

Design & implementation of a surround vision system for
cooperative and autonomous driving
Citation for published version (APA):
Menezes, A. (2020). Design & implementation of a surround vision system for cooperative and autonomous
driving: Object-Lane-Freespace Detection & Pose Estimation of Targets. Technische Universiteit Eindhoven.

Document status and date:
Published: 23/10/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/e965558b-ec93-4f99-8d34-b468c500ed4c

PDEng AUTOMOTIVE SYSTEMS DESIGN
Track AUTOMOTIVE SYSTEMS DESIGN

PDEng THESIS REPORT

Design and Implementation of a Surround Vision
System for Cooperative and Autonomous Driving
Object-Lane-Free space Detection and Pose Estimation of Targets

Ashton Menezes
22 September 2020
Department of Mathematics & Computer Science

Design & Implementation of a Surround Vision System for
Cooperative and Autonomous Driving

Object-Lane-Free space Detection & Pose Estimation of Targets

October 2020

Eindhoven University of Technology
Stan Ackermans Institute - Automotive/Mechatronic Systems Design

PDEng Report: 2020/058

Confidentiality status : Open access

Partners

Integrated Cooperative Automated
Vehicles

Eindhoven University of Technology

Steering Group dr.ir. Tom van der Sande (I-Cave & TU/e)
dr.ir. Gijs Dubbelman (TU/e)

Date October 2020

Ashton Menezes

Composition of the Thesis Evaluation Committee:

Chair: Dr. Gijs Dubbelman

Members: Dr. Tom van der Sande

Dr. Jos Elfring

Dr. René van de Molengraft

Dr. Peter S.C Heuberger

Dr. Narsimlu Kemsaram

The design that is described in this report has been carried out in accordance
with the rules of the TU/e Code of Scientific Conduct.

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 5.072, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31 402743908

Partnership This project was supported by Eindhoven University of Technology and I-Cave.

Published by Eindhoven University of Technology

Stan Ackermans Institute

PDEng-report 2020/058

Preferred
reference

Design & Implementation of a Surround Vision System for Cooperative & Autonomous
Driving: Object-Lane-Free space Detection & Pose Estimation of Targets, Eindhoven Uni-
versity of Technology, PDEng Report 2020/058, October 2020

Abstract Self-driving cars have the potential to change the landscape of urban mobility. However,

the biggest roadblock for the success of such concepts is to perceive the environment ro-
bustly in real-time. This project provides a prototype solution to robustly estimate the sur-
roundings around the vehicle using a set of monocular cameras.

Keywords Surround Vision, Autonomous Driving, Platooning, Vehicle Pose Estimation

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the Eindhoven University of Technology or i-
CAVE. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the Eindhoven University of Technology or i-CAVE, and shall not be used
for advertising or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report
is accurate and up to date, Eindhoven University of Technology makes no warranty, rep-
resentation or undertaking whether expressed or implied, nor does it assume any legal lia-
bility, whether direct or indirect, or responsibility for the accuracy, completeness, or use-
fulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with
the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2020. Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocop-
ying, recording, or by any information storage or retrieval system, without the prior written
permission of the Eindhoven University of Technology and i-CAVE.

Eindhoven University of Technology

i

Foreword

Ashton has been working in the i-CAVE project, which is a large NWO project, focused on automated and coop-
erative vehicles. One of the key challenges in achieving successful vehicle automation is environmental percep-
tion. In practice this means that a vehicle is equipped with various sensors such as RADAR, camera and LIDAR.
In addition to fusion of these sensors to create a coherent image and navigate safely, cooperative driving requires
contextual knowledge of the vehicles around it. The most important objective in cooperative driving is following
the car in front of you, which in this case is a Renault Twizy. The main objective of Ashton’s research was to
develop a system that is able to identify this particular car. In addition to that, having knowledge of the location
and orientation of the Twizy is of the utmost importance to achieve successful cooperative automated driving.

To that end, Ashton has created a framework for a set of cameras that he implemented on the research vehicle. He
managed to create a detector that estimates the relative position of the Twizy and that also gives the heading angle
with respect to that. Additionally, multiple modules, such as lane detection and free-space detection have also
been implemented.

With the work of Ashton, another step has been set to achieve fully automated and cooperative driving vehicles.
Together with the work of fellow PDEng researcher Varun Khattar, the environmental perception of the Renault
Twizy has taken another step in the right direction.

Dr. Tom van der Sande
September 2020

Eindhoven University of Technology

ii

Eindhoven University of Technology

iii

Preface

This technical report describes my final assignment for the Professional Doctorate in Engineering (PDEng) pro-
gram in Automotive Systems Design (ASD) at the Eindhoven University of Technology (TU/e). During this pro-
gram the trainees work on several multidisciplinary projects with different automotive companies, where state-
of-the-art system’s engineering approach is followed. The program is divided into two phases, each having a one-
year duration. During the first phase, the focus is on professional and personal development where the trainees
work in teams by taking up different leadership roles while working with TU/e industrial partners. The second
phase of the program consist of a twelve-month design experiment carried out at a company or the university.

In accordance with this, I carried out my final design assignment with the integrated cooperative automated ve-
hicles (i-CAVE) project team at TU/e with the goal to design and implement a Surround Vision System (SVS)
using the Nvidia Drive PX 2. The main task of the system is to provide coherent information of the environment
around the ego-vehicle to enhance the sensor fusion and decision-making capabilities. The intent of this report is
to enable a technical reader (engineers and researchers) to either understand, replicate or continue this project.

Ashton Menezes
September, 2020

Eindhoven University of Technology

iv

Eindhoven University of Technology

v

Acknowledgements

I want to thank all the people who have supported me, especially during these nine-months and also during the
entire program duration.

First of all, I would like to thank my supervisors, Gijs Dubbelman and Tom van der Sande, for giving me the
opportunity to work on this project. Without their mentoring and invaluable support, it would have been impossi-
ble to tackle many technical and execution related issues.

Secondly, I would like to thank Narsimlu Kemsaram and Anweshan Das for their constant availability and support
when it came to hardware execution on the Drive PX 2, camera calibration, validation and testing. They have also
played a critical role in getting me up and running with all the necessary software setups during the initial phase
of the project.

Furthermore, I would like to thank Peter Heuberger and Ellen van Hoof-Rompen, for guiding the project from an
organizational point-of-view.

Finally, I would like to thank my fellow colleagues, Arash Arjmandi, for the extensive discussions we had con-
cerning computer vision and software architecture and Salih Yousif for his valuable tips during stressful times.

Ashton Menezes
September, 2020

Eindhoven University of Technology

vi

Eindhoven University of Technology

vii

Executive Summary

Self-driving cars have the potential to change the landscape of urban mobility. However, the biggest roadblock
for the success of such concepts is to robustly perceive the environment in real-time. Stereo Vision Camera sensors
are widely used for extracting semantic information and estimating depth. However, they have a limited field of
view, a high processing time and are economically not scalable.

The goal of this design experiment is to take a step forward in vehicle automation by investigating the possibilities
of using monocular cameras to obtain a coherent image of the surrounding. To this purpose, a prototype of a
Surround Vision System is designed and deployed on automotive-grade embedded platform, the NVidia Drive
PX 2, to evaluate its real-time capabilities. The system is then demonstrated on a test vehicle, a Renault Twizy,
for autonomous and cooperative applications.

The project will try to accomplish this goal by breaking it into three main parts: system architecture, design and
implementation, and validation.

The first objective is to identify the problems in the existing stereo vision system, which is used for fusion with
Radar measurements and address the key concerns of the stakeholders (Chapter 2). Using a system’s engineering
approach, different driving scenarios were analysed to determine the expected functionality and derive require-
ments. The Software Architecture was then derived by decomposing the system into functional modules and iden-
tifying the interfaces (Chapter 3 and 4).

The design and implementation (Chapter 5 and 6) involved evaluation of different design choices considering the
concerns of stakeholders, project management constraints and the compatibility limitations with the NVidia Drive
PX 2. The main challenge here was to robustly and efficiently detect the position of objects and the pose of
potential platooning target vehicles using monocular vision.

To test and demonstrate the functionality in real-time, the designed system was deployed on a test vehicle, a
Renault Twizy using the NVidia Drive PX 2. The system is capable of receiving information synchronously from
multiple cameras mounted on the roof of the test vehicle. The system robustly detects and identifies the position
of objects, pose of targets, the drivable free space and lanes around the vehicle. Each functionality is evaluated
through visual verification, offline measurements and external sensors described in Chapter 7. The computed
information is then provided to the vehicle control system at a desirable rate suitable for sensor fusion.

Eindhoven University of Technology

viii

Eindhoven University of Technology

ix

Table of Contents

Foreword ... i

Preface ... iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xii

List of Tables ... xv

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Need for Surround Vision System ... 2

1.3 Project Context ... 4

1.4 Project Goals .. 4

1.5 Interaction with other Projects ... 5

1.6 Unique Contributions ... 5

1.7 Overview of the Thesis.. 5

2. Analysis ... 7

2.1 Problem Analysis .. 7
2.1.1. Project Background ... 7
2.1.2. Problem Statement ... 8

2.2 Stakeholder Analysis .. 8
2.2.1. I-Cave Program Partners (Eindhoven University of Technology)... 8
2.2.2. Designers and Developers ... 9
2.2.3. PDEng Management (ASD Program) .. 9

2.3 CAFCR Analysis ... 9

3. Requirements Elicitation ... 11

3.1 Elicitation process .. 11

3.2 Real World Layer ... 11

3.3 Vehicle Level .. 13
3.3.1. System Context: ... 13
3.3.2. System Functions ... 13
3.3.3. Functional Requirements ... 15
3.3.4. Non-Functional Requirements ... 18

3.4 System External Interfaces ... 19

4. System Architecture .. 21

Eindhoven University of Technology

x

4.1 Functional Viewpoint ... 21

4.2 Concurrency Viewpoint .. 22

4.3 Logical Viewpoint ... 24

4.4 Structural Views ... 25

5. Module Design .. 29

5.1 Camera Image Acquisition (CIA) ... 29

5.2 Object Perception ... 30
5.2.1. Object Detector .. 32
5.2.2. Vehicle Tracker ... 33
5.2.3. Tracked Object Manager ... 34

5.3 Lane Perception ... 39

5.4 Free Space Perception ... 40

6. Implementation .. 41

6.1 NVidia Drive Software ... 41

6.2 Mapping of SVS Architecture to DriveWorks APIs .. 41
6.2.1. Camera Image Acquisition .. 41
6.2.2 Deep Neural Networks ... 42
6.2.2.1 Object Detector .. 42
6.2.2.2 Object/Target Vehicle Tracker .. 42
6.2.2.3 Target Vehicle Classifier ... 42
6.2.3 Vehicle Position and Other Objects Estimation.. 43
6.2.4 Target Vehicle Pose Estimation .. 45
6.2.5 Lane Detection & Polynomial Fitting ... 46
6.2.6 Free Space Detection .. 46

7. Validation and Test Results .. 47

7.1 Experimental Setup.. 47
7.1.1. Carla Simulator .. 47
7.1.2. Test Vehicle ... 47

7.2 Unit Testing .. 48
7.2.1. Unit Testing Rendering Results: .. 49
7.2.2. Position Estimation Static Results ... 50
7.2.3. Position Estimation Dynamic Results .. 51
7.2.4. Target Pose (Heading) Estimation Results .. 53
7.2.5. Lane Polynomial Fitting Results .. 55

7.3 System-Level Testing .. 55
7.3.1. System Profiling: ... 56
7.3.2. Comparison with Stereo Vision System. ... 57

8. Project Management ... 59

8.1 Project Planning ... 59

8.2 Risk management .. 59

8.3 Project task execution... 60

9. Conclusion and Recommendations .. 63

Eindhoven University of Technology

xi

9.1 Conclusions .. 63

9.2 Future Work and Recommendations .. 64

Glossary ... 65

Bibliography .. 67

References ... 67

Appendix A. ... 69

Appendix B. ... 74

Appendix C. ... 75

Appendix D. ... 75

About the Author .. 77

Eindhoven University of Technology

xii

List of Figures

Figure 1: Platooning scenario. .. 1
Figure 2: a) i-CAVE work packages b) A Renault Twizy fitted with Sensors .. 2
Figure 3: Some highway scenarios of autonomous vehicle crashes ... 2
Figure 4: Sensors comparison in autonomous driving [3] .. 3
Figure 5: Proposed Surround Vision System .. 4
Figure 6: Existing Setup ... 7
Figure 7: CAFCR a Multi-view method for System Architecting [4] .. 9
Figure 8: CAFCR Framework Application .. 10
Figure 9: Real-World Layer: Context of the Ego-vehicle ... 11
Figure 10: Vehicle Level Layer: Context of the Surround Vision System ... 13
Figure 11: System Functions derived from the driving scenario .. 14
Figure 12: System External Interfaces .. 19
Figure 13: Functional Viewpoint - Functional Elements & their interactions .. 21
Figure 14: Functional Viewpoint - Each Functional Element & its decomposition ... 22
Figure 15: Concurrency View- SVS ... 23
Figure 16: Concurrency View - Object Detection .. 23
Figure 17: State Machine Diagram ... 24
Figure 18: Block Definition Diagram (BDD) representing the composition of SVS ... 25
Figure 19: Internal Block Diagram (IBD) of Surround Vision System. ... 26
Figure 20: Internal Block Diagram (IBD) of Object Perception Module ... 26
Figure 21: Camera Image Acquisition Flow-chart ... 29
Figure 22: Object Perception: Design Choice 1 ... 30
Figure 23: Object Perception - Design Choice 2 .. 31
Figure 24: Object Perception - Design Choice 3 .. 31
Figure 25: Object Perception for Front Camera ... 32
Figure 26: Object Detector Flow Chart .. 33
Figure 27: Vehicle Tracking Algorithm ... 33
Figure 28: Vehicle Tracker (Front) Workflow ... 34
Figure 29: Tracked Object manager workflow ... 35
Figure 30: Width Based Methods: a) Intervehicle distance calculation based on bounding box height change b)

Intervehicle distance calculation based on lane-markings ... 36
Figure 31: Position-Based Method ... 36
Figure 32: Position Estimator Workflow .. 37
Figure 33: Target Vehicle Classifier Workflow ... 38
Figure 34: Target Pose Estimator Workflow .. 38
Figure 35: Lane Perception Workflow ... 39
Figure 36: Free Space Perception Workflow .. 40
Figure 37:NVidia Drive Software Stack [10] ... 41

Eindhoven University of Technology

xiii

Figure 38: Image Processing Pipeline .. 42
Figure 39: Pipeline for Training and Deployment of Classifier ... 42
Figure 40: Position Estimation Schematic Diagram Front View .. 43
Figure 41:Top-View Schematic for Heading and Orientation Measurements .. 45
Figure 42: 3D Box mesh manually aligned with the Twizy rear surface and feature points extracted 46
Figure 43: CARLA Simulator setup for unit testing of SVS functions .. 47
Figure 44: Ego-vehicle fitted with GSML cameras and connected to the DRIVE PX 2 47
Figure 45: Unit Testing of Object Perception Module ... 49
Figure 46: Unit Testing of Lane and Free space module .. 50
Figure 47: Static Test Setup with cones placed at steps of 10m. .. 50
Figure 48: Longitudinal position results for vehicle departing away from the ego-vehicle 51
Figure 49: Vehicle Height measurements & estimates of the detected preceding vehicle 52
Figure 50: Position estimation results for vehicle approaching the ego vehicle ... 52
Figure 51: Vehicle Height measurements and estimates of preceding vehicle ... 53
Figure 52: Test Setup for Target Pose Estimation .. 54
Figure 53: Correlation of heading angle measurements by camera with IMU measurements.............................. 54
Figure 54: Lane Polynomial Fitted with measured data ... 55
Figure 55: On-Road testing with target and ego vehicle .. 56
Figure 56: Execution time for Front Camera when four new tracks are created .. 56
Figure 57: Execution time for Front Camera with existing tracks. ... 57
Figure 58: Initial Project plan constructed at the beginning of the project. .. 59
Figure 59: Actual Executed Plan .. 60

Eindhoven University of Technology

xiv

Eindhoven University of Technology

xv

List of Tables

Table 1: Driving Scenario - CACC... 12
Table 2: Unit Testing Observations .. 48
Table 3: Position Estimation static testing results .. 50
Table 4: Comparison of the execution time of SVS and Stereo Vision systems on Host PC 57
Table 5: Risk Management Table ... 60

Eindhoven University of Technology

xvi

Eindhoven University of Technology

1

1.Introduction

This introduction chapter briefly describes the motivation, project context, the main stakeholders involved in the
project, the high-level goals, and interaction with other projects. The purpose of designing a surround vision sys-
tem is also discussed. A set of high-level goals for the project are also formulated, which will be explained in
detail in the analysis of Chapter 2.

1.1 Motivation
In the ’50s and ’60s visions came up reaching from automated road traffic to “Flying Cars”. Some of these visions
were inspired by the progress made in electronics and computer technology. Not all of these dreams have come
true, but yes, we have indeed made tremendous progress in relation to self-driving cars, thanks to the explosion
in Artificial Intelligence, especially when it comes to perception systems. The benefits are manifold from safety
to convenience; self-driving vehicles have the potential to completely transform the transport infrastructure, which
could lead to mobility as well as economic and sustainability gains.

Statistics from the National Highway Traffic Safety Administration (NHTSA) show that driver error is by far the
most significant cause of road traffic accidents, due to factors like miscalculations, errors of judgment, speeding,
drink-driving, and phone use. In fact, an alarming 94 percent of serious crashes are due to human error. [1]

Concerning the economic benefits, an NHTSA study proves that motor vehicle crashes in 2010 accounted for
$242 billion in economic activity, including $57.6 billion in lost workplace productivity, and $594 billion due to
loss of life and decreased quality of life due to injuries [1].

