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ABSTRACT

We introduce CONLON, a pattern-based MIDI generation
method that employs a new lossless pianoroll-like data de-
scription in which velocities and durations are stored in
separate channels. CONLON uses Wasserstein autoen-
coders as the underlying generative model. Its generation
strategy is similar to interpolation, where MIDI pseudo-
songs are obtained by concatenating patterns decoded from
smooth trajectories in the embedding space, but aims to
produce a smooth result in the pattern space by comput-
ing optimal trajectories as the solution of a widest-path
problem. A set of surveys enrolling 69 professional mu-
sicians shows that our system, when trained on datasets
of carefully selected and coherent patterns, is able to pro-
duce pseudo-songs that are musically consistent and po-
tentially useful for professional musicians. Additional ma-
terials can be found at https://paolo-f.github.
io/CONLON/.

1. INTRODUCTION

Algorithmic music generation has attracted the interest of
musicians and practictioners for long time, starting from
early works by Guttman, Hiller and Isaacson [1] and Xe-
nakis [2] in the 1950’s. Significant progress has recently
resulted from the widespread application of new and pow-
erful methods based on deep generative models, letting this
class of data-driven approaches gradually take over more
traditional rule-based or probabilistic techniques [3, 4].
This thriving line of research spans several dimensions of
the generation process, including different types of data:
audio signal [5, 6] vs. symbolic MIDI data; musical tex-
tures: monophonic [7] vs. polyphonic [8, 9]; ensem-
bles: single-instrument [9] vs. multi-instrument [7]; goals:
e.g., continuation [10], accompaniment [11], style trans-
fer [12–14], or interpolation [7, 14].

c© Luca Angioloni, Tijn Borghuis, Lorenzo Brusci, Paolo
Frasconi. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Luca Angioloni, Tijn
Borghuis, Lorenzo Brusci, Paolo Frasconi, “CONLON: A Pseudo-Song
Generator Based on a New Pianoroll, Wasserstein Autoencoders, and Op-
timal Interpolations”, in Proc. of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

We are particularly interested in developing a tool for
a context where the automatic generation and prolifera-
tion of new music material (not necessarily finished pieces)
is useful to assist musicians in music and media produc-
tion. Usefulness in this context may have different facets:
supporting and accelerating personal explorations of un-
known or semi-known music areas, collecting intra-genre
or cross-genre ideas of various complexity and abstraction,
augmenting the composer’s ability to explore the combina-
torial space of rhythmic, melodic, and harmonic variations.
In other words, what Boden calls “exploring conceptual
spaces” [15]. In spite of the impressive amount of recent
advancements in music generation with machine learning
approaches, the musical quality of the results is still not
always sufficient to enable a widespread adoption in real-
istic professional scenarios such as studio production using
standard Digital Audio Workstations (DAWs) or live per-
formance of electronic music.

In this paper, we focus on the autonomous generation of
polyphonic and multi-instrument MIDI partitures, aiming
at producing relatively long pseudo-songs (i.e. tracks that
have the duration of a song but whose temporal structure
is not controlled by a compositional intent) in mainstream
genres such as Acid Jazz, Soul or High Pop, that are effec-
tively usable in a professional music production context.
We argue that achieving this goal requires not only the ef-
fective exploitation of algorithmic ideas but also a care-
ful selection of coherent musical materials to be used as
training data. Unlike the case of image data, where there
exist large scale high quality coherent datasets (for exam-
ple CelebA [16] focusing on human faces), existing sym-
bolic music datasets for mainstream music contain large
variations in genre, style, and track/instrument role, that
make it more difficult to learn to generate musically co-
herent pseudo-songs. In the attempt to verify the impact
of dataset quality on the results, we introduce in this paper
(perhaps for the first time in this research area) two new
datasets that were not extracted from existing collections
but that have been especially composed and edited by two
musicians made aware of creating training sets for genera-
tive models. One dataset, ASF-4, is in Acid Jazz, Soul and
Funk; the other one, HP-10, in High Pop. Compared to
datasets used in other experiments (e.g. LPD-5 [17]) they
are small, i.e. of a size that individual musicians would be
able to compose or curate by themselves. This opens up the
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possibility of personalized generators, assisting musicians
in producing their own music.

