective SOL was 18.1 ± 25.3 (0 - 112) minutes and the
subjective SOL from the consensus sleep diary was 31.4 ± 35.8 (5 - 165) minutes.
The amount of SOL misperception was 13.4 ± 31.4 (-53 - 145). Five participants
underestimated their SOL. The amount of SOL misperception was not correlated
with the ISI scores (Pearson r=-0.01, p=0.97).

Two participants had a very large subjective SOLs compared to the rest of the
group (subjective SOL of 165 and 150 minutes; in both cases > mean + 3 sd)
and therefore were considered outliers. These participants were males of 50 and
55 years old, who did not have any relevant comorbidities listed. We did not a
priori exclude these participants from analysis.
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4.4.2 Time estimation task

The average score on the time estimation task was 548 ± 139 ([371-935) sec-
onds. A negative correlation was found between time estimation task results and
the residual error of the sleep length model (Spearman rho=-0.50, p=0.007;
Figure 4.2a). It should be noted that a time estimation task score lower than 600
seconds indicates an overestimation of elapsed time. For example, if a partici-
pant indicated that the ten minutes interval had passed after nine minutes, this
indicates an overestimation of the nine-minute time interval with one minute.
When assessing the same correlation again but without the two outliers with
a very large subjective SOL, still a significant negative correlation was found
(Spearman rho=-0.45, p=0.020). Time estimation task results were not corre-
lated to objective SOLs (Spearman rho=0.20, p=0.32) or to ISI scores (Pearson
r=-0.16, p=0.43).
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Figure 4.2: Correlations of the residual error from the sleep length model. A) Correlation of
residual error with time estimation task results (n=29; Spearman rho=-0.50, p=0.007).
B) Correlation of residual error with Pre Sleep Arousal Scale scores (n=27; Spearman
rho=-0.13, p=0.53).
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4.4.3 Pre Sleep Aruousal Scale

The average PSAS score was 20.44 ± 7.85 (8-27). No significant correlation was
found between PSAS scores and the residual error of the sleep length model
(Spearman rho=-0.13, p=0.53, Figure 4.2b). PSAS was correlated with objective
SOL (Spearman rho=0.41, p=0.035; Figure 4.3). The PSAS scores were not
significantly correlated to the results of the time estimation task (Pearson r=0.39,
p=0.051; Figure 4.4).
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Figure 4.3: Correlation between PSAS and objective SOL (n=27; Spearman rho=0.41,
p=0.035).

4.5 Discussion

Our goal was to obtain a clearer view of the association of time estimation and
pre-sleep arousal with the amount of sleep onset misperception, while taking
interindividual variation of sleep architecture into account. We estimated the
perceived SOL of individual participants from the hypnogram, using model
parameters obtained from a previously proposed model of the influence of sleep
fragmentation on sleep onset misperception. [87] Subsequently, we calculated
the residual error between estimated SOL and actually perceived SOL for each
participant. This approach allowed to specifically examine the components of
sleep onset misperception not explained by sleep fragmentation, i.e., the residual
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Figure 4.4: Correlation between time estimation task results and PSAS scores (n=26; Pearson
r=0.39, p=0.051).

error of the model. We found a correlation between the residual error of the
model and the results of a time estimation task. A correlation between the
residual error of the model and PSAS scores was not found.

The correlation between time estimation task results and sleep onset misper-
ception had a negative coefficient, as was expected from the design of the task.
Importantly, on average the time estimation of our participants was almost 10%
too short. As opposed to this, in a similar study design, Harrow et al. found that
both people with insomnia and healthy controls were very accurate on the time
estimation task. [99] Although group differences were not significant, healthy
people showed a tendency to estimate a longer time than insomnia patients. [99]
Thus, our insomnia patients scored worse compared to both the insomnia and
healthy controls reported form earlier research. This difference might be ex-
plained by the severity of the insomnia complaints, since the participants of
our study were treatment-seeking people with insomnia who were referred to a
tertiary sleep center. As a contrast, in most other time estimation task protocols
volunteers with insomnia complaints were recruited from the general popula-
tion. [99,101] A question that arises from our results is whether time estimation
and sleep architecture independently influence sleep onset misperception, or if
time estimation somehow modifies the reaction of the sleep perception of an in-
dividual to the presence of short sleep fragments. This question could potentially
be answered using more advanced statistical models in a larger dataset.
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Although pre-sleep arousal is one of the key features of insomnia, the hypoth-
esis that pre-sleep arousal is specifically involved in sleep onset misperception
remains to be confirmed. In our study, the absence of a correlation between PSAS
and sleep onset misperception not explained by sleep fragmentation, together
with the presence of a correlation of PSAS with objective sleep onset, points
towards pre-sleep arousal being more involved in sleep architecture than in the
perception of the sleep. This finding is not in line with a previous study, which in-
dicate that PSAS does play a role in subjective but not objective sleep onset. [106]
A possible explanation for this difference is that the interview completed by van
Egeren et al. is a more precise approximation of current pre-sleep arousal of
the participants compared to the PSAS questionnaire, because the interview was
performed on the day of the sleep recording. [106] Another intriguing possibility
is that an increased level of arousal while falling asleep might contribute to sleep
onset misperception by altering the architecture of the sleep at the beginning of
the night, instead of altering an individual’s sensitivity for the presence of short
sleep fragments. This might be an interesting subject for further research.

Both the time estimation task and the PSG recordings were performed at
home, giving the participants the opportunity to freely choose their bedtimes
and making the data more generalizable to daily circumstances. A disadvantage
of our protocol was the lack of standardization of the time of the day and the
time of the year in which the time estimation task was done. Because of practical
considerations, time estimation tasks were performed between 10:00 in the
morning and 19:30 in the evening. Although this design does eliminate circadian
effects, it could also potentially cause variation between subjects. However,
Harrow et al. did not find differences between the results of the time estimation
tasks performed during daytime and nighttime. [99]

In a recent study, we stated that the SFPI can be regarded as a measure of
sensitivity of an individual’s sleep onset perception to sleep fragmentation. [107]
As such, the SFPI could be correlated with time estimation and pre-sleep arousal.
However, calculating SFPIs from a single night of PSG poses two practical
difficulties. First, typically not all possible lengths of sleep fragments are available
at sleep onset during one night. Therefore, SFPIs cannot be calculated precisely
and are sometimes rough approximations, which are more useful for comparing
groups than for assessing the sleep behavior of individual patients. This problem
could be solved by recording multiple nights of PSG for each patients. However,
PSG is a costly and obtrusive method. As a second difficulty, because the model is
based on the assumption that short sleep fragments are overlooked, and because
we defined objective sleep onset as the first epoch scored as sleep, the model
does not present an explanation for people who reported falling asleep before
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the objective sleep onset occurs. These model assumptions imply that the SFPI
is always larger than zero, resulting in an SFPI of 0.5 for all participants who
underestimate their SOL. However, a difference between a small underestimation
and a large underestimation of SOL might be relevant for the correlation with the
time estimation task. As an alternative approach, we estimated the sleep onset
for each participant as the start of the first uninterrupted sleep fragment longer
than 30 minutes. The prediction error of the model was then used to express the
unexplained component of sleep onset misperception. The choice of assigning
an SFPI value of 30 minutes to each study participant was made because the
median optimum parameter for insomnia patients was approximately 30 minutes
in previous research. [87,107]

The results of this study represent a next step towards a better understanding
of the underlying mechanisms of sleep onset misperception. As far as we are
aware, it is not clear whether misperception of sleep onset and of TST and WASO
have the same underlying mechanisms. Since sleep onset misperception can
be seen as a misperception of time awake instead of time asleep, it is possible
that different mechanisms play a role. For example, we can speculate that
time estimation is more important for sleep onset misperception than for TST
misperception, because time estimation tasks are performed during wake. This
remains to be further investigated.

From the current results, it appears that sleep onset misperception can be
partly explained by a combination of objectively measurable sleep architecture
and time estimation ability of the individual. Since all people have a certain
degree of sleep fragmentation, which most probably differs between nights, it is
plausible that the majority of people has some amount of sleep onset mispercep-
tion now and then. We found a large range of time estimation abilities within the
insomnia group, co-occurring with a range of sleep onset misperception. As such,
it seems plausible that sleep onset misperception is a generic characteristic of
insomnia. Therefore, identifying mechanisms of sleep onset misperception could
be valuable for the understanding of the pathophysiology of insomnia in general.
At the same time, we do not rule out the possibility that individuals with a lot
of sleep onset misperception may be a subgroup with different etiology. Time
estimation and sleep onset misperception were not correlated with ISI scores,
indicating that the perceived severity of insomnia probably was influenced by
other factors, for example misperception of TST, an objective short sleep dura-
tion, or complaints of reduced functioning during the day. It is very well possible
that combinations of different psychological and physiological mechanisms result
in different subtypes of insomnia, requiring different types of treatment. Thus,
increased knowledge about sleep onset misperception may have important conse-
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quences for the selection and tailoring of treatment, including the identification
of factors that can be specifically targeted by cognitive behavioral therapy in
appropriate subgroups.
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5.1 Abstract

Rationale - Although the experience of impaired sleep is a key feature of insom-
nia, objectively measurable sleep characteristics reflecting perceived sleep quality
remain to be identified. Previous research suggests an important role for sleep
fragmentation.

Study Objective - To explore potential mechanisms of sleep fragmentation that
influence alterations of perceived sleep quality, using a pharmacological sleep
intervention.

Methods - We analyzed polysomnography (PSG) recordings from a double-
blind crossover study with zopiclone 7.5 mg and placebo, in healthy controls and
elderly people with complaints of insomnia. We compared parametrizations of
individual survival curves of NREM sleep, REM sleep and wake across group and
treatment. Subsequently, we used a previously proposed model to estimate the
amount of sleep onset latency (SOL) misperception from PSG-defined sleep frag-
mentation at the beginning of the night. Both self-reported and model-estimated
amount of SOL misperception were compared across group and treatment. We
also compared the unexplained component of SOL misperception, represented
by the model prediction error.

Results - In the zopiclone night, the average segment length of NREM sleep was
increased, while the average segment length of wake decreased. Self-reported
and estimated amount of SOL misperception were lower during the zopiclone
night. Prediction error was not altered.

Conclusions - Results indicate that impaired subjective sleep quality is asso-
ciated with decreased NREM stability, together with increased stability of wake.
Furthermore, we conclude that zopiclone-induced changes in SOL misperception
can be largely attributed by predictable changes of sleep architecture, because
model prediction errors were unaltered between treatment conditions. This
finding further demonstrates the relation between sleep fragmentation and sleep
quality.
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5.2 Introduction

Despite ongoing research, part of the etiology of insomnia is still unknown. [27]
When considering insomnia as a medical problem with insufficient sleep, it
seems likely that the sleep complaints could be objectively quantified using
gold standard polysomnography (PSG) recordings. However, often standard
PSG-derived metrics such as total sleep time (TST), sleep onset latency (SOL)
and wake after sleep onset (WASO) do not fully explain the seriousness of
the complaints. [23] Specifically, in part of the patients a discrepancy can be
found between the amount of sleep reported by the patient and the objectively
measured quantity of the sleep. [26] Additionally, experienced sleep quality is
often not reflected by standard PSG metrics as well. [37] Therefore, it is assumed
that impaired sleep can possibly be reflected by other PSG-derived parameters.
Identifying such parameters could be useful to increase our understanding of the
mechanisms underlying insomnia. Furthermore, they could potentially be used
for identifying clinically meaningful subtypes within the patient population.