Fully autonomous vehicles would take human error out of the equation, thereby making our roads safer not just
for drivers, but also passengers, cyclists, and pedestrians. Fully autonomous vehicles do not depend on commu-
nication with other traffic but rely on multiple onboard sensors to move and navigate independently. However,
sensor failure or any other technical error may lead to disastrous consequences. Cooperative automated vehicles,
on the other hand, can share system information with other vehicles making a significant contribution towards
increasing road safety and improve mobility worldwide. Constructive information sharing will provide endless
possibilities for safe driving, and multiple vehicles can collaborate to compensate for information scarcity. An
example of such cooperative behaviour is platooning, where multiple vehicles drive together in formation. In a
platooning scenario, the front target vehicle is controlled by the driver, while the ego vehicles autonomously
follow the vehicle in front of it, is as shown in Figure 1.

Figure 1: Platooning scenario.

Eindhoven University of Technology

2

In a platooning, the ego vehicle needs reliable and accurate perception capabilities to follow the target vehicle
autonomously. Various perception algorithms are rapidly evolving, but the practical bottleneck is the amount of
computational power available in these vehicles. Embedded platforms normally deployed in a car are simply not
able to cope with the massive amount of data generated by different sensors such as cameras. NVidia Drive-PX
2, Intel-GO and NXP BlueBox are examples of such programmable platforms.

Inspired by the benefits and challenges mentioned above the i-Cave (integrated cooperative automated vehicles)
Research Program [2] funded by the Netherlands Organization for Scientific Research (NWO) was started in the
Netherlands to investigate the throughput and safety in relation to automated and cooperative driving with an
ultimate goal towards SAE Level 5 Automation. This program is broken down into several work packages based
on different disciplines, sensing, cooperative vehicle control, communication & human factors, to name a few as
shown in Figure 2.a below.

Figure 2: a) i-CAVE work packages b) A Renault Twizy fitted with Sensors

The primary motivation of this project is to make a step forward in vehicle automation by improving the sensing
capabilities of the vehicle and evaluating the performance on a prototype vehicle. To that effect, demonstrator
vehicles which are Renault Twizys (see Figure 2b) are equipped with various sensors, communication devices
and controllers. This assignment mainly focused on the design and realization of the surround vision system using
the NVidia Drive PX 2 embedded platform.

1.2 Need for Surround Vision System
An autonomous vehicle needs to accurately identify and localize dynamics objects in the surrounding environment
of the vehicle. Having a full scan of the surrounding is crucial for many tasks, such as obstacle avoidance, path
planning, and intent recognition. Figure 3, for example, shows some highways scenarios where a car accident is
likely to occur due to the limited detection field of view of the vehicle. In these cases, the perception system would
not trigger an alert since there is no vehicle in the system’s field of view. If this happens in a highway situation,
it is too late for the autonomous system to react due to high speeds. Therefore, comprehensive environment per-
ception that detects, classifies and estimates the motion states of surrounding vehicles would have an enormous
potential to enhance road safety by proactively reacting to traffic conditions or hazardous situations.

Figure 3: Some highway scenarios of autonomous vehicle crashes

Eindhoven University of Technology

3

In relation to the sensing capabilities, different types of sensors are used to provide external and immediate infor-
mation of the vehicles surrounding. (see Figure 4)

• Radar – Small, inexpensive and good range, work in dark conditions and able to sense.
• Ultrasonic - Suitable only for near range 3D mapping.
• Lidar – Have excellent range and mapping capabilities but are too expensive for broad deployment.
• Vision-based sensors, i.e. Cameras, have become affordable, miniaturized, and with increasing resolution

in recent years. Their colour, contrast, and optical character recognition capabilities give these sensors
an edge compared to other sensors.

Figure 4: Sensors comparison in autonomous driving [3]

Stereo vision sensors are also used for tracking objects. However, the performance is limited by the quality of
disparity estimates, longer execution time and the field of view (FoV) of the stereo pair. Furthermore, it is not
economically viable to have multiple stereo cameras to cover the surrounding of the vehicle. Thus in this project,
we investigate the possibility of a surround vision system using a set of monocular cameras to detect and estimate
the position of objects, pose of potential platooning targets, lanes and the free space around the ego-vehicle as
shown in Figure 5.

Eindhoven University of Technology

4

Figure 5: Proposed Surround Vision System

1.3 Project Context
This project was performed in collaboration with the Mobile Perception Systems (MPS) group and the Dynamics
& Control (D&C) group of the TU/e. The MPS group specializes in building sensor perception and prediction
algorithms. The end goal of this department is more involved in improving the perception capabilities of the
vehicle. They focus on methods that can sense the ever-changing environment around the car and perceive ob-
jects/obstacles around the vehicle.
The D&C group, on the other hand, is responsible for research into various control algorithms required for coop-
erative and self-driving applications. Their goal is to make sure that the vehicle can plan a path and make decisions
in order to drive safely in the environment.
In relation to the i-CAVE program, the MPS group is responsible for the development of perception algorithms
and D&C group is responsible for the development of controllers for vehicle platooning. These algorithms and
controllers are then tested by deploying them in a demonstrator vehicle.

1.4 Project Goals
The primary customer of this project is the D&C group since all the information captured by the perception sensors
will be utilized for sensor fusion and path planning. The customer wants to drive cooperatively in a platoon by
tracking a target vehicle and drive autonomously in general driving conditions. The MPS team will play a role of
a TIER1 supplier, responsible for providing all necessary software, hardware and technical support required for
implementing this project. The primary purpose of this project is to design the surround vision software involved
in the system, deploy it on an embedded device and demonstrate the functionality on a demonstrator vehicle.
The main project goals are as follows:

• Capture and analyze requirements from discussions with relevant stakeholders.
• Design the system so that it fulfils the requirements and accounts for design constraints caused by soft-

ware APIs and embedded devices.
• Implement the system functionality using DriveWorks API’s since they are optimized for implementa-

tion on Nvidia Drive PX 2.
• Verify and validate the final implemented system using the appropriate techniques.

Implementation in a prototype vehicle requires the installation of additional hardware, such as:

• GMSL Cameras - Mounted and calibrated in the desired positions.
• NVidia Drive PX 2 - An embedded device that realizes the designed functionality.
• HMI – Displaying the outputs of implemented functionality for testing and verification.

On the software side, the practical realization of the system requires:

• Implementation of an Object Detector to detect objects belonging to different class types.
• Training of a neural network that can detect and classify a Target Vehicle (Twizy)

Eindhoven University of Technology

5

• Setting up a software pipelines from capturing information from cameras to performing detections.
• Designing of a target vehicle pose estimator.
• Implementation of a Free space detector to estimate free space around the ego vehicle.
• Implementation of a Lane detector to estimate different lane boundaries. Providing Lane coefficients in

vehicle world coordinates from the detected lanes in an image.
• Design of software pipelines to display outputs of what the vehicle perceives real-time to an HMI for

testing and demonstration purposes.
• Unit Testing and validating the performance of each software module.
• Sending information of all detected objects and their positions in CAN format to vehicle controller.

Out of Scope:

• It was jointly agreed with all stakeholders that the task related to deciding the number of cameras and
their optimal positions to prevent blind spots around the ego vehicle was kept out of scope.

1.5 Interaction with other Projects
The ego vehicle is fitted with different types of sensors like Radar, IMU, GPS, V2V and wheel-speed sensors
besides the surround cameras. The information from these sensors is fused to get a robust estimate of the position
of the ego vehicle and its surround objects. Since the camera information is also an input for this fusion, it involves
working closely with the team involved with Radar and sensor fusion. Also, the lane information perceived by the
system are inputs to the path planning algorithms. In the end, the surround vision system should couple well with
the existing ongoing projects to be successful.

1.6 Unique Contributions
In this project, given the information obtained from multiple cameras mounted on the roof of a vehicle, a percep-
tion system is developed in order to get a meaningful representation of the environment. A systems engineering
approach is used for identifying and decomposing the desired behaviour into modular functions. Although parts
related to the implementation of these functions have been done before it does not appear that anyone has ever
brought it all together into one single project and implemented it on a real-time system.

The first contribution of this project is the design of a novel framework that includes several functions: Object,
Lane & Free space detection, Tracking, Target classification, Position estimation of vehicles and Pose estimation
of targets. Each sub-function is addressed by using Deep-Neural networks and novel algorithms.

The second contribution is the implementation and evaluation of a vehicle-agnostic algorithm for accurately esti-
mating the position of vehicles in real-time using monocular vision.

The third contribution is the implementation and evaluation of a pose estimation algorithm for evaluating the pose
of a known target vehicle for vehicle platooning applications.

1.7 Overview of the Thesis
The following is a brief account of the contents of this thesis. Chapter 2 addresses the problem with the existing
setup and the concerns of the stakeholders involved in this project. Chapter 3 describes the requirements elicitation
process. Different driving scenarios are evaluated to identify the functional requirements and the system context.
Chapter 4 follows the white-box modelling of the system by defining the architecture and subsystems. Chapter 5
considers different design choices and algorithms that fulfil the requirements and concerns. Chapter 7 and 8 ex-
plain how these algorithms are implemented and evaluated in conformance with the driving scenarios and require-
ments. Chapter 9 concludes with the conclusion and recommendations for future work.

■■■

Eindhoven University of Technology

7

2. Analysis

In this chapter, the main goal of the project is decomposed by analyzing the task required. First, a problem analysis
is carried out to explain the existing hardware setup, identify the issues related to such a configuration and define
a problem statement. A stakeholder analysis is carried out to explore the concerns and to identify the key drivers
for this project. In the last section, the CAFCR methodology is explained to initiate the architecting process.

2.1 Problem Analysis
In a platooning scenario, cooperative automated vehicles need a robust and reliable perception system to per-
ceive the environment accurately in real-time.

2.1.1. Project Background
Before this project, the demonstrator vehicle, i.e. a Renault Twizy, consisted of the following components, as
shown in figure 6 below.
1) Front-facing stereo vision camera
2) NVidia Drive PX 2
3) Vehicle Control System: Simulink Real-time PC
4) Front-facing Radar

Figure 6: Existing Setup

The sensory information captured by the stereo vision camera was processed on the Drive PX 2 to detect and
compute the position of objects in front of the vehicle. The computed information was provided to the vehicle
control system for fusion with radar measurements.

The issues with such a configuration were as follows:
1) Since platooning is the main objective of the i-CAVE project it was required that the target vehicle, (another
Renault Twizy) be placed in front of the ego-vehicle from the beginning of any test. The nearest vehicle was
assumed as the target to be followed. In scenarios where multiple vehicles are in front of the ego vehicle, the
control system would follow the nearest vehicle which may not be a target leading to undesired behavior.

2) For platooning, it was also necessary to have information related to the pose of the targets. This information
was obtained only through V2V communication between the targets and the ego vehicle, which was unreliable.
Hence, there was a need to measure the pose of the targets using extrinsic sensors, for.eg the vision system.

Eindhoven University of Technology

8

3) For safe autonomous driving, tracking of surrounding vehicles is essential for many tasks crucial to autono-
mous driving, such as obstacle avoidance, path planning, and intent recognition. The generated tracks should be
accurate, long and robust to sensor noise to have good high-level spatial reasoning. In the existing setup, the de-
tection and tracking of objects were limited to only the FOV of the front radar and the stereo camera pair, mak-
ing it difficult for the ego-vehicle to pre-emptively take collision avoidance measures based on the knowledge of
spatial positions of all objects around its surroundings.

4) In order to have better fusion, ideally, the radar and vision inputs must be synchronized. Due to the long exe-
cution time required for stereo depth calculation, the frequency at which vision measurements were provided,
(7Hz) was lower compared to the radar measurements (14Hz) resulting in poor fusion.

2.1.2. Problem Statement
To address the problems cited above, a decision was made by the stakeholders to design a vision system that can
have the following functions:

1) Identify a potential target vehicle (a specific type or brand, in this case, a Renault Twizy) among other
vehicles

2) Investigate the possibility of estimating the position of objects using monocular vision with lesser exe-
cution time.

3) Estimate the pose of target vehicles using monocular vision.
4) Design a scalable system constituting of a variable number of monocular cameras and radars to capture

the 360 degrees surrounding of the ego-vehicle.
5) Have additional functionalities to detect the free space boundary around the ego-vehicle and lanes in

front and rear of the vehicle.

2.2 Stakeholder Analysis
In this section, a thorough analysis of different stakeholders, directly or indirectly involved in this project, is
presented. This analysis was initially carried out during the project initiation phase and regularly revised to ensure
that each stakeholder is constructively involved in contributing to the envisioned future.

The objective of this analysis was to identify concerns related to what are the financial and emotional interests
each stakeholder has in the outcome of this doctorate assignment, What are various concerns and challenges that
project stakeholders hope to solve, what expectations they have from the outcome of this project and how would
it affect them in the long run. Another major objective of stakeholder analysis is to build consensus, between
different parties, for project priorities and deliverables. Fortunately, there were no disagreements, and therefore
no additional effort was required for alignment of the stakeholders. From a reader’s viewpoint, it is imperative to
get an insight into the circumstances and conditions guiding the strategic objectives and goals of this assignment.
This insight will enable the reader to understand the various reasons behind the design choices made. The analysis
is split into three different groups which are discussed in the following sections. The first group is the I-Cave
program partners which address organizational and business-level objectives and interests. The second group,
designers and developers, address their interests and concerns on a more personal level. Here, current developers
and designers were considered, but also those who will be responsible for the continuation of the project. The
final group is the PDEng Management, where the trainee needs to fulfil the requirements of the program.

2.2.1. I-Cave Program Partners (Eindhoven University of Technology)
Eindhoven University of Technology (TU/e) is committed to building solutions related to ‘Smart Mobility’. TU/e
holds a great deal of expertise in the fields of Intelligent Transport Systems, Automotive Technology, and ICT/
Embedded Systems.

The Mobile Perception group headed by assistant professor Dr. Dubbelman is involved in building perception
algorithms related to autonomous applications. The main questions that Dr Dubbelman is trying to answer from
this assignment are as follows:

1) Can we have a real-time implementation of an algorithm that can estimate the pose of a vehicle with
prior knowledge of its shape?

2) Can we design a system that can efficiently, robustly detect & estimate the position of objects in real-
time?

Eindhoven University of Technology

9

When referring to efficiency, it means the computational cost (i.e. Execution time and memory) is at or below
some acceptable level.

From the Dynamics & Control group, Dr. Tom van der Sande is responsible for leading a team in the development
of cooperative and automated driving controllers. The key research goals he is trying to solve are as follows:

1) Can we accurately identify and localize dynamic objects in the surrounding of the ego-vehicle?
2) Can we have a coherent image of the surrounding by having a wider FOV e.g.(surround vision) thus

increasing the time to collision? This will lead to an improvement in the margin of safety and smoother
controller action.

3) Can we have a robust estimate of surrounding objects by fusion of all sensor measurements?
4) Can we have a reliable pose estimate of target vehicles (Renault Twizys) to be followed in platooning,

by fusion of measurements from multiple external sensors i.e. V2V Communication and cameras?

2.2.2. Designers and Developers
The group of designers and developers consists of people who are presently working on the project and those who
will be working in the future. Dr. Narsimlu Kemsaram, a Post.Doc candidate at TU/e, is responsible for the im-
plementation of different algorithms developed by the MPS group on the Drive PX 2. His main concerns are
related to the non-functional aspects of the system. The developed software architecture should be easy to under-
stand and maintainable. The code should be modifiable and extendable for the use of better algorithms in the
future.

2.2.3. PDEng Management (ASD Program)
Supervised by Dr.ir. Peter Heuberger (Program Manager, PDEng MSD/ASD), the PDEng program is concerned
with successful completion of the PDEng final assignment.

2.3 CAFCR Analysis
System design is a creative process and does not follow hard and fast rules, however, there are various guidelines
and tools from system engineering are used to assist the process. One such tool is the CAFCR methodology which
is an architectural reasoning framework that helps in making the design choices.

Figure 7: CAFCR a Multi-view method for System Architecting [4]

CAFCR provides various views depicted in Figure 7 in order to evaluate various design choices and analyze a
design. These views enable the designer to consider the product from multiple perspectives.

The customer view provides answers to the ‘Why’ question from the customer. “Why is the customer interested
in carrying out this design experiment?”. This is established in the 1st chapter. The customer’s view also includes
defining the stakeholders and their concerns. An overview of the CAFCR Framework applied to this project is
shown in Figure 8.

Eindhoven University of Technology

10

The application view focusses on the interaction of the system with the environment. The system must function
robustly in different weather and driving conditions. An in-detail study is carried out in Chapter 3, considering
the needs of the end-user in different possible driving scenarios.

The functional view addresses the question of “what the system offers”. This is described in detail in Chapter 1
and 3, highlighting the functional and non-functional requirements. Chapter 4 and 5 illustrate the conceptual view,
describing the architecture and the possible concepts needed to build the functionality. Finally, the realization
view is described in Chapter 6, emphasizing on how the system is implemented on the Drive PX 2.

Customer Objective Application Functional Conceptual Realization

Detect & track
objects and estimate

their positions
around the ego-
vehicle real-time

Detect & Localize
static and dynamic
objects around the

surrounding’s of the
ego-vehicle

Use Deep Learning
to robustly detect

objects and Targets

With prior
information of the

shape of Target
(Twizy) estimate
pose of vehicle

Set cameras to get a
360 degree coverage
of the surroundings

of ego vehicle

Estimate the 3D
Pose of the Target

vehicle (Twizy)
 real-time

Estimate the free-
space around the

ego-vehicle realtime

Use existing NVIDIA
detectors for Free-

space and Lane
detection

Nvidia DriveWorks APIs
for implementation on

Drive PX2

Nvidia Digits/Caffe/
Tensorflow to visualize
and iteratively design
deep neural networks

opencv to estimate 3D
Pose

WHY HOW

Use Nvidia object
Tracker

Estimate the Lanes
around the ego-
vehicle realtime

C++ Implementation on
Linux x86-64

Demonstrate
Autonomous and

Cooperative driving
functionalities

GMSL cameras

Identify a target
vehicle to follow for

platooning

Get a reliable
estimate of the Pose
of the Target vehicle

Drive in Urban and
Highway

Drive in varying
weather

Drive on paved as
well as cobbled

roads

Perform robust path
Planning

Detect a target
(Twizy) among

all vehicles

Figure 8: CAFCR Framework Application

■■■

Eindhoven University of Technology

11

3. Requirements Elicitation

This chapter describes the requirement elicitation process used for this project. As part of the Application and
Functional views of the CAFCR methodology, different driving scenarios are analysed to derive the require-
ments and key performance indicators. Based on the actors identified and the expected behaviour system func-
tions and requirements are determined for the system.