From the algorithmic point of view, possible solutions
to the music generation problem can be characterized
across several separate dimensions (see [3] for a thorough
taxonomy). The most important ones for the goals of this
paper are (1) the type of data structures that are used to de-
scribe MIDI patterns (2) the nature of the generative learn-
ing models, and (3) the strategy used to produce a whole
musical piece. The system presented in this paper intro-
duces novelties across all these three dimensions, whose
combination allows us to generate meaningful and profes-
sionally usable streams of music. In terms of data descrip-
tion, we introduce a novel pianoroll-like pattern descrip-
tion that stores velocities and durations in two separate
channels. The description is lossless (i.e., it can be in-
verted to recover the original MIDI data exactly) and per-
ceptually robust to reconstruction errors (i.e., it does not
suffer the note shattering problem associated with binary
pianorolls that store consecutive high bits to represent note
durations). As a generative model, we experiment with
Wasserstein autoencoders (WAE) [18], a type of autoen-
coder that is less subject to the “blurriness” problem typi-
cally associated with variational autoencoders (VAE) [19].
To the best of our knowledge, WAEs have not been applied
to music generation before. Third, our generation strategy
is based on interpolation as in previous works [7,14] but we
formulate it as an optimization problem for exploring the
autoencoder latent space in a way that prevents abrupt tran-
sitions between consecutively generated patterns, as well
as regions with little variation.

We call our system CONLON, for Channeled Onset of
Notes and Length Of Notes, and in honor of Conlon Nan-
carrow (1912–1997), a pioneer of piano roll compositions.
A thorough evaluation with human experts suggest that
CONLON is able to produce pseudo-songs that are truly
exploitable by professional musicians in mainstream gen-
res.

2. A NEW PIANOROLL WITH EXPLICIT
DURATIONS

Each track in a MIDI stream consists of a sequence of time
stamped events. We consider here only two types of note
events: ON(t, n, v), and OFF(t, n). Here t denotes the
time at which a note with pitch n begins or ends, measured
in MIDI clock pulses. In general, n takes values between 0
(C-1) and 127 (G9). The MIDI velocity, v, takes values in
the integer range [0, 127]. Roughly, velocity is associated
with the note intensity (allowing to represent dynamic ex-
pression elements, such as pianissimo, forte, or accents in
percussive instruments) but depending on the instrument
attached to the track, it can also affect timbre (for exam-
ple, a “clicked” Hammond organ sound could be selected
in the sound bank when the velocity exceed a given thresh-
old). Note that although n and v take values in the same
range, v should be regarded as a continuous variable and n
as a categorical one.

Before this data can be fed into a learning algorithm,
it needs to be arranged in a proper description format.

Both variable-lenght and fixed-lenght descriptions have
been studied in the literature. Variable-length descriptions
are typically used in conjunction with various types of re-
current neural networks (RNNs) [20]. Fixed-length de-
scription include the pianorolls (PR) introduced in [21] for
melodies and later extended to the multitrack polyphonic
case [17, 22], and are suitable for modules based on con-
volutional neural networks (CNNs) [23]. Pianorolls, how-
ever, are a lossy description of MIDI data in at least two
ways. First, they do not include note velocities, which are
important for dynamic expression in many musical gen-
res. Second, they make it impossible to distinguish be-
tween long notes and repeated occurrences of the same
notes (see Fig. 1). The latter limitation can be mitigated
by using a finer quantization step or fixed by adding a re-
play matrix [9]. Still, the PR description may suffer a fun-
damental problem when there are imperfections in the re-
constructions generated by a trained model. In facts, false
negatives in the reconstruction may shatter a long note into
several shorter ones, which may produce a musically ob-
sessive and unpleasant result.

Figure 1. A short phrase described as PR (top right) and
as PRC (bottom). To construct a simple example, here we
set quantization at 1/8.