One of the objectively measurable sleep characteristics reflecting sleep qual-
ity may be impaired sleep continuity as scored in the hypnogram, which we
here refer to as sleep fragmentation. [26, 84, 110, 111] Interruptions of sleep
at the beginning of the night may influence the perception of the SOL, since
the sensation of being asleep prior to awakening from non-rapid eye movement
(NREM) sleep was shown to depend on the length of the preceding bout of
uninterrupted sleep. [35, 57, 59] In previous research we quantified the rela-
tionship between sleep fragmentation at the beginning of the night and sleep
onset (mis)perception, and found that the perception of the sleep onset la-
tency indeed seems particularly influenced by the length of uninterrupted sleep
fragments. [107] Additionally, the objective and subjective number of awak-
enings have been shown to be correlated with measures of subjective sleep
quality, [112,113] providing an additional indication that sleep fragmentation
may negatively influence sleep. However, it should be noted that the predictive
power of objective sleep parameters for subjective sleep quality is generally
low. [112]

Assessing the influence of sleep fragmentation on the experience of sleep
presents two problems. First, it is likely that perceived quantity and quality of
the sleep are influenced by many other factors than sleep structure, possibly
including sleep habits, psychological traits [114] and time estimation ability.
[101, 115] Therefore, large variability between individuals can be expected.
This variability could possibly obscure the relationship between perceived sleep
quality and sleep fragmentation. Although currently we do not have possibilities
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to quantify and correct for these factors, they probably differ largely between
people, and may have a smaller variability over consecutive nights within the
same individual. We would therefore ideally study multiple nights measured from
the same individual, with induced differences of sleep architecture. Hypnotics
are known to alter sleep structure, and can improve the subjective experience of
the sleep. [16,116,117] Therefore, medication studies can be useful to explore
mechanisms of sleep fragmentation potentially influencing sleep quality under
controlled circumstances. Secondly, currently there is no single parameter that is
best suited for describing sleep fragmentation.

Survival analysis is potentially a very useful alternative for describing aspects
of sleep fragmentation which may be important for perceiving a good night of
sleep. Traditional parameters used to describe sleep fragmentation as scored in
the hypnogram include WASO, number of awakenings and sleep stage percent-
ages, such as NREM1 and NREM3. [118] These parameters are not very specific.
As an illustration, Norman et al. showed that a large number of awakenings can
be found in two entirely different types of sleep architecture. [119] For example,
awakenings regularly distributed over the night would result in sleep fragments
of equal lengths, while the same number of clustered awakenings could also
result in one very long sleep fragment and multiple short sleep fragments. Such
differences can be found using survival analysis. Considering that participants
appeared to overlook short sleep fragments in previous research into sleep onset
misperception [107], such differences in sleep architecture may be important to
take into account. Additionally, low percentages of certain sleep stages can either
reflect the presence of many interrupted sleep stage fragments, or a reduced
probability to enter that sleep stage. [118] Survival analysis can be used to
specifically assess the stability of a certain sleep stage or groups of sleep stages.
Using survival analysis, one can analyze the expected duration of time until a
certain new event occurs. In the case of sleep, the event can be the end of a
sleep or wake fragment. A hazard function can be calculated to evaluate the
probability of an ending sleep or wake fragment during any given time point.

In earlier research, Roth et al. showed differences in sleep survival dynamics
between healthy people and people with insomnia. [120] This finding indicates
that altered sleep survival dynamics may indeed be involved in impaired sleep
quality in people with insomnia. However, rapid eye movement (REM) and
NREM sleep were not separately modelled in this study, although research
indicates that NREM and REM sleep are two different processes with different
survival curve dynamics [121] and different functions [122]. Moreover, it might
be useful to also study survival dynamics of wake, because earlier research
suggests that patients with long WASO belong to a distinct subtype of insomnia.
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[21] As a conclusion, further research is required to examine if subjectively
impaired sleep co-occurs with changes of sleep and wake survival dynamics
during the night, while separately assessing survival dynamics of NREM sleep,
REM sleep, and wake.

Co-occurring changes in sleep fragmentation and perceived sleep quality
can be very informative, but do not prove that these two phenomena really
influence each other. Our earlier described modelling approach for sleep onset
misperception can be used to quantify this relationship. This so-called sleep
length model was based on the assumption that sleep bouts with a too short
length at sleep onset are perceived as wake. [87] Using the model, perceived
sleep onset can be estimated as the start of the first sleep fragment longer than
L minutes. Sleep length parameter L was the independent parameter of the
model, i.e., the length a continuous sleep fragment should have in order to be
perceived as sleep. This concept is similar to calculating latency until persistent
sleep. Applying this model yields a component of sleep onset misperception that
can be predicted based on sleep fragmentation at the beginning of the night,
and an unexplained component. We can use the model to test if any change in
sleep onset (mis)perception as a consequence of taking sleep medication could
be related to alterations in sleep fragmentation as predicted by the model.

The aim of this study was to explore potential mechanisms of sleep fragmen-
tation that influence alterations of perceived sleep quality. We analyze data from
a previously described placebo-controlled study, using a single dose of zopiclone
7.5 mg as experimental intervention. [63] In the initial paper, the authors re-
ported that the subjective sleep quality was improved during the zopiclone night,
and that participants reported longer TST and a shorter SOL. In the current
study, we assessed the influence of zopiclone on survival dynamics of NREM
sleep, REM sleep and wake over the whole night. This way, we can examine if
the improvements of sleep quality described co-occur with alterations of sleep
fragmentation. Furthermore, we aim to demonstrate a relation between sleep
architecture and perceived sleep quality, using a modelling approach.

5.3 Methods

5.3.1 Design

Data were collected as part of a placebo controlled cross-over study, comparing
residual effects of zopiclone 7.5 mg and placebo on highway driving performance
in people with complaints of insomnia and self-defined good sleepers. [63] Study
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participants included 16 individuals with insomnia complaints who frequently
used hypnotics, 16 individuals with insomnia complaints who did not or infre-
quently used hypnotics, and 16 age-matched self-defined good sleepers.

5.3.2 Participants

Participants were recruited via newspaper advertisements and through a network
of local general practitioners in the region of Maastricht, the Netherlands [63],
and were subsequently asked to participate in the placebo controlled cross-
over zopiclone study. Participants had to meet the following inclusion criteria:
aged between 50 and 75 years; and good health based on a pre-study physical
examination, medical history, vital signs, electrocardiogram, blood biochemistry,
hematology, serology, and urinalysis. Exclusion criteria were history of drug
or alcohol abuse; presence of a significant medical, neurological, psychiatric
disorder, or sleep disorder other than insomnia; chronic use of medication that
affects driving performance, except hypnotics; drinking more than 6 cups of
coffee per day; drinking more than 21 units of alcohol per week; smoking more
than 10 cigarettes per day; and body mass index outside the range of 19 to 30
kg/m2.

Additionally, insomnia patients had to meet the following inclusion criteria,
based on DSM-IV [8]: (1) presence of subjective complaints of insomnia, defined
as difficulties initiating sleep (sleep latency >30 min) and/or maintaining sleep
(awakenings >30 min); (2) complaints lasting more than 1 month; (3) clinically
significant distress or impairment attributable to the sleep disturbance; (4)
insomnia not occurring exclusively during the course of a mental disorder; and
(5) insomnia not due to another medical or sleep disorder or to the effect of
medication or drug abuse. Insomnia patients were assigned to the “frequent
users” group when they used a benzodiazepine, zopiclone, or zolpidem as
sleeping medication for at least four nights per week during at least 3 months
preceding the study. Patients not using hypnotics or using hypnotics for less than
4 days per week were assigned to the “infrequent users” group.

Volunteers were screened by a telephone interview, questionnaires, and a
physical examination to confirm that they were healthy. Sleep complaints were
evaluated by a trained psychologist using Dutch versions of the Pittsburgh Sleep
Quality Index, [64] the Sleep Wake Experience List, [65] and the Groningen Sleep
Quality Scale. [66] In addition, subjects completed a sleep log for 14 days. Major
psychopathology was screened using the Symptom Checklist 90 Revised, [67]
the Beck Depression Inventory, [68] the State-Trait Anxiety Inventory, [69] and
the Multidimensional Fatigue Inventory. [70]
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The study was conducted in accordance with the code of ethics on human
experimentation established by the World Medical Association’s Declaration of
Helsinki (1964) and amended in Edinburgh (2000). The protocol was approved
by the medical ethics committee of Maastricht University and University Hospital
of Maastricht. Participants were explained the aims, methods, and potential
hazards of the study and they signed a written informed consent prior to any
study-related assessments.

5.3.3 Schedule

The study was conducted according to a 3×2 double-blind, placebo controlled
cross-over design, with three groups (insomnia frequently using hypnotics, in-
somnia not or infrequently using hypnotics and self-defined good sleepers) and
two treatment conditions. Treatments were single oral doses of zopiclone 7.5
mg and placebo. Treatments were administered in identical looking capsules
and ingested immediately before retiring to bed at 23:30 hours. All participants
went to bed at the same fixed bedtime. Prior the de measurement nights, partici-
pants spent two nights in the same sleep laboratory. Treatment orders (placebo–
zopiclone or vice versa) were balanced within groups. Washout periods between
treatments lasted at least one week. In order to minimize withdrawal symptoms
during the placebo night, patients assigned to the frequent users group were
instructed to discontinue their hypnotic intake starting from three nights before
each treatment period. Frequent users who expected difficulties during the three
hypnotic-free nights were provided escape medication, consisting of zolpidem at
a maximum of one dose of 10 mg per night, to be used only in case of intolerable
withdrawal effects. Zolpidem 10 mg was selected to limit variability in hypnotic
drugs used and because it is known to be free from residual effects when taken
at bedtime before 8 h of sleep. [123]

5.3.4 Assessments

A four-channel electroencephalogram (C3, C4, F4, O2), electrooculogram and
electromyogram were performed as part of the polysomnographic acquisition.
The data was recorded with a Vitaport portable EEG recorder with a common
average (A1-A2) and a sample frequency of 256 Hz. Visual sleep staging was
performed according to R&K criteria [71] by experienced technicians from the
sleep center of Stichting Epilepsie Instellingen Nederland (Zwolle, the Nether-
lands). Technicians were blinded for the group affiliations of the subjects. Each
polysomnogram was scored by one technician.
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Subjective sleep measures were assessed the morning after the PSG mea-
surements by asking subjects to report their subjective TST, SOL, number of
awakenings and time of early awakening, if applicable.

5.3.5 Survival analysis

We separately modelled the survival curves of NREM sleep, REM sleep and wake.
This is illustrated in Figure 5.1. NREM fragments were considered terminated
if followed by epochs scored as either wake or REM sleep. For the NREM
analysis, we excluded NREM fragments with a length below 1 minute, to limit
the influence of 30s-epoch N1 fragments occurring during wake and REM. REM
fragments were terminated if they were followed by epochs either classified as
wake or as NREM sleep. Again, we excluded REM fragments with a length below
1 minute. Wake fragments were terminated when followed by any epoch scored
as sleep, except single N1 epochs (N1 being a subset of NREM sleep). Single
N1 epochs during wake were replaced by wake, because they may give a false
impression that wake is divided into many shorter fragments. Wake fragments
with a length below 1 minute were not excluded from analysis.
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Figure 5.1: Illustration of survival curve analysis of NREM sleep. Step 1 depicts an example
of sleep over time. For reasons of clarity, only one sleep cycle is depicted. During step 2, all
fragments of NREM sleep are listed and sorted based on length. Fragments of NREM sleep are
assumed to be terminated if they are followed by either wake or REM sleep. In step 3, NREM
fragments shorter than 1 minute are excluded from analysis. On the right, the hazard rate
resulting from these sleep fragments is plotted. The hazard rate represents the percentage of
NREM fragments longer than a certain length, e.g. after 1 minute, three out of five (60%)
of the sleep fragments is still left (i.e. ‘has survived’), and after 5 minutes only one sleep
fragment (20%) is left. In reality, we have four sleep cycles, and thus more sleep fragments.
Survival curves of REM sleep and wake sleep were calculated using a similar approach.
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In the survival analysis, we assumed that single epochs scored as N1 do not
interrupt NREM sleep. We also performed an additional analysis, testing such as-
sumption. Here, prior to calculating survival curve dynamics, we replaced single
N1 epochs occurring during N2 or N3 with single epochs of wake. Subsequently,
we proceeded with the analysis as described before.