3.1 Elicitation process
To come up with a set of functional requirements for the system, the System Engineering Methodology for Auto-
mated systems (SEMAS) [5] described by Valeo was applied. SEMAS is a System Engineering Methodology that
combines model-based system engineering with traditional requirements engineering. SEMAS is a layered ap-
proach where the analysis is performed at different levels of abstraction. The first and the highest layer is the Real-
world Layer, where we analyze the needs of the end-user by specifying the expected behaviour of the ego-vehicle
in interaction with its environment. In the second layer, we analyze the expected behaviour of the system under
design (i.e. Surround Vision System) and the interaction with other interior systems in the vehicle. Finally, func-
tional requirements are generated from the identified functions of the system.

3.2 Real World Layer
In this section, considering the ego-vehicle as a black-box, the behaviour and interactions with the environment
are analyzed, as shown in Figure 9. Since the project focuses only on the perception aspect, the ego-vehicle's
behaviour is scoped to only examining this aspect. For better analysis, it is assumed that the perception system
consists of only the proposed system (i.e. SVS) and no other external sensors.

Figure 9: Real-World Layer: Context of the Ego-vehicle

Several scenarios were analyzed in varying levels of complexity, road and weather conditions, as described in
appendix 1, for e.g. vehicle approaching and departing from the ego-vehicle, driving in a parking lot, preceding
vehicle driving up a gradient, etc. One such scenario which describes CACC is described in Table 1 below.
By describing the driving scenarios, it is identified which external actors trigger activities. For instance, in the
below scenario target & other vehicles, free space & Lane markings, need to be detected and their positions need
to be estimated by the ego-vehicle. Secondly, which influences exist in the environment are also identified. For
e.g. the road surface conditions influence vehicle physics (pitch, roll motion); similarly, the lighting conditions
influences is the detection accuracy.

Eindhoven University of Technology

12

Table 1: Driving Scenario - CACC

DS 1 - CACC

Context
Ego-vehicle driving beside a platoon of target vehicles on a highway.
Actors
Target vehicles (Twizy’s), other vehicles, Lane markings, Lighting conditions, Road conditions
Preconditions

1) The target vehicles are driving in a platoon
2) There are other vehicles around the ego-vehicle
3) The visibility is clear, and the weather is sunny
4) The SVS system is inactive

Trigger
1) SVS system is activated.

Expected ego-vehicle behaviour
1) The ego-vehicle detects and classifies the vehicles which are clearly or partially visible to the cameras

as a "Target"(Twizy) or "other vehicle"(cars) around its surrounding
2) The ego-vehicle calculates the pose of the detected target vehicle (Twizy) with respect to itself.
3) The ego-vehicle calculates the position of other detected vehicles.
4) The ego-vehicle computes the curvature and position of the left and right lane markings belonging to

the ego vehicle if present
5) The ego-vehicle detects the free-space around the vehicle
6) The ego-vehicle displays all perceived information to the operator

Postconditions
1) Detections are provided until the system is deactivated

Key Performance Indicators (KPIs)
1) The number of false negatives detected. (objects incorrectly classified have a higher risk)
2) The detection range of the system. (How far can an object be accurately detected?)
3) The accuracy at which the position of objects are estimated
4) The number of target vehicles the system can handle (detect as well as provide pose).
5) The time required to detect and estimate the position of vehicles/objects
6) The accuracy of the vehicle position estimate with respect to the ground truth
7) The execution time required to compute the pose of the target vehicle when detected
8) The accuracy of the computed pose of the target vehicle when detected
9) The rate at which the system updates the position of the targets and other vehicles on the CAN bus

Eindhoven University of Technology

13

3.3 Vehicle Level
In this level, the system under design, i.e. the surround vision system (SVS) is considered as a black box, and the
interactions between vehicle internal components and functions are analyzed. Then system functions are derived
which describe the primary functions of the system. After this, detailed functional requirements are derived. Non-
functional requirements are also added based on the concerns of the stakeholders.

3.3.1. System Context:
The system under design, along with the actors directly interacting with the system, are shown in the below Figure
10.

Figure 10: Vehicle Level Layer: Context of the Surround Vision System

The surround vision system is a software application running on an embedded device (NVidia Drive PX 2)
mounted on the ego vehicle. An operator interacts with the system for activation and deactivation. The presence
of actors in the scene, identified in the Real-world level, i.e. target & other vehicles, bicycles, pedestrians, road
sign, traffic sign, lane markings, and free space, are captured by the cameras mounted on the ego vehicle. The
quality of the information captured by these cameras may be influenced by the environmental conditions like
weather conditions (rainy/sunny), lighting conditions (day/night) or even glare from sunlight or shiny reflective
surfaces. There is no upper bound on the number of actors present in the scene. There may be up to twelve
cameras attached. Cameras having a different FOVs may be used and mounted on the ego-vehicle chassis at
various locations/orientations. Vehicle motion may affect theses orientations. The cameras provide the infor-
mation captured to the SVS system asynchronously. The SVS is responsible for performing various detections by
analyzing the video feed received by the cameras. The results obtained are processed and communicated to the
Vehicle control system via the controller area network (CAN). The format and type of information transferred is
explained in Section 3.5 in detail. Besides this, for testing purposes, the results obtained are also rendered on a
human-machine interface (HMI), which is realized as a display screen installed inside the ego vehicle.

3.3.2. System Functions
System functions are building blocks of end-user functions extracted from concrete scenarios. System functions
are modelled in IBM Rational Rhapsody as operations and are represented in the system function diagram in
figure 11. After analyzing each driving scenario, it was concluded that the behaviour of the SVS system does not

Eindhoven University of Technology

14

change. It has the behaviour of a sensor (like a surround-view camera) having the same behaviour irrespective of
the driving conditions. Thus, only one of the driving scenario, i.e. cooperative adaptive cruise control (CACC)
having the most generalized behaviour was chosen for deriving the system functions and the requirements.

Freespace
Boundary

Other
Objects Vehicle StatesOther

Vehicles

Lane
Markings

Target
Vehicles

Cameras SVS Display Vehicle
Control
System

Environment
Environment

Environment
Environment

Environment
Environment

Process Camera Info

Detect Target & other Vehicles

Detect Other Objects

Estimate Position of Other Vehicles

Estimate the Pose of Target Vehicles

Detect Lanes

Compute Lane Info

Detect Freespace

Compute Freespace Info

Compute CAN Info

Render to HMI

Provide info to Vehicle Contorl System

Operator

Activate

Estimate Position of Other Objects

Figure 11: System Functions derived from the driving scenario

The system functions required for surround vision are as follows:

• FUNC01: System Activation/Deactivation
• FUNC02: Receive camera info
• FUNC03: Process camera info
• FUNC04: Detect vehicles
• FUNC05: Detect other objects
• FUNC06: Estimate target vehicle pose
• FUNC07: Estimate Position of Other Vehicles & objects
• FUNC08: Detect lanes
• FUNC09: Compute lane info
• FUNC10: Detect free Space

Eindhoven University of Technology

15

• FUNC11: Compute free space Info
• FUNC12: Compute CAN info
• FUNC13: Render to HMI
• FUNC14: Provide Info to Vehicle Control System

3.3.3. Functional Requirements
Detailed requirements are derived for each system function from the description of the Driving Scenario. Each
system function should satisfy the corresponding requirements. Requirements are further categorized based on
priority as low & high.

FUNC01: System Activation/Deactivation

REQ # REQ
Priority

REQ Title REQ Description

REQ001 Low Operator Activation/Deactivation The system shall be activated or deactivated by the operator.

FUNC02: Receive camera info
REQ # REQ

Priority
REQ Title REQ Description

REQ002 High Camera Info The system shall receive the following properties of the cam-
eras mounted on the ego vehicle:
Model: Pinhole resolution, distortion coefficients, camera
location & orientation relative to vehicle rear axle
(z=0, ground Plane).
The camera type shall be “AR0231” camera with supported
`RCCB` sensor.

FUNC03: Process camera info
REQ # REQ

Priority
REQ Title REQ Description

REQ003 Low Number of cameras The system shall receive images from up to 12 cameras
simultaneously.

REQ004 Low Supported image properties The system shall receive images from the cameras with the fol-
lowing properties:

1) Format: RCCB
2) Resolution: 1920X1208
3) Frames Per Second: 30 FPS

FUNC04: Detect vehicles
REQ # REQ

Priority
REQ Title REQ Description

REQ005 High Types of object classes The system shall detect vehicles in the image and classify as a
target vehicle or other vehicle.

REQ006 Low Provide class confidence The system shall provide a float value from 0 to 1 indicating
how confident is the estimated class

REQ007 Low Provide Timestamp The system shall record and provide the timestamp for every
vehicle detection.

FUNC05: Detect other objects

REQ # REQ
Priority

REQ Title REQ Description

REQ008 Low Other Class Types The system shall detect other objects like pedestrians, road
signs, traffic signs and bicycles.

REQ009 Low Provide class confidence The system shall provide a float value from 0 to 1 indicating
how confident is the estimated class

REQ010 Low Timestamp The system shall record and provide the timestamp for every
other object detected

Eindhoven University of Technology

16

FUNC06: Estimate target vehicle pose

REQ # REQ
Priority

REQ Title REQ Description

REQ011 High Target Position Information The system shall provide the x, y coordinates for detected
targets with respect to ego vehicle in meters.

REQ012 High Heading Angle Information The system shall provide the heading angle (yaw) of the tar-
get with respect to ego vehicle in deg.

REQ013 High Timestamp The system shall provide the Timestamp for every detected
target object.

REQ014 High Provide Instance & Camera ID The system shall provide the camera id for each target de-
tected along with a unique instance ID.

REQ015 High Target Orientation Angle The system shall provide the targets orientation angle.
FUNC07: Estimate the position of other vehicles & objects

REQ # REQ
Priority

REQ Title REQ Description

REQ016 High Position of other objects The system shall provide the X, Y position of other vehicles
with respect to ego vehicle in meters.

REQ017 High Provide Instance & Camera ID The system shall provide the camera ID for each vehicle de-
tected along with a unique instance ID.

FUNC08: Detect lanes
REQ # REQ

Priority
REQ Title REQ Description

REQ018 High Perceive Lane Markings The system shall perceive the visible lane markings in front
and rear of the ego vehicle.

REQ019 High Lane Positions The system shall detect the following lane lines types-
Ego-lane left line, Ego-lane right line, Left adjacent lane line,
Right adjacent lane line

REQ020 High Lane Types The system shall detect lanes of the following type-- Solid
lanes, Dashed lanes, Road Boundary, undefined.

REQ021 High Camera ID and Timestamp The system shall provide the timestamp and camera id from
which camera the lanes are detected.

FUNC09: Compute Lane Info

REQ # REQ
Priority

REQ Title REQ Description

REQ022 High Calculate polyline The system shall calculate the coefficients of a polyline fit over
the lane markings.

REQ023 High Format for Lane Info The system shall provide the offset (c0), gradient (c1), curva-
ture (c2) of the polyline, where polyline function is given as
y=c0+c1x+c2x2+c3x3

FUNC10: Detect Free Space

REQ # REQ
Priority

REQ Title REQ Description

 REQ024 High Free Space Boundary The system shall identify and display the drivable free space
from all the cameras.

REQ025 High Free Space Boundary Labels The boundary will be associated with four semantic labels:
Vehicle, Pedestrian, Curb, Other

Eindhoven University of Technology

17

FUNC11: Compute Free Space

REQ # REQ
Priority

REQ Title REQ Description

REQ026 High Free Space Boundary Format The system shall compute free space boundary point loca-
tions in car domain (meters).

FUNC12: Compute CAN Info

REQ # REQ
Priority

REQ Title REQ Description

REQ027 High Compute CAN messages of
detected objects

The system shall compute CAN messages of the following -
1) Detected Vehicles 2) Detected other Objects 3) Detected
Lanes 4) Free space.

FUNC13: Render to HMI
REQ # REQ

Priority
REQ Title REQ Description

REQ028 High Display Bounding Boxes The system shall display bounding boxes over each object de-
tected along with its label

 REQ029 Low Label Target vehicle Bounding
Boxes

The system shall label detected target vehicles as “Target” and
other vehicles as “Other vehicle”

 REQ030 High Camera feed and No. of Display
Windows

The system shall display the video feed from each camera in a
separate window along with its label.

REQ031 High Display position and heading for
targets, Other Vehicles & Objects

The system shall display the position X, Y for all vehicles.
Also, additionally the heading & orientation values for target
vehicles

REQ032 High Display Lanes The system shall display detected lanes on the HMI in the fol-
lowing semantic colours:
- Red: Ego-lane left
- Green: Ego-lane right
- Cyan: Left adjacent lane
- Blue: Right adjacent lane
- Dark yellow: Undefined position

REQ033 High Display Free Space The system shall display the Free-space boundary on the HMI
in the following semantic colours:
Red: Vehicle, Green: Curb, Blue: Pedestrian, Yellow: Others

FUNC14: Provide info to Vehicle Control System

REQ # REQ
Priority

REQ Title REQ Description

REQ034 High Information Format The system shall provide the information to Vehicle Control
system in CAN format

REQ035 Low Information Update Rate The system shall update the information on the CAN bus at a
baud rate of 500 kbps

REQ036 High Transmitted data information Prop-
erties

The system shall transmit the following information:
Struct Twizy:
{Position: x,y meters
Instance ID: val
Heading: xx deg
Orientation: xx deg
Confidence: Value
Timestamp: Value secs.
Camera id: val
}

REQ037 High Transmitted Other Vehicle Infor-
mation Properties

Struct Car:
{Position: x, y meters
Instance ID: val

Eindhoven University of Technology

18

Camera id: val (camera that detected the object)
Confidence: Value
Timestamp: Value secs
}

REQ038 High Transmitted Lane Information Prop-
erties

Struct Lane_Boundary:
{Poly Coef: c1,c2,c3,c4 (where y= c1+c2x+c3*x2+c4x4)
Where x, y are in world coordinates
Camera id: val (camera that detected the object)
Timestamp: Value secs
}

REQ039 High Transmitted Free Space Boundary
Information Properties

Struct Free Space Boundary
{
Curb: (Boundary World Points: x,y,z)
Vehicle: (Boundary World Points: x,y,z)
Person: (Boundary World Points: x,y,z)
(ego vehicle Coordinates)
Camera id: Val (camera that detected the object)
Timestamp: Value secs
}

3.3.4. Non-Functional Requirements
Each module used for building the SVS system must execute at different stages of the program. These modules
must be written in an object-oriented form so that their interfaces are clearly identifiable. Having an object-ori-
ented design also helps in maintainability and testability of each module. The following are the requirements from
the software design perspective.

REQ # REQ Title REQ Description
REQ040 Object-Oriented design The software design must be hierarchical and completely object-ori-

ented.

REQ041 Single entry, single exit Software functions must have only one entry and exit point.

REQ042 Modular code The individual class design must follow the principle of single responsi-
bility and the principle of least knowledge from software engineering.

Eindhoven University of Technology

19

3.4 System External Interfaces
Based on the context diagram in Section 3.3.1 and the interface requirements described above in Section 3.3.3, a
diagram highlighting the external interfaces of the system is shown below Figure 12. The diagram explains the
direction of flow and the type of information flowing from the system.

CAMERAS

SVS

DISPLAY

VEHICLE
CONTROL
SYSTEM

RAW Images

GL Images

CAN Message

GMSL
Interface

HDMI
Interface

CAN
Interface

Figure 12: System External Interfaces

Information of the environment captured by the cameras is sent in the form of RAW camera frames to the system
via the GMSL interface. The rate at which these frames are sent to the system depends on the FPS of the cameras.
When the system is available, it picks the latest frames sent and processes it. The processed frames are converted
into GL format, which are render ready. These frames are then sent via the HDMI interface to the display unit for
rendering. Similarly, the CAN messages written by the system after performing all detections and computations
are sent to the Vehicle Control system. In the architecture level described in the next chapter, only the interfaces
of the SVS will be used for expressing any communication with the system’s environment.

■■■

Eindhoven University of Technology

21

4. System Architecture

In the previous chapter, the system was considered as a black box, and its interfaces and functions were defined.
In this chapter, the system is considered as the white box, the identified system functions are assigned to individual
functional components. Furthermore, different architectural views are used to express when does each functional
component process information, what are the interfaces of these components and what information is exchanged
between these components.

Different viewpoints can be used to describe the architecture of the system. Each viewpoint tries to address spe-
cific concerns of the stakeholders. The Functional, Concurrency and Logical viewpoints are used to emphasize on
the behaviour of the system. Furthermore, to explain how the software is developed, SysML structural diagrams
are used to explain the software classes and their interfaces.

4.1 Functional Viewpoint
The functional view of a system defines the architectural elements that deliver the functionality of the system.
This view describes the system’s runtime functional elements, responsibilities and their primary interactions. It is
a viewpoint which is understood by all stakeholders and hence explained first.

Figure 13 shows the interaction between various functional elements, and Figure 14 describes the list of func-
tions provided by each functional element.

CAMERA IMAGE
ACQUISITION

OBJECT
DETECTOR

FREE SPACE
DETECTOR

LANE
DETECTOR

OBJECT
TRACKER

POSITION/
POSE

ESTIMATOR

Vehicle Control
System

Cameras

HMI

Figure 13: Functional Viewpoint - Functional Elements & their interactions

Eindhoven University of Technology

22

Figure 14: Functional Viewpoint - Each Functional Element & its decomposition

The cameras asynchronously provide image frames in RAW format to the system. Image processing operations
are performed on these images to render and provide for other detectors.

The object detector performs the task of detecting objects in the image. It detects objects of desired classes and
identifies the location of these objects in the image space by computing a bounding a box over each detection.
Each object detected, has a label describing the class and bounding box coordinates with respect to the image
plane.

While driving in traffic, there may be multiple objects present of different classes and thus in the image frames.
To be conscious of how many objects are present in the scene, each object needs to be tracked and labelled by a
unique instance identification number (instance ID). Moreover, it is also necessary to measure the lifetime of these
objects around the ego-vehicle. Objects that have a longer lifetime are considered stable detections, worthy of
communication to the vehicle control system. The object tracker is responsible for tracking these detected objects
and providing stable tracks. The object tracker element accepts bounding boxes from the object detector and val-
idates that each object detected, is present continuously in sequential frames. If the above condition is true, an
object track is created having the following properties: a class label, box coordinates, an instance ID and Track-
age. The tracker provides these object tracks to the pose/position estimator functional element.

