

PET-to-MLIR

Citation for published version (APA):
Komisarczyk, K., Chelini, L., Vadivel, K., Jordans, R., & Corporaal, H. (2020). PET-to-MLIR: A polyhedral front-
end for MLIR. In A. Trost, A. Zemva, & A. Skavhaug (Eds.), 2020 23rd Euromicro Conference on Digital System
Design (DSD) (pp. 551-556). Article 9217876 Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/DSD51259.2020.00091

Document license:
CC BY-NC-ND

DOI:
10.1109/DSD51259.2020.00091

Document status and date:
Published: 08/10/2020

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/DSD51259.2020.00091
https://doi.org/10.1109/DSD51259.2020.00091
https://research.tue.nl/en/publications/32992200-7156-4192-98a4-af949c216f28

PET-to-MLIR: A polyhedral front-end for MLIR
Konrad Komisarczyk, Lorenzo Chelini, Kanishkan Vadivel, Roel Jordans, Henk Corporaal

Eindhoven University of Technology

Abstract—We present PET-to-MLIR, a new tool to enter
the MLIR compiler framework from C source. The tool is
based on the popular PET and ISL libraries for extracting and
manipulating quasi-affine sets and relations, and Loop Tactics, a
declarative optimizer. The use of PET brings advanced diagnosis
and full support for C by relying on the Clang parser. ISL allows
easy manipulation of the polyhedral representation and efficient
code generation. Loop Tactics, on the other hand, enable us to
detect computational motifs transparently and lift the entry point
in MLIR, thus enabling domain-specific optimizations in general-
purpose code.

We demonstrate our tool using the Polybench/C benchmark
suite and show that it can lower most of the benchmarks to
the MLIR’s affine dialect successfully. We believe that our tool
can benefit research in the compiler community by providing an
automatic way to translate C code to the MLIR affine dialect.

Index Terms—MLIR, Loop Tactics, polyhedral model

I. INTRODUCTION AND MOTIVATION

MLIR is a novel and promising approach to build reusable
and extensible compiler infrastructures [1]. The design ratio-
nale behind MLIR is to provide a non-optioned and fully
customizable IR, which allows reducing the cost of build-
ing domain-specific compilers and significantly simplify the
compilation for heterogeneous hardware. Having a fully cus-
tomizable IR enables the representation of multiple abstraction
levels. High-level IR representations can be lowered to low-
level IR by progressive lowering. Dialects in MLIR enable
IR extensibility and thus the representation of numerous
abstraction levels. Specifically, you can think of a dialect
as a namespace of operations, types and attributes. One of
the available dialects in MLIR is the affine dialect. The
affine dialect is a simplified polyhedral representation that has
already been proven to be a powerful abstraction to generate
high-performance code [2].

While some front-ends already exist to enter the high-
abstraction levels in MLIR and then progressively lower them
to affine, to the best of our knowledge, a C front-end is
not available yet. As a consequence, developers need to
lower C code manually if they want to experiment with the
affine dialect and, more broadly, with the MLIR compiler
infrastructure, which is a considerable loss in productivity.
We advocate that an automatic tool that translates C code
automatically would be a preferred solution. In this work, we
propose PET-to-MLIR a front-end for a subset of C code based
on state-of-the-art polyhedral technology. Besides, using Loop
Tactics [3] we show how we can lift the entry point of C code,
thus exploiting more aggressive domain-specific optimizations
available in MLIR (i.e. replacing code with calls to optimized
vendor-libraries). To summarize, our main contributions are:

• An automatic tool to enter the MLIR compiler framework
at the affine dialect starting from a polyhedral-friendly C
code.

• A demonstration of the usefulness of our tool by trans-
lating most of the Polybench/C benchmarks to MLIR’s
affine dialect.

In the next sections, we demonstrate the code generation
flow and the tooling that we used to build PET-to-MLIR.
Finally, we show how PET-to-MLIR can translate most of
the Polybench and highlight its current limitations and future
research directions.

II. BACKGROUND

Since PET-to-MLIR is based on PET, ISL, and Loop Tactics
we first provide an high-level overview of the projects (Sec-
tion II-A and Section II-B). Section II-C briefly introduces the
MLIR compiler framework.