Theoretically, we could combine all sleep and wake fragments together on the
group level using Kaplan-Meier curves. However, this type of analysis does not
take into account the clustering of sleep and wake fragments within participants,
and is more difficult to use when assessing the combined influence of group
and treatment. Therefore, the Kaplan-Meier plots were only used for visual
comparison. Instead, we made a parametrization of the survival curves for
each individual, using Weibull distributions. Weibull parameters for each of
the participants were then compared across group and treatment. A Weibull
distribution is characterized by two parameters: a shape parameter (k) and
a scale parameter (λ). The shape parameter characterizes the shape of the
distribution. k below 1 indicates that the probability of an event to occur
decreases over time. This is often the case for wake fragments, because the
majority of the awakenings is very short, and thus the chance to fall asleep
again is largest during the first couple of minutes. When the shape parameter is
equal to one, the distribution is exponential. An exponential distribution is the
probability distribution when the time between events follows a Poisson process,
where events occur at a constant average rate, independently of the time elapsed.
An exponential distribution is described only by the scale parameter λ, i.e. the
event rate. The expected value of an exponentially distributed random variable is
1/λ, which in our situation would be equal to the average sleep or wake segment
length. To improve the interpretability of the results, we reported the reciprocal
of the estimated scale parameters (1/λ) in the results section. In a distribution
similar to an exponential distribution, a higher reported value of 1/λ indicates a
longer average segment length and an increased stability.

5.3.6 Sleep structure over the night

It is possible that sleep and wake dynamics differ over consecutive sleep cycles.
This could not be evaluated in our previously described analysis. Therefore, the
time course of the proportion of NREM and REM sleep was plotted per treatment
condition as a function of time elapsed since sleep onset. The proportion of the
sleep stages was defined for each time point as the total number of epochs scored
as a certain stage at that designed time point, across all participant from each
group, divided by the total number of epochs at that time point. To quantify
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differences for treatment conditions, additional statistical analysis would be
required. However, a detailed analysis of NREM and REM sleep over the night
was not within the scope of this paper. Therefore, these graphs were used for
visual reference only.

5.3.7 Assessing the amount of sleep misperception

The amount of sleep onset misperception was calculated for each night as the
difference between self-reported SOL from the hypnogram and objective SOL,
defined as the latency from bedtime until the first epoch scored as sleep from the
hypnogram. The amount of TST misperception was calculated as the difference
between objective and self-reported subjective TST.

5.3.8 Estimating subjective sleep onset from sleep fragmen-
tation

We used the previously introduced model to determine whether the difference in
sleep onset misperception between the zopiclone night and the placebo night
could be attributed to predictable changes in sleep fragmentation, or to factors
not explained by the model. [107] In the sleep length model, it was assumed that
sleep bouts with a too short length at sleep onset are perceived as wake. [107]
Thus, the perceived sleep onset was estimated as the start of the first sleep
fragment longer than L minutes. Sleep length parameter L was the parameter of
the model, i.e. the minimum length a continuous sleep fragment should have in
order to be perceived as sleep. Any wake fragment with a duration of at least one
30s epoch was considered as an interruption of sleep. In a previous study, we
applied the model to PSG data from people with insomnia and healthy controls,
testing different model assumptions. [107] We found a median optimal parameter
L of approximately 30-35 minutes for participants with insomnia, with small
variations depending on subgroup characteristics. [107] The optimal parameter
L for an individual was referred to as Sleep Fragment Perception Index (SFPI). In
the current study, we assigned a reference SFPI of 30 minutes to all participants
and used the model to estimate subjective SOL. The estimated SOL, i.e., the
latency until the first uninterrupted sleep fragment longer than 30 minutes,
was subtracted from the objective SOL to obtain an estimate of the amount of
sleep onset misperception that can be explained by the model. This procedure
is illustrated in Figure 5.2. Subsequently, we calculated the prediction error
between estimated subjective sleep onset and actual perceived sleep onset based
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on the sleep diary. This quantity is equal to the difference between estimated
amount of SOL misperception and actual amount of SOL misperception, because
objective SOL is used for both calculations. The prediction error of the model was
referred to as ‘sleep onset misperception not explained by sleep fragmentation’
and was compared across groups and treatments. The estimated amount of sleep
onset misperception was also compared across groups and treatment conditions.

5              10                                     35

Sleep

Wake
Objective

SOL

Estimated 

SOL

Perceived

SOL

Prediction errorExplained part

of misperception

Figure 5.2: Estimation of the amount of sleep onset misperception according to the sleep
length model. Subjective sleep onset was estimated from the hypnogram as the difference
between lights off time and the start of the first sleep fragment longer than 30 minutes. In
the figure, this estimate was labelled ‘estimated SOL’. Subsequently, the prediction error
between estimated subjective sleep onset and self-reported subjective sleep onset from the
sleep diary was calculated. This is referred to as ‘sleep onset misperception not explained by
sleep fragmentation’. Furthermore, the difference between objective sleep onset and estimated
subjective sleep onset was calculated. This was referred to as the ‘explained part of sleep onset
misperception’.

5.3.9 Statistical analysis

Statistical analysis was done using R. [95] Multi-way ANOVA was used to com-
pare parameters across groups and treatments. We used an alpha value of 0.0167
when comparing survival parameters, to correct for multiple testing (we are
comparing survival parameters of REM, NREM and wake). For the same reason,
we used an alpha value of 0.025 when assessing the effect of treatment, group
and group x treatment on sleep misperception of TST and SOL. In case of a
significant effect of group, we used a pair-wise posthoc test to find the differences
between specific groups.
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5.4 Results

Two participants were excluded from the analysis because of (partly) missing
PSG data. One of these was from the frequent users group, while the other was
from the healthy controls group. Demographic characteristics of participants and
use of escape medication by participants from the frequent users group are listed
in Table 5.1.

Table 5.1: Demographic characteristics of participants and use of escape medication.

Group Age (years)
Sex
(%M)

#Participants using
escape medication
under zopiclone
treatment

#Participants using
escape medication
under placebo
treatment

Frequent
users (n=15)

62.1 ± 4.3
8M; 7F
(53)

3 4

Infrequent
users (n=16)

62.3 ± 6.2
8M; 8F
(50)

Healthy controls
(n=15)

62.8 ± 4.5
7M, 8F
(47)

Frequent users who expected difficulties during the three hypnotic-free nights prior to the
measurement night, were provided escape medication. The escape medication consisting
of zolpidem at a maximum of one dose of 10 mg per night, to be used only in case of
intolerable withdrawal effects.

5.4.1 Sleep survival dynamics

Table 5.2 reports the Weibull parameters of the survival curves of NREM sleep,
REM sleep and wake. For REM survival curves, no significant effect of either
group or treatment was found (Table 5.2). For NREM sleep, we found a sig-
nificant effect of treatment for the Weibull scale parameter, i.e. the average
segment length. The average segment length was smaller during the placebo
night than during the zopiclone night. For wake, we found a significant effect of
treatment for both Weibull parameters (Table 5.2). The average segment length
of wake was larger during the placebo night compared to the zopiclone night.
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The shape parameter was larger during the zopiclone night. Figure 5.3 illustrates
the differences of grouped survival curves between the placebo and zopiclone
nights, for all participants together. When using the alternative approach to
calculate survival curve dynamics of NREM sleep, assuming that N1 sleep also
disturbs NREM sleep, no significant effect was found (Group x treatment F=1.37,
p=0.26, treatment F=2.69, p=0.10, group F=1.18, p=0.31).

Table 5.2: Parameters of sleep and wake survival analysis per group and treatment
condition.

Participant groups Multi-way ANOVA

Frequent
users

Infrequent
users

Healthy
Controls

Treatment Group
Treatment
x group

REM
scale,
1/λ

p 13.5 ± 5.3 15.4 ± 8.8 12.7 ± 4.5 F=0.99,
p=0.32

F=0.83,
p=0.44

F=0.52,
p=0.60

z 11.0 ± 5.3 13.3 ± 7.1 13.3 ± 5.2

REM
shape,
k

p 1.5 ± 0.57 2.4 ± 1.3 1.5 ± 0.40 F=0.34,
p=0.56

F=2.98,
p=0.06

F=0.15,
p=0.86

z 1.8 ± 1.43 2.3 ± 2.1 1.8 ± 1.1

NREM
scale,
1/λ

p 17.3 ± 8.1 15.3 ± 3.8 17.8 ± 5.0 F=8.89,
p<0.01

F=1.16,
p=0.32

F=0.44,
p=0.65

z 20.0 ± 10.8 20.8 ± 9.2 24.1 ± 8.2

NREM
shape,
k

p 0.98 ± 0.19 0.93 ± 0.09 0.89 ± 0.13 F=3.32,
p=0.07

F=0.21,
p=0.81

F=1.11,
p=0.34

z 0.85 ± 0.17 0.86 ± 0.25 0.89 ± 0.19

Wake
scale,
1/λ

p 3.6 ± 1.8 2.8 ± 1.6 3.3 ± 3.1 F=11.49,
p<0.01

F=1.48,
p=0.23

F=0.36,
p=0.70

z 2.4 ± 1.0 1.9 ± 0.8 1.5 ± 0.8

Wake
shape,
k

p 0.87 ± 0.23 0.94 ± 0.29 0.93 ± 0.43 F=7.22,
p<0.01

F=3.08,
p=0.05

F=2.46,
p=0.09

z 0.95 ± 0.25 1.20 ± 0.62 1.77 ± 1.47

In case of a close-to exponential distribution, the inverse of the scale parameter 1/λ is
equivalent to the mean duration of a sleep or wake fragment. Therefore, a higher value
of 1/λ indicates a larger stability of that sleep or wake stage. Parameters were reported
as 1/λ to improve the interpretability of the results.
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ba c

Figure 5.3: Hazard functions of NREM sleep, REM sleep and wake for all participants together.
All functions are shown on a logarithmic scale. The hazard functions show the probability of
the sleep or wake fragment to be terminated during any given length of that fragment. A)
Survival curves of NREM sleep. B) Survival curves of REM sleep. C) Survival curves of wake.

5.4.2 Proportions of sleep stages over the night

Figure 5.4 shows the proportions of NREM sleep and REM sleep over the night
for each of the two treatment conditions. Visually, a clear difference of the
distribution of REM sleep over the night can be observed between treatment
conditions. During the placebo night, a clear peak of REM sleep is visible after
approximately one hour. During the zopiclone night, the first peak of REM sleep
seems largely absent.

5.4.3 Sleep misperception

Figure 5.5 shows the actual amount of sleep onset misperception during the
placebo and the zopiclone night, summarized per group and treatment condition.
We found significant effects for both group and treatment, but no interaction
effect (Table 5.3). Pair-wise post-hoc testing indicated a significant difference
between frequent users and healthy controls (Mann Whitney U = 652, p =
0.02), and between infrequent users and healthy controls (Mann Whitney U =
587.5, p = 0.02). For misperception of TST, again a significant effect was found
for group and treatment (Table 5.3). Pair-wise testing indicated a significant
difference between frequent users and healthy controls (Mann Whitney U = 655,
p < 0.001), and between infrequent users and healthy controls (Mann Whitney
U = 638, p = 0.03).
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Probability of NREM sleep over the night

Probability of REM sleep over the night

Sleep onset
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b

Figure 5.4: Proportions of sleep stages over the course of the night. The first epoch of sleep has
been aligned between participants, to make it start at the same point in time. A) combined
proportions of N2 and N3 sleep. B) proportions of REM sleep.

5.4.4 Estimated SOL misperception and prediction error

Figure 5.6 shows the results of using the sleep length model to estimate the
amount of SOL misperception, summarized per group and treatment condition.
The estimated amount of SOL misperception showed a significant effect for
treatment (Table 5.3; Figure 5.6A). The prediction error of SOL misperception
did not show any significant effect of either group or treatment (Table 5.3;
Figure 5.6B). However, when comparing the variance of all placebo nights to the
variance of all zopiclone nights, we found that variances were significantly larger
during the zopiclone nights (Levene’s test, center=’median’, F=7.09, p<0.01).
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Table 5.3: Parameters of SOL and TST misperception per group and treatment condition.
Also the average and standard deviation of each value per group and treatment are
reported.

