

Algorithms for coherent rectangular visualizations

Citation for published version (APA):
Sondag, M. F. M. (2020). Algorithms for coherent rectangular visualizations. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 30/11/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/55eeee87-d8b3-422e-ab17-3fb11e4a3e12

Algorithms for
Coherent Rectangular

Visualizations

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen

op maandag 30 november 2020 om 13:30 uur

door

Max Franciscus Maria Sondag

geboren te Uden

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de

promotiecommissie is als volgt:

voorzitter: prof.dr. M.T. de Berg

promotor: prof.dr. B. Speckmann

copromotor: dr. W. Meulemans

leden: dr. K.A. Buchin

dr. K.A.B. Verbeek

prof.dr. A. Schulz (Fernuniverstität Hagen)

prof.dr. J.D. Wood (City University of London)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

The work in this thesis is supported by the Netherlands’ Organization for Scienti�c

Research (NWO) under project no. 639.023.208.

The work in the thesis has been carried out under the auspices of the research school

IPA (Institute for Programming Research and Algorithmics).

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-5139-2.

Printed by Ipskamp Printing, Enschede.

© 2020 by Max Franciscus Maria Sondag. All rights reserved. Reproduction in whole

or in part is prohibited without the written consent of the copyright owner.

iv

Acknowledgments
I had not truly considered to do a PhD before Bettina asked me whether I would

be interested four years ago. After four years of doing a PhD however, I am happy

that I took the opportunity when it presented itself. It has been a wonderful journey

through the academic world, and if I could go back in time I would do it all over

again. I would like to take this opportunity to thank everyone that supported me.

First of all, I want to thank my supervisors Bettina and Wouter. As my longest last-

ing supervisor, Bettina has been supervising me starting from the masters project

up to the very end of this PhD. I enjoyed our weekly in-person meetings with all the

academic and collateral knowledge that I obtained from them. Although meetings

sometimes got shifted by the need of the ever-over�owing agenda, Bettina always

managed to ensure that somewhere there a spot was available for me. Also, although

not always going as planned, I greatly enjoyed working with the interesting collab-

orators she introduced me to who worked in completely di�erent domains. While

Wouter only joined later as my supervisor, he has not been any less helpful to me.

He always kept the door open for discussion, and I have fond memories of chalk-

ing many whiteboards with possible designs and ideas. Both of them have been

immensely helpful to me and I will not forget about them anytime soon.

Writing this thesis in quarantine was not an easy task. It made me realize how

much I missed the contact with all the people around me. I would like to thank,

and possibly apologize to, Wiebe for keeping up with my thesis-induced insanity.

Having someone physically there to vent to is a boon not to be underestimated. I

would also like to thanks my parents for the wonderful idea of taking a chair to

the park and writing my thesis there, instead of being stuck between the 4 walls

of my room with a glowing computer screen. My parents have not only helped

and supported me during COVID-19, but during my entire life, pushing me where I

needed and wanted to go and supporting me whenever it was needed, and I couldn’t

be more thankful for that. It was not always easy, but I ended up in a better position

due to it. I would also like to thank my brother, Thijs, for broadening my a view of

what is possible. I do not think I would consider half of what I am doing if I had not

seen all your ideas. Also many thanks to my sister, Marit, for letting me keep a view

on what is important in life.

Throughout my PhD I enjoyed the company of many di�erent friends, and I would

like to take this opportunity to thank them for keeping my mind occupied with

things other than work. To Ruud, Rik, Jasper, Teun and Hein whom I have known

v

since the start of my studies at this university, thank you for the many fun evening

and trips. We created many memories that I will never forget. I would also like

to thank Dirk, Luuk and Rogier. We have known each other for a long long time

already, and yet I still enjoy the moments that we get together again. Many thanks to

Arthur, Aleks, Adam, Marcel, and Quirijn as well for dragging me into the world of

DnD, and to Jennifer, Jay, Tom, Simon, Laura, Annelies, Roderik, Kevin, and Merlijne

for keeping me there and having many an enjoyable night. I would also like to thank

Arthur V, Dion, Jan-Willem, Niels, Rob, Patrick, and many others with whom I had

the pleasure to spend the night bending our heads over a board game or having a

drink with in the last 4 years.

I would also like to thank the members of my �rst o�ce. Ali, Max, Thom, Dániel,

and Huib (and Ferry), I’ve had a great time having you as my o�ce mates. Not only

were you helpful as sparring partners for research, but I also had a lot of fun in the

o�ce. We talked, made whiteboard art, discussed and ranted more than I should

admit here, but I enjoyed all of it. Although I had an o�cial o�ce, I was also often

present in my uno�cial secondary o�ce which became my home after one meeting

and chat too much with its occupants. Thanks to Quirijn, Tim, Willem, Jules, Bram,

Pantea, and very brie�y Nathan and Tom as well for making my life so much more

enjoyable, and apologies for stealing all your whiteboards. I would like to thank Jules

in particular for introducing me to bouldering, which gave me a physical instead of

a mental wall to hit my head against.

I had many fun trips and workshops with my colleagues from the AGA research

group. While we ended up wet from either the rain or the river most of the time, I

enjoyed the cycling, hiking, dining, and other activities and it was always a welcome

change of pace. Thanks to Bettina, Kevin V, Wouter, Irina, Arthur, Marcel, Ignaz,

Quirijn, Tim, Thom, Willem, Irene, Jules, Bram, Pantea, Nathan, Tom, Riet, and

Agnes for forming a great and enjoyable group. Also thanks to the members of the

ALGO group Aleks M., Aleks P., Ali, Astrid, Bart, Dániel, Henk, Herman, Huib, Jari,

Kevin B., Leyla, Mark, Martijn, Max K., Mehran, Michał, Morteza, Sándor, Shivesh,

and Sudeshna who often joined us for lunch and other activities, and with whom I

could often had enjoyable discussions about absolutely nothing important.

I’ve had the fortune to work with many di�erent people during my time as a PhD-

student and I would like to thank my co-authors Wouter, Bettina, Kevin V, Irina,

Maarten L, Willem, Jules, Arthur, Marc, Daniel, Christoph, Maarten N, Soeren,

Markus, Jaakko, Martijn, Emily, Ignaz, Mark, Scott, Alexandru, Eduardo, João, for

their collaboration on various projects. Finally, I would like to thank Andre Schulz,

Kevin Buchin, Kevin Verbeek, and Jo Wood for reviewing my thesis.

vi

Contents

1 Introduction 1
1.1 Coherence in data . 3

1.2 Rectangular visualizations . 6

2 Time-varying Treemaps 11
2.1 Rectangular treemaps . 14

2.2 Layouts . 17

2.3 Local moves algorithm . 19

2.3.1 Transforming rectangular layouts using local moves 20

2.3.2 Algorithm . 21

2.3.3 Improving performance . 24

2.4 Metrics . 25

2.4.1 Visual quality . 26

2.4.2 Stability . 26

2.5 Data . 30

2.5.1 Data features . 30

2.5.2 Data classes . 32

2.5.3 Datasets . 33

2.6 Experimental results . 35

2.6.1 Data classi�cation analysis 36

2.6.2 Performance analysis across features 38

2.6.3 Comparison of data classes 43

2.7 Discussion and conclusion . 45

3 Uncertainty Treemaps 49
3.1 Related work . 51

3.2 Hierarchical uncertainty masks . 54

3.2.1 Mask design . 54

3.2.2 Reading an uncertainty treemap 55

3.2.3 Expert review . 56

3.2.4 Mask quality . 60

3.3 Algorithms for uncertainty treemaps 61

vii

3.3.1 Mask-friendly algorithms 63

3.3.2 Mask-aware algorithms . 64

3.4 Experimental results . 66

3.4.1 Relating mask-quality metrics 67

3.4.2 E�ect of mask-friendly algorithms 68

3.4.3 E�ect of mask-aware algorithms 70

3.5 Discussion . 73

3.5.1 Mask shape and placement 73

3.5.2 Mask rendering . 74

3.5.3 Uncertainty and hierarchy 76

3.6 Conclusion and future work . 78

4 A Simple Pipeline for Grid Maps 79
4.1 Problem exploration . 80

4.1.1 Facets of coherence . 81

4.1.2 Algorithms . 83

4.2 A 3-step pipeline for coherent grid maps 88

4.3 Decompose shape based on salient features 89

4.4 Arrange tiles using mosaic cartograms 92

4.5 Assign elements to tiles via point-set matching 94

4.6 Results and discussion . 95

4.7 Conclusions and future work . 99

5 Spatial set visualization 103
5.1 Preliminaries . 104

5.2 Characterizing colored grids with a painting 105

5.2.1 Simple purple regions . 106

5.2.2 Spiderweb gadgets . 108

5.2.3 Purple regions with holes 111

5.3 Optimizing panels . 114

5.3.1 Ensuring a 5-painting . 115

5.3.2 Ensuring a 2-painting . 117

5.4 Conclusion . 121

viii

6 Conclusion 123
6.1 Main results . 123

6.2 Future work . 124

Bibliography 127

Summary 141

Curriculum vitae 143

ix

1

Chapter 1

Introduction
The amount of data that chronicles our life, work and world has rapidly increased

in the past decades. To gain insight into these large quantities of data, we often turn

to visualization techniques to use our powerful perceptual system for (parts of) the

analysis which allows us to be more e�ective [90]. When designing visualizations

we have to take both the type of data and the task to be performed into account to

ensure that the visualization is e�ective. For example, a line chart is an e�ective

tool to visualize continuous time-varying data such as the weight of a person over

Lio
n
Pa
nd
a

W
olf

0

100
150
200

50W
ei
gh

t

time. However, it is not suitable for categorical data such

as the weight of di�erent animal species, as the interpolated

values do not have meaning. In contrast, a bar chart would

better support the comparison between the weights of di�er-

ent species, as it does not suggest unnecessary interpolation

between animal species. It would however be a less e�ective

tool to visualize the weight of a person where this interpola-

tion matches the continuous nature of the change in weight.

The e�cacy of a visualization similarly depends on the task. Imagine that we have

data that shows the average income for each country in the world. If the viewer

€0

€50.000

€100.000

0% 25% 50% 75% 100%

€25.000

€75.000

is interested only in knowing the distribu-

tion of average incomes and is not inter-

ested in the spatial dimension of the data,

a distribution chart is an e�ective to tool

visualize it. However, if the viewer wants

to investigate the spatial dimension of the

data the visualization is no longer e�ec-

tive at leveraging the perceptual system,

as this dimension is not visible in a distri-

bution chart.

For a visualization to be e�ective, it has to visually represent the properties of the

data that the viewer requires for the task. A visualization represents these properties

by mapping them to visual variables such as length, position, color, and so on. Care

should be taken to ensure that this mapping results in a visualization that is faithful

1

1

1 Introduction

to the underlying data such that the viewer sees a factual representation of the data.

There are multiple de�nitions to de�ne if a visualization is faithful and they can be

roughly divided into two categories.

The �rst category de�nes faithfulness from the perspective of the data. Sugibuchi,

Spyratos and Siminenko [129] argue that the mapping from the data to the visual

variables should be an injective function. In addition, they require that relations

between the properties of the data should be re�ected in the visualization. Nguyen

and Eades [93] propose three di�erent kinds of faithfulness, two of which lie in this

category: information faithfulness and change faithfulness. In the former, all proper-

ties in the data must be visually represented in the visualization. In the latter, change

in the data should be consistent with change in the visual representation. Change

faithfulness is also known as the principle of unambiguous data depiction [68]. Note

that this category of faithfulness de�nitions does not take into account how the visu-

alization is perceived, but focuses on the mapping from the data to the visualization.

The second category of faithfulness de�nitions de�nes faithfulness from the per-

spective of the visualization. This category contains the third de�nition of faith-

fulness that Nguyen and Eades propose is found: task faithfulness. A visualization

is task faithful if it is accurate enough to correctly perform tasks. Thus, not only

must the information be present, it needs to be accurately perceivable by the viewer.

Tufte [140] argues that in a faithful visualization the size of the visual representation

should match the true proportions of numerical data. That is, a larger visual repre-

sentation should represent a higher numerical value. Mittelstädt et al. [89] propose

a slightly di�erent de�nition arguing that in a faithful visualization what the viewer

sees should perceptually match to what is in the data. The visualization should thus

compensate for physiological biases, possibly distorting the visual representation.

Finally, Kim et al. [67] argue that visually related items should be related in the data.

In this thesis we focus on the coherence between the relations in the data and the

visually perceived relations which relates to both categories of faithfulness. In a

coherent visualization, relations between data items are visually represented, and

visible relations are present in the data. A coherent visualization thus prevents false

patterns from emerging in the visualization and preserves patterns that exist in the

data. We thus consider both the mapping from the data to the visualization as well

as the correspondence from the visualization to the data.

2

1

1.1 Coherence in data

▶ 1.1 Coherence in data
Coherence can be expressed and measured in di�erent ways depending on the data

type. In this thesis we focus on coherent visualizations for four di�erent data types:

(1) time-varying hierarchical data, (2) uncertain hierarchical data, (3) geospatial data,

and (4) spatial set data.

51 42

12 2 2

8
2018 2019

2

9

3 3

Time-varying hierarchical data impose an explicit

hierarchy on the data items. This hierarchy can be repre-

sented by a tree where each data item represents a node

in the tree. Hierarchical datasets are quite common, as

data items are often clustered and subdivided when the

number of items is large. The temporal dimension of hier-

archical data naturally arises when collecting data from

the same source multiple times. Both the value of the data items as well as the hier-

archy can change over time. An example of a time-varying hierarchical dataset is

the expenditure budget of a country. The expenses naturally form a hierarchy based

on the di�erent categories of expenses such as health care, road maintenance, etc.,

and the amount spent on each of these categories changes every year.

One common technique to visualize time-varying data is to visually represent each

time step using the same visualization technique separately. The changes in the data

are then visually represented by the change in the visualization. While numerous

techniques for showing data of a single time step exist, they are not all equally

suitable for time-varying data. Such techniques may result in a large change in the

visualization for only a small change in the data. This may result in the viewer

incorrectly concluding that large changes occur in the data over time.

To ensure coherence in the temporal dimension, the visualization needs to be coher-

ent over time or stable1
. That is, small changes in the data should result in small

changes in the visualization. Such stable behavior ensures that the only changes the

viewer sees are due to the data and thus the viewer can relate the visual change to

the magnitude of change in the data. An additional advantage of having a stable
visualization is that the mental map of the viewer between time steps is maintained.

When items are visualized in a stable manner it becomes easier for the viewer to

�nd and keep track of the data items [4].

1
Kindlmann and Shedeidegger [68] proposed a general design rule using a similar concept.

3

1

1 Introduction

� =9
� =2

� =1
� =1

� =5
� =2

� =3
� =1

� =1
� =1

� =2
� =1

� =2
� =2

Uncertain hierarchical data associate uncertainty

with each numerical data value. The data values are

then estimations and not exact values. For example,

any inference about a value in the future is necessar-

ily imprecise, and similarly any physical measurement

has only bounded accuracy. In uncertain hierarchical

data, each interior node has uncertainty arising due to

upwards propagation of uncertainty or due to inherent

uncertainty of the value of the node. In order to faith-

fully represent such data, the uncertainty should be visually represented for each

data item in the hierarchy.

For low-complexity data, a common way to visualize the uncertainty is using error

bars, for example in line or bar charts. These error bars are closely linked to the

numerical value in the visualization and give the viewer an immediate understanding

of the uncertainty associated with the value. For more complex data, error bars

cannot always be applied and alternatives are required.

To ensure a coherent visualization of the relation between data and uncertainty, the

uncertainty and the data should be tightly linked in the visualization. Thus, the

representation of the uncertainty of a data item should be graphically close to the

representation of the numerical value of that data item. Moreover, the uncertainty

should be visually quanti�able in such a way that it can be directly related to the

data value. Such coherence between data value and uncertainty enables viewers to

be aware of and estimate the in�uence of the uncertainty.

88

66

61
50

50
55

84

42
37

58
61

31

55

60

41

29

38

45

53
34

43

73

46

29
23

33

5130

Geospatial data are a common data type where a

spatial dimension, often location, is associated with

each data item. The voter turnout per country in Eu-

rope for the European Parliament is an example of one

such dataset. Here, each data item contains not only a

value re�ecting the percentage of eligible voters that

voted, but additionally has a country region attached

to it. To faithfully visualize this data the visualization

should re�ect the additional spatial dimension.

Most commonly, the spatial dimension is represented by showing data on the map

itself, traditionally the realm of thematic cartography. But as data complexity rises,

maps that place information at an exact spatial location become unreadable, as visual

elements necessarily become cluttered. Hence, some form of schematization, that is,

4

1

1.1 Coherence in data

controlled and deliberate distortion of the spatial dimension, is generally necessary

to support visualizations of complex data.

Viewers are often familiar with the geographic area visualized and thus have an

intuitive idea where elements are supposed to be. In a map of Europe, Spain should

for example be in the south-west, and the viewer expects France to be north-east

of Spain. An e�ective visualization thus has to be coherent with the underlying

geographical space. There are many di�erent facets to this spatial coherence such

as preserving adjacencies, distances or directions between the elements. Depending

on the task, di�erent facets are relevant to the viewer. For an e�ective visualization,

the schematization thus needs to ensure that the relevant facets of spatial coherence

for the task are not distorted.

Spatial set data de�ne a number of set relations on data with a spatial dimension.

An example of such a dataset are the characteristics of European cities. Each city has

a spatial location and a number of characteristics such as whether it has an airport,

whether it is a capital, whether it is industrial, and so on. To ensure that patterns

in the data can be uncovered, the visualization needs to be coherent with both the

spatial dimension as well as the relations between the sets themselves.

Visualizing spatial set data is equivalent to visualizing hypergraphs with �xed node

positions. A hypergraph generalizes a graph by allowing an edge to connect to

any number of nodes; such a hyperedge readily de�ne a set. A common way to

visualize spatial hypergraphs is to represent each node as a point on a map and show

a hyperedge as a polygon that overlaps the associated points. We can identify the

hyperedges that a node belongs to by considering which polygons it is

contained in. Current techniques usually allow the polygons to overlap at

the nodes, but also at other places. Depending on the visual representation

this may result in the sets being locally nested. However, nesting may give

a strong visual cue of containment implying a relation between the sets

that might not be present. Nesting can thus result in incoherence between

the relations implied in the visualization and the relations between the

sets in the data.

To ensure that the relations between sets are visualized in a coherent manner we

should not imply containment and other relations between the sets when they are

not present. Additionally, due to the spatial dimension of the data the visualization

needs to ensure spatial coherence such that spatial patterns are re�ected faithfully

as well.

5

1

1 Introduction

▶ 1.2 Rectangular visualizations
Many visualizations use rectangles in one form or another. Bar charts use rectangles

to show the value of a data item, calendars use a rectangle to show a day, and text and

labels are usually drawn in rectangular boxes for ease of reading. Rectangles have

visually simple shapes which result in low visual complexity in the visualization.

In addition, they can tile the plane making it easier for algorithms to use all the

available screen space and thus avoid unnecessary whitespace.

Our focus in this thesis lies on rectangular visualizations, that is, visualizations

that use rectangles as their fundamental building blocks. We describe several new

algorithms that transform the data types described above into coherent rectangular

visualizations. We visualize (1) time-varying hierarchical data and (2) uncertain

hierarchical data with treemaps. We visualize (3) geospatial data with grid maps,

and �nally, we visualize (4) spatial set data using disjoint colored polygons.

Treemaps

7 4

42 1

16

5

3 2

1 211 2

A well-established method for vi-

sualizing large hierarchical datasets

are treemaps. Given a hierarchi-

cal dataset represented by a tree,

treemaps recursively partition a 2D

spatial region into cells whose visual

attributes (area, color, shading, or an-

notation) encode the tree’s data at-

tributes. Compared to other methods such as node-link techniques, treemaps use all

available screen pixels to show data, and thus can display trees of tens of thousands

of nodes on a single screen. In this thesis we focus on rectangular treemaps, that

partition a rectangular region into rectangles.

An e�ective treemap has high visual quality. That is, it is easy to determine the

corresponding data value for each rectangle by estimating its area. The most com-

mon way to determine the visual quality is via the aspect ratio of the rectangles in

the treemap. Kong et al. [70] show that large aspect ratios make it more di�cult to

estimate the area of a rectangle and to compare nodes with each other. Thus for a

treemap to have a high visual quality we need to ensure that the rectangles have

low aspect ratio. While optimizing the visual quality is NP-hard [10], there are a

variety of treemapping algorithms that result in treemaps with high visual quality in

6

1

1.2 Rectangular visualizations

practice. However, when the data changes over time these treemapping algorithms

are not always coherent with the temporal dimension: small changes in the data can

result in large changes in the treemap.

Contribution In Chapter 2 we study the problem of maintaining coherence for

time-varying hierarchical data in treemaps. We propose a new state-aware algorithm

that changes the layout of an existing treemap using only local moves. Local moves

are small, local modi�cations to the treemap. By applying only local moves to the

layout we can maintain the temporal coherence as the data changes, while having

enough �exibility to obtain high visual quality. In contrast to existing treemapping

algorithms which can reach only sliceable layouts, the full range of rectangular

treemap layouts can be explored using local moves.

To better quantify temporal coherence we propose a new method to measure the

stability of time-varying treemaps which explicitly considers the change in the input

data. To this end, we introduce baseline treemaps which represent the minimal

amount of change that must occur in any time-varying treemap for a given change in

the data. To verify the performance of the Local Moves algorithms in comparison to

existing algorithms we perform an extensive quantitative evaluation of rectangular

treemapping algorithms for time-varying data using more than 2000 datasets and

14 state-of-the-art treemapping algorithms.

We identify four representative features of datasets that in�uence the performance

of treemapping algorithms. We use these representative features to propose a novel

classi�cation scheme for time-dependent hierarchical datasets. We experimentally

test the validity of this classi�cation and analyze the relative performance of the

treemapping algorithms across the features on both temporal coherence and visual

quality. Finally, we visually summarize the results to aid users in making an informed

choice among treemapping algorithms. This chapter is based on joint work with Bet-

tina Speckmann and Kevin Verbeek [126], which appeared in the IEEE Transactions

on Visualization and Computer Graphics (Proceedings of InfoVis 2017), and on joint

work with Eduardo Vernier, João Comba, Bettina Speckmann, Alexandru Telea, and

Kevin Verbeek [149] which appeared in Computer Graphics Forum (Proceedings of

Eurovis 2020).

In Chapter 3 we consider uncertain hierarchical data and show how to generate a

coherent visualization using treemaps for such data. Using the novel concept of

hierarchical uncertainty masks we simultaneously visualize uncertainty and value

using area in a treemap. Hierarchical uncertainty masks are based on screen-door

transparency to render the uncertainty of each level in the treemap on top of each

7

1

1 Introduction

other in such a way that the uncertainty for each node is visi-

ble simultaneously. This ensures that the intrinsic link between

the data and the uncertainty is visible in the visualization, en-

suring coherence with respect to uncertainty. Furthermore, we

show how to adapt existing treemapping algorithms to support

uncertainty masks. To this end, we de�ne a cost function that

measures the quality for uncertainty masks to steer and evaluate

these algorithms. Finally, we demonstrate the quality of the adapted treemapping al-

gorithms through a computational experiment on real-world datasets. This chapter

is based on joint work with Wouter Meulemans, Christoph Schulz, Kevin Verbeek,

Daniel Weiskopf, and Bettina Speckmann [125] which appeared in the Proceedings

of the 13th IEEE Paci�c Visualization Symposium (Paci�cVis 2020).

Grid maps
A grid map is an e�ective and established spatial schemati-

zation technique for visualizing geospatial data. Each spa-

tial element in the data, such as a region or a site, is schema-

tized into the same simple tile – often a square, hexagon or

other geometry that easily tiles the plane. These tiles are

then arranged in such a way as to re�ect important char-

acteristics of the spatial dimension often using whitespace

to capture salient local features. An example of a grid map

visualizing constituencies of the UK is shown on the right.

Aspects such as recognizability and the ability to locate spatial elements based on

expected location are important for an e�ective grid map. An e�ective grid map

must thus be coherent with the underlying spatial dimension to preserve the mental

map of the viewer: the tiles maintain properties such as contiguity, neighborhoods,

and identi�ability of the corresponding spatial elements while the grid map as a

whole maintains the global shape of the input.

Grid maps schematize the geographic area into simple tiles, and hence deform the

spatial dimension. As with any spatial deformation, perfect coherence in the spatial

dimension is impossible and thus one must make a trade-o� between the di�erent

facets of spatial coherence. As a result, computing a coherent grid map is a challeng-

ing multi-criteria optimization problem. However, the state-of-the-art [86] shows

that simple cases such as close-to-uniform spatial distributions or global shapes with

few characteristic features can be solved well using simple tile selection and assign-

8

1

1.2 Rectangular visualizations

ment techniques (as long as su�cient care is taken to guarantee that connected

input stays connected in the grid map). For more complex cases, however, current

techniques do not maintain spatial coherence well.

Contribution In Chapter 4 we introduce a simple fully-automated 3-step pipeline

that can compute coherent grid maps for complex data. We observe that we can par-

tition the input shape such that each piece has few characteristic features, and hence

becomes a simple subproblem. The coherent solutions for these simple subproblems

can then be combined into a coherent overall solution. Each step of our pipeline is

a well-studied problem: shape decomposition based on salient features, tile-based

Mosaic Cartograms, and point-set matching. Our pipeline is a seamless composition

of existing techniques for these problems and results in high-quality grid maps. We

provide an implementation, demonstrate the e�cacy of our approach on various

complex datasets, and compare it to the state-of-the-art. This chapter is based on

joint work with Wouter Meulemans and Bettina Speckmann[87] to appear in the

IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis

2020) which has received a honorable mention for the best paper award.

Disjoint colored polygons
Set data can be represented in many di�erent ways. In this thesis we focus on rep-

resenting spatial set data using hypergraphs with �xed node position. Often, many

di�erent drawings are possible for the same graph, but not all are equally suitable for

communicating the structure of the graph [99]. One often used criteria to determine

the quality of a drawing is how many edges intersect each other. Intersections make

it harder to understand the structure of the graph, thereby reducing the e�ectiveness

of the visualization [98].

We consider a hypergraph representation where each hyperedge is represented by

a colored polygon. Usually the nodes of the graph are represented by points. This

necessarily means that when two hyperedges share a node their associated poly-

gons must overlap. As argued above, this may result in nesting which is a strong

visual cue of containment (see right: �rst �gure). Nesting can

thus result in a less coherent visualization, as the relations de-

picted in the visualization and the relations in the data may not

match. Alternative representations such as connecting elements

using a single smooth curve as proposed by LineSets [1] (see right:

second �gure) may avoid nesting the hyperedges, but overlap still

9

1

1 Introduction

occurs at the node. Here, we suggest an alternative representation while still using

a polygon to represent each hyperedge (see previous page: third �gure). For this

representation, we turn each node into a rectangular region: a hyperedge contains a

node if its polygon overlaps this rectangular region. Note that multiple hyperedges

can overlap a node without crossing each other.

Contribution In Chapter 5 we investigate the properties of visualizing spatial set

data using the above-described representation using disjoint colored polygons. We

assume that the nodes of the sets are positioned on a grid. Each set is represented by a

single connected colored polygon and each polygon overlaps exactly those cells that

correspond to the data items in the set. As a �rst exploration of the feasibility of this

visual representation we focus on the case where there are only two sets. We derive a

necessary and su�cient condition to e�ciently recognize whether we can visualize

both sets with a single connected polygon. We additionally show that, if both sets

can be visualized with a single connected polgyon, then the visual complexity of

the polygon in each region is bounded by a small constant. This chapter is based on

joint work with Arthur van Goethem, Irina Kostitsyna, Marc van Kreveld, Wouter

Meulemans and Jules Wulms [47] which has appeared in the Proceedings of the

International Symposium on Graph Drawing and Network Visualization (GD 2017).

Other contributions Beside the work included in this thesis, the author also

worked on: analyzing the algorithmic complexity of puzzles in the game The wit-
ness [71]; using testimonial network analysis and visualization to analyze the spread

of knowledge in online networks such as Twitter [130]; modeling the epistemic posi-

tion of an individual in a social network setting [131]; and computing time-varying

coherent Demer cartograms [124].

10

2

Chapter 2

Time-varying Treemaps

Figure 2.1 A rectangular treemap over time. In each image the weights of the
underlying data have changed. To maintain a balance between aspect ratio and
stability we modify the treemap via local moves. Symbols (squares, circles, and
triangles) mark the pairs of rectangles to which local moves are applied.

Treemaps are a well-established method for visualizing large hierarchical datasets.

Given an input tree whose leaves have several attributes, treemaps recursively par-

tition a 2D spatial region into cells whose visual attributes (area, color, shading,

or annotation) encode the tree’s data attributes. Most treemaps use rectangles, al-

though there are alternative models such as Voronoi treemaps [7], orthoconvex

and L-shaped treemaps [10], and Jigsaw treemaps [152]. In this chapter we focus

exclusively on rectangular treemaps, which recursively partition a rectangle into

subrectangles.

The visual quality of a rectangular treemap is usually measured via the aspect ratio

of its rectangles. Kong et al. [70] show that large aspect ratios are detrimental to the

area assessment, and should thus be avoided. Lu et al. [77] argue that the optimal

aspect ratio for treemaps should, in fact, be the golden ratio. The aspect ratios of

the rectangles in a treemap can become arbitrarily bad: consider a treemap that

consists of only two rectangles. If the area of one of these rectangles tends towards

zero then its aspect ratio tends towards in�nity. Nagamochi and Abe [91] describe

an algorithm which computes, for a given set of values and a hierarchy, a treemap

which provably approximates the optimal aspect ratio. De Berg et al. [10] prove that

minimizing the aspect ratio for rectangular treemaps is strongly NP-complete.

Nowadays, large hierarchical datasets are also available over time. Hence, there is a

need for time-varying treemaps which display changing trees and data values. Ide-

11

2
2 Time-varying Treemaps

ally, such time-varying treemaps enable the user to easily follow structural changes

in the tree and in the data by ensuring coherence with the temporal dimension. In

addition to visual quality, time-varying treemaps thus need a quality criterion for

temporal coherence which we refer to as stability. Ideally, small changes in the data

should result only in small changes in the treemap, that is, data change and lay-

out change should correlate positively. Such stable behavior ensures that the only

changes the user sees are due to the data, and not due to the decisions the algorithm

makes.

Definitions and notation To describe our contribution in greater detail we �rst

introduce some de�nitions and notation. The input for a rectangular treemapping

algorithm is a rectangle R and a set of non-negative values  = {a1, … , an} together

with a hierarchy on these values (represented by a tree). We assume the input values

are normalized, that is, the sum A = ∑i ai corresponds to the area of R. The output is

a treemap T , which is a recursive partition of R into a set  = {R1, … , Rn} of interior-

disjoint rectangles, where (a) each rectangle Ri has area ai , and (b) the regions of

the children of an interior node of the hierarchy form a rectangle (associated with

their parent). We denote the width and height of a rectangle Ri with w(Ri) and

ℎ(Ri). Such a partition of a rectangle into a set of disjoint rectangles is also called

a rectangular layout or layout for short. For a layout L, a maximal segment is a

maximal contiguous horizontal or vertical line segment contained in the union of the

boundaries of rectangles in. We distinguish between two types of layouts: sliceable
layouts and non-sliceable layouts. A layout is sliceable if it can be recursively sliced

into two parts along a maximal segment until the layout consists of only a single

rectangle. Otherwise the layout is non-sliceable (see Figure 2.2 for an example).

ms1

ms2

Figure 2.2 A non-sliceable layout. A�er slicing along maximal segments ms1 and
ms2, the layout can no longer be sliced into two parts along a maximal segment.

12

2

In the time-varying setting the input values change over time and become functions

ai ∶ [0, X] → ℝ≥0 for each i, where the discrete domain [0, X] represents the di�er-

ent time steps in the data. We assume that the hierarchy on the values and R are not

time-varying, and that the values ai are normalized for each time step separately.

We use the special value ai(t) = 0 to represent that data element i is not present

at time step t ; and we speak of insertions or deletions if ai(t) starts or stops to be

nonzero, respectively.

Finally, we distinguish single-level treemaps and multi-level treemaps. A single level

treemap has no hierarchy, its tree consist only of a root node with n leaves. Multi-

level treemaps correspond to trees with interior nodes in addition to the root. From

a theoretical point of view it is su�cient to study single-level treemaps, since all

results directly extend to multi-level treemaps; a multi-level treemap can be viewed

as multiple nested single level treemaps where the input rectangle of the child is

the rectangle determined by the parent. This has the added advantage of removing

unnecessary complexity from arguments. Hence, we mostly consider single-level

treemaps for the theoretical parts of this chapter.

Contribution We present the Local Moves algorithm, a novel stable treemapping

algorithm that has high visual quality. In contrast to existing algorithms which

produce exclusively sliceable layouts, our algorithm can explore the complete space

of possible treemap layouts, including non-sliceable layouts. We prove that non-

sliceable layouts can result in treemaps with higher visual quality.

To verify the e�cacy of the Local Moves algorithm as well as existing treemapping

algorithms, we perform an extensive quantitative evaluation of rectangular treemap-

ping algorithms for time-varying hierarchical data. To this end, we �rst propose a

new method to measure the stability of time-varying treemaps which explicitly con-

siders the input data. Previously proposed stability metrics measure only the change

in the layout and conclude that small changes in the layout are a sign of a stable

algorithm. However, to properly measure stability we also need to capture the data

change and then correlate the change in the data with the change in the layout.

Here, we have to overcome the di�culty that the data and the layout space are a

priori incomparable. We solve this problem by introducing the concept of a baseline
treemap T ∗ which represents the minimum amount of change that any time-varying

treemap must incur (given the change in the data) when moving from treemap T to

the next treemap T ′.

We observe that the performance of treemapping algorithms depend on the charac-

teristics of the datasets used. In order to compare and evaluate treemapping algo-

13

2
2 Time-varying Treemaps

rithms on a variety of datasets, we therefore propose a novel classi�cation scheme

for time-varying datasets. For this classi�cation scheme, we identify four poten-

tial representative features that characterize time-varying hierarchical datasets, and

classify all datasets used in our experiments accordingly. We experimentally test

the validity of this classi�cation on 2405 datasets. Generally, we conclude that the

proposed representative features do indeed have predictive value both with respect

to visual quality and stability.

Finally, we report on a quantitative evaluation of 14 state-of-the-art rectangular

treemapping algorithms on 2405 datasets. We analyze the relative performance of

treemapping algorithms across the representative features. Our results are then vi-

sually summarized with respect to both visual quality and stability to aid researchers

and practitioners in making an informed choice among treemapping algorithms. All

datasets, metrics, and algorithms are openly available [137].

Organization In Section 2.1 we give an overview of existing treemapping algo-

rithms, and identify representative features that in�uence their performance. In

Section 2.2 we explain the notion of order-equivalence between layouts which we

use to generate treemaps with the correct areas in our algorithm. Additionally, we

prove that non-sliceable layouts can result in better visual quality than sliceable lay-

outs. In Section 2.3 we present the Local Moves algorithm in detail. We describe the

local moves and show that using these moves the complete space of layouts is reach-

able. We then show how we use these moves in our algorithm. In Section 2.4 we give

an overview of existing treemap metrics, and present a new method to measure sta-

bility using baseline treemaps. In Section 2.5 we explain our classi�cation scheme

for time-varying hierarchical data, and present the data used in our quantitative

evaluation. In Section 2.6 we then report on our quantitative evaluation. We �rst

verify the validity of our classi�cation scheme before studying the performance of

treemapping algorithms across the representative features. Finally, we give a visual

summary of the performance of all treemapping algorithms per data class.

▶ 2.1 Rectangular treemaps
For a fair comparison during our experiments, we require that treemap rectangles

have exactly the correct areas and partition the input rectangle. Algorithms that

do not satisfy these requirements are not included in our experimental evaluation.