A. ISL and PET

PET is a library used to extract the polyhedral model starting
from a C code fragment [4]. The extracted code fragment is
called static-control part, or ScOP for short. PET is based on
the LLVM C front-end (Clang) and ISL. The use of Clang
gives PET full support for C99 and variable vector length
arrays. Besides, Clang reports useful diagnosis messages that
communicate with the user, which part of the input code
does not satisfy the requirements of the polyhedral model. On
the other hand, ISL allows extensive support for static piece-
wise quasi-affine expressions and conditions [5]. Such broad
support is not available in other polyhedral extractors such
as Clan [6]. In short, PET utilizes Clang to obtain a high-
level AST and generates a compact, ISL-based, polyhedral
representation. On top of creating the expressions typical of
the polyhedral model (i.e., schedule and access relations), PET
introduces structures containing additional information about
the source program (i.e., array names and array extent).

Within PET, individual statements are represented by the
iteration domain, a set of access relations, and belong to a
schedule. The iteration domain assigns to each statement a
symbolic name and an integer vector in a k-dimensional space
where k is the depth of the surrounding loops. Each point
in such a vector represents a particular statement instance.
For example, the iteration domain for the statement S1 in
the GEMM kernel (Listing 1) is {S1(i, j) | 0 ≤ i, j <
1024;S2(i, j, k) | 0 ≤ i, j, k < 1024}.

Access relations are represented as piece-wise quasi-affine
functions, which map the iteration space with the array
space, whose coordinates are the values of the accessed

for (int i = 0; i < 1024; ++i)
for (int j = 0; j < 1024; ++j) {

S1: C[i][j] = beta * C[i][j];
for (int k = 0; k < 1024; ++k)

S2: C[i][j] += alpha * A[i][k] * B[k][j];
}

Listing 1: Generalized matrix multiplication (GEMM) kernel.

Domain Node

Band Node

Sequence Node

Band Node

Filter NodeFilter Node

Fig. 1. Schedule tree representation for Listing 1. The subtree highlighted in
the red-box is detected by the matchers in Listing 2.

subscripts. For the statement S1 in our running example, the
accesses are described as: {S1(i, j) → beta();S1(i, j) →
Cread(i, j);S1(i, j)→ Cwrite(i, j)}.

The order in which the statement instances are executed is
defined by the schedule, which maps a point in the iteration
space to a point in the time space. The schedule is represented
as a tree [7], where each node represents a partial schedule,
and the order of loops and statements is determined by the
node parent-child relation. The root of the tree is always
a domain node, which encodes the iteration domain. Below
such node a combination of the following nodes may exist: 1)
band which defines the partial schedule of one or multiple
loops; 2) filter which restricts the statement instances of
the iteration domain; 3) sequence which imposes an order
among its children. Figure 1 illustrates the schedule tree for
our running example. It uses an outer band node to encapsulate
the partial schedule of loop i and j. The band is followed by a
sequence node that establishes the order of executions between
statement S1 and S2. Filter nodes ensure that each branch of
the sequence node only executes the statement indicated in the
filter node. The innermost band represents the partial schedule
for the k loop.

B. Loop Tactics

Loop Tactics is an optimizer based on the ISL library sup-
porting the declarative specification of affine transformations.
Loop Tactics introduces three main concepts: 1) Schedule tree
matchers which allow recognizing patterns in the schedule
tree. 2) Access relation matchers that allow inspecting access
pattern properties, and 3) builders that allow reconstructing a
matched subtree, thus applying a given transformation.

Essentially, a schedule tree matcher replicates the node
type-based structure of the schedule tree to match. It allows
additional wildcarding (i.e., anyTree) and filtering (i.e., via
C++ callback functions). Besides, it allows for capturing
specific nodes that can be passed to the builders for opti-
mization purposes. A builder uses a syntax similar to the
tree matchers but describes how the tree should be recon-
structed. Each tree modification reflects to a transformation
in the original input code. Finally, access relation matchers
allow testing access pattern properties via placeholder and
arrayPlaceholder. In summary, a loop transformation
can be declaratively expressed by specifying a matcher pattern
that captures a set of nodes and a builder that rewrites the
captured nodes to create a new subtree.

As an example, Listing 2 shows how the right-part of the
subtree in Listing 1 can be matched. Lines 25 to 30 show
the structural matcher. The matcher looks for a sequence node
that has as descendant a band node that satisfies the callback
hasGemmPattern, which in turn matches for a GEMM-
specific access pattern. Such a pattern must have at least
three two-dimensional reads to different arrays (line 12 to
15), one write access (line 17), and a permutation of indexes
that satisfies the access pattern [i, j] → [i, k][k, j]. Finally,
the builder (line 33 to 38) rebuilds the subtree by splitting
the band node into two nested bands, which reflects the tiling
transformations. For each dimension i, j and k, we use a tile
factor of 32.