Participant groups Multi-way ANOVA

Frequent
users

Infrequent
users

Healthy
Controls

Treatment Group
Treatment
x group

SOL
misp
(min)a

p 75.5 ± 82.9 33.4 ± 33.2 15.2 ± 25.6 F=10.80,
p<0.01

F=6.08,
p<0.01

F=2.49,
p=0.09

z 19.5 ± 38.6 12.3 ± 13.3 5.5 ± 20.6

TST
misp
(min)b

p 19.4 ± 42.6 11.2 ± 50.1 -7.1 ± 47.3 F=10.41,
p<0.01

F=6.87,
p<0.01

F=4.05,
p=0.02

z 104.4 ± 82.2 76.7 ± 113.5 3.7 ± 39.8

Est.
SOL
mispc

p 18.1 ± 17.6 9.1 ± 12.9 9.4 ± 13.5 F=16.1,
p<0.001

F=1.70,
p=0.19

F=0.60,
p=0.55

z 57.6 ± 72.9 47.5 ± 47.8 29.2 ± 30.5

Error
SOL
mispd

p 18.6 ± 73.1 -13.4 ± 61.3 -11.3 ± 20.7 F=0.20,
p=0.65

F=1.62,
p=0.20

F=1.01,
p=0.37

z 4.7 ± 34.2 3.9 ± 20.2 -3.1 ± 24.8

aThe difference between self-reported subjective SOL obtained from the sleep diary and
objective SOL. bThe difference between subjective TST obtained from the sleep diary and
objective TST. cThe difference between subjective SOL estimated from the hypnogram
and objective SOL. dThe difference between estimated amount of SOL misperception and
actual amount of SOL misperception.

5.5 Discussion

We analyzed experimental manipulations of sleep from a pharmacological in-
tervention protocol. The aim of the study was to explore potential mechanisms
of sleep fragmentation that influence alterations of perceived sleep quality and
quantity observed using a pharmacological manipulation. Results indicate an
increased stability of NREM sleep and a decreased stability of wake during the
zopiclone night compared to the placebo night. Additionally, we used a previ-
ously proposed model to estimate subjective sleep onset from the hypnogram
based on sleep fragmentation. Both the so-obtained estimated amount of SOL
misperception and the actual amount of SOL misperception were significantly
lower during the zopiclone night.
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Figure 5.5: The actual amount of sleep onset misperception during the placebo and the
zopiclone night, summarized per group and treatment condition. P=placebo and Z=zopiclone.
The amount of sleep onset misperception was calculated as the difference between objective
and self-reported (sleep diary) subjective sleep onset latency.

When fitting a Weibull distribution to the NREM sleep segments, we found
that the scale parameter 1/λ was significantly higher during the zopiclone night,
while the shape parameter was unaltered. The altered scale parameter suggests
that fragments of NREM sleep overall have a higher probability to ‘survive’
during the zopiclone night compared to the placebo night. Thus, NREM sleep
seems more stable during the zopiclone night. This finding might be partly
explained by the increased percentage of slow wave sleep that was reported
during the zopiclone night [124], because from previous research it appears
that the continuity of deep sleep is better protected compared to lighter sleep.
[125] The unaltered Weibull shape parameter suggest that the distribution of
the length of the NREM sleep fragments was not altered. Interestingly, when
repeating the analysis with the alternative assumption that NREM sleep is not
only disturbed by wake and REM epochs, but also by epochs scored as N1, we
did not find a significant difference between treatment conditions. According to
R&K guidelines, epochs of N1 are often scored when arousals during N2 sleep
are observed. Therefore, our present results may indicate that the distribution
and number of arousals were unaltered across treatment conditions. We may
speculate that sleep disturbances by awakenings were more important for the
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Figure 5.6: Results of using the model to estimate the subjective SOL for individual patients,
summarized per group and treatment condition. P=placebo and Z=zopiclone. A) Estimated
amount of SOL misperception, defined as the difference between objective and estimated
subjective SOL. Subjective SOL was estimated as the latency until the start of the first unin-
terrupted sleep fragment longer than 30 minutes. B) Prediction error of difference between
estimated sleep onset misperception and actual self-reported sleep onset misperception.

quality of the sleep than arousals. This hypothesis is supported by the fact that
the model of subjective sleep onset adequately predicted a change of sleep onset
misperception, without taking into account N1 sleep or arousals.

Additionally to alterations in NREM dynamics, we found differences of both
the wake scale and shape parameters between treatment conditions. The in-
creased scale parameter during the zopiclone night indicates a decreased stability
of wake fragments, i.e., participants fell asleep sooner after awakening. This
finding explains the shorter WASO and longer TST during the zopiclone night, as
previously reported. [124] The decreased scale parameter during the zopiclone
night probably resulted from a decreased percentage of long awakenings. For the
current dataset lower percentages of REM sleep were reported during the zopi-
clone night. [124] Indeed, effects on REM sleep density are commonly reported
for zopiclone. [16,126,127] Survival curve analysis did not indicate a decreased
stability of REM sleep, leading to the conclusion that only the probability of
entering REM sleep was reduced. Indeed, plotting the probability of REM sleep
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over the night indicated an absence of the first peak of REM sleep during the
zopiclone night.

Since using hypnotics can result in large changes of many aspects of sleep
architecture, it is difficult to actually indicate which of these changes are associ-
ated with sleep quality. Therefore, we used a modelling approach to demonstrate
the relationship between sleep fragmentation and sleep onset misperception,
which may be an expression of impaired objective sleep quality at the beginning
of the night. We found a lower amount of predicted sleep onset misperception
during the zopiclone night, as well as a lower amount of actual sleep onset mis-
perception. In contrast, the prediction error of the model did not differ between
treatment conditions. These results suggest that a considerable part of the differ-
ence of sleep onset misperception between treatment conditions can be explained
by predictable alterations of sleep fragmentation at the beginning of the night.
Importantly, the model to estimate subjective sleep onset was developed from
another night of measurement, partly with the same study participants. [87]
This may explain why the parameter of 30 minutes seemed to fit so well in
the current study. However, the model was independently validated in a larger
study sample with younger participants from a different sleep laboratory. Also
in that case the parameter of 30 minutes was proven to be applicable outside
the initial study population. [107] Although the prediction error of the model,
i.e. the unexplained component of sleep onset misperception, did not differ
significantly between treatment conditions, its variation was larger during the
placebo night. Therefore, it is possible that zopiclone also influences components
of sleep onset misperception not explained by the model, but to a lesser extent.
Other mechanisms of influence could include anterograde amnesia, which is a
side effect reported for zopiclone. [128,129]

The current finding that decreased stability of NREM sleep may be associated
with impaired sleep quality is consistent with previous modelling results, which
indicate that the length of sleep fragments at the beginning of the night is impor-
tant for the perception of the sleep onset. [107] Furthermore, in the current study
a decreased stability of wake was indicated as a possible parameter reflecting
impaired sleep quality. However, in previous research we found that the length
of wake fragments interrupting sleep was not of great importance for the percep-
tion of the sleep onset, mainly because the majority of the awakenings was very
short. [107] Additionally, in earlier research, the subtype of insomnia with short
objective sleep duration was not associated with sleep state misperception. [130]
Considering that long awakenings often co-occur with a short sleep duration,
it is possible that the current findings of altered wake survival parameters are
not connected with sleep (onset) misperception. However, it is possible that
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the length of the wake fragments is associated with other components of sleep
quality. Next to altered parameters of NREM sleep and wake, a third finding of
sleep architectural changes during the zopiclone night was a delayed latency
until REM sleep. REM sleep latency is not incorporated in our model of sleep
onset misperception, and therefore is not part of the explained part of sleep
onset misperception. However, we cannot exclude the possibility that the delay
of REM sleep during the zopiclone night influenced sleep onset misperception as
part of the altered variance of the unexplained part of the sleep onset model.

A limitation of this research is that we used the 30 minutes parameter to
estimate subjective sleep onset in all participants, because estimating optimal
parameters for individuals would require multiple nights of data per subject
and per treatment condition. Previous research yielded an optimal parameter
of approximately 20 minutes for healthy controls. [107] Thus, by estimating
subjective sleep onset as the first sleep fragment longer than 30 minutes, we
probably exaggerated the influence of sleep fragmentation in this group. How-
ever, the number of sleep fragments with a length between 20 and 30 minutes
at sleep onset was very limited, and thus, the exact choice of the parameter
would probably not heavily influence the results. As another limitation, the
current survival analysis was based on R&K scoring rules. Therefore, results may
slightly differ from PSGs scored according to AASM guidelines. However, based
on research by Moser at al. comparing AASM and R&K guidelines, we expect that
the percentage of epochs scored as N1 during NREM sleep may be influenced
by the scoring rules used, while differences for wake epochs after sleep onset
may be very limited. [131] Therefore, we expect that the scoring guidelines used
will only influence the results of the approach in which we assumed that N1
stages interrupt NREM sleep, while the analysis in which we only considered
awakenings seems most promising for further research. A third limitation was
that patients had a fixed bed time in this study. It is possible that misalignments
between the participant’s usual bed time and the fixed bed time influenced the
results for sleep onset misperception. However, since both measurement nights
had the same fixed bed time, we do not expect that the conclusions on the effect
of treatment will be affected. Still, it is possible that a confounding effect was
present for the group comparisons. This highlights the additional need to study
survival parameters in larger study samples.

In this study, improvements of subjective sleep quality and quantity co-
occurred with decreased stability of NREM sleep and increased stability of wake
over the entire night, while no alterations of REM stability were observed. In a
similar protocol with multiple nights of zolpidem and multiple nights of placebo,
similar improvements of perceived sleep quantity and quality were found during
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the zolpidem nights. [117] During the zolpidem nights, the latency to persistent
sleep became shorter [117], pointing towards the possibility that our model
would also have estimated a lower amount of sleep onset misperception in this
case. However, whole-night differences of number of awakenings and WASO
were not found. [117] This finding could possibly be related to the shorter
half-life time of zolpidem compared to zopiclone, as well as to the possibility
that survival parameters are better suitable to express relevant aspects of sleep
fragmentation.

From the present data, we cannot conclude whether the altered sleep dynam-
ics we found are specific for the influence of zopiclone in elderly people, or if
they also play a role in younger people not using hypnotics. Larger datasets are
required to examine if differences of NREM and wake dynamics can be found
between people with insomnia and healthy participants. Such differences were
not found in our study. However, based on the results of a simplified sample
size calculation, comparing two independent means [67] and assuming means
and standard deviations similar to the ones found in this study, we conclude
that a difference between a NREM scale parameter of 20 and 15 minutes with a
standard deviation of 8 minutes would require a sample size of 41 participants
with insomnia and 41 healthy controls. If the survival curve of NREM is close
to mono-exponential, this would correspond to a difference between three and
four awakenings per hour, which in our opinion could already be a clinically
significant difference. Therefore, we conclude that, at least for the NREM scale
parameter, our sample size was probably not large enough to detect clinically
meaningful differences between groups. Previous research does indicate that
differences of sleep dynamics may exist between people with insomnia and
healthy controls. [120] Furthermore, it has been shown that insomnia patients
have a higher probability of transitioning from stage N2 to N1 or wakefulness
compared to healthy controls, and a decreased stability of N2. [84] In the light of
the current results, we can speculate that these differences may indeed represent
differences of sleep quality between insomnia patients and controls.