The solution proposed in this paper uses a second chan-
nel as in [9] but explictly represents note durations as con-
tinuous variables. More precisely, in our PRC description,
the tensor associated with a fixed-length music pattern is
constructed as follows. First, we introduce a time quan-
tization function q that maps fine-grained timestamps into
coarse-grained temporal positions in the range 1, . . . , T .
For example T = 128 if we quantize four 4

4 bars at 1/32th.
Assuming for simplicity a single instrument and denoting
by N the number of pitches in the used range, we create a
tensor x of shape T×N×2. In the first channel, xq(t),n,1 =
v if there occurs an event ON(t, n, v) and xq(t),n,1 = 0
otherwise. In the second channel, xq(t),n,2 = d if there
occurs an event ON(t, n, v) whose duration (expressed in
quantized steps) is d, and xq(t),n,2 = 0 otherwise. The
construction is illustrated in Fig. 1. Polyphony is handled
naturally in this description and multi-instrument patterns
with K tracks can be easily described by allocating two
channels for each track as above, resulting in a T×N×2K
tensor. Our PRC description does not suffer the ambiguity
between long notes and repeated occurrences of the same
note and, except for time quantization, is completely loss-
less (i.e., a quantized MIDI pattern transformed into the
corresponding PRC tensor can be recovered exactly). Ad-
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ditionally, it can be perceptually more robust to reconstruc-
tion errors. A further advantage is that all the information
about a note is local, whereas in the case of PR, a convo-
lutional network requires a wide receptive field to infer the
note duration.

3. GENERATING PATTERNS WITH
WASSERSTEIN AUTOENCODERS

Generative models that have been applied to music include
various types of encoder/decoder architectures, different
variants of generative adversarial networks (GAN) [24], as
well as transformer based architectures [25]. Variational
autoencoders (VAE) [19] have been used in systems like
VRAE [26], GLSR-VAE [27] and MusicVAE [7] while
GANs have been used in systems like C-RNN-GAN [28]
MidiNet [21] and MuseGAN [17, 22].

Both with autoencoders and GANs, a network G(z)
(called either decoder or generator) is trained to map a la-
tent or noise vector z ∈ Rdz into a pattern. Here we are
interested in autoencoder based approaches (see also Sec-
tion 4.1 for a motivation). Among these approaches, VAEs
are theoretically elegant and applicable to music genera-
tion. They are regularized by penalizing the expected KL
divergence between the posterior q(z|x) and a zero-mean
Gaussian prior pz , with the expectation being taken over
training points. However, as nothing prevents different
patterns being mapped to close latent codes, the decoder
is sometimes asked to reconstruct different patterns from
similar codes, resulting into a well known blurriness phe-
nomenon in the case of images [29]. In the case of music
patterns described as tensors, we observed that a form of
“blurriness” also occurs, resulting in large clusters of notes
being played together and sometimes in swarms of short
notes that are never present in the training data. WAEs [18]
avoid this problem by pushing the expectation inside the
divergence, i.e., penalizing a divergence D between the
prior qz and the aggregated posterior qz(z) = Ep q(z|x),
where p is the data distribution. WAEs thus minimize, with
respect to the parameters of the decoder, the quantity

min
q(z|x)

Ep Eq(z|x) c(x,G(z)) + λD(qz, pz) (1)

where c is a reconstruction loss and λ a hyperparameter to
be fixed. In all our experiments we employed the Maxi-
mum Mean Discrepancy (MMD) [30] for D and a Gaus-
sian prior for pq , and we structured the encoder and the de-
coder as in the DCGAN [31] architecture. Note that unlike
MuseGAN, which stacks bars over an additional tensor
axis and uses 3D convolutional layers, tensors in PRC can
be processed by 2D convolutional layers. The input ten-
sors are normalized in the (−1, 1) range. The final layer of
all our decoders has hyperbolic tangent output units. The
mean squared error between reconstructions and input pat-
terns was used in the optimization criterion during training.