C. MLIR

Increasingly heterogeneous and complex hardware makes
the design of effective code generators difficult. Addressing
this issue, the MLIR framework has been recently introduced
under the LLVM umbrella. The motivation behind MLIR is to
facilitates the design and implementation of code generators
by significantly reducing the cost of building domain-specific
compilers. MLIR is a non-opinionated, meaning that it comes
with a limited set of builtins, leaving most of the intermediate
representation customizable. A logical group of operations,
types, and attributes make a dialect. The affine is one of
them. Figure 2 shows the available dialects in MLIR and
their entry points in its compilation pipeline. PET-to-MLIR
enables polyhedral friendly C code fragments to enter the
affine dialect.

III. A BIRD’S EYE VIEW OF PET-TO-MLIR

Figure 3 shows the high-level view of our tool. We use
PET to construct the polyhedral model from a given C code
fragment. In the default mode, we require the user to delimit

1 auto hasGemmPattern = [&](schedule_node node) {
2 auto _i = placeholder();
3 auto _j = placeholder();
4 auto _k = placeholder();
5 auto _A = arrayPlaceholder();
6 auto _B = arrayPlaceholder();
7 auto _C = arrayPlaceholder();
8

9 auto reads = /* get read accesses */;
10 auto writes = /* get write accesses */;
11

12 auto mRead = allOf(
13 access(_C, _i, _j),
14 access(_A, _i, _k),
15 access(_B, _k, _j));
16

17 auto mWrite = allOf(access(_C, _i, _j));
18

19 return match(reads, mRead).size() == 1 &&
20 match(writes, mWrite).size() == 1;
21 };
22

23 schedule_node body, continuation;
24

25 auto matcher =
26 sequence(
27 hasDescendant(
28 filter(band
29 (body, hasGemmPattern, // filter func.
30 anyTree(// wildcard
31 continuation)}()))));
32

33 auto builder =
34 band([&]() { return
35 tileSchedule(body, {32,32,32}); },
36 band([&]() { return
37 pointSchedule(body, {32,32,32}); },
38 subtree(body)));

Listing 2: Structural matcher, access relation matcher for the
right-most subtree in Listing 1.

TensorFlow
Teckyl

 Linalg Stencil

Affine

SCF

MLIR LLVM IR

MLIR

PET-to-MLIR F18 FORTRAN

GtClang

Fig. 2. Dialects available in MLIR and their entry points. PET-to-MLIR
enables entering in the affine dialect from C code. The black arrows pointing
downward represent MLIR’s progressive lowering (i.e., from high-level of
abstractions (Linalg) down to the lowest (LLVM-IR)).

the code to be extracted with pragmas. Specifically, pragma
scop and pragma endscop must delimit a code fragment.
If PET cannot model a construct in the scop (i.e., non-
piecewise quasi-affine accesses), our tool will bail-out with
a warning. We also support an autodetect mode, which in turn
relies on the --autodetect options exposed by PET. In this
case, PET will try to detect automatically a code fragment that
fits the polyhedral model. In this case, no warnings are emitted
if no scops are detected. The -I option can be used to pass
include paths to PET.

Once the scop has been extracted, and before code genera-
tion, optionally, the user can invoke Loop Tactics to detect
computational motifs automatically and lift the entry point
in MLIR. Lifting the entry point will enable some domain-
specific optimizations that are not available at the affine
level. In the evaluation section, we will show how recover-
ing domain-specific information on general-purpose code can
boost the performance by emitting vendor-optimized routines.

For each scop, PET-to-MLIR emits an mlir::FuncOp
with a void signature. The inputs of the function match with
the input and output of the scop. To identify the input, we use
the scop’s array list. The array list keeps track, for each array
reference, of the following information: 1) the extent (i.e., the
size of the array), 2) element type (i.e., float or double). 3) The
set of constraints on the array parameters to ensure that it has
a valid size. 4) Two additional flags: declared and exposed.
The former tells us if an array is declared within the scop.
The latter if the array is visible outside the scop. If an array is
marked as exposed, it will be inserted as an input parameter
to the function. Whereas, if an array is marked as declared, it
will be allocated and deallocated within the function.