The pose/position estimator accepts the object tracks and computes the positions of all tracked objects with respect
to the ego vehicle. Furthermore, this element also estimates the pose (position+heading) for target vehicles. For
further information on position estimation, refer to chapter 5. The pose/position information is then communicated
to the vehicle control system via CAN-bus.

Besides object detection, lane detection and free-space detection functional elements are responsible for identify-
ing the lane markings and the drivable collision-free space in the provided images respectively. The lane infor-
mation and free space boundaries are communicated via the CAN-bus.

4.2 Concurrency Viewpoint
Concurrency view of a system is used to describe the system’s concurrency state-related structure, and constraints.
This involves defining the modules of the system that can run at the same time and how they can be controlled.

The system needs to accept inputs from multiple cameras and perform all inferencing operations simultaneously.
As per the stakeholder’s concerns described in Chapter 2, the total processing time for the system is critical and

Eindhoven University of Technology

23

hence requires parallelization of those functions so that they can work independently. Another aspect that needs
to be addressed in the architecture is the scalability of the system. The number of cameras that can be used is not
predetermined, and hence the system must be scalable to work with an undefined number of cameras.

CAMERA
IMAGE

ACQISITION

Free-space
Detection

FRONT
Camera

Free-space
Detection

REAR
Camera

Free-space
Detection
N-camera

Lane
DETECTION

FRONT
Camera

Lane
detection

REAR
Camera

Camera
Fornt

Camera
Rear Camera -N

Call to
Worker
Threads

A,B,C,D...

W
or

ke
r

Th
re

ad

A

W
or

ke
r

Th
re

ad

B

W
or

ke
r

Th
re

ad

C

W
or

ke
r

Th
re

ad

D

W
or

ke
r

Th
re

ad

E

Synchronize
Worker
Threads

A,B,C,D...

Object
Detection

M
ai

n
Th

re
ad

Figure 15: Concurrency View- SVS

During runtime, the Camera Image Acquisition element is capable of handling multiple inputs from different
cameras simultaneously. Once it reads from all cameras, it outputs an array of images. The object detector can
accept this image array and perform inferencing on all the images simultaneously. However, the Lane and Free-
space detector cannot handle an image array as input. Thus, each element of the array is fed to an instance of these
detectors, as shown in Figure 15. These detectors work on independent threads and finally synchronize to the main
thread after object detection.

Object
Detector

Tracker
FRONT
Camera

Tracker
REAR

Camera

Tracker
Nth

Camera

Call to
Worker
Threads

AX,BX..NX

W
or

ke
r

Th
rea

d
AX

W
or

ke
r

Th
rea

d
BX

W
or

ke
r

Th
rea

d
NX

Synchronize
Worker
Threads

AX,BX,CX...

Position
Estimation

Other Classes

M
ain

Th

re
a

d

Pose/Position
Estimation
(Vehicles)

Pose/Position
Estimation
(Vehicles)

Pose/Position
Estimation
(Vehicles)

Camera
Image

Aquisition

Figure 16: Concurrency View - Object Detection

The concurrency view related to object detection is described in figure 16. The object detector outputs bounding
boxes belonging to five object classes per camera which are inputs to the tracker module. The Tracker module
can handle only bounding boxes related to a single class per camera. Ideally, if it is necessary to track objects of

Eindhoven University of Technology

24

all five classes belonging to 6 cameras, 5x6=30 Trackers are required. This may have a significant load on the
hardware/CPU. Since the main concern application in this project is in highway driving conditions, the scope is
reduced to only tracking vehicles. The vehicle tracks outputted by these trackers will be fed to position/pose
estimator of each camera and will finally synchronize with the main thread. While the worker threads perform the
above operations, the main thread estimates the position for other objects using the clustered bounding from the
object detector. The process of position estimation is different for the vehicle class and other classes. This is
further elaborated in detail in Chapter 5.

4.3 Logical Viewpoint

For addressing the concern related to execution speed, it is necessary to separate activities which have high and
low latency. Operations involving memory allocation & setting up inference pipelines are classified high latency
operations and need to be performed only once during system initialization. In contrast, operations that execute
iteratively on every image frame should be of low latency to achieve an overall reasonable execution rate. The
functioning of the system at an abstract level is designed as a state machine having the following states: Standby,
Initialization, Ready, Process & Release. Figure 17 shows the State-machine Diagram of the system.

Figure 17: State Machine Diagram

The system is initially in the Standby state waiting for operator input. When the operator starts the system, it
triggers a transition to the Initialization state where the main program execution starts.
During initialization the following functions are performed:

• Instantiation of functional components (depending on the number of cameras connected).
• Memory allocation of all data variables.
• Importing Deep Neural Network models and their memory allocation in the GPU.
• Creating Image Pipelines for processing images from raw input to a suitable format for each component.
• Setting the software handles of all sensors, detectors, trackers.

Once all the components have been successfully instantiated and initialized, the system is ready to accept inputs
from the cameras and process the information iteratively. In the Ready state, the system waits for information
from all the cameras. Once image frames are received, the system transitions to the process state.

stm [Block] Base [SVS]

Standby

Initialization

StartSVS

ReadyIni_Done ProcessevCapture

Done

Release

Error

Error

Shutdown

Low- Latency
Operations

High-Latency
Operations

Eindhoven University of Technology

25

The process state is where the low-latency critical operations of the system take place, as discussed in the concur-
rency view.
The following are the operations performed in the process state:

• Receive information from the cameras and process into a suitable format for detection & rendering
• Perform Lane, Object and Free space detections
• Tracking & pose estimation of vehicles.
• Render the image, detected Lanes, Free space Boundary, bounding boxes of detected objects and position

of objects.
• Processing and sending the perceived obstacle information to the CAN-bus.
• Transition to the Ready state after successful completion of all computations.

The system transitions to the Release state in case of initialization and processing failures or when the operator
terminates the system. In this state, the system releases all the variables and memory allocated during initializa-
tion. This state also is classified as high-latency.

4.4 Structural Views

The structural views of the system describe how the overall software is decomposed into classes. Based on the
single responsibility principle, every module or class should have responsibility for a single part of the function-
ality provided by the software, and the class should entirely encapsulate that responsibility. As highlighted earlier
in Section 4.1, each functional component is converted to modules such as Camera Image Acquisition, Lane
Perception, Free space Perception and Object Perception.
Figure 18 describes that the SVS is composed of a single instance of Camera Image Acquisition Module, one to
two instances of Lane Module for front and rear cameras, one or more instances of Free space Module depending
on the number of cameras connected and a single Object Perception Subsystem. The Object Perception module
encapsulates a single object detector, one or many vehicle trackers and Tracked object managers for each camera.

Figure 18: Block Definition Diagram (BDD) representing the composition of SVS

Eindhoven University of Technology

26

In Section 3.5, the external interfaces of the system were described. In this section, the interfaces of each module
are identified, along with the type of information exchanged. The following views will form a base for the design
of these modules.
Figure 19 describes the internal block diagram of the SVS.

Camera
Image

Acquisition

Camera
Interface

RAW
Image

Free space
Perception

Lane
Perception

Object-
Perception

RGB
Image

CAN
Interface

CAN
Message

HDMI
Interface

GL Image

IBD – Surround Vision System

RGB Interface
CAN Interface
HMI Interface
RAW Interface

Figure 19: Internal Block Diagram (IBD) of Surround Vision System.

The camera image acquisition module accepts RAW images, performs image processing and provides the infor-
mation for the Lane, Free space & Object Perception modules. It also processes the images for rendering, in GL
format (image format specific for rendering) and provides it at the HDMI interface. Every module renders its
computed information and provides computed CAN messages to the CAN interface.

Figure 20 shows the IBD of Object Perception system along with its interactions.

Image
Interface

CAN
Interface

CAN
Message

HDMI
Interface

IBD – Object-Detection Tracking System

Tracked
Object

Manager

Tracker

Object
Detector

RGB
 Image

Bounding Boxes
Other Objects

Bounding Boxes
 Vehicles

Vehicle
Tracks

Boxes
Position/Pose

RGB Interface

CAN Interface

Tracks Interface

B-Boxes Interface

HMI Interface

Figure 20: Internal Block Diagram (IBD) of Object Perception Module

Eindhoven University of Technology

27

Each module has access to the image interface for its performing computations. The Object Detector communi-
cates with the Tracker and the position Estimator by providing bounding box information of vehicles and other
objects respectively. The Tracker provides the vehicle track information to the Tracked Object Manager to esti-
mates the positions (other objects non-targets) & pose (for targets).

■■■

Eindhoven University of Technology

28

Eindhoven University of Technology

29

5. Module Design
In the previous chapter, the Surround Vision System (SVS) was decomposed into individual functional elements
based on the functions desired in Chapter 3. In this chapter, the focus is laid on the detailed design of individual
modules, i.e. How are the outputs computed based on the given inputs and what are the algorithms used to perform
these functions? This chapter emphasizes the theory and working principles related to Deep Neural Networks and
Computer Vision Techniques.

As discussed in the previous chapter, raw images from the cameras are processed and fed to different perception
modules for perceiving the information of the surrounding. Section 5.1 elaborates on the image acquisition process
and processing of these raw images. Section 5.2 is related to object perception where objects belonging to different
classes are perceived and their positions computed. Similarly, Section 5.3 & 5.4 discusses on detecting lanes and
free space, respectively.

5.1 Camera Image Acquisition (CIA)
The CIA module as derived from Section 4.1 is responsible for communicating with all the cameras connected to
the system, processing and providing the processed images to other detector modules. As per the user, the number
of cameras to be connected and their locations are not predefined. The user expects the system should be flexible
such that the number of cameras connected and their positions be changed. Based on this requirement, a rig-
configuration file is defined that describes the number of cameras connected along with the intrinsic and extrinsic
parameters representing the six degrees of freedom (6 DoF) pose of each camera with respect to the vehicle. More
information on the rig & camera coordinate systems is described in appendix B.

Figure 21: Camera Image Acquisition Flow-chart

Figure 21 describes the workflow of the CIA module. During initialization, the module loads the camera param-
eters from the rig configuration file. Based on the number of cameras connected, image pipelines are created for
processing RAW image data to RGB & RGBA formats. Once the module is successfully initialized, images from
all cameras are captured synchronously and converted to the above formats. Each image is then rectified to correct
the lens distortion effects. The RGB format is compatible with all deep neural networks, while the RGBA format
is suitable for rendering the output images. This module iteratively processes and provides the images for other
modules. In case the initialization fails, all previously initialized variables are released, errors are displayed, and
the system stops.

Eindhoven University of Technology

30

5.2 Object Perception
The object perception module is responsible for providing semantic information of the ego vehicle's surroundings.
This section will focus on analyzing possible design solutions that can meet the customer's desired objectives
within the given constraints.

The main objective of the customer is to operate the ego vehicle in autonomous as well as cooperative driving
modes. Driving in the autonomous mode requires perceiving surrounding objects, while in the cooperative mode,
in addition to perceiving, the ego vehicle also needs to identify potential target vehicles to be followed and estimate
the pose of these target vehicles. These all functions need to be carried out with low latency and be robust to
environmental conditions. Moreover, the solution needs to be universal so that it performs well in different pos-
sible scenarios. On the constraints side, the design choices need to be compatible with the existing hardware and
are limited by the amount of hardware computational memory. From the project management point of view, the
constraints are limited project time and human resources.
Based on the above requirements and constraints, the following possible design solutions were analyzed

Design Choice 1: Training a Custom Object Detector.

Figure 22: Object Perception: Design Choice 1

The first choice, as shown in Figure 22, involves training a custom object detector that can detect objects of all
classes, including target vehicles in one single step given the input image frames from the CIA. The outputs from
this step are bounding boxes for each object class. Tracking is performed only for vehicle objects due to memory
limitations. The tracker accepts these bounding boxes and is responsible for providing a unique instance ID for
each object in the real world. It performs this task by clustering bounding boxes over the next set of consecutive
frames. Thus, in this way, only objects that are stable throughout their lifetime are processed further.

The Tracked Object Manager consists of additional submodules which estimate the pose of the target vehicles and
position of other vehicles using the tracked bounding boxes. For other objects, the position is estimated only using
the bounding boxes provided by the object Detector. The information computed by the Tracked Object Manager
is finally provided to the CAN Interface.

Although this solution looks simple and straight forward, the task related to training a new object detector is quite
cumbersome. Training involves capturing a large number (7000-10000 instances) of images for all object classes
in different scenarios. Labelling an object detector involves a cumbersome process of drawing a bounding box
over the object in the image as well as labelling its class. This activity requires additional human resources, train-
ing and installing the necessary software packages.

Another aspect is the object detector's network architecture. A deep neural network (DNN) is composed of several
layers which perform different mathematical operations. For deployment, these layers are optimized to have low
inferencing time using a tool called TensorRT specifically provided by NVidia for DriveWorks. These layers must
be compatible with the provided TensorRT tool to integrate with the DriveWork's APIs. This constraint limits the
number of possible network choices. A detailed study was performed to evaluate which networks are compatible
with the Tensor RT 4.0 tool provided for DriveWorks 1.2 (Refer Appendix B for compatibility chart).

Eindhoven University of Technology

31

Design Choice 2: Existing Object Detector with a Target Vehicle Classifier

Figure 23: Object Perception - Design Choice 2

Design choice 2 as shown in Figure 23, involves using an existing trained detector "DriveNet" provided by NVidia
for detecting vehicles and a classifier for classifying the vehicle detections as targets or non-targets.
Classifier training is only a binary problem related to labelling only two classes (Target Vehicle & non-Target
Vehicle) as compared to training an Object detector. Moreover, the performance of DriveNet is quite robust and
used commercially. It provides detections for five object classes without much effort, i.e.(Cars, Pedestrians, Bi-
cycles, Traffic-signs, Traffic-lights). It is quite challenging to reach the performance of DriveNet by training a
new object detector.
In relation to execution speed, it is observed that during high traffic scenarios due to multiple detections in an
image the entire pipeline is significantly slower than design choice 1 due to looping over each detected vehicle in
every frame.
Scaling the number of classifiers (3-4 instances) to execute in parallel is one possibility. However, since the com-
putational resources available on the GPU are limited, it is observed that each classifier does not execute inde-
pendently, although they are implemented to run independently on separate threads and CUDA streams. Not all
operations (kernels) belonging to each network run in parallel and independently.

Design Choice 3: Exiting Object Detector with a Tracked Target Vehicle Classifier

Figure 24: Object Perception - Design Choice 3

In this choice, as shown in Figure 24, the classifier is placed after the tracker. The objective is to perform classi-
fication on only tracked vehicle objects based on the distance or the age of the vehicle track. Thus, this design
drastically reduces the number of classification operations required, especially in scenarios involving platooning
where vehicles have a longer lifetime around the ego vehicle.

The sequence diagram shown below in Figure 25 describes the interactions between the modules for the object
perception module for the front camera.

Eindhoven University of Technology

32

Camera Image
Acquisition

Object Detector Front Camera
Vehicle Tracker

RGB Image

Detect Objects

Track Vehicles

Tracked Object
Manager

Provide Front Camera
Vehicle Tracks

RGB Image

Vehicle Tracks
Estimate positions of
all Tracked Vehicles

Classify for Target

loop over new tracks

loop over each Target track

Estimate Pose of Target

Compute CAN

CAN Message

Vehicle
Control
System

Estimate positions of
other class objects

Bounding boxes other objects

RGB Image

Figure 25: Object Perception for Front Camera

Object Detection is performed on each image to get bounding boxes for each object. The boxes are tracked for
consecutive images, and vehicle tracks are provided to the Tracked Object Manager. The Tracked Object Manager
first estimates the position for all vehicle tracks. All new vehicle tracks are first classified for targets and then
pose estimation is carried out for only target vehicles. Similar behaviour is implemented for all cameras.

5.2.1. Object Detector
Object Detection involves the following steps:

• Creating regions of interest by dividing the input image into various regions.
• Passing all regions into a Convolutional Neural Network to obtain confidence values for each class and

bounding box proposals for each region.
• Combining overlapping bounding box proposals from all regions to get a single bounding box describing

the location of that object in the image.

The object detector module workflow is shown in Figure 26, the module accepts an array/batch of images, syn-
chronously from the CIA, to infer and output detection lists of bounding boxes per camera per object class. Inputs
and outputs to the system are represented in red and dark green colours, respectively. Inorder to separate high &
low latency operations, the detector is broken into two phases, module initialization(in orange) and module exe-
cution(shown in light green).

The module loads the optimized TensorRT Model of the DNN in GPU memory. Data conditioning involves cre-
ating a software pipeline to resize the images to the input size of the network size. In this step, memory is also
allocated for all bounding box lists. On successful initialization, the module accepts images from the CIA and
executes iteratively. In case of failure, an error is displayed on the console describing the reason for failure, all
initialized variables are released, and the program terminates.
During execution, the module iteratively accepts an RGB image array of size N(belonging to N-cameras) and
performs inferencing in batch mode to output a list of bounding boxes belonging to "M" classes and "N" camera.
As per the requirements in this project, five classes were decided, which were the following: i) vehicles, ii) pe-
destrians, iii) Bicycles, iv) Traffic Signs v) Traffic Lights.

Eindhoven University of Technology

33

Figure 26: Object Detector Flow Chart

5.2.2. Vehicle Tracker
The need for a vehicle tracker is to filter out false detections provided by the object detector. The concept of
Multiple Object Tracking is used wherein the goal is to maintain the identities of individual objects across several
video frames, yielding their individual trajectories. Feng Liu, [6] proposed an algorithm that uses the bounding
box information and the features within the bounding box. By checking for the presence of the vehicle bounding
boxes in consecutive frames, the system is more confident that the detection is an actual vehicle of interest.