The latent vector size, dz , was adjusted with a trial-and-
error approach, trying to find the smallest possible value
yielding good quality interpolations. If dz is too small the
validation error is large but if dz is too large, interpolations

tend to create many patterns that are too close to those in
the training set, in spite of a small validation error (which is
therefore not an useful metric). Additionally, nearly empty
patterns tend to appear in the middle of interpolations. We
found dz = 3 for ASF-4 and dz = 5 for HP-10 and LPD-5
to be a reasonable compromise. The remaining hyperpa-
rameters were tuned using random search [32] guided by
the validation set reconstruction error. We focused in par-
ticular on the learning rate, η, and the number of epochs T
used in conjunction with the Adam algorithm; the number
of layers nl; the number of filters nf and the size of filters,
k, used in the the DCGAN encoder and decoder (strides
were fixed to 2). Interestingly, large filter sizes k = 8
were found to perform better than standard smaller sizes
as compact filters are not able to capture musical patterns
and distant relationships between notes.

3.1 Converting Generated Tensors to MIDI

In the case of PRC descriptions, “decoding” a MIDI pat-
tern from the output tensor is almost straightforward (un-
like the case of PR, where specialized GAN architectures
have been introduced to avoid post-processing based on ei-
ther hard thresholding or Bernoulli sampling [22]). First,
predicted velocities and durations for each time t, pitch n,
and instrument i, are rescaled in the range 0–127. Events
whose rescaled predicted velocity v(t, n, i) < 1 or dura-
tion d(t, n, i) < 1 (i.e., non-audible notes) are discarded.
Finally, we apply the following transformation (similar to a
gamma correction) to obtain corrected velocities vc(t, n, i)
as follows:

vc(t, n, i) =

⌊
127

(
v(t, n, i)

127

) 1
γi

⌋
(2)

where γi is an instrument specific correction factor rang-
ing from 2.9 for drums to 4.0 for Rhodes. Durations are
directly retrieved from the (rescaled) duration channel.

4. PSEUDO-SONGS

The following approach assumes that a generative model
G : z ∈ Rdz 7→ x ∈ Rm×q×2 from embeddings to pat-
terns is available. Function G can be either the decoder
of an autoencoder or the generator of a GAN. A pseudo-
song is then generated by creating a trajectory of length T ,
z1, . . . , zT , and applyingG to each latent vector to produce
a corresponding sequence of patterns.

4.1 Interpolations

When using autoencoders, we have the choice of picking a
start pattern xs and a goal pattern xg (both from the test set)
and use the encoderE to obtain z1 = E(xs), zT = E(xg).
This for example allows users to produce a pseudo-song
that moves smoothly from one genre to another. Musicians
could even create ex-novo start and goal patterns with a
particular purpose in mind. When using GANs to gener-
ate, this option is not available but z1 and zT can be sam-
pled from p(z) (with a less intentional result) or, alterna-
tively, users may be given a set of pre-generated patterns
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from which to pick the endpoints from the pre-images of
the generator.

Two options are common for creating trajectories, linear
interpolation: zt = t−T

1−T z1 + 1−t
1−T zT , t = 2, . . . , T − 1,

and spherical interpolation:

zt =
sin
(

1−t
θ(1−T )

)
z1 + sin

(
θ t−T1−T

)
zT

sin(θ)
(3)

where θ = arccos(z1/‖z1‖, zT /‖zT ‖). The latter is
preferable when p(z) is Gaussian and dz is large [33].

4.2 Swirls

In this approach (also applicable to GANs), latent trajec-
tories are produced by taking real and imaginary parts of
periodic complex-valued parametric functions of the form

f(t; al, bl, cl, dl) = ejalt − ejblt/2 + jejclt/3 + ejdlt/4

for random choices of (al, bl, cl, dl), i.e., using z2l,t =
<(f(t; al, bl, cl, dl)) and z2l+1,t = =(f(t; al, bl, cl, dl)),
for l = 1, . . . , bdz/2c, t = 1, . . . , T .