The children of a node in the hierarchy of the treemap are given in a particular

order in the input which might re�ect meaningful relation between the data. We

14

2
2.1 Rectangular treemaps

distinguish two classes of treemaps which either do or do not use this order. For

time-varying data we also distinguish between state-aware and stateless treemaps.

Contrary to stateless treemaps, state-aware treemaps are not computed separately

for each time step, but the layout of the previous time step can be used to compute

a new layout. Most treemapping algorithms generate stateless treemaps; we discuss

the state-aware treemapping algorithms separately. For each class of algorithms, we

identify relevant features that can determine their performance.

Unordered treemaps do not (need to) adhere to the input nodes’ order when

computing the layout. Typically, input weights are sorted to help the algorithm

achieve good visual quality. Unordered treemaps in our evaluation include Squari�ed

treemaps (SQR) [23] and Approximation treemaps (APP) [91]. APP comes with a

guaranteed upper bound on the worst-case aspect ratio, while SQR often achieves

near-optimal aspect ratios in practice. The visual quality of unordered treemaps

is relatively una�ected by high weight variance, as reordering weights allows the

layout to group similar-size rectangles in the treemap, typically leading to better

aspect ratios. Yet, the sorted order of the weights may change rapidly over time,

especially if the weights change much over time or if the weight variance is low. This

can negatively a�ect the stability of the treemaps.

Ordered treemaps are required to adhere to the order of nodes as given in the

input which roughly ensures that rectangles close to each other in the input are

close to each other in the resulting treemap. This typically improves the stability of

treemaps, but may reduce visual quality. We include nine ordered treemaps in our

evaluation. The �rst ordered treemaps [113] include the Pivot-by-Middle (PBM),

Pivot-by-Size (PBZ), and Pivot-By-Split (PBS) algorithms. Similar algorithms are

the Strip algorithm (STR) [9] and the Split algorithm (SPL) [37]. Other algorithms,

like the Spiral algorithm (SPI) [139], and the Hilbert (HIL) and Moore (MOO) algo-

rithms [133], lay out rectangles following a space-�lling curve. Finally, the very �rst

treemapping algorithm (Slice-and-Dice (SND)) by Shneiderman [112] can also be

considered an ordered treemap. While not ordered by design, the resulting (combi-

natorial) layout depends only on the hierarchy and not on weights. In fact, SND uses

the depth in the hierarchy to compute the layout (slicing vertically on even depth

and horizontally on odd depth) rather than simply applying the same algorithm re-

cursively. Hence, SND’s visual quality strongly depends on the number of levels in

the input hierarchy. Typically, laying out large rectangles near small rectangles leads

to poor aspect ratios. Hence, the visual quality of ordered treemaps is negatively

a�ected by high weight variance. However, ordered treemaps are relatively stable

15

2
2 Time-varying Treemaps

over time compared to unordered treemaps, as order is maintained. Finally, inser-
tions and deletions may a�ect the visual quality and stability of ordered treemaps to

varying degrees depending on how they are handled exactly.

State-aware treemaps can use the layout of the previous time step to compute a

new layout and so can largely control their stability. In Section 2.3 we describe our

state-aware Local Moves algorithm (LM) in detail. The LM algorithm is initialized

with a layout generated by the APP algorithm. For each time step it updates the

layout with the new areas using the hill-climbing algorithm explained in Section 2.2.

This maintains the combinatorial structure up to order-equivalence (see Section 2.2)

and hence ensures temporal coherence. If the visual quality deteriorates, the algo-

rithm improves the layout via local moves: small local changes to the structure of

the layout. We observed that using up to 4 local moves per time step (LM4) allows

a good trade-o� between stability, visual quality, and e�ciency.

To observe the e�ect of local moves on the visual quality and stability, we also

consider a variant of our algorithm where no local moves are performed (LM0). The

LM0 algorithm thus does not change the structure of the initial layout generated

by the APP algorithm except for changes due to insertions and deletions. As such,

LM0 is essentially identical to the Greedy Insertion Treemapping (GIT) algorithm

proposed by Vernier et al. [147] which initializes and maintains an SQR layout. Note

that SND has a �xed layout if the input hierarchy does not change and is hence very

stable, but it does not explicitly use the previous state.

By design, the stability of state-aware treemaps is relatively una�ected by frequent

weight changes over time. Also, the visual quality is initially high as a stateless

treemapping algorithm with high visual quality is used to generate the initial treemap.

However, since layouts cannot change much over time, the visual quality of state-

aware treemaps generally decreases if weights change signi�cantly. Any state-aware

treemapping algorithm needs to handle insertions and deletions explicitly. On the

one hand, frequent insertions and deletions may cause the visual quality to deterio-

rate as treemaps are never recomputed completely. On the other hand, insertions

can be used to locally improve the visual quality. GIT strongly relies on insertions,

as they are the only option it has to improve its layout over time. This is in contrast

to LM4 which can improve its layout using both local moves and insertions.

Finally, note that the number of levels in the input hierarchy can have a strong e�ect

on all classes of algorithms. In general, more levels imply less freedom in the layout

strategy. As a result, unordered treemaps become more similar to ordered treemaps.

Overall, the visual quality tends to decrease and the stability tends to increase.

16

2
2.2 Layouts

▶ 2.2 Layouts
For a given set of areas  there are multiple ways to draw a treemap, that is, there

are multiple layouts that can represent the same set of areas. We want to �nd the

layout that has the highest visual quality. To do so, we need to explore the space

of possible layouts. All current rectangular treemapping algorithms produce only

sliceable layouts. This is obvious for SND since slicing cuts are an integral part

of the algorithm. The APP, GIT, SQR, SPI, SPL, STR, and PB{M,Z,S} algorithms all

explicitly construct treemaps using slicing cuts. The treemaps created using space-

�lling curves (HIL and MOO) are also sliceable: the base of the recursion are four

rectangles and every layout with 4 rectangles is sliceable. In this section we prove

that the visual quality of treemaps can be improved substantially by considering all

possible layouts, sliceable and non-sliceable. Our algorithm, presented in Section 2.3,

is the �rst treemapping algorithm that can produce all possible layouts.

Two layouts representing di�erent areas cannot be the same. Nonetheless, they can

have a very similar structure. We therefore consider a combinatorial equivalence

between layouts. We de�ne a partial order on the maximal segments in a layout L
of the same orientation as follows. For two horizontal maximal segments s1 and s2
we say that s1 < s2 if s1 is below s2, and there exists a rectangle Ri that spans from

s1 to s2. Vertical maximal segments similarly de�ne a partial order from left to right.

Following Eppstein et al. [40], we say that two layouts L and L′ are order-equivalent
if the partial orders for L and L′ are isomorphic. An example of order-equivalent

layouts is given in the �gure on the right, blue and red arrows indicate the partial

order on the vertical and horizontal maximal segments respectively. In [40] it was

R1R2

R3 R4

R1R2

R3 R4

shown that, for any layout L, there is always

exactly one layout L′ that is order-equivalent

to L and correctly represents a given set of

areas. Thus, for any �xed set of areas , the

possible ways to draw a treemap with areas

 corresponds to the set of order-equivalence

classes of all possible layouts.

Sliceable and non-sliceable layouts If a layout L is sliceable, then all layouts

order-equivalent to L are also sliceable. Existing rectangular treemapping algorithms

hence exclude a large number of options from consideration which may result in

treemaps of sub-optimal visual quality. We aim to show this formally. Below we

prove that, for certain sets of areas, the maximum aspect ratio of any sliceable layout

is much larger than the maximum aspect ratio of the optimal layout.

17

2
2 Time-varying Treemaps

s

R1

R2

R4

R3

R5

R6

We say that a rectangle Ri ∈  is grounded if Ri is bounded by

at least one maximal segment s for which it is the only rect-

angle on that side of s. We claim that in a sliceable layout all

rectangles are grounded. Indeed, if this is not the case then

there must be a rectangle Ri such that all four bounding max-

imal segments have at least two rectangles on the side of Ri .
This results in a “windmill pattern” with Ri in the center (R3
on the right). It is not hard to see that any layout containing a

“windmill pattern” is non-sliceable. We can now prove the following theorem.

2.2.1 Theorem. The maximum aspect ratio of a sliceable layout L is at least
√
aj /ai , where

ai and aj are the smallest and second-smallest area in the layout, respectively.

Proof. Let � be the maximum aspect ratio of L and let Ri be the rectangle with the

smallest area in L. Let rectangle Rj be adjacent to Ri such that Ri is grounded in

the maximal segment shared with Rj . Without loss of generality we assume that

rectangle Rj lies to the right of rectangle Ri . From the grounded property we get

that ℎ(Ri) ≥ ℎ(Rj). This also implies that aj /ai ≤ w(Rj)/w(Ri). From the de�nition of

� we get that ℎ(Ri) ≤ �w(Ri). We further get that

� ≥
w(Rj)
ℎ(Rj)

≥
w(Rj)
ℎ(Ri)

≥
w(Rj)
�w(Ri)

.

As a result, �2 ≥ w(Rj)/w(Ri) ≥ aj /ai . Thus the maximum aspect ratio of L is at least√
aj /ai . This is minimized when Rj has the second smallest area in L. □

Consider the following concrete example with 5 areas: a1 = 1 and a2, a3, a4, a5 = 16.
According to Theorem 2.2.1 any sliceable layout will have a maximum aspect ratio

R2 R3

R4

R1
R5

R1

R2
R4

R5

R3

of at least

√
16/1 = 4. However, there exists a

non-sliceable layout with these areas that has

a maximum aspect ratio ≈ 1.333. In fact, this

di�erence in maximum aspect ratio can be ar-

bitrarily large: as a1 tends to 0, the maximum

aspect ratio of the non-sliceable layout tends

to 1 while the maximum aspect ratio of any

sliceable layout tends to ∞.

18

2
2.3 Local moves algorithm

▶ 2.3 Local moves algorithm

Our stable treemapping algorithm uses the concept of local moves. A local move

changes the order-equivalence class of the layout L by changing the layout L locally.

Local moves allow us to traverse between all order-equivalence classes of layouts.

Intuitively, we can keep a treemap stable over time by limiting the number of local

moves between any two time steps. At the same time, the more local moves we allow

the better the visual quality can be. Local moves hence give us the power to control

the trade-o� between stability and visual quality. A local move typically changes the

areas of the involved rectangles. We can correct the areas in the resulting layout L′

using the hill-climbing algorithm by Eppstein et al. [40] (for details see Section 2.3.2).

The �nal layout is order-equivalent to L′. Note that two order-equivalent layouts

may have di�erent adjacencies across maximal segments. However, since these

changes occur only along maximal segments, they in�uence the relative positions of

rectangles only mildly. We hence claim that the algorithm is stable if we allow only

a small number of local moves. The experimental evaluation in Section 2.6 supports

this claim.

Our local moves are inspired by the work of Young et al. [160] which uses a represen-

tation of rectangular layouts with twin binary trees. The authors show how to use

these twin binary trees and an additional labeling to transform any two rectangular

layouts into each other. Their particular labeling is not suitable for the context of

treemaps and moreover the representation by twin binary trees is somewhat cum-

bersome. Below we hence introduce two new local moves which operate directly on

the treemap: stretch moves and �ip moves. We prove that one can transform any two

order-equivalence classes of layouts into each other using only these two moves.

R2

R1
R1 R2

Flip move Let R1 and R2 be two rectangles

that partition a larger rectangle. A �ip move

�ips the adjacency between R1 and R2 from

horizontal to vertical or vice versa inside this

larger rectangle.

R2 R2

R1
s s

R1

Stretch move Let s be a maximal segment

and let R1 and R2 be two rectangles adjacent to

one of the endpoints of this segment. Without

loss of generality we assume that s is a vertical

maximal segment. If rectangles R1 and R2 do

19

2
2 Time-varying Treemaps

not have the same height we can apply a stretch move. Let rectangle R2 denote

the rectangle with the smallest height. To apply the stretch move we then stretch

rectangle R2 over rectangle R1.

▶ 2.3.1 Transforming rectangular layouts using local moves

We now prove that we can transform any layout L into any other layout L′ using

only local moves. For this transformation we need the notion of a vertical stack
layout. A layout is a vertical stack layout if it has only horizontal (inner) maximal

segments. The transformation from L to L′ can now be summarized as follows. First,

we transform L into a vertical stack layout. Next, we transform this vertical stack

layout into another vertical stack layout. Finally, we transform the resulting vertical

stack layout into L′. To show the existence of this transformation we need the three

following components.

Transforming a layout to a vertical stack layout To transform a layout L to a

vertical stack layout we need to eliminate all vertical (inner) maximal segments. Let

R2

R1
R1 R2

R1
R2 R2

R1
s s

s s

s be a vertical maximal segment of L. Further-

more, let R1 and R2 be the rectangles adjacent

to the left top and right top of s respectively.

Now �rst assume that R1 and R2 do not have

the same height, and assume without loss of

generality that the height of R2 is smaller than

the height of R1. In this case we use a stretch

move to stretch R2 over R1. If R1 and R2 have

the same height then we can use a �ip move on

R1 and R2. Note that, in both cases, we reduce

the number of rectangles adjacent to s by at

least one. When there are no more rectangles

adjacent to s, s will cease to exist. Furthermore,

our operations do not introduce new vertical maximal segments. We can thus repeat-

edly apply this procedure until all vertical maximal segments have been eliminated.

R2 R1
R1

R2

R2

R1

Transforming vertical stack
layouts Consider any two

adjacent rectangles R1 and R2
in a vertical stack layout. We

can swap R1 and R2 in the ver-

20

2
2.3 Local moves algorithm

tical stack order by applying two �ip moves to R1 and R2. Since we can swap any

two adjacent rectangles, we can produce any order of rectangles in the vertical stack

layout (this process is the same as sorting with BubbleSort).

Inverting local moves It is easy to see that all local moves can be inverted. Triv-

ially, a �ip move is its own inverse. A stretch move that stretches R2 over R1 can be

inverted by a stretch move that stretches R1 over R2.

We can now prove the following theorem:

2.3.1 Theorem. For any two layouts L1 and L2 with the same set of rectangles, we can
transform L1 into L2 using only stretch moves and �ip moves.

Proof. We can transform L1 into a vertical stack layout L′1 as described above. Simi-

larly, we can transform L2 into a vertical stack layout L′2. To transform L1 into L2, we

�rst transform L1 into L′1. Next, we transform L′1 into L′2 using appropriately chosen

swaps of adjacent rectangles. Finally, we transform L′2 into L2 by inverting the local

moves used to transform L2 into L′2. □

We can additionally show that if the number of rectangles in L1 and L2 is n, then we

need at most O(n2) local moves to transform L1 into L2.

Note that the proof above is a so-called “constructive proof of existence”. Our ar-

gument (i) shows that there always is a set of local moves to transform one layout

into the other, and (ii) it describes a way to �nd these moves. Clearly, the resulting

transformation is not very natural and we do not intend to use this transformation.

Now that we have proven that a transformation always exists, we can �nd more

suitable transformations in practice.

▶ 2.3.2 Algorithm
We now describe our stable treemapping algorithm Local Moves for time-varying

hierarchical data. Our algorithm uses the previous treemap to generate the next one.

We therefore need to describe how to transform a treemap T (t) with areas (t) =
{a1(t), … , an(t)} into a treemap T (t + 1) with areas (t + 1) = {a1(t), … , an(t)}. To

simplify notation we denote T (t),(t),T (t +1),(t +1) by T ,A,T ′ and A′ respectively.

We �rst consider only a single-level treemap T . We construct the initial treemap

using the algorithm (APP) by Nagamochi and Abe [91]. To transform T into T ′ we

use a very simple approach. First, we update the treemap T to have the areas in A′

using the hill-climbing algorithm by Eppstein et al. [40].

21

2
2 Time-varying Treemaps

The idea of the algorithm by Eppstein et al. is as follows. As shown in [40] there

is an induced bijection between the space of coordinates of the maximal segments

(segment space) and the space of the areas of the rectangles (area space). Hence,

given a (tangent) vector in the area space, in particular A′ − A, we can compute the

corresponding tangent vector x in the segment space by solving the linear equation

J x = A′ − A where J is the Jacobian matrix of the bijection. Thus, we can locally

change the areas from A to A′ by moving the maximal segments in the direction of

x . The Jacobian matrix J is sparse and can easily be computed as, for each rectangle,

the area simply depends on the coordinates of the 4 maximal segments bounding

the rectangle. We can now proceed as in a gradient descent approach by iteratively

changing the maximal segment coordinates by "x for small enough ", until we obtain

the areas in A′.

Next, we attempt to improve the visual quality of the layout by applying up to d
local moves, where d is some prede�ned small constant (in our experiments d =
4). A naive approach would simply try all possible sets of at most d local moves.

In Section 2.3.3 we explain how to choose a suitable subset of possible moves to

optimize performance. The areas of the resulting layouts (after at most d local moves)

are then again adjusted using the hill-climbing algorithm by Eppstein et al. [40] to

generate an order-equivalent layout with the correct areas. We use the layout with

the best average aspect ratio to construct T ′. Note that we do not change the layout

if doing so would lead only to a minor improvement in aspect ratios. Therefore, if L
is the layout of T with updated areas A′, then we change L into L′ only if the sum

of aspect ratios in L′ is at least some prede�ned constant c lower than the sum of

aspect ratios in L.

If T is a multi-level treemap, then we use our algorithm recursively on the rectangles

that represent subtrees. That is, we �rst transform the single-level treemap which

is formed by the root of T and its children using a set of local moves. Then we

recursively apply the algorithm inside each of the resulting rectangles Ri . The choice

of moves is restricted to those moves that involve only subrectangles of Ri which

ensures that the hierarchy information is maintained. Clearly, changing the layout

on a higher level of T has more impact than changing it on a lower level, as it a�ects

all subtreemaps of T . We account for this by adapting the value of c according to

the height of the level. In our implementation we use c = 4 ∗
√

height of the level.

Handling insertions When additional data becomes available we need to insert

new rectangles in the treemap. We insert such new rectangles before performing

22

2
2.3 Local moves algorithm

Rk

Ri
Ri

any local moves. To add a new rectangle Rk to

the treemap, we partition an existing rectan-

gle Ri into two subrectangles Ri and Rk . We

choose Ri in such a way that the maximum as-

pect ratio is minimized. When multiple rect-

angles need to be inserted we insert them in

order of largest area, as rectangles with large areas have more impact on the layout.

However, when the number of rectangles that need to be inserted is large, inserting

them sequentially is undesirable. It is both computationally expensive, as the layout

needs to be recalculated after every insertion, and can result in low visual quality, as

each insertion is optimized by itself and not as a whole. Therefore, when the number

of insertions below a node v in the hierarchy is larger than the number of children

of v we regenerate the layout locally for v using the APP algorithm. This approach

allows us to handle volatile datasets where items appear and disappear rapidly.

Handling deletions For similar reasons we may need to delete a rectangle Ri from

the treemap. Deleting rectangles is slightly more involved than inserting rectangles,

and happens before any local moves are performed, but after new rectangles have

been inserted. There are two cases we need to consider when deleting Ri :

Ri

s

Rk

Rl Rl

Rk
Ri is grounded: There necessarily exists a

maximal segment s for which Ri is the only

rectangle on one side of s. To delete Ri we

stretch all rectangles on the other side of s
over Ri using stretch moves.

Ri is not grounded: Ri must be in the center of a windmill pattern. We apply

stretch moves to Ri until Ri becomes grounded and we are in the �rst case. Let e be

the edge of Ri that is adjacent to the fewest rectangles on the other side. Since Ri is in

the center of a windmill pattern, e must include an endpoint of a maximal segment

s. Without loss of generality e is above Ri and the endpoint of s is on the left side of

e. Then, as long as there is more than one rectangle on the top side of e, we stretch

the leftmost of those rectangles Rj over Ri . Once there is only one rectangle Rj on

the top side of e we stretch Ri over Rj . It is possible that Ri is still not grounded, but

Ri

Rj
Ri

Ris s
Rj

then it is now part of a larger

windmill pattern. In that

case we repeat the proce-

dure above until Ri �nally be-

comes grounded.

23

2
2 Time-varying Treemaps

We summarize our algorithm in the following pseudocode where f (L) measures the

sum of aspect ratios in a layout L and correctAreas(L, A′) is an implementation of

the algorithm by Eppstein et al. [40].

Algorithm 1 LocalMoves(T ,A′,d)

1: c = 4 ∗
√
ℎeigℎt(T)

2: if T is empty then
3: Generate T ′ using the Approximation algorithm.

4: else
5: L = correctAreas(L, A′)
6: Insert rectangles to T that need to be in T ′.
7: Delete rectangles from T that are not in T ′.
8: 0 = {L}
9: Lbest = L

10: for i = 1 to d do
11: for L′ ∈ i−1 do
12: for all possible local moves m on L′ do
13: L′′ = apply(m, L′)
14: L′′ = correctAreas(L′′, A′)
15: if f (L′′) < f (Lbest) then
16: Lbest = L′′

17: i = i ∪ {L′′}
18: if f (Lbest) < f (L) − c then
19: Let the layout of T ′ be Lbest
20: for all children Tc of T do
21: LocalMoves(Tc , A′(Tc), d , c)

▶ 2.3.3 Improving performance

The naive algorithm described above is not very e�cient for two reasons: (i) the

number of layouts considered by the algorithm is exponential in d , and (ii) updating

the areas using the hill-climbing algorithm is not very e�cient. We address these

two issues below.

Reducing the number of layouts We �rst compute all layouts that are the result

of applying one local move. Of these layouts, we keep only the layouts which im-

prove the aspect ratio. Of these layouts, we keep only the k layouts with the smallest

24

2
2.4 Metrics

Algorithm 2 correctAreas(L,A′)
1: Let A be the areas in L.

2: while ‖A − A′‖ is not small enough do
3: Let J be the Jacobian matrix of mapping segments to areas.

4: Solve J x = A′ − A for x .

5: Move maximal segments of L by "x .

6: Recompute areas A of L.

7: return L

aspect ratios (in our implementation we use k = 4). When applying a subsequent

local move to one of the remaining layouts, we consider only those local moves that

involve a maximal segment for which the adjacencies have been changed by the

local move. Afterwards, we again keep only the layouts which improve the aspect

ratio. We repeat the procedure until we have applied d local moves per layout.

Although this approach may not �nd the best possible layout, it does perform well

in practice and the number of layouts considered is no longer exponential in d .

Updating areas more e�iciently Computing the correct areas for general (pos-

sibly non-sliceable) layouts is signi�cantly more di�cult than computing the correct

areas for sliceable layouts (which can simply be computed recursively). However,

most layouts contain large components that are sliceable. We can use this fact to

speed up our algorithm. While we can �nd a maximal segment s that slices the

layout, we simply place s according to the areas of the rectangles on its two sides,

and continue recursively on both sides of s. When the layout is not sliceable, we try

to �nd maximal segments that have a single rectangle on both sides. These maximal

segments can be removed and reinserted later as a slicing maximal segment. Finally,

when no such maximal segments remain, we use the hill-climbing algorithm de-

scribed in Section 2.3.2 to position the remaining maximal segments. This approach

speeds up our algorithm substantially in practice.

▶ 2.4 Metrics
In order to perform a quantitative evaluation for treemapping algorithms, we re-

quire metrics to determine the quality of a treemap. Wattenberg [152] identi�es

several desirable properties of treemaps: (1) nicely shaped regions (visual quality),

(2) stability with regard to changing leaf values, (3) stability with regard to changing

25

2
2 Time-varying Treemaps

tree structure, and (4) preservation of order information. Regarding Property (3),

the tree structure can change in various ways: for example, nodes can merge or

split, nodes can change parents, or there are general insertions and deletions. In our

experiments we do not make any assumptions on the type of changes to the tree

structure, and hence treat them as general insertions and deletions. Furthermore,

we do not assume that the order of the values in the data is meaningful in general.

Thus, we consider the following two important criteria to evaluate treemaps: vi-
sual quality and stability. We discuss well-established metrics for both below and

also introduce a method that allows any existing stability measure for time-varying

treemaps to explicitly take data change into account. We compute metrics for each

leaf rectangle separately and then aggregate these values for each algorithm and

dataset (see Section 2.6 and [137] for details). Note that we do not compute metrics

for non-leaf nodes.

▶ 2.4.1 Visual quality

The weight information in a treemap is conveyed by the areas of its rectangles.

Since areas of rectangles closer to squares are visually easier to estimate than areas

of elongated rectangles, the visual quality of a treemap is commonly measured by the

aspect ratio of its rectangles. Although it has been proposed that the ratio should be

close to the golden ratio [77] instead of the minimum aspect ratio of 1, it is commonly

accepted that strongly elongated rectangles hinder readability of treemaps. We thus

aim for the overall goal of making rectangles as square as possible, or similarly,

minimizing the number of elongated rectangles. For a rectangle Ri of width w(Ri)
and height ℎ(Ri), we de�ne the aspect ratio �(Ri) as

�(Ri) = min(w(Ri), ℎ(Ri))/max(w(Ri), ℎ(Ri)). (2.1)

Observe that this de�nition is the inverse of the usual de�nition for aspect ratio. Its

values range from 0 to 1 where values of � close to 0 are considered “bad” and values

close to 1 are considered “good”. The bounded range allows for easy aggregation.

Note that, compared to the usual de�nition of 1/�, rectangles with larger aspect

ratios have a smaller in�uence on the aggregated score.

▶ 2.4.2 Stability

Evaluating the stability of a treemap is more involved than evaluating visual quality.

Consider treemaps at two consecutive time steps T (t) and T (t + 1). To simplify nota-

tion, we denote the former and the new treemap by T and T ′ respectively. We also

26

2
2.4 Metrics

denote the rectangle areas in T and T ′ by {a1, … , an} and {a′1, … , a′n}, respectively.

For a stable treemapping algorithm, the (visual) di�erence between T and T ′ should

roughly correspond to the di�erence between {a1, … , an} and {a′1, … , a′n}. Note that

the combination of large changes in data values and small changes in the layouts

is unlikely since rectangle areas in treemaps must exactly match the data values.

Hence, we actually want to measure instability, that is, large layout changes that are

not caused by large data changes.

Most existing treemap stability metrics consider only the visual change in the layout

of the treemap d(T , T ′), usually computed by evaluating the change �(Ri , R′i) for

each rectangle separately and aggregating it over all rectangles. The �rst stability

measure for treemaps was proposed by Shneiderman and Wattenberg [113] who

de�ne � as the Euclidean distance between the vectors (x(Ri), y(Ri), w(Ri), ℎ(Ri)) and

(x(R′i), y(R
′
i), w(R

′
i), ℎ(R

′
i)) where x , y, w , and ℎ are the coordinates of the top-left

corner, width, and height of a rectangle, respectively. They then de�ne d as the

average over all rectangles. Hahn et al. [54, 55] simplify this metric by de�ning � as

the distance moved by the centroid of a rectangle, again de�ning d as the average.

Tak and Cockburn [133] use the same � as [113], but de�ne d as the variance over

all values computed by � . They also propose a drift metric which measures how

much a rectangle moves away from its average position over a long period. Chen et
al. [28] propose a metric to quantify the ability of users to track time-varying data

in treemaps which is closely related to the aforementioned drift metric. Scheibel et
al. [107] introduced two layout-change metrics: The average aspect ratio change
de�nes � as the relative change between the aspect ratios of Ri and R′i , and de�nes

d as the average. The relative parent change de�nes � as the relative change of

the distance between the center of a rectangle and the center of its parent, again

de�ning d as the average. A di�erent approach measures layout change using pairs

of rectangles. Hahn et al. [56] introduce the relative direction change which measures

how much the angle from the center of Ri to the center of Rj changes for every pair

of rectangles Ri and Rj . Finally, Sondag et al. [126] proposed the relative position
change which instead measures how much the relative position of Ri with respect

to Rj changes for every pair of rectangles (Ri , Rj). The distance d is then de�ned as

the average over all pairs of rectangles.

Summarizing, we distinguish two types of layout-change metrics: (1) absolute met-

rics measure how much individual rectangles move/change, and (2) relative metrics

measure how much positions of pairs of rectangles change relative to each other. For

our experiments, we use both an absolute and a relative metric. In particular, as an

absolute metric, we use the corner-travel distance which is a well-known metric used

27

2
2 Time-varying Treemaps

in computer vision to quantify change between two shapes using feature points [132,

142]. In the vision community, it was established already many years ago [13, 111]

that corners are a perceptually useful feature to identify and track. Besides this per-

ceptual validation, the corner-travel metric lies also within a small bounded factor of

the original metric introduced by Shneiderman and Wattenberg [113]. Speci�cally,

let pi , qi , ri , and si (p′i , q
′
i , r

′
i , and s′i) be the positions of the corners of a rectangle Ri

(R′i), and let R be the input rectangle. We de�ne the normalized corner-travel (CT)

distance for a rectangle as

�CT(Ri , R′i) =
‖pi − p′i ‖1 + ‖qi − q

′
i ‖1 + ‖ri − r

′
i ‖1 + ‖si − s

′
i ‖1

4
√
w(R)2 + ℎ(R)2

. (2.2)

where ‖x‖1 denotes the �1 norm. Simply put, �CT is the corner-to-corner correspon-

dence distance between Ri and R′i . Note that 0 ≤ �CT(Ri , R′i) ≤ 1, since a rectangle

corner can travel by at most the length of the diagonal of R.

As a relative metric we use the relative position change [126]. We established exper-

imentally that the corner-travel and the relative position change metric correlate

clearly on more than 2000 datasets. Hence, in Section 2.6 we report only on experi-

ments using the corner-travel distance. All other data can be found online [137].

Data change The stability metrics discussed above do not take data change into

account. If data changes by a large amount, then the layouts should be allowed to

change signi�cantly without considering this to be instability. To add data change to

a stability metric one can consider the di�erence or ratio between the layout change

and the data change [147, 148]. However, there are two problems: (1) we need a

way to measure data change, and (2) the metric spaces for data and layouts need

to be comparable. For example, data change can be measured in terms of changes

of rectangle areas (since these correspond to the data). However, layout changes

such as the corner-travel distance measure lengths, not areas. Areas and lengths are

not directly comparable, and thus their ratios or di�erences may not be meaningful.

Although such metrics could be made comparable by suitable normalization, such

adaptations are necessarily metric-speci�c and ultimately result in numbers whose

meaning is not clear.

Baseline treemap We overcome the above issues with a new method that cap-

tures data change in the layout space. To this end, we de�ne a baseline treemap T ∗

with respect to T and T ′. The layout of T ∗ is order-equivalent to the layout of T .

However, the areas of the rectangles in T ∗ are the areas {a′1, … , a′n} of T ′. The idea

28

2
2.4 Metrics

is that T ∗ aims to minimize the layout distance to T among all treemaps with the

areas of T ′. Put di�erently: T ∗ approximates the minimum amount of change that

any time-varying treemap must incur when moving from T and its associated area

values {ai} to the next treemap T ′ and its area values {a′i }. As a result, d(T , T ∗) is a

good metric for data change in the layout space.

We construct T ∗ for each tested algorithm and each time step using a hill-climbing

algorithm (see Section 2.2). If rectangles are inserted or deleted T ∗ cannot be order-

equivalent to T , so we handle insertions and deletions separately. Dealing with

deletions is easy: we simply let the areas go to zero. For insertions, we must be

more careful. Indeed, while we consider only rectangles present in both T and T ′

when measuring stability (Ri and R′i in Equation 2.2), inserted rectangles can strongly

impact the positions of rectangles in T ∗. We observe that the baseline treemap does

not need to be a proper treemap: it only needs to capture how much rectangles

must minimally move to update to the new data. To minimize the movement of the

rectangles due to insertions (and hence be as stable as possible) we distribute the

cumulative area of the inserted rectangles over the “walls” (borders) of treemap T
evenly. To do so, we replace every maximal segment ms in T by a rectangle rms , and

assign rms a portion of the inserted area proportional to the length of ms. Hence,

all walls become equally thick and the original rectangles of T need to move little

T ′ T T ∗
to yield T ∗. Note that T ∗ is not an actual

treemap that represents the input data.

Instead, T ∗ it is an arti�cially created

treemap (hence, the name ‘baseline’)

which has many additional (gray) rect-

angles that represent the data change

between time steps.

0.02 0.04 0.06 0.08 0.10
0

0.02

0.04

0.06

0.08

0.1

Average 𝛿(𝑅𝑖 , 𝑅¨𝑖)

Av
er
ag
e
𝛿(
𝑅 𝑖
,𝑅

< 𝑖
)

The baseline treemap T ∗ as proposed here is

not a perfect baseline as it does not always

minimize the movement of every rectangle.

To gain insight into how well T ∗ captures the

minimal movement of every rectangle, we vi-

sualize the relation between the average lay-

out change between T and T ′ or T ∗ for a ran-

dom 25% sample of all algorithms and datasets.

Nearly all points lie on or below the diagonal

and thus there are few cases where any of the

14 treemapping algorithms needs less move-

29

2
2 Time-varying Treemaps

ment of the rectangles than the baseline. Therefore, the layout change between T
and T ∗ is a good estimate for the minimum necessary layout change between T and

T ′, and thus a good measure for data change.

Stability metric We can now de�ne a stability metric that takes data change into

account. Consider a rectangle Ri and the corresponding rectangles R′i and R∗i in T ′

and T ∗, respectively, and let � be the layout-change function for single rectangles.

Two natural choices for spatial stability are the di�erence or ratio between �(Ri , R′i)
and �(Ri , R∗i). Our experiments showed that the di�erence is typically more informa-

tive, that is, it exhibits clearer, more pronounced patterns, than the ratio. Hence, we

de�ne the stability of a single rectangle as

�(Ri) = max(0, �(Ri , R′i) − �(Ri , R
∗
i)) (2.3)

Note that �(Ri) = 0 if �(Ri , R′i) ≤ �(Ri , R∗i), which is possible. Indeed, a value of 0
for �(Ri) represents “very stable”, and R∗i is considered to be (roughly) as stable as

possible.

Limitations The stability metrics we use focus only on consecutive time steps.

The stability of time-varying treemaps could conceivably be in�uenced by e�ects

that span multiple time steps which our metrics do not capture directly. However, we

believe that the most salient events in�uencing stability occur between consecutive

time steps and hence we focus on this scenario.

▶ 2.5 Data
The visual quality and stability of treemaps clearly depend on the datasets used.

Simply measuring the average performance over a (large) collection of datasets does

not reveal such information. We aim to provide su�cient insight so that both prac-

titioners and researchers can make informed choices about which algorithm to use

for their data. For this, we study the performance of treemaps as a function of the

characteristics of the input data. We classify the datasets into data classes along with

explicit features and evaluate the metrics for all treemapping algorithms per class.

▶ 2.5.1 Data features
Our methodology is inspired by the framework proposed by Smith-Miles et al. [123]

to objectively measure the performance of algorithms across datasets. For each

30

2
2.5 Data

dataset, we compute a number of features that (hopefully) capture the character-

istics in�uencing the relative performance of treemapping algorithms. As a result,

every dataset is represented by a point in a low-dimensional feature space  . Simi-

lar feature-based approaches are also used to measure the relative performance of

dimensionality-reduction methods [41] or in machine learning [14]. Based on the

discussion of treemapping algorithms in Section 2.1 we identify the following four

features: 1. levels of hierarchy, 2. variance of node weights, 3. weight change, and

4. insertions and deletions.

Obviously, other features could be used to characterize time-varying hierarchies

such as the minimum, maximum, and average node degrees, the (im)balance of the

tree structure [18, 72], or the number of nodes. Two seemingly obvious candidates

for features that we do not currently consider are the number of nodes and the branch-
ing factor (i.e., the average internal node degree). Arguably, the number of levels

in the hierarchy, the branching factor, and the number of nodes correlate to some

degree. For example, if the hierarchy has only one level, then the branching factor

and the number of leaves are the same. Hence, we should include at most two of

these features in our analysis. Among these three features, the number of levels

is certainty a discriminating factor between algorithms, see our discussion in Sec-

tion 2.1. Furthermore, all algorithms we consider, with the exception of SND, are

recursive and treat each level independent from the preceding ones. Hence, one can

argue that the branching factor which determines the number of nodes that have to

be handled during a single step of this recursion is a more relevant feature than the

total number of nodes. Nevertheless, we decided not to include the branching factor

in our evaluation for the following two reasons. First, from the description of the

algorithms, it seems that the branching factor is likely less relevant for their relative
performance than the other four chosen features. That is, the descriptions do not

give any indication that the branching factor is able to predict if an algorithm A will

perform better than an algorithm B on a given dataset. Second, it is very di�cult to

de�ne meaningful value-ranges for the branching factor and then to �nd datasets

that cover these ranges in combination with all other data features. Given that the

number of data classes and, correspondingly, the number of datasets needed for a

meaningful evaluation, grows exponentially with the number of features chosen (see

Section 2.5.2), we decided to restrict ourselves to four features. While we cannot

exclude that the branching factor may in�uence relative performance, we do believe

that the four features chosen have higher predictive value.