A PET scop also contains a context and a list of statements
with line locations. The context defines the parameter values
for which the scop is executed. We do not allow any symbolic
constant in the context, if any, the tool will bail-out with
a warning. The list of statements keeps track of statement
information. Specifically, each statement consists of a line
number, a domain, a schedule, and a parse tree. The latter
reflects the structure of the C statement. In the parse tree,
each node corresponds to pet_expr. A pet_expr carries
the type of operation, as well as, the arguments to be modeled.
An argument can be an access to an array (i.e., a read or write
access) or another pet_expr. PET-to-MLIR, builds each
statement by recursively walking each parse tree, and creating
the corresponding operation using the builders exposed by the
affine dialect.

To emit control flow operations, PET-to-MLIR walks the
ISL AST. For each node, PET-to-MLIR emits the cor-
responding operation in the affine dialect. In more de-
tails, for each isl_ast_node_for PET-to-MLIR emits
an Affine::ForOp. Currently, we can handle loops that
count upward, downward and triangular ones. The for
loop needs to be in the form for (int i = init(n);
condition(n, i); i+=s) where n and s are numbers.
For each isl_ast_node_user PET-to-MLIR generates a
statement. Specifically, from the AST node, the statement id

PET Loop Tactics isl AST
generator

PET-to-MLIR
code generator

C/C++
scop isl AST .mlir

Schedule Tree Annotated schedule Tree

Fig. 3. PET-to-MLIR tool flow. Scops are extracted using PET. Optionally the user can use Loop Tactics to detect computational motifs. After Loop Tactic
from the schedule tree, we generate ISL AST and provide a code generator to emit affine.

is extracted, and the statement look-up in the statement list.
We emit the statement operations by walking the parse tree.
isl_ast_node_block are handled in the same way as
isl_ast_node_user with the difference that they contains
multiple statements. isl_ast_node_mark are used to emit
BLAS calls. Mark nodes are allowed to be inserted by Loop
Tactics only and carry the information on what BLAS pattern
has been detected (i.e., GEMM or BATCHED GEMM).
Whenever the PET-to-MLIR code generator hits a mark node,
the subtree is replaced with a function call to a BLAS library.
Finally, ISL AST nodes of type isl_ast_node_if are not
yet handled.

A. GEMM kernel

Listing 3 shows the generated affine code for our running
example (Listing 1) without and with Loop Tactics. Let us start
by describing the code snippet on top obtained by running
without Loop Tactics and using the following compilation
string mlir-pet -I /path gemm.c. In this case, all the
inputs are marked as exposed; thus, PET-to-MLIR inserts them
as inputs to an MLIR FuncOp (scop_entry). The two
dimensional tensors A, B and C are modelled as memref
types where each element is a f32 type. Scalar alpha and
beta as f32 types. Line 5 and 6 in the code snippet reflects
statement S1 in Listing 1, whereas line 9 to 14, correspond
to statement S2. Let us now turn our attention on the code
snippet at the bottom obtained by running Loop Tactics with
the matcher reported in Listing 2. We can see that a function
call has replaced the GEMM pattern. The function call has 7
operands. The first and the second tell us if either the matrix
A or B or both are transposed. Arguments 3 to 6 are the
matrices and the alpha constant. Finally, argument 7 is the beta
constant, which in this case is set to one as we don’t capture
the initialization statement in the Loop Tactics’ matcher. The
operands are automatically collected by Loop Tactics.

IV. EVALUATION

In this section, we evaluate the applicability of our tool
by lowering to affine different kernels from the Polybench 4.2
benchmarks suite. For GEMM-like kernels (2mm, 3mm, gemm)
we additionally run Loop Tactics to lift the entry point and thus
exploiting domain-specific optimizations as the invocation of
vendor-optimized routines. All the results in this section are in
single-precision and report the arithmetic mean of five inde-
pendent runs. As platform, we use an Intel i9-9900K clocked
at 3.60GHZ. We measure the peak performance using an

SGEMM routine from the MKL library. PET-to-MLIR reports
the performance of the C code lowered with our tool to affine
and then just-in-time compiled with the mlir-cpu-runner.
PET-to-MLIR + LT, on the other hand, shows the performance
achieved by detecting computational motifs and replacing
the code with BLAS functions. As Figure 4 shows, we can
successfully lower kernels from the linear-algebra and stencil
domain. An exception is made for durbin, cholesky
gramschmidt and ludcmp as we currently do not support
constant accesses to arrays and operations like division (not
reported in the Figure). Although PET-to-MLIR is still a fairly
new tool, it is already capable of translating most of the
Polybench benchmark suite. The MLIR generated code is first
syntactically checked with the mlir-opt tool, thus proving
we generate a valid MLIR code. Behavior correctness, on the
other hand, was tested by comparing the last ten values of each
kernel’s output matrices with the output of the GCC compiler.