4.3 Trajectory Smoothing

Equally spaced points in the embedding space do not nec-
essarily correspond to equally spaced reconstructions in
the pattern space. This essentially depends on how gen-
erative models allocate points in the pattern space to points
in the embedding space. When creating pseudo-songs with
either interpolations or swirls, this fact may lead in some
cases to abrupt transitions and in some other cases to repet-
itive regions that might be musically uninteresting. To ad-
dress this issue, we suggest to increase T beyond the de-
sired length and then subsample the trajectory. Smooth-
ness can be achieved by maximizing the minimum distance
between consecutive reconstructions and constraining the
final length to a desired integer L:

max
t1,...,tL

min
i=1,...,L−1

δ(G(zti), G(zti+1
)) (4)

s.t. 1 ≤ ti < ti+1 ≤ T i = 1, . . . L− 1 (5)

ti+1 − ti ≤ H i = 1, . . . L− 1 (6)

where δ is a distance function on patterns (e.g., the Eu-
clidean distance on PRC tensors) and H a lookahead hori-
zon, i.e., the maximum allowed number of positions that
may be skipped. Problem (4) can be reduced to an instance
of the bottleck shortest path problem [34] on the T×L trel-
lis with vertex set {(t, τ), t = 1, . . . , T ; τ = 1, . . . , L},
edge set {((t, τ), (t + 1, τ + s)), t = 1, . . . , T ; τ =
1, . . . , L, s = 1, . . . ,H}, and edge weights w((t, τ), (t +
1, τ + s)) = δ(G(zt), G(zt+s)) (see Fig. 2). The problem
is solvable by a slightly modified version of the Dijkstra
algorithm (where nodes in the frontier are labeled by their
maximum step cost rather than the sum of the step costs)
or by a faster algorithm based on bucketing [34].

5. DATASETS

We tested CONLON on three dataset. ASF-4 is a set of
910 patterns of four bars in three genres: acid jazz, soul

Figure 2. Trellis for trajectory smoothing. The horizon H
is 2 in this example. Among all paths from Start to Goal,
the highlighted path is the one whose smallest edge weight
is maximum.

and funk. Each pattern has K = 4 tracks associated with a
simple electro-acoustic quartet: drums, bass, Rhodes pi-
ano, and Hammond organ. HP-10 is a set of 968 pat-
terns of four bars in two genres: high-pop and progres-
sive trance. Each pattern has K = 10 tracks associated
with the following instrument set: drums, bass, Rhodes,
brass-synth, choir, dark-pad, guitar, lead, pad, and strings.
Both ASF-4 and HP-10 have been especially composed by
two professional musicians for this study. In both cases,
composers were instructed to create coherent 120bpm pat-
terns of four bars. All patterns in these datasets were sub-
sequently quantized at 1/32th resolution, manually curated
for mistakes (including fixing errors due to quantization),
and finally transposed to either Cmaj or Amin to prevent
tonality variations. The resulting PRC tensors have size
128 × N × 2K, where N = 55 for ASF-4 and N = 60
for HP-10. LPD-5 (cleansed version) was derived from
the Lakh MIDI dataset [35] by Dong et al. [17] by retain-
ing only songs with high matching scores to the Million
Song Dataset. It contains 21,425 multitrack MIDI songs
with K = 5 tracks and N = 108 pitches, where original
tracks/instruments were merged into instrument families
and cut by the authors of [17] into patterns consisting of
two 4/4 bars. Automatic quantization at 1/48 was applied
yielding tensors of size 192× 108× 10.

Being manually curated, ASF-4 and HP-10 are much
more coherent than LPD-5 in at least three ways. First,
music style and genre is highly constrained, whereas LPD-
5 contains a wide assortment of different genres. Second,
instrument-role is well defined, i.e., the instrument that
plays in a certain track always maintains its role across the
whole dataset. In LPD-5, some heuristics have been ap-
plied by the authors of [17] to map instruments to the five
tracks but in some cases very different instruments may
collide on the same track. Third, the endpoints that demar-
cate patterns always cover homogeneous phrases, i.e., the
phrase always begins on the first bar. In LPD-5, patterns
are extracted by an automatic segmentation technique that
cannot be equally reliable.