31

2
2 Time-varying Treemaps

▶ 2.5.2 Data classes

Using the feature space  we partition all datasets into classes. For each feature we

de�ne a small number of subclasses based on only that feature. The data class of

a dataset is then de�ned as the combination of the subclasses for each feature. We

determined the value-ranges de�ning the subclasses by analyzing the distribution

of feature values over our 2405 real-world hierarchical datasets.

Levels of hierarchy We distinguish between 3 subclasses: 1 level (1L), 2 or 3 levels

(2/3L), and more than 3 levels (4+L). Most hierarchical datasets we have analyzed

have 2 or 3 levels. This number of levels is quite common for datasets that are

visualized via treemaps, since they frequently concern geospatial subdivisions such

as countries, continents, and their subregions grouped by a classi�cation scheme

such as the World Bank regional classi�cation. Furthermore, visually understanding

the node nesting in deeper treemaps becomes di�cult [23, 150]. A special case are

datasets with only 1 level, that is, sets of weight values. Such datasets are also often

visualized by treemaps, as these are more space-�lling than alternatives such as

bar charts [150]. These datasets are challenging for treemaps that implicitly use

the depth of the hierarchy. Finally, we consider datasets with more than 3 levels

which correspond to deep hierarchies such as, for example, �le systems or software

architectures [54, 56, 148].

Variance of node weights We distinguish between 2 subclasses: low weight

variance (LWV) and high weight variance (HWV). To ensure that the total number

of tree nodes does not strongly in�uence our classi�cation, we use the coe�cient

of variation �/� to determine the subclass. The standard deviation � and the mean

� are computed over all leaf weights over all time steps. We say that there is low

variance if �/� ≤ 1 and high variance if �/� > 1, respectively.

Weight change We distinguish between 3 subclasses: low weight change (LWC),

regular weight change (RWC), and spiky weight change (SWC). The weight change

of a single rectangle is measured by the absolute di�erence in the relative area (with

respect to the input rectangle R) between consecutive time steps. The weight change

of a treemap between two time steps is de�ned as the sum of weight changes of all

rectangles. To determine the subclass of a dataset we use the distribution of weight

changes between time steps over all time steps in the dataset, speci�cally the mean

� and the standard deviation � . Datasets with low weight change have � < 5%
and � < 5%. Datasets with a larger mean (5% ≤ � < 20%) and a relatively small

32

2
2.5 Data

coe�cient of variation (�/� ≤ 1) are classi�ed as having regular weight change. The

weights of these datasets steadily change over time without any extreme changes.

Remaining datasets are classi�ed as having spiky weight change. In those datasets

weights change drastically (� > 20%), or there is large variation (�/� > 1) along with

substantial changes (� > 5% or � > 5%).

Insertions and deletions We distinguish between 3 subclasses: low insertions

and deletions (LID), regular insertions and deletions (RID), and spiky insertions and

deletions (SID). We measure the impact of insertions and deletions between two

time steps t and t + 1 as the cardinality of the symmetric di�erence between the two

sets of rectangles with non-zero weights at t and t + 1 divided by the number of

rectangles with non-zero weights at t . We again classify the datasets based on the

distribution (� and �) of impact values over all time steps. Same as for the weight

change, LID is de�ned by � < 5% and � < 5%, RID is de�ned by � < 20% and �/� ≤ 1,
and the remaining datasets are in SID.

The full classi�cation results in 3 × 2 × 3 × 3 = 54 data classes. In Section 2.6 we

evaluate how the performance of treemapping algorithms depends on the classes,

that is, if the classi�cation is sensible.

▶ 2.5.3 Datasets

We collected a total of 2405 time-varying hierarchical datasets from a variety of

sources, detailed below. We found at least one dataset for 46 (out of 54) instances of

our proposed data classes. See Figure 2.3 for the distribution of datasets over classes:

clearly not all classes arise with equal frequency in our data sources.

World Bank [158]: (2142 datasets) World development indicators such as agricul-

ture, rural and urban development, education, trade, and health. Hierarchy

either according to the World Bank regional classi�cation grouping countries

into subregions and continents, or no hierarchy present.

GitHub [46]: (150 datasets) Hierarchies of folders, �les, and classes, weighted by

the number of code lines extracted from all revisions of several GitHub repos-

itories using Scitools [109].

Movies: (107 datasets) Movies from MovieLens [57] and TMDB [136]. We con-

structed a time-varying hierarchy using the group-rows-by-attribute-value

partitioning method [135, 150]. The hierarchy groups movies based on their

33

2
2 Time-varying Treemaps

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D
R
ID

LI
D

SI
D
R
ID

LI
D

SI
D
R
ID

LI
D

1L
2/
3L

4+
L

66 114 69153 58 4

2 15 531 14 9

84 158 13258 56 10

68 118 81152 58 4

3 20 551 16 10

97 180 18558 65 9

56 19 761 6 3

41

12

Figure 2.3 Distribution of datasets over classes.

genres, actors, release date, and keywords. Each leaf is a movie whose weight

corresponds to its rating over a given period of time.

Custom: (6 datasets) Several individual datasets were added: Dutch Names [84]

contains the frequency of popular baby names in the Netherlands per year; UN
Comtrade Co�ee [144] contains the amount of co�ee each country imported

per year; ATP contains personal information, historical rankings, and match

results from 1968 to 2018 for ATP tennis players [5]; and Earthquakes contains

the time, location, depth, and intensity of seismic phenomena provided by the

USGS Earthquake Hazards Program [145].

Importantly, note that the selection of dataset sources is orthogonal to the description

of the feature space  . The former covers the origin of data (which may cover

application-speci�c aspects not captured by our feature space); the latter covers

application-independent data aspects as captured by the data classes of  .

For each data source we show the distribution of the datasets over the di�erent data

classes in Figures 2.4. In total there are 2142 datasets from the World Bank, 150 from

GitHub, 107 from Movies, and 6 from Custom. The large collection of World Bank

datasets contains at least one dataset for each data class with at most 3 levels of

hierarchy (to which it is inherently limited), and a large enough sample for most of

them for the purpose of our experiments. The GitHub and Movies datasets �ll in the

34

2
2.6 Experimental results

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

1L
2/
3L

4+
L

65 114 69152 57 4
2 15 521 14 9
84 158 13156 56 8
67 117 81152 56 4
3 20 541 14 10
86 166 13956 59 8

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

1L
2/
3L

4+
L

2 2
1

11 1 142

56 6 501 1

3
1

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

1L
2/
3L

4+
L

11
1
1

12
13 306 1

13 256 3

11
12

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

1L
2/
3L

4+
L

1

1

2

11

Worldbank Github

Movies Custom

Figure 2.4 Distribution of the datasets. From le� to right and top to bo�om:
Worldbank, Github, Movies, Custom.

remaining data classes (with 4+ levels of hierarchy) for which we have data.

▶ 2.6 Experimental results

We ran all 14 rectangular treemapping algorithms (Section 2.1) on all time steps of

all 2405 datasets, generated the baselines for all these instances (Section 2.4), and

recorded all resulting layouts. Per dataset we aggregate our results for all metrics

and algorithms by �rst taking the mean over all rectangles in a single time step, and

then taking the mean again over all time steps. This is necessary since the number

of rectangles may di�er per time step.

35

2
2 Time-varying Treemaps

We focus on three speci�c questions: we �rst explore the validity of our data clas-

si�cation (Section 2.6.1) and then we study the performance of all algorithms with

respect to visual quality and stability across varying data features (Section 2.6.2).

Finally, we compare the performance of all algorithms on each data class separately

(Section 2.6.3). We believe that the resulting visual summary will help researchers

and practitioners choose a suitable treemapping algorithm for their data.

▶ 2.6.1 Data classification analysis

We evaluate if the relative performance of treemapping algorithms is more consis-

tent within a data class than for an arbitrary collection of datasets. To perform

this analysis we need to establish how we can capture the consistency of relative

performance for a collection of datasets and how we can compare this consistency

between multiple collections. We restrict our analysis to data classes that contain at

least 50 datasets, for otherwise the observed consistency is not su�ciently reliable.

For each such data class we randomly sample 50 datasets to use in this analysis. We

also randomly sample 50 datasets among all 2405 datasets (all classes) as a baseline

for comparison. Note that all collections must have the same number of datasets in

the analysis to ensure that the comparisons are fair.

Now consider a single collection of datasets. To measure the consistency of relative

performance among di�erent datasets in this collection we cannot directly use the

computed metrics for visual quality and stability, as these values may di�er greatly

between datasets. Alternatively, we could rank the algorithms per dataset, but then

algorithms with very similar performance may imply a greater variance in relative

performance than is the case. Instead, we de�ne the relative performance (separately

for visual quality and stability) per dataset as follows. We compute both the best

value (maximum for visual quality, minimum for stability) and the median value over

all algorithms over this dataset. The relative performance score for each algorithm

on this dataset is then computed by linearly interpolating between these two values

where the best algorithm receives score 0, and the median algorithm receives score

0.5. The relative performance score is capped at 1, to avoid outliers. The resulting

scores are comparable between di�erent datasets.

We next analyze the consistency of relative performance within collections of datasets

in two ways. First, we use a quantitative approach: for each algorithm we compute

the variance of the relative performance scores over all datasets in a collection and

sum up the variances over all algorithms. This results in a consistency score c for a

collection of datasets. Figure 2.5 displays the consistency scores (for visual quality

36

2
2.6 Experimental results

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D
R
ID

LI
D

SI
D
R
ID

LI
D

SI
D
R
ID

LI
D

1L
2/
3L

4+
L

c/c∗
1 1.5 21/1.51/20 ∞

Figure 2.5 Ratio of the consistency score (Le�: Visual quality, Right: Stability)
between the data class and the baseline for each data class with at least 50 datasets.

and stability) of all data classes (with at least 50 datasets) compared to the consis-

tency scores c∗ of the baseline collection (created by random sampling). A cell is

colored blue (more consistent) if c < c∗; a cell is colored red (less consistent) if c > c∗.

Nearly all data classes for visual quality and most data classes for stability are more

consistent than the baseline. This indicates that our features are splitting the datasets

into valid data classes where the relative performance of an algorithm is easier to pre-

dict than in the baseline. However, the stability column for high weight variance and

low weight change is less consistent than the baseline. As discussed in Section 2.1,

the stability of unordered treemaps becomes worse compared to ordered treemaps

when the weight variance is low or the weight change is high due to reordering of

the input weights. As a result the di�erence with respect to stability between or-

dered and unordered treemaps is less pronounced for these data classes; the relative

performance is hence in�uenced more by accidental details of individual datasets

and less by structural di�erences between the algorithms. Additionally, there are

two data classes where the visual quality is less consistent than the baseline. It is not

clear to us at this point what the cause of these inconsistencies is; one possibility

are hidden correlations in the data classes.

37

2
2 Time-varying Treemaps

Second, we use a more qualitative approach to assess the consistency of relative

performance. For each data class we create a matrix plot that shows the relative

performance scores of all algorithms for all datasets in the collection (see Figures 2.6

and 2.7). Each column in the matrix plot represents a dataset, and each row repre-

sents an algorithm. The color of every “cell” in the matrix plot indicates the relative

performance score of an algorithm on a dataset where lighter colors indicate better

(lower) relative performance scores. Relative performance scores that were capped

at 1 are indicated with purple. To better enable the visual assessment of consistency

among the di�erent datasets in a collection, we order the datasets (columns) so that

those with similar scores are next to each other as much as possible. Also, we order

the algorithms (rows) so that the algorithms with better average score are lower in

the matrix plot. In particular, the order of algorithms in the matrix plots for di�erent

data classes can be di�erent. Figure 2.6 shows the matrix plots for visual quality with

the corresponding matrix plot for the baseline collection at the left-top. Figure 2.7

shows the matrix plots for stability.

First consider the matrix plot for visual quality (Figure 2.6). For the low weight

variance subclass we indeed see that the matrix plots are much smoother than the

baseline which con�rms the results in Figure 2.5. We also observe an increasing

number of irregularities when going from 1 level treemaps to 2/3 levels or 4+ levels,

since more levels impose more restrictions on the layout and hence all algorithms

perform more similarly.

Consider now Figure 2.7. First of all, we notice that there is a set of four algorithms

at the bottom of every matrix plot. These are the state-aware algorithms (LM0, LM4,

and GIT) and SND. For nearly all datasets, regardless of the speci�c data class, these

four algorithms are much more stable than any of the others. There is also a large

di�erence between the low weight variance and high weight variance subclasses.

For low weight variance there is a set of algorithms that perform consistently much

worse than the median (purple cells). These include the unordered treemaps which

are particularly sensitive to changes in such data.

▶ 2.6.2 Performance analysis across features

The analysis in Section 2.6.1 shows that our data classi�cation is valid. We now

study how visual quality and stability depend on the features of the datasets. We

aim to understand how sensitive a given algorithm is to variations in one or several

features of the input data. For each data class we calculate the average visual quality

and stability. For each subclass of a feature we then take the average over all data

38

2
2.6 Experimental results

1L
2/
3L

4+
L

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

LWV HWV
LWC RWC SWC LWC RWC SWC

> 1

R
el
at
iv
e
pe
rf
or
m
an

ce

0

1

Figure 2.6 Visual quality: matrix plots for each data class with at least 50 datasets
plus baseline (le� top). In each matrix plot, rows correspond to algorithms, columns
to datasets. The lighter the color, the be�er the relative performance, capped at 1
(purple).

1L
2/
3L

4+
L

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

SI
D

R
ID

LI
D

LWV HWV
LWC RWC SWC LWC RWC SWC

> 1

R
el
at
iv
e
pe
rf
or
m
an

ce

0

1

Figure 2.7 Stability: matrix plots for each data class with at least 50 datasets plus
baseline (le� top). In each matrix plot, rows correspond to algorithms, columns
to datasets. The lighter the color, the be�er the relative performance, capped at 1
(purple).

39

2
2 Time-varying Treemaps

classes that belong to it. This ensures that even though we have di�erent numbers

of datasets in each data class they are all weighted equally. We show this data in

Figures 2.8–2.11. Each point in a �gure represents the score for one algorithm on

one subclass of the feature, for example, low weight variance. A polyline is drawn

that connects the points of one algorithm and we use glyphs to indicate the di�erent

subclasses of the feature. The di�erent algorithms are indicated with categorical

colors (see �gure legends).

Recall that a low value for the stability metric indicates a stable algorithm and that

the visual quality metric (aspect ratio) is bounded between 0 and 1. In particular,

note that visual quality (�) of 0.5 for a rectangle indicates a 2-by-1 rectangle. A � of

0.25 is perceptually much worse than a � of 0.5 in terms of area perception as can

be inferred from Kong et al. [70] coming close to their "extreme aspect ratios" of 4.5.

Levels of hierarchy Figure 2.8 considers the levels of hierarchy feature. In this

�gure we observe that all algorithms, in particular the stateless ones, are more stable

as the number of levels increase. In contrast to most other algorithms, the visual

quality of state-aware algorithms (LM0, LM4, GIT) as well as SND increases with

the number of levels. We also see that SQR and PBS have the longest polylines, that

is, they are the most sensitive to the number of levels.

Variance of node weights Figure 2.9 considers the weight variance feature. In-

creasing the weight variance decreases the visual quality for all algorithms except

for APP (and SND). Additionally, we see that the unordered treemaps are indeed

more sensitive to this feature in terms of stability compared to the other algorithms.

These algorithms reorder the data based on the weight to determine their layout,

and if the weight are close to each other this happen more often.

Weight change Figure 2.10 considers the weight change feature. which has three

values: LWC, RWC, and SWC. The near-vertical polylines for the stateless algorithms

show that visual quality seems to be largely una�ected by this feature. The stability

however decreases quickly. Conversely, for the state-aware algorithms the polylines

are mostly near-horizontal: the stability is largely una�ected, but the visual quality

decreases. As the only state-aware algorithm that allows changes to the layout,

LM4 makes an explicit trade-o� between stability and visual quality (see the slightly

sloping line).

Insertions and deletions Finally, Figure 2.11 considers the insertions and dele-

tions feature. The plot shows a similar variation of visual quality and stability as seen

40

2
2.6 Experimental results

APP

GIT

HIL

LM0
LM4

MOO

PBM

PBS

PBZ

SND

SPI

SPL

SQR

STR

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
�ality

St
ab

ili
ty

single level (SL)
2 or 3 levels (2/3L)
4 or more levels (4+L)

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

Figure 2.8 Visual quality vs stability as function of the levels of hierarchy feature.

APP

HIL

MOO

SPI

Git LM4
LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
�ality

St
ab

ili
ty

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

low weight variance (LWV)
regular weight variance (RWV)
spiky weight variance (SWV)

Figure 2.9 Visual quality vs stability as function of the variance of node weights
feature.

41

2
2 Time-varying Treemaps

APP

HIL

MOO

SPI

Git LM4
LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
�ality

St
ab

ili
ty

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

low weight change (LWC)
regular weight change (RWC)
spiky weight change (SWC)

Figure 2.10 Visual quality vs stability as function of the weight change feature.

APP

HIL
MOO

SPI

Git LM4

LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
�ality

St
ab

ili
ty

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

low insertions/deletions (LID)
regular insertions/deletions (RID)
spiky insertions/deletions (SID)

Figure 2.11 Visual quality vs stability as function of the insertions and deletions
feature.

42

2
2.6 Experimental results

for the weight change feature (Figure 2.10). Yet, the polylines for the stateless algo-

rithms now show a ‘kink’ at the midpoint (RID, regular insertions/deletions). Hence,

these algorithms are most unstable for regular insertions/deletions, and stabler for

linear and spiky insertions/deletions. Interestingly, the state-aware methods (LM0,

LM4, and GIT) show a similar kink but oriented di�erently. These methods thus

achieve poorest visual quality for regular insertions/deletions and highest quality

on the other two values of this feature.

▶ 2.6.3 Comparison of data classes
We compare the relative performance of all algorithms separately on all data classes.

Figures 2.12 and 2.13 supports this comparison as follows: it is structured as a ma-

trix of tables, one per data class. Each table shows the average visual quality (left

column) and average stability (right column) of all algorithms for all datasets in

the respective data class. The two columns are sorted separately to show the best-

ranking algorithms at the top. Cells show the algorithm names and scores, and are

categorically color-coded on the algorithm name following the same color scheme as

in Section 2.6.2. Empty cells indicate data classes for which we did not �nd datasets.

Figures 2.12 and 2.13 can answer the following practical questions:

Which method is best for my data? Given a family of datasets with known

characteristics (feature values) we search for the corresponding cell and pick the top

algorithm(s) in visual quality, stability, or a combination of both depending on the

application requirements. When doing this we should examine the actual values,

since several algorithms score quite close to each other.

How is a given algorithm performing in general? We scan the table following

the color of the respective algorithm, and detect its rank with respect to visual quality

and/or stability over all data classes. In this way we can �nd patterns and outliers

in the data for this algorithm: for example, LM0 and LM4 are always near the top in

stability, and GIT’s visual quality �uctuates widely depending on the data class.

Which algorithms perform similarly? We locate groups of neighboring rows

with the same color pattern in all tables. These groups indicate algorithms which

score similarly regardless of data class.

43

2
2 Time-varying Treemaps

LWC RWC SWC
LWV HWV

LWC RWC SWC

1L
SI

D
R

ID
LI

D
SI

D
R

ID
LI

D
2/

3L

Figure 2.12 Relative ranking of treemapping algorithms for all data classes with
less than four levels of hierarchy. Each table cell shows algorithms in top-down
decreasing order of visual quality (le� column) and stability (right column).

44

2
2.7 Discussion and conclusion

RWC SWC
LWV HWV

LWC RWC SWC

4+
L

SI
D

R
ID

LI
D

Figure 2.13 Relative ranking of treemapping algorithms for all data classes with
four or more levels of hierarchy. Each table cell shows algorithms in top-down
decreasing order of visual quality (le� column) and stability (right column).

In general there are a number of insights we can obtain from Figures 2.12 and 2.13.

When considering only the visual quality, SQR is usually the best for low weight

variance data, but for high weight variance APP is just as often the best algorithm.

If the dataset contains only 1 level, SQR performs better, but otherwise it depends

on the exact data class. If only the stability is important, SND scores best on almost

all data classes, but likewise it consistently scores the poorest on visual quality The

state-aware algorithms all perform very well on stability. While LM0 is better in

terms of stability than LM4, their exact order as well as their relative order to GIT

varies depending on the data class.

▶ 2.7 Discussion and conclusion
In this chapter we investigated temporal coherence for time-varying hierarchical

data. We �rst presented a new algorithm to compute stable treemaps for time-

varying hierarchical data using the concept of local moves: small modi�cations

to the treemap that in�uence only a small part of the treemap. These local moves

45

2
2 Time-varying Treemaps

allow us to control the trade-o� between the visual quality and the stability simply

by limiting the number of local moves between every two time steps. Moreover,

in contrast to existing treemapping algorithms, the local moves allow for the full

range of options to be explored when choosing layouts which can provably lead to

treemaps with better visual quality.

We then performed an extensive quantitative evaluation of rectangular treemapping

algorithms for time-varying data. To do so, we introduced a new methodology based

on baseline treemaps to measure the stability of time-varying treemaps. Baseline

treemaps enable us to measure the change in the input data in a manner that is math-

ematically comparable to the measures for the layout change of the corresponding

treemaps. Furthermore, we proposed a novel classi�cation scheme for time-varying

datasets via a four-dimensional feature space (weight variance, weight change, tree

depth, and the pattern of insertions and deletions). These four features naturally

arose from a discussion on various types of state-of-the-art treemapping algorithms.

Our experimental analysis shows that our proposed classi�cation is valid in general

and that most data classes are well suited to predict the performance of treemapping

algorithms. For most data classes our visual summary comparing all algorithms

across all data classes and both metrics can hence serve as a reliable resource for

researchers and practitioners. Last but not least, all datasets, metrics, and algorithms

used in our evaluation are openly available [137].

Limitations and future work The main disadvantage of our stable Local Moves

algorithm is its running time which may be prohibitive for interactive applications

on very large datasets. Nonetheless, for most reasonable practical scenarios where

the treemaps still need to remain readable our algorithm is su�ciently fast. Beyond

that, it is even possible to control the trade-o� between the running time of the

algorithm and the visual quality of the treemaps, again by controlling the number

of local moves between every two time steps. A fully controllable trade-o� between

the three aspects visual quality, stability, and running time remains an interesting

open problem.

Our experiments in the quantitative evaluation show that the features we identi�ed

and the resulting feature space generally work well and result in a meaningful clas-

si�cation of datasets. However, there are whole sets of data classes for which we

could not �nd su�ciently many (or even any) datasets. This is partially inherent in

the classi�cation and somewhat natural: datasets with low weight variance hardly

ever exhibit spiky weight change behavior, so that particular column in our table is

essentially empty. But among the 18 classes of treemaps with 4 or more levels we

46

2
2.7 Discussion and conclusion

found a signi�cant number of datasets only for two classes which both are essentially

populated by datasets stemming from software repositories. The question remains

if there are other signi�cant types of time-varying hierarchical datasets which have

four or more levels and which escaped our searches. As it is, the results for these

two particular classes are representative for only a restricted type of data.

Our classi�cation works well for visual quality with the exception of two cases (2/3

level, spiky insertions and deletions, high weight variance, and low or spiky weight

change). We have a large number and variety of datasets at our disposal for these

two classes, but nevertheless, it is unclear to us what causes these inconsistencies

in the performance of the tested algorithms. There might be a hidden correlation

in these datasets and one or more additional features might be needed to separate

these classes further.

While we do have a signi�cant number of datasets at our disposal and hence can

validate our claims with some certainty, we still might be observing some bias in our

collection. As stated above, essentially all datasets with 4 or more levels stem from

software repositories. Furthermore, all World Bank datasets have at most 3 levels.

It would be interesting to analyze if and how this bias in the data in�uences our

results. To overcome possible data bias we would also like to construct, and evaluate

on, synthetic datasets. Doing so is not trivial; creating datasets that avoid sampling

biases and are representative of real-world datasets (for a suitable de�nition of “real-

world”) is a challenging but important question in its own right in information

visualization in particular and in data science in general.

Finally, our evaluation currently does not measure the running times and correspond-

ingly the scalability of the algorithms used in our experiments. Our implementations

are not (equally) optimized and hence a fair comparison is currently impossible. Scal-

ability is clearly an important factor in online usage scenarios and we hope to be

able to complement our current set of implementations with optimized versions in

the near future.

47

2

48

3

Chapter 3

Uncertainty Treemaps
Value encoded by area

Low High

Low

Uncertainty encoded by hatched area

High

Hatching type matches hierarchy

Leaf

Superimposed hierarchy levels

Root

Figure 3.1 Uncertainty Treemap of co�ee import from 1994 to 2014, decomposed
into continents, subregions, and countries [144]. Our visualization encodes uncer-
tainty using nested hatched lines in the areas of the corresponding values. Of the
North American countries (), the United States (USA) import much more co�ee
than Canada (CAN). While Canada has much less uncertainty in its value (area of

), both countries share a similar relative fluctuation (height of relative to con-
taining rectangles). Similarly, going up two levels () reveals that Europe (, , ,)
has lower relative fluctuation than the Americas (,).

Numerical hierarchical data often has uncertainty associated with it which can

present itself in many di�erent forms, see Fisher [42] for an overview. Here, we

focus on the uncertainty of the numerical values associated with each data element.

When visualizing low complexity data it is often straightforward to indicate the error,

for example, using error bars. Such visualizations anchor the uncertainty at visual

representation of the data value. While this strategy works well for low-dimensional

data, it does not lend itself directly to more complex or higher-dimensional data. In

the context of treemaps an additional challenge is the fact that uncertainty does not

aggregate in the same way as the data values do in the hierarchy: relative uncer-

tainty tends to become smaller, the higher a node is in the hierarchy. Despite these

challenges, any visualization that aims to be trustworthy and faithful to the data

it represents has to visualize uncertainty for each node. Moreover, to ensure a co-

49

3 3 Uncertainty Treemaps

herent visualization of the direct relation between the value and its uncertainty, the

uncertainty should be visualized together with the data. Nevertheless, techniques

that support plotting certain and uncertain data simultaneously for more complex

data types are rather scarce [62].

In this chapter we introduce a coherent treemap visualization for uncertain hierar-

chical data, focusing on rectangular treemaps. To do so, we identify two con�icting

key requirements:

Visual aggregation. To assess the value of an interior node, the area of its rectangle

(or generally, its visual size) should directly match its value.

Uncertainty encoding by area. To facilitate comparison between data and uncer-

tainty, uncertainty should be encoded using the same visual variable as the

data, that is, area.

Either requirement is straightforward to satisfy in isolation. For example, visual

aggregation can be maintained if uncertainty is encoded using color or any other vi-

sual variable that does not hamper the perception of area. Similarly, uncertainty can

be encoded using additional area adjacent to each rectangle. Doing so, however, will

make visual aggregation next to impossible, as an inner node will have additional

area inside its rectangle. In contrast to these decoupled approaches, our technique

meets both requirements simultaneously, thereby improving coherence. As an inte-

gral part of our Uncertainty Treemaps we introduce hierarchical uncertainty masks
as a tool to visualize data and uncertainty in the same visual space.

Definitions and notation In this chapter we use the following de�nitions and

notation for treemaps; these di�er slightly from those used in Chapter 2 as hierarchy

plays a more central role in our Uncertainty Treemaps.

Let  be a rooted tree. Denote the d children of a internal node v ∈  with C(v) =
{c1, … , cd}. A node without children is a leaf; non-leaf nodes are interior nodes. We

denote the value of each node v in  by �(v) and we have �(v) = ∑d
i=1 �(ci) for any

interior node v. We assume that � corresponds to the mean and the sum of means,

respectively. � is normalized such that for the root node vr , �(vr) equals the area of

the input rectangle R. We denote the uncertainty of a node v ∈  by �(v). Generally,

the uncertainty of an interior node can be derived from its children. We assume that

the uncertainty is the standard deviation and that the children are independent and

thus �(v) =
√
∑d
i=1 �(ci)2 for an interior node v. Hence, the relative uncertainty

�(v)
�(v) tends to become smaller higher in the hierarchy.

50

33.1 Related work

We describe this layout using a function R� that maps each node v ∈  to a rectangle

with area �(v). The rectangle for each interior node v is the disjoint union of the

rectangles of its children. The quality of a treemap is typically measured via the

aspect ratio of the rectangles R� and denoted by �(R�(v)) for a node v.

Contributions and organization Uncertainty Treemaps visualize the uncertainty

in the same space as the data by using so-called uncertainty masks. These masks

anchor a region R� (v) of area �(v) to R�(v) for each node v. Since R� already covers

the graphical space, we require that R� (v) ⊆ R�(v). Our design is based on screen-

door transparency and renders the regions R� (v) on top of the regions R�(v). In

Section 3.2 we describe the design of our uncertainty masks in greater detail and

explain how to overlay the masks hierarchically on the treemap layout R� . We also

show how to answer questions on real-world data using Uncertainty Treemaps. Fur-

thermore, we introduce a new quality metric that measures the quality of a mask.

While our hierarchical uncertainty masks can be applied to any treemap layout

computed with any treemapping algorithm, certain layouts result in better mask

quality. To compute Uncertainty Treemaps with high mask quality, we could focus

on this optimization criterion while ignoring the aspect ratio of the rectangles. How-

ever, the (summed) mean values still need to remain legible and comparable. Thus,

in Section 3.3 we show how to adapt existing treemapping algorithms to take the

uncertainty masks into account. Here, we distinguish two types of algorithms: mask-
friendly algorithms that use only the fact that a mask will be placed and mask-aware
algorithms that use the uncertainty values to compute the layout.

In Section 3.4 we experimentally compare variants of our mask-quality metric to

establish how well these measures are able to capture di�erent aspects of quality.

Furthermore, we investigate the e�ectiveness of mask-friendly and mask-aware al-

gorithms on several real-world datasets. Finally, in Section 3.5 we discuss various

design alternatives for the shape, placement, and rendering of the masks, as well as

the e�ects of uncertainty and unbalanced hierarchies.

▶ 3.1 Related work
In Chapter 2 we already gave an overview of state-of-the-art rectangular treemap-

ping algorithms for time-varying data without uncertainty. In general, we may

derive uncertainty from the temporal variation of a numerical value. Uncertainty

Treemaps can thus straightforwardly visualize time-varying data with a static hier-

archy, presenting a di�erent visualization than the time-varying treemap visualiza-

51

3 3 Uncertainty Treemaps

tions in Chapter 2. Although this representation loses information about temporal

patterns beyond the magnitude of change, Uncertainty Treemaps provide a simple,

static overview visualization, removing the need for animation.

In this Section, we focus on related work for uncertainty visualization. Uncertainty

visualization in general is a broad �eld, ranging from data acquisition to mapping to

representation, and reasoning about uncertainty [22, 63]. We consider uncertainty

visualization to be a process of multiplexing certain and uncertain data in such a

way that humans can successfully demultiplex it [27, 61] and reason about it [49,

106]. Within this information-theoretical consideration we can distinguish between

encoder, channel, and decoder. Correspondingly, an uncertainty-aware treemap has

to have at least three channels, i.e., visual variables, to communicate tree structure,

certain data, and uncertain data simultaneously. We map both data value and uncer-

tainty to size, and use texture to separate value from uncertainty.

Bertin [12] pioneered the study of visual variables many years ago. However, the

study of those variables in the context of uncertainty visualization is a fairly recent

trend. Speci�cally, in the context of maps and graph edges, fuzziness appears to be

an intuitive and su�cient choice [53, 79]. Clean geometry, e.g., boxplot whiskers,

appears to be slightly less prone to error in general [51, 79]. However, there are some

pitfalls such as unprofessional appearance [19] and the within-box bias [33]. These

visual variables are not suitable for our technique, as we have to depict two types of

data in one area, i.e., we have to �nd an uncertainty-aware blending operator.

Holliman et al. [61] recently coined the term Visual Entropy. Here, the idea is to

couple high noise with an expected frequency to communicate uncertainty. Using

white noise to depict uncertainty was evaluated and recommended in the context of

maps [69]. Kale et al. [64] show that animation is also viable for framing uncertainty

as frequency. To us, screen-door transparency seems particularly promising, since

it avoids color blending issues without requiring additional space [66, 108]. Bair et
al. [6] show that the number of fully overlapping terrain-like layers and choice of

texture strongly in�uence the separability of those layers. Thus, our work adapts

various types of screen-door transparency while preventing data from being fully

concealed by the uncertainty, since partial overlap in�uences separability to a lesser

degree.

Slingsby et al. [121] use a geospatial variant of treemaps in an interactive system to

support the exploration of uncertainty in the context of geospatial data. In contrast

to our Uncertainty Treemaps their approach does not anchor uncertainty to the data

value, and relies on interaction to explore uncertainty. Most closely related to our

52

33.1 Related work

work are the Bubble Treemaps proposed by Görtler et al. [48]—a variant of circular

treemaps that can depict uncertainty using the contours of the regions, e.g., using

modulated splines as the contour. Their approach separates the encoding of certain

and uncertain aspects of data which hampers with comparison due to missing align-

ment and anchoring. Furthermore, Bubble Treemaps require ample white space and

hence deliberately violate the visual aggregation requirement. See Figure 3.2 for a

visual comparison between Uncertainty Treemaps and Bubble Treemaps. We argue

that Uncertainty Treemaps provide a clearer and cleaner picture of the data, in par-

ticular, because our approach does not introduce unequally distributed whitespace

to compensate for con�icting propagation models.

Figure 3.2 Uncertainty Treemaps (le�) and Bubble Treemaps [48] (right). For the
S&P dataset [48] (top) the Uncertainty Treemap shows that this dataset has few
data values with high uncertainty, whereas this is harder to establish for the Bubble
Treemap. For the Co�ee dataset [126] (bo�om) the Bubble Treemap produces thick
and folded boundaries that prohibit value comparison; in contrast, the Uncertainty
Treemap indicates the aggregated uncertainty for each level in the hierarchy.

53

3 3 Uncertainty Treemaps

Figure 3.3 Hatched uncertainty masks: a leaf node (le�), a node above leaf level
doubles line width and spacing (middle), a 2-level treemap with 4 leaves (right).

▶ 3.2 Hierarchical uncertainty masks
Our hierarchical uncertainty masks are key to enabling Uncertainty Treemaps in

which R� (v) ⊆ R�(v) for any node v. Here, we �rst discuss the design of our uncer-

tainty masks, then show how to read the resulting Uncertainty Treemaps, report the

results of a brief expert review, and �nally describe how we measure mask quality.

▶ 3.2.1 Mask design
Consider some (rectangular) treemap layout described by R� . We want to augment

the layout with regions dedicated to showing � : the region R� (v) of a node v must

be contained in R�(v) and have size �(v). Due to the recursive nature of treemaps,

the region R� (v) overlaps the rectangles (and masks) of nodes lower in the hierarchy.

We must thus consider how to e�ectively render the masked regions to ensure that

both R� and R� remain visible.

In terms of placement, our mask spans a fraction of �(v)/�(v) of R�(v).1 The mask

could be essentially of arbitrary shape as long as it has the correct area as prescribed

by � . However, it is natural to use rectangles for the mask as well, since the mask is

integrated into a rectangular treemap. In particular, we place the mask as a rectangle

at the bottom of the node along the full width of the node; Figure 3.3 (left) and

(middle) show masks for a single node.