The process involves two steps, as shown in Figure 27:

• Track Creation and Merging
• Track maintenance

Figure 27: Vehicle Tracking Algorithm

5.2.2.1 Track Creation and Merging
In this step, bounding box detections from the previous frame and current frame are merged so that a final list of
detections (vehicle tracks) for the current frame are obtained. The merging takes place in such a way that if a new
detection (bounding box) refers to an object that has been tracked from the previous frame, this new detection is
merged into that object, and the object is then assumed to be "detected again". If a new detection refers to an

Eindhoven University of Technology

34

entirely new object, it is added to a tracklist for future checks. Two criteria are followed for performing the merg-
ing to decide whether a new detection refers to the same object as one of the tracked objects:

• Intersection over Union Threshold: If the Intersection over Union (IOU) is higher than a threshold, the
two bounding boxes (Tracked bounding box from previous frame and present detected box) belong to
the same object.

• Maximum Match Distance Threshold: Maximum Match Distance is defined as 1-IOU. Within this
threshold, the box with the most extended track history is preferred and is selected.

Track Maintenance
This step involves estimating the certainty or confidence value of the tracks. This is performed by detecting fea-
tures (edges or corners of the tracked object in the image) present in bounding boxes of consecutive frames. A
confidence decay rate is calculated based on the number of tracked features present for a track. A tracked feature
is defined as an edge or corner of an object present in consecutive images. As the number of tracked features drop,
the confidence decay rate increases. If the confidence of a track falls below a threshold, the track is discarded.

Figure 28: Vehicle Tracker (Front) Workflow

The workflow of the front camera tracker is described in Figure 28 for illustration. During initialization, memory
is allocated for storing the tracks and features. On successful initialization, bounding boxlist of the vehicle class
and an RGB image belonging to the front camera is accepted. The boxes are merged with the existing tracks, and
track maintenance is done by detecting and calculating the tracked features as explained in the algorithm. This
process is repeated for every new frame.

5.2.3. Tracked Object Manager
As analyzed in requirements Section 3.4, the goal is to estimate the pose of target vehicles (Twizy), position of
non-target vehicles and position of objects belonging to other classes (Pedestrians and Bicycles). For target vehi-
cles, additional information about the dimensions of the vehicle and the shape are known, thus making it feasible
to estimate its pose.

The Tracked Object Manager Module performs four functions which are as follows:

• Estimate the position of other classes (Pedestrian, Bicycles)
• Estimate the 2D position of all vehicles (Targets as well non-Target Vehicles)
• Classify whether a vehicle is a target vehicle or not.

Eindhoven University of Technology

35

• Estimate the pose of all target vehicles.

Figure 29 shows the flow-chart of the Tracked Object Manager Module, consisting of the functions in grey, the
inputs described in red and outputs in green colours.

Figure 29: Tracked Object manager workflow

The module receives a list of bounding boxes belonging to other classes (bicycle, pedestrian) and vehicle tracks
from the vehicle tracker. For other objects, the position is estimated in a single step, while for the vehicle tracks,
the module creates, updates and stores the information as ‘Active vehicle objects’. Active vehicle objects signify
vehicles currently present in the real world around the ego-vehicle. Based on the Track ID, these objects are
created and updated in the active vehicle objects list.

If the objects are not updated for n-consecutive frames, then the detected vehicle is assumed to have left the scene,
and thus the vehicle object is destroyed. For each vehicle object, position estimation is carried out in every frame.
Target classification need not be done frequently and may be based on specific rules for e.g. how much the position
of the vehicle has changed based on the previous classification. Pose estimation is performed only for those vehicle
objects that are classified as a target vehicle.

5.2.3.1 Position Estimation
Model-based estimation techniques and deep learning-based techniques are generally used for estimating the po-
sition of objects in images. In this project, the scope is limited to model-based techniques due to limited access to
training data necessary for deep-learning and a tight project schedule.
Most of the literature related to model-based techniques use two standard algorithms:

• The width-based algorithm [7]
• The position-based algorithm [8]

The width-based method [7] estimates the absolute distance of a vehicle given the actual width (or height) of the
vehicle, the width (or height) in the image plane and the focal length of the camera lens. As shown in Figure 30
(a), the inter-vehicle distance is inversely proportional to the height of the bounding box in the image. In practice,
this method is useful if the size (height or width) for a specific vehicle is known beforehand. However, it is not
suitable for estimating distances for different vehicles (having different heights or widths). For instance, a Truck
will have a wider width and height compared to a car.

Lee, Jaemyoung [9] used another approach of the width-based method by assuming a specific scenario of vehicles
driving on a straight highway with lanes. The distance between the lane markings is assumed constant (parallel
lines). In Figure 30(b), L1 and L2 are the distances between two lane-markings. d1 and d2 are the distances from
the front bumper of the ego vehicle to a predetermined position and the rear bumper of the front vehicle,

Eindhoven University of Technology

36

respectively. Using the similarity of triangles d2 can be calculated. Though this method is robust to noise, it is
suitable only for straight highway scenarios with lane marking.

Figure 30: Width Based Methods: a) Intervehicle distance calculation based on bounding box height change
b) Intervehicle distance calculation based on lane-markings

Figure 31: Position-Based Method

In the position-based algorithm, the vertical position of the bounding box from the bottom pixels of the image, as
shown in figure 31, is used to calculate the inter-vehicle distance. The distance and vertical position are propor-
tional. However, this method needs to assume the road is planar, even though the slope has nothing to do with it.
If this assumption holds, this method is suitable for calculating the position of any type of object (Pedestrian,
Bicycle) provided it is on the road. Despite this advantage, this method is susceptible to noise. A small pixel
variation in the vertical position of the bounding box can cause significant distance errors, more specifically with
objects that are further away than the closer ones. Secondly, for this method, minor deviations in the camera
orientation (pitch angle) or height from the ground plane, may cause significant errors for objects that are further
away. To overcome this disadvantage, Cho, G.Kim & J. [7] proposed a combination of the width and position-
based methods along with a Kalman filter. The project demands a solution that is generalized and is applicable
for highway as well as urban driving scenarios. Thus, using the above two methods, along with a Kalman filter,
was a preferred choice.

Figure 32, describes the detailed algorithm designed for estimating the position of every vehicle object. A vehicle
object contains a Track ID and its bounding box information. Based on this, vehicle coordinate positions X and
Y, Kalman filter gains are computed. It is assumed that the bounding box fits the detected vehicle in the image
correctly. The bottom pixels of the box signifies the contact points of the vehicle with the ground plane, which
are the points of interest for estimating the absolute position.
The position of the vehicle is first calculated with respect to the camera coordinate system using the position
estimation method based on the camera intrinsic parameters and the height of the camera from the ground plane.
The lateral position(x-position) in camera coordinates is more stable compared to the longitudinal position (z-
position). To compensate for measurement noise in the longitudinal position, the width-based method is used to
compute the vehicle height given the bounding box height and the longitudinal distance. A Kalman filter, having
a motion model as a constant height (to incorporate that the actual height of the vehicle is constant) is used for
averaging out the vehicle height. The estimated height is again used to estimate the longitudinal distance. The last
step involves the transformation of measurements from the camera to the ego-vehicle coordinate system. By fol-
lowing this process, the vehicle 2D position can be robustly estimated for any agnostic vehicle with low execution
time.

Eindhoven University of Technology

37

Figure 32: Position Estimator Workflow

5.2.3.2 Target Vehicle Classifier
As classifying objects is computationally intensive, the whole process benefits from performing this task less
often, therefore, to classify vehicles efficiently, we are suggesting an approach where the classification happens
based on the distance between the target and ego vehicle.

The workflow of the classification module is similar to the object detector. Once the classification model is loaded
and successfully initialized bounding boxes from every tracked vehicle object are fed to the classifier. The image
is resized to the network dimensions, and inferencing is performed to output a binary result indicating whether the
vehicle is a target or not.

Eindhoven University of Technology

38

Figure 33: Target Vehicle Classifier Workflow

5.2.3.3 Target Vehicle Pose Estimation
Once a vehicle object is identified as a target, its pose needs to be estimated with respect to the ego-vehicle.
Similar to position estimation described in Section 5.2.3.1, DNNs and conventional computer vision techniques
are used depending on the requirements. In relation to DNNs, DeepIM [10], Keypoint detector localization [11]
and PVNet [12]are examples of current cutting edge pose estimation methods. However, the challenge for the
implementation of such methods requires large amount of training data. In this project, since the target vehicle is
a textured object, sufficient features can be extracted, making computer vision techniques a preferred choice.

The process of pose estimation can be divided into two parts as shown in Figure 34, an offline process which
involves registering the model of the target that the user wants to track and the second part involving an online
process of estimating pose given the registered model.

Figure 34: Target Pose Estimator Workflow

Eindhoven University of Technology

39

The offline model registration process involves the following steps:
• Detect features and descriptors for different images of the target.
• Compute the 3d position of the detected features with respect to a local coordinate system of the target.
• The descriptor information, along with its corresponding 3d position, are written to a file representing a

model of the target.
Once a model registration is performed, the generated model is used for online pose estimation.
The following are the steps performed during online pose estimation:

• Features and descriptors are extracted within the bounding box for vehicle objects classified as targets.
• Feature matching is carried with the observed features in the above step and with those in the model.
• For the matched features, the corresponding 3d locations are assigned to the observed features.
• Given the 3d object points, the 2d image points of the features in the scene and the camera intrinsic

properties, the pose of the camera can be computed relative to the detected object's local coordinate
system.

• The Perspective-n-Point (PnP) function estimates an object pose by finding such a pose that minimizes
reprojection error, that is, the sum of squared distances between the observed image points and the pro-
jected object points. The use of RANSAC makes the function resistant to outliers.

5.3 Lane Perception
The lane perception module is responsible for perceiving the lanes present in front and rear of the ego vehicle.
Figure 35 shows the design flow of the lane perception module. The lane perception module is responsible for the
following functions:

• Identify and classify the lane markings such as left adjacent lane, left ego lane, right ego lane, and right
adjacent ego lane if they are present on the road.

• Render the detected lane markings in-vehicle display.
• Project the image points to world points with respect to the ego-vehicle coordinate system.
• Fits a polynomial through the projected world points.

Figure 35: Lane Perception Workflow

The module outputs Lane Objects. Each Lane object has information related to the type of lane-marking (solid or
dashed), type of lane (Ego lane or Ego adjacent lane) and coefficients of the polynomial. These objects are encoded
as CAN messages and provided to the CAN interface.

Eindhoven University of Technology

40

5.4 Free Space Perception
The free-space perception module, as shown in figure 36, estimates the drivable space around the vehicle by
computing the free-space boundary from images provided by every camera. The module uses a deep neural net-
work to output image points representing the free-space boundary. These points are projected to world coordinates
to calculate the actual free-space boundary around the ego vehicle. The coordinates of each point are provided to
the vehicle control system over the CAN bus.

Figure 36: Free Space Perception Workflow

. ■ ■ ■

Eindhoven University of Technology

41

6.Implementation

The previous chapter reflected on different design methods that can be used to meet the desired functionality. The
design of each module was explained by referring to the inputs of each module and what functions are performed
to transform the inputs to desired outputs. This chapter refers to how these designs are finally realized and imple-
mented in software code. In the first section, a brief description is provided about NVidia DriveWorks libraries
reflecting on the reasons it is used. In the second section, the different methods used to implement the design are
described.

6.1 NVidia Drive Software
The surround vision system (SVS) needs to run in real-time and be deployed on a cooperative automated vehicle.
This requires an embedded device with high computational resources and low power consumption. To that effect,
the NVidia drive PX 2, an embedded device specifically designed for autonomous driving functions is used. The
main benefit this device offers is low power consumption along with desired graphics processing capabilities. The
NVidia Drive software is used for developing applications on the Drive PX 2. Figure 37 describes the Drive
software stack, which consists of the Drive OS (operating system), the DriveWorks Software Development Kit
(SDK), and the high-level NVidia Drive Autonomous Vehicle (AV) library.

Figure 37:NVidia Drive Software Stack [10]

Drive OS is responsible for communication with the hardware components and connected sensors.
DriveWorks SDK enables developers to implement autonomous solutions by providing comprehensive libraries
for sensor information acquisition, deep learning, and rendering.
Drive AV utilizes the DriveWorks SDK to provide high-level functions like Object Perception, Planning, and
Mapping Modules. The Perception modules, for example, have deployment-ready neural networks for object de-
tection (DriveNet), lane detection (LaneNet), and free space Detection (FreeSpaceNet).

6.2 Mapping of SVS Architecture to DriveWorks APIs
As discussed in the architecture Chapter 4 & 5, functionalities offered by the NVidia Drive software are mapped
to individual modules. This mapping is explained in the following sub-sections:

6.2.1. Camera Image Acquisition
The camera image acquisition (CIA) module uses the NVmedia Interface (mapped as the GSML interface in the
architecture) to communicate with the cameras. This interface reads the images from the connected cameras syn-
chronously and provides the RAW images to the CIA module. Sensor abstraction & image processing APIs pro-
vided by DriveWorks are used to initialize the module and create an image processing pipeline to process the
RAW images, respectively. Every image from each camera is then processed sequentially by passing through this
pipeline to output RGB and RGBA formats as in figure 38. After processing, each image is rectified with its
corresponding camera intrinsic parameters.

Eindhoven University of Technology

42

Figure 38: Image Processing Pipeline

6.2.2 Deep Neural Networks
NVidia Deep neural networks (DNN) are used for object detection, classification, lane detection, and free space
detection. NVidia DriveWorks provides two options for implementation. The first option involves a DNN API
which allows importing a TensorRT model of a custom neural network. The second option involves using NVidia
proprietary neural networks like DriveNet, LaneNet & FreespaceNet for object, lane and free space detection,
respectively. Since we are concerned with deployment and working with the outputs of the detector, we use the
second option to perform all detection related activities.

6.2.2.1 Object Detector
As mentioned in the previous chapter, we use DriveNet object detector that operates in batch mode. It accepts an
array of images and provides object proposals (in the form of bounding boxes) belonging to five classes. The
objects detected per class per camera are saved in separate containers. For more details, please refer to NVidia
DriveWorks Documentation [13].

6.2.2.2 Object/Target Vehicle Tracker
We use the DriveWorks Tracking API to perform vehicle Tracking. The API provides tunable parameters for
setting the number of features for tracking and threshold parameters for clustering the bounding boxes between
frames. Vehicles proposals detected by the object detector are fed to the trackers to output vehicle tracks. For
more details refer NVidia DriveWorks Documentation [13].

6.2.2.3 Target Vehicle Classifier
A Renault Twizy is used as the target vehicle in this project. Figure 39 describes the approach taken for training
the Target Vehicle Classifier.

Figure 39: Pipeline for Training and Deployment of Classifier

Eindhoven University of Technology

43

For generating the target vehicle dataset, a Renault Twizy is driven around the ego vehicle at different distances
from the cameras, and h264 videos are recorded. Inferencing is performed on these videos using the DriveNet
Object Detector, and the detected vehicle images are saved to disk. A similar process is followed for generating
the dataset for Non-target vehicles by driving on the highway and parking lots.

Objects that are further away from the ego vehicle have a smaller bounding box. These images, when saved and
resized to network dimensions, appear pixelated and grainy. Using such images for training makes it difficult for
the classifier to learn from such data and thus leads to poor classification performance. A solution to this problem
is to classify boxes having a minimum size enough to incapsulate visibly distinct features for training. Thus,
classifier training is performed only on vehicles within 30m distances where the size of the boxes is sufficiently
large enough.

For training the classifier, a Docker image of NVidia Digits is used. Digits provide an interactive interface to
choose from different existing network architectures and train for classification and object detection. We use a
pre-trained model of GoogleNet (trained on the ImageNet dataset). The input image size of the network is
256x256, and the provided images are stretched and resized to the input dimensions for training. The two nodes
at the output layers provide the probability to which class the object belongs. The output from Digits is the network
model and a model description file describing the network layers. These two files are imported to the TensorRT
tool of DriveWorks for inference optimization. The TensorRT model generated by the tool is then used for online
inferencing.

During execution, the bounding boxes of vehicle class provided by object vehicle tracker are resized to input
network dimension, the probabilities provided at the output nodes are compared, and the class to which the object
belongs to is provided.

6.2.3 Vehicle Position and Other Objects Estimation
For estimating the position of all vehicles/other objects, we calculate the bottom centre pixel position of the
bounding box [𝑢𝑢, 𝑣𝑣] with respect to image coordinates. As shown in figure 40, this point signifies the nearest
distance of the object, based on the ground plane assumption.

Figure 40: Position Estimation Schematic Diagram Front View

The transformation from pixel to ray for the camera can be expressed as

 𝑟𝑟 = [𝐾𝐾]−1𝑖𝑖 (6.1)
Where 𝑖𝑖 = [𝑢𝑢 𝑣𝑣 1]𝑇𝑇 is the position of the bottom-centre bounding box pixel in image coordinates,

𝐾𝐾 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� is the Camera intrinsic Matrix wherein 𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦, 𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦 are the focal lengths and camera principal

points, r= [𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑]𝑇𝑇 is the direction vector of the ray originating from the camera focal point and passing
through the given pixel.
Given the height of the camera 𝑡𝑡𝑧𝑧 (in meters) with respect to the ground plane, eq 6.2 calculates the scale factor
𝑠𝑠, required to obtain the intersection point of the ray with the ground plane. 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 is the object’s world position in

Eindhoven University of Technology

44

meters with respect to camera coordinate system, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 & 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐 being the lateral, vertical and longitudinal
distance respectively.
 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑧𝑧 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 = 𝑠𝑠𝑠𝑠 (6.2)

Solving and resubstituting for 𝑠𝑠 gives

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑧𝑧 𝑓𝑓𝑦𝑦/𝑓𝑓𝑥𝑥
(𝑢𝑢−𝑐𝑐𝑥𝑥)
(𝑣𝑣−𝑐𝑐𝑦𝑦)

, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑡𝑡𝑧𝑧, 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑧𝑧𝑓𝑓𝑦𝑦/(𝑣𝑣 − 𝑐𝑐𝑦𝑦) (6.3)

These positions of detected vehicles/objects are then transformed into vehicle coordinates (coordinate system
defined in Appendix D.2) using the camera extrinsics [𝑅𝑅], [𝑡𝑡].
 𝑤𝑤𝑣𝑣𝑣𝑣ℎ = [𝑅𝑅]𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 + [𝑡𝑡] (6.4)

Kalman Filter Calculation
As the preceding vehicle moves away from the ego-vehicle the bounding box translates from the bottom, to the
center of the image. To analyze the sensitivity of the measured longitudinal position 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐 with respect to the
bottom-center bounding box pixel height position 𝑣𝑣.