6. LISTENING EXPERIMENTS
To validate the CONLON approach, we conducted three
listening experiments with a group of 69 musicians, re-
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cruited by the authors with the help of colleagues teaching
in several music educational institutes. Subjects mainly
identified themselves as composers and producers (often
in combination with instrumentalist/performer), working
mostly in three (non mutually exclusive) genres: Classi-
cal, Contemporary and Electronic Dance Music. Over half
the participants had more than 10 years of professional ex-
perience in music, only one less than 3 years.

Participants were told that the survey was part of a re-
search project on the generation of music with machine
learning techniques, with the long-term aim of developing
new tools for music production and performance. They
participated through an online survey service 1 that allows
for questions with audio materials. The experiments con-
sisted of two types of tasks.

Comparison Subjects listen to a pair of short music tracks
(64 bars, 130s), and indicate which of the two tracks
is most usable in the context of mainstream music
production (forced choice). The scenario they are
asked to keep in mind is that they would receive the
tracks as a midi file for inclusion and editing in the
production of a mainstream song in their own DAW.

Analysis Subjects listen to a single track, an excerpt (64
bars) from a longer piece and assess the musical de-
velopment of the composition over time, with re-
gards to four aspects: Harmony, Rhythm, Melody,
and Interplay of instruments, each judged on a 5-
point Likert scale (from “very incoherent" to “very
coherent"). To obtain further feedback, we asked the
subjects to comment on good points of the composi-
tion and points for improvement.

Answers in the comparison task were converted to ranks
for the tracks in a pair (i.e. rank is 1 for the preferred track
and 2 for the other). We then computed the mean rank of
the tracks across subjects. Following [36], we employed
Kendall’s Coefficient of Concordance (W ) [37], to analyse
the level of agreement among subjects, along with a com-
monly used significance test against the null hypothesis of
no agreement [38].

In the following we describe three experiments aim-
ing at testing specific hypotheses relating CONLON to
MuseGAN, PR to PRC, and the usability of pseudo-songs.
For all models we set the interpolation length T=64, the
desired length L=16, and the widest-path horizonH=20.

1 http://www.surveygizmo.com

Method HP-10 LPD-5

CONLON 1.17 1.45
MuseGAN 1.83 1.55

Concordance 0.64 0.01
Significance p<0.0005 ns

Table 1. Mean ranks assigned by subjects to the usability
of interpolations generated with our system (CONLON)
and MuseGAN [22]. m = 75 pairs were ranked.

Description ASF-4 HP-10 LPD-5

PRC 1.08 1.31 1.5
PR 1.92 1.69 1.5

Concordance 0.72 0.15 0
Significance p<0.0005 p<0.001 ns

Table 2. Mean ranks assigned by subjects to the usability
of pseudo-songs generated with PRC and PR descriptions.
m = 78 pairs were ranked.

Aspect
Harmony Rhythm Melody Interplay

Coherent 49% 67% 42% 51%
Neutral 35% 20% 29% 20%

Incoherent 16% 13% 29% 29%

Significance p<.005 p<.0005 p<.005 p<.0005

Table 3. Coherence of CONLON pseudo-songs as judged
by subjects, with respect to harmony, rhythm, melody, in-
terplay of instruments. m = 69 judgements were col-
lected.

6.1 Comparing CONLON and MuseGAN
To substantiate that CONLON is more usable in music pro-
duction than previous approaches, we tested Hypothesis 1:
Musicians find pseudo-songs generated with WAEs and
PRC descriptions more useable in music production than
pseudo-songs generated with the MuseGAN model and PR
(other factors being equal). A WAE-model was trained on
PRC representations of the datasets HP-10 and LPD-5, and
a MuseGAN model on PR representations of datasets HP-
10 and LPD-5 to generate interpolations. On the same data,
we trained a MuseGAN model with binary neurons [22]
using the implementation at https://github.com/
salu133445/musegan. Subjects were given pairs of
matching interpolations to compare, differing in the ap-
proach used, but with the same start, goal and length. Six
pairs (three for each dataset) were presented for compari-
son to 25 subjects, producing a total of 75 observations per
dataset.