Figure 3.3 also illustrates that we render the masks using hatching of slanted, parallel,

equidistant lines. The line width and gap depend on the node’s hierarchy level, both

doubling with each higher level. The line gap is three times the line width such that

at least every other line is fully visible. Figure 3.3 (right) illustrates the overlay of

two masks at the bottom of the treemap: both the lower-level masks in R� as well

1
The observant reader will notice that for �(v) > �(v), this may be problematic. We refer to Sec-

tion 3.5.3 for a brief discussion of this issue.

54

33.2 Hierarchical uncertainty masks

Value encoded by area

Low High

Low

Uncertainty encoded by hatched area

High

Hatching type matches hierarchy

Leaf

Superimposed hierarchy levels

Root

Figure 3.4 Uncertainty Treemap of co�ee import from 1994 to 2014, decomposed
into continents, subregions, and countries [144].

as the full extent of rectangles in R� remain visible. Note that, contrary to other

approaches, the pattern density does not encode the uncertainty value but matches

the hierarchy level.

We place the hatching such that mask lines at a certain level coincide with half of

the mask lines one level lower. To this end, we de�ne the hatching pattern globally

within R. The mask for a speci�c node v is then the intersection of R� (v) with

the global mask which ensures that the intended visibility through the masks is

maintained regardless of the positioning of the nodes. A discussion of alternative

mask shapes and patterns can be found in Section 3.5.

▶ 3.2.2 Reading an uncertainty treemap
Figure 3.4 again shows an Uncertainty Treemap of the Co�ee dataset [126]: the

mean amount of co�ee imported yearly per country between 1994 and 2014 with

the associated standard deviation [144]. We illustrate our technique by answering

several example questions using Figure 3.4.

Compare the United States (USA) and Canada (CAN): which country imports the most
co�ee? To perform this standard task for a treemap, we compare the areas of USA

and CAN. In this particular case the rectangles of the USA and CAN have the same

height: we can hence infer immediately that the rectangle for the USA spans a larger

area and thus the USA import more co�ee.

Compare the USA and CAN: which country shows the most �uctuation in import? To

compare the absolute standard deviation, we compare the hatched area () of the

55

3 3 Uncertainty Treemaps

USA with that of CAN. Clearly, the area of the USA is larger than that of CAN: it has

considerably more variation. Note that we cannot just rely on the height of these

rectangles here as their width is di�erent.

As the mean and standard deviation are both visualized using area, we can actually

also consider this question in relative terms. Both hatched areas �ll approximately a

third of the corresponding rectangle—this can easily be estimated by just considering

the height, since the hatched area and the rectangle span the same width. Since the

rectangles have the same top and bottom boundary, we can even make a fairly ac-

curate decision: USA have higher relative �uctuation than CAN because its hatched

area ends slightly higher.

Consider the questions above, now comparing Europe (EU , , ,) with North America
(NA). As the rectangles for EU and NA have di�erent width and height, we cannot

take shortcuts like above, and must use area to answer questions regarding the

summed mean and standard deviation of the import. As there is signi�cantly more

blue area (, , ,) than dark orange area (), Europe imports more co�ee.

For assessing absolute �uctuation for EU, we look at the hatching at continent level

() which here spans the entire width of the treemap. NA is one level lower in the

hierarchy, and thus we consider the subcontinent level hatching (). These areas

show slightly higher �uctuation in NA despite EU having a larger mean.

In relative terms, we consider the same hatched areas but now with respect to their

surrounding rectangle. We see that EU has approximate 15% relative �uctuation

whereas NA has about a fourth: NA has higher relative �uctuation. Note that we

can always rely purely on height of the hatched areas and their containing rectangle

to infer the relative �uctuation for any node.

▶ 3.2.3 Expert review

To investigate whether our uncertainty masks yield usable treemaps visualizations,

we conducted an informal review of our method with a visualization and perception

expert. Below, we describe the setup, results, and conclusions of this review session.

To keep things simple, we positioned the expert review for visualizing uncertainty,

but restricted terminology in questions to mean values and standard deviations.

The expert The review was done with a visualization and perception expert. He

was not involved with or informed of our new method before the review session,

but is generally knowledgeable about and familiar with treemaps.

56

33.2 Hierarchical uncertainty masks

Techniques To avoid scoping our review too narrowly, we used three techniques.

In addition to Uncertainty Treemaps and Bubble Treemaps [48], we used a simple

Juxtaposed variant. The latter shows a standard treemap on the mean values side-

by-side with a treemap on the uncertainty values. The treemap on the uncertainty

values uses the same combinatorial layout as the treemap on the mean values. We

generate this treemap by running the algorithm and making any decisions based on

the mean, but eventually visualizing the uncertainty. Although this may be subopti-

mal in terms of aspect ratio, it should be easier to visually relate the two treemaps.

Before the review, we judged that the layouts showing uncertainty had visual quality

comparable to using a regular treemapping algorithm on the uncertainty data. Note

that in the Juxtaposed variant only the leaves show correct values. Internal nodes

are typically larger than their actual uncertainty.

Tasks To familiarize the expert with the techniques and uncover potential pitfalls

or misconceptions we asked the expert to complete a few tasks with each of the

visualizations. Per visualization we asked 6 questions, each with a variant on leaf

level (a) and on interior nodes (b).

Question 1 and Question 2 ask to compare the mean value and standard deviation

respectively of two given nodes. Question 3 asks to estimate the ratio between the

standard deviation and the mean value of a single given node (which we refer to here

simply as “ratio”). Question 4 through 6 re�ect these same questions, but instead

ask to �nd the node with the highest mean, standard deviation, or ratio.

Datasets We used the “Co�ee” dataset as Dataset 1 for Questions 1 through 3

(comparisons) for all techniques, using di�erent countries. For Questions 4 through

6, we used the “Infant” dataset as Dataset 2; we perturbed the values for this dataset

between the visualization techniques to avoid the answers necessarily being the

same. The expert was explained that these datasets represent countries aggregated

into regions or subcontinents, subsequently aggregated into continents.

General procedure All material was printed separately full size on a sheet of

A4 paper. First, the general setting was introduced of visualizing a hierarchy with

mean values and standard deviations simultaneously. We explained the general

setup to the expert and he was requested to think aloud and ask questions as they

arose. We would occasionally ask clarifying questions about how certain answers

were obtained to discover whether the applied process for reading and �nding the

answers matches with how the techniques are intended to be used.

57

3 3 Uncertainty Treemaps

The questions for Dataset 1 were provided �rst, treating the techniques in the order

of Juxtaposed, followed by Bubble Treemap, followed by Uncertainty Treemap. For

each technique, the expert was �rst introduced to the visualization, purposefully

limited to the basic encoding used, without explaining in detail how a question was

to be answered. Next, the expert answered the three questions before starting with

the next technique. Subsequently, the questions from Dataset 2 were provided, fol-

lowing the same procedure for Dataset 1, without the explanation of the techniques.

As not all countries had labels, the expert was also given the option to mark his an-

swers directly on the visualization; this was used only to answer all Bubble-Treemap

questions. After Dataset 2, we asked the expert about things that stood out to him

when completing the tasks, thoughts about the usability of the techniques, and his

preferences. After indicating his preferences we revisited some limitations of the

techniques. Below, we structure the comments and �ndings per technique during

the tasks before reviewing the results of the �nal discussion.

Completing tasks The Juxtaposed method was straightforward to use and did

not prompt any questions. The expert did remark that �nding the maximum ratio

(Question 6) “is a tough one”
2

as it requires linking between two side-by-side �gures.

For Bubble Treemaps, the expert remarked that there was no frame of reference

(legend) for the visualized uncertainty instead relying on “gut feeling” to estimate

a ratio. For assessing area of interior nodes the expert found that this is “very hard

to do”, as “there is a lot of white space in between, severely distorting what you see

and this is exacerbated by the contour waves”.

For Uncertainty Treemaps, the expert completed the tasks without questions or re-

marks. When prompted how he answered the ratio question, he explained that he

used the height of the hatched area to assess how often the hatched area would �t

into the height of the containing rectangle. Though the initial explanation instructed

only in area, this shortcut seemed evident. However, a later question involved com-

paring the standard deviation where height was interpreted as immediately encoding

standard deviation. The expert indicated that he was “distracted by height”. This

was clari�ed to answer subsequent questions, but was revisited in the discussion

later.

Preferences For Questions 1, 2, 4, 5 – requiring to consider only means or only

standard deviations – the expert indicated a slight preference for Juxtaposed over

Uncertainty Treemaps: they are “essentially identical” because one is “not bothered

2
All quotes are paraphrased as the review session was conducted in Dutch.

58

33.2 Hierarchical uncertainty masks

by the hatching”. However, for Questions 3 and 6 – requiring to assess ratio – the

expert had a clear preference for Uncertainty Treemaps. Bubble Treemaps was con-

sistently the least preferred method.

Discussion with the expert There was an additional in-depth discussion on the

design of Uncertainty Treemaps and speci�cally the masks with the expert. The

initial question by the expert was why we opted for hatching rather than solid

rectangles. He agreed with our rationale, that transparency would lead to color

identi�cation issues and placing the standard deviation next to the mean would cause

similar problems with assessing aggregate area as he faced with Bubble Treemaps.

He identi�ed the hatching as being such that one “is tempted to look at the length of

the (individual) lines, and not interpret them as a holistic thing”. He did think that

increasing the density and decreasing the width may reduce this problem. Further-

more, coloring them more similarly to the background color could help in interpret-

ing these as a holistic object and simultaneously reduce the visual prominence of

the masks. When prompted about potential coloring issues for higher level nodes

(with di�erent background colors), he indicated that such colors could be expected

to remain a shade of gray. He also mentioned that treemaps “take some time to get

used to”, and thus a learning curve is to be expected for any overlay on a treemap.

Reflection The expert review suggests that Uncertainty Treemaps are usable and

potentially preferable over the two other methods for the evaluated tasks. The main

issue identi�ed is that the hatching may trigger height assessment even when this is

not appropriate. This can be attributed to a learning curve—which is to be expected

for any treemap representation according to the expert. We changed the rendering

of the hatching to reduce such risks following the above discussion. Speci�cally, we

now blend the white leaf-level hatching with the leaf-level coloring and doubled

the pattern density. This indeed reduces the visual prominence of the masks while

increasing the sense of area. All �gures and descriptions in this chapter re�ect the

updated design.

We also tried applying this to the subcontinent-level hatching as the countries within

the same subcontinent are given the same color. However, this causes slightly di�er-

ent colors at boundaries where subcontinents of the same continent meet following

our design that hatching coloring is to match the boundary coloring. This increases

the potential for misreading the hierarchy and thus we did not apply this. In general,

we would thus recommend that such color blending is applied only at nodes that

have the same color as their siblings.

59

3 3 Uncertainty Treemaps

Technically speaking, some questions were impossible to answer. Speci�cally, there

is not enough information to answer Question 3 in a Bubble Treemap or Juxtaposed

visualization without a way of linking the two scales applied. This, however, does

not prevent some basic intuitive assessment which may thus be quite far o�. Indeed,

after working with the Uncertainty Treemap, the expert indicated that he would

now revise his answers to Question 3 for the other techniques. Note that, though

assessing the ratio directly is limited for these two techniques, making comparisons

between ratios (Question 6) is in fact possible.

▶ 3.2.4 Mask quality

Hierarchical uncertainty masks can be applied to any treemap layout. However, the

layout has a large e�ect on the readability of the masks, as the mask of an interior

node is rendered on top of its descendants. Though aspect ratio is a prominent

measure for assessing treemap layouts, our masks are immediately derived from

such a layout and relative uncertainty can be derived from height only. Therefore,

we introduce a new measure for mask quality of a given layout to enable comparison

and optimization that more closely ties to the hierarchical nature of the masks.

Generally, we prefer the mask of a node to overlap few of its children to increase the

visibility of the individual child nodes. However, mask overlap cannot be avoided

due to the partitioning nature of treemaps.

When a child’s mask extends beyond its parent’s mask, it is more clearly visible as

no mask is rendered on top of it and thus the number of layers that a reader must see

through to assess the area is reduced. This has been shown to be bene�cial for the

separability of layered terrain-like surfaces [6]. Extending the mask also matches

the fact that relative uncertainty decreases higher in the hierarchy. Our metric hence

captures how much the parent’s mask extends beyond the mask of its children.

Node quality To capture this idea for a single node u, we de�ne its excess overlap
with respect to its parent or ancestor v. The excess overlap that v causes for u is

the part of the rectangle of u that is covered by the mask of v but not by the mask

of u itself: "(u, v) = (R�(u) ∩ R� (v)) ⧵ R� (u) (see Figure 3.5). Let S(u) be the set of the

relevant ancestors of u. We de�ne the excess overlap of u as EO(u) = ∑v∈S(u) |"(u, v)|.
We consider two options for the set S(u): either it contains all ancestors of u (option

A) or it contains only the parent of u (option P). Although option P is less complex

it may miss repeated excess overlap by many ancestors.

60

33.3 Algorithms for uncertainty treemaps

Figure 3.5 Examples of mask quality, with excess overlap indicated by the shaded
region. Properly nested: each lower-level mask (thinner lines) extends beyond the
higher-level masks (le�). The middle-level mask extends beyond the lowest-level
mask (middle). Each higher-level mask extends beyond the lower level masks (right).

Treemap quality We now derive a mask-quality measure for an entire layout

using excess overlap. There are multiple options for aggregating the values of in-

dividual nodes. The excess overlap measures the area of overlap, typically putting

more focus on large nodes. We can either choose to directly aggregate the area or

size (option S) of the excess overlap of individual nodes or to �rst normalize (option

N) the excess overlap of each node u by dividing EO(u) by �(u). Although option S

captures visually salient excess overlap, it could result in hiding that many smaller

nodes have excess overlap. If each node is equally important, regardless of area, then

option N is more adequate to capture the overall visibility of the masks.

The various options lead to four di�erent quality measures for an individual node

u which we denote by EOxy(u) where x ∈ {A, P} and y ∈ {S,N}. For example,

EOAS(u) indicates the excess overlap of u measured with respect to all ancestors (A)

of u using the size (S) of the overlap directly; EOPN(u) indicates the excess overlap

of u measured only with respect to the parent (P) of u normalized (N) by the area

�(u) of u. Typically, we drop the argument u when we talk about the quality measure

in general.

Using these measures we can compute mask quality for an entire layout by taking

the average or the maximum over all nodes in the hierarchy. In Section 3.4 we study

the correlation between these measures for rectangular treemaps. Note that these

quality measures can be directly applied to any type of treemap and mask shape.

▶ 3.3 Algorithms for uncertainty treemaps
There exist many di�erent treemapping algorithms for hierarchical data without

uncertainty as discussed in Chapter 2. Typically, they focus on optimizing the as-

61

3 3 Uncertainty Treemaps

pect ratio of the individual rectangles in the layout. When overlaying hierarchical

uncertainty masks, we should also consider mask quality (Section 3.2.4). However,

the primary data values need to remain legible and comparable and thus we can-

not focus solely on mask quality; indeed aspect ratio for the rectangles remains a

primary concern. The resulting problem is thus a bicriteria optimization problem:

we want to optimize the aspect ratios but additionally achieve high quality of the

uncertainty masks. We therefore adapt existing treemapping algorithms to take the

uncertainty masks into account. Treemapping algorithms often include choices that

do not in�uence the �nal aspect ratios of the resulting treemap. We aim to modify

such choices to improve the quality of the masks. We can distinguish two types of

mask-based modi�cations to the algorithms:

Mask-friendly: the algorithm uses the fact that the mask will be placed at the

bottom of a rectangle but does not consider the actual uncertainty values.

Mask-aware: the algorithm uses also the uncertainty to compute the layout.

The degree to which we can make a particular treemapping algorithm mask-friendly

or mask-aware depends on how many choices are arbitrary regarding the aspect ra-

tios and thus how much freedom the algorithm has. We illustrate our approach with

the algorithm that arguably has the most freedom: the Approximation algorithm.

Approximation The Approximation algorithm [91] works as follows. Consider a

node v with a given rectangle R�(v). Let c1, … cd denote the d children of v sorted in

decreasing order by value. Let k denote the smallest number such that ∑k
i=1 �(ci) ≥

1
3�(v). Let A = {c1, … , ck} and B = {ck+1, … , cd} denote the resulting partition. We

now split R�(v) into two rectangular containers of the correct size: one for A and

one for B. If the width of R�(v) exceeds its height, this split is horizontal: the two

containers are side-by-side, where A is assigned to the left container and B to the

right. Otherwise, the split is vertical: one container is above the other, with the

upper one being assigned to A and the lower to B. This strategy is then recursively

applied to the two containers, where we may now consider the container as a “virtual

node” with the assigned children. When the container has only a single child c it

de�nes R�(c) and we may continue the recursion on u if it is not a leaf. It can be

shown that, using this approach, all aspect ratios are bounded bymax{�(R�(v)), 3, 1+
max1≤i<d �(ci+1)/�(ci)} [91].

62

33.3 Algorithms for uncertainty treemaps

▶ 3.3.1 Mask-friendly algorithms
Mirroring a given treemap horizontally or vertically (or any of the rectangles of

interior nodes) does not a�ect the aspect ratios of the rectangles in the treemap.

However, it can a�ect the quality of the uncertainty mask. Some algorithms con-

struct their layout based on the order of the children of a given node by area/value,

typically placing the rectangles in a left-to-right and/or top-to-bottom pattern. Such

algorithms naturally place children with small area at the bottom. However, since

the uncertainty mask is drawn at the bottom of rectangles, the mask will typically

overlap with the smaller children resulting in a lower-quality mask.

We can avoid this problem by mirroring the construction vertically, placing large

children at the bottom and small children at the top. This simple approach can

be applied to many di�erent treemapping algorithms, making them mask-friendly.

As shown by our experiments (Section 3.4) the approach generally improves mask

quality.

We illustrate this approach explicitly for the Approximation algorithm. When the

original algorithm intends to make a vertical split, then the larger children (set A)

are placed above the smaller children (set B). We can easily mirror this approach by

placing B aboveA instead without a�ecting aspect ratio. For a horizontal split, we do

not need to change anything. The pseudocode for this mask-friendly version of the

Approximation algorithm can be found in Algorithm 3 and Algorithm 4. The only

change to the original algorithm is on line 7 of Algorithm 3 where “below” is used

instead of “above”. Given a tree T with root v and input rectangle R we compute a

layout by calling MFApproximation(C(v), R).

Algorithm 3 MFApproximation(U , R)

1: if d = 1 then
2: c ← the single node in U
3: MFApproximation(C(c), R�(c))
4: else
5: s, A, B ← ApproximationSplit(U , R)
6: if s = vertical then
7: RA, RB ← vertical split of R with RA below RB
8: else
9: RA, RB ← horizontal split of R with RA left of RB

10: MFApproximation(A, RA)
11: MFApproximation(B, RB)

63

3 3 Uncertainty Treemaps

Algorithm 4 ApproximationSplit(U , R)
1: Sort U = {c1, … , cd} by decreasing � value

2: k ← smallest value such that ∑k
i=1 �(ci) ≥

1
3 ∑

d
i=1 �(ci)

3: A, B ← {c1, … , ck}, {ck+1, … , cd}
4: if height of R is greater than its width then
5: return vertical, A, B
6: else
7: return horizontal, A, B

▶ 3.3.2 Mask-aware algorithms
The ability of mask-aware algorithms to use also the uncertainty opens up many

possibilities to optimize mask quality. It allows us to directly use one of the quality

measures for masks (Section 3.2.4) to guide the construction of the layout. However,

optimizing for mask quality is di�cult and likely cannot be computed e�ciently.

Nonetheless, we can use a mask-quality measure to make more informed heuristic

choices in the treemapping algorithm.

We illustrate this approach by adapting again the Approximation algorithm to make

a mask-aware variant: we explore the choices we can make in the algorithm further.

The main choice involves the partitioning of the children c1, … , cd (ordered decreas-

ingly by �) of a node v intoA and B. We recall that the aspect ratio of the �nal rectan-

gles in the treemap is bounded by max{�(R�(v)), 3, 1 + max1≤i<d �(ci+1)/�(ci)}. Thus,

as long as the same bound applies to the subsets of childrenA and B (in particular, the

ratios of consecutive values) and the aspect ratios of their container rectangles, the

resulting partition will satisfy the aspect-ratio bound regardless of the choice of A
and B. We call a split (that is, the setsA and B along with the splitting direction) valid
if it satis�es these properties. By allowing all valid splits we have more options to

optimize mask quality. To increase �exibility even further, we introduce a parameter

q ≥ 3, and relax the aspect ratio bound tomax{�(R�(v)), q, 1+max1≤i<d �(ci+1)/�(ci)}.

We now describe the modi�cations in more detail. The overall algorithm remains the

same, but we replace the splitting algorithm ApproximationSplit by MaskAware-

Split (Algorithm 5), which attempts to �nd a valid split that optimizes mask quality.

Choosing splits As horizontal splits always cause both container rectangles to

overlap the mask of v we prefer vertical splits over horizontal splits. With a vertical

split, the mask of v may overlap rectangles and masks in the bottom container.

However, if the bottom container is large enough, the mask of v will not overlap the

64

33.3 Algorithms for uncertainty treemaps

top container. Thus, we �rst attempt to �nd a valid vertical split and use a horizontal

split only if no valid vertical split exists.

Algorithm 5MaskAwareSplit(U , R)
1: Sort U = {c1, … , cd} by decreasing � value

2: k, k′ ← smallest and largest value such that {c1, … , ck}, {ck+1, … , cd} is a valid

vertical split

3: if k and k′ exist then {*a valid vertical split exists*}

4: A, B ← {c1, … , ck}, {ck+1, … , cd}
5: A′, B′ ← {ck′+1, … , cd}, {c1, … , ck′}
6: Improve estimate e (e′) for split A, B (A′, B′) by repeatedly moving the node

from B (B′) to A (A′) that most improves the estimate and maintains validity,

until no such element exists

7: if e ≤ e′ then
8: return vertical, A, B
9: else

10: return vertical, A′, B′

11: else
12: k ← smallest value such that {c1, … , ck}, {ck+1, … , cd} is a valid horizontal

split

13: A, B ← {c1, … , ck}, {ck+1, … , cd}
14: Reduce imbalance | ∑a∈A �(a)−∑b∈B �(b)| for split A, B by repeatedly moving

the node from B to A that most reduces the imbalance while maintaining

validity, until no such element exists

15: return horizontal, A, B

Vertical splits As before, let c1, … , ck be the children of a node v in decreasing

order on the � value. We initially consider a partition A = {c1, … , ck} and B =
{ck+1, … , cd}, such that A and B form a valid vertical split, and k is as small as

possible. If no valid split exists we use a horizontal split instead. A will be assigned

to the lower container and B to the upper container for a vertical split. Thus, we

want to achieve a high mask quality (measured as a low score in one of our measures)

for A in the lower container. Recursively computing the optimal mask quality for A
would be too expensive. Instead, we estimate mask quality using a simple layout for

A: all remaining splits in A are horizontal. This way we can e�ciently compute an

estimate for any mask-quality measure (e.g., EOPN) in A.

Having found a valid vertical split we then use a local search algorithm to further

65

3 3 Uncertainty Treemaps

improve the estimated mask quality in A. We repeatedly pick the node b ∈ B such

that: (1) moving b from B toA still results in a valid vertical split, and (2) the estimated

mask quality in A (after moving b to A) is improved the most. We repeat this step

until no further improvement is possible.

Finally, we also try the same approach with the order of the children reversed. That

is, we choose the largest k′ such that A′ = {ck′+1, ..., cd} and B′ = {c1, ..., ck′} is a

valid vertical split. That is, A′ contains the smaller children and B′ the larger chil-

dren. Note that this is di�erent from the mask-friendly strategy, placing smaller

children at the bottom. However, since the mask-aware algorithm uses the uncer-

tainty values explicitly and small children may have large uncertainty, this approach

can sometimes improve mask quality.

Horizontal splits If we apply a horizontal split, then the split into A and B does

not in�uence the mask-quality estimation directly. However, for both A and B it is

bene�cial for mask quality to put elements with large uncertainty at the bottom in

future vertical splits. Hence, we aim to make the total uncertainty in A and B as

equal as possible.

As above, we start with a partition A = {c1, … , ck} and B = {ck+1, … , cd}, such that

A and B form a valid horizontal split, and k is as small as possible. Next, we aim

to minimize | ∑a∈A �(a) − ∑b∈B �(b)|. We again try to minimize this di�erence via

a local search: we repeatedly move the node b ∈ B from B to A that reduces the

di�erence as much as possible while ensuring that the horizontal split remains valid.

Since A and B are essentially symmetric for horizontal splits, there is no need to

evaluate the reverse order of the children like we did for the vertical splits.

▶ 3.4 Experimental results

We use computational experiments to relate our quality measures (Section 3.4.1)

and investigate the e�ectiveness of mask-friendly and mask-aware algorithms (Sec-

tion 3.4.2 and 3.4.3, respectively).

General setup We consider the following six original algorithms in our experi-

ments: the Approximation algorithm (APP [91]; the Split algorithm (SPL) [37]; the

Squari�ed algorithm (SQR) [23]; the Strip algorithm (STR) [9]. SQR and STR are

also implemented with a look-ahead [9], denoted by SQRL and STRL, respectively.

We use the indicated abbreviations to refer to the original algorithm, and append -F
to indicate mask-friendly implementations.

66

33.4 Experimental results

For our parameter q (see Section 3.3) we indicate our mask-aware algorithm using

APP-qN and APP-qS depending on whether we base the estimate on EOPN or

EOPS. We set q to 3 or 5, thus resulting in four mask-aware algorithms.

We run each of these 16 algorithms on the four real-world datasets below, providing

a rectangle of width 1920 and height 1080 as the input rectangle. We measure the

excess overlap according to the schemes described in Section 3.2.4. We do not inves-

tigate the running time in detail as each algorithm is e�ectively instantaneous on

the datasets (less than 1 millisecond on a normal laptop). All datasets and algorithms

are available online [143].

Co�ee: mean amount of co�ee import per country from 1994 to 2014 with the

associated standard deviation [144].

Infant: mean number of infant deaths per country from 1992 to 2016 with the

associated standard deviation [159].

S&P: mean closing price per stock in the Standard & Poor’s 500 Index from 03-11-

2016 to 10-11-2016 with the associated standard deviation.

CES: mean expenditure per (consumer) household in 2014; standard deviation rep-

resents the measurement uncertainty [15].

▶ 3.4.1 Relating mask-quality metrics

We introduced four variants of our mask-quality measure, depending on whether

we measure excess overlap to the parent or all ancestors, and whether or not we

normalize to fractions or measure based on actual area. We investigate here how

di�erent these measures are in capturing aspects of quality. To this end, we measure

the correlation coe�cient (R
2

score for the linear regression) between each of the

two measures based on the quality of all dataset-algorithm pairs.

The choice between parent and all ancestors is highly correlated as shown in Fig-

ure 3.6 (left and middle). This high correlation implies that, at least on our datasets,

the choice is not distinctive. In other words, the overhead of considering all ances-

tors does not change the e�ective quality ranks or di�erences signi�cantly. Thus, we

consider only excess overlap measured with respect to the parent in the remainder

of this section.

The normalized variant and size variant (average EOPN and EOPS) are not as strongly

correlated. The correlation is around 0.39 and Figure 3.6 (right) shows clear outliers.

As such, we may consider these measures distinct. The size variant captures the

amount of screen space (roughly matching visual saliency) of excess overlap but

67

3 3 Uncertainty Treemaps

0

2.5

5

7.5

Av
er
ag
e
EO

PS
(x
10

4)

0 0.1 0.2 0.3
Average EOPN

R2 = 0.39

Av
er
ag
e
EO

A
S
(x
10

4)

0
0.2
0.4
0.6
0.8
1

Av
er
ag
e
EO

A
N

0 0.1 0.2 0.3
Average EOPN

R2 = 0.95

0
2.5
5

7.5
10

12.5

0 2.5 5 7.5
Average EOPS (x104)

R2 = 0.98

Figure 3.6 Average EOAS and EOPS (le�) and average EOAN and EOPN (middle)
show a clear correlation. Average EOPN and EOPS do not show a clear correlation
and thus capture mask quality di�erently.

may underestimate small nodes with low quality; the normalized variant treats all

nodes equally, independent of their size.

▶ 3.4.2 E�ect of mask-friendly algorithms
We implemented six algorithms, both in the original and in a mask-friendly manner

(see Section 3.3.1). By design, mask-friendly implementations keep the same quality

in terms of aspect ratio but may have a considerable impact on mask quality, essen-

tially without cost. Here, we investigate this impact: we consider the average and

maximum excess overlap of the nodes in the layout averaged over all datasets, and

measured for both the original algorithms as well as the mask-friendly implementa-

tions. Figure 3.7 shows the results. Both in terms of average and maximum excess

overlap, we see considerable improvement for most algorithms, but speci�cally for

Max Mean EOPN Average Mean EOPN
0

APP
STRL
STR

SQRL

SPL
SQR

APP
STRL
STR

SQRL

SPL
SQR

00.5 1 0.1 0.2

Friendly Original

Figure 3.7 Improvement in mask quality for mask-friendly algorithms compared
to original implementations, based on maximum (le�) and average (right) excess
overlap. Mean is taken over all datasets.

68

33.4 Experimental results

APP and SPL. The notable exception is STRL, which is almost una�ected. For the

EOPS metric, similar yet slightly stronger improvements are made.

Even though excess overlap is reduced using a mask-friendly approach, there is still

ample room for improvement. Consider the Uncertainty Treemap of APP-F on the

Infant dataset shown in Figure 3.8 (right-top). Though most nodes have little to no

excess overlap, nodes in the bottom-most row after recursion do have excess overlap

from their ancestors reducing their mask visibility.

Figure 3.8 Layouts of the Infant dataset computed by APP (le�-top), APP-F (right-
top) and APP-3N (bo�om). The number of nodes with excess overlap, and the
general amount of excess overlap decreases considerably with each improvement.

69

3 3 Uncertainty Treemaps

Average Mean �(R�(u)) Average Max �(R�(u))
APP

APP-3S

APP-3N
APP-5S

APP-5N
SPL
SQR

SQRL
STR

STRL
0 2 4 6 1 100 10000

62

13

APP
APP-3S

APP-3N
APP-5S

APP-5N
SPL
SQR

SQRL
STR

STRL

Figure 3.9 Mean and maximum aspect ratio of all leaves in the layout, averaged
over the datasets, for original and mask-aware algorithms. By their nature, original
and mask-friendly algorithms achieve the same aspect ratio. Note the log-scale for
the maximum.

▶ 3.4.3 E�ect of mask-aware algorithms

We now consider our mask-aware algorithms, APP-**. The primary motivation

for mask-awareness is to further improve mask quality by reducing excess overlap.

Here, we investigate whether we can indeed observe such improvements compared

to mask-friendly implementations, and which mask-aware variant performs best.

Aspect ratio Unlike mask-friendly algorithms, mask-aware algorithms may struc-

turally change the layout such that the aspect ratios change. Hence, we �rst consider

the e�ect of our modi�cations upon the aspect ratio of the rectangles.

Figure 3.9 shows the aspect ratio achieved by the algorithms. Compared to other

algorithms, APP variants achieve considerably better ratio both in terms of the mean

and the maximum. As we also concluded that APP-F achieves the best mask quality,

we focus now exclusively on the mask-friendly and mask-aware variants of APP.

Between these APP variants we see comparatively little di�erence, but this also de-

pends on the dataset. Co�ee and CES datasets see a slight improvement in mean

aspect ratio with mask-aware algorithms, but for the Infant and S&P datasets it de-

creases slightly. The resulting average remains approximately the same. In contrast,

the maximum aspect ratio decreases drastically for CES and Co�ee although there

is also a slight increase for Infant and S&P.

70

33.4 Experimental results

Average EOPN
0 0.005 0.01 0.015

0

0.1

0.2

0.3

M
ax

EO
PN 0.4

0.5

0.6

APP-5S

APP-3S

APP-5N

APP-3N

APP-F
Co�ee

Infant

S&P

Ces

Figure 3.10 Sca�erplots of mean and maximum normalized excess overlap
(EOPN) for each APP variant and dataset combination.

We conclude that our mask-aware algorithms do not negatively a�ect aspect ratio

and hence also maintain a high quality for visualizing �. Thus, we may judge the

quality of our algorithms based on mask quality, as performance in aspect ratio is

similar.

Mask quality We now consider the e�ect on mask quality as measured by excess

overlap. Figure 3.10 shows the mean and maximum EOPN measure for each APP

variant. We observe that the datasets cluster clearly within the chart indicating a

strong e�ect of the dataset itself. We may attribute this to the measure not being

normalized, yet such normalization is di�cult to achieve reasonably: the actual

maximum achievable depends not only on the number of nodes, but also on hierarchy

depth and structure as well as the (relative and absolute) uncertainty values.

Not surprisingly, the APP-*N variants generally outperform the APP-*S variants, as

we measure normalized excess overlap and also use this to heuristically guide the

layout algorithm. APP-3N performs best on all datasets except for S&P on which

APP-5S performs best, very closely followed by APP-5N. The di�erences are most

clearly observed for the Infant and S&P datasets, but also marginally present in the

others.

Let us now brie�y consider the e�ect of our parameter q. Conceptually, increasing

its value gives us more slack and thus room to improve mask quality. However, we

observe that this parameter does not quite achieve that e�ect in practice: APP-3*

versions quite consistently outperform APP-5* versions in mask quality (again, for

71

3 3 Uncertainty Treemaps

APP-5S

APP-3S

APP-5N

APP-3N

APP-F
Co�ee

Infant

Ces

S&P

Average EOPS

M
ax

EO
PS

1 2 4 8 16 32 64 128 256 512 1024
1
2
4

1024
2048

4096
8182

16384
32768
65536

Figure 3.11 Sca�erplots of mean and maximum normalized excess overlap (EOPS)
for each APP variant and dataset combination.

the S&P dataset). This can likely be attributed to the extra slack admitting a di�erent

split high in the hierarchy, when the estimate is likely further o� from the excess

overlap that is eventually achieved.

Area-based quality We now brie�y consider EOPS as it is not strongly correlated

to EOPN. Figure 3.11 shows the mean and maximum EOPS for each APP variant.

Our �rst observation is that for the Co�ee dataset, APP-F performs best. This seems

to be caused by an unfortunate split in the mask-aware algorithms at the root level.

In contrast, for the other datasets APP-F performs considerably worse by a factor 17

for Infant and factor of around 1.17 for CES and 1.34 for S&P. Surprisingly, APP-*S is

quite consistently outperformed by APP-*N even though the latter uses an estimate

not matching the measure we consider here. This is due to the more severe changes

made at the higher levels by APP-*S which turn out later to be detrimental to the

overall quality.

Conclusion We recommend APP-3N as the best algorithm to compute Uncer-

tainty Treemaps: it generally provides the best or otherwise competitive perfor-

mance in terms of aspect ratio and mask quality (both normalized and area-based)

and demonstrates more consistent performance between datasets.

72

33.5 Discussion

Figure 3.12 Options for mask placement: (top) bo�om rectangle, (middle) inner
rectangle, and (bo�om) passe-partout. Each row shows nodes with di�erent aspect
ratios and 25% relative uncertainty.

▶ 3.5 Discussion
We now discuss our visualization approach and potential alternatives. In particular,

we consider alternatives for mask shape, placement, and rendering which easily

combine with our layout algorithms. We also discuss e�ects of high uncertainty and

unbalanced hierarchies.

▶ 3.5.1 Mask shape and placement

A mask is a generic representation of uncertainty using the area covered by it. This

still leaves a big design space for precise shape and placement. We recommend

placing rectangular masks at the bottom and along the full width of a node. All

examples so far used this approach, as it simpli�es relative uncertainty assessment.

However, other variants are possible, for example, placing the mask at the center, or

as four rectangles along the boundary. We denote the latter type as passe-partout,
because it resembles this matting construction from picture framing. Figure 3.12

illustrates our recommended bottom rectangle placement and the two alternatives.