In this study, we treated impaired subjective sleep quality, sleep onset misper-
ception and misperception of TST as different expression of the same objectively
measurable sleep quality. However, there might be different aspects of sleep
quality that are influenced by different parameters. For example, currently we
do not know if sleep onset misperception and misperception of TST share the
same mechanisms. It is difficult to separately assess misperception of SOL and
TST, because TST misperception is influenced by SOL misperception. Therefore,
we would like to stress the importance of specifically asking study participants
for their subjective WASO. When studying larger groups of insomnia patients,
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it would be interesting to use interindividual differences between components
of sleep quality to disentangle different mechanisms. For example, it is possible
that part of the insomnia patients predominantly experience sleep onset misper-
ception, while other patients mainly have complaints of misperception of WASO,
or impaired subjective sleep quality without marked sleep state misperception.
Within the patient population, such different subtypes could be compared re-
garding survival parameters. As such, the survival parameters identified in this
study could be possibly used as a tool for understanding mechanisms of impaired
sleep quality in specific subtypes of sleep problems. Additionally, dividing sleep
onset misperception into a component explained by sleep fragmentation and an
unexplained component can also present valuable opportunities for research into
treatment interventions.
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6.1 Abstract

Assessing objective measures of sleep fragmentation could yield important fea-
tures reflecting impaired sleep quality in people with insomnia. Survival analysis
allows the specific examination of the stability of NREM sleep, REM sleep and
wake. The objective of this study was to assess the differences between survival
dynamics of NREM sleep, REM sleep and wake between people with insomnia
and healthy controls. We analyzed polysomnography (PSG) recordings from
88 people with insomnia and 92 healthy controls. For each participant, sur-
vival dynamics of REM sleep, NREM sleep and wake were represented using
Weibull distributions. We used lasso penalized linear regression to analyze the
difference between participant groups with respect to the Weibull parameters,
while correcting for age, sex, total sleep time (TST) and relevant interaction
effects. Significant group effects were found for the NREM scale parameter,
and for the scale and shape parameters of wake. Results indicated that people
with insomnia had less stable NREM sleep and more stable wake after sleep
onset compared to healthy controls. Additionally, the altered distribution of
wake segment lengths indicated an increased difficulty to fall asleep after longer
awakenings in the insomnia group. However, these differences were mainly
observed in younger participants. The current findings suggest that people with
insomnia have an increased fragmentation of NREM sleep, but not necessarily of
REM sleep. Additional research into the underlying mechanisms of NREM sleep
fragmentation could possibly lead to a better understanding of impaired sleep
quality in people with insomnia.
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6.2 Introduction

Worldwide, insomnia is the most common sleep disorder. [4] Insomnia greatly
affects general health, work productivity and quality of life [4], and is probably
caused by a combination of psychological and physiological mechanisms. [7]
Gold-standard polysomnography (PSG) measurements are often performed to
objectively study sleep. When performing PSG in the clinical setting, sleep
is typically quantified using standard overall parameters, such as total sleep
time (TST), sleep onset latency (SOL) and wake after sleep onset (WASO). Part
of the people with insomnia have a reduced amount of sleep as reflected by
these parameters, but often, these general indicators do not fully explain the
seriousness of the sleep complaints. [26, 27, 97] Apparently, sleep quantity is
not necessarily always sufficient to define a good night of sleep. Instead, a
broader concept of sleep quality could be defined, which may be reflected by
other PSG-derived features.

Sleep fragmentation, i.e., disturbed sleep continuity as represented in the
hypnogram, has been proposed as a measure of impaired sleep quality. [26,84,
110,111] For instance, a meta-analysis showed that people with primary insomnia
have an increased number of awakenings compared to healthy sleepers. [23]
Additionally, both PSG-defined and subjectively reported number of awakenings
were correlated with measures of subjective sleep quality in healthy sleepers.
[24,112,113] Furthermore, interruptions of sleep at the beginning of the night
have been proven to play a role in the misperception of the sleep onset in
people with insomnia. [35,57] This is a relevant finding for the topic of sleep
quality, because it has been assumed that sleep onset misperception can be
caused by a reduced sleep quality at the beginning of the night. [26] Identifying
objective parameters reflecting sleep quality is potentially useful to increase our
understanding of the characteristics that are important for perceiving a good
night of sleep.

We previously identified two main challenges that may complicate research
into the influence of sleep fragmentation on sleep quality. [132] First, because
sleep is influenced by many different psychological and physiological factors,
a large variability between people may be expected. Interindividual variability
may be reduced by assessing differences between multiple nights within the
same individual. [132] Second, sleep fragmentation can be assessed using many
different parameters, making it difficult to compare results across studies. Cur-
rently, there is not a standard set of parameters to adequately describe sleep
fragmentation.

Traditionally, sleep macrostructure is mainly described using parameters such
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as WASO, sleep efficiency, number of awakenings and sleep stage percentages.
[133] However, more sophisticated methods to analyze the sleep architecture
have been proposed, including survival analysis. [119] Survival analysis can
be used to analyze the expected amount of time until the end of a sleep or
wake fragment. [119] Subsequently, a hazard function can be calculated to
evaluate the probability of a sleep or wake fragment to end at any given time
point. Or similarly, to evaluate the probability of a fragment to survive. This
survival function not only provides information about the average duration of
the fragment concerned, but also about its probability distribution. For example,
sleep is often modelled as an exponential distribution [134], implying that
awakenings occur at a constant average rate, independently of the occurrence of
previous awakenings. In contrast, the survival dynamics of wake fragments are
usually modelled using power law transition dynamics, because the probability of
falling asleep becomes lower if the length of the wake fragment increases. [134]
A power law distribution indicates that the rate of occurrence of events of falling
asleep is dependent on the wake time. [134] This is important information that
cannot be obtained using traditional PSG-derived parameters. Another benefit of
survival analysis over other parameters such as sleep stage percentages, is that
survival analysis is more specific. Survival curve analysis can be used to assess if
low percentages of certain sleep stages reflect the presence of many interrupted
fragments of that sleep stage, or a reduced probability to enter that specific sleep
stage.

In previous research, we examined sleep and wake survival parameters in a
sleep medication intervention study. [132] We found that elderly people with
insomnia complaints, as well as healthy controls, had an improved self-reported
sleep quality when using zopiclone for one night compared to using placebo.
These improvements of self-reported sleep quality co-occurred with an increased
stability of NREM sleep and a decreased stability of wake. [132] No alterations
of REM sleep were found. We concluded that survival parameters of wake
and NREM sleep may be useful for further studying impaired sleep quality in
people with insomnia. [132] However, this conclusion was based on the specific
circumstances of a medication study in a small, elderly sample. The question
of whether similar changes of sleep architecture could be found in a larger and
younger population of both medication-free people with insomnia and healthy
individuals remains unanswered. If survival parameters of wake and NREM
indeed reflect sleep quality, it is possible that differences between insomnia
and healthy controls will be detected. Roth et al. indeed showed differences
of sleep survival dynamics between healthy people and people with insomnia,
but distinctions between NREM and REM sleep were not made. [120] In the
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present study, we further study the presence of altered sleep survival dynamics
in people with insomnia and controls, including differences between NREM and
REM sleep.

6.3 Methods

6.3.1 Study design

We analyzed polysomnography (PSG) recordings from 88 insomnia patients and
92 healthy controls. The insomnia data were recorded as part of usual clinical
care at Sleep Medicine Center Kempenhaeghe, Heeze, the Netherlands. The data
of the healthy controls were collected as part of the Healthbed study, performed
to obtain sleep recordings in healthy people to develop new technologies for sleep
assessment. The applicable protocol (W17.128) was approved by the medical
ethics committee of Maxima Medical Center, Veldhoven, the Netherlands. The
current data analysis protocol (20190523.3) was approved by the medical ethics
committee of Sleep Medicine Center Kempenhaeghe.

6.3.2 Insomnia patients

All PSGs of insomnia patients were recorded between 2013 and 2017. In case
more than one recording was available, the first PSG of a participant was selected.
We included patients with a clinical diagnosis of “psychophysiological insomnia”
or “paradoxical insomnia” according to ICSD-2 criteria [20], and grouped these
diagnoses together. Additional inclusion criteria for the study were: 1) age
above 16, 2) complete PSG recording of at least one night available and 3) a
complete subjective sleep diary of the PSG night available. Exclusion criteria
were: 1) major medical comorbidities potentially influencing the PSG recording
(as determined by an experienced somnologist), such as AHI>15 2) major sleep-
related co-morbidities other than insomnia that could fully explain the sleep
complaints of the patient and 3) using prescribed medication that could impact
sleep.

6.3.3 Healthy controls

Inclusion criteria of healthy controls were: 1) age between 18 and 65 and 2)
the ability to read and speak Dutch. Exclusion criteria were: 1) any diagnosed
sleep disorders 2) a Pittsburgh Sleep Quality Index [64] ≤ 6 or Insomnia Severity
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Index [93] > 7, 3) indication of depression or anxiety disorder measured with
the Hospital Anxiety and Depression Scale [94] (score >8) 4) pregnancy, shift
work, use of any medication except for birth control medication, and 5) presence
of clinically relevant neurologic or psychiatric disorders or other somatic disorder
that could influence sleep.

6.3.4 Assessments

Polysomnography - A clinical video-polysomnography was performed according
to the AASM recommendations. Visual sleep staging was performed according to
AASM criteria. [40] All recordings were (re)scored by one single experienced
technician from the team of authors (BH). The hypnograms obtained with this
rescoring were processed for further analysis.

Subjective sleep – Subjective sleep was assessed the morning after the PSG
measurements by asking the participants to indicate time awake in bed, lights
off time, time asleep and time outside of bed using a graphical sleep diary with a
time resolution of 15 minutes.

6.3.5 Survival analysis

Survival dynamics of NREM sleep, REM sleep and wake were modelled separately.
For NREM sleep, REM sleep and wake, all fragments were listed and sorted based
on length (Figure 5.1). A NREM fragment was considered terminated if it was
followed by either wake or REM sleep. When fitting the Weibull distributions to
the NREM sleep lengths, we excluded fragments shorter than one minute. This
was done to limit the influence of isolated 30s-epoch N1 fragments occurring
during wake and REM (N1 being a subset of NREM sleep). REM fragments were
terminated if they were followed by wake or NREM sleep epochs. We excluded
REM fragments shorter than one minute, again to limit the influence of short
fragments. Wake fragments were terminated when followed by any epoch scored
as sleep, except single N1 epochs. Single N1 epochs during wake were replaced
by wake, because they may give a false impression of wake being divided into
many shorter fragments. Wake fragments shorter than one minute were not
excluded from analysis, because they generally constitute a large part of the total
number of awakenings.
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6.3.6 Parametrization

We parametrized the survival dynamics of each participant using the Weibull
distribution. Individual Weibull parameters were compared across group and
treatment. A Weibull distribution is characterized by two parameters: a shape
parameter (k) and a scale parameter (λ). The shape parameter characterizes
the shape of the distribution. A shape parameter k below one indicates that
the probability of an event, i.e., the end of a wake or sleep fragment, decreases
over time. This is often the case for wake fragments, because most awakenings
are very short, and the chance of falling asleep again is largest during the first
couple of minutes. A shape parameter above one indicates an opposite trend.
When the shape parameter is equal to one, the distribution is exponential. An
exponential distribution is the probability distribution of the time between events
in a Poisson process, where events occur continuously at a constant average rate,
independently of the time elapsed. In case of an exponential distribution, the
scale parameter is equal to the rate of an event. Thus, in a near-to-exponential
distribution, λ can be interpreted as the inverse of the mean duration of the
sleep or wake length segment. In this case, a lower scale parameter, and thus
longer segments on average, indicates an increased stability.

6.3.7 Modelling

Modelling and statistical analysis were performed in R, version 3.6.2. [95] For
NREM and REM sleep, we used a lasso penalized linear regression model [135]
to assess the difference between groups (insomnia/healthy controls) on the
survival curve parameters, while accounting for the possibly confounding effects
of age, sex (0 male/ 1 female), TST, and all possible second-order interactions
between these variables. Age and TST were centered and normalized. The lasso
algorithm was used in combination with bootstrapping with 100 replications to
estimate the regularization parameter. For this, we used the HDCI package. [136]

We expect that TST may be a possible confounding parameter for sleep
survival parameters, because the degree of sleep fragmentation may vary over
the night. From experimental sleep studies, we can learn that the arousal
threshold is at its maximum near the middle of the night. [137] Therefore, we
may expect a higher number of awakenings at the end and the beginning of the
night, and less awakenings in the middle of the night. However, for wake, the
relation between TST and the survival parameters is more complicated. Research
shows that the average length of the awakenings somewhat increases over the
night [96], which could imply that people with a shorter TST on average have
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shorter awakenings. However, people with insomnia often have excessively long
awakenings at any moment of the night. In a sleep center, where the opportunity
to spend time in bed is limited, these long awakenings will most likely result
in a reduction of TST. Therefore, TST and wake survival parameters mutually
influence each other, and assessing the confounding influence of TST would not
provide any meaningful results for the wake parameters. For this reason, for
wake survival parameters, we did not incorporate PSG-derived quantities in the
analysis. Instead, we only incorporated group, age, sex and all interactions in
the lasso algorithm.

Note that in previous research [132], we reported the results about the
scale parameter in terms of the mean fragment length 1/λ instead of the mean
hazard rate λ itself, to facilitate the interpretation. In this study, we used λ,
because performing an inverse transformation would alter the distribution of the
parameters, and make it more difficult to apply a linear model.