Subjects generally judged pseudo-songs generated by
CONLON to be more usable than pseudo-songs generated
with the MuseGAN approach (for 5 out of the 6 pairs). But
whereas the difference in ranking is clear and concordance
among participants is significant for the three pairs on the
HP-10 dataset, differences were small and concordance
not significant among subjects for pseudo-songs generated
from LPD-5. Table 1 shows the aggregated mean ranking
per dataset.

6.2 Comparing PR and PRC

To investigate whether part of the improvement over previ-
ous approaches is due to the representation, we tested Hy-
pothesis 2: Musicians find pseudo-songs generated with
PRC descriptions more useable in music production than
pseudo-songs generated with PR descriptions (other fac-
tors being equal). A WAE-model was trained on PR
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ASF-4 HP-10 LPD-5

P R V D P R V D P R V D
PR 6.1 51.1 32.2 2.5 4.1 58.9 28.8 3.1 1.4 89.7 41.0 5.5

PRC 32.1 53.9 24.3 1.0 37.0 58.0 23.4 1.8 35.5 60.2 19.5 2.6

Table 4. Test set precision (P ), recall (R), mean absolute errors on velocity (V ) and duration (D) for PR and PRC .

and PRC representations of the datasets ASF-4, HP-10 and
LPD-5 to generate interpolations. 26 subjects were given
nine pairs of matching interpolations to compare (differing
only in representation used), three for each dataset, result-
ing in 78 observations per dataset.

Subjects generally judged pseudo-songs generated with
PRC representations to be more usable than pseudo-songs
generated with PR representations (for 8 out of the 9 pairs).
The difference in ranking is clear and concordance among
participants is significant for the 6 pairs on the ASF-4 and
HP-10 datasets, but differences were small and concor-
dance not significant for the 3 pairs generated on different
representations of the LPD-5 dataset. Table 2 shows the
aggregated mean ranking and cross-subject concordance
per dataset.

6.3 Analyzing Development over Time

To validate the way patterns are chained together by
CONLON, we tested Hypothesis 3: Musicians find the
development over time of pseudo-songs generated with
WAEs and PRC description coherent rather than incoher-
ent (in terms of harmony, rhythm, melody and interplay
between instruments). A WAE-model was trained on a
PRC representation of datasets ASF-4 and HP-10 to gen-
erate swirls. All subjects were given the analysis task for a
swirl, resulting in 69 observations per aspect.

Subjects generally judged the coherence of pseudo-
songs on the positive side of the scale. For the three swirls
presented in the experiment, each with four aspects, the
median for all aspects lies at “somewhat coherent” (8 out
of 12) or “neutral” (4 out of 12). The rating “very coher-
ent” is reached for all aspects, the rating “very incoherent”
in 10 out of 12. For all swirls, rhythm is the aspect with
the highest coherence rating. Table 3 shows the aggregated
answers for the three swirls, recoded to a 3-point scale.

7. QUANTITATIVE EVALUATIONS

When only a limited amount of human expert time is avail-
able for surveys, it becomes difficult to cover all differ-
ent dimensions on which alternative methods can be com-
pared. Rather that allowing non experts in our surveys, it
may be preferable to complement human evaluation with a
number of automatically computed metrics [39]. Here we
consider reconstruction error and note shattering.

7.1 Reconstruction error

Here we complement human evaluations with some auto-
matically computed metrics that are derived from test set
reconstructions and are applicable to autoencoder-based
methods. In particular, we aim to compare WAEs fed by

PR vs WAEs fed by PRC . Precision and recall are defined
on the binary classification problem where the ground truth
consists of Bernoulli variables y(t, n, i) = 1 if there is
a note-on event at time t for note n and instrument i.
For these metrics we considered as predictions the binary
quantities ŷ(t, n, i) = 1 if the reconstructed value of the
velocity at position (t, n, i) is above the smallest velocity
encountered in the training set. In the case of PR descrip-
tion, the predicted note-on event was the first element in the
merged row of consecutive predictions. We further consid-
ered the mean absolute errors in predicting velocities (in
the range [0 − 127]) and durations (in units of 1/32ths of
bar). Test set results comparing PR and PRC (everything
else being equal) are reported in Table 4.