The three placement variants have di�erent characteristics. The inner-rectangle

placement has the advantage that it is symmetric within the node. However, it has

several shortcomings. First, because the inner part is not visually connected to the

node we expect that it is harder to relate the mask to its containing rectangle if many

nodes overlap. Second, the visual encoding of uncertainty now fully relies on the

accuracy of area perception. Unfortunately, the human visual system is not ideal for

73

3 3 Uncertainty Treemaps

area estimation. Steven’s original power law already indicated a nonlinear mapping

between physical area in the stimulus and perceived sensation [127, 128]. Later work

discusses other aspects of area perception [76, 134]. In essence, area encoding is not

the best option for a reliable visual representation.

Length perception is more accurate following Cleveland and McGill [30] or Mackin-

lay [80]. With bottom-rectangle placement, a reader can use length perception to

estimate relative uncertainty. Comparisons between nodes with identical height

(horizontally adjacent) can use height directly to accurately compare relative un-

certainty; similarly, height can be used directly to compare absolute uncertainty

between nodes with identical width (vertically adjacent). Inner-rectangle and passe-

partout placements cannot directly rely on length perception for estimating relative

uncertainty. Deciding which node has higher relative uncertainty is possible using

length perception if the width or height of the nodes is the same. But the lengths

to be compared are more separated (especially for inner-rectangle) compared to

bottom-rectangle placement.

Finally, aspect ratios of the masked areas tend to already be low in bottom-rectangle

placement. This is exacerbated in the passe-partout placement. As extreme aspect

ratios hinder comparing area [70], this is undesirable.

Therefore, for robust uncertainty visualization that supports relative as well as abso-

lute uncertainty assessment we recommend bottom-rectangle placement. However,

the passe-partout placement might be preferable if a more symmetric visualization

is required, for example, to compare along the horizontal and vertical axes of the

treemap, or to implicitly emphasize the nesting hierarchy by the uncertainty borders.

Figure 3.13 shows a passe-partout rendering of the Co�ee dataset, to be compared

with Figure 3.1.

Completely di�erent shapes might also be used such as piece-wise linear or even

curved mask boundaries. The mask might also be split into disjoint regions. With

this �exibility other optimization cost functions could be explored. However, such

shapes di�er signi�cantly from the general look of rectangular treemaps and we

thus expect that this does not result in a harmonious whole.

▶ 3.5.2 Mask rendering

Besides mask layout, its rendering is critical for an appropriate visualization and

should be matched to hierarchy level for visibility. We chose slanted hatching; below,

we discuss two other options.

74

33.5 Discussion

Figure 3.13 Co�ee dataset using APP layout with passe-partout mask.

Bar hatching We could use vertical bars in an otherwise identical design. How-

ever, such vertical bars are less visually separable from the treemap partitioning

itself due to the use of the same angles. Also, we expect bars to give the impression

that the uncertainty value is encoded as height instead of area.

Checkerboard This design uses a checkerboard pattern of opaque and (fully)

transparent squares. The size of the squares doubles with every level of the hierarchy

ensuring that the next-level mask can �t a 2 × 2 pattern with a transparent square.

Thus, lower-level masks always remain partially visible. The drawback of this design

is that it occludes a signi�cant portion of the lower-level masks, as it is also aligned

with the treemap partitioning. Moreover, the visual complexity of the pattern is

high, possibly distracting from the actual data.

All three variants follow general design recommendations for uncertainty visual-

ization: they implicitly modify the perceived luminance and saturation in the mask

areas; these two visual channels are suitable to show uncertainty as discussed by

Guo et al. [53] or MacEachren et al. [79] for example. Our techniques also resemble

screen-door transparency for uncertainty visualization [108]. Sketchiness would

have been a di�erent kind of visual mapping, but as Boukhelifa et al. [19] point out,

might lead to an unprofessional look.

75

3 3 Uncertainty Treemaps

Figure 3.14 Mask rendering: hatched (le�), bar (middle), and checkerboards
(right). All show the same three-level hierarchy in a single node.

Figure 3.14 compares our choice and the two alternatives. It suggests that (diagonal)

hatching yields a good mask rendering, especially for several layers of overlay. Fu-

ture work may include a formal evaluation of these and other rendering options in

terms of e�ectiveness for conveying uncertainty in treemaps.

▶ 3.5.3 Uncertainty and hierarchy
Uncertainty models We generally assume that uncertainty is de�ned at the leaves

as a standard deviation and that the underlying distributions are independent. We

use this in establishing our datasets, but our techniques (masks, mask quality, algo-

rithms) are otherwise agnostic to the source and relations between uncertainty. Of

course, using di�erent models of uncertainty may in�uence the performance of the

various improvements.

For example, each node may be characterized by an interval of potential values.

We could use the upper bound as � and the interval size as � . The aggregation of

values through the hierarchy has to be done using interval arithmetic. Though the

aggregation method changes, no changes to the techniques are necessary.

High uncertainty Our method is designed for scenarios where �(v) ≤ �(v) for

any node v. As treemaps are used for non-negative data, this seems a reasonable

condition but may not always be met for all nodes. In rare cases, we observe that the

uncertainty is larger than the data value. In such cases, the mask covers the full node,

though that does not quite accurately capture the actual uncertainty. It does strongly

signal nodes with (very) high uncertainty that warrant further investigation, and as

such may be su�cient.

To show such high uncertainty more precisely, we may re-mask the node. That is, we

show the hatched mask over the entire node, and then appropriate apply a second

mask with area �(v) − �(v) using a hatched pattern using diagonals in the other

76

33.5 Discussion

Figure 3.15 Two di�erent masking strategies for an unbalanced hierarchy (le�):
height-based (middle) and depth-based (right). Note the di�erent rendering of the
mask in the rightmost leaf.

direction. This e�ectively creates a cross-hatching where the cross-hatched area of

the mask counts twice toward visualizing the uncertainty. This allows visualizing

uncertainty up to twice the data value of a node.

Generally, we could allow k orientations of hatching to communicate uncertainty

up to k times the data value. However, such patterns would likely obscure too much

of the node itself making it more di�cult to assess its data value and compare it to

other nodes. Hence, we do not apply such generalized cross-hatching.

Unbalanced hierarchies Thus far we have shown only hierarchies in which the

leaves have the same depth. All our real-world datasets indeed have this property.

However, more generally, some leaves may have more ancestors than others. We can

readily apply our algorithms and masks, but it raises one question: which pattern

do we choose for the uncertainty mask? Speci�cally, do we use the depth or height
of a node in the hierarchy? See also Figure 3.15.

Using depth, going down one level in the hierarchy results in the same mask level.

Thus, children of the same parent (or nodes on the same level) have the same mask

detail. However, leaves do not necessarily use the most �ne-grained mask, possibly

de-emphasizing them as leaves. Using height, each leaf has the most �ne-grained

mask. However, a node with children of di�erent height then uses a mask detail

that may be coarser by multiple steps compared to some of its children. The bene�ts

and drawbacks of these variants warrant further consideration in future research.

We expect that height-based masks are more e�cacious, as they mark leaves more

clearly: starting at a coarser mask may incorrectly suggest that the mask is part of

a higher-level node and that the leaf has no uncertainty.

77

3 3 Uncertainty Treemaps

▶ 3.6 Conclusion and future work
We introduced a technique for the coherent visualization of uncertain hierarchical

data. To ensure coherence, we visualized both the uncertainty and the data value

using area while maintaining the strict recursive partitioning nature of treemaps. To

do so, we designed hierarchical uncertainty masks and applied them to rectangular

treemaps. A brief expert review suggests that this technique is practically usable. We

modi�ed existing rectangular treemapping algorithms, and experimentally showed

that these algorithms achieve high quality in terms of both aspect ratio and mask

quality.

We also discussed various alternatives that uncover potential challenges and direc-

tions for future work. This includes di�erent mask designs, case studies, and user

studies. Another venue for future research is a level-of-detail rendering to make

Uncertainty Treemaps scalable for very large datasets—in terms of number of data

points (nodes) and the depth of the hierarchy—for example through data-driven

pruning of the hierarchy and adaptive mask rendering. Our technique, with its gen-

eral concepts and metrics, provides a framework upon which such future research

can be built.

78

4Chapter 4

ASimple Pipeline forGridMaps

Input Decomposition Grid MapMosaic Cartogram

58

57
4

118

73

15

9
4

1
1

1 1 1

3

1
5644

4
11
7

Figure 4.1 A 3-step pipeline to automatically compute a grid map, illustrated
on the Dutch municipalities: (1) decompose the containing shape into parts; (2)
compute a tile-based Mosaic Cartogram using these parts; (3) assign elements to
tiles per part.

A grid map is an established and e�ective spatial schematization technique. Each

spatial element in a grid map, such as a region or a site, is schematized into the

same simple tile – often a square, hexagon, or other geometry that easily tiles the

Euclidean plane. These tiles are then arranged in such a way as to re�ect important

characteristics of the spatial dimension often using whitespace to capture salient lo-

cal features. Grid maps are used to visualize geospatial data by popular news outlets

[11, 16, 26, 34, 92, 95, 96, 138], discussed by mapping enthusiasts and professionals

[43, 100–105, 110, 154], and applied in the academic literature [52, 119, 122, 155, 157].

The tiles of a grid map allow for visualizing data in a small-multiples style as popu-

larized by Tufte [140]. Small-multiples are data-dense visualizations that juxtapose

frames in a grid structure. Each frame displays the same visualization for di�erent

subsets of the data, for example, according to time steps or based on values in a

categorical dimension. In a grid map, the spatial dimension determines both the

subsets of the data as well as the arrangement of the juxtaposed frames. Guo et
al. [52] present an intermediate variant, where space is linearized and used as one

axis of a traditional small-multiples grid arrangement.

79

4

4 A Simple Pipeline for Grid Maps

While small-multiples displays typically �ll the available graphical space and arrange

the frames according to their inherent order (time, data values, etc.), the spatial case

presented by grid maps is inherently di�erent. Viewers typically have a mental map

of the geographic area and thus aspects such as recognizability and the ability to

locate spatial elements based on expected location play a role. An e�ective grid

map is coherent with the underlying geographic space: the tiles maintain properties

such as contiguity, neighborhoods, and identi�ability of the corresponding spatial

elements while the grid map as a whole maintains the global shape of the input. Of

particular importance are salient local features of the global shape which need to be

represented by tiles assigned to the appropriate spatial elements.

Contributions and organization In Section 4.1 we review related work and dis-

cuss the various facets of coherence in grid maps. As with any spatial deformation,

perfectly coherent grid maps are generally impossible and one must make a trade-o�

between the facets. Computing a coherent grid map is hence a challenging multi-

criteria optimization problem. However, the state-of-the-art shows that simple cases

such as close-to-uniform spatial distributions or global shapes with few characteris-

tic features can be solved well using simple tile selection and assignment techniques

(as long as su�cient care is taken to guarantee that connected input stays connected

in the grid map). Our major contribution is the observation that any input can be

decomposed into simple cases and that coherent solutions for the resulting simple

subproblems can be combined into a coherent solution for the whole.

Based on this observation, we introduce a simple fully-automated pipeline to com-

pute coherent grid maps in three steps; see Section 4.2. Each step is a well-studied

problem: shape decomposition based on salient features (Section 4.3), tile-based Mo-

saic Cartograms (Section 4.4), and point-set matching (Section 4.5). Our pipeline is a

seamless composition of existing techniques for these problems; we implement it in

an open-source prototype [50]. In Section 4.6 we showcase the resulting high-quality

grid maps, demonstrate the e�cacy of our approach on various complex datasets,

and compare it to the state-of-the-art.

▶ 4.1 Problem exploration
Computing grid maps has two main components: ways to capture the various facets

of coherence and algorithms to compute the actual grid maps. After exploring co-

herence in Section 4.1.1, we discuss algorithms in Section 4.1.2 by reviewing existing

techniques and variations. But �rst we de�ne the terminology for this chapter.

80

4

4.1 Problem exploration

Preliminaries Our input consists of a set of spatial elements. These spatial ele-

ments can be either sites – speci�c point locations where data was obtained – or

regions – typically, administrative boundaries such as countries or municipalities. In

either case, we assume these to be contained in a containing shape. For sites, this is

provided explicitly, as the (administrative) geographic shape that contains all sites.

For regions, we typically assume that the regions partition the containing shape and

thus it can be easily derived from the geometry of the regions. Typically, spatial ele-

ments are related through a topology, indicating pairs of adjacent spatial elements:

elements that are connected or neighbors. For sites, these can be supplied explicitly

(e.g., road connectivity between cities) or derived implicitly from their locations.

For regions, the topology is implicitly represented through the shared boundaries

of the geometry. We emphasize that our pipeline does not require a topology to be

speci�ed or derived, and a consideration of how such topologies can be derived is

beyond the scope of this chapter; we thus implicitly assume that a topology exists

in the remainder of this chapter.

We assume that a tile is a simple geometric shape that tiles the Euclidean plane.

Typical shapes are squares or hexagons. A tile arrangement is a composition of a

number of these tiles following the tiling of the plane; a tile arrangement selects a

number of tiles from the in�nite tiling. A grid map is a tile arrangement combined

with an assignment: a one-to-one mapping between tiles and spatial elements.

▶ 4.1.1 Facets of coherence

There are myriad facets to coherence and these can be formalized in di�erent ways;

see e.g. the work by Meulemans et al. [86] for an extensive exposition. For the

purpose of this chapter we categorize facets into local facets and global facets. The

former represent facets of coherence with respect to individual spatial elements and

their placement within a grid map; the latter capture facets of coherence with respect

to groups of spatial elements and even aspects of the tile arrangement with respect

to the containing shape. Based on existing work [39, 83, 86, 154], we identify the

following facets (see Figure 4.2).

Local distance [86]: the distances between spatial elements should correlate to

distances between their tiles. Displacement [39, 83, 86] is often used as proxy:

the distance between a spatial element and its tile should be low. For example,

in an overlay of Europe with a corresponding grid map, the distance between

(the centroids of) each country and its representing tile should be small.

Local adjacency [39, 83, 86, 154]: spatial elements that are adjacent in the topol-

81

4

4 A Simple Pipeline for Grid Maps
In
pu

t
G
oo

d
Po

or

Distance Adjacency Direction(Displacement) L. Shape G. Shape Contiguity

Figure 4.2 Facets of coherence for grid maps. Displacement is not a facet in itself,
but o�en used as proxy for distance and other facets.

ogy should be assigned to adjacent tiles in the grid map, and vice versa. For

example, as Germany borders Denmark but not Italy, the tile for Germany

should be adjacent to Denmark’s tile but not to Italy’s tile in a grid map of

Europe.

Local direction [39, 83, 86, 154]: compass directions between spatial elements should

match the directions between their tiles. For example, as the United Kingdom

is north of Spain, the UK’s tile should be above Spain’s tile. Note that this is

a local facet as it considers individual tiles even though the spatial elements

and their tiles need not be close in terms of distance. The global position [83]

(referred to as location in [39]) of an element in the map can be seen as a

variant of local direction.

Local shape: tiles on identi�able positions in the tile arrangement should be as-

signed to spatial elements that belong to that identi�able part in the contain-

ing shape. For example, Portugal should be the left-bottom most tile in a grid

map of Europe; Florida should be the right-bottom most tile in a grid map

of the US states. This facet is not explicitly mentioned in current work, but

could be seen as a new interpretation combining the concepts of global posi-

tion [39, 83] with (global) shape. It is somewhat implicit in the “locate” task

[39], though here the consideration of (nearly) full matrices avoids the need

for shape in this facet.

Global distance, adjacency & direction: the containing shape may have di�er-

ent identi�able parts due to recognizable features or a known subdivision of

the containing shape. For example, Germany may be subdivided into its Bun-

82

4

4.1 Problem exploration

desländer (states) for a grid map of its states. The principles of local distance,

adjacency, and direction can be applied to these global parts. As generaliza-

tions of local variants, these are typically not explicitly mentioned in literature.

Global shape [83, 86, 154]: the overall appearance of the tile arrangement should

resemble the containing shape. For example, a grid map of the Dutch munic-

ipalities should look like the Netherlands. Note that this facet is agnostic to

the assignment of spatial elements to tiles.

Contiguity: this global facet captures topology on a coarser level. Speci�cally, con-

tiguous parts of the containing shape should be represented by a contiguous

set of tiles in the arrangement, and all and only spatial elements within the

contiguous part should be assigned to this set of tiles. Note that contiguity

does not require a topology to be given as it relies on the containing shape.

For example, in a grid map of the US states, tiles for Alaska and Hawaii should

not touch any other tiles; the tiles for the remaining contiguous states form

one contiguous shape in the grid map. This criteria seems to be implicit in the

considerations of Meulemans et al. [86] when discussing global shape. Various

facets can be captured through adequate measures, see [39, 83, 86, 154]. How-

ever, global and local shape are particularly di�cult to capture while these

facets are crucial to solving complex cases; see also our discussion Section 4.6.

Observe that satisfying all of the above facets is generally impossible. For example,

not all adjacencies can be represented, distances will need to distort, and there may

simply not be enough tiles to show all characteristic features well. Moreover, some

facets readily con�ict. For example, contiguity generally con�icts with direction

and adjacency, adjacency in turn can con�ict with direction, and shape (either local

of global) can con�ict with distance. Generally, we aim to optimize a trade-o� be-

tween these facets. We consider contiguity to be a hard constraint, one that must be

satis�ed, as visual discontiguities are salient features useful to identify e.g. islands.

Unnecessary discontiguity thus has a high negative impact on local shape.

▶ 4.1.2 Algorithms

The algorithmic problems arising from computing grid maps have been studied in

various forms. Many speci�c formulations are computationally hard: for exam-

ple, optimizing for even a simple version of local topology is NP-hard [21], and

optimizing global shape under contiguity constraints is NP-hard as well, even to

approximate [20, 75]. Minimizing local directions with a given grid of tiles can be

approximated [39], but its computational complexity is open.

83

4

4 A Simple Pipeline for Grid Maps

(d) (e)(a) (b) (c)

IJsselmeer
Crossing
elements

Shifting
elements

Figure 4.3 (a) Dutch municipalities. (b) Tile arrangement which minimizes dis-
placement is discontiguous. (c) Tile arrangement with good global shape, followed
by displacement minimization. Note the municipalities crossing the characteristic
gap in the center (the IJsselmeer) from west to east. (d) Tile arrangement optimized
for displacement under the geodesic distance. Now the municipalities from the
west shi� around the IJsselmeer. (e) Our pipeline: mild deformation in the west to
accommodate its municipalities while maintaining the characteristic global shape.

Simple cases If the tile arrangement for a grid map is a complete grid – the classic

small-multiples setting – and the input has a close-to-uniform spatial distribution

(for example, the majority of the départements of France have roughly the same area),

then computing a grid map readily reduces to a one-to-one point-set matching (of

the region centroids to the grid) [39]. Given an alignment which projects the input

map onto the grid map, minimizing the displacement of tiles measured by the sum

of Manhattan (L1) or Euclidean distances can be solved e�ciently [146]. Computing

an optimal alignment in terms of translation or scaling is possible, though at signif-

icant computational cost [39]. The sum of squared Euclidean distances (L22) can be

minimized e�ciently as well including a simple optimal alignment in terms of trans-

lation [31]. The experiments by Eppstein et al. [39] show that optimizing L22 also

results in good local directions and adjacencies for a complete grid. This approach

works well for other simple cases, for example, roughly convex containing shapes,

such as the boroughs of London. These �ndings are corroborated by Meulemans et
al. [86]: if the density of the regions is uniform, or the containing shape is mostly

convex, or a mostly convex set of tiles is preselected, then aligning and minimizing

displacement under L22 yields coherent grid maps.

Complex cases The situation is signi�cantly more di�cult when the containing

shape has salient characteristic features, such as the IJsselmeer in the Netherlands

(see Figure 4.3(a) – the large body of water in the middle), the Florida pan handle,

84

4

4.1 Problem exploration

rank

0

11

22

33

44

56

67

78

89

100
area

1

46

91

135

180

225

270

314

359

403
rank

1

73

145

218

290

362

434

507

579

650
area

0

11

22

33

44

56

67

78

89

100

Figure 4.4 Strongly varying region sizes in the Dutch municipalities (le�) and UK
constituencies (right). Regions are colored according to nine bins of equal quan-
tiles (rank,le�) or of equal area, indicated as a percentage of the largest region
(area,right).

or the west coast of the UK. A coherent grid map for such cases should use a tile

arrangement that captures the global shape well. A priori, it is not clear how such a

tile arrangement should be chosen from the in�nite tiling. One could consider select-

ing the tiles that result in the assignment with the least displacement. Unfortunately,

this approach generally leads to discontiguous tile arrangements: see Figure 4.3(b).

Meulemans et al. [86] show how to compute tile arrangements which make good

use of whitespace (unselected tiles) and exhibit good global shape. However, if the

region distribution is not uniform, then the subsequent tile assignment minimizing

displacement under L22 results in severe violations of local shape, see Figure 4.3(c):

municipalities from the dense west of the Netherlands travel across the IJsselmeer

(municipality sizes as a proxy for density are shown in Figure 4.4(left). Using a more

topology aware distance measure such as the geodesic distance does not alleviate

the problem: see Figure 4.3(d): municipalities now shift around the IJsselmeer.

The major challenge to resolve is the combination of varying density of spatial

elements with characteristic features of the containing shape. Note that this combi-

nation is certainly not unique to the Netherlands and is also present e.g. in the UK

constituencies: see Figure 4.4(right) for a density overview.

McNeill and Hale [83] To the best of our knowledge, McNeill and Hale [83]

present the only automated method that aims to explicitly address the problem of

varying densities of spatial elements. Their method translates the spatial elements

(regions only) and their topology into a graph. To obtain uniform distances between

85

4

4 A Simple Pipeline for Grid Maps

Gribsko Helsing

Hillerø Fredens Hørshol

Halsnæs Allerød Furesø Rudersd Lyngby-

Frederi Høje Ta Egedal Balleru Herlev Gladsax Gentoft

Kalundb Odsherr Lejre Roskild Alberts Vallens Glostru Rødovre Københa

Holbæk Ringste Solrød Ishøj Hvidovr Frederi

Slagels Sorø Faxe Køge Greve Brøndby

Næstved Stevns

Vording

Bornhol

Tårnby

Dragør

Rebild Aalborg

Lemvig Skive Vesthim Mariage Randers

Struer Holsteb Viborg Favrsko Syddjur Norddju

Herning Ikast-B Silkebo Skander Århus

Ringkøb Billund Hedenst Horsens Odder

Varde Vejen Vejle Frederi

Esbjerg Kolding

Tønder Hadersl

Aabenra

Samsø

Hjørrin Frederi

Jammerb Brønder

Thisted

Læsø

Morsø

Guldbor

Lolland

Ærø

Middelf Nordfyn Kertemi

Assens Odense Nyborg

Faaborg Svendbo

Fanø

Langela

Sønderb

Brønderslev

Frederikshavn
Hjørring

Jammerbugt

Morsø

Thisted

Figure 4.5 Output of [83]: the municipalities of Denmark, the 5 brown contiguous
regions in the north are mapped to discontiguous tiles.1

neighbors they employ an approach that uses a form of spring-embedder: vertices

are attached by springs to both their neighbors in the graph and to the centroids

of their corresponding regions. The containing shape is deformed along with the

vertices; the authors �nd a scale factor such that the deformed shape contains exactly

the right number of tiles. Finally, the regions are assigned to tiles using a point-set

matching algorithm to minimizes displacement under L22.

There are two major drawbacks of their method. (1) The tile arrangement is not

necessarily contiguous, even if the input is contiguous. When scaling the deformed

shape, the authors ensure only that it contains the correct number of tiles, but not

that these tiles are actually connected. See, for example, the �ve brown regions in

Figure 4.5 (from an online implementation
1

by McNeill). (2) Characteristic features

of the containing shape are eroded if parts need to grow or shrink considerably

due to varying density thereby reducing global and local shape. See, for example,

Figure 4.6 (Figure 6 from [83]) which shows the local authorities in the UK: Scotland

has been eroded and Wales lost most of its characteristic coast line. In comparison,

our pipeline (see Figure 4.7) preserves global and local shape.

McNeill and Hale focus on achieving a uniform distribution – a “simple case” – but

they do so for the complete containing shape at once and hence lose control (to some

degree) over contiguity and shape. In contrast, our pipeline uses decomposition into

simple containing shapes to arrive at simple cases which o�ers us more control over

global and local shape and allows us to guarantee contiguity.

1https://observablehq.com/@gjmcn/make-a-tile-map, 28.04.2020

86

4

4.1 Problem exploration

ADJ
DIRA
DIRN

63%
97%
92%

Figure 4.6 UK local authorities. Le�+Middle: Figure 6 from [83]. Right: Repro-
duced and colored by authority locations. Scotland is eroded.

19

16

56

81

16815

18

Scotland

Wales

ADJ
DIRA

61%
96%

DIRN 90%

Figure 4.7 Hexagonal grid map of the UK local authorities using our pipeline:
global and local shape are maintained.

87

4

4 A Simple Pipeline for Grid Maps

Cartograms In some sense a grid map is a cartogram where every spatial element

(region) has unit weight. There are many cartogram techniques which focus on opti-

mizing e.g. adjacencies, aspect ratio, and cartographic error (di�erence between the

target size of a region and the actual size in the output). However, most cartograms

are neither aligned on a grid nor able to produce the desired tile shape. One could

of course consider to rasterize the output of the density-equalizing cartogram algo-

rithms proposed by Gastner and Newman [44] and by Gastner et al. [45]. However,

it will generally be impossible to guarantee contiguity, as smaller regions tend to

become rather elongated
2
. Spatially Ordered Treemaps [156] combine ideas of tree

maps and cartograms to show hierarchical data; also non-space-�lling variants exist

[120]. However, such tree maps do not align with tiles on a grid.

One type of cartogram, however, is in principle well suited for the computation of

grid maps: the Mosaic Cartograms by Cano et al. [25] represent regions with multi-

ple tiles where the number of tiles corresponds to (integer) data values associated

with each region. As such, Mosaic Cartograms cannot directly be used to compute

coherent grid maps, but they are an integral part of our pipeline.

Semi-automatic Wongsuphasawat [153] describes a semi-automatic pipeline to

create grid maps. The �rst step computes a coarse, discontiguous grid map using

overlap removal and grid snapping. The result has signi�cant discontiguities which

are then patched in a second step by manually shifting parts of the arrangement

until the result is contiguous and has a suitable global shape.

▶ 4.2 A 3-step pipeline for coherent grid maps
Our discussion in the previous section points directly towards a natural pipeline

to compute coherent grid maps: decompose the problem into one or more simple

cases and then apply point-set matching. The simple case our pipeline achieves

is arguably the simplest – that of convex containing shapes: we decompose the

containing shape into relatively simple, mostly convex parts. Then we compute a

Mosaic Cartogram [25] based on the parts and the number of spatial elements in

each part. The Mosaic Cartogram grows or shrinks each part accordingly while

ensuring contiguity and maintaining shape: the tile arrangement per part is thus

mostly convex as well. Point-set matching for the tile arrangement of each part

completes the pipeline. Concretely, we use the following three steps, each of which

is discussed in detail in the subsequent sections (see also Figure 4.1).

2
See https//www.worldmapper.org, accessed April 2020.

88

https//www.worldmapper.org

4

4.3 Decompose shape based on salient features

Step 1 – Decompose into parts: we decompose the containing shape based on

salient features into simple, mostly convex parts and note how many and

which spatial elements each part contains.

Step 2 – Arrange tiles: we compute a Mosaic Cartogram, based on the parts, using

the number of spatial elements as weight. The Mosaic Cartogram by design

maintains shape, adjacencies, directions, and also ensures contiguity. The

result is a tile arrangement where each tile is associated with one part and

each part is represented by the correct number of tiles.

Step 3 – Assign elements: per part, we use point-set matching to compute an as-

signment that minimizes the sum of squared Euclidean distances between the

spatial elements and the tiles.

Each step of the pipeline is thus a well-studied problem. In principle, di�erent tech-

niques could be used for each step – especially for Step 1 – though the literature

suggests that our proposed composition is e�ective. To seamlessly create the com-

plete pipeline, we made small changes to existing techniques or simpli�ed existing

approaches.

▶ 4.3 Decompose shape based on salient features
The �rst step of the pipeline decomposes the containing shape into parts based on

salient features. We can treat each contiguous part of the input separately, and hence

can restrict our attention to the decomposition of a simple polygon P . Our output

are the parts of P together with the spatial elements contained in each part.

Related work Shape decomposition is an extremely well-studied problem. Below

we sketch some of the most important considerations and approaches. An important

related �eld is that of object recognition which considers many aspects of objects

such as shape, color, texture, motion, context, etc. It has been observed, though,

that humans can often recognize an object solely by its shape [60]. This recognition

is based on a decomposition into visually salient parts [60, 94, 114, 117, 118], via

so-called cuts: straight boundary-to-boundary line segments fully within the shape.

Based on psycho-physical �ndings a number of rules and constraints have been

proposed in the literature to mimic the human visual decomposition in �nding cuts.

Though more general, we present them here for the case of simple polygons, as this

is the setting for our pipeline. The most recognized of these rules are the minima

89

4

4 A Simple Pipeline for Grid Maps

rule [60] (a cut should always start at a re�ex vertex) and the short-cut rule [118]

(shorter cuts are preferred over longer cuts if they are otherwise equivalent).

To determine candidate cuts, the de�nition of a part-cut [117] is often used which

stipulates that a cut should cross a local axis of symmetry, in addition to being

contained within the shape and following the minima rule. Local symmetry can be

seen as a weak form of symmetry: the two sides along each axis of local symmetry

are shape-wise similar, but are not strictly symmetric. The medial axis [17] is often

used for this purpose (e.g. [94]), but di�erent formulations are possible.

Typically, there are many candidate cuts, and thus there is a need to �lter and select

an appropriate set of (�nal) cuts, see for example[73, 78, 88, 94]. Our implementation

is inspired by the work of Papanelopoulos et al. [94] who use the medial axis to

construct a candidate set, which is hence based on local symmetry.

Our implementation Using the medial axis to identify candidate cuts guarantees

that all cuts are pairwise disjoint. Hence, any combination of candidate cuts yields a

valid decomposition into parts. Let �(P) denote the medial axis of our input polygon

P , and consider a single segment s of �(P). Note that �(P) consists of both straight

line edges and parabolic arcs. Let g1(s) and g2(s) denote the two shortest distinct

line segments along the boundary of P , such that all inscribed circles of P with their

center on s touch both g1(s) and g2(s). These line segments may have length 0 and

thus be a vertex. We add a candidate cut if g1(s) or g2(s) is a re�ex vertex. If both

are re�ex vertices, s is a straight line segment and we add a candidate cut between

g1(s) and g2(s) (see Figure 4.8(a)). If only one is a re�ex vertex and the other a line

segment, then s is a parabolic arc and we add two candidate cuts from the re�ex

vertex to the two endpoints of the line segment (see Figure 4.8(b)). Since at least one

endpoint of each cut is a re�ex vertex, all candidate cuts follow the minima rule.

g2(s)

s

g1(s)

g2(s)

s

g1(s)(a) (b)

Figure 4.8 Candidate cuts (do�ed lines): medial axis segment s is (a) a straight
segment, or (b) a parabolic arc. Inscribed circles (blue and orange) centered on
endpoints of s define line segments g1(s) and g2(s).

90

4

4.3 Decompose shape based on salient features

c

Figure 4.9 Candidate cut c with dilation 14.5 and productivity 3. Shortest length
along the boundary in blue; dots represent spatial elements.

Our �ltering scheme uses a dilation threshold d and a productivity threshold p (see

Figure 4.9). The dilation (or detour factor) of a cut is the shorter of the two lengths

along the boundary of P divided by its Euclidean length. This ratio is always at least

1 due to triangle inequality. The productivity of a cut is a new concept, tailored

to the construction of grid maps. Each cut partitions (the centroids of) the spatial

elements into two sets. The productivity of a cut is the number of elements in the

smaller set. Our pipeline does not allow cuts with low productivity to ensure that

each part has su�cient tiles at its disposal to achieve good local and global shape.

We select candidate cuts as follows. First, we sort them by increasing length follow-

ing the short-cut rule and then process cuts one-by-one. If the dilation of a cut is

above d and its productivity is above p, then we apply the cut: we partition P and

its spatial elements and recurse on the resulting two subpolygons. In this recursive

step we update both dilation and productivity of each candidate cut with respect to

its new subpolygon. See Figure 4.10(b) for an example of the eventual result.

18

1
1

21

38
27
96

35426
23

20
123

1

(a) (b) (c) (d)

Figure 4.10 UK constituencies, computed with dilation d = 3 and productivity
p = 20. Numbers in (b) indicate number of spatial elements per part.

91

4

4 A Simple Pipeline for Grid Maps

Let n denote the complexity of the containing shape and m the number of spatial

elements. As the medial axis takes O(n) time to compute and has linear complex-

ity [29] we compute our O(n) candidate cuts and sort them in O(n log n) time. Per

candidate cut we keep track of the length along the (sub)polygon boundary and the

number of elements on both sides of the cut, from which we can derive dilation

and productivity in O(1) time. Initializing these values takes O(n2 + nm) time in

total using a straightforward implementation. When a candidate cut is selected, we

can update these values in O(1) time each. We leverage the medial-axis structure to

traverse the candidates on both sides and update all values in O(n) total time. As

such, the selection process can be executed in O(n2) time. The bottleneck is hence

initializing the selection process in O(n2 + nm) time.

Using other methods Our speci�c implementation can easily be replaced by

other algorithms that detect cuts based on salient features. However, for the next

step in our pipeline it is important to avoid cuts with low or even zero productivity.

A part with zero spatial elements cannot be represented by a Mosaic Cartogram and

will hence violate topology and thereby contiguity.

▶ 4.4 Arrange tiles using mosaic cartograms
The second step of our pipeline uses the parts – the decomposition result – to com-

pute a tile arrangement. We do so for all parts simultaneously to ensure that tiles do

not overlap, to ensure contiguity, and to optimize other global facets of coherence.

The inputs for this step are the parts, that is, a subdivision of the simple polygon

P , together with the number of spatial elements that each part represents. The out-

put of this step is a Mosaic Cartogram: a contiguous tile arrangement, including a

mapping from parts to contiguous sets of tiles of the correct cardinality.

To the best of our knowledge, the original algorithm for Mosaic Cartograms [25] is

currently the only method to solve the given problem. However, other algorithms

could in principle replace this technique as long as they can guarantee contiguity

and represent each part with the exact number of tiles – see also Section 4.6.

Our implementation We use Mosaic Cartograms [25] which deform in a shape-

aware manner while maintaining contiguity and global adjacencies between the

parts, and optimizing for preserving global directions between neighboring parts;

see Figure 4.10(c) for an example result.

A Mosaic Cartogram is roughly computed as follows (refer to [25] for details). First,

92

4

4.4 Arrange tiles using mosaic cartograms

an initial tile arrangement is computed, such that each part has the correct adja-

cencies without accounting for shape or the necessary number of tiles. Then, for

each part, the algorithm computes a guiding shape: a contiguous set of tiles that

resembles the shape of the part. The tile arrangement is then iteratively modi�ed

by moving guiding shapes and changing tiles while ensuring that adjacencies are

maintained. Movement is based on the desired direction between two parts, and tiles

are changed to also converge on the required number. This process stops when the

guiding shapes no longer move and tiles no longer change. At this point the exact

number of tiles per part might not yet be achieved, but typically it is close. A �nal

post-processing step corrects the number of tiles and �lls any unwarranted gaps in

the tile arrangement while still maintaining the correct adjacencies.

The correct number of tiles and correct adjacencies might not be compatible (e.g., a

part with only a single tile that needs to be adjacent to many other parts). Indeed, this

can be expected with a low productivity threshold in the �rst step, though parts with

few spatial elements typically have few adjacent parts. Whereas Mosaic Cartograms

opt for a slight deviation in the number of tiles (cartographic error) to ensure the

right adjacencies between parts, this is not an option in our pipeline: each part must

be represented by as many tiles as the number of spatial element it contains.