6.3.8 Statistical analysis

Because comparisons were done for REM sleep, NREM sleep and wake, a Bon-
ferroni correction was applied, resulting in an alpha value of 0.0167. Group
statistics were expressed as mean ± standard deviation (sd) in case of a normal
distribution, and as median ± inter quartile range (IQR) in case of a non-normal
distribution. Prior to analysis, we used the rule of thumb proposed by Tabachnick
and Fidell [138] to assess if the dataset contained a sufficient number of observa-
tions for the intended analysis. The rule of thumb states that the sample size for
a multiple linear regression model should be at least 50+8*m, where m is the
number of factors evaluated in the model. Counting the four basic variables and
their second-order interaction effects, the lasso regression model would yield a
maximum of ten factors. This would result in a sample size of 130, which is less
than the sample size used in this study.

6.4 Results

6.4.1 Demographics

The age of the participants with insomnia (58 females, 30 males) had a median
of 47.0 ± IQR 19.5 years. The healthy controls (57 females, 35 males) had a
median age of 33.0 ± IQR 27.0 years. The median of total sleep time was 383 ±
IQR 73 minutes for the people with insomnia and median 438 ± IQR 59 minutes
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for the healthy controls. In Table 6.1, co-morbidities within the insomnia group
are listed.

Table 6.1: Frequency (percentage) of co-morbidities within the insomnia group.

Co-morbidities # (%)

Depression and/or anxiety 13 (14.8)

ADHD 2 (2.3)

Other psychiatric diagnosis 9 (10.2)

PLM index >15 4 (4.5)

Mild OSA: 4 < AHI <15 2 (2.3)

6.4.2 Missing data

For two participants with insomnia, the REM shape parameter could not be
calculated, because all REM sleep bouts had the same length. These participants
both had a TST of less than 2.5 hours, and only a few very short fragments of
REM sleep. In these participants, both the REM shape and scale parameters were
omitted from the analysis. Furthermore, in one healthy participant the wake
shape parameter could not be calculated due to the same cause. One healthy
participant had only one REM fragment. In this case, again both the REM shape
and the REM scale parameters were omitted from analysis.

6.4.3 Survival parameters in patients versus controls

Results of the statistical analysis on the sleep and wake survival parameters
are shown in Table 6.2. The two groups differed significantly in the NREM
scale parameter, the wake scale parameter and the wake shape parameter, after
correcting for possible confounders. For ease of interpretation, we report the
scale parameter λ: a larger λ indicates a higher hazard rate (which in turn is
equal to a shorter average segment length). Results indicate that people with
insomnia had a higher hazard rate for NREM sleep, and a lower hazard rate for
wake compared to healthy controls. Additionally, people with insomnia had a
smaller wake shape parameter, which was further away from one. Thus, the
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distribution was further away from an exponential distribution in people with
insomnia. This can be interpreted as a larger effect of elapsed time awake on
falling asleep again, i.e., it takes longer to fall asleep after longer awakenings.

6.4.4 The effect of age, sex and TST on survival parameters

Age was a statistically significant confounder for none of the survival parameters
(Table 6.2). Sex was a statistically significant confounder for both the NREM and
REM scale parameters (Table 6.2). Males had higher NREM and REM hazard
rates compared to females. TST was a statistically significant confounder for the
REM scale parameter. People with a longer TST had a lower hazard rate of REM
sleep. We did not find any significant interaction effects.

6.4.5 Model evaluation and sensitivity analysis

Residual diagnostics for the models for NREM and REM sleep survival dynamics
did not indicate any violation of the model assumptions. Evaluating the model for
the wake shape parameter indicated the presence of large studentized residuals,
which were not normally distributed. These large residuals were found only
in young people between 18 and 28 years old from the control group, who
seemed to have shorter awakenings than expected based on their age and sex.
We performed a sensitivity analysis, including only participants older than 29.
This approach yielded a sample size of 76 people with insomnia and 51 healthy
controls. In this sensitivity analysis (Table 6.3), no significant effects were found.
The effect of group and age on the wake shape parameter and the effect of age on
the wake scale parameter were near-to significant. The signs of the coefficients
were the same as those reported in Table 6.2.

6.4.6 Correlations between survival parameters

Within the insomnia group, we did not find a significant correlation between
the NREM scale parameter and the wake scale parameter (Spearman rho=-0.02,
p=0.83). We also did not find a significant correlation between the NREM scale
parameter and the wake shape parameter (Spearman rho=-0.07, p=0.53).
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6.5 Discussion

Sleep fragmentation is a potential mechanism underlying impaired sleep quality
in people with insomnia, with multiple dimensions. To study sleep fragmentation
in more detail, we assessed both sleep and wake survival dynamics in patients
with insomnia and healthy controls. We found that people with insomnia had a
decreased stability of NREM sleep compared to controls. Additionally, altered
wake dynamics indicated that wake was more stable in the insomnia group, and
that it took longer for people with insomnia to fall asleep after long awakenings.
In contrast, dynamics of REM sleep did not differ between groups.

In our statistical analysis, we corrected for the effects of age, sex, TST and
interaction effects. Taking the influence of TST into account for sleep survival
parameters is important, because the number and length of the awakenings may
vary over the night. [96,139] Additionally, correcting for age was of particular
importance for this study, since the participants were not age-matched. The
limited amount of information available about sleep and wake fragmentation
made it difficult to select relevant interaction effects based on prior knowledge.
Therefore, we used lasso penalized regression to make a first selection of relevant
parameters that can possibly explain the sleep and wake survival parameters. The
intention of using the lasso algorithm was exploratory, to choose the variables that
could explain the survival parameters, and not to build a model that adequately
predicts those parameters.

Evaluating the model diagnostics showed that our approach of using a linear
regression model was valid for sleep survival parameters. For the wake survival
parameters, sensitivity analysis indicated the possibility that the effect of group
was largely driven by a small number of participants within the age range of
18 to 28 years. We observed that several young people in the healthy control
group had very large wake scale and shape parameters, indicating a short av-
erage wake length and a relatively small percentage of longer awakenings. It
is possible that these participants were college students, who may have been
sleep deprived because of different sleep habits compared to the other people
in the study sample. However, we did not find signs of rebound sleep, such as
high percentages of slow wave sleep, in the PSG recordings of these participants.
Therefore, we do not expect that these results were caused by prior sleep depri-
vation. Another possibility is that the effect of age on the survival dynamics of
wake was non-linear. Therefore, the results of the wake parameters should be
interpreted with caution. At the same time, when only analyzing participants
older than 29, the predicting effect of group on the wake shape parameter was
still near-to significant, despite a sample size reduction of 50% in the healthy
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control group. This indicates that a group effect may still be present in older
people, but this would need to be confirmed with a larger sample size of this age
range.

We did not find confounding effects of age on any of the survival parameters.
Earlier research reported that older participants have higher hazard rates of
NREM sleep compared to younger participants. [121] Therefore, we expected
an effect of age for NREM sleep. It is possible that the two interaction effects
age*sex and age*TST partly account for the effect of age. Alternatively, it is
possible that we did not find an effect because the groups were unbalanced
for age, or because of the relatively low percentage of elderly people in the
dataset. For example, only nine participants were older than 65. Additionally,
our model results indicated that men had less stable NREM and REM sleep
compared to women. Although women have an increased risk of developing
insomnia and report more sleep problems [140,141], the finding that women
objectively sleep better than men is commonly described in the literature. [141]
Women were reported to have a lower sleep efficiency [142], less WASO [142],
a lower percentage of SWS [143,144], and a lower arousal index. [143] Finally,
in our study, participants with a shorter TST had less stable REM sleep. This
result intuitively seems plausible, because the total amount of REM sleep during
a sleep cycle usually increases over the night. We can hypothesize that this
increase of REM sleep density co-occurs with an increased stability of REM sleep.
This hypothesis would illustrate the importance of correcting for TST when
assessing sleep fragmentation. However, the association between TST and sleep
fragmentation should be further examined. For example, in one study, people
with a short TST had shorter sleep bout lengths during the first three hours
of the night, compared to people with a long TST. [145] Thus, it is possible
that sleep fragmentation can also lead to a shorter total sleep duration. In that
case, we should be careful not to overcompensate when correcting for TST. In
this analysis, we chose to incorporate age, sex, TST and interaction effects as
confounding factors in a lasso penalized linear model. For age and sex, matching
would present an alternative solution. However, age-matching would probably
result in predominantly evaluating sleep in older people, since the number of
young people seeking medical attention for insomnia is relatively small. Younger
people with insomnia may have different profiles compared to older people with
insomnia [146].

Survival analysis has important advantages and disadvantages. As an impor-
tant caveat, this type of analysis is very sensitive to sleep staging differences
between experts. We sometimes observe differences between scorers regarding
the number of awakenings, possibly because scorers have different sensitivity to
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events during sleep that may lead to scoring an epoch as wake, such as alpha
activity and eye movements. Such a difference can even be observed in the
presence of a very high general agreement between scorers. A small difference
in the number of 30s-awakenings scored during sleep can already greatly affect
the average segment length. Therefore, in this study all PSGs were scored or
rescored by one and the same expert. In research into survival dynamics with
multiple scorers, we would recommend specifically assessing the number of
awakenings as a parameter for inter-scorer reliability. The same would apply for
assessing the reliability of automated scoring.

Different methods exist to compare survival curves between groups of partici-
pants. We chose to use the Weibull distribution to represent survival dynamics
for each participant rather than pooling the sleep and wake fragments of all
participants together, because the latter approach would not take into account
the effect of clustering within participants. Additionally, when pooling all frag-
ments together, participants with many short fragments would influence the
pooled survival dynamics more than participants with few longer fragments.
However, this approach may introduce additional uncertainty in the results due
to the estimation of the parameters. Moreover, in a few participants, we were
not able to calculate the Weibull parameters due to a limited amount of either
REM sleep or wake segments. Nonetheless, in our opinion the advantage of
not pooling the data outweighs the limitations of this approach. Furthermore,
parameterization of the survival curves allows for the use of a linear model to
correct for possible confounders, which is an important additional advantage.
We chose to use the Weibull distribution instead of calculating only the average,
because by calculating the average we would assume an exponential distribution.
By allowing different types of shape parameters, we took possible dependencies
into account between the time slept and the probability to wake up/fall asleep
again.

As illustrated by our results, survival analysis can be very useful for disen-
tangling different types of sleep and wake fragmentation. For instance, the
current findings suggest that people with insomnia have fragmented NREM sleep,
but not necessarily fragmented REM sleep. This finding is relevant, because
research indicates that NREM and REM sleep have different functions. [122]
Our results on REM sleep are not consistent with earlier research, where people
with insomnia scored higher on a combined index of awakenings and arousals
compared to good sleepers. [86] In the current study, we limited our analysis to
awakenings and sleep stage transitions, while we did not incorporate arousals.
This can possibly explain the differences between the study results.

We also confirmed our hypothesis that people with insomnia have an in-
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creased stability of wake after sleep onset, although this finding should be
interpreted with caution, since it seemed to be particularly relevant for the
younger participants. Nevertheless, assessing wake survival dynamics could also
be relevant in older people, because long awakenings could be an important
characteristic of people with an objective short sleep duration, a subtype of in-
somnia discovered by Vgontzas at al. [22] A short sleep duration often co-occurs
with a long WASO, and WASO is in turn heavily influenced by the length of
the awakenings. The absence of a correlation between NREM sleep and wake
survival parameters in our insomnia group suggests that people with short NREM
fragments, and thus probably many awakenings during NREM sleep, do not
necessarily have long awakenings. Therefore, it is important to separately assess
sleep and wake survival mechanisms.

Our current findings show that NREM sleep fragmentation is an important
phenomenon in people with insomnia, requiring additional examination. For
example, the exact causes of sleep fragmentation are unknown. Furthermore, it
is not known if sleep fragmentation is present in all patients or only in a subgroup,
how much it varies over different nights of sleep, and if improvement can be
observed after cognitive behavioral therapy for insomnia (CBT-I). Learning more
about fragmentation of NREM sleep can possibly lead to a better understanding
of impaired sleep quality in people with insomnia, and consequently to improved
treatment.
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Chapter 7
Summary, discussion and
future perspectives

7.1 General summary and discussion

The aim of the research described in this thesis was to identify objectively
measurable sleep parameters reflecting impaired sleep quality in people with
insomnia. The first part of the thesis focused on sleep onset misperception, i.e.,
the phenomenon that people with insomnia often overestimate their sleep latency
compared to objective recordings. Sleep onset misperception can probably be
considered as an expression of impaired sleep quality at the beginning of the
night, and therefore may be associated with certain objective sleep parameters.
In the second part of this thesis, we shifted our focus from sleep onset towards
whole night sleep/wake dynamics using survival analyses.