From eq 6.3 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑧𝑧

𝑓𝑓𝑦𝑦
𝑝𝑝

 (6.5)

where 𝑝𝑝 = �𝑐𝑐𝑦𝑦 − 𝑣𝑣� is the vertical distance from the image center.

Sensitivity is defined as the change in longitudinal distance with respect to change in pixel vertical distance

|𝑆𝑆| = 𝑑𝑑𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑
= 𝑡𝑡𝑧𝑧 𝑓𝑓𝑦𝑦/𝑝𝑝2 (6.6)

Thus, if the cameras optical axis is parallel to the ground plane, as the bottom of the bounding box moves to the
centre of the image, the sensitivity increases parabolically.

To mitigate the effects of noise due to high sensitivity, a Kalman filter is implemented that uses the width-based
method [7] by incorporating the bounding box height 𝐵𝐵ℎ information to calculate the vehicle height 𝐻𝐻𝑚𝑚 given by
eq 6.7.

 𝐻𝐻𝑚𝑚 = 𝐵𝐵ℎ 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐/𝑓𝑓𝑦𝑦 (6.7)

The Kalman filter estimates the vehicle height state 𝐻𝐻, which is constant. The constant model is given below, and
since we are confident that the vehicle’s height is constant, the process noise is assumed small and positive defi-
nite.

𝐻𝐻𝑘𝑘 = 𝐻𝐻𝑘𝑘−1 + 𝑤𝑤𝑘𝑘 𝐸𝐸(𝑤𝑤𝑘𝑘𝑤𝑤𝑘𝑘𝑇𝑇) = 𝑄𝑄𝑘𝑘𝛿𝛿𝑖𝑖−𝑗𝑗 = 0.001 (6.8)

𝐻𝐻𝑚𝑚 = 𝐻𝐻𝑘𝑘 + 𝑣𝑣𝑘𝑘 𝐸𝐸(𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇) = 𝑅𝑅𝑘𝑘𝛿𝛿𝑖𝑖−𝑗𝑗 = 0.1 (6.9)

Here the state 𝐻𝐻 which is the height of the detected vehicle.
The Kalman filter equations are as follows [11] :

The model priori covariance 𝑃𝑃𝑘𝑘− is calculated as

 𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐴𝐴𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 (6.10)

= 𝑃𝑃𝑘𝑘−1+

Kalman Gain 𝐾𝐾𝑘𝑘 is given by 𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘

−𝐶𝐶𝑇𝑇

�𝐶𝐶𝑃𝑃𝑘𝑘
−𝐶𝐶𝑇𝑇+𝑅𝑅𝑘𝑘�

 (6.11)

=
𝑃𝑃𝑘𝑘−

(𝑃𝑃𝑘𝑘− + 𝑅𝑅𝑘𝑘)

Eindhoven University of Technology

45

The model posteriori covariance 𝑃𝑃𝑘𝑘+ is calculated as

 𝑃𝑃𝑘𝑘+ = (1 − 𝐾𝐾𝑘𝑘𝐶𝐶)𝑃𝑃𝑘𝑘− (6.12)

= (1 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘−

The model priori state estimate 𝐻𝐻𝑘𝑘− is calculated as

𝐻𝐻𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝐻𝐻𝑘𝑘−1−

= 𝐻𝐻𝑘𝑘−1+

The model posteriori state estimate 𝐻𝐻𝑘𝑘+ is calculated as

𝐻𝐻𝑘𝑘+ = 𝐻𝐻𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝐻𝐻𝑚𝑚 − 𝐻𝐻𝑘𝑘−) (6.13)

Before calculating the estimated longitudinal distance, the noisy bounding box height measurement needs to be
filtered so that the estimated longitudinal distance is not noisy. A first-order discrete filter is used to filter meas-
urements below a time constant 𝜏𝜏.

 𝐵𝐵ℎ(𝑖𝑖+1) = 𝜏𝜏

(1+𝜏𝜏)
𝐵𝐵ℎ(𝑖𝑖) + 1

(1+𝜏𝜏)
𝐵𝐵ℎ (6.14)

𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑦𝑦 ∗ 𝐻𝐻𝑘𝑘+/𝐵𝐵ℎ(𝑖𝑖+1) (6.15)

The positions in the camera coordinate system are then transformed into the ego-vehicle coordinate system us-
ing equation 6.4.

6.2.4 Target Vehicle Pose Estimation
The Target vehicle pose estimator is responsible for estimating the pose, more specifically, the relative heading
(𝛼𝛼)and orientation of the target vehicle (𝜃𝜃) with respect to the ego-vehicle, as shown in figure 41.

Figure 41:Top-View Schematic for Heading and Orientation Measurements

A model of the target vehicle is first registered offline and then used for online pose estimation. Since the camera
sensor size & intrinsic properties are input parameters for both the above activities, the same camera must be used.

ϴ

α

Eindhoven University of Technology

46

Model Registration
For the offline Model registration described in Section 5.2.2.3, a template image of the Twizy is captured using a
Sekonix GMSL camera [12]. To extract features and descriptors from the template image, ORB features are used,
since they are scale and illumination invariant. To extract the 3D points of the corresponding features, it is assumed
that the rear shape of the Twizy is similar to a 3D box. By manually aligning a 3D mesh and using the Moller-
Trumbore ray-tracing algorithm [16], the 3d points on the surface of the Twizy are computed as shown in Figure
42.

Figure 42: 3D Box mesh manually aligned with the Twizy rear surface and feature points extracted

Another approach can be to estimate the relative 3d position of all features from a stereo image. However, the
effects of noise need to be investigated.

Online Pose Estimation
Online pose estimation is performed in OpenCV environment. ORB features & descriptors from the bounding
box of a detected target are matched with the features in the model using a matching algorithm (e.g. Flann matcher
algorithm) to output a set of matches. The corresponding 3d points of the model are assigned to the matched
features in the scene. There may be conditions in which not all the matched 3d points lie on the vehicle. To
eliminate these points (outliers), Random Sample Consensus (RanSac) [14] along with PnP algorithms are used
to estimate an optimal pose that best fits the given set of points. A 3d mesh box is then fitted to visualize the
estimated 6D pose of the target vehicle. Refer OpenCV Real-time Pose Estimation documentation for more details
[15].

6.2.5 Lane Detection & Polynomial Fitting
The Lane detection API from DriveWorks provides the image points of the detected lanes. These image points
are projected to world points in the vehicle coordinate system using the transformations explained in eq 6.2 & eq
6.4. A 3rd order polynomial is fit on these world points. The polynomial regression model [16] is used for obtaining
the polynomial coefficients. The polynomial regression model is given as

 𝑦𝑦𝑖𝑖 = 𝐶𝐶𝑜𝑜 + 𝐶𝐶1𝑥𝑥𝑖𝑖 + 𝐶𝐶2𝑥𝑥𝑖𝑖2 + 𝐶𝐶3𝑥𝑥𝑖𝑖3 + 𝜖𝜖 (6.15)

𝑦𝑦 = 𝑋𝑋𝑋𝑋+∈
Where ∈ is an unobserved random error with mean zero conditioned on a scaler variable 𝑥𝑥.
𝐶𝐶 is the vector of estimated polynomial regression coefficients (using ordinary least squares estimation) is

𝐶𝐶 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦

6.2.6 Free Space Detection
We use the Free Space detection API provided by DriveWorks. The API provides a set of image points which
need to be projected to world points similar to Section 6.2.5. Since the free space image points provided by the
detector are large, communication of all these points requires too many CAN message IDs which is not feasible.
If an object is detected in the image, only free space boundary points in the vicinity of the detected object are
provided.

■■■

Eindhoven University of Technology

47

7. Validation and Test Results

After completion of the implementation of all modules, the final step is the testing and validating the performance
of the system. The performance is evaluated using two experimental setups. The first, involves a vehicle simulator
for evaluating different possible scenarios. The second involves the vehicle setup involving the Drive PX 2 and
the GMSL cameras. In both setups, unit testing is first performed to check whether each function satisfies the
requirements and provides necessary information at its interfaces. We then perform system-level testing to eval-
uate the performance in conformance with the driving scenarios discussed in Chapter 3.

7.1 Experimental Setup

7.1.1. Carla Simulator
A vehicle simulator is necessary for quickly & safely evaluating the performance of each module in different
scenarios involving urban layouts (freeways, cities), different vehicle types, buildings and weather conditions. To
that effect, the Carla vehicle simulator [18] is used on Ubuntu 16.04 LTS (x86_64 architecture). A BMW sedan
is chosen as the ego vehicle and fitted with four cameras placed horizontally, 1.5m from the ground plane. Each
cameras have a 60deg FOV with a resolution of 1080x720. Different scenarios are simulated in Carla and fed to
the SVS software to validate each functional module, as shown in Figure 43.

Figure 43: CARLA Simulator setup for unit testing of SVS functions

7.1.2. Test Vehicle
We conducted the experiments on a Renault Twizy cooperative automated driving research platform. It consists
of one lead vehicle and one ego vehicle. The ego vehicle, Renault Twizy, which is equipped with four GMSL
Sekonix cameras [12] mounted on the roof covering the front, rear, front-left and front-right views as shown in
figure 44. Each camera has a 60deg FOV with a resolution of 1920x1208.

Figure 44: Ego-vehicle fitted with GSML cameras and connected to the DRIVE PX 2

GMSL Cameras

NVidia Drive PX2

Eindhoven University of Technology

48

The Drive PX 2 is placed on the roof of the ego-vehicle. It is powered with a 12V DC power supply. It receives
input from each camera and communicates with the Vehicle control PC via CAN. The Drive PX 2 consists of two
independent SoCs, namely Tegra A and B. The SVS functionality is deployed on the Tegra A for testing purposes.
For visual verification of the system by the operator, a HDMI display is fixed (at the back side of vehicle front
seat) inside the vehicle.

7.2 Unit Testing
To validate the information computed by each module as per requirements, the output information from each
module is rendered on the display. Unit Testing was performed using the Carla simulator as well as the Drive PX
2. The following table highlights the unit-testing results of each module.

Table 2: Unit Testing Observations

Module Sub-module
(level-1)

Sub-
module
(level-2)

Validation of outputs
through Rendering

Performance
Observations

Remarks

CIA NA NA Input frames from each
camera are captured in the
required dimensions and
processed successfully

Distortion observed
near the image cor-
ners while testing
with GMSL Cam-
eras

Image Rectification is neces-
sary when using a lens. Due to
technical issues, image rectifi-
cation was kept out of scope.

Object
Percep-
tion

Object
Detector

NA Objects belonging to all
desired classes are de-
tected and encapsulated
in a bounding box.

Many false detec-
tions observed in
heavy rainy weather
conditions during
simulator test and in-
door environments
during vehicle tests.

The DriveNet Detector is
trained with data collected in
sunny weather conditions with
cameras placed horizontally.

Vehicle
Tracker

NA Every detected vehicle
object belonging to each
camera is marked with a
unique instance ID.

Tracked box size
and is noisy for ob-
jects beyond 30m.
False tracks initial-
ized when station-
ary. The Vehicle
tracks are stable for
objects up to 40m.

Tracker Parameters need to be
fine-tuned for different driving
conditions.

Tracked
object
Manager

 Non-Tracked vehicle ob-
jects are killed after not
being tracked for 3-con-
secutive frames.

No memory leaks
observed.

Vehicle
Position
Estimator

X,Y Positions of Tracked
Vehicle objects are com-
puted in vehicle coordi-
nates using Kalman Fil-
ter.

Minimum distance
of objects are limited
to 7m.
As objects move fur-
ther away from the
ego vehicle, the er-
ror related to longi-
tudinal distance in-
creases.

Detected Object ground con-
tact points are out of camera
FOV.
Position estimation accuracy is
dependent on the accuracy of
camera extrinsic and the com-
plete fitting of bounding on the
detected object. Inaccurate fit-
ting at large distances leads to
significant errors.

Other
objects
Position
Estimator

X,Y Positions of Bicycles
and Pedestrians are com-
puted in vehicle coordi-
nates

False reading for
Objects under 7m.

For objects under 7m, detected
object ground contact points
are out of camera FOV.

Target
Classifier

All vehicles are classified
when a new track is in-
stantiated.

Classification is in-
accurate.

Inadequate variety in training
data

Target
Pose
Estimator

Target Vehicle Pose Esti-
mated.

Pose Estimation
evaluated consider-
ing the target vehicle
as a Van.
Pose estimation for
multiple targets in

We assume the surfaces of the
vehicle planar and use a 3d box
mesh to extract the 3d points.

Single target setup

Eindhoven University of Technology

49

image not imple-
mented.

Lane
Percep-
tion
Module

Lane
Detection

NA Lanes detected are ren-
dered correctly along
with lane types and posi-
tion types. Lanes detected
on Front and Rear cam-
eras.

NA NA

 Lane
Polynomial
Fitting

NA Tested with parallel
straight lanes on the left
and right of the ego-vehi-
cle.

Able to estimate the
offset distance by
±0.1𝑚𝑚 accuracy.

NA

Free
space
Percep-
tion
Module

NA NA Free space detected on all
cameras.

World points com-
puted with 10cm ac-
curacy up to 30m

CAN
Com-
municat-
ion

 Tracked Vehicles with
Track ID, Position and
Target status are commu-
nicated. Lane & free
space information is pro-
vided.

7.2.1. Unit Testing Rendering Results:

Figure 45: Unit Testing of Object Perception Module

Figure 45 describes the outputs of the object detector, tracker and position Estimator. The object detector accu-
rately detects the preceding vehicle as a car and fits a bounding box accurately over the detection. The detector
misclassifies the same vehicle as a bicycle, and there are also false car detections. The vehicle object tracker filters
false car detection and provides a stable track with a unique track ID. The stable tracked object x and y position
are estimated with respect to the ego-vehicle as per the requirements.

Eindhoven University of Technology

50

Figure 46: Unit Testing of Lane and Free space module

Figure 46 represents the results of the lane and free space module. The lane module clearly detects the rad bound-
ary to the left and right with different colours. The free space module also clearly identifies the free space in the
image by providing free space boundary points as rendered in the image. Free space points near the detected
vehicles vicinity are highlighted in red. These points are provided to the CAN interface.
For combined system results check the following video link : https://www.youtube.com/watch?v=4tIrmb65i8A

7.2.2. Position Estimation Static Results
To validate the accuracy of the position estimator, we place a lead vehicle at a distance between 10 to 40m from
the ego vehicle and measure the accuracy in steps of 10m, as shown in figure 47.

Figure 47: Static Test Setup with cones placed at steps of 10m.

Table 3: Position Estimation static testing results

Intervehicle
Distance
Ground

Truth(m)

Intervehicle Distance
Measured

(m)

∆

Absoluter Error
(Ground Truth -

Measured
Position) (m)
∆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Standard Deviation
of Measurement

Data (m)
𝜎𝜎

10 10.05 0.05 0.05
20 20.06 0.06 0.15
30 32 2.0 0.8
40 45.3 5.3 0.8

As per Table 3, it is observed that the absolute error (∆) depends on the error in the camera pose, the intervehicle
distance and the detection accuracy (how well the box fits the detected vehicle). The standard deviation (𝜎𝜎) on the
other hand is inversely proportional to the camera resolution.

https://www.youtube.com/watch?v=4tIrmb65i8A

Eindhoven University of Technology

51

7.2.3. Position Estimation Dynamic Results
In relation to Position Estimation, for evaluating the performance of Kalman filtering, the following tests are
performed by placing cones in steps of 10m distances to mark the ground truth positions.

1) Preceding Vehicle moving away from ego-vehicle from 10m to 30m.
2) Preceding Vehicle approaching ego-vehicle from 30m to 10m.

1) Preceding Vehicle moving away from ego-vehicle from 10m to 30m.

In this scenario, the preceding vehicle starts at 10m and departs away from the ego-vehicle, intermittently halting
at 20m and 30m. Figure 48 correlates the measured longitudinal position, the estimated longitudinal position by
the Kalman filter and the ground truth locations of the cones (10m, 20m, 30m). Between 10m to 20m, it is observed
that the error between the measurements and the Kalman filter estimates are small. As the filter accounts for the
past historical data, the filter estimates lag the measurement readings.

Between 25m and above, it is observed that the error between the measurements and the Kalman filter estimates
increase. This is due to the poor fitting of the detected vehicle’s bounding box during this phase(as per visual
observation). The height of the tracked bounding box provided by the tracker is larger than desired. As the box
height and the measured longitudinal distance are used to obtain the preceding vehicle’s height, the calculated
value is higher than expected, as shown in figure 49 (between 37-70sec). The larger than expected box-height
measurement produces an estimate that is shorter than the actual longitudinal distance.

The accurate fitting of the bounding box with the detected vehicle in the image depends on the parameters of the
tracker used for clustering the neighbouring bounding box proposals provided by the object detector. These pa-
rameters need to be tuned such that the performance is satisfactory in all environments.

Figure 48: Longitudinal position results for vehicle departing away from the ego-vehicle

Deviation in measured
and estimated values due
to larger than desired
bounding box height

Eindhoven University of Technology

52

Figure 49: Vehicle Height measurements & estimates of the detected preceding vehicle

2) Vehicle approaching an ego Vehicle 30-10m.

In this scenario, the preceding vehicle starts at 30m and approaches the ego-vehicle, intermittently halting at
20m and 10m. Figure 50 correlates the measured longitudinal position, the estimated longitudinal position by
the Kalman filter and the ground truth locations of the cones (10m, 20m, 30m). The measurement readings are
accurate w.r.t to the ground truth, and the filter estimates also do not deviate significantly from the measured
data. As discussed in the earlier scenario, the filter estimates lag the measurement reading.

Figure 50: Position estimation results for vehicle approaching the ego vehicle

Measured data higher
due to larger than desired
height of bounding box

Eindhoven University of Technology

53

Figure 51 compares the measured and estimated values for the height of the detected vehicle. When a new
tracked object is detected, the initial estimate quickly converges to the measurement values since the Kalman
gain is high during the initial readings. The Kalman gain drops with subsequent measures making the filter less
sensitive to measurements reading as the track ages, which is desirable.