If every part is adjacent to the “outside” (i.e., the adjacency graph is outerplanar), the

post-processing step has signi�cant freedom, and typically su�ciently so to achieve

the right number of tiles. This is the case in all our test instances; without subdivi-

sions (see Section 4.6) the topology is even a tree by design of our decomposition

step. We therefore did not observe any deviation from the exact number of tiles,

even while perfectly representing adjacencies of the parts.

If needed, one could add a second post-processing step similar to the �rst; but rather

than requiring that adjacencies are preserved, we enforce only that the result remains

contiguous. In this way we can ensure that the resulting Mosaic Cartogram has

zero cartographic error and is contiguous at the possible cost of small topological

violations. It is an interesting direction for future work to compute good Mosaic

Cartograms with zero cartographic error more directly.

The algorithm for Mosaic Cartograms assumes a contiguous input. We generate

such a cartogram for each contiguous piece of our input and compose them. Our

implementation features some automation based on direction. Speci�cally, we start

with the largest piece (for example, mainland UK or mainland NL) and simply use

its result. For any subsequent piece (usually islands of decreasing size), we use the

direction between the closest spatial element of the new piece towards any of the

93

4

4 A Simple Pipeline for Grid Maps

already-placed pieces. This gives a starting tile to place the new piece from which

we search locally for a placement that does not cause overlap or new adjacencies.

This automation works reasonably in simple situations (e.g., UK: mainland with six

well distributed islands) but requires manual post-processing for maps with more

intricate layout (e.g., Netherlands: mainland with seven clustered islands). We apply

this optional manual step in all our results, and leave better placement of separate

pieces in Mosaic Cartograms to future work.

▶ 4.5 Assign elements to tiles via point-set matching

All that remains now, is to assign spatial elements to tiles in the tile arrangement

computed in Step 2. As the sets of tiles and the number of spatial elements per part

match exactly, we can execute this step separately for each part. The input is thus a

set of contiguous tiles for one (mostly convex, and hence simple) part together with

the spatial elements for that part. The output is the tile assignment for this subset

of the spatial elements. Combining all assignments yields the grid map.

Related work There are various ways to assign spatial elements to a tile arrange-

ment. For tile arrangements (close to) a grid one can use a greedy assignment as

proposed by Wood and Dykes [156] for Spatially Ordered Treemaps and adapted

by Eppstein et al. [39] for grid maps (called SpatialGrid in [39]). Eppstein et al. [39]

propose a variety of other methods for this case including displacement optimization

under the sum of squared Euclidean distances (L22). They show that optimizing L22
also results in good local directions and adjacencies, and these �ndings are corrob-

orated by Meulemans et al. [86]. Since we can minimize L22 e�ciently [31] this ap-

proach is generally the method of choice and also the one we employ in our pipeline.

Later work by Liu et al. [74] proposes to use a form of constrained multi-dimensional

scaling to assign regions to a grid. However, in addition to the restriction to the grid,

the assignment quality is generally lower than the one via L22.

Our implementation As stated above, we optimize for L22 which yields good

results in local facets of coherence for the simple cases that the earlier steps in the

pipeline create. To align the spatial elements and the set of tiles of a part, we compute

the a�ne transformation such that the bounding box of the set of tiles is equal to that

of the centroids of the spatial elements. Subsequently, we use point-set matching

from centroid to centroid to minimize the sum of squared Euclidean distances in this

transformed space implemented as a linear program [31].

94

4

4.6 Results and discussion

▶ 4.6 Results and discussion

In this section we investigate the e�cacy of our pipeline in three aspects: (1) parametriza-

tion of our shape-decomposition step; (2) a comparison to state-of-the art; (3) using

a known subdivision of the containing shape. We end this section with a general

discussion and future work.

Parametrization Contrasting the other two steps in our pipeline, the �rst step

of decomposing the containing shape is parametrized. Setting suitable thresholds is

important to achieve the best results. Here we brie�y investigate the e�ect of these

parameters via the result of the subsequent step: the tile arrangement.

Figure 4.11 shows results for the Dutch municipalities using a a dilation threshold

d ∈ {2, 3, 5} and productivity p ∈ {4, 10, 30}. The e�ect of d is quite straightforward:

a lower value of d means that more candidate cuts can be selected and thus results

in more identi�ed parts. Productivity p has a similar e�ect: parts are required to

contain more spatial elements and thus higher values lead to fewer parts. With too

many parts the computed Mosaic Cartogram is too detailed resulting in a jagged,

uneven appearance in places where this is not necessary for global shape – this is

because Mosaic Cartograms consider shape purely on a part-level. Yet, with too few

parts we do not obtain the simple case within each part due to uneven distributions

of the spatial elements while still having recognizable features. Hence, both need to

work together to obtain parts that represent simple cases and that are both visually

salient as well has having enough elements to be represented reasonably. Of these

provided �gures, we deem that the case of (d = 3,p = 4) strikes this balance well and

nicely places southern Flevoland (four municipalities in the central brown region

in the �gure) along the IJsselmeer. We use these settings and hence this Mosaic

Cartogram also in Figures 4.1, 4.3(e) and 4.13(c) showing the Dutch municipalities.

Productivity p can likely be con�gured similarly across instances of similar size,

though e�ects of geography can be expected as culturally signi�cant features bias

towards certain decompositions. However, dilation threshold d faces a di�culty

arising from a well-known geographic phenomenon: the coastline paradox [82]. In

our situation, the detail at which the containing shape is represented greatly a�ects

the length along the polygon boundary, used to determine dilation; yet, the length

of a candidate cut is largely una�ected. As a result, the dilation threshold for a

particular instance depends on the resolution of the input map. A normalization of

the shape boundary is not quite enough, as shape complexity remains a factor and

borders may locally vary in semantics and thus in their e�ect on the local boundary

95

4

4 A Simple Pipeline for Grid Maps

Productivity p
4 10 30

5

3

2

D
ila
ti
on

d

18

58

57
4

215

13

18

644
3

58 58

58 58 58

58

18

18

44

44

61 61

6157

61

215 197

13

13

13

14

14

14

6

6

3

3

3

3

3

3

3

3

32

32

32

31

31

31

7
11

4

4

118
5

5

73 73

15 15

1515

9

9 4

4
4

4

97

50
11

11

11

11

19

19

117
80

22 36

21
6

26
45556

42
15

17
6

9 5
4

22 36

55
56

17
55

27
21

30
20

73

38
31

Figure 4.11 Results of varying productivity and dilation thresholds on the decom-
position and subsequent Mosaic Cartogram.

length – consider, e.g., di�erences between actual coastlines and borders with other

countries such as Norway with its fjords and straight border with Sweden. A suitably

normalizing simpli�cation of the containing shape might provide a solution to this

resolution-dependence; we leave this investigation to future work.

Comparison With Figures 4.6 and 4.7 shown earlier, we compare our method to

the approach of McNeill and Hale [83], using a hexagonal grid map for the UK local

authority districts. These �gures clearly show that our pipeline retains more of the

characteristic features, especially around Scotland and Wales. The smooth gradient

of colors in our result also shows that local facets are preserved well. To further

compare the two methods on the local facets of coherence, we use the measures

proposed by Meulemans et al. [86] for local adjacency and local direction: The per-

centage of adjacencies maintained (ADJ), the percentage of orthogonal directions

96

4

4.6 Results and discussion

maintained (DIRA), and the percentage of orthogonal directions between neighbours

maintained (DIRN). The two methods have comparable scores for the UK map. We

also provide a grid map with square tiles in Figure 4.10 on the UK constituencies

showing that this improved shape is also achieved with other tile shapes.

Figure 4.12(d,h) shows the result of our pipeline on the contiguous states of the US

without and with Washington DC, a common example and use case of grid maps.

We observe that this case is not necessarily complex as evidenced by the few parts

in the decomposition (Figure 4.12(b,f)), but not quite simple either: e.g., Florida and

the Great Lakes give characteristic features for local shape that can be preserved,

and states along the (north)eastern coast are signi�cantly smaller than the other

states. That only few parts are identi�ed signals that our pipeline can adequately

cope with simpler cases as well without the earlier steps in the pipeline needlessly

distorting the result. That is, it can be applied nearly agnostic to the input beyond

con�guring the productivity and dilation thresholds as discussed above. We compare

our result shown in Figure 4.12(h) with a result of McNeill and Hale [83] shown in

Figure 4.12(e) using our color scheme. The maps are roughly of comparable quality

which the metrics again further support, but our map has some points that we

consider to work speci�cally well in comparison: Florida is the bottom-rightmost

state; Michigan can be seen to be located between the Great Lakes. McNeill and

Hale’s result on the other hand nicely preserves Washington as the northwestern-

most state, and is slightly more compact for the northeastern states.

(d)

(h)

(a)

(e)

7
1725

7
1625

(b)

(f)

(c)

(g)
ADJ
DIRA

74%
97%

DIRN 98%

ADJ
DIRA

79%
98%

DIRN 97%

Great LakesWashington

Figure 4.12 (a) Contiguous states of the US. (b–d) Result of our pipeline (d = 5,
p = 4). (e) Grid map based on Figure 5a in [83], which includes Washington DC.
(f–h) Result of our pipeline (d = 5, p = 4), for input including Washington DC.

Comparing Figure 4.12(d,h), the addition of the single tile for Washington DC has

97

4

4 A Simple Pipeline for Grid Maps

quite an e�ect on the Mosaic Cartogram and thus the eventual result. Though the

overall structure is the same, the shape around the Great Lakes is less clear in (d),

but the northeastern states are represented more compactly. It is also worth noting

that the projection of the input (here, Albers projection) for such large areas may

have an e�ect on the coherence of the grid map [86].

Our method is somewhat slower to compute. For the 374 UK local authorities, Mc-

Neill and Hale report a running time of four seconds [83] for the result in Figure 4.6.

Our result shown in Figure 4.7 takes 84 seconds to compute, with 21 seconds spent on

generating the partition, and 60 seconds spent on computing a Mosaic Cartogram on

a standard laptop. Improving this running time substantially thus requires a faster

algorithm to compute Mosaic Cartograms.

Subdivisions So far, we have shown inputs of a single containing shape with spa-

tial elements, that is, the containing shape is a collection of disjoint simple polygons.

However, the containing shape can often be subdivided into several administrative

units: e.g., a country is often subdivided into provinces or states. The question is

whether such known subdivisions of the containing shape can be used instead of,

or in addition to, decomposition in our pipeline. To explore this, we consider again

the Dutch municipalities. As these are hierarchically organized into provinces, we

use province boundaries to subdivide the containing shape; see Figure 4.13(a).

Figure 4.13(b) shows the result of applying our pipeline without applying Step 1 –

shape decomposition. Instead, we simply use the provinces as parts and start from

Step 2. To compare, Figure 4.13(c) shows our pipeline solution without subdividing

by provinces, but with the province borders indicated. The main advantages of using

the provinces as parts is that (contiguous parts of) provinces remain contiguous in

the result, and that adjacencies between provinces are exactly the same to those in

the input map as achieved by the Mosaic Cartogram. Without using the province

subdivision, this is not guaranteed, and indeed we can observe slight discontiguities

in Figure 4.13(c) for some provinces. Note, however, that the provinces are only

discontiguous when considering rook’s adjacency (sharing a side of the square),

but are in fact contiguous in queen’s adjacency (sharing a corner is su�cient to be

considered connected). As such, the deviation is indeed only minor.

At a glance, using the subdivision improves global shape in some places, such as

southern Limburg (the southernmost province). However, this does not readily imply

a good grid map: without decomposition, we see the same problems as discussed in

Section 4.1.2 now appearing at a smaller scale: the tile indicated by the red arrow in

Figure 4.13(b) is assigned to the municipality in Figure 4.13(a) indicated by the arrow

98

4

4.7 Conclusions and future work

(b)(a) (c) (d)
Limburg

Figure 4.13 E�ect of applying a subdivision, illustrated with the Dutch munici-
palities and provinces. Thick white boundaries separate provinces. (a) Input map.
(b) Result of our pipeline without decomposition, using provinces as parts. (c) Re-
sult of our pipeline (d = 3,p = 4) without using provinces. (d) Result of our pipeline
(d = 3,p = 10) by applying decomposition on each province.

of the same color; based on shape one would rather expect this tile to represent the

municipality indicated by the blue arrow. That is, this map has poor coherence in

terms of local shape. With decomposition, this improves signi�cantly as illustrated

by the colored arrows for these same municipalities.

This raises the question whether we can e�ectively combine these two ideas. That is,

rather than applying the decomposition step to the entire containing shape, we re�ne

the subdivision into parts by applying decomposition to each polygon it de�nes, i.e.,

to each province in our example. We then obtain parts that respect the subdivision;

the Mosaic Cartogram ensures the correct topology between parts and thus we

achieve contiguity for each province. The result of this is shown in Figure 4.13(d).

Whereas it indeed maintains contiguity of each province (and the entire shape), we

see global shape deteriorating slightly, again mostly in terms of smoothness along

the boundary. We attribute this to the increased number of parts with typically fewer

spatial elements: as a result, the algorithm for Mosaic Cartograms is less sensitive

to small changes along the boundary in capturing shape.

▶ 4.7 Conclusions and future work
In this chapter we introduced a simple 3-step pipeline that generates a coherent grid

map for a complex dataset by subdividing the problem into simple cases which can

be solved independently. Each step is a well-studied problem that preserves di�erent

99

4

4 A Simple Pipeline for Grid Maps

facets of coherence. The pipeline �rst decomposes the shape into roughly convex

parts based on the salient features of the shape using the medial axis. It then assures

each part has the correct number of tiles as well as the correct global shape using

Mosaic Cartograms. Finally, it assigns each spatial element to a tile for each part

independently using point-set matching that results in high local coherence within

the simple part. We veri�ed the e�cacy of this pipeline on four di�erent datasets,

resulting in high quality grid maps for each of them.

Yet, there is room for improvement, as evident from the discussion. One major

bene�t of this pipelined approach is that improvements within each step can be

carried over to improve grid-map computation – though especially for Step 1 it

remains to be assessed how improvements in shape decomposition interact with the

subsequent steps. We speci�cally see potential to improve Step 2. Whereas Mosaic

Cartograms produce good tile arrangements in general, there are some limitations

to the method. Speci�cally, the outline of the tile arrangement can capture shape

well, but also may cause a somewhat jagged boundary where the containing shape

did not necessarily feature such.

This jaggedness stems from three places in the algorithm. Firstly, when determining

the guiding shape, jagged boundaries can occur as the rasterization of the region is

not perfect and does not explicitly take smoothness into account. Secondly, during

the moving and growing of the guiding shapes, the guiding shapes do not have to

line up with each other anymore which can result in jagged adjacencies between

the parts. While generally avoiding these jagged adjacencies may be di�cult, we

believe that the situation within the pipeline which ensures a simple set of adjacency

requirements between parts may allow for algorithmic improvements to alleviate

the problem. Thirdly, when correcting the number of tiles in each part, the algo-

rithm does not take the smoothness of the boundaries into account, and thus extra

tiles can appear on the boundary. Again, the case within our pipeline is simpler

than the general case for cartograms, and we expect that this problem can be ad-

dressed through modifying or improving the underlying algorithms. Alternatively,

given that only few tiles need to be moved in our observed results to smoothen the

boundary, a simple post-processing step could be su�cient in many situations.

Awaiting further algorithmic improvements, our pipeline also makes it straightfor-

ward to interact with the intermediate results: one can manually add or remove cuts

in Step 1 that do not quite follow readily from the input geometry, but rather from a

user’s understanding of the local geography – as it is well known that small geomet-

ric features on a map may be relevant from a cultural or geographic point of view.

Especially the Mosaic Cartogram can be interacted with easily and in a predictable

100

4

4.7 Conclusions and future work

manner. By simply shifting and swapping tiles, one can steer the input for the �nal

step to an even more polished result. With Step 3 being e�ciently computed, this

can be done interactively with the tile assignment being updated on-the-�y to en-

sure the best result. We emphasize that all results in this chapter were not changed

manually, beyond improving the placement of separate pieces (islands) of the Mosaic

Cartogram (see Section 4.4).

We have compared our results to that of McNeill and Hale [83] qualitatively. A

general and impartial quantitative evaluation would be useful, either in the form of

user studies or computational experiments. The di�culty in achieving the latter is

how to capture each facet of coherence well. Though Meulemans et al. [86] provide a

suite of metrics, global shape poses a particular challenge: common shape similarity

measures are not suitable for handling distortion which is a necessity in obtaining a

high-quality grid map. Yet, not all distortion is equal; it must be applied e�ectively

and in a structured way as to still have a sense of local scale for salient features, even

though the larger structures are distorted. The ideal of “no distortion” in shape is

not only unachievable but also undesirable. That is, current measures cannot easily

operate within the context of density di�erences that force the distortion. Possibly,

ideas from focus-and-context maps to measure distortion based on a local scale [35,

58] might be useful in designing a locally scale-aware shape-similarity measure.

Local shape similarly poses challenges, as it relies on automatically identifying and

relating characteristic features in both the grid map and the input map.

101

4

102

5
Chapter 5

Spatial Set Visualization
Hypergraphs are a powerful structure to represent unordered set systems. In general

they consists of a number of elements (vertices) and a number of di�erent subsets

over these elements (hyperedges). Visualizing hypergraphs allows one to gain in-

sight into the various set relations between the hyperedges. Hypergraph visualiza-

tions can be, roughly speaking, divided into two strands: those where the positions

can be chosen by the layout algorithm (e.g. [59, 115, 116]), and those where the

position of the elements is �xed (e.g. [1, 32, 36, 85]), for example due to a spatial

dimension in the data. Some hypergraph visualizations additionally replicate ele-

ments (e.g. [2, 59]) to overcome layout complexity. For a more detailed overview

and in-depth classi�cation of set visualization methods we refer to the survey by

Alsallakh et al. [3]. We focus on a visualization using a single representation for

each element and �xed positions to visualize spatial set data.

Additionally, we assume that the representation of two sets may not cross at com-

mon vertices which is di�erent from the (often implicit) assumption in theoretical

research on drawing hypergraphs (e.g. [24, 65]). Such crossings are usually not

deemed problematic as most visual encodings rely on the local nesting of intersect-

ing polygons (in line with the prototypical Venn and Euler diagrams [8] and similar

visual overlays [32, 36, 85]) to identify set memberships. Nested lines connecting

vertices such as employed by [36, 85] give a strong and potentially misleading visual

cue of containment between hyperedges. Moreover, the absence of nested lines does

not imply that one of the hyperedges is not a subset of the other. As such, this may

lead to incoherence between the visualization and the relations in the data.

One of the most well-established quality criteria (see e.g. [97, 99]) for graph drawing

is planarity. A planar graph is one that can be drawn without edge crossings; such

drawings make it easier to understand the graph structure [98]). Generalizing to

hypergraphs this concept remains relevant, but depends on how one visualizes a

hyperedge. Using nested encodings as used by [36, 85] the problem reduces to

�nding a planar support. Deciding whether a planar support exists is possible for

some simple support classes (see [24] for a discussion), but quickly becomes di�cult

as it is already NP-hard for 2-outerplanar support graphs [24].

103

5

5 Spatial set visualization

Figure 5.1 A hyper-
graph that is not Zykov-
planar (top) but has a
disjoint-polygons draw-
ing (bo�om).

Representations that do not require nesting are edge-

based drawings [81] or the equivalent Zykov representa-

tion [151] for which notions of planarity follow readily

from the standard notion for regular graphs. One of the

representation used in Kelp Diagrams [36] also avoids

nesting, but its appearance is cluttered and it does not fea-

ture in the later extension, KelpFusion [85]. We suggest

an alternative representation that uses disjoint polygons.
Vertices are represented as simple geometric primitives

(e.g. a square or circle); hyperedges are represented as

connected polygons that overlap only and all its incident

vertices; and all such polygons are pairwise disjoint. As

illustrated in Figure 5.1 our disjoint-polygons encoding

is stronger than the Zykov encoding, as it can visualize

some hypergraphs that are not Zykov-planar, whereas any Zykov-planar hyper-

graph admits a disjoint-polygons representation. In the disjoint-polygon representa-

tion we can use vertices to “pass in between” the representations of other hyperedges,

though not as �exibly as is allowed for planar supports: the polygons must remain

disjoint.

Contributions We investigate the properties of drawing hypergraphs using dis-

joint polygons. Motivated by moving towards a set visualization in a grid map (see

Chapter 4), we study the variant where each element has a �xed location, being a

cell in a rectangular grid. As an initial exploration we focus on the case with two

hyperedges. We identify one hyperedge with the color red, and the other with the

color blue. As such, each cell is either red, blue, both (purple), or uncolored (white).

We thus aim to partition each purple cell into red and blue pieces such that the re-

sulting pieces of a single color form a connected polygon. In Section 5.1 we de�ne

the notation that is used through this chapter. In Section 5.2 we derive a necessary

and su�cient condition to e�ciently recognize whether an instance is solvable. In

Section 5.3 we additionally bound the number of colored pieces within each cell by

a small constant for solvable instance, and prove that this bound is tight.

▶ 5.1 Preliminaries

We de�ne a k-colored grid Γ as a rectangular grid in which each cell s has a set of

associated colors �s ⊆ {1, … , k}. A fully k-colored grid is the case where �s ≠ ∅ for

all cells s. Throughout this chapter we primarily investigate 2-colored grids and use

104

5

5.2 Characterizing colored grids with a painting

colored grid to refer to the 2-colored case unless indicated otherwise. We refer to the

two colors as (r)ed and (b)lue; cells for which �s = {r, b} are called (p)urple. Cells

with no associated colors are white.

A region is a maximal set of cells that have the same color assignment (r , b, or p),

and every cell s in the region is connected via horizontally or vertically adjacent

cells to every other cell s′ in the region. A panel �s for cell s (with �s ≠ ∅) maps

each color c ∈ �s to a (possibly disconnected) area �s(c) such that these panels

partition the cell: that is, ⋃c∈�s �s(c) = s and �s(c1) ∩ �s(c2) = ∅ for colors c1 ≠ c2.
A painting Π of a k-colored grid consists of panels �s for each cell s with �s(c) ≠ ∅
for each c ∈ �s and �s(c) = ∅ otherwise. We call a painting connected if each

color forms a connected polygon: that is, ⋃s∈Γ �s(c) is a connected polygon for

each color c ∈ {1, … , k}. For this de�nition two cells sharing only a corner are not
considered connected. A (connected) painting is a disjoint-polygons representation

of the hypergraphs captured by the colored grid. In the remainder we use painting

to indicate a connected painting.

▶ 5.2 Characterizing colored grids with a painting
In this section we show how to test whether a 2-colored grid admits a painting

and how to �nd a painting if one exists. As all red, blue, and white panels are �xed,

�nding a painting reduces to partitioning the purple cells such that resulting red and

blue polygons are connected. We show that this connectivity is of key importance:

if we can �nd suitable connections through the purple regions, then we can create

a partition that results in a valid panel for each cell in the purple regions.

We capture the connectivity options for the red and blue polygon using two embed-

ded graphs Gr and Gb . We construct these graphs in three steps:

1. We identify and connect red (blue) regions that are adjacent along a purple

region’s boundary; we consider these as a single region in the remaining steps.

2. We remove any holes from the purple regions by inserting connections (Sec-

tion 5.2.3).

3. Finally, we constructGr andGb using a gadget for purple regions (Sections 5.2.1

and 5.2.2).

For the �rst step, observe that consecutive (not necessarily distinct) adjacent regions

of the same color can always be safely connected via the purple region’s boundary

without restricting the connectivity options for the other color (see Figure 5.2). After

105

5

5 Spatial set visualization

Figure 5.2 Safe connections between adjacent same-color regions.

the �rst two steps, we represent the remaining red and blue regions as vertices in

Gr and Gb , respectively. Edges in Gr and Gb represent connection options through

purple regions; intersections indicate a choice to connect either blue or red regions

through (part of) a purple region. The gadget for purple regions with many adjacent

red and blue regions also requires some additional vertices in these graphs. We prove

that these graphs admit a simple characterization of 2-colored grids that admit a

painting as captured in the theorem below.

5.2.1 Theorem. A 2-colored grid Γ admits a painting if and only if the corresponding graphs
Gr and Gb are each other’s exact duals: there is exactly one blue vertex in every red
face and there is exactly one red vertex in every blue face.

For explanatory reasons we start with the simplest case: purple regions with at

most four neighbors and without holes (Section 5.2.1). Subsequently, we alleviate

the assumption on the number of neighbors (Section 5.2.2) and permit holes in the

purple regions by showing how to perform Step 2 (Section 5.2.3).

▶ 5.2.1 Simple purple regions
We assume that Step 1 has been performed and a purple region P has no holes and at

most four adjacent regions. The adjacent red and blue regions of P form an ordered

cyclic list as they appear along the boundary of P and alternate in color (due to Step

1). Let �(P) denote the length of this list for P . � is even due to color alternation,

and by assumption here �(P) ≤ 4. There can be duplicates in this list as the same

red or blue region can touch P multiple times.

Every purple region with �(P) = 2 can be painted by creating a spanning tree on

the centers of the panels of P in one color and connecting it to the corresponding

adjacent region of the same color. The rest of the panels is colored in the other color.

We assume these are handled; what remains is to deal with the regions with �(P) = 4.

106

5

5.2 Characterizing colored grids with a painting

Figure 5.3 2-colored grid with 4 regions around each purple region and corre-
sponding graphs Gr and Gb .

For a purple region P with �(P) = 4 we create a red edge in Gr and a blue edge

in Gb that intersect: the red edge connects the red vertices corresponding to the

adjacent red regions; the blue edge connects the corresponding blue vertices. There

may be multiple edges between two vertices (see Figure 5.3). If the same red or blue

region touches the purple region twice, the edge is a self-loop. Every red or blue

edge intersects exactly one blue or red edge respectively, and Gr and Gb are plane

by construction. Using Lemma 5.2.2 we prove the exact characterization of graphs

Gr and Gb of a 2-colored grid Γ that admits a painting.

5.2.2 Lemma ([38, 141]). Let G be a plane graph, G∗ its dual and T a spanning tree of G.
Then T ∗ = {e∗ | e ∉ T} is a spanning tree of G∗.

5.2.3 Lemma. A 2-colored grid Γ in which each purple region P has no holes and �(P) ≤ 4,
admits a painting if and only if the corresponding graphs Gr and Gb are each other’s
exact duals.

Proof. Suppose Γ admits a painting Π. Then there exists a painting Π′ where for any

purple region P , all consecutive neighboring regions of the same color are connected

through the boundary of P . Let nr and nb denote the number of vertices in Gr (red

regions) and in Gb (blue regions) respectively. We observe that the number of purple

regions with � = 4, the number of edges in Gr , the number of edges in Gb , and the

number of intersections is the same, say, e. By construction, nb ≥ fr and nr ≥ fb .

The purple regions with � = 4 can be painted to connect two adjacent red regions

or two adjacent blue regions but never both. As there are nr red regions, at least

nr − 1 red edges are needed to connect all red vertices (regions). And similarly, at

least nb − 1 edges are needed to connect all blue vertices (regions). Thus, if Γ admits

painting Π′ then e ≥ nr + nb − 2.

On the other hand, by Euler’s formula nr − e + fr = 2 and nb − e + fb = 2. Combining

these equations and nb ≥ fr , nr ≥ fb , we derive that e ≤ nr+nb−2. Thus, e = nr+nb−2,

107

5

5 Spatial set visualization

and nb = fr and nr = fb . As each red edge intersects exactly one blue edge and vice

versa, graphs Gr and Gb are each other’s duals.

For the other direction, assume that Gr and Gb are dual graphs. By Lemma 5.2.2

there exist two non-intersecting spanning trees of Gr and Gb that specify which

adjacent regions of every purple region are to be connected to form connected red

and blue polygons (see Figure 5.3). Given the connectivity information for every

purple region it is straightforward to �nd the panels for all cells to obtain a connected

painting: for every purple region draw the two spanning trees, and connect any cell

that does not have yet a blue or a red piece to the blue or red polygon respectively

with a connection without introducing any crossings. Thus, a 2-colored grid admits

a painting if and only if Gr and Gb are dual graphs. □

▶ 5.2.2 Spiderweb gadgets

Let us now extend the result in the previous section by showing how to include

purple regions with more than four adjacent regions. For every purple region P
with �(P) > 4 we construct a spiderweb gadget and insert it into the graphs Gr and

Gb , such that an argument similar to Lemma 5.2.3 can be applied.

0
1

2

3

4
5

6

9

7
8

10
11

level 0
level 1

Figure 5.4 Spiderweb gad-
get for k=6: three blue (0,2,4)
and two red levels (1,3)

A spiderweb gadgetW of P with �(P)/2 = k red and k
blue alternating adjacent regions consists of ⌊k/2⌋+1
levels, labeled 0 (outermost) to ⌊k/2⌋ (innermost), see

Figure 5.4. Each level, except 0 and ⌊k/2⌋, is a cycle of

k vertices. Level 0 has k (blue) vertices without any

edges between them, and the innermost level ⌊k/2⌋
consists of only a single vertex. The vertices of even

levels are blue and labeled with even numbers from 0
to 2k −2 clockwise. The vertices of odd levels are red

and labeled with odd numbers 1 to 2k − 1 clockwise.

Each vertex of level � with 2 ≤ � < ⌊k/2⌋ is connected to the vertex with the same

label on level � − 2. The single vertex of level ⌊k/2⌋ is connected to all the vertices

of level ⌊k/2⌋ − 2. This gives us 2k paths starting from levels 0 and 1 to the two

innermost levels. We call these paths spokes, and refer to them by the label of the

corresponding vertices. We embed the two resulting connected components in such

a way that they are each other’s dual by making sure that we get a proper clockwise

numbering on the vertices of the two outermost levels (see Figure 5.4). The vertices

on levels 0 and 1 represent respectively the blue and red regions around the purple

region P and respect the adjacency order around P .

108

5

5.2 Characterizing colored grids with a painting

Figure 5.5 Topology of connections in a purple region and the corresponding
bridging paths in a spiderweb gadget.

If a blue (or red) region touches P multiple times, then the corresponding vertices

on level 0 (or 1) map to the same region and are in fact one and the same vertex in

Gb (or Gr). All edges connected to this vertex are consistent with the topology of

the nested neighboring regions of P ; they intersect the same edges as they would

when they were represented by multiple vertices.

To prove that all possible connections in P which can occur in a painting Π can be

replicated in a spiderweb gadget W , we de�ne bridging paths: let u and v be two

vertices on level 0 in W that represent two blue regions that are connected by a

painting Π through P . Assume that the clockwise distance from u to v is not greater

than k, that is, if u has label x then v has label (x +2i) mod 2k for some 1 ≤ i ≤ ⌊k/2⌋.
To connect u and v with a bridging path, we start from u, go to level 2⌊(i + 1)/2⌋
along the spoke x , take a shortest path within the level 2⌊(i + 1)/2⌋ from the vertex

with label x to the vertex with label (x + 2i) mod 2k, and move along the spoke

(x + 2i) mod 2k to vertex v. If there are two possible shortest paths, we take the

clockwise path.

The same kind of path can be constructed for a pair of red vertices, but starting from

level 1, going to level 2⌊i/2⌋ + 1, and moving back to level 1. We now show that

connecting di�erent blue and red regions using bridging paths within the spiderweb

gadgets results in blue trees and red trees, such that no pair of a blue and a red edge

intersect (see Figure 5.5 for an example).

5.2.4 Lemma. Consider a painting Π in which two blue and two red regions, adjacent to a
purple region P , are connected through P . The corresponding vertices in the spiderweb
gadgetW of P can be connected by non-intersecting bridging paths.

Proof. Let u and v be two vertices that represent two blue regions adjacent to P and

connected through P in painting Π. Let u be on level 0 of spoke x and v be on level 0

109

5

5 Spatial set visualization

of spoke (x + 2i) mod 2k for some 1 ≤ i ≤ ⌊k/2⌋. We connect u and v by a bridging

path as described above which goes to level 2⌊(i + 1)/2⌋. Any connection of two red

regions in Π through the purple region P cannot cross the connection between the

regions that u and v represent in Π. This means that the corresponding vertices

must both lie on the same side of the bridging path between u and v. Denote these

vertices by u′ and v′, and let u′ have label y and v′ have label (y + 2j) mod 2k for

by 1 ≤ j ≤ ⌊k/2⌋. The bridging path goes to level 2⌊j/2⌋ + 1. There can be several

cases:

• When u′ and v′ lie in between u and v moving in the clockwise order, we

have that j < i. Thus, the two bridging paths cannot intersect, as the path

from u′ to v′ goes to level 2⌊j/2⌋ + 1 < 2⌊(i + 1)/2⌋.

• When u′ and v′ lie in between v and u moving in the clockwise order, we

have that either j > i or the two bridging paths lie on the opposite sides of the

vertex on the innermost level. In the later case the two bridging paths cannot

intersect as they are separated by the innermost level, and in the former case

the two bridging paths cannot intersect as the path from u′ to v′ goes to level

2⌊j/2⌋ + 1 > 2⌊(i + 1)/2⌋.

□

With spiderweb gadgets and Lemma 5.2.4 we now strengthen Lemma 5.2.3 to the

following lemma without a condition on �.

5.2.5 Lemma. A 2-colored grid Γ in which each purple region has no holes admits a painting
if and only if the corresponding Gr and Gb are each other’s exact duals.

Proof. The proof is similar to the proof of Lemma 5.2.3. Suppose Γ admits a painting

Π. Then there exists a painting Π′ where for any purple region P , all consecutive

neighboring regions of the same color are connected through the boundary of P .

We can �nd non-intersecting trees in every spiderweb gadget W corresponding to

a purple region P that connect all pairs of vertices of levels 0 and 1 in the same way

as Π. First, we create the bridging paths from Lemma 5.2.4 for every pair of regions

of the same color connected in Π through P . The bridging paths do not create cycles

in S, thus, every vertex in W that is still not connected to the levels 0 or 1 can be

connected to them by growing non-intersecting spanning forests from the vertices

on the levels 0 and 1.

For the other direction, assume that Gr and Gb are dual graphs. By Lemma 5.2.2

there exist two non-intersecting spanning trees of Gr and Gb . These spanning trees

provide the decisions of which adjacent regions of every purple region to connect,

110

5

5.2 Characterizing colored grids with a painting

Figure 5.6 An purple annulus with red and blue regions on both sides.

and the topology of the connections. Given the connectivity information, a painting

can be constructed in a similar way to Lemma 5.2.3. Thus, a 2-colored grid admits a

painting if and only if Gr and Gb are dual graphs. □

▶ 5.2.3 Purple regions with holes

We may also have purple regions with holes (see Figure 5.6). We show that the

number of holes can be reduced without a�ecting the solvability. For simplicity of

explanation we assume a region with a single hole (an annulus); regions with more

holes can be reduced by considering only connections to the outer boundary.

Let P be a purple annulus. Any painting subdivides P into a number of colored

simple components. Each component of color c connects one or more regions of

color c on the boundary of P . The existence of a painting is de�ned only by the

connectivity structure of these components. The connectivity of a component can be

represented (transitively) using a set of non-intersecting simple paths (connections)
each connecting two regions on the boundary. Let a cross-annulus connection
x be

a connection between a region xin on the inside of the annulus and a region xout on

the outside of the annulus. A (connectivity) structure is a maximal set of (pairwise

non-intersecting) connections in P that can be extended to a valid painting. Let

CS be the set of cross-annulus connections in a given structure S. We �rst assume

the annulus is not degenerate, and thus red and blue regions exist both inside and

outside the annulus. A degenerate annulus is a strictly simpler case having only

cross-annulus connections of one color. The lemmas and proofs given below can be

easily adapted for the degenerate case.

5.2.6 Lemma. If a structure S exists with two adjacent cross-annulus connections
x and
y
of the same color, possibly separated by non-crossing connections, then there also exists
a structure S′ where CS′ = CS ⧵ {
y}.