7.1.1 Modelling sleep onset misperception

In chapter 2, we assessed the correlation of sleep misperception with macro- and
microstructural parameters during the first sleep cycle of people with insomnia.
The amount of sleep onset misperception was associated with increases in wake
after sleep onset, and with a higher percentage of NREM1 sleep during the first
sleep cycle. These results imply that sleep onset misperception is related to frag-
mentation of the sleep macrostructure. Based on this information, we proposed
a model to quantify the influence of sleep fragmentation at the beginning of the
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night on sleep onset misperception. In the model, we assumed that the subjective
moment of falling asleep co-occurs with the start of the first uninterrupted sleep
bout of sufficient length. In other words, we assumed that people do not perceive
sleep fragments shorter than a certain length at the beginning of the night are
not perceived as sleep. Results indicated that people with insomnia needed
an uninterrupted sleep fragment with a minimum length of approximately 30
minutes for an adequate perception of the sleep onset. In contrast, healthy peo-
ple needed an uninterrupted sleep fragment of only approximately ten minutes.
Thus, the results suggested that people with insomnia need a longer time of
uninterrupted sleep to perceive their sleep onset compared to healthy sleepers.

Patients with insomnia require longer continuous sleep fragments to adequately
perceive their sleep onset when compared to healthy sleepers.

The sleep onset misperception model was validated and extended in chapter 3.
Again, patients with insomnia, those who misperceived their sleep in particular,
needed longer continuous sleep fragments to adequately perceive their sleep
onset compared to controls. Comparing various model types and assumptions
additionally lead to the conclusion that the length of the uninterrupted sleep
fragments was of more influence for the perception of the sleep onset than the
length of the awakenings. The modelling approach resulted in a parameter for
which we coined the term Sleep Fragment Perception Index (SFPI), providing a
useful measure to characterize sleep onset misperception in individuals. Using
the SFPI, we can quantify the influence of objectively measurable sleep frag-
mentation on sleep onset misperception. Thus, we can express the sensitivity of
the sleep perception of a person to fragmented sleep. This is useful for clinical
research, such as identifying other factors that can contribute to sleep onset
misperception.

The SFPI is a valuable tool to model sleep onset misperception in individuals.

In this part of the thesis, we showed that objective sleep characteristics can indeed
influence the perception of the sleep. These findings may aid in viewing sleep
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misperception as an actual problem of impaired sleep quality, rather than a mere
erroneous perception of wakefulness. In general, occasional short awakenings
during the night are considered normal for healthy sleepers. However, based on
our research results, it seems that in part of the people with insomnia, these short
awakenings can greatly influence the perception of the sleep onset depending on
their timing. Therefore, monitoring the number and distribution of awakenings
during the night may be of clinical significance for people with sleep disorders.
Furthermore, the finding that short sleep fragments are often not perceived as
sleep, suggests that there is a time-dependent component to perceiving sleep. It
is possible that this is related to the propagation to deeper sleep, and that lighter
sleep is more easily overlooked compared to deep sleep. This hypothesis remains
to be further investigated. Further research could specifically assess the behavior
of sleep after awakenings: how long does it take to return to deep sleep, and is
this the same for all awakenings and for all people? For this type of research,
one could consider using an index of sleep depth based on spectral power, for
example the odds ratio product proposed by Younes et al. [147], or the bispectral
index proposed by Sleigh et al. [148]

Monitoring the number and distribution of awakenings during the night may be of
clinical significance for people with sleep disorders.

Apart from providing insights into the relation between sleep fragmentation and
sleep onset misperception, our model also provides an approach to divide sleep
onset misperception in two components: a component predicted by the model
and a component not explained by sleep fragmentation. The latter component
was used to assess the influence of pre-sleep arousal and time estimation on sleep
onset misperception (chapter 4). We concluded that people who overestimated
a time interval during the day also overestimated their sleep onset latency. An
influence of pre-sleep arousal was not found. However, this finding does not
exclude the possibility that pre-sleep arousal influences sleep onset misperception
by means of altering the sleep structure. The influence of pre-sleep arousal on
sleep structure remains to be further investigated.
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Sleep onset misperception is influenced by the ability to estimate time.

7.1.2 Sleep and wake survival analysis

As a next step, we extended our research to whole-night sleep parameters. Based
on the results of the sleep onset misperception model, we expected that not
only the number of awakenings would be important to capture in a whole-night
parameter, but also their timing. For example, according to the assumptions made
in the model, someone who regularly awakes every ten to fifteen minutes would
overestimate his or her sleep onset more than someone with many clustered
awakenings in the first few minutes of the night. We identified survival analysis
as a valuable tool to describe whole-night sleep fragmentation, because it can
be used to describe both the average duration of the sleep bouts and their
distribution. In chapter 5, we assessed the influence of sleep medication on
sleep misperception, subjective sleep quality and survival dynamics in people
with insomnia and healthy controls. All participants used a placebo for one night,
and zopiclone, a frequently used sleep drug, for another night. Participants
from both groups on average had less sleep onset misperception during the
zopiclone night compared to the placebo night. Using the SFPI, we concluded
that the zopiclone-induced changes in sleep onset misperception could be largely
attributed to predictable changes of sleep architecture. During the zopiclone
night, the participants did not only have less sleep onset misperception, but
also less misperception of their total sleep time. They also experienced a better
whole-night sleep quality. When using survival analysis, we observed that the
participants had more stable NREM sleep during the zopiclone night, as well
as less stable wake after sleep onset. Thus, we identified a reduced stability
of NREM sleep and an increased stability of wake as possible contributors to
impaired whole-night sleep quality.

Zopiclone-induced changes in sleep onset misperception can be largely attributed to
predictable changes in sleep architecture.

In chapter 6, we assessed differences between survival parameters of sleep
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and wake between people with insomnia and healthy controls. We used a linear
model to analyze the difference between patients and healthy controls, while
correcting for age, sex and total sleep time. Results indicated that the people with
insomnia indeed had less stable NREM sleep and more stable wake after sleep
onset compared to the healthy controls. The altered wake dynamics seemed
particularly applicable in younger participants.

People with insomnia have less stable NREM sleep and more stable wake compared
to healthy sleepers.

Survival analysis can be used to obtain valuable information about mechanisms
of sleep and wake fragmentation. For instance, the distribution of the sleep
and wake bout lengths can be studied. [149] Bout length distributions are often
fitted with either an exponential or a power-law distribution. An exponential
distribution indicates that the probability of an event to happen is not dependent
on the time since the previous event. [150] An example of an exponential
distribution is the amount of time until an earthquake occurs. A power-law
distribution indicates that the majority of the bout lengths is short, while longer
bout lengths are rare. [150] This distribution is also applicable in for example
cities, where the majority of the cities are small, and a small percentage is very
large. Wake bout lengths are assumed to follow a power law distribution, because
short awakenings are much more common than long awakenings. For sleep
bout lengths, the appropriate type of distribution is still under debate. [134]
The type of the distribution is of interest, because it provides information about
whether or not deeper sleep is better protected from disturbances than lighter
sleep. For example, research of Klerman et al. indicated that the hazard rate of
NREM sleep abruptly drops after ten minutes. [121] In other words, the chance
of passing to wake or REM sleep is largest during the first ten minutes of NREM
sleep. This could be of interest for sleep disorders, because a reduced NREM
sleep stability in an individual could hypothetically lead to an increased number
of awakenings and a smaller proportion of stable sleep (i.e., sleep not within
the first ten minutes after awakening), in turn leading to more awakenings and
potentially resulting in an unfortunate vicious cycle. We should note that the
differences in sleep dynamics that we found in chapter 6 between insomnia and
healthy controls only concerned the average sleep length, and not the type of
the distribution. However, we do not intend to provide detailed conclusions
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about the types of sleep bout distributions involved. To be able to draw such
conclusions, one would preferably have access to multiple nights of data for each
participant. [149]

When performing survival analysis, several limitations should be taken into
account. Perhaps the most important limitation is the need to reliably detect short
awakenings and sleep stage transitions. In general, manually scored sleep stages
show subtle or less subtle differences, depending on the person who evaluated the
hypnogram. For instance, the interrater reliability for all sleep stages together
using AASM criteria is approximately 82%. [151] Survival analysis may be
particularly sensitive to differences between sleep scorers, because differences
of short bouts of scored sleep stages can have a large effect on the outcome of
the analysis. For example, if one would want to calculate the amount of wake
after sleep onset for an individual, scoring one 30s-epoch of wake as sleep would
not largely influence that calculation. In contrast, when analyzing the dynamics
of sleep bouts during the night, that same awakening could result in counting
two distinct sleep fragments instead of one. This may in turn largely affect
the average length of the sleep bouts. A further complicating factor is that the
number of awakenings is not a routinely used parameter for the evaluation of the
agreement between sleep scorers. Therefore, it is possible that this metric may
show more variation between sleep scorers than routinely evaluated parameters,
such as sleep onset latency and wake after sleep onset. In research into survival
dynamics with multiple scorers, we would recommend specifically assessing the
number of awakenings as a parameter for inter-scorer reliability. The same would
apply for assessing the reliability of automated scoring. Probably, currently the
best option is to compare survival parameters of PSGs which were evaluated by
the same scorer.

Survival analysis can be used to obtain valuable information about mechanisms of
sleep and wake fragmentation, as long as the need to reliably detect short

awakenings is taken into account.

Additionally, for sleep and wake survival analysis, we would recommend to
carefully consider the assumptions made in the model. It may be useful to
exclude certain events. For example, as we did in chapter 5 and chapter 6,
it can make sense to exclude the influence of single epochs of NREM1 sleep
during long awakenings, because they give a misleading impression of highly
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fragmented wake after sleep onset. However, following the same procedure
for one-epoch wake fragments during sleep would not make sense, based on
our previous conclusions that short awakenings greatly influence sleep onset
misperception. Such decisions should ideally be based on knowledge about the
implications and importance of certain elements of sleep architecture, as well as
the sensitiveness of such elements to inter-scorer differences. Unfortunately, this
knowledge is not always available.

Finally, it is important to keep in mind that survival curve analysis is a
simplified analysis, because of the inherent assumption that the stability of
sleep and wake fragments does not change over the night. From experimental
sleep studies, we can learn that the arousal threshold is at its maximum near
the middle of the night. [137] Therefore, we may expect a higher number of
awakenings at the end and the beginning of the night, and less awakenings
during the middle of the night. Thus, total sleep time could be a confounding
factor in survival curve analysis. Recently, Bizzotto et al. described an approach
to model the bout lengths of distinct sleep stages, while taking into account the
time of the night. [139] Bout lengths were compared at one quarter and three
quarters of sleep time. [139] A similar approach could be followed for survival
curve analysis of NREM sleep, REM sleep and wake bouts. Another possible
approach is to adjust for total sleep time during the statistical analysis, as we
did in chapter 6. However, we do not yet understand the exact nature of the
possible correlation between total sleep time and sleep survival dynamics. It has
been shown that people with a short total sleep time have shorter sleep bout
lengths during the first three hours of the night, compared to people with a
long total sleep time. [145] Thus, it is possible that sleep fragmentation can also
lead to a shorter total sleep duration. In that case, we should be careful not to
overcompensate when correcting for total sleep time.

7.2 Future perspectives

7.2.1 Assessing sleep macrostructure: The importance of the
hypnogram

From a practical point of view, it is important to emphasize that we only used
macrostructural parameters for both the sleep onset misperception model and
the survival curve analysis. These parameters are easy to calculate from routine
clinical PSG measurements, and do not require additional scoring of micro-
events.
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Although PSG and sleep staging have already been performed in the sleep
clinic for a long time, we can state that a large part of the information contained
in the recorded signal is not used in clinical practice. Apart from visual evaluation
of the hypnogram, the only information routinely obtained from the sleep staging
consists of a small number of standard parameters, such as total sleep time,
sleep onset latency, wake after sleep onset, and percentages of the sleep stages.
Although it is known that a normal night of healthy sleep usually consists of
alternating stages of NREM and REM sleep, there are many things we do not
know. For example, we do not have reference values for normal numbers of
awakenings, numbers of sleep stage transitions and timing of events. Research
into sleep macro-architecture is highly relevant, because it can help clinicians to
take advantage of information that is already easily accessible in the sleep clinic.