Figure 51: Vehicle Height measurements and estimates of preceding vehicle

Form the above two scenarios it can be observed that the position estimation method implemented is vehicle
agnostic and provides the position of detected objects fairly accurately upto 30m. For objects beyond 30m, a
conservative estimate is provided (lower measurement than actual). The filter does a good job of removing any
disturbance or noise due to detected box size or due to road undulations.

7.2.4. Target Pose (Heading) Estimation Results
To validate the pose estimate more specifically the heading angle, the validation is scoped to testing a single target
vehicle detected by the front camera of the ego-vehicle. The testing is performed in accordance with driving
scenario 4. Figure 52 describes the test setup where a stationary target is placed in front of the ego vehicle, and
the ego-vehicle is driven back and forth at a slow speed (3kmph) on a curved path by locking the steering wheel
towards one side. The detailed expected behaviour is described in Appendix A (DS 4).

Fast convergence
to measured data

Estimates insensitive
to measured data

Eindhoven University of Technology

54

Figure 52: Test Setup for Target Pose Estimation

During execution, we detect features within the bounding box of the target. These features are then matched with
the features in the template model. It is observed that a high number of matches (at least more than 30) provides
a more accurate pose estimate. Among the matches, inliers are computed using the RANSAC and PnP algorithms
to obtain an optimal estimate of the pose. If the interpixel distance between the inliers are greater, the precision of
the pose estimate is higher. As the inter-vehicle distance between the target and ego-vehicle increases the inter-
pixel distance between the inliers drops, leading to a drop in precision.

For validation, an IMU sensor is placed in the ego-vehicle, which will provide the change in yaw values.
Figure 53 shows the heading angle of the target vehicle computed by the front camera and the relative change in
the heading of the ego-vehicle measured by the IMU. Since the target vehicle is stationary, the change in the ego-
vehicle’s yaw should match the change in the heading angle of the target. A good correlation is observed in the
two plots.

Figure 53: Correlation of heading angle measurements by camera with IMU measurements

For the online testing results click on https://www.youtube.com/watch?v=sDuzfNlXUEA

https://www.youtube.com/watch?v=sDuzfNlXUEA

Eindhoven University of Technology

55

From the above results, it can be concluded that the pose estimation works well for intervehicle distances up to
30m and for small heading angles (0-30deg). If the target vehicle is wide (e.g. Truck) the interpixel distances of
the features detected will be wider than the existing setup, leading to better precision and greater intervehicle
distances. Thus, this method is suitable for highway platooning driving scenarios where the relative heading angles
between vehicles are lower.

7.2.5. Lane Polynomial Fitting Results
The plot in figure 54 indicates the road boundary points detected by the Lane Detector on the left and right side
of the ego vehicle. In the image, lanes that are nearer to the ego-vehicle are represented by a greater number of
pixels. When these pixels are mapped to world points, a higher resolution and precision is obtained for points
nearer to the vehicle.
It should be noted that the position of these 2D points is reasonably accurate compared to the ground truth. How-
ever, the accuracy is dependent on the camera extrinsic parameters which are affected by the vehicle motions
(pitch, bounce).

Third-order polynomials are fit through these 2D road points. Thus, the lane coefficients provided by the system
are accurate and are useful for path planning purposes.

Figure 54: Lane Polynomial Fitted with measured data

7.3 System-Level Testing
In system-level testing, we evaluate the response of the SVS in different driving scenarios by driving the ego-
vehicle in the TU/e campus. In the video described in the following link, we drive in an urban environment (TU/e
campus) following a target vehicle in front of the ego-vehicle.
Video-link: https://www.youtube.com/watch?v=G0XBVVIsJOU
Since the test is conducted in an urban scenario, many detections were observed for objects beyond 100m which
were irrelevant. Since each object is processed sequentially, it leads to longer execution time. We thus tuned our
parameters to filter out objects which are smaller than a threshold box size limiting the detection range to approx-
imately 35m.

https://www.youtube.com/watch?v=G0XBVVIsJOU

Eindhoven University of Technology

56

Figure 55: On-Road testing with target and ego vehicle

7.3.1. System Profiling:
To analyze the overall execution time taken per input frame by the system, we breakdown and measure the time
taken by each module. As per the architecture since object, free space and lane detections are independent pro-
cesses, it is desired to execute these processes on separate threads. However, due to limited computational re-
sources resulting in internal switching between processes, we observed that there were no significant improve-
ments in running these processes in parallel compared to sequentially [19]. Additional research is necessary to
investigate this problem.

The timeline shown in Figure 56, describes the execution time for the front camera when a new vehicle track is
created due to a new vehicle detection or due to a track change.
Figure 57 describes the execution time when existing tracked vehicles are detected, and no new tracks created.
The total processing time is given by

𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚{𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜏𝜏𝑂𝑂𝑂𝑂 + 𝜏𝜏𝐹𝐹𝐹𝐹𝐹𝐹 + 𝜏𝜏𝐿𝐿𝐿𝐿 + 𝜏𝜏𝑇𝑇𝑇𝑇 + 𝑛𝑛𝜏𝜏𝐶𝐶𝐶𝐶 + 𝑙𝑙 𝜏𝜏𝑝𝑝 + 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}
Where

𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 & 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝜏𝜏𝑂𝑂𝑂𝑂:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝜏𝜏𝐹𝐹𝐹𝐹𝐹𝐹:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝜏𝜏𝐿𝐿𝐿𝐿: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝜏𝜏𝑇𝑇𝑇𝑇:𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝜏𝜏𝐶𝐶𝐶𝐶:𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜏𝜏𝑝𝑝:𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑙𝑙:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Figure 56: Execution time for Front Camera when four new tracks are created

Eindhoven University of Technology

57

Figure 57: Execution time for Front Camera with existing tracks.

From the above two figures, it can be concluded that by performing classification only once, a clear improvement
in execution time is observed. It is also observed that the execution time proportionally increases with the number
of cameras.

7.3.2. Comparison with Stereo Vision System.
The following table provides a comparison with of the execution time taking by the proposed SVS system and the
earlier stereo system on a desktop with NVidia 1060 GPU and an Intel Core i7-4790K CPU.

Table 4: Comparison of the execution time of SVS and Stereo Vision systems on Host PC

Functions SVS System per camera Stereo Vision system
Image Acquisition and Pro-
cessing

1.627ms 1.627ms

Object Detection & Tracking 7.2 ms 7.2 ms
Lane Detection 2 ms 2 ms
Free space Detection 2 ms 2 ms
Position Estimation/Depth es-
timation

0.1ms
(considering 100 vehicle object tracks)

94 ms

Target vehicle Classification 2ms ---
Target vehicle Pose Estimation 164 ms ---

It can be concluded that the estimation time for position estimation is 940 times faster than the earlier stereo vision
system. The high execution time of 164ms for Target vehicle Pose estimation is due to the OpenCV CPU imple-
mentation. OpenCV GPU implementation is recommended.

■■■

Eindhoven University of Technology

59

8.Project Management

This chapter gives an overview of the time and resource management for the project. First, a description of the
project plan is provided, which is used in the second section to make a risk assessment for the most critical risks
for completion of the project, according to the goals, and on time. After this, an assessment is made of how well
the plan was followed.

8.1 Project Planning
At the start of the project, a work breakdown was constructed to identify the sub-tasks required for successful
implementation of the concept on the prototype vehicle. To achieve the main goal, the following sub-tasks were
identified:

1) Identify and construct the functional requirements
2) Setup the necessary software packages required for training Deep Neural Networks and DriveWorks
3) Evaluate different neural network architectures and compatibility with NVidia DriveWorks.
4) Visualize the system interconnections (architecture, relation to existing systems)
5) Deploy and test existing networks to identify initial errors in the architecture.
6) Build a vehicle Test setup to generate data for training custom detector/classifier.
7) Label and train DNN.
8) Implement system functions on the host machine (personal PC) using C++ and DriveWorks Libraries.
9) Deploy system on Drive PX 2.
10) Perform on Unit and on-Road Testing.

Based on this work-breakdown, an initial plan was created, as shown in figure 58. To control the process, progress
meeting with the stakeholders and supervisors were defined bi-weekly with the university supervisor as well as
the company supervisor. To be able to compensate for delays in the project, it was planned to finish at the begin-
ning of August, leaving the remainder time for other delayed activities.

09-Jan-20 28-Sep-20
01-Feb-20 01-Mar-20 01-Apr-20 01-May-20 01-Jun-20 01-Jul-20 01-Aug-20 01-Sep-20

09-Jan-20 - 25-Feb-20
Literature Survey &
Sofware Installation

28-Feb-20 19-May-20
01-Mar-20 01-Apr-20 01-May-20

28-Feb-20 - 17-May-20
Vehicle & Twizy Detection

20-May-20 -
10-Jun-20

Lane
Detection

13-Jun-20 -
04-Jul-20
Freespace
Estimation

07-Jul-20 - 07-
Aug-20

Unit & Vehicle
Testing

10-Aug-20 - 22-Sep-20
Buffer

03-Apr-20 - 25-Apr-20
Deployment and
Implementation

27-Apr-20 - 18-May-20
Pose Estimation

01-Mar-20 - 02-Apr-20
Generating Dataset & Training Network

Figure 58: Initial Project plan constructed at the beginning of the project.

8.2 Risk management

With the project plan from the previous section, the main risks for the completion of the project goals according
to the requirements within the given time were identified. This activity was repeated in the beginning of every
month based on the knowledge gained during the literature study and implementation trials. Exploring and exper-
imentation with the provided code samples of DriveWorks provided an insight on what solutions are optimal,
compatible and feasible within the given time-frame.
The main risks, along with their likelihood and impact, are listed in Table 5. Possible mitigation strategies are also
listed in this table. Risks R1, R2 & R7 actually happened, resulting in the decision to go ahead with CARLA
simulator testing and training for a different type of target vehicle available in the simulator. Due to unavailability
of access to the labs, there was a lot of uncertainty related to the implementation on the Drive PX2. However,
when access was granted, fortunately due to the unit testing carried out on the simulator, no serious software bugs
were observed.

Eindhoven University of Technology

60

Table 5: Risk Management Table

ID Description Like
li-
hoo
d

Impact Time
Hori-
zon

Mitigation Strategy

R1 Unable to generate enough
training data for the Object De-
tector/Classifier using the vehi-
cle mounted cameras due to
COVID19 restrictions

5 4 Medium Use a vehicle simulator to generate
training data for classifier. Use
Nvidia’s trained object detector.

R2 Drive PX 2 unavailable for test-
ing due to corona restriction

5 5 Long Preform all unit and system test on
a simulator to validate all functions.

R3 Insufficient time and manpower
for labelling training data

4 3 Long Accept the risk and adjust the scope
of the project to only building the
software pipeline for the neural net-
work. Inform all stakeholders about
the problem and arrive at a mutual
agreement.

R4 Testing availability limited due
to COVID19 university lab re-
strictions

3 3 Long Plan tests precisely in advance; pre-
pare necessary experiments off-line
to minimize required time with the
vehicle.

R5 DriveWorks not compatible
with certain network architec-
tures

3 3 Short Study and analyse network archi-
tectures of existing state of the art
networks and identify reasons for
incompatibility at an early stage.

R6 Limited time for implementa-
tion of pose estimation for tar-
gets

4 5 Short Assign higher priority to methods
that have available code which can
be easily modified and integrated in
less time.

R7 Unable to validate the system
for highway driving conditions
due to COVID19 restrictions

5 3 Long Accept the risk.

8.3 Project task execution
The project plan present in Section 8.1, as is usually the case could not be executed fully according to plan. Figure
59 shows how the planned tasks were actually executed.

09-Jan-20 28-Sep-20
01-Feb-20 01-Mar-20 01-Apr-20 01-May-20 01-Jun-20 01-Jul-20 01-Aug-20 01-Sep-20

28-Feb-20 11-May-20
01-Mar-20 01-Apr-20 01-May-20

26-Apr-20 - 12-May-20
Position Estimation

28-Jun-20 -
19-Jul-20

Unit &
Vehicle
Testing

03-Apr-20 - 25-Apr-20
Driveworks Implementation along

with Simulator Testing

09-Jan-20 - 25-Feb-20
Literature Survey &
Sofware Installation

12-Aug-20 - 28-Sep-20
Documentation

20-Jul-20 -
10-Aug-20

Pose
Estimation

01-Mar-20 - 02-Apr-20
Setting up CARLA simulator

06-Jun-20 -
27-Jun-20
Freespace
Estimation

16-May-20
- 05-Jun-20

Lane
Detection

25-Feb-20 - 14-May-20
Vehicle & Twizy Detection

Figure 59: Actual Executed Plan

The main delay was caused due to the unavailability of access to the vehicle and the Drive PX 2 till the month of
July resulting in the scheduling of all vehicle testing activities from mid-July. Furthermore, the Drive PX 2 was
expected to be flashed with the latest version of DriveWorks 1.2 and ready, which was not the cause. Additional
two weeks were lost in understanding the processes related to flashing the Drive PX 2, which were not accounted
for earlier. Thankfully, due to the rigorous unit testing performed earlier on the simulator, few runtime errors were

Eindhoven University of Technology

61

observed. The final phase of the project between July to mid-September was critical where it was needed to push
harder to integrate the Pose Estimation module designed in OpenCV with DriveWorks. It was possible to integrate
and test for only a few controlled cases; however, on-road testing for different use-cases seemed infeasible due to
COVID-19 restrictions.

■■■

Eindhoven University of Technology

62

Eindhoven University of Technology

63

9. Conclusion and Recommendations

This report started with a motivation for self-driving cars, the benefits they offer, and the challenges present to
reach level 5 self-driving. The need for a surround vision system was described to meet the goal for cooperative
and autonomous driving. The system was then designed using a system engineering approach which involved
using the CAFCR methodology for identifying the stakeholder's concerns and key drivers. The SEMAS method-
ology was used to describe driving scenarios, derive requirements and propose the architecture of the system by
describing the desired behaviour at different levels of abstraction. Functional modules, which were derived from
the architecture, were implemented considering different design choices available in the literature and the con-
straints. Different Deep Neural Network architectures were evaluated with respect to implementation effort, time
and compatibility. Conventional computer vision techniques were used to estimate the position of objects and
pose for target vehicles. The designs were implemented using NVidia DriveWorks and OpenCV libraries. The
designed software was deployed on the Drive PX 2 embedded system. Each module was validated with respect to
the driving scenarios. Finally, this chapter closes the report first by providing an account of the achievements
made in this assignment. Furthermore, some recommendations and final thoughts on future work are presented at
the end of the chapter.

9.1 Conclusions
The main technical goal of this assignment was to design and deploy a prototype of a real-time surround-vision
system in the demonstrator vehicle Renault Twizy. The main focus of this project was to investigate the possibility
of using monocular cameras to detect and estimate the position of surrounding objects, identify a potential target
among the detected vehicles for platooning and estimate their pose.
The following are the key conclusions observed while carrying out this project:

1) System Architecture: The Architecture of the system is designed using object-oriented principles, each
function is decoupled, and its interfaces are clearly identified. The architecture is abstract and independ-
ent of the implementation. This allows different possible implementations in the future.

2) Object & Target Vehicle Detection and Tracking: Deep Neural Networks are used for robust detection
of objects. Different network architectures were evaluated considering the compatibility with Drive-
Works and Drive PX 2. After careful consideration of the available resources (Time for creation and
labelling of the dataset, human resources) it was decided to use an existing trained object detector for
detecting vehicles and train a classifier for classifying vehicle detections as target vehicles (Twizys). The
bounding boxes are tracked to mitigate false detections. The proposed design efficiently detects and
tracks vehicles and other objects and provides stable detections to the vehicle controller through the CAN
interface. Thus, with all the stable & robust information of objects from the surroundings, the vehicle
controller can take safe decisions.

3) Target Classifier Training: A training methodology for data collection, labelling of the dataset for clas-
sification and deployment in the system is described. However, in this project, it was not possible to train
the classifier robustly due to insufficient training data. For future work, additional data can be generated
using the existing camera setup by driving in all desired scenarios using the proposed data-generation
and training methodology.

4) Position estimation of Objects: Position of objects are estimated by solely relying on monocular vision.
It is assumed that the ego-vehicle and the detected object lie on the same ground plane and the height of
the camera from the ground plane is known. The assumption is valid for highway driving conditions and
identifies the position of objects accurately up to 30m. The algorithm takes negligible memory and is
1000x faster than stereo disparity computations, thus suitable for real-time applications.
For vehicle objects, it is assumed that the height of the vehicle is constant and additionally, the height of
the bounding box is used to provide a more robust estimate which is independent of the ground plane
assumption. Thus, by combining these two measurements, the system can work in all possible scenarios,
and only depend on accurate detection (location and fitting of the bounding box) of the objects. The
position and class of all detected objects are available on the CAN interface which can be used for fusion
with other sensors.

Eindhoven University of Technology

64

5) Target Vehicle Pose Estimator: The pose of a target is computed given the prior information of the
shape of the target. In this project, the target is a Renault Twizy. ORB Features and their corresponding
3D locations are extracted and used as a template to match the features of the same object in the scene.
Based on the matches, the pose of the vehicle is computed. Since ORB features are used, the algorithm
is robust to illumination. The heading of the target is validated using an IMU sensor. The precision of
the pose/heading drops as the intervehicle distance increases. In this project, the testing was scoped to
only extracting features points from the rear & left faces of the model. However, further testing is re-
quired to identify how the algorithm performs in different scenarios.

6) Lane and Free space Detection: Existing neural networks provided by DriveWorks are implemented to
detect lanes and free space. The coefficient of the lanes computed are validated during testing. These
coefficients are provided to the CAN interface. However, further testing is required to validate the Lane
Polynomial Coefficients, Object Free Space Points on CAN data.

9.2 Future Work and Recommendations

The section outlines the work required to be done for the completion of the project along with the possible future
extensions.

• As mentioned in the above section, the architecture of the system was designed with a purpose of building
a prototype in mind. For further improvement, it is necessary to do a functional safety analysis of each
functional component. Using the existing functional modules, high levels modules that can fuse the in-
formation from both modules can be designed. For e.g.

o Computing the lane on which a detected vehicle is running on. Higher priority can be assigned
to those vehicles which are running on adjacent lanes.

o Using the free space and the bounding information to determine nearest objects. This will aid
in dynamic path planning.