111

5

5 Spatial set visualization

Proof. As there are no cross-annulus connections between
x and
y , these cross-

annulus connections must be connected inside the annulus. As a result, after remov-

ing
y we can reconnect the structure by introducing two non-crossing connections

between
x and the two regions that
y connects. This does not change the con-

nectivity of the structure, but removes the explicit cross-annulus connection
y (see

Figure 5.7). Note that there cannot be a connection between
x and
y outside the

annulus as this would disconnect any blue regions in between. □

x

y

x

y

(b)(a)

Figure 5.7 (a) When there are two adjacent cross-annulus connections of the
same color,
x and
y , we can remove
y (dashed) and keep the same connectivity
using two non-crossing connections (do�ed). Note that, due to having no cross-
annulus connections between
x and
y they are implicitly connected (zigzagged
line). (b) The analogous case, if there are no blue regions between
x and
y on one
of the sides.

5.2.7 Lemma. If there exists a structure S with |CS | > 3 and all cross-annulus connections
are alternating in color, then there also exists a structure S′ with |CS | − 2 cross-annulus
connections.

Proof. Let
u ,
v ,
x , and
y be four consecutive cross-annulus connections. W.l.o.g.,

assume
u and
x are red and
v and
y are blue. We remove
v and
x from the

structure separating both the red and blue into two components. For both colors,

one component remains connected to the other cross-annulus connection
u , respec-

tively
y . The disconnected components cannot both be on the outside (inside) of the

annulus. If this were the case, the connection
u to
x must be connected through xin ,

and
v to
y through vin . However, as there is no cross-annulus connection between

u and
y , any connection from
u to xin separates
y and vin . Hence, both connec-

tions cannot exist at the same time. The red and blue disconnected components are

thus on di�erent sides of the annulus and we connect them to
u , respectively
y ,

without mutually interfering (see Figure 5.8). □

5.2.8 Corollary. If a structure exists, then a structure also exists that has exactly one red
and one blue connection across each annulus.

112

5

5.2 Characterizing colored grids with a painting

x
v

u

y
yin

vin

uout

xout

Figure 5.8 By adding edges (vin , yin) and (uout , xout) we reconnect the discon-
nected subpolygons formed by removing cross-annulus connections
v and
x .

Proof. By repeated application of Lemma 5.2.7, we can �nd a structure with at most

three cross-annulus connections. By Lemma 5.2.6, we can reduce it further to a

structure with two cross-annulus connections. □

5.2.9 Lemma. If a structure exists, then there also exists a structure with exactly one red and
one blue cross-annulus connection starting from any two regions on the inner annulus
and connecting to any two regions on the outer annulus.

Proof. Let an interval be a maximal arc of the same color on the boundary. By

Corollary 5.2.8 we know there exists a structure with exactly one red and one blue

connection across the annulus. Let
x be the blue cross-annulus connection and

y the red cross-annulus connection. We show that each of the endpoints of the

cross-annulus connection can freely be moved. W.l.o.g., assume that
x is not coun-

terclockwise adjacent to
y on the outside of the annulus. Let kout , lout , and mout be

three intervals in clockwise order on the outer boundary of the annulus. We say a

clockwise connection through the annulus from kout to mout covers lout .

Let bout be the blue interval that is counterclockwise adjacent to yout and rout the

red interval that is counterclockwise adjacent to bout . Interval bout may have several

incoming blue connections that cover rout (see Figure 5.9(a)). We can rewire the blue

connections inside the annulus to connect the blue intervals in sorted order around

the annulus resulting in only one blue connection
b that covers rout . Similarly, we

can also rewire the red connections covering rout and ending at yout to ensure that

only one red connection
r covers rout .

Remove
y and insert a new red cross-annulus connection
z = (yin , rout). The con-

nection
z can intersect only
r and
b . Removing
r results in two red components,

one of which contains
z . Assume w.l.o.g. that yout is in the same connected com-

ponent as
z . As
r intersected
z , the disconnected component can be connected

to
z while intersecting only
b (see Figure 5.9(b)).

113

5

5 Spatial set visualization

bout

y

bout

(a) (c)(b)

yout

yin

rout

yin

b

r

z
z

x
x
x

rout
bout

rout

yout yout

Figure 5.9 (a) Initial configuration with several connections covering rout . (b)
Rerouting the blue connections, introducing
z , and rerouting the intersecting red
connection leaves only one intersecting (blue) connection. (c) The blue disconnected
component cannot be covered by the new red connection, we reconnect it to
x .

Removing
b results in two blue components, one of which contains
x . We prove

that bout must be part of the blue component not containing
x . Assume to the

contrary that bout is still connected to
x . Interval rout must be connected to yout
outside of the annulus as there was only one red cross-annulus connection and
b
blocked any connection through the inside of the annulus. Similarly, interval bout
must have been connected through the outside of the annulus, as it is separated

from any other region inside the annulus by
y and
z . However, they cannot both

be connected through the outside of the annulus, as the connection rout to yout
separates bout and xout on the outside of the annulus. Contradiction.

Therefore, we can safely reconnect the disconnected blue component through the

annulus to
x (see Figure 5.9(c)). Repeatedly moving the end-point of one of the

cross-annulus connections allows the creation of any con�guration of the two red

and blue cross-annulus connections without invalidating the structure. □

Lemma 5.2.9 implies that we can cut the annulus open to reduce the number of holes

of a purple region by one without changing the solvability of the problem. Together

with Lemma 5.2.5 this then implies Theorem 5.2.1.

▶ 5.3 Optimizing panels

Figure 5.10 Panels with
complexity 3 and 5.

As shown, not all colored grids admit a painting. Here

we investigate the design of the panels themselves as-

suming that some painting exists. To this end, we de-

�ne the complexity of a panel as the number of pieces
of maximal red and blue areas in the panel, see Fig-

ure 5.10. The complexity of a painting is the maximal

114

5

5.3 Optimizing panels

complexity of any of its panels. A t-panel (t-painting) has complexity t . Assuming

some painting exists, we prove in this section that a 5-painting exists in general and

that even a 2-painting exists if there are no white cells.

▶ 5.3.1 Ensuring a 5-painting
We prove here that a 5-painting can always be realized. To this end, we show that

a valid painting for a colored grid can be redrawn to include no more than three

colored intervals along each side of all panels.

5.3.1 Lemma. If a 2-colored grid admits a painting, then it admits a painting where each
panel � has at most 3 intervals of alternating red and blue along each side.

Proof. Without loss of generality, assume that a panel � has at least 4 intervals

of alternating red and blue on the left-side of � . We consider the top-most four

intervals that are inside � and adjacent to the left-side of � and w.l.o.g. we assume

these intervals are ordered blue, red, blue, red. As the painting is valid, both blue as

well as the red intervals are connected in the painting by exactly one path, since there

can be no cycles. For each interval we identify whether the path exiting or entering

� connects to the other interval of the same color (see Figure 5.11(a)). It cannot be

the case that the red and blue path both leave or exit � in the same direction for

the middle two intervals (see Figure 5.11(b)). Assume w.l.o.g. that the middle blue

connecting path exits � . Any path connecting the blue intervals must separate the

left side of the top red interval from the bottom red interval. Hence, the connecting

path from the middle red interval cannot also exit � .

To reduce the number of intervals, we recolor the interval of the color whose con-

necting path exits � (blue in Figure 5.11(a)) to the other color. To keep the blue

polygon connected and remove the newly created red cycle, we move the other blue

interval a small distance inside � and stretch it over the middle red interval. (see

Figure 5.11(c)). This reduces the number of intervals on the boundary of � by two

and can be repeated as necessary without a�ecting the validity of the solution. □

5.3.2 Theorem. If a partially 2-colored grid admits a painting, then it admits a 5-painting.

Proof. By Lemma 5.3.1 there are at most three alternating colored intervals along

each side of � . If a red and blue interval meet in a corner, we extend one in � around

the corner to get four intervals and use Lemma 5.3.1 to reduce it back to at most

three. If we have more than �ve pieces, a piece that has only one interval in � can

be removed while maintaining a painting. Each remaining piece connects at least

115

5

5 Spatial set visualization

(b)(a) (c)

Figure 5.11 (a) The side of a panel � with 4 intervals. (b)
The two middle directions cannot be the same, as we cannot
connect them with non-intersecting paths. (c) Shortcu�ing
inside � reduces the number of intervals while maintaining
a painting.

Figure 5.12 A
panel with six
pieces can always
be reduced to
have five pieces,
using either of the
do�ed lines.

two intervals: with k intervals, the number of pieces is at most ⌊k/2⌋. A 6-panel

thus requires 12 intervals: four equal-color (red) corners and a middle interval (blue)

along each side. This enforces two pieces between the blue intervals, and one in

each corner. However, we can now reduce the number of pieces to �ve, connecting

either two blue pieces or two red corners (Figure 5.12). □

This bound is tight as a 5-panel may be required when the grid includes white cells

(Figure 5.13). A 5-panel with at least two pieces of each color is never required—

though such a 4-panel may be necessary (Figure 5.13(b)). The above proof implies

that there is only one option to create such a 5-panel: it has only two ways to connect

the two blue pieces; both can be simpli�ed to a 4-panel (Figure 5.14).

(a) (b)

Figure 5.13 Examples requiring complex panels. (a) A colored grid requiring a
5-panel. (b) A colored grid requiring a 4-panel with two pieces of both colors in the
same cell (right) .

116

5

5.3 Optimizing panels

Figure 5.14 There are two configurations for a 5-panel where both colors have at
least two pieces. Both possible configuration can be simplified to a 4-panel.

▶ 5.3.2 Ensuring a 2-painting

We show that a fully 2-colored grid (rectangular and without white cells) even admits

a 2-painting provided it admits any painting. As an intermediate step, we �rst prove

that a painting exists that uses only one blue piece in any panel.

5.3.3 Lemma. If a fully 2-colored grid admits a painting, then it admits a painting in which
each panel has at most one blue piece.

Proof. Let Π be a painting admitted by a fully 2-colored grid Γ. Any fully red or blue

panel in Π trivially satis�es our lemma. Hence, we consider a purple region P and

show how to repanel it to ensure each panel has exactly one blue piece. Let Π′ be

the repainted solution which is identical to Π except for the repainted cells in P .

As there are no white cells, the blue and red intervals along the boundary of P must

alternate. Exceptions are the convex corners of P where there may be two blue cells

adjacent to the same purple cell separated by a red or purple cell (see Figure 5.15(a)

top-left). As Γ admits a painting, these blue cells must be connected through P as a

connection through the outside would isolate the red/purple corner cell from P . We

refer to these connections through P as the blue corners of P . At the outer boundary

of the grid the same can happen and we can treat them similarly. Note that, although

the connection may now span multiple cells it passes through each at most once.

We construct a new painting for P as follows. First we place a small blue rectangle

at the center of every panel in P . We then reconnect the blue corners of P by �lling

the appropriate corners from this center rectangle. On these centers we build a

spanning forest by connecting to the centers of adjacent cells. This spanning forest

is built such that each tree in the forest is rooted in a distinct blue interval (see

Figure 5.15(b)). By construction, all red pieces in P forms a single polygon and thus

red is connected. If there was only one blue polygon in P , then we are done as blue

is connected and forms a single piece inside every cell in P .

117

5

5 Spatial set visualization

(a) (b) (c)

Figure 5.15 A purple region of four cells that has to be modified, including the
direst neighborhood and topological connections in the original painting Π outside
P . (a) The top-le� blue corner must be present. (b) Construction of the spanning
forest. (c) Connecting two blue pieces breaks a cycle in the red polygon.

Assume there at least two blue polygons in P . Since we know that a painting exists,

only a red cycle can be broken when we connect two blue polygons. This is most

easily seen in the constructed graphsGb andGr (see Theorem 5.2.1): our constructed

forest maps to a forest inGb and by Lemma 5.2.2 we can arbitrarily complete this into

a tree while ensuring thatGr has a tree as well. Hence, we can pick any two polygons

that have adjacent cells in P and connect them (see Figure 5.15(c)). This reduces the

number of blue polygons by one while keeping the red polygon connected, as the

connection only ever cuts a red cycle. We repeat the above for every purple region

to ensure the eventual painting has a single blue piece in every panel. □

The above construction relies on the alternation of the blue and red intervals along

the boundary of P . As there are no white cells we can guarantee this alternating

pattern. Indeed, the higher complexity with white cells is caused by long connections

along a purple region’s boundary that are needed to achieve this alternating pattern

for a partially colored grid (e.g., Figure 5.13).

5.3.4 Theorem. If a fully 2-colored grid admits a painting, then it admits a 2-painting.

Proof. If there is a solution for a fully 2-colored grid Γ, then by Lemma 5.3.3 there is

a solution Π where every panel in a purple region only has a single blue piece. That

is, every panel only has red along the sides or corners. All red pieces must include at

least one corner by construction of Lemma 5.3.3. If a panel has a red piece that only

connects to one neighboring panel then we retract it such that it is only adjacent to

a single corner. While a panel has more than one red piece we can fully remove any

such red piece from the panel.

118

5

5.3 Optimizing panels

r1 r2

r3 r4
(b)

r1 r2

r3 r4b2b1
(a)

Figure 5.16 Reducing panel complexity when there are two red corners along the
same panel side. (a) The corners are connected via adjacent (or the same) sides of
the panel: connect r1 and r2, and recolor r3 to blue. (b) The corners are connected
via opposite sides: recolor r1 to blue and connect r3 and r4 as well as b1 and b2.

Next we remove unnecessary red pieces around corner points from purple panels

that have at least two distinct red pieces. If all four cells around a corner point of

a purple panel have a red corner adjacent to the corner point, then we can color

the red corner of the purple panel blue without in�uencing the connectivity. After

repeated application of the above, any panel with multiple red components is in one

of four cases:

1. There are two red corners r1 and r2 on the same side of the panel. The con-

necting path exists the current panel via the same side and enters either on

the same or adjacent side. (see Figure 5.16(a)).

2. There are two red corners r1 and r2 on the same side of the panel. The con-

necting path exits the panel via opposite sides of the panel (see Figure 5.16(b)).

The blue piece connects only downwards in the panel below.

3. There are two red corners r1 and r2 that do not share a common side of the

panel. In this case the other corners are blue, otherwise one of the two previous

cases applies (see Figure 5.17). Furthermore, either p1 or p2 is blue.

4. There are two red corners r1 and r2 that do not share a common side of the

panel. Furthermore, both p1 and p2 are red.

We can reduce the complexity of each panel the following reduction rules:

1. Connect r1 and r2, and remove r3 to break the red cycle (see Figure 5.16(a)).

2. Connect r3 and r4, and connect b1 and b2 between r1 and r3. We remove r1 as

it has become useless by connecting b1 and b2. Similarly, we fully color the

rest of the bottom panel red (see Figure 5.16(b)). Note that the only option is

for the blue piece in the bottom panel to connect solely to the panel below it.

Assume that it also connected to the left panel. Then the left red piece must

119

5

5 Spatial set visualization

b2b5

b6p2

(a) (b)

b1

b4 b3 p1

b2b5

b6p2 b1

b4 p1

Figure 5.17 Two diagonally positioned red corners. The complexity of the panel
can be reduced by introducing a red L-shape that connects all the red. (a) Reducing
complexity if either p1 or p2 was blue. (b) Reducing complexity if both p1 and p2
were red.

also connect to the left panel. When this red piece connects two di�erent

sides of this panel then it envelopes the blue corner and this panel cannot

have anymore blue below. This contradicts that there was a solution. Thus, if

the red piece ended in this panel it should include at least one corner, which

it does not. Hence, this situation can also not occur.

3. If either p1 or p2 is blue, we connect r1 and r2 along this respective side of

the panel (see Figure 5.17(a)). We connect either b1 or b4 to an adjacent blue

polygon to break the red cycle and create a single blue polygon again.

4. When both p1 and p2 are red, we connect r1 and r2 along the side of the panel

that is on the opposite side of the corner that the connection between both

red pieces encloses (we pass p2 in Figure 5.17(b)). This results in three blue

polygons. Assume w.l.o.g. that the red corners are connected via a path leaving

through the bottom and entering from the right. We join the blue polygons

together by connecting b1 and b2, and b3 and b4, separating both sides of the

connecting path. We also recolor the border along the side of the adjacent

panel that is not enclosed by the red connection (b5 in this case) to ensure

connectivity of the red.

Repeated application of the above reduction rules interlaced with the reduction of

the number of red pieces in a panel must result in a 2-painting. Every panel still

has a single blue piece as no reduction rule increases the number of blue pieces in a

panel. Furthermore, as none of the above rules applies anymore every panel has a

single red polygon as well. Thus, the painting is a 2-painting. □

120

5

5.4 Conclusion

▶ 5.4 Conclusion
We took the �rst steps towards investigating a disjoint-polygons representation for

visualizing sets (hypergraphs). The disjoint-polygon representation allows for sets to

be displayed without any overlap on the nodes, possibly resulting in a more coherent

set visualization. We investigated the variant where we have 2 hyperedges, and thus

also 2 colors. Each element of the hyperedge is positioned as a cell in a (unit) grid,

for example coming from a grid map. We showed how to test whether a disjoint-

polygons representation exists for a given 2-colored grid. Moreover, we proved that

if such a representation is possible, then we can also bound the complexity of the

corresponding “panels” (the coloring of a single cell). Each panel requires at most

�ve colored pieces, and even only two pieces are su�cient when no white cells are

present in the grid.

There are myriad options for further exploration. We have not touched upon variants

with more colors: does our approach readily generalize? Considering the restrictions

already present in the studied 2-color variant it seems likely that many practical

instances do not admit a painting. It would therefore be interesting to also study the

problem of minimizing the number of polygons of the same color. Additionally, we

could allow for some rearrangement of the elements which would make the method

more practically applicable at the cost of weakening the spatial coherence. Finally,

we may consider the situation where some cells have no assigned set of colors but

may be painted using any subset of the colors. Given enough such cells we could

encode more classes of graphs.

121

5

122

6

Chapter 6

Conclusion
In this thesis we studied algorithms for coherent rectangular visualizations. Coher-

ence requires that relations between data items need to be visually represented, and

that visible relations are present in the data. A coherent visualization thus prevents

false patterns from emerging in the visualization, and preserves patterns that exists

in the data. We investigated coherence for four di�erent data types: (1) time-varying

hierarchical data, (2) uncertain hierarchical data, (3) geospatial data, and (4) spatial

set data. Below, we summarize our results and provide suggestions for future work.

▶ 6.1 Main results
For time-varying hierarchical data we introduced the Local Moves algorithm to main-

tain temporal coherence in treemaps. The algorithm uses local moves, small local

modi�cations to the treemap. By limiting the number of local moves, the trade-o�

between temporal coherence and visual quality can be controlled. In contrast to exist-

ing treemapping algorithms which can reach only sliceable layouts, the full range of

layouts can be explored using local moves. To verify the e�cacy of the Local Moves

algorithm as well as existing treemapping algorithms, we performed an extensive

quantitative evaluation of rectangular treemapping algorithms for time-varying hi-

erarchical data. To better measure the temporal coherence for this evaluation, we

introduced a new methodology based on baseline treemaps to take the amount of

change in the input data into account. Furthermore, we proposed a novel classi-

�cation scheme for time-varying datasets using four representative features. We

experimentally validated this classi�cation, and used it to analyze the relative per-

formance of treemapping algorithms across the features on both temporal coherence

and visual quality.

For uncertain hierarchical data we introduced hierarchical uncertainty masks for

treemaps to obtain coherence with the relation between data and uncertainty. The

resulting Uncertainty Treemaps visualize both numerical values and their associated

uncertainty simultaneously using area. Furthermore, we showed how to adapt exist-

ing treemapping algorithms to support uncertainty masks. To this end, we de�ned

a quality measure for uncertainty masks to steer and evaluate these algorithms. We

123

6

6 Conclusion

demonstrated the quality of the adapted treemapping algorithms through a compu-

tational experiment on real-world datasets.

For complex geospatial data we introduced a simple fully-automated 3-step pipeline

to compute grid maps that are coherent with the spatial dimension. We observed

that any input can be decomposed into simple cases which can be solved well by

existing grid-map algorithms. The coherent solutions for the resulting simple sub-

problems can then be combined into a coherent overall solution. Each step of our

pipeline is a well-studied problem: shape decomposition based on salient features,

tile-based Mosaic Cartograms, and point-set matching. Our pipeline is a seamless

composition of existing techniques for these problems and results in high-quality

and coherent grid maps. We demonstrated the e�cacy of our approach on various

complex datasets, and compared it to the state-of-the-art.

Finally, for spatial set data we introduced a new visual representation to coherently

visualize the relations between sets. The sets are represented by disjoint colored

polygons, and the data items are represented by simple geometric shapes. As a

�rst exploration of the feasibility of this visual representation, we assumed that the

shapes are rectangles positioned on a grid, and that there are only two sets. Under

these assumptions, we derived a necessary and su�cient condition to e�ciently

recognize whether we can visualize each set with a single connected polygon that

is disjoint from the other polygon. Additionally, we showed that, if both sets can be

visualized with such disjoint polygons, then the required visual complexity of the

polygon in each rectangle is bounded by a small constant.

▶ 6.2 Future work
An obvious direction for future work is to investigate coherence for more data types.

One example of such a data type, is temporal spatial set data, where the spatial

position of the elements changes over time. For this type of data the visualization

needs to not only coherently visualize the relations between the sets, but additionally

it needs to ensure coherence with the temporal dimension. The challenge then lies

with maintaining a suitable, natural visual representation, that avoids unwanted

overlap between hyperedges as the elements move, while keeping the drawing stable

to obtain temporal coherence. Once we understand the desired representation, we

may again be able to de�ne a set of "local moves" to control the trade-o� between

stability and other quality measures for this type of data.

124

6

6.2 Future work

A second direction for future work is to investigate coherence for di�erent visual-

ization techniques. For example, geospatial data can be represented by a multitude

of di�erent visualization techniques; one such technique is a Demers cartogram. In

a Demers cartogram, each spatial element is represented by a square, whose area

encodes a numerical value. These squares need to be disjoint and thus the underly-

ing spatial dimension needs to be distorted in a way that is coherent with the spatial

relations between the elements. Current techniques to generate Demers Cartograms

are not always able to preserve coherence with the global shape. It would be inter-

esting to see whether Demers cartograms admit a solution similar to our pipeline

for coherent grid maps, where we decompose the input shape into simpler regions

and combine the solutions for these regions into a coherent overall solution.

There are still interesting open problems for the data types and visualizations pre-

sented in this thesis as well. We discussed speci�c directions for future work in each

chapter; below we discuss two overarching challenges.

Measuring coherence To compare and evaluate coherent visualizations, we need

to be able to accurately measure the coherence of a visualization. Typically, coher-

ence does not depend only on a single visual variable, but on more general structures

in the visualization. Hence, it is challenging to base coherence measures on percep-

tual research.

Taking geospatial data as an example, it is di�cult to measure the spatial coherence

with respect to the input shape. Common shape similarity measures are not suitable

for handling distortion, which is a necessity in obtaining a high-quality grid map.

Yet, not all distortion is equal; it must be applied e�ectively and in a structured way

as to still have a sense of local scale for salient features, even though the larger

structures are distorted. We thus need a coherence measure that takes both the local

structures and the similarity to the input shape into account.

Complicating the issue of evaluating a coherent visualization further, is that their

e�cacy depends on how accurate individual items are perceived. In treemaps for

example, the Slice-and-Dice algorithm is coherent with the temporal dimension,

which intuitively should make it suitable for time-varying data. However, the area

of the rectangles in a Slice-and-Dice treemap are hard to assess due to the high

aspect ratios. Therefore, the Slice-And-Dice treemap is not likely to perform well

on tasks for time-varying data. There is thus a need for studies that investigate the

interplay between coherence and other quality measures. Such a study could deliver

important insights as to where on the Pareto-front of the di�erent quality measures

a visualization should be.

125

6

6 Conclusion

Controlling trade-o�s In general, we often encounter a trade-o� between the

coherence and other quality metrics of a visualization. Improving the quality on

one metric, then reduces the quality of another metric. Depending on the exact task,

di�erent metrics can be deemed more important. Hence, the visualization may need

to be in di�erent spots on the Pareto-front of quality metrics for di�erent tasks. We

have shown that we can control the trade-o� between the visual quality and the

temporal coherence in treemaps. It would be interesting to see whether a similar

result is possible for the other data types.

Often, there also exists a trade-o� between the running time and the quality metrics

of a visualization. For time-varying hierarchical data in treemaps, we can increase

the visual quality by allowing the algorithm to explore more layouts, at the cost

of increased running time. However, this will also decrease the coherence with

the temporal dimension. It is an interesting open problem whether this trade-o�

between the running time, the coherence, and other quality measures can be fully

controlled for both this data type in particular, as well as for other data types in

general.

126

Bibliography
[1] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. “Design study of LineSets,

a novel set visualization technique”. In: IEEE transactions on visualization
and computer graphics 17.12 (2011), pp. 2259–2267.

[2] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. “Radial Sets: Interactive

visual analysis of large overlapping sets”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 19.12 (2013), pp. 2496–2505.

[3] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers.

“The State of the Art of Set Visualization”. In: Computer Graphics Forum 35.1

(2016), pp. 234–260.

[4] D. Archambault and H. C. Purchase. “Mental map preservation helps user

orientation in dynamic graphs”. In: International Symposium on Graph Draw-
ing. Springer. 2012, pp. 475–486.

[5] ATP Tennis Rankings. https://github.com/JeffSackmann/tennis_atp.

accessed 03-07-2018.

[6] A. S. Bair, D. H. House, and C. Ware. “Factors in�uencing the choice of

projection textures for displaying layered surfaces”. In: Proceedings of the
6th Symposium on Applied Perception in Graphics and Visualization (2009),

p. 101.

[7] M. Balzer, O. Deussen, and C. Lewerentz. “Voronoi Treemaps for the Visu-

alization of Software Metrics”. In: Proceedings of the ACM Symposium on
Software Visualization. 2005, pp. 165–172.

[8] M. Baron. “A note on the historical development of logic diagrams: Leibniz,

Euler and Venn”. In: Mathematical Gazette 53.384 (1969), pp. 113–125.

[9] B. B. Bederson, B. Shneiderman, and M. Wattenberg. “Ordered and quantum

treemaps: Making e�ective use of 2D space to display hierarchies”. In: ACM
Transactions on Graphics 21.4 (2002), pp. 833–854.

[10] M. de Berg, B. Speckmann, and V. van der Weele. “Treemaps with bounded

aspect ratio”. In: Computational Geometry: Theory and Applications 47.6

(2014), pp. 683–693.

[11] B. Berkowitz and L. Gamio. What you need to know about the measles out-
break. Accessed April 2020. Feb. 2015. url: https://www.washingtonpost.
com/graphics/health/how-fast-does-measles-spread/.

127

https://github.com/JeffSackmann/tennis_atp
https://www.washingtonpost.com/graphics/health/how-fast-does-measles-spread/
https://www.washingtonpost.com/graphics/health/how-fast-does-measles-spread/

Bibliography

[12] J. Bertin. Semiology of graphics: Diagrams, networks, maps. University of

Wisconsin Press, 1983.

[13] I. Biederman. “Recognition-by-Components: A Theory of Human Image

Understanding”. In: Psychological Review 94.2 (1987), pp. 115–147.

[14] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[15] J. L. Blaha. Standard Errors in the Consumer Expenditure Survey. https://
www.bls.gov/cex/anthology/csxanth5.pdf. 2003.

[16] P. Blickle and S. Venohr. Dürfen wir vorstellen: Deutschlands Muslime. Ac-

cessed April 2020. Jan. 2015. url: http://www.zeit.de/gesellschaft/
2015-01/islam-muslime-in-deutschland.

[17] H. Blum. “A transformation for extracting new descriptors of shape”. In:

Models for the perception of speech and visual form 19.5 (1967), pp. 362–380.

[18] S. A. Boorman and D. C. Oliviera. “Metrics on spaces of �nite trees”. In:

Journal of Mathematical Psychology. Vol. 10. 1973, pp. 26–59.

[19] N. Boukhelifa, A. Bezerianos, T. Isenberg, and J.-D. Fekete. “Evaluating Sketch-

iness as a Visual Variable for the Depiction of Qualitative Uncertainty”.

In: IEEE Transactions on Visualization and Computer Graphics 18.12 (2012),

pp. 2769–2778.

[20] Q. W. Bouts, I. Kostitsyna, M. van Kreveld, W. Meulemans, W. Sonke, and K.

Verbeek. “Mapping Polygons to the Grid with Small Hausdor� and Fréchet

Distance”. In: Proceedings of the 24th Annual European Symposium on Algo-
rithms. Vol. 57. 2016, 22:1–22:16.

[21] F.-J. Brandenburg. “On the complexity of optimal drawings of graphs”. In:

Proceedings of the Graph-Theoretic Concepts in Computer Science. Vol. 411.

1989, pp. 166–180.

[22] K. Brodlie, R. Allendes Osorio, and A. Lopes. “A Review of Uncertainty in

Data Visualization”. In: Expanding the Frontiers of Visual Analytics and Visu-
alization. Springer, 2012, pp. 81–109.

[23] M. Bruls, K. Huizing, and J. J. van Wijk. “Squari�ed Treemaps”. In: Proceed-
ings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization.

2000, pp. 33–42.

[24] K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. “On

Planar Supports for Hypergraphs”. In: Journal of Graph Algorithms and Ap-
plications 15.4 (2011), pp. 533–549.

128

https://www.bls.gov/cex/anthology/csxanth5.pdf
https://www.bls.gov/cex/anthology/csxanth5.pdf
http://www.zeit.de/gesellschaft/2015-01/islam-muslime-in-deutschland
http://www.zeit.de/gesellschaft/2015-01/islam-muslime-in-deutschland

Bibliography

[25] R. G. Cano, K. Buchin, T. Castermans, A. Pieterse, W. Sonke, and Bettina.

“Mosaic Drawings and Cartograms”. In:Computer Graphics Forum 34.3 (2015),

pp. 361–370.

[26] B. Casselman and A. McCann. Where Your State Gets Its Money. Accessed

April 2020. Apr. 2015. url: http://fivethirtyeight.com/features/
where-your-state-gets-its-money/.

[27] M. Chen, S. Walton, K. Berger, J. Thiyagalingam, B. Du�y, H. Fang, C. Hol-

loway, and A. E. Trefethen. “Visual multiplexing”. In: Computer Graphics
Forum 33.3 (2014), pp. 241–250.

[28] Y. Chen, X. Du, and X. Yuan. “Ordered small multiple treemaps for visual-

izing time-varying hierarchical pesticide residue data”. In: Visual Computer
33.6 (2017), pp. 1073–1084.

[29] F. Chin, J. Snoeyink, and C. A. Wang. “Finding the medial axis of a simple

polygon in linear time”. In: Discrete & Computational Geometry 21.3 (1999),

pp. 405–420.

[30] W. S. Cleveland and R. McGill. “Graphical Perception: Theory, Experimenta-

tion, and Application to the Development of Graphical Methods”. In: Journal
of the American Statistical Association 79.387 (1984), pp. 531–554.

[31] S. Cohen and L. Guibas. “The Earth Mover’s Distance under transformation

sets”. In: Proceedings of the IEEE International Conference on Computer Vision.

Vol. 2. 1999, pp. 1076–1083.

[32] C. Collins, G. Penn, and S. Carpendale. “Bubble Sets: Revealing Set Rela-

tions with Isocontours over Existing Visualizations”. In: IEEE Transactions
on Visualization and Computer Graphics 15.6 (2009), pp. 1009–1016.

[33] M. Correll and M. Gleicher. “Error bars considered harmful: Exploring alter-

nate encodings for mean and error”. In: IEEE Transactions on Visualization
and Computer Graphics 20.12 (2014), pp. 2142–2151.

[34] D. DeBelius. Let’s Tesselate: Hexagons For Tile Grid Maps. Accessed April

2020. May 2015. url: http://blog.apps.npr.org/2015/05/11/hex-
tile-maps.html.

[35] T. C. van Dijk and J.-H. Haunert. “Interactive focus maps using least-squares

optimization”. In: International Journal of Geographical Information Science
28.10 (2014), pp. 2052–2075.

[36] K. Dinkla, M. van Kreveld, B. Speckmann, and M. Westenberg. “Kelp Dia-

grams: Point set membership visualization”. In: Computer Graphics Forum
31.3pt1 (2012), pp. 875–884.

129

http://fivethirtyeight.com/features/where-your-state-gets-its-money/
http://fivethirtyeight.com/features/where-your-state-gets-its-money/
http://blog.apps.npr.org/2015/05/11/hex-tile-maps.html
http://blog.apps.npr.org/2015/05/11/hex-tile-maps.html

Bibliography

[37] B. Engdahl. “Ordered and unordered treemap algorithms and their applica-

tions on handheld devices”. In: Master’s degree project, Department of Numer-
ical Analysis and Computer Science, Stockholm Royal Institute of Technology,
SE-100 44 (2005).

[38] D. Eppstein, G. Italiano, R. Tamassia, R. Tarjan, J. Westbrook, and M. Yung.

“Maintenance of a minimum spanning forest in a dynamic plane graph”. In:

Journal of Algorithms 13.1 (1992), pp. 33–54.

[39] D. Eppstein, M. van Kreveld, B. Speckmann, and F. Staals. “Improved Grid

Map Layout by Point Set Matching”. In: International Journal on Computa-
tional Geometry Applications 25.2 (2015), pp. 101–122.

[40] D. Eppstein, E. Mumford, B. Speckmann, and K. Verbeek. “Area-universal

and constrained rectangular layouts”. In: SIAM Journal on Computing 41.3

(2012), pp. 537–564.

[41] M. Espadoto, R. Martins, A. Kerren, N. Hirata, and A. Telea. “Towards a Quan-

titative Survey of Dimension Reduction Techniques”. In: IEEE Transactions
on Visualization and Computer Graphics (2019).

[42] P. F. Fisher. “Models of uncertainty in spatial data”. In: Geographical infor-
mation systems 1 (1999), pp. 191–205.

[43] B. Fong. How to Make Tile Grid Maps in Tableau. Accessed April 2020. Jan.

2016. url: https://public.tableau.com/s/blog/2016/01/how-make-
tile-grid-maps-tableau.

[44] M. T. Gastner and M. E. J. Newman. “Di�usion-based method for producing

density-equalizing maps”. In: Proceedings of the National Academy of Sciences
101.20 (2004), pp. 7499–7504.

[45] M. T. Gastner, V. Seguy, and P. More. “Fast �ow-based algorithm for creating

density-equalizing map projections”. In: Proceedings of the National Academy
of Sciences 115.10 (2018), E2156–E2164.

[46] Github. https://github.com. accessed 16-07-2018.

[47] A. van Goethem, I. Kostitsyna, M. van Kreveld, W. Meulemans, M. Sondag,

and J. Wulms. “The painter’s problem: covering a grid with colored con-

nected polygons”. In: International Symposium on Graph Drawing and Net-
work Visualization. Springer. 2017, pp. 492–505.

[48] J. Görtler, C. Schulz, D. Weiskopf, and O. Deussen. “Bubble Treemaps for Un-

certainty Visualization”. In: IEEE Transactions on Visualization and Computer
Graphics 24.1 (2018), pp. 719–728.

130

https://public.tableau.com/s/blog/2016/01/how-make-tile-grid-maps-tableau
https://public.tableau.com/s/blog/2016/01/how-make-tile-grid-maps-tableau
https://github.com

Bibliography

[49] M. Greis, P. E. Agroudy, H. Schu�, T. Machulla, and A. Schmidt. “Decision-

Making under Uncertainty: How the Amount of Presented Uncertainty In�u-

ences User Behavior”. In: Proceedings of the 9th Nordic Conference on Human-
Computer Interaction (2016), pp. 2–5.

[50] Gridmap resources. https://github.com/tue-aga/Gridmap.

[51] T. Gschwandtner, M. Bogl, P. Federico, and S. Miksch. “Visual Encodings of

Temporal Uncertainty: A Comparative User Study”. In: IEEE Transactions on
Visualization and Computer Graphics 22.1 (2016), pp. 539–548.