Research into new macro-architectural sleep parameters is highly relevant, because
it can help clinicians to take advantage of information that is already easily

accessible in the sleep clinic.

Survival analysis may be one way to help reveal important information from
the sleep macrostructure, but there are many other approaches. For example,
Markovian modelling is often used to model sleep transition dynamics, of people
with obstructive sleep apnea (OSA) in particular. [119] The simplest form of a
Markov model can be used to model randomly changing systems, in which future
states depend only on the current state and not on the previous events. The
output of such a model would be the probability of entering a certain sleep stage,
given the identity of the current sleep stage. [84] For example, one could report
that 5% of the epochs scored as NREM3 are followed by a NREM2 epoch. In
some cases, Markov models are combined with fitting distributions to individual
sleep stages or combinations of sleep stages [133], making this approach rather
similar to the survival analysis approach described in this thesis. Survival analysis
and Markov models are both forms of probabilistic sleep architecture modelling.
The probabilistic sleep models described above do only consider the length of the
current sleep or wake fragment, and therefore it is implicitly assumed that the
sleep structure does not change over the course of the night. Thus, these models
are suitable to compare relevant aspects of sleep architecture between groups of
participants, but they do not contain sufficient information to realistically model
a whole night of sleep. This is probably also the reason that, for automated sleep
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staging based on cardiac signals, Markovian models have been outperformed
by more recent approaches using recurrent neural networks, which are able to
take into account information from earlier in the night. [152] Unfortunately,
deep learning approaches are less suitable for clinical interpretation, because
they do not output any clinically meaningful parameters. For clinically oriented
research, we have to find a balance between simpler models that may not be
able to capture all characteristics of sleep macrostructure, and more complex
models which are difficult to interpret.

Studying sleep architecture requires finding a balance between model complexity
and ease of interpretation.

7.2.2 Unobtrusive sleep recordings and automated sleep
staging

An important advantage of analyzing parameters derived from the sleep macro-
structure, is that they can be obtained using unobtrusive measurement tech-
niques. PSG is a burdensome and costly diagnostic method, which is not suitable
for multiple-night measurements. Therefore, alternative methods are being de-
veloped. Roughly, two different strategies can be distinguished. The first strategy
involves simplification of the current standard PSG recording systems, usually by
a combination of reducing the number of required electrodes and making the
electrodes easier to apply. As part of the second strategy, automated sleep staging
is being developed based on other physiological signals, for example actigraphy
and heart rate variability. While sleep staging based on actigraphy has important
limitations, such as the fact that it can only distinguish sleep and wake, sleep
staging based on heart rate variability has shown promising results. [152,153]
Both strategies for unobtrusive sleep measurements are mainly being developed
with the aim of obtaining sleep stages and macrostructural sleep parameters.
In contrast, microstructural parameters are often not readily available. Sleep
measurements based on heart rate variability understandably do not provide
any opportunity to assess standard EEG-based microstructural parameters. For
simplified PSG recording systems, assessment of microstructural parameters may
be an option, depending on the quality of the signal and the number of EEG
electrodes.
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Multiple-night recordings are probably very important for sleep research,
because statistical comparisons of sleep macro-architecture between groups of
people can become more accurate and more informative if intraindividual vari-
ation is taken into account. Additionally, the variation of sleep architecture
between nights may be important characteristics of certain sleep disorders. For
example, recent research indicates that night-to-night variability of combined
objective and subjective sleep metrics can be important for distinguishing sub-
types of sleep state misperception. [154] Because good-quality unobtrusive sleep
recordings in combination with automated sleep staging have only been avail-
able for a relatively short time, the amount of research in this field is currently
limited.
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Summary

Sleep structure and sleep perception in people with
insomnia

Chronic insomnia is a widespread problem, affecting about ten percent of the
adult population. People with insomnia have chronic problems with falling asleep,
maintaining sleep or waking up too early. Insomnia additionally involves daytime
complaints such as fatigue, attentional disturbances and mood disturbances,
impairing quality of life, general health and labor productivity.

Polysomnography (PSG) is the gold standard measurement for sleep. Often,
standard PSG-derived metrics reflecting sleep quantity, such as total sleep time
(TST) and sleep onset latency (SOL), do not fully explain the complaints of the
patient. Therefore, it is assumed that not only sleep quantity is important for
perceiving a good night of sleep. Instead, a broader concept of sleep quality can
be defined, which may be reflected by other PSG-defined parameters. Identifying
such parameters is potentially a very useful way to increase our understanding
of the mechanisms underlying insomnia. Furthermore, these parameters may be
useful to identify clinically meaningful subtypes within the patient population,
and possibly even aid in the choice of the best treatment options for individuals.
The aim of the research described in this thesis was to identify objectively
measurable sleep parameters possibly reflecting impaired sleep quality in people
with insomnia.

The first part of the thesis focuses on sleep onset misperception, i.e., the
phenomenon that people with insomnia often overestimate their SOL compared
to objective recordings. Sleep onset misperception can probably be considered
as an expression of impaired sleep quality at the beginning of the night, and
therefore may be associated with certain objective sleep parameters. In chapter
2, we performed an explorative analysis to identify correlates of sleep onset
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misperception. Misperception of SOL was associated with increased percentage
of NREM1 and more WASO during the first sleep cycle, suggesting that sleep
onset misperception is mainly related to sleep fragmentation at the hypnogram
level. Based on these results, we proposed a model to quantify the influence of
the length of uninterrupted sleep fragments on the perception of the sleep onset.
This model was validated and extended in a larger, independent population in
chapter 3. The modelling approach yielded a parameter for which we coined
the term Sleep Fragment Perception Index (SFPI), providing a useful measure to
characterize sleep onset misperception of individuals.

In chapter 4 we demonstrated that modelling the relation between sleep
fragmentation and sleep onset misperception can aid in identifying the influence
of other mechanisms not related to sleep architecture. Using the SFPI, we divided
sleep onset misperception in a component that is explained by the model, and an
unexplained component, which was calculated as the residual error of the model.
This approach was used to reduce the variability caused by sleep architectural
differences in 31 patients with insomnia. Results indicate that time estimation
ability influences sleep onset misperception.

In the remainder of this thesis, we broadened our scope to studying whole-
night sleep quality. Based on knowledge obtained from our modelling approach,
we chose sleep and wake survival parameters as a suitable way to express whole-
night sleep fragmentation. Chapter 5 describes survival parameters of NREM
sleep, REM sleep and wake in recordings from a double-blind crossover design
with zopiclone 7.5 mg and placebo. Results indicated that decreased stability
of NREM sleep and increased stability of wake may be important parameters
reflecting sleep quality. Differences between people with insomnia and healthy
controls with respect to these parameters will be assessed in chapter 6. Results
indicated that the people with insomnia indeed had less stable NREM sleep and
more stable wake after sleep onset compared to the healthy controls. The altered
wake dynamics seemed particularly applicable in younger participants. Addi-
tional research into the underlying mechanisms of NREM sleep fragmentation
could possibly lead to a better understanding of impaired sleep quality in people
with insomnia.



Samenvatting

Slaapstructuur en -perceptie bij mensen met
slapeloosheid

Slapeloosheid is een veelvoorkomend probleem. Ongeveer tien procent van de
volwassenen heeft last van chronische problemen met in slaap vallen, doorslapen,
en/of ochtends te vroeg wakker worden. Daarnaast hebben mensen met slape-
loosheid vaak ook overdag klachten, zoals vermoeidheid, concentratieproblemen
en stemmingsstoornissen. Deze klachten kunnen een grote impact hebben op
het dagelijks leven.

De standaardmethode om de slaap te meten is polysomnografie (PSG). Door
middel van PSG kan de totale hoeveelheid slaap worden berekend. Het komt
echter vaak dat de slapeloosheidsklachten ernstiger zijn dan men op grond van
alleen de hoeveelheid slaap zou verwachten. Daarom wordt algemeen aange-
nomen dat niet alleen de hoeveelheid slaap belangrijk is, maar ook de kwaliteit
van de slaap. Mogelijk zijn er meetbare slaapkenmerken die de slaapkwaliteit
kunnen beïnvloeden. Het identificeren van zulke parameters zou kunnen helpen
om slapeloosheid beter te begrijpen. Ook bieden deze parameters mogelijk de
kans om subcategoriën binnen de patiëntenpopulatie te vinden, en zouden ze
zelfs een rol kunnen spelen bij het vinden van de beste behandelstrategie voor
individuele patiënten. Het doel van het onderzoek in dit proefschrift was dan
ook het vinden van objectief meetbare slaapparameters die een uiting kunnen
zijn van een slechte slaapkwaliteit bij mensen met slapeloosheid.

In het eerste deel van het proefschrift concenteren we ons op misperceptie
van de inslaaplatentie. Mensen die last hebben van slapeloosheid overschatten
vaak de tijd die het kost om in slaap te vallen, vergeleken met objectieve slaap-
metingen. We kunnen deze vorm van misperceptie waarschijnlijk beschouwen
als een specifiek geval van verminderde slaapkwaliteit aan het begin van de
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nacht. In hoofdstuk 2 beschrijven we een exploratieve analyse, waarbij we op
zoek gingen naar correlaties tussen slaapmisperceptie en parameters gemeten
tijdens de eerste slaapcyclus. Bij mensen met veel misperceptie vonden we een
verhoogd percentage lichte slaap. Ook waren deze mensen vaker wakker dan
mensen zonder misperceptie. Deze resultaten suggereren dat slaapfragmentatie
een belangrijk mechanisme kan zijn voor misperceptie. Met behulp van deze
informatie hebben we een model geïntroduceerd, dat de relatie tussen misper-
ceptie en de duur van onverstoorde slaapfragmenten kan bescrhijven. Dit model
is gevalideerd en uitgebreid in hoofdstuk 3. Het model leverde ons een maat op
die kan worden gebruikt om de slaapmisperceptie van individuen te bescrhijven.
Deze maat noemden we de Sleep Fragment Perception Index (SFPI).

In hoofdstuk 4 hebben we het model gebruikt om andere factoren te vinden
die kunnen bijdragen aan misperceptie. Met behulp van de SFPI konden we twee
aparte componenten van misperceptie onderscheiden: een ‘slaapfragmentatie’-
component die voorspeld kan worden door het model, en een onverklaarde com-
ponent. De onverklaarde component kan worden berekend als de predictiefout
van het model. Door alleen naar het niet-voorspelde deel van slaapmisperceptie
te kijken, verminderden we de natuurlijke variatie tussen de onderzoeksdeel-
nemers als gevolg van slaapstructuur, en konden we nauwkeurigere analyses
doen. In een groep van 31 mensen met slapeloosheid bleek dat een verkeerde
inschatting van tijd een bijdrage kan leveren aan misperceptie.

In het vervolg van de thesis zijn we breder gaan kijken naar slaapkwaliteit
tijdens de hele nacht. We gebruikten survivalanalyse om de overlevingstijd
van slaap- en waakfragmenten tijdens de nacht te bestuderen. In hoofdstuk
5 beschrijven we een survivalanalyse van de slaap van mensen die meededen
aan een studie naar het effect van 7.5 mg zopiclone, een veelgebruikt slaap-
middel. Aan de hand van de resultaten van deze analyse concludeerden we
dat een verlaagde stabiliteit van NREM-slaap en een verhoogde stabiliteit van
wakkere periodes een rol kunnen spelen bij een verminderde slaapkwaliteit. In
hoofdstuk 6 beschrijven we opnieuw een survivalanalyse. Dit keer vergeleken
we de slaap van een grote groep mensen met slapeloosheid met de slaap van
gezonde proefpersonen. In deze studie lieten mensen met slapeloosheid een
verlaagde stabiliteit van NREM-slaap zien, en een verhoogde stabiliteit van wak-
kere periodes. De verhoogde stabiliteit van waak leek vooral van toepassing te
zijn op jongere patiënten. Om meer te weten over NREM-fragmentatie is verder
onderzoek nodig.
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