V. RELATED WORK

MLIR front-ends: Flang is the new LLVM front-end for
FORTRAN code. It lowers FORTRAN code to the MLIR’s
F18 dialect to perform advanced loop optimizations [8]. Teckyl
is an MLIR front-end for Tensor Operations. It allows the user
to start from a program written in Tensor Comprehension no-
tation and lowers it to the Linalg or the Loop dialect [9], [10].
TensorFlow allows also to enter MLIR via the TensorFlow IR
dialect [11], [12].

Polyhedral extractors Perhaps the most well-known
polyhedral extractors (and optimizers) are Polly [13] and
graphite [14]. The former extracts the polyhedral representa-
tion from the intermediate representation of LLVM while the
latter from GCC. Several other compilers such as R-Stream
and IBM-XL uses polyhedral techniques and thus extractors.
But they are proprietary compiler; thus, limited documentation
is available. Clan, together with PET is one of the most well-
spread polyhedral extractors for source-level code [4], [6]. But
it comes with limitations that have been addressed in PET.
SUIF is also used to extract polyhedral representation, but it
is not maintained anymore and it does not support C99, thus
it has fallen out of fashion [15]. PET-to-MLIR fits in such a
category of tool, but it is orthogonal to them as it targets the
affine dialect in MLIR.

VI. LIMITATIONS AND FUTURE WORK

Although PET-to-MLIR is already able to handle the ma-
jority of the Polybench benchmarks suite, it is still relatively

1 func scop_entry(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>,
2 %arg2: memref<1024x1024xf32>, %arg3: f32, %arg4: f32) {
3 affine.for %arg5 = 0 to 1024 {
4 affine.for %arg6 = 0 to 1024 {
5 %0 = affine.load %arg2[%arg5, %arg6] : memref<1024x1024xf32>
6 %1 = mulf %arg4, %0 : f32
7 affine.store %1, %arg2[%arg5, %arg6] : memref<1024x1024xf32>
8 affine.for %arg7 = 0 to 1024 {
9 %2 = affine.load %arg0[%arg5, %arg7] : memref<1024x1024xf32>

10 %3 = mulf %arg3, %2 : f32
11 %4 = affine.load %arg1[%arg7, %arg6] : memref<1024x1024xf32>
12 %5 = mulf %3, %4 : f32
13 %6 = affine.load %arg2[%arg5, %arg6] : memref<1024x1024xf32>
14 %7 = addf %5, %6 : f32
15 affine.store %7, %arg2[%arg5, %arg6] : memref<1024x1024xf32>
16 }
17 }
18 }
19 return
20 }

1 func scop_entry(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>,
2 %arg2: memref<1024x1024xf32>, %arg3: f32, %arg4: f32) {
3 affine.for %arg5 = 0 to 1024 {
4 affine.for %arg6 = 0 to 1024 {
5 %0 = affine.load %arg2[%arg5, %arg6] : memref<1024x1024xf32>
6 %1 = mulf %arg4, %0 : f32
7 affine.store %1, %arg2[%arg5, %arg6] : memref<1024x1024xf32>
8 }
9 }

10 %cst = constant 1.000000e+00 : f32
11 %2 = llvm.mlir.constant(0 : i32) : !llvm.i32
12 %3 = llvm.mlir.constant(0 : i32) : !llvm.i32
13 call matmul(%2, %3, %arg2, %arg0, %arg1, %arg3, %cst) :
14 (!llvm.i32, !llvm.i32, memref<1024x1024xf32>, memref<1024x1024xf32>,
15 memref<1024x1024xf32>, f32, f32) -> ()
16

17 return
18 }

Listing 3: Affine IR emitted for Listing 1 with and without running Loop Tactics.