[52] D. Guo, J. Chen, A. M. MacEachren, and K. Liao. “A visualization system for

space-time and multivariate patterns (vis-stamp)”. In: IEEE Transactions on
Visualization and Computer Graphics 12.6 (2006), pp. 1461–1474.

[53] H. Guo, J. Huang, and D. H. Laidlaw. “Representing uncertainty in graph

edges: an evaluation of paired visual variables”. In: IEEE Transactions on
Visualization and Computer Graphics 21.10 (2015), pp. 1173–1186.

[54] S. Hahn, J. Trümper, D. Moritz, and J. Döllner. “Visualization of varying

hierarchies by stable layout of Voronoi treemaps”. In: Proceedings of the In-
ternational Conference on Information Visualization Theory and Applications.
2014, pp. 50–58.

[55] S. Hahn. “Comparing the Layout Stability of Treemap Algorithms”. In: Pro-
ceedings of the HPI research school on service-oriented systems engineering 95

(2015), pp. 71–79.

[56] S. Hahn, J. Bethge, and J. Döllner. “Relative Direction Change: A Topology-

based Metric for Layout Stability in Treemaps”. In: Proceedings of the 8th
International Conference of Information Visualization Theory and Applica-
tions. 2017, pp. 88–95.

[57] F. M. Harper and J. A. Konstan. “The movielens datasets: History and con-

text”. In: ACM Transactions on Interactive Intelligent Systems 5.4 (2016), p. 19.

[58] J.-H. Haunert and L. Sering. “Drawing Road Networks with Focus Regions”.

In: IEEE Transactions on Visualization and Computer Graphics 17.12 (2011),

pp. 2555–2562.

[59] N. Henry Riche and T. Dwyer. “Untangling Euler Diagrams”. In: IEEE Trans-
actions on Visualization and Computer Graphics 16.6 (2010), pp. 1090–1099.

[60] D. D. Ho�man and W. Richards. “Parts of recognition”. In: Cognition 18.1

(1984), pp. 65–96.

131

https://github.com/tue-aga/Gridmap

Bibliography

[61] N. S. Holliman, A. Coltekin, S. J. Fernstad, M. D. Simpson, K. J. Wilson, and

A. J. Woods. “Visual Entropy and the Visualization of Uncertainty”. In: arXiv
preprint arXiv:1907.12879 (2019).

[62] J. Hullman. “Why Authors Don’t Visualize Uncertainty”. In: IEEE transac-
tions on visualization and computer graphics 26.1 (2019), pp. 130–139.

[63] J. Hullman, X. Qiao, M. Correll, A. Kale, and M. Kay. “In Pursuit of Error:

A Survey of Uncertainty Visualization Evaluation”. In: IEEE Transactions on
Visualization and Computer Graphics 25.1 (2019), pp. 903–913.

[64] A. Kale, F. Nguyen, M. Kay, and J. Hullman. “Hypothetical Outcome Plots

Help Untrained Observers Judge Trends in Ambiguous Data”. In: IEEE Trans-
actions on Visualization and Computer Graphics 25.1 (2019), pp. 892–902.

[65] M. Kaufmann, M. van Kreveld, and B. Speckmann. “Subdivision Drawings of

Hypergraphs”. In: Proceedings of the 16th International Symposium on Graph
Drawing. 2009, pp. 396–407.

[66] R. Khlebnikov, B. Kainz, M. Steinberger, and D. Schmalstieg. “Noise-based

volume rendering for the visualization of multivariate volumetric data”.

In: IEEE Transactions on Visualization and Computer Graphics 19.12 (2013),

pp. 2926–2935.

[67] H. Kim, J. Choo, C. K. Reddy, and H. Park. “Doubly supervised embedding

based on class labels and intrinsic clusters for high-dimensional data visu-

alization”. In: Neurocomputing 150 (2015), pp. 570–582.

[68] G. Kindlmann and C. Scheidegger. “An algebraic process for visualization

design”. In: IEEE transactions on visualization and computer graphics 20.12

(2014), pp. 2181–2190.

[69] C. Kinkeldey, J. Mason, A. Klippel, and J. Schiewe. “Evaluation of noise

annotation lines: using noise to represent thematic uncertainty in maps”.

In: Cartography and Geographic Information 41.5 (2014), pp. 430–439.

[70] N. Kong, J. Heer, and M. Agrawala. “Perceptual guidelines for creating rect-

angular treemaps”. In: IEEE Transactions on Visualization and Computer
Graphics 16.6 (2010), pp. 990–998.

[71] I. Kostitsyna, M. Lö�er, M. Sondag, W. Sonke, and J. Wulms. “The hardness

of Witness puzzles”. In: 34th EuropeanWorkshop on Computational Geometry.

2018.

[72] M. K. Kuhner and J. Yamato. “Practical Performance of Tree Comparison

Metrics”. In: Systematic Biology 64.2 (2015), pp. 205–214.

132

Bibliography

[73] L. J. Latecki and R. Lakämper. “Convexity rule for shape decomposition

based on discrete contour evolution”. In: Computer Vision and Image Under-
standing 73.3 (1999), pp. 441–454.

[74] X. Liu, Y. Hu, S. North, and H.-W. Shen. “CorrelatedMultiples: Spatially Co-

herent Small Multiples With Constrained Multi-Dimensional Scaling”. In:

Computer Graphics Forum 37.1 (2018), pp. 7–18.

[75] M. Lö�er and W. Meulemans. “Discretized Approaches to Schematization”.

In: Proceedings of the 29th Canadian Conference on Computational Geometry.

2017, pp. 220–225.

[76] A. Longjas, E. F. Legara, and C. Monterola. “Power law mapping in human

area perception”. In: International Journal of Modern Physics C 22.5 (2011),

pp. 495–503.

[77] L. Lu, S. Fan, M. Huang, W. Huang, and R. Yang. “Golden Rectangle Treemap”.

In: Journal of Physics: Conference Series 787.1 (2017).

[78] Y. Lu, J.-M. Lien, M. Ghosh, and N. M. Amato. “�-decomposition of poly-

gons”. In: Computers & Graphics 36.5 (2012), pp. 466–476.

[79] A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, and M. Gahegan.

“Visual semiotics & uncertainty visualization: An empirical study”. In: IEEE
Transactions on Visualization and Computer Graphics 18.12 (2012), pp. 2496–

2505.

[80] J. D. Mackinlay. “Automating the Design of Graphical Presentations of Re-

lational Information”. In: ACM Transactions on Graphics 5.2 (1986), pp. 110–

141.

[81] E. Mäkinen. “How to draw a hypergraph”. In: International Journal of Com-
puter Mathematics 34 (1990), pp. 177–185.

[82] B. B. Mandelbrot. “How Long Is the Coast of Britain”. In: The Fractal Geom-
etry of Nature. W. H. Freeman, New York, 1983, pp. 25–33.

[83] G. McNeill and S. A. Hale. “Generating tile maps”. In: Computer Graphics
Forum 36.3 (2017), pp. 435–445.

[84] Meertens Instituut, KNAW. Nederlandse Voornamenbank. https://www.
meertens.knaw.nl/nvb. Accessed on 30-05-2016. 2013.

[85] W. Meulemans, N. Henry Riche, B. Speckmann, B. Alper, and T. Dwyer.

“KelpFusion: A hybrid set visualization technique”. In: IEEE Transactions on
Visualization and Computer Graphics 19.11 (2013), pp. 1846–1858.

133

https://www.meertens.knaw.nl/nvb
https://www.meertens.knaw.nl/nvb

Bibliography

[86] W. Meulemans, J. Dykes, A. Slingsby, C. Turkay, and J. Wood. “Small Multi-

ples with Gaps”. In: IEEE Transactions on Visualization and Computer Graph-
ics 23.1 (2017), pp. 381–390.

[87] W. Meulemans, M. Sondag, and B. Speckmann. “A Simple Pipeline for Coher-

ent Grid Maps”. In: IEEE Transactions on Visualization and Computer Graph-
ics (2020), To appear.

[88] X. Mi and D. DeCarlo. “Separating parts from 2d shapes using relatability”.

In: IEEE International Conference on Computer Vision. 2007, pp. 1–8.

[89] S. Mittelstädt, A. Sto�el, and D. A. Keim. “Methods for compensating con-

trast e�ects in information visualization”. In: Computer Graphics Forum.

Vol. 33. 3. Wiley Online Library. 2014, pp. 231–240.

[90] T. Munzner. Visualization analysis and design. CRC press, 2014.

[91] H. Nagamochi and Y. Abe. “An approximation algorithm for dissecting a

rectangle into rectangles with speci�ed areas”. In: Discrete Applied Mathe-
matics 155.4 (2007), pp. 523–537.

[92] New York Times. How the Rulings A�ect Gay Couples. Accessed April 2020.

June 2013. url: http://www.nytimes.com/interactive/2013/06/26/
us/scotus-gay-marriage.html.

[93] Q. H. Nguyen and P. Eades. “Towards faithful graph visualizations”. In: arXiv
preprint arXiv:1701.00921 (2017).

[94] N. Papanelopoulos, Y. Avrithis, and S. Kollias. “Revisiting the medial axis for

planar shape decomposition”. In: Computer Vision and Image Understanding
179 (2019), pp. 66–78.

[95] H. Park. Gay Marriage State by State: From a Few States to the Whole Na-
tion. Accessed April 2020. Mar. 2015. url: http://www.nytimes.com/
interactive/2015/03/04/us/gay-marriage-state-by-state.html.

[96] K. Powell, R. Harris, and F. Cage. How voter-friendly is your state? Accessed

April 2020. Oct. 2014. url: http://www.theguardian.com/us-news/ng-
interactive/2014/oct/22/-sp-voting-rights-identification-
how-friendly-is-your-state.

[97] H. C. Purchase. “Metrics for graph drawing aesthetics”. In: Journal of Visual
Languages & Computing 13.5 (2002), pp. 501–516.

[98] H. C. Purchase, R. F. Cohen, and M. I. James. “An experimental study of the

basis for graph drawing algorithms”. In: Journal of Experimental Algorith-
mics (JEA) 2 (1997), 4–es.

134

http://www.nytimes.com/interactive/2013/06/26/us/scotus-gay-marriage.html
http://www.nytimes.com/interactive/2013/06/26/us/scotus-gay-marriage.html
http://www.nytimes.com/interactive/2015/03/04/us/gay-marriage-state-by-state.html
http://www.nytimes.com/interactive/2015/03/04/us/gay-marriage-state-by-state.html
http://www.theguardian.com/us-news/ng-interactive/2014/oct/22/-sp-voting-rights-identification-how-friendly-is-your-state
http://www.theguardian.com/us-news/ng-interactive/2014/oct/22/-sp-voting-rights-identification-how-friendly-is-your-state
http://www.theguardian.com/us-news/ng-interactive/2014/oct/22/-sp-voting-rights-identification-how-friendly-is-your-state

Bibliography

[99] H. C. Purchase, R. F. Cohen, and M. I. James. “Validating graph drawing aes-

thetics”. In: Proceedings of the Symposium on Graph Drawing. 1996, pp. 435–

446.

[100] R. Radburn. Go with the Flow: Commuting & Migration �ows within Lon-
don. Accessed April 2020. Mar. 2016. url: https : / / public . tableau .
com/profile/robradburn/#!/vizhome/ODMpasLondonAftertheFlood/
GowiththeFlow.

[101] R. Radburn. Home Truths in London. Accessed April 2020. Apr. 2020. url:

https://public.tableau.com/profile/robradburn/#!/vizhome/
HomeTruthsinLondon/LondonTenure.

[102] N. Richards. Do tile maps need to have regular shapes? Accessed April 2020.

Feb. 2019. url: https://questionsindataviz.com/2019/02/02/do-
tile-maps-need-to-have-regular-shapes/.

[103] N. Richards. How do you tile the world? Accessed April 2020. Nov. 2017. url:

https://questionsindataviz.com/2017/11/05/how-do-you-tile-
the-world/.

[104] N. Richards. When are two maps better than one? Accessed April 2020. May

2019. url: https://questionsindataviz.com/2019/05/21/when-are-
two-maps-better-than-one/.

[105] N. Richards. Where are the Africa grid/tile maps? Accessed April 2020. Sept.

2016. url: https://questionsindataviz.com/2016/09/01/where-
are-the-africa-gridtile-maps/.

[106] D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis, and D. A. Keim. “The Role of

Uncertainty, Awareness, and Trust in Visual Analytics”. In: IEEE Transactions
on Visualization and Computer Graphics 22.1 (2016), pp. 240–249.

[107] W. Scheibel, C. Weyand, and J. Döllner. “EvoCells – A Treemap Layout Algo-

rithm for Evolving Tree Data”. In: Proceedings of the International Conference
on Information Visualization Theory and Applications. 2018, pp. 273–280.

[108] C. Schulz, K. Schatz, M. Krone, M. Braun, T. Ertl, and D. Weiskopf. “Un-

certainty Visualization for Secondary Structures of Proteins”. In: 2018 IEEE
Paci�c Visualization Symposium. 2018, pp. 96–105.

[109] Scitools. https://scitools.com.

[110] T. Shaw. Good Data Visualization Practice: Tile Grid Maps. Accessed April

2020. Apr. 2016. url: https://www.forumone.com/ideas/good-data-
visualization-practice-tile-grid-maps-0/.

135

https://public.tableau.com/profile/robradburn/#!/vizhome/ODMpasLondonAftertheFlood/GowiththeFlow
https://public.tableau.com/profile/robradburn/#!/vizhome/ODMpasLondonAftertheFlood/GowiththeFlow
https://public.tableau.com/profile/robradburn/#!/vizhome/ODMpasLondonAftertheFlood/GowiththeFlow
https://public.tableau.com/profile/robradburn/#!/vizhome/HomeTruthsinLondon/LondonTenure
https://public.tableau.com/profile/robradburn/#!/vizhome/HomeTruthsinLondon/LondonTenure
https://questionsindataviz.com/2019/02/02/do-tile-maps-need-to-have-regular-shapes/
https://questionsindataviz.com/2019/02/02/do-tile-maps-need-to-have-regular-shapes/
https://questionsindataviz.com/2017/11/05/how-do-you-tile-the-world/
https://questionsindataviz.com/2017/11/05/how-do-you-tile-the-world/
https://questionsindataviz.com/2019/05/21/when-are-two-maps-better-than-one/
https://questionsindataviz.com/2019/05/21/when-are-two-maps-better-than-one/
https://questionsindataviz.com/2016/09/01/where-are-the-africa-gridtile-maps/
https://questionsindataviz.com/2016/09/01/where-are-the-africa-gridtile-maps/
https://scitools.com
https://www.forumone.com/ideas/good-data-visualization-practice-tile-grid-maps-0/
https://www.forumone.com/ideas/good-data-visualization-practice-tile-grid-maps-0/

Bibliography

[111] J. Shi and C. Tomasi. “Good features to track”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1994, pp. 593–600.

[112] B. Shneiderman. “Tree Visualization with Tree-maps: a 2D Space-�lling Ap-

proach”. In: ACM Transactions on Graphics 11.1 (1992), pp. 92–99.

[113] B. Shneiderman and M. Wattenberg. “Ordered treemap layouts”. In: Proceed-
ings of the IEEE Symposium on Information Visualization. 2001, pp. 73–78.

[114] K. Siddiqi and B. B. Kimia. “Parts of visual form: Computational aspects”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 17.3 (1995),

pp. 239–251.

[115] P. Simonetto and D. Auber. “Visualise Undrawable Euler Diagrams”. In: Pro-
ceedings of the 12th Conference on Information Visualisation. 2008, pp. 594–

599.

[116] P. Simonetto, D. Auber, and D. Archambault. “Fully Automatic Visualisation

of Overlapping Sets”. In: Computer Graphics Forum 28.3 (2009), pp. 967–974.

[117] M. Singh and D. D. Ho�man. “Part-based representations of visual shape

and implications for visual cognition”. In: Advances in psychology 130 (2001),

pp. 401–459.

[118] M. Singh, G. D. Seyranian, and D. D. Ho�man. “Parsing silhouettes: The

short-cut rule”. In: Perception & Psychophysics 61.4 (1999), pp. 636–660.

[119] A. Slingsby. “Tilemaps for summarising multivariate geographical varia-

tion”. In: Proceedings of the Workshop on Visual Summarization and Report
Generation. 2018.

[120] A. Slingsby, J. Dykes, and J. Wood. “Rectangular Hierarchical Cartograms

for Socio-Economic Data”. In: Journal of Maps 6.1 (2010), pp. 330–345.

[121] A. Slingsby, J. Dykes, and J. Wood. “Exploring Uncertainty in Geodemo-

graphics with Interactive Graphics”. In: IEEE Transactions on Visualization
and Computer Graphics 17.12 (2011), pp. 2545–2554.

[122] A. Slingsby, M. Kelly, and J. Dykes. “OD maps for showing changes in Irish

female migration between 1851 and 1911”. In: Environment and Planning A
46.12 (2014), pp. 2795–2797.

[123] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis. “Towards Objective

Measures of Algorithm Performance Across Instance Space”. In: Computers
& Operations Research 45 (2014), pp. 12–24.

136

Bibliography

[124] M. Sondag, W. Meulemans, S. Nickel, M. Nollenburg, M. Chimani, and J. Pel-

tonen. “Computing Stable Demers Cartograms”. In: International Symposium
on Graph Drawing and Network Visualization. 2019.

[125] M. Sondag, W. Meulemans, C. Schulz, K. Verbeek, D. Weiskopf, and B. Speck-

mann. “Uncertainty Treemaps”. In: 2020 IEEE Paci�c Visualization Sympo-
sium. 2020, pp. 111–120.

[126] M. Sondag, B. Speckmann, and K. Verbeek. “Stable Treemaps via Local Moves”.

In: IEEE Transactions on Visualization and Computer Graphics 24.1 (2018),

pp. 729–738.

[127] S. S. Stevens. “On the psychophysical law”. In: Psychological Review 64.3

(1957), pp. 153–181.

[128] S. S. Stevens. “The psychophysics of sensory function”. In:American Scientist
48.2 (1960), pp. 226–253.

[129] T. Sugibuchi, N. Spyratos, and E. Siminenko. “A framework to analyze infor-

mation visualization based on the functional data model”. In: 13th Interna-
tional Conference Information Visualisation. IEEE. 2009, pp. 18–24.

[130] E. Sullivan, M. Sondag, I. Rutter, W. Meulemans, S. Cunningham, B. Speck-

mann, and M. Alfano. “Can real social epistemic networks deliver the wis-

dom of crowds?” In:Oxford Studies in Experimental Philosophy. Vol. 3. Oxford

University Press. 2019.

[131] E. Sullivan, M. Sondag, I. Rutter, W. Meulemans, S. Cunningham, B. Speck-

mann, and M. Alfano. “Vulnerability in social epistemic networks”. In: In-
ternational Journal of Philosophical Studies (2020), pp. 1–23.

[132] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[133] S. Tak and A. Cockburn. “Enhanced spatial stability with Hilbert and Moore

treemaps”. In: IEEE Transactions on Visualization and Computer Graphics
19.1 (2013), pp. 141–148.

[134] M. Teghtsoonian. “The judgment of size”. In: The American Journal of Psy-
chology 78.3 (1965), pp. 392–402.

[135] A. Telea. “Combining Extended Table Lens and Treemap Techniques for

Visualizing Tabular Data”. In: Proceedings of the VGTC Conference on Visual-
ization. 2006, pp. 120–127.

[136] The Movie Database. www.themoviedb.org. accessed 10-02-2018.

[137] Treemap resources. https : / / eduardovernier . github . io / dynamic -
treemap-resources-eurovis.

137

www.themoviedb.org
https://eduardovernier.github.io/dynamic-treemap-resources-eurovis
https://eduardovernier.github.io/dynamic-treemap-resources-eurovis

Bibliography

[138] A. Tribou and K. Collins. This Is How Fast America Changes Its Mind. Ac-

cessed April 2020. June 2015. url: http://www.bloomberg.com/graphics/
2015-pace-of-social-change/.

[139] Y. Tu and H.-W. Shen. “Visualizing changes of hierarchical data using treemaps”.

In: IEEE Transactions on Visualization and Computer Graphics 13.6 (2007),

pp. 1286–1293.

[140] E. R. Tufte. The visual display of quantitative information. Vol. 2. Graphics

press Cheshire, CT, 2001.

[141] W. Tutte. Graph Theory. Addison-Wesley, Menlo Park (CA), USA, 1984.

[142] T. Tuytelaars and K. Mikolajczyk. “Local Invariant Feature Detectors: A Sur-

vey”. In: Foundations and Trends in Computer Graphics and Vision 3.3 (2007),

pp. 177–280.

[143] Uncertainty Treemaps. https://github.com/tue-aga/UncertaintyTreemaps.

[144] United Nations. UN Comtrade database. https://comtrade.un.org. Ac-

cessed on 15-02-2017.

[145] USGS Earthquakes. https : / / earthquake . usgs . gov / earthquakes /
browse/stats.php. accessed 03-07-2018.

[146] P. M. Vaidya. “Geometry helps in matching”. In: SIAM Journal on Computing
18.6 (1989), pp. 1201–1225.

[147] E. Vernier, J. Comba, and A. Telea. “A Stable Greedy Insertion Treemap Algo-

rithm for Software Evolution Visualization”. In: IEEE Conference on Graphics,
Patterns and Images. 2018, pp. 158–165.

[148] E. Vernier, J. Comba, and A. Telea. “Quantitative Comparison of Dynamic

Treemaps for Software Evolution Visualization”. In: IEEE Conference on Soft-
ware Visualization. 2018, pp. 96–106.

[149] E. Vernier, M. Sondag, J. Comba, B. Speckmann, A. Telea, and K. Verbeek.

“Quantitative Comparison of Time-Dependent Treemaps”. In:Computer Graph-
ics Forum (2020).

[150] R. Vliegen, J. J. van Wijk, and E. J. van der Linden. “Visualizing Business

Data with Generalized Treemaps”. In: IEEE Transactions on Visualization
and Computer Graphics 12.5 (2006), pp. 789–796.

[151] T. Walsh. “Hypermaps versus bipartite maps”. In: Journal of Combinatorial
Theory 18 (1975), pp. 155–163.

138

http://www.bloomberg.com/graphics/2015-pace-of-social-change/
http://www.bloomberg.com/graphics/2015-pace-of-social-change/
https://github.com/tue-aga/UncertaintyTreemaps
https://comtrade.un.org
https://earthquake.usgs.gov/earthquakes/browse/stats.php
https://earthquake.usgs.gov/earthquakes/browse/stats.php

Bibliography

[152] M. Wattenberg. “A note on space-�lling visualizations and space-�lling

curves”. In: Proceedings of the IEEE Symposium on Information Visualization.

2005.

[153] K. Wongsuphasawat. A semi-automatic way to create your own grid map.

Accessed April 2020. Jan. 2016. url: https://medium.com/%5C@kristw/
creating-grid-map-for-thailand-397b53a4ecf.

[154] K. Wongsuphasawat. Whose Grid Map is better? Quality Metrics for Grid Map
Layouts. Accessed April 2020. Jan. 2016. url: https://medium.com/%5C@
kristw/whose-grid-map-is-better-quality-metrics-for-grid-
map-layouts-e3d6075d9e80.

[155] J. Wood, D. Badawood, J. Dykes, and A. Slingsby. “BallotMaps: Detecting

name bias in alphabetically ordered ballot papers”. In: IEEE Transactions on
Visualization and Computer Graphics 17.12 (2011), pp. 2384–2391.

[156] J. Wood and J. Dykes. “Spatially ordered treemaps”. In: IEEE Transactions on
Visualization and Computer Graphics 14.6 (2008), pp. 1348–1355.

[157] J. Wood, A. Slingsby, and J. Dykes. “Visualizing the dynamics of London’s

bicycle-hire scheme”. In: Cartographica: The International Journal for Geo-
graphic Information and Geovisualization 46.4 (2011), pp. 239–251.

[158] Worldbank indicators. https://data.worldbank.org/indicator/. ac-

cessed 04-07-2018.

[159] Worldbank infant death indicator. https://data.worldbank.org/indicator/
SH.DTH.IMRT. accessed 04-07-2018.

[160] E. F. Young, C. C. Chu, and Z. C. Shen. “Twin binary sequences: A nonredun-

dant representation for general nonslicing �oorplan”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 22.4 (2003),

pp. 457–469.

139

https://medium.com/%5C@kristw/creating-grid-map-for-thailand-397b53a4ecf
https://medium.com/%5C@kristw/creating-grid-map-for-thailand-397b53a4ecf
https://medium.com/%5C@kristw/whose-grid-map-is-better-quality-metrics-for-grid-map-layouts-e3d6075d9e80
https://medium.com/%5C@kristw/whose-grid-map-is-better-quality-metrics-for-grid-map-layouts-e3d6075d9e80
https://medium.com/%5C@kristw/whose-grid-map-is-better-quality-metrics-for-grid-map-layouts-e3d6075d9e80
https://data.worldbank.org/indicator/
https://data.worldbank.org/indicator/SH.DTH.IMRT
https://data.worldbank.org/indicator/SH.DTH.IMRT

140

Summary
Algorithms for Coherent Rectangular Visualizations

To gain insight into the large amounts of data that chronicle our life, work and

world, we often turn to visualizations to use our powerful perceptual system for

(parts of) the analysis. For a visualization to be e�ective, the visualization has to

visually represent all properties of the data that the viewer requires for the task they

want to perform. Moreover, an e�ective visualization has to be coherent: relations

between data items are visually represented, and visible relations are present in the

data. A coherent visualization thus prevents false patterns from emerging in the

visualization, and preserves patterns that exist in the data. Our focus in this thesis

lies on rectangular visualizations, that is, visualizations that use rectangles as their

fundamental building blocks. We describe several new algorithms that transform

data into coherent rectangular visualizations for four di�erent data types.

We �rst study temporal coherence for treemaps, which visualize hierarchical data us-

ing nested rectangles whose areas match the data values. When the data varies over

time, we can generate a treemap for each time step. The quality of a treemapping al-

gorithm is then determined by two factors: (i) the visual quality, which indicates how

well we can determine the values of the data for a single treemap and (ii) the tem-

poral coherence or stability, which indicates how coherent the changes in the data

are with the changes in the treemap. Ideally, small changes in the data should result

in small changes in the treemap. We propose a novel stable treemapping algorithm

that has high visual quality. Whereas existing treemapping algorithms generally

recompute the treemap every time the input changes, our algorithm changes the

layout of the treemap using only local modi�cations. This approach gives us direct

control over the stability, and in contrast to existing treemapping algorithms, can

also generate non-sliceable treemap layouts. We prove that using these non-sliceable

layouts can result in treemaps of higher visual quality. To verify the e�cacy of the

new algorithm as well as existing treemapping algorithms, we perform an extensive

quantitative evaluation of rectangular treemapping algorithms for time-varying hi-

erarchical data. To this end, we �rst propose a new method to measure the stability

of time-varying treemaps which explicitly considers the input data. Additionally,

we identify four representative features of datasets that in�uence the performance

of treemapping algorithms. We use these features to propose a novel classi�cation

scheme for time-varying hierarchical datasets. We experimentally test the validity

of this classi�cation on a large number of datasets, and use this classi�cation to

141

Summary

compare and evaluate treemapping algorithms on a variety of datasets.

Second, we study the coherence between data and uncertainty when visualizing

uncertain hierarchical data using treemaps. To visualize uncertainty in a treemap,

we identify two key, but con�icting, requirements: (i) to easily assess the data value

of a node in the hierarchy, the area of its rectangle should directly match its data

value, and (ii) to ensure coherence and facilitate comparison between data and un-

certainty, uncertainty must be encoded using the same visual variable as the data,

that is, area. We present Uncertainty Treemaps which meet both requirements si-

multaneously using the novel concept of hierarchical uncertainty masks. We de�ne

a new cost function that measures the quality of Uncertainty Treemaps and show

how to adapt existing treemapping algorithms to support uncertainty masks. Finally,

we demonstrate the quality of our technique through a computational experiment

on real-world datasets.

Third, we improve upon the spatial coherence of grid maps: spatial arrangements

of simple tiles (often squares or hexagons) each of which represents a spatial ele-

ment. An e�ective grid map is coherent with the underlying spatial dimension: the

tiles maintain properties such as contiguity, neighborhoods and identi�ability of the

corresponding spatial elements, while the grid map as a whole maintains the global

shape of the input. Of particular importance are salient local features of the global

shape which need to be represented by tiles assigned to the appropriate spatial ele-

ments. State-of-the-art techniques can adequately deal only with simple cases, such

as a close-to-uniform spatial dimension or global shapes that have few characteris-

tic features. We introduce a simple fully-automated 3-step pipeline for computing

high-quality coherent grid maps. Each step relies on well-established solutions:

shape decomposition based on salient features, tile-based Mosaic Cartograms, and

point-set matching. We provide an implementation, demonstrate the e�cacy of our

approach on various complex datasets and compare it to the state-of-the-art.

Finally, we propose a new way to visualize spatial set data. We assume that the

nodes of the sets are positioned on a grid. Each node is represented by a cell in the

grid and each set is represented by a single connected polygon overlapping exactly

those cells that correspond to the nodes in the set. For the case where there are two

sets, we derive a necessary and su�cient condition to e�ciently recognize whether

we can represent each set with a single connected polygon. Additionally, we show

that the visual complexity of the polygon in each cell can be bounded by a small

constant.

142

Curriculum Vitae
Max Sondag was born on the 5th of March, 1993, in Uden, the Netherlands. He

�nished secondary education at Udens College in Uden, the Netherlands in 2011.

He then studied Computer Science and Engineering at TU Eindhoven in Eindhoven,

obtaining his Bachelor’s degree in 2014. He obtained his Master’s degree in Com-

puter Science and Engineering (cum laude) in 2016 at the same university. Since

2016 he has been a PhD student under the supervision of Bettina Speckmann, and

co-supervised by Wouter Meulemans. The main results of his research as a PhD

student are presented in this dissertation.

143

144

Titles in the IPA Dissertation Series since 2017

M.J. Steindorfer. E�cient Im-
mutable Collections. Faculty of Science,

UvA. 2017-01

W. Ahmad. Green Computing: E�-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2017-03

H.L. Salunkhe. Modeling and Bu�er
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of

Mathematics and Computer Science,

TU/e. 2017-04

A. Krasnova. Smart invaders of private
matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics

and Computer Science, RU. 2017-05

A.D. Mehrabi. Data Structures for An-
alyzing Geometric Data. Faculty of

Mathematics and Computer Science,

TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Limi-

tations and Opportunities. Faculty of Sci-

ence, UvA. 2017-07

W. Lueks. Security and Privacy via
Cryptography – Having your cake and
eating it too. Faculty of Science,

Mathematics and Computer Science,

RU. 2017-08

A.M. Şutîi. Modularity and Reuse
of Domain-Speci�c Languages: an ex-
ploration with MetaMod. Faculty of

Mathematics and Computer Science,

TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Speci�c Lan-
guages. Faculty of Mathematics and

Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty

of Mathematics and Computer Science,

TU/e. 2017-11

A. Amighi. Speci�cation and Veri�ca-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Electri-

cal Engineering, Mathematics & Com-

puter Science, UT. 2018-01

S. Darabi. Veri�cation of Program Par-
allelization. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences.
Faculty of Science, Mathematics and

Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Network Pro-
tocols. Faculty of Science, Mathematics

and Computer Science, RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and Com-

puter Science, TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,

Mathematics and Computer Science,

RU. 2018-06

A. Lele. Response Modeling: Model Re-
�nements for Timing Analysis of Run-
time Scheduling in Real-time Streaming
Systems. Faculty of Mathematics and

Computer Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Speci�cation: unifying modeling and
programming. Faculty of Mathematics

and Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.

Faculty of Mathematics and Computer

Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rail-
way maintenance: Analysis and opti-

mization of maintenance via fault trees
and statistical model checking. Faculty

of Electrical Engineering, Mathematics

& Computer Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process Cal-
culi. Faculty of Mathematics and Com-

puter Science, TU/e. 2018-11

L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Me-

chanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Simi-
larity Measures for Curves and Surfaces.
Faculty of Mathematics and Computer

Science, TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty

of Mathematics and Computer Science,

TU/e. 2018-14

R. Kumar. Truth or Dare: Quan-
titative security analysis using attack
trees. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Devel-
opment. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Sci-

ence, TUD. 2018-16

M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of

Mathematics and Computer Science,

TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identi�cation, Analysis and Un-
derstanding of Deviations. Faculty of

Mathematics and Computer Science,

TU/e. 2018-18

P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2018-20

A. Serrano Mena. Type Error Cus-
tomization for Embedded Domain-
Speci�c Languages. Faculty of Science,

UU. 2018-21

S.M.J. de Putter. Veri�cation of Concur-
rent Systems in aModel-Driven Engineer-
ing Work�ow. Faculty of Mathematics

and Computer Science, TU/e. 2019-01

S.M. Thaler. Automation for Informa-
tion Security using Machine Learning.

Faculty of Mathematics and Computer

Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Com-

puter Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Prac-
tical General Top-down Parsers. Faculty

of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Problems.
Faculty of Mathematics and Computer

Science, TU/e. 2019-05

J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learn-
ing. Faculty of Science, Mathematics

and Computer Science, RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2019-07

T.H.A. Castermans. Algorithms for Vi-
sualization in Digital Humanities. Fac-

ulty of Mathematics and Computer Sci-

ence, TU/e. 2019-08

W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty of Mathematics

and Computer Science, TU/e. 2019-09

J.J.G. Meijer. E�cient Learning and
Analysis of System Behavior. Faculty of

Electrical Engineering, Mathematics &

Computer Science, UT. 2019-10

P.R. Gri�oen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,

UvA. 2019-11

A.A. Sawant. The impact of API evo-
lution on API consumers and how this
can be a�ected by API producers and lan-
guage designers. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency Ver-
i�cation. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science

and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design &
Enabling Live Programming. Faculty of

Science, UvA. 2020-03

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty

of Mathematics and Natural Sciences,

UL. 2020-04

N. Naus. Assisting End Users in
Work�ow Systems. Faculty of Science,

UU. 2020-05

J.J.H.M. Wulms. Stability of Geomet-
ric Algorithms. Faculty of Mathematics

and Computer Science, TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty

of Mathematics and Computer Science,

TU/e. 2020-07

P. van denBos. Coverage and Games in
Model-Based Testing. Faculty of Science,

RU. 2020-08

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty

of Mathematics and Computer Science,

TU/e. 2020-09

	Introduction
	Coherence in data
	Rectangular visualizations

	Time-varying Treemaps
	Rectangular treemaps
	Layouts
	Local moves algorithm
	Transforming rectangular layouts using local moves
	Algorithm
	Improving performance

	Metrics
	Visual quality
	Stability

	Data
	Data features
	Data classes
	Datasets

	Experimental results
	Data classification analysis
	Performance analysis across features
	Comparison of data classes

	Discussion and conclusion

	Uncertainty Treemaps
	Related work
	Hierarchical uncertainty masks
	Mask design
	Reading an uncertainty treemap
	Expert review
	Mask quality

	Algorithms for uncertainty treemaps
	Mask-friendly algorithms
	Mask-aware algorithms

	Experimental results
	Relating mask-quality metrics
	Effect of mask-friendly algorithms
	Effect of mask-aware algorithms

	Discussion
	Mask shape and placement
	Mask rendering
	Uncertainty and hierarchy

	Conclusion and future work

	A Simple Pipeline for Grid Maps
	Problem exploration
	Facets of coherence
	Algorithms

	A 3-step pipeline for coherent grid maps
	Decompose shape based on salient features
	Arrange tiles using mosaic cartograms
	Assign elements to tiles via point-set matching
	Results and discussion
	Conclusions and future work

	Spatial set visualization
	Preliminaries
	Characterizing colored grids with a painting
	Simple purple regions
	Spiderweb gadgets
	Purple regions with holes

	Optimizing panels
	Ensuring a 5-painting
	Ensuring a 2-painting

	Conclusion

	Conclusion
	Main results
	Future work

	Bibliography
	Summary
	Curriculum vitae

