

Intelligent microscope III

Citation for published version (APA):
Laane, M. (2020). Intelligent microscope III. Technische Universiteit Eindhoven.

Document status and date:
Published: 05/10/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/4a431c09-e64e-4172-99c3-1fa366e2ba07

PDEng SOFTWARE TECHNOLOGY

PDEng THESIS REPORT

Intelligent Microscope III

Mark Laane
October / 2020
Department of Mathematics & Computer Science

Intelligent Microscope III

Mark Laane

Eindhoven University of Technology
Stan Ackermans Institute - Software Technology

Partners

Thermo Fisher Scientific Eindhoven University of Technology

Steering Group Mark Laane
Remco Schoenmakers
Mykola Pechenizkiy
Yulong Pei

Date October 5, 2020

Confidentiality
Status

Confidential until October 5, 2021

PDEng report PDEng 2020/048

ii

Composition of the Thesis Evaluation Committee:

Chair: ir. Harold. Weffers, PDEng

Members: dr. Remco Schoenmakers

 prof. dr. Mykola Pechenizkiy

 dr. Yulong Pei

 Joost Dierkse

 dr. Nikolay Yakovets

The design that is described in this report has been carried out in accordance
with the rules of the TU/e Code of Scientific Conduct.

iii

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 5.080A, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31 402472759

Published by Eindhoven University of Technology
Stan Ackermans Institute

PDEng report PDEng 2020/048

Abstract Thermo Fisher Scientific (TFS) aims to become the leading company in electron
microscopy by driving the innovation in the company and the electron
microscopy industry. The purpose of this project was to identify and de-risk
novel technologies that have the potential to significantly improve the ease of
use of electron microscopes in five years. In this project, three technologies
were selected for investigation, evaluation, and prototyping: (1) multilingual VUI
for operating the microscope, (2) VR for interacting with the microscope, and (3)
P2P architecture for sharing neural networks between microscopes. The study
investigated the feasibility of applying those technologies through prototyping.
For each technology, a prototype was built to test the feasibility of applying it in
the electron microscopy domain and to identify the technical challenges that
TFS would encounter. The prototypes in this project show how each technology
could be implemented and the report highlights the limitations of each
approach and technology. From those three prototypes the following major
conclusions can be drawn: (1) Translating an English-speaking chatbot, using a
general-purpose transcription and translation services from Google, Amazon or
IBM is not a viable approach due to insufficient transcription accuracy; (2) Using
VR as an alternative UI to interact with the microscope is viable, but finding a
use case where the user would clearly benefit from the immersiveness from the
technology is challenging; (3) Distributing neural networks using P2P
architecture is possible, but building a reliable P2P network from scratch is
challenging. To build one, relying on existing P2P protocols such as IPFS could
reduce the development effort significantly and therefore warrant a future
evaluation.

Keywords Software Design, Electron Microscopy, Voice User Interfaces, Virtual Reality,
Peer-to-Peer Architecture, Artificial Neural Networks

Preferred
reference

Mark Laane, Intelligent Microscope III. Eindhoven University of Technology,
PDEng Report, PDEng 2020/048, October 2020.

Partnership This project was supported by Eindhoven University of Technology and Thermo
Fisher Scientific.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
Eindhoven University of Technology or Thermo Fisher Scientific. The views and
opinions of authors expressed herein do not necessarily state or reflect those of
the Eindhoven University of Technology or Thermo Fisher Scientific, and shall not
be used for advertising or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within
this report is accurate and up to date, Eindhoven University of Technology
makes no warranty, representation, or undertaking whether expressed or

iv

implied, nor does it assume any legal liability, whether direct or indirect, or
responsibility for the accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or
service marks of their respective owners. We use these names without any
particular endorsement or with the intent to infringe the copyright of the
respective owners.

Copyright Copyright © 2020. Eindhoven University of Technology. All rights reserved.
No part of the material protected by this copyright notice may be reproduced,
modified, or redistributed in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the Eindhoven
University of Technology and Thermo Fisher Scientific.

v

ABSTRACT

Thermo Fisher Scientific (TFS) aims to become the leading company in electron microscopy by driving
the innovation in the company and the electron microscopy industry. The purpose of this project was
to identify and de-risk novel technologies that have the potential to significantly improve the ease of
use of electron microscopes in five years. In this project, three technologies were selected for
investigation, evaluation, and prototyping: (1) multilingual VUI for operating the microscope, (2) VR
for interacting with the microscope, and (3) P2P architecture for sharing neural networks between
microscopes. The study investigated the feasibility of applying those technologies through
prototyping. For each technology, a prototype was built to test the feasibility of applying it in the
electron microscopy domain and to identify the technical challenges that TFS would encounter. The
prototypes in this project show how each technology could be implemented and the report highlights
the limitations of each approach and technology. From those three prototypes the following major
conclusions can be drawn: (1) Translating an English-speaking chatbot, using a general-purpose
transcription and translation services from Google, Amazon or IBM is not a viable approach due to
insufficient transcription accuracy; (2) Using VR as an alternative UI to interact with the microscope is
viable, but finding a use case where the user would clearly benefit from the immersiveness from the
technology is challenging; (3) Distributing neural networks using P2P architecture is possible, but
building a reliable P2P network from scratch is challenging. To build one, relying on existing P2P
protocols such as IPFS could reduce the development effort significantly and therefore warrant a
future evaluation.

vii

FOREWORD

What a difficult time it is to graduate a PDEng. What started out as a ‘’normal’’ year ended up in all of
us trying to adjust to a ‘’new normal’’. It meant less personal contact (in fact, I have not been in the
office at all since early March) and less opportunity for ‘’bouncing ideas back and forth’’. In this
setting, Mark had to create his research, develop his code, and write his thesis. That was tough, and
the fact that he persisted in doing his work is laudable.

Mark had the additional challenge that he had to further extend the work of two previous PDEng’s
who both did a very good job in scooping the best and most obvious use cases in a project that has as
an onset the exploration of new and upcoming digital technologies in the context of electron
microscopy. The depletion of the ‘’low hanging fruit’’ basket would have been challenging under
normal circumstances, but it was even harder in the current time, where simply walking around some
offices to get inspiration is not possible, and Mark has had little time to build up a network of
contacts in the company before the lockdown started.

Nevertheless, we had identified a couple of nice opportunities: what can you do with Virtual Reality?
Can we build further on the successful demonstrator of voice control of the previous PDEng and
make it language agonistic? What can we do if we connect microscopes together and have them
exchange AI-related information, and how can we do that?

The risk of science and research is that there is a serious possibility that a path of exploration leads to
no result or at least the identification that the topic of research is not leading to a situation that
requires follow-up development or productization. That does not degrade the result of the research,
on the contrary, it means you have provided an answer to the scientific question being asked. That
the answer is not what you would have hoped for, does not diminish the relevance of it. This is the
case with the three topics that Mark examined. We found that VR, although shown technically
feasible by Mark, does not appear to have a really compelling use case for end-customer use in
electron microscopy (we already knew it does have a position in Service, so that was not examined).
This is extremely valuable information, as every now and then, questions arise around the usefulness
of VR. We now have a report in hand that has data, rather than gut-feelings, to accurately address
these questions.

The second question around language-agnostic voice control was a high-risk high-reward topic. If it
would work, it would have been a ‘’killer app’’. Mark tried many things, and the conclusion was that
the available translation services at this moment in time are not mature enough to get a sufficiently
high rate of understanding. So, if we keep monitoring the progress of these services, we may revisit
this once there are signs that they may be significantly better, and we now have the architecture and
design in place to quickly benchmark, and perhaps even productize these future developments.

The final part was on instrument connectivity. We already have and use a ‘’central database’’ system,
where instruments upload their information to a central store that can be queried by the instruments
or outside parties. But why do we need such a ‘’central point of failure’’? Could we set up a much
more dynamic system of shared resources and responsibilities and what challenges, benefits and
drawbacks do we encounter? Unfortunately, time was running short, so this has not been explored in
full detail, but I am sure we are going to revisit these ideas at a later stage.

All in all, Mark has given us significant contributions and information around the (in)feasibility of
these hyped technologies in the context of electron microscopy, in an environment that would have
led many people to simply give up. It is a sign of character that he managed to finish the code, the
thesis, and his graduation in such a commendable way.

Dr. Remco Schoenmakers
Director of Digital Science Technologies
September 15, 2020

ix

ACKNOWLEDGMENTS

Without the support of many people around me, this project would have never been accomplished. I
would like to take this opportunity to thank everyone who helped and supported me during this 10-
month-long journey

First, I would like to thank my company supervisor, Remco Schoenmakers. Thank you for opening the
door to electron microscopy. It is amazing how much concentrated information I could get in an hour
of meeting, but all delivered in a simple and easy-to-understand language. You invested a lot of time
showing me how my work relates to other things happening in the company. I am also very grateful
to my TU/e supervisors Mykola Pechenizkiy and Yulong Pei for their feedback, report reviews, tips,
and suggestions.

I would also like to thank the Software Technology program director Yanja Daisuren, and
management assistant Désirée van Oorschot for propelling this program forward. During the last two
years, I had the chance to work and study in TU/e with remarkable colleagues and I would like to
thank you all for the time spent together.

I would also like to thank my friend Arne, who sparked the idea of pursuing this program and has
always motivated me to explore the world and expand my comfort zone.

Most importantly, I am thankful to my parents, grandparents, and my family, who have always been
there for me. Thank you, my grandmother, for wise counsel and encouragement during hard times.
Last but not least, I am thankful to my girlfriend Laura for her unwavering support and kindness.

Thank you!

Mark Laane
September 2020

xi

PREFACE

This document is the technical report of the project Intelligent Microscope III. The main objective of
this project was to explore novel technologies that could change the way users interact with electron
microscopes in the future.

This project was carried out by Mark Laane within Thermo Fisher Scientific between January 2020
and October 2020. It is the author’s ten-month final project required to obtain a Professional
Doctorate in Engineering (PDEng) degree in Software Technology at the Eindhoven University of
Technology.

This document is primarily intended for readers with a software engineering background who are
interested in the application of novel technologies in the electron microscopy domain.

Mark Laane
September 2020

xiii

EXECUTIVE SUMMARY

This document is a technical report of the Intelligent Microscope III project. The purpose of this
project was to identify and de-risk novel technologies that have the potential to significantly improve
the ease of use of electron microscopes in five years.

From a pool of emerging and novel technologies listed in Chapter 3, three technologies were selected
for investigation, evaluation, and prototyping. The selected technologies were: multilingual voice
user interface (VUI) for operating the microscope, Virtual Reality (VR) for interacting with the
microscope, and peer-to-peer (P2P) architecture for sharing neural networks between microscopes.

For each technology, a prototype was built to test the feasibility of applying it in the electron
microscopy domain and to find out the technical challenges that Thermo Fisher Scientific (TFS) would
encounter.

The main results from experimentation and prototyping presented in Section 5.1 are:

• Translating an English-speaking chatbot, using a general-purpose transcription and
translation services from Google, Amazon or IBM is not a viable approach. The main limiting
factor is the accuracy of general-purpose speech-to-text services. The multilingual voice user
interface prototype was uncomfortable to use because it was not accurate enough in
recognizing the user’s intent.

• VR can be used as an alternative UI to control and interact with microscopes, given the
needed functionality is available through an API, not just GUI. Nevertheless, finding a use
case where the user would clearly benefit from the immersiveness from the technology is
not easy.

• Distributing neural networks using P2P architecture is possible by transferring neural
networks in SavedModel format between microscopes. Building a P2P platform from scratch
as done in this project is not suggested.

Recommendations discussed in Section 5.2 of this report include:

• For multilingual voice user interfaces, additional experimentation is needed to find a more
accurate multilingual speech recognition service. Alternatively, we could wait for general-
purpose speech-to-text services to improve over time and then repeat the experiment.

• For Virtual Reality, further exploration and experimentation are needed to find a suitable use
case that would benefit from the immersiveness of the VR medium.

• For the P2P model sharing platform, I suggest investigating existing P2P protocols such as
IPFS to reduce the development effort of a P2P platform.

xv

TABLE OF CONTENTS

Abstract... v

Foreword .. vii

Acknowledgments ...ix

Preface ..xi

Executive summary .. xiii

Table of Contents .. xv

List of Tables .. xix

List of Figures... xxi

1. Introduction ... 1

1.1 Context .. 1

1.2 Project Goal ... 2

1.3 Outline ... 2

2. Domain analysis ... 3

2.1 Electron Microscopy .. 3

2.1.1 Applications ... 3

2.1.2 Users of Electron Microscopes .. 4

2.2 Overview of Previous Projects in the Series .. 4

3. Candidate Technologies in IM3 ... 7

3.1 Multilingual Voice User Interface .. 7

3.2 Virtual Reality .. 8

3.3 Peer-to-Peer Platform for Sharing Neural Networks .. 8

4. Technologies Investigated .. 9

4.1 Multilingual Voice User Interface .. 9

4.1.1 Introduction .. 9

4.1.2 Domain of VUIs.. 9

4.1.3 Technical Challenge ... 11

4.1.4 Choice of Approach ... 11

4.1.5 External API Selection ... 13

4.1.6 Architecture .. 16

4.1.7 Design .. 18

4.1.8 Deployment ... 19

4.1.9 Implementation... 21

xvi

4.1.10 Validation .. 24

4.1.11 Conclusions ... 27

4.1.12 Future Work .. 27

4.2 Virtual Reality .. 29

4.2.1 Introduction .. 29

4.2.2 Hardware .. 30

4.2.3 Research Objective ... 31

4.2.4 Zooming in VR ... 31

4.2.5 Architecture .. 33

4.2.6 Implementation .. 34

4.2.7 Conclusions ... 34

4.2.8 Future Work .. 35

4.3 Peer-to-Peer Platform for Sharing Neural Networks ... 37

4.3.1 Introduction .. 37

4.3.2 The Domain of Machine Learning ... 38

4.3.3 Research Objectives .. 39

4.3.4 Problem Analysis ... 39

4.3.5 Requirements .. 42

4.3.6 Architecture .. 43

4.3.7 Implementation .. 44

4.3.8 Conclusions ... 46

4.3.9 Future Work .. 46

5. Conclusions .. 49

5.1 Results ... 49

5.1.1 Multilingual Voice User Interfaces .. 49

5.1.2 Virtual Reality .. 49

5.1.3 Peer-to-Peer Model Sharing platform .. 49

5.2 Recommendations for future work ... 50

6. Project Management .. 51

6.1 Introduction .. 51

6.2 Stakeholders .. 52

6.3 Way of working ... 53

6.4 Schedule .. 55

6.4.1 Initiation .. 55

6.4.2 Experimentation ... 55

6.4.3 Closing ... 55

6.4.4 Tracking Project Deadlines .. 57

6.5 Risk analysis ... 57

xvii

6.6 Reflections on project management ... 58

7. Project Retrospective ... 59

Abbreviations .. 61

Bibliography .. 63

About the Author ... 65

xix

LIST OF TABLES

Table 1: SWOT analysis for VUI .. 11

Table 2: Comparison of speech-recognition API types .. 13

Table 3: Considerations of using Web Speech API ... 15

Table 4: Comparison of speech synthesis APIs .. 15

Table 5: Comparison of managed translation APIs .. 15

Table 6: Comparison of accuracy of speech-recognition services ... 24

Table 7: Accuracy of the system in detecting an Intent ... 25

Table 8: SWOT analysis for VR ... 30

Table 9: Comparison of zoom triggers in VR .. 31

Table 10: Comparison of aiming methods in VR .. 32

Table 11: Comparison of inference deployment options .. 40

Table 12: Comparison between centralized and decentralized model distribution 41

Table 13: Stakeholders of the project, along with their roles and interests.. 52

Table 14: Project risks .. 57

xxi

LIST OF FIGURES

Figure 1: An image of an ant in a scanning electron microscope. [5] .. 4

Figure 2:Transmission electron microscopic image of COVID-19. The spherical viral particles are
colorized blue. [6] .. 4

Figure 3: Scope of the system built during the Intelligent Microscope I project 5

Figure 4: Scope of the system built during the Intelligent Microscope II project 5

Figure 5: System context diagram for Voice User Interface .. 10

Figure 6: Technologies used in VUI .. 10

Figure 7: Amazon Lex used with speech audio. Amazon Lex combines ASR, NLU, and speech synthesis
to provide the service. ... 12

Figure 8: Automated translation by using external translation, ASR, and speech synthesis services in
front of Lex. .. 12

Figure 9: Activities performed during one request-response cycle ... 16

Figure 10: Architectural option: All functionality in the Web Application ... 17

Figure 11: Architectural option: Core functionality in the backend .. 17

Figure 12: Architectural option: text in the backend. .. 18

Figure 13: Context diagram of Translated Bot Service .. 18

Figure 14: Ports and Adapters in Translated Bot Service ... 19

Figure 15: Serverless framework uses CloudFormation to deploy a serverless application 20

Figure 16: VUI resources deployed in AWS .. 21

Figure 17: Source code organization in the src folder ... 22

Figure 18: The main components of the VIVE Pro Full Kit. From top to bottom: two base stations,
headset, and two handheld controllers. [21] .. 30

Figure 19: VR UI interaction with existing Intelligent Microscope components 33

Figure 20: Communication process between the components when the user utters a voice command
 ... 33

Figure 21: FOV of the VR camera and the zoom camera. The zoom-projection plane is in the center of
the player's view. ... 34

Figure 22: User working on multiple microscopes ... 37

Figure 23: Traditional Machine Learning process. The model is trained using a training dataset. Later,
the trained model can be used in the inference process to make predictions on new data. 38

Figure 24: Transfer learning. A pre-trained model has been trained on a large training dataset. A small
training dataset is used to fine-tune the pre-trained model to suit a particular task. 38

Figure 25: Deployment options for inference service ... 40

Figure 26: Centralized and peer-to-peer model distribution ... 41

Figure 27: Context diagram of the expected use of the “P2P Model service” 43

Figure 28: Applications inside a microscope workstation.. 43

Figure 29: P2P Model Exchange service ... 44

Figure 30: Process of accepting a new model into the system. ... 45

Figure 31: TensorFlow Serving serves an ML model to a client application .. 45

https://thermofisher.sharepoint.com/sites/IntelligentMicroscopeIII/Shared%20Documents/General/Report/Report%20-%20Intelligent%20Microscope%20III%20-%20Mark%20Laane.docx#_Toc51840539
https://thermofisher.sharepoint.com/sites/IntelligentMicroscopeIII/Shared%20Documents/General/Report/Report%20-%20Intelligent%20Microscope%20III%20-%20Mark%20Laane.docx#_Toc51840543
https://thermofisher.sharepoint.com/sites/IntelligentMicroscopeIII/Shared%20Documents/General/Report/Report%20-%20Intelligent%20Microscope%20III%20-%20Mark%20Laane.docx#_Toc51840544
https://thermofisher.sharepoint.com/sites/IntelligentMicroscopeIII/Shared%20Documents/General/Report/Report%20-%20Intelligent%20Microscope%20III%20-%20Mark%20Laane.docx#_Toc51840551
https://thermofisher.sharepoint.com/sites/IntelligentMicroscopeIII/Shared%20Documents/General/Report/Report%20-%20Intelligent%20Microscope%20III%20-%20Mark%20Laane.docx#_Toc51840553

xxii

Figure 32: Iron triangle with variable scope .. 51

Figure 33: Stakeholder power-interest grid ... 53

Figure 34: The product roadmap used during the project .. 54

Figure 35: The physical Kanban board for managing near-term features and tasks. 54

Figure 36: Gantt chart of the activities and deadlines in the project .. 56

Figure 37: Deadlines related to the project and their progress as of August .. 57

1

1. INTRODUCTION

Innovation – the successful exploitation of ideas – is the key competitive advantage for a company in
a highly competitive and dynamic market. Innovation enhances the competitiveness of a company in
two distinct ways. First, it is the source of new products and services that can be sold. Secondly and
more importantly, the process of innovation transforms the company itself, making it more adaptive,
better able to learn, and better in exploiting new ideas, and better in adapting to changing markets.
[1]

This project aims to spark innovation and inspire people in Thermo Fisher Scientific by demonstrating
the usefulness of novel technologies in electron microscopy.

In this chapter, I introduce the Intelligent Microscope III project and its background. Section 1.1
presents the context of the project. Section 1.2 defines the aim and goals of this project and the
general approach taken in this project. The structure of the rest of the report is described in Section
1.3.

1.1 CONTEXT
Intelligent Microscope III (IM3) is a research project that was executed in Thermo Fisher Scientific
(TFS). This project is also a ten-month graduation project of the PDEng Software Technology
program. As the name suggests, it is the third successor of a series of PDEng graduation projects:
Intelligent Microscope I (IM1) by Dmytro Kondrashov in 2018 and Intelligent Microscope II (IM2) by
Konstantinos Smanis in 2019. Therefore, this project builds upon an existing software system by
extending and improving it.

TFS is an international company with a mission to serve science by enabling its customers to make
the world healthier, cleaner, and safer. The company is engaged in a wide range of activities in
advancing science – from provisioning reagents and consumables and building scientific instruments
to providing software and services.

TFS aims to become the leading company in electron microscopy through full automation of the
electron microscopes and a software ecosystem that partners with researchers to gain knowledge.
This vision serves as a common goal for many projects in TFS.

This project was executed in the department of Advanced Technologies (AT) in Eindhoven. The
department is investigating how novel technologies could innovate electron microscopy and focuses
on researching and testing innovative technologies to answer the question: how will users interact
with the microscope in the future?

The vision of the project series
The Intelligent Microscope (IM) project series was started in TFS to boost innovation in the company.
To inspire people inside the company to adopt new technologies and to demonstrate the usefulness
or un-usefulness of new technologies to developers and managers. Testing novel technologies first in
a separate project can reduce the risks when adopting them in main projects.

Uncovering innovative, useful, and exciting use cases for novel technologies is relevant, as it would
give TFS a competitive advantage in the market. In electron microscopy, TFS is competing with
companies such as JEOL, Nikon, and Zeiss.

The overarching goal of the Intelligent Microscope project series can be captured in the following
vision statement:

The intelligent Microscope project series aims to spark innovation and inspire people
in Thermo Fisher Scientific by demonstrating the usefulness of novel technologies.

2

Project series strategy
While the vision statement expresses the motivation of the project, it does not define how to achieve
the described change; this is captured by a strategy. Several strategies can be devised, but vision
guides in choosing a suitable strategy. Therefore, a clear vision is a prerequisite for choosing a
suitable strategy towards it.

1.2 PROJECT GOAL
This project aims to identify novel technologies that have the potential to significantly improve the
ease of use of electron microscopes in five years. The main output of this project is knowledge and
insights about the chosen technologies: the opportunities and technical challenges that they bring.
This knowledge is used to spark innovation and potentially start new software development projects
in the company. The insights generated from the Intelligent Microscope III project aim to reduce the
uncertainties that these new software development projects face when trying to use novel
technologies.

Because this project aims to envision microscope usage in the future, a “Technology Push” approach
was taken. The project started with a selection of novel technologies and continued with a series of
experiments trying to investigate the feasibility of applying those technologies in electron
microscopy. These experiments aimed to uncover the technical difficulties and opportunities brought
forward by the technologies. The opposite approach would be “Market Pull” – starting from an end
user's problem and trying to solve it with different technologies. Starting from the technologies
instead of market research meant that the project did not directly try to solve the problems users
have today. Instead, the project was expected to generate insights into the technologies and uncover
opportunities for improving the experience of using a microscope in the future.

1.3 OUTLINE
The report is outlined as follows. Chapter 2 describes the problem domain and previous iterations in
the IM project series. In Chapter 3, the list of candidate technologies is presented along with research
questions. Chapter 4 covers the three experiments conducted during this project. Chapter 5 provides
high-level conclusions from the experiments. Project management has been described in Chapter 6.
Finally, Chapter 7 presents the author’s reflections on the project in a retrospect.

3

2. DOMAIN ANALYSIS

This chapter gives an overview of the domain analysis performed during the Intelligent Microscope
project. Section 2.1 provides a brief overview of electron microscopy.

Domain analysis is the process of collecting information about the domain and problems in the
domain. In software engineering, the term domain refers to the general field of business where the
upcoming software system is going to be used. This information can be acquired from different
sources: existing software systems, literature, and domain experts. This background knowledge is
useful for making good decisions during the whole software engineering process. [2]

2.1 ELECTRON MICROSCOPY
To take an image of a flower, we can just use a camera and take a photograph. The camera captures
the visible light bounced and scattered from the flower and directs it onto a light-sensitive surface,
such as a photographic film or a digital sensor, creating an image. To take images of small objects and
samples such as human hair and skin cells, we can combine the camera with an optical microscope
that uses a system of lenses to magnify the small detailed samples.

Nevertheless, taking images of very small objects such as MEMS-devices, nanomaterials, crystals,
viruses, and proteins is not that easy. As the objects and their features get smaller, we hit the
resolution limit of optical microscopes that use visible light. With a modern microscope, we can
distinguish features if they are at least 200nm apart [3]. To see objects smaller than that, we need a
more powerful imaging technique.

Electron microscopy is a technique for obtaining high-resolution images of very small objects,
providing a spectacular level of detail. It can distinguish features as small as 0.1nm and the very best
electron microscopes can show us individual atoms. Instead of visible light, electron microscopes use
a beam of high-energy electrons. [3] The higher resolving power of electron microscopes comes from
the lower wavelength associated with electrons.

2.1.1 Applications
Electron microscopy has a wide range of applications ranging from semiconductor failure analysis,
drug research, and forensics to structural biology. Electron microscopes and are used by research
laboratories, universities, and companies worldwide to investigate the world at the nanoscale.

In biology and life sciences, electron microscopes are used to study living organisms: animals, plants,
bacteria, and viruses. Figure 1 shows an image of an ant taken with a scanning electron microscope.
The high resolving power of electron microscopes is even more important in cellular and structural
biology research. Cellular research focuses on individual cells and how they organize into tissues and
organs. Structural biologists explore the sub-cellular components such as organelles. It enables the
research and exploration of the molecular mechanisms of infectious diseases and pathogens, and for
the development of new drugs. Figure 2 shows an image of COVID-19 viral particles taken with a
transmission electron microscope.

In material sciences, electron microscopes help scientists to understand the link between the
structure, composition, and properties of materials. This enables the researchers to design new
materials and improve the existing ones. [4]

4

Figure 1: An image of an ant in a scanning
electron microscope. [5]

Figure 2:Transmission electron microscopic
image of COVID-19. The spherical viral particles
are colorized blue. [6]

2.1.2 Users of Electron Microscopes
Electron microscopes are highly specialized tools with a high cost and are therefore considered to be
a long-term investment. In addition to the high cost of the machine itself, the costs include
installation, servicing, repairing, and operating costs.

Currently, the operators of the electron microscopes are scientists with MSc and Ph.D. degrees in Life
Science, Material Science, and Physics, working in a wide range of industries. Operating an electron
microscope is not a simple task. To acquire good-quality EM images, the operator must have
sufficient knowledge of the principles of electron microscopy and must have completed training for
operating procedures.

To expand the market reach, TFS is trying to widen the range of the potential user base by lowering
the barriers to operating a microscope. The first goal is to reduce the expertise and training needed
to operate a microscope. Another goal is to allow non-English speaking users to control and use the
microscope.

2.2 OVERVIEW OF PREVIOUS PROJECTS IN THE SERIES
Intelligent Microscope III (IM3) is the continuation of two past projects – Intelligent Microscope I
(IM1) and Intelligent Microscope II (IM2). The first project was a green-field project. The result of the
IM1 project was a software system with the same name. The second project built on the work of IM1
by extending the functionality of the software system.

The authors of the first two iterations of the project (IM1 and IM2) chose to build and extend an
experimentation and demonstration platform called Intelligent Microscope. It is a software system
where many different novel technologies are explored and combined. For the management of TFS, it
is a source of knowledge of what is and what is not achievable with the chosen technologies. For
developers of future products, it is a working example and a technical guide. For developers of the
Intelligent Microscope, it is a platform that provides complete freedom to experiment and generate
new insights.

5

Intelligent Microscope I
The first Intelligent Microscope project resulted in a platform that allowed the user to control the
Scanning Electron Microscope (SEM) with voice commands such as “zoom in” and “please, acquire an
image.” The system was also able to detect cells and mitochondria in the images. Figure 3 illustrates
the scope of the system that was built during the Intelligent Microscope I project.

Figure 3: Scope of the system built during the Intelligent Microscope I project

Intelligent Microscope II
The second Intelligent Microscope built upon IM1 by extending the capabilities of the Intelligent
Microscope. As can be seen in Figure 4, Intelligent Microscope can detect asbestos fibers from the
SEM images and de-noise and colorize images. The system was extended to support additional
devices such as Transmission Electron Microscopes (TEM) in the STEM mode and Phenom
microscopes. Based on this, the Voice User interface was proposed as a solution for unifying the UIs
of different microscopes. A command pattern was used to allow the user to undo and redo
commands.

Figure 4: Scope of the system built during the Intelligent Microscope II project

7

3. CANDIDATE TECHNOLOGIES IN IM3

In this section, the technologies that TFS was interested in exploring are presented. The section also
provides an overview of how the technologies were selected for the IM3 project. Finally, the three
chosen technologies are presented.

The first two iterations in the IM project series, IM1 and IM2, left a lot of interesting technology
challenges untouched. IM3 project was initiated to explore and test a selection of those technologies.
Additionally, other innovative technologies were identified as possible exploration areas for IM3.

At the start of the project, I conducted multiple interviews with Remco, the main stakeholder in TFS,
to identify the candidate technologies for exploration. I identified the following broad technology
areas that TFS was interested in exploring:

• Virtual and Augmented Reality (VR and AR)
• Voice User Interfaces (VUI)
• Semantic Web and Knowledge Graphs
• Artificial Intelligence and Machine Learning (AI and ML)

Within those technology areas, the following functionalities were identified to be of interest:

• VR and AR:
o Ability to operate the microscope in VR.
o Enhanced user experience in managing a fleet of instruments in an immersive VR

environment.
• VUI:

o Ability to control the microscope in a wide range of spoken languages
• Semantic Web and Knowledge Graphs:

o Giving meaning and context to objects observed with the microscope
o Helping the user to choose a suitable experiment with TFS tools.

• AI and ML:
o Microscopes sharing knowledge and learnings
o Incorporating any algorithm that is easy to integrate and relevant

Investigating all of them would not fit into the scope of a ten-month project. Therefore, I prioritized
the list based on the degree of interest of the customer. At the end of each experiment, we
reprioritized the list and chose the topic of the next experiment.

In the following sections, I present three experiments – each one investigating a different technology
or novel functionality. For each experiment, I present the main research question or challenge and
short reasoning why it was interesting for TFS.

3.1 MULTILINGUAL VOICE USER INTERFACE
TFS is a global company and therefore is interested in offering service also to non-English speaking
users. IM1 and IM2 have a voice user interface that allows the use of voice commands to control the
microscope. Given that the user knows what she wants to do, she can just say it to the application
and it would fulfill the command. It works surprisingly well, but the limitation is that it supports only
the English language.

Voice User Interface was seen by TFS as a technology that would be easy to automatically translate
and localize to other languages. The idea was to try using general-purpose machine translation
services such as Google Translate to turn an existing English-language VUI into a multilingual VUI. The
feasibility and accuracy of this solution had to be tested. If this approach would work well enough, it
would save TFS time and money in translating the user interfaces.

8

Research question: Is it possible to automatically translate the Voice User Interface of Intelligent
Microscope by leveraging existing automated translation services? If so, how?

We expected that this kind of system would work worse than the original English-only VUI, but well
enough for most of our use cases. I believed the system to have systematic errors in translations,
where the translation service would systematically translate specific words or phrases in the wrong
way. If that was the case, it would be possible to simply post-process the translations to fix the
systematic errors and improve the system’s accuracy in understanding the foreign language.

Hypothesis: Yes, it is possible and the resulting multilingual VUI works well enough for most of the
use cases but would have systematic errors caused by mistranslations.

3.2 VIRTUAL REALITY
TFS was interested in applying VR in the electron microscopy by allowing the user to operate the
microscope in VR. VR seemed interesting to TFS because of its ability to improve the focus,
awareness, and performance of the user while interacting with the microscope in the artificial
environment.

This experiment aims to assess the realizability and usefulness of applying VR in operating an
electron microscope.

Hypothesis 1: It is possible to show microscopy images and interact with IM in VR.

Hypothesis 2: VR can be used to intuitively and comfortably navigate (pan and zoom) the sample in
the electron microscope.

3.3 PEER-TO-PEER PLATFORM FOR SHARING NEURAL NETWORKS
Today, TFS electron microscopes sometimes need to use ML-models to perform advanced tasks such
as anomaly detection and object classification. The distribution and deployment of those models on
the microscopes is still an open problem. TFS has currently implemented and created a central
machine-learning service that the microscopes can access to perform inference. The goal of this
experiment was to explore the opposite direction: how we could share knowledge in the form of
neural networks directly between the microscopes without relying on any external servers.

The research questions: Is it possible to set up a P2P system for sharing neural networks? If so,
what kind of opportunities and technical challenges would it bring?

Hypothesis 1: Sharing neural networks is possible by exchanging the trained neural-network-model
files between microscopes.

Hypothesis 2: Compared to the client-server architecture, sharing neural-network-model files directly
between microscopes would result in a highly fault-tolerant system that would be resistant to
hardware and software failures.

9

4. TECHNOLOGIES INVESTIGATED

During the Intelligent Microscope III project, I investigated three different technologies: multilingual
voice user interfaces (VUI), virtual reality (VR), and peer to peer sharing of neural networks. The
following three sections cover each one of them in detail.

4.1 MULTILINGUAL VOICE USER INTERFACE
This chapter describes how to improve the VUI of Intelligent Microscope, by making it multilingual
and reusable. It covers available technologies, different possible approaches, the chosen
architecture, implementation, deployment, and validation of the result.

4.1.1 Introduction
Why is supporting multiple languages important for TFS?
Allowing non-English speaking users to interact with microscopes is important for TFS because it is a
global company with a mission to be the world leader in serving science. Adding support for multiple
languages in user interfaces can drastically improve TFS's foothold in non-English speaking markets.
The most important direction is China because it is a large and fast-growing market, but other regions
where Spanish, Japanese, and French are spoken are also of interest. Each additional language that
TFS microscope UI offers expands the potential user base TFS can serve.

In non-English speaking markets, a multilingual user interface reduces the cost of ownership by
reducing the operating and training costs. The owners can hire operators locally and forego extra
training of operators needed to give them the ability to understand the English user interface. This
makes the TFS microscope financially more compelling over the competitors’ products.

What are the challenges of translating existing user interfaces to multiple languages?
Today, TFS microscopes can be operated through GUIs that are available only in English. Localizing a
GUI can be a challenge for numerous reasons. First, adding the support of switching languages to an
application can be a technical challenge. All the strings must be extracted from the application code
and dynamically loaded. Even when TFS achieves the technical capability to support localization of all
their applications, there is more work to do. All the texts and strings in the application have to be
translated and localized by language experts one by one. The translation can affect the layout of the
GUI too. The size of the translated text can fluctuate from language to language. Some languages
such as German tend to have longer words causing the need to adapt the layout of the GUI. The
reverse can also be true: Chinese for example tends to be very compact, leaving a lot of unused space
in the UI.

What are the ideas that led up to trying out a multilingual VUI in microscopy?
Voice User Interface was seen by TFS as a technology that could be automatically translated and
localized to other languages. The idea was to try using general-purpose machine translation services
such as Google Translate to turn an existing English-language VUI into a multilingual VUI. The
feasibility and accuracy of this solution had to be tested. If this approach would work well enough, it
would save TFS time and money in translating the user interfaces.

Additionally, Voice User Interface was seen as a technology to avoid the challenges that building a
GUI brings. When building a VUI, there is no need to worry about the length of the text impacting the
graphical layout of the UI as is the case with GUI. If there would exist an easy way to build
multilingual VUIs that perform as good as current GUIS, then TFS could avoid spending time and
money on translating GUIs for each target market.

4.1.2 Domain of VUIs
This section gives an introduction to voice user interfaces. First, it covers some domain terms and
then describes technologies that are used to build a VUI.

10

Voice User Interface
Voice User Interface (VUI) is a user interface that can be used to control a system with voice. Figure 5
illustrates how VUI listens to the user’s speech, predicts its intent, and responds to the user also with
speech. The predicted intent can be used to trigger actions in the system.

Figure 6 illustrates how three main technologies can be combined to build a Voice User Interface:

1. Automatic Speech Recognition (ASR) – for converting speech from audio into text
2. Natural Language Understanding (NLU) – for understanding the intent of the text and

generating a textual response
3. Speech Synthesis – for converting the textual response to speech

Figure 6: Technologies used in VUI

Virtual Assistant
A Virtual Assistant (also known as a chatbot) is a software agent that can perform tasks or provide
services for an individual based on commands and questions. A virtual agent usually emulates a
conversation with a real human. The conversation can be in the form of text or voice. If the voice is
used to hold a conversation, the assistant is considered to have a Voice User Interface.

Figure 5: System context diagram for Voice User Interface

11

SWOT analysis for VUI

Table 1: SWOT analysis for VUI

 Beneficial Harmful
In

te
rn

al

Strengths

• Enables hands-free and eyes-free
interaction

• No searching for functionality

Weaknesses

• Low discoverability of functionality

• The information must be consumed
at the speed of Voice UI.

• Need for VUI specialists for good UX
design.

Ex
te

rn
al

Opportunities

• Improvement in speech
recognition, natural language
understanding, and speech
synthesis technologies widen the
range of actions that can be done.

• Users are already familiar with the
technology: Other Voice Assistants
such as Apple’s Siri and Google
Assistant have already popularized
the interaction method.

Threats

• Users reject VUI due to non-
intuitiveness or unreliability and fall
back to using GUIs

4.1.3 Technical Challenge
Voice User Interface for IM1 and IM2 was built with Amazon Lex1 – a fully managed service for
building chatbots. This service combines Automatic Speech Recognition (ASR), Natural Language
Understanding (NLU), and Speech Synthesis. [7] Unfortunately, Lex supports only one language –
English. This severely limits the audience the system can serve. The main objective of this experiment
is to make the VUI of the IM platform multilingual.

From interviews with the stakeholders, I extracted three main high-level business requirements for
the multilingual voice user interface:

• Voice assistant must support at least four languages, including English, Dutch, and Chinese

• Voice assistant must be easy to integrate into new and existing TFS applications

• Voice assistant’s voice should sound the same across devices, platforms, and applications

4.1.4 Choice of Approach
There are two main ways I could make the existing chatbot multilingual. The simplest way would be
to try another VUI platform that already supports multiple languages. The more generic way would
be to add a translation layer between the user and Lex.

Potential Approach 1: Using a VUI platform with support for multiple languages.
Some VUI platforms such as Dialogflow and Wit.ai, support multiple languages. They achieve this
support by allowing the user to define multiple instances of the bot, one for each language. The bots
usually share the underlying intents, but the utterances that they react to and responses they send
must be translated manually. This means that the maintainer of the bot must create and maintain
the translation of each bot separately.

While TFS acknowledged this approach as a viable solution to making the bot multilingual, it was not
preferable, as the burden of translation would be considerably high. TFS would like to avoid the need
to translate each bot separately to every language. Having to translate bots would also slow down
the development process, as every change in the bot would have to be translated again.

1 Amazon Lex: https://aws.amazon.com/lex/

https://aws.amazon.com/lex/

12

As of writing this, there are no VUI platforms available where a developer could define a bot’s
behavior in one language and then expect it to automatically work in other languages too. The
absence of this kind of platform leads us to a second potential approach, where the translation of the
chatbot would be automated.

Potential Approach 2: Automated Translation
Another way to make IM VUI multilingual is to place a translation service between the user and Lex.
Automated translation services such as Google Translate could be used to automatically translate all
users’ utterances to English so they could be understood by the NLU platform. Similarly, all the
responses coming from the Lex can be translated back to the native language of the user.

Figure 7: Amazon Lex used with speech audio. Amazon Lex combines ASR, NLU, and speech synthesis to
provide the service.

This approach radically changes the way IM interacts with Lex. In IM1 and IM2, Lex was used as a full
VUI platform. It provided ASR, NLU, and Speech synthesis functionality. Speech audio was sent to Lex
and Lex responded with synthesized speech audio, as illustrated in Figure 7. Now, because
translation APIs such as Google Translate and Amazon Translate operate only on text, the interaction
with Lex must also happen over text. This means that we cannot leverage the ASR and speech
synthesis functionality of the Lex. Instead, separate services for ASR and Speech synthesis must be
used for this purpose. This approach has been illustrated in Figure 8.

Figure 8: Automated translation by using external translation, ASR, and speech synthesis services in front
of Lex.

In this approach, the Natural Language Understanding is always carried out in written English,
regardless of the language spoken by the user. This means that we can reuse a single English-
speaking virtual assistant for serving an audience with a wide variety of spoken languages. It reduces
the maintenance burden from the maintainer of the UI, as there is no need to maintain a virtual
assistant instance for every language.

Choice of the approach
Out of the two approaches, I chose the second one, the approach with an automated translation
service. It was interesting to TFS because of its potential to eliminate the burden of translating the
bot to multiple languages. At the same time, we had to accept that the automated translation will

13

introduce errors in the process, reducing the bot’s ability to understand the user and the quality of its
responses. The choice was made to investigate how far we can push this approach and what
measures we can take to keep the quality of the bot on an acceptable level.

This choice also reaps the benefits of continuously improved translation services. The expectation is
that as the automated translation services get better and better over time, the quality of the bot
comes closer to the manually translated one.

4.1.5 External API Selection
Selecting APIs to use was an important step in the design of multilingual VUI. This section gives an
overview of services and libraries available for speech recognition, translation, natural language
understanding, and speech synthesis.

Choice of Speech-Recognition API
The available speech-recognition APIs can be broadly divided into three categories: APIs offered over
the internet as a managed web service, APIs offered by the application platforms, and APIs offered by
offline libraries. The differences between these categories of APIs have been summarized in Table 2
and discussed further in the next few sections.

Table 2: Comparison of speech-recognition API types

API offered by Managed web service Platform/OS Offline library

Development effort Low Very Low High

Portability High Low Medium

Internet needed Yes Sometimes No

Customizability Medium Low High

APIs offered as a managed web service
APIs offered as a web service are accessible over the internet through a web API such as REST or
gRPC. The main benefit of using a managed web service is the low development effort needed to get
started. The complexity of speech recognition has been hidden behind a simple API call. Another
benefit is that they can be used to build very portable applications. The same service can be used by
applications built on any platform or programming language. On the other hand, the downside is that
an internet connection is always needed to use the service. Some managed web services allow
customizing language models to improve the accuracy in specific domains. Examples of speech
recognition APIs offered as web services are:

• Cognitive Speech Services2 by Microsoft

• Speech-to-Text3 by Google

• Amazon Transcribe4

• Watson Speech to Text5 by IBM

APIs offered by the application-platforms
Some application platforms and operating systems also offer speech recognition capabilities:

• Web Speech API in browsers

• Speech recognition in Windows

• Speech recognition in Android

• Speech Framework in iOS and macOS6

The main benefit of using an API provided by the platform is the ease of integration. On the other
hand, it has low portability; If the application is used on different platforms, integration with API

2 Azure Cognitive Speech Services: https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
3 Google Cloud Speech-to-Text: https://cloud.google.com/speech-to-text
4 Amazon Transcribe: https://aws.amazon.com/transcribe/
5 Watson Speech to Text: https://cloud.ibm.com/catalog/services/speech-to-text
6 Speech Framework in iOS https://developer.apple.com/documentation/speech

https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
https://cloud.google.com/speech-to-text
https://aws.amazon.com/transcribe/
https://cloud.ibm.com/catalog/services/speech-to-text
https://developer.apple.com/documentation/speech

14

must be done for each platform separately. Furthermore, the behavior of the application is now
dependent on the characteristics of each API, making it act differently across platforms.

Some of those APIs use local, offline algorithms to transcribe on the device of the end user, but more
commonly the actual speech is sent to remote servers for transcription. For example, the Web
Speech API in Chrome uses Google’s speech-to-text web service to transcribe audio. On Apple
devices, recognition of some languages is done on the device, but for others, a network connection is
needed to send the audio to Apple servers for processing.

APIs by offline libraries
Lastly, the speech recognition can be done completely offline and independently, by using a suitable
library such as CMUSphinx7. Nevertheless, it would mean a higher development effort both in getting
started and in the later development of the application. Most notably it would mean that the
language model management must be handled by the application developers. The language models
must be installed on the client side or loaded separately. Nevertheless, this allows using completely
custom language models, potentially improving the accuracy in specific use cases.

Selection Criteria
The criteria for selecting a speech recognition service are:

• Development effort
o How easy is it to add to an existing or new project?
o Does it abstract away most of the complexity of speech recognition?

• Portability – the possibility of using the same service across different TFS applications
o Can it be used by a Python web service? A JavaScript web application? A C# Desktop

application?

• Language support
o How many different languages does it support?
o Does it support English, Dutch, and Chinese?

• Accuracy of the recognition results
o Can it recognize less common words and phrases such as “mitochondria” or “field of

view”?

• Cost of usage
o How much does it cost per request or minute of speech?

• Speed of recognition
o Does it support real-time recognition?
o How long does it take to transcribe a complete sentence?

Web Speech API
Web Speech API is an experimental API offered by browsers. Currently, this API is only available in
WebKit based browsers, such as Google Chrome8, but Firefox is also considering adding support9.
Chrome uses Google’s servers to perform speech recognition [8]. Audio recording is sent to Google
servers, and the result of speech detection is returned to the web application as a text.

In this project, I chose to use Web Speech API, mainly for its low development effort and wide
language support. It supported all the languages that TFS was most interested in – English, Dutch,
and Chinese, and many more. The simple API allowed me to quickly prototype the solution. The
positive and negative sides of using this API are summarized in Table 3.

7 CMUSphinx: https://cmusphinx.github.io/
8 Availability of Web Speech API: https://caniuse.com/#search=SpeechRecognition
9 Web Speech API in Firefox: https://platform-status.mozilla.org/#webspeech-recognition

https://cmusphinx.github.io/
https://caniuse.com/#search=SpeechRecognition
https://platform-status.mozilla.org/#webspeech-recognition

15

Table 3: Considerations of using Web Speech API

Positive Negative

• Low development effort – It has a
simple API and is easy to get started for
programmers

• Free – it uses a speech recognition
system available on the end user's
device.

• Automatic speech start and end
(silence) detection.

• It can be made to listen continuously
by restarting it when it stops, taking
away the need to click a button every
time user wants to say a voice
command.

• Wide language support

• Currently supported only by Chrome

• Experimental API – no assurance that
the API would not change or be
removed in the future.

• It is unknown how platforms might
limit this free service when used a lot
by one device or application.

Choice of Speech synthesis API
The main criteria for choosing a speech synthesis API is the quality of the voice and the number of
languages supported.

In our application, it is preferred to keep the sound of the virtual assistant’s voice the same
regardless of the device or browser the user is using. We cannot rely on platform-specific APIs, such
as Web Speech API in browsers or Speech Synthesis framework in iOS, as each one of them has a
different sound and feel. Therefore, platform-specific APIs were not considered. The number of
languages provided by each service can be seen in Table 4.

Table 4: Comparison of speech synthesis APIs

 Amazon Polly Google Text-to-
Speech API

Microsoft

Number of supported
languages

29 standard TTS
4 neural TTS [9]

40 standard TTS
31 neural TTS [10]

45 standard TTS
31 neural TTS [11]

Each service offers standard and neural voices. Neural voices are powered by deep neural networks.
Neural-network-based speech synthesis produces the most natural and human-like voice but has a
higher price than a standard service. Using neural voices makes the interaction with chatbot and
voice assistants more engaging and natural.

In IM3 I continued using Polly because it was already used in previous iterations of IM and it was
good enough for this project. It supported all the languages I wanted to synthesize. Nevertheless, to
increase the number of supported languages, it is easy to switch to Google’s or Microsoft API, by
replacing the speech-recognition API adapter in the solution.

Choice of Translation API
The main criteria for choosing translation API was the number of different languages offered by the
service.

I decided to only consider managed services offered by Amazon, Google, and Microsoft and not use
local translation to benefit from the progress and improvements made by the service providers over
time. As can be seen in Table 5, Google has the largest selection of languages and was therefore
chosen.

Table 5: Comparison of managed translation APIs

 Amazon Translate Google Translate Microsoft

Number of supported
languages

55 [12] 109 [13] 77 [14]

16

It is interesting to note that even though Google Translate offers 109 languages, we cannot benefit