2m
m

3m
m

ge
m

m

at
ax

bi
cg

do
itg

en

ge
m

ve
r

ge
su

m
m

v

ja
co

bi
1d

ja
co

bi
2d lu

m
vt

se
id

el
2d

sy
m

m

sy
r2

k

sy
rk

tr
is

ol
v

tr
m

m

1

2

4

8

16

32

64

128 145.5 GFLOP/s

G
FL

O
P/

se
c

PET-to-MLIR PET-to-MLIR + LT

Fig. 4. Performance obtained by lowering C code to the Affine in MLIR via PET-to-MLIR.

new and under active development. At the time of this writing
(git commit: c832a7d)1, the tool comes with limitations
that, however, do not preclude its usage. Perhaps the most
prominent limitations are: 1) If and else construct are not
yet handled in the code generation. Currently, when an if
condition is detected in the code fragment to be translated,
the tool exists with a warning. 2) Symbolic bounds are not
yet handled, and for now, we require all the loop bounds to
be statically known (-DPOLYBENCH_USE_SCALAR_LB in
Polybench). 3) External function calls in the code fragment
are not allowed, and the tool bails-out if a call is detected. 4)
Other operations such as division, as well as, constant accesses
to arrays are not handled yet. 5) Line locations are not tracked.

Future work will extend the test coverage and make sure the
tool is feature complete. We will also work on emitting higher-
level of abstraction dialects such as Linalg. Besides, we want
to utilize the matchers in Loop Tactics to extract algorithmic
information for general-purpose code. By defining structural
and access patterns (matchers) for dialect-specific functions
like pooling or transpose, we can enable parts of the originally
general-purpose code to reach domain-specific dialects, thus
allowing exploration of algorithmic-level optimizations.

VII. CONCLUSION

By exploiting the strengths of mature polyhedral tools,
we have constructed, to the best of our knowledge, the first
frontend for MLIR for polyhedral friendly C code. Although
the development of the tool is still in progress, it can already
handle a subset of the Polybench/C benchmark suite, as
demonstrated in our evaluation.

Finally, by using Loop Tactics, we provide a way to
lift the entry-point in the MLIR compilation pipeline, thus
enabling domain-specific optimizations, such as the use of
vendor-optimized libraries. This last point also highlights the
importance of retaining semantic information in compiler IR,
which is the reason why MLIR has been developed in the first
place.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission Horizon 2020 programme through the MNEMOSENE
grant agreement, id. 780215 and the NeMeCo grant agreement,
id. 676240.

1https://github.com/LoopTactics/mlir.git

REFERENCES

[1] C. Lattner, J. Pienaar, M. Amini, U. Bondhugula, R. Riddle, A. Cohen,
T. Shpeisman, A. Davis, N. Vasilache, and O. Zinenko, “Mlir: A
compiler infrastructure for the end of moore’s law,” arXiv preprint
arXiv:2002.11054, 2020.

[2] U. Bondhugula, “High performance code generation in mlir: An early
case study with gemm,” 2020.

[3] L. Chelini et al., “Declarative loop tactics for domain-specific
optimization,” ACM TACO, Nov. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3372266

[4] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Second
International Workshop on Polyhedral Compilation Techniques (IM-
PACT’12), Paris, France, 2012, pp. 1–16.

[5] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in International Congress on Mathematical Software. Springer, 2010,
pp. 299–302.

[6] C. Bastoul, “Clan-a polyhedral representation extractor for high level
programs,” 2008.

[7] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen, “Schedule trees,”
in International Workshop on Polyhedral Compilation Techniques, Date:
2014/01/20-2014/01/20, Location: Vienna, Austria, 2014.

[8] E. Schweitz. (2019) An mlir dialect for high-level optimization of
fortran.

[9] A. Debres, “Teckyl,” https://github.com/andidr/teckyl, 2020.
[10] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.

Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions,” arXiv preprint arXiv:1802.04730, 2018.

[11] J. Pienaar, “Mlir in tensorflow ecosystem,” 2020, compilers For Machine
Learning (C4ML) 2020, San Diego, CA, USA.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[13] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-
N. Pouchet, “Polly-polyhedral optimization in llvm,” in Proceedings of
the First International Workshop on Polyhedral Compilation Techniques
(IMPACT), vol. 2011, 2011, p. 1.

[14] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache,
“Graphite: Polyhedral analyses and optimizations for gcc,” in Proceed-
ings of the 2006 GCC Developers Summit. Citeseer, 2006, p. 2006.

[15] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S.
Lam et al., “Suif: An infrastructure for research on parallelizing and
optimizing compilers,” ACM Sigplan Notices, vol. 29, no. 12, pp. 31–
37, 1994.