• It is suggested to use the Robot Operating System (ROS) framework, where the functional modules are
mapped to ROS nodes. This will improve the flexibility of the system and make it easy to build and
add more functionality without disturbing the existing code.

• The Drive PX 2 consists of two identical and independent Parker System on Chips (SoC)GPUs, called
Tegra A and B respectively. At present, all neural networks are deployed only on the Tegra A SoC.
Even though the detection modules are run on independent CPU threads and CUDA streams, the mod-
ules operate sequentially due to limited resources. It is recommended to exploit the full capabilities of
the Drive PX 2 by deploying a few of the networks on the Tegra B SoC and use TCP/IP to communi-
cate the results between both SoCs.

• In relation to pose estimator, the rear shape of the Twizy was assumed as a 3d Box, and features points
were extracted from only the left and rear side of the target. It is recommended to fit a 3d mesh of a
Twizy to extract all the points on the external surface of the vehicle. This will lead to better precision
and accuracy for targets beyond 30m.

• Object Detectors like Yolo V4 and Yolo V5 which are recently proposed in 2020 provide a higher ac-
curacy and detection speed. It is recommended to evaluate how much improvement in execution time,
accuracy and memory can be achieved by deploying these networks on the Drive PX 2. Specific atten-
tion needs to paid for unsupported layers of DriveWorks TensorRT.

• The change in camera extrinsic positions due to the compliance of the ego vehicle's suspension can be
corrected by online camera calibration.

• The current software implementation is scoped to estimating the pose of a single target vehicle present
in the scene. It is recommended to improve the software to implement multiple dynamic targets. Fur-
thermore, the implementation of pose estimation can be moved to the GPU for faster than present CPU
execution.

• Presently fusion of measurements from different sensors occurs at a late stage, e.g. Processing infor-
mation from each sensor like radar, camera independently and then fusing the position measurements.
Also, only limited information can be transmitted by each sensor due to the limited bandwidth of the
CAN network. If the raw point cloud data of the radar was clustered using the camera bounding box
detections at an early stage, this would lead in the improvement of the detection accuracy.

Eindhoven University of Technology

65

Glossary

CIA Camera Image Acquisition

CPU Central Processing Unit

CUDA Compute unified Device Architecture

DeepIm Deep Iterative Matching for 6D Pose Estimation

DNN Deep Neural Network

D&C Dynamics and Control Group

FOV Field of View

GMSL Gigabit Multimedia Serial Link

GPU Graphics Processing Unit

HDMI High-Definition Multimedia Interface

i-CAVE Integrated Cooperative Autonomous Vehicles

IO Input/output

MPS Mobile Perceptions Group

OS Operating System

ORB Oriented Fast and rotated Brief

PnP Perspective-n-Point

PVNet Pixel-wise Voting Network for 6DoF Pose Estimation

RANSAC Random sample consensus

SoC System on chip

SVS Surround Vision System

TU/e Eindhoven University of Technology

V2V Vehicle-to-Vehicle

Yolo You only look once

Eindhoven University of Technology

67

Bibliography
References
[1] "NHTSA: Automated Vehicles for Safety," [Online]. Available: https://www.nhtsa.gov/technology-

innovation/automated-vehicles-safety. [Accessed 02 September 2020].

[2] "I-Cave -- Integrated cooperative automated vehicles," [Online]. Available: https://i-cave.nl/.

[3] Z. Luo, "LiDAR based perception system: Pioneer technology for safety driving. PhD Diss," 2017.

[4] G. Muller, CAFCR: A multi-view method for embedded systems architecting; balancing genericity and

specificity, 2004.

[5] M. M. H. a. A. K. Hedderich, "SEMAS-System Engineering Methodology for Automated Systems. The

world described in layers.," in 22nd Workshop-Methods and Description Languages for Modelling and

Verification of Circuits and Systems, 2019.

[6] W. J. Z. Y. Feng Liu, "A Multi-object Tracking Method Based on Bounding Box and Features," in

Advances in Computer Science for Engineering and Education II, 2006.

[7] G. K. a. J. Cho, "Vision-based vehicle detection and inter-vehicle distance estimation," International

Conference on Control, Automation and Systems, JeJu Island, 2012, pp. 625-629, 2012.

[8] O. M. A. S. G.P. Stein, "Vision-based ACC with a single camera: Bounds on range and range rate

accuracy," in Intelligent Vehicles Symposium, 2003.

[9] J. Lee, "Intervehicle distance estimation through camera images," Journal of Electronic Imaging, vol.

27, no. 6, 2018.

[10] "NVIDIA DriveWorks," [Online]. Available: https://developer.nvidia.com/drive/driveworks. [Accessed

25 08 2020].

[11] D. Simon, Optimal State Estimation: Kalman H-infinity and Non-linear Approaches, John Wiley & Sons,

2006.

[12] "Sekonic GMSL Camera Datasheet.," [Online]. Available:

https://www.leopardimaging.com/uploads/LI-AR0231-GMSL_datasheet_Update.pdf.

[13] "Möller–Trumbore intersection algorithm - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm.

[Accessed 10 08 2020].

[14] "Wikipedia: Random Sample Consensus," [Online]. Available:

https://en.wikipedia.org/wiki/Random_sample_consensus#:~:text=Random%20sample%20consensus%

20(RANSAC)%20is,as%20an%20outlier%20detection%20method.. [Accessed 25 August 2020].

[15] "Real Time pose estimation of a textured object," [Online]. Available:

https://docs.opencv.org/master/dc/d2c/tutorial_real_time_pose.html.

[16] "statsdirect.com Polynomial Regrerssion," [Online]. Available:

https://www.statsdirect.com/help/regression_and_correlation/polynomial.htm.

Eindhoven University of Technology

68

[17] "Eigen Polynomial Module," [Online]. Available:

https://eigen.tuxfamily.org/dox/unsupported/group__Polynomials__Module.html.

[18] "CARLA Vehicle Simulator," [Online]. Available: https://carla.org/.

[19] "NVidia Forum," [Online]. Available: https://forums.developer.nvidia.com/t/low-execution-time-when-

running-4-cameras-in-parallel-drivenet-n-cameras-sample/145708/7. [Accessed 27 August 2020].

Eindhoven University of Technology

69

Appendix A.
Driving Scenarios:

DS 1 - CACC

Context
Ego-vehicle driving beside a platoon of target vehicles on a highway.
Actors
Target vehicles (Twizy’s), other vehicles, Lane markings, Lighting conditions, Road conditions
Preconditions

1) The target vehicles are driving in a platoon
2) There are other vehicles around the ego-vehicle
3) The visibility is clear, and the weather is sunny
4) The SVS system is inactive

Trigger
1) SVS system is activated.

Expected ego-vehicle behaviour
1) The ego-vehicle detects and classifies the vehicles which are clearly or partially visible to the cameras

as a "Target"(Twizy) or "other vehicle"(cars) around its surrounding
2) The ego-vehicle calculates the pose of the detected target vehicle (Twizy) with respect to itself.
3) The ego-vehicle calculates the position of other detected vehicles.
4) The ego-vehicle computes the curvature and position of the left and right lane markings belonging to

the ego vehicle if present
5) The ego-vehicle detects the free space around the vehicle
6) The ego-vehicle displays all perceived information to the operator

Postconditions
1) Detections are provided until the system is deactivated

Key Performance Indicators (KPIs)
1) The number of false negatives detected. (objects incorrectly classified have a higher risk)
2) The detection range of the system. (How far can an object be accurately detected)
3) The accuracy at which the position of objects are estimated
4) The number of target vehicles the system can handle (detect as well as provide pose).
5) The time required to detect and estimate the position of vehicles/objects
6) The accuracy of the vehicle position estimate with respect to the ground truth
7) The execution time required to compute the pose of the target vehicle when detected
8) The accuracy of the computed pose of the target vehicle when detected
9) The rate at which the system updates the position of the targets and other vehicles on the CAN bus

Eindhoven University of Technology

70

DS 2: Parking Lot Vehicle Stationary

Context
1) Other vehicles parked around the ego Vehicle
2) The visibility is clear.
Actors

Other vehicles
Preconditions
1) There are vehicles parked around the ego vehicle (5-20m radial distance from ego-vehicle).
2) The system is inactive.

Trigger

1) The system is activated
Expected system behaviour
1) The system detects and classifies the vehicles as a target (Twizy) or other vehicle(cars) around its
surrounding.
2) The system calculates the position of all vehicles.
3) The system estimates the pose for all target vehicles.
4) The system detects the free space around the ego-vehicle

5) The system publishes all the computed information on the CAN-bus
Postcondition
1) Keeps providing detections till the system is deactivated.

KPIs
1) The number of true detections perceived by the system. Precision, recall, F1score.
2) The max number of detections the detector can handle.

3) The max position of all vehicle from the ego vehicle for detecting the target.(max size of the object
in image to be classified suitable for detections)

4) The time required to estimate a detection when the detector is activated. (as a factor of number of
detections)
5) The accuracy of the estimated vehicle positions with respect to the ground truth value.

Eindhoven University of Technology

71

DS 3: Parking lot Vehicle Approaching

Context
1) The visibility is clear.

2) The ego vehicle is in a parking lot with more than one vehicle around it
Actors

Target vehicles(Twizy), other vehicles
Preconditions

1) The system is acitve.

2) The target vehicle is initially out of range and driving towards the ego vehicle

Trigger

1) The target vehicle enters in the range of the ego vehicle's cameras.
Expected vehicle behaviour
1) The system detects and classifies the target vehicles which are clearly or partially visible to the cameras as
a “Target”(Twizy) or “other vehicle”(cars) around its surrounding.
2) The system calculates the pose of the detected target vehicle with respect to ego vehicle
3) The system calculates the position of all vehicles.
4) The system publishes all the computed information on the CAN-bus
Postcondition
1) Keeps providing detections till the detector is deactivated.

KPIs
1) The number of true detections perceived by the system. Precision, recall, F1score.
2) The max position of all vehicle from the ego vehicle for detecting the target.(max size of the object in im-
age to be classified suitable for detections)
3) The minimum pixel area of a vehicle required to be worthy for detection

4) The number of target vehicles the detector can handle (detect as well as provide pose) .
5) The time required to estimate a detection when the detector is activated. (as a factor of number of detec-
tions)
6) The accuracy of the estimated vehicle positions with respect to the ground truth value.
7) The time required to compute the pose of the target vehicle when detected.
8) The time required to translate CAN messages and publish on the CAN bus.
9) The rate at which the system updates the position of the targets and other vehicles on the CAN bus

Eindhoven University of Technology

72

DS 4: Ego Vehicle Approaching a Stationary Target

Context
1) The ego vehicle moves forward towards a Target vehicle (Twizy) parked in front of it in a curved path as
shown in above figure.
Actors
Target vehicles (Twizy)
Preconditions
1) The system is active.
2) The visibility is clear.
Trigger
1) The target vehicle starts approaching the target vehicle following a curved path.
Expected system behaviour
1) The system detects and classifies the vehicle as a target vehicle(Twizy).
2) The system calculates the pose of the detected target vehicle with respect to ego vehicle
Postcondition
1)Detections are provided until the target gets out of the FOV of the cameras.
KPIs
1) The accuracy of classification of the detected vehicle.
2) The accuracy of the pose estimate of the target with respect to intervehicle distance
3) The variance in the measurement of pose data.
4) The time required to compute the pose of the target vehicle when detected.
5) The rate at which the system updates the position of the targets and other vehicles on the CAN bus

Eindhoven University of Technology

73

DS 5: Target Vehicle Departing uphill from Ego-Vehicle

Context

1) The ego vehicle is stationary, and a preceding vehicle moves away from the ego vehicle up a ramp.

Actors

Other vehicles (Cars), Road Uphill gradient
Preconditions

1) The system is active.
2) The visibility is clear.

Trigger

1) The preceding vehicle starts from the same plane as that of the ego vehicle and drives up a ramp.
Expected system behaviour

1) The system detects and classifies the vehicle as “other vehicle” (Non-target).
2) The system calculates the position of the detected vehicle with respect to ego vehicle
Postcondition
1)Detections are provided until the target gets out of the FOV of the cameras.
KPIs
1) The accuracy of classification of the detected vehicle.
2) The accuracy of the position estimate of target with respect to intervehicle distance
3) The variance in the measurement of position data.

4) The time required to compute the position of the vehicle when detected.
5) The rate at which the system updates the position of the targets and other vehicles on the CAN bus

Eindhoven University of Technology

74

Appendix B.
Example description of camera Rig Configuration file for front Camera.

 "rig": {
"sensors": [

 {
 "name": "Front_60FOV",
 "nominalSensor2Rig": {

"quaternion": [
 -0.3536,

 0.3536,
-0.6124,
0.6124

],
"t": [

 0.0,
 0.0,
 1.42

]
 },
 "parameter": "",
 "properties": {

"Model": "pinhole",
"cx": "9.674573781498158e+02",
"cy": "5.939498223275325e+02",
"distortion": "-0.444577318609922 0.224404687754395",
"fx": "1.935708341198060e+03",
"fy": "1.934157368441432e+03",
"height": "1208",
"params": "",
"width": "1920"

 },
 "protocol": "camera.virtual",
 "sensor2Rig": {

"quaternion": [
 -0.3536,

 0.3536,
-0.6124,
0.6124

],
"t": [

 0.0,
 0.0,
 1.42

]
 }
 },]

}

Eindhoven University of Technology

75

Appendix C.
Network Compatibility with DriveWorks:

A deep neural network (DNN) is composed of several layers which perform different mathematical operations.
Each layer must be compatible with the TensorRT optimization tool provided for DriveWorks to integrate with
the DriveWorks APIs. This constraint limits the number of possible network choices.
The following Network types were evaluated to meet the above requirements and constraints.

Network Name Compatibility Status
MobileNet-SSD Incompatible due to Permute, Prior-Box Layers
YOLO V3 Incompatible due to Upsample, Flatten, Leaky Relu

layers
YOLO V1-Tiny All Layers compatible
DetectNet All Layers compatible

Appendix D.
Coordinate Systems

The camera has a right-handed coordinate system, where the camera origin is at the optical centre of the left
camera. The x-axis points to the right of the image plane, the y-axis points to the bottom of the image plane,
and the z-axis points forward along the optical axis.

Vehicle Coordinate System: The vehicle uses a right-handed coordinate system, where the vehicle origin is
considered to be under the center of the rear axle. The x-axis points forward to the front of the vehicle, the y-
axis points to the left of the vehicle, and the z-axis points to the upward of the vehicle.

Eindhoven University of Technology

76

Eindhoven University of Technology

77

About the Author

Ashton Menezes is an automotive systems designer with a background in Ve-
hicle Dynamics and Controls. He enjoys working on multi-disciplinary pro-
jects related to robotics and software applications.

Since November 2018, he is working on aspects related to automotive sys-
tems design where he has been trained on the systems aspects for solving
automotive design-related problems. During this training, he assisted vari-
ous automotive companies in designing next-generation driver assistance
systems and defining concepts for automated driving.

PDEng AUTOMOTIVE SYSTEMS DESIGN
Track AUTOMOTIVE SYSTEMS DESIGN

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Motivation
	1.2 Need for Surround Vision System
	1.3 Project Context
	1.4 Project Goals
	1.5 Interaction with other Projects
	1.6 Unique Contributions
	1.7 Overview of the Thesis

	2. Analysis
	2.1 Problem Analysis
	2.1.1. Project Background
	2.1.2. Problem Statement

	2.2 Stakeholder Analysis
	2.2.1. I-Cave Program Partners (Eindhoven University of Technology)
	2.2.2. Designers and Developers
	2.2.3. PDEng Management (ASD Program)

	2.3 CAFCR Analysis

	3. Requirements Elicitation
	3.1 Elicitation process
	3.2 Real World Layer
	3.3 Vehicle Level
	3.3.1. System Context:
	3.3.2. System Functions
	3.3.3. Functional Requirements
	3.3.4. Non-Functional Requirements

	3.4 System External Interfaces

	4. System Architecture
	4.1 Functional Viewpoint
	4.2 Concurrency Viewpoint
	4.3 Logical Viewpoint
	4.4 Structural Views

	5. Module Design
	5.1 Camera Image Acquisition (CIA)
	5.2 Object Perception
	5.2.1. Object Detector
	5.2.2. Vehicle Tracker
	Track Maintenance

	5.2.3. Tracked Object Manager
	5.2.3.1 Position Estimation
	5.2.3.2 Target Vehicle Classifier
	5.2.3.3 Target Vehicle Pose Estimation

	5.3 Lane Perception
	5.4 Free Space Perception

	6. Implementation
	6.1 NVidia Drive Software
	6.2 Mapping of SVS Architecture to DriveWorks APIs
	6.2.1. Camera Image Acquisition
	6.2.2 Deep Neural Networks
	6.2.2.1 Object Detector
	6.2.2.2 Object/Target Vehicle Tracker
	6.2.2.3 Target Vehicle Classifier
	6.2.3 Vehicle Position and Other Objects Estimation
	Kalman Filter Calculation

	6.2.4 Target Vehicle Pose Estimation
	Model Registration
	Online Pose Estimation

	6.2.5 Lane Detection & Polynomial Fitting
	6.2.6 Free Space Detection

	7. Validation and Test Results
	7.1 Experimental Setup
	7.1.1. Carla Simulator
	7.1.2. Test Vehicle

	7.2 Unit Testing
	7.2.1. Unit Testing Rendering Results:
	7.2.2. Position Estimation Static Results
	7.2.3. Position Estimation Dynamic Results
	7.2.4. Target Pose (Heading) Estimation Results
	7.2.5. Lane Polynomial Fitting Results

	7.3 System-Level Testing
	7.3.1. System Profiling:
	7.3.2. Comparison with Stereo Vision System.

	8. Project Management
	8.1 Project Planning
	8.2 Risk management
	8.3 Project task execution

	9. Conclusion and Recommendations
	9.1 Conclusions
	9.2 Future Work and Recommendations

	Glossary
	Bibliography
	References

	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	About the Author