7.2 Note Shattering

Results in Table 4 indicate that PR yields good recall but
very low precision, and has a higher error on both velocity
and duration. This can be partially explained by the pres-
ence of a high number of shattered notes. To verify this
hypothesis we computed the note number growth due to
shattering as follows. For each note in the ground truth,
identified by the triplet (n, i, T ), being n the pitch, i the
instrument, and T = [tON, tOFF] the temporal interval, we
counted the number of notes in the reconstruction that have
the same pitch n and instrument i, and whose note-ON
time falls within T . We then summed these counts over
all notes in the test set. In the absence of shattering, the
total count equals the original number of notes. We found
that WAE-PR increased the number of notes by 19%, 12%,
38% on ASF-4, HP-10, and LPD-5, respectively. By com-
parison, the increase factors were only 5%, 3%, and 10%
in the case of WAE-PRC .

8. CONCLUSIONS

CONLON combines the new PRC data description with
Wasserstein autoencoders and generation strategies based
on optimized interpolation and swirling to produce pattern-
based pseudo-songs. When trained on coherent datasets,
the generated material is musically coherent and poten-
tially useful in music production by professional musi-
cians.

Pseudo-songs can sound like directed musical flows,
but this is entirely due to the properties of the embed-
ding space, longer-term structure is not considered. In that
sense, interpolating and swirling are closer to improvisa-
tion than to composition. A natural next step is to label
dataset patterns with structural categories (e.g. verse, cho-
rus) and introduce form via mechanisms of conditioning.
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882



[26] O. Fabius, J. R. van Amersfoort, and D. P. Kingma,
“Variational recurrent auto-encoders,” in 3rd Interna-
tional Conference on Learning Representations, ICLR,
2015.

[27] G. Hadjeres, F. Nielsen, and F. Pachet, “GLSR-VAE:
geodesic latent space regularization for variational au-
toencoder architectures,” in IEEE Symposium Series on
Computational Intelligence, 2017, pp. 1–7.

[28] O. Mogren, “C-RNN-GAN: continuous recurrent neu-
ral networks with adversarial training,” CoRR, vol.
abs/1611.09904, 2016, constructive Machine Learning
Workshop at NIPS 2016, Barcelona.

[29] A. Dosovitskiy and T. Brox, “Generating images with
perceptual similarity metrics based on deep networks,”
in Advances in Neural Information Processing Systems
29, 2016, pp. 658–666.

[30] M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gret-
ton, “Demystifying MMD gans,” in 6th International
Conference on Learning Representations, 2018.

[31] A. Radford, L. Metz, and S. Chintala, “Unsupervised
representation learning with deep convolutional gener-
ative adversarial networks,” in 4th International Con-
ference on Learning Representations, 2016.

[32] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning
Research, vol. 13, no. Feb, pp. 281–305, 2012.

[33] T. White, “Sampling generative networks: Notes on a
few effective techniques,” CoRR, vol. abs/1609.04468,
2016.

[34] V. Kaibel and M. Peinhardt, “On the bottleneck short-
est path problem,” Otto-von-Guericke-Univ. Magde-
burg, Magdeburg, Germany, Tech. Rep., 2006.

[35] C. Raffel, “Learning-based methods for comparing se-
quences, with applications to audio-to-Midi alignment
and matching,” Ph.D. dissertation, Columbia Univer-
sity, 2016.

[36] A. Novello, M. F. McKinney, and A. Kohlrausch, “Per-
ceptual evaluation of music similarity,” in Proceedings
of the 7th International Conference on Music Informa-
tion Retrieval, 2006, pp. 246–249.

[37] M. Kendall, Rank Correlation Methods (5th ed.). Lon-
don: Charles Griffin, 1975.

[38] M. Kendall and J. D. Gibbons, Rank Correlation Meth-
ods (5th ed.). New York, NY: Oxford University
Press, 1990.

[39] L. Yang and A. Lerch, “On the evaluation of genera-
tive models in music,” Neural Computing and Appli-
cations, vol. 32, no. 9, pp. 4773–4784, 2020.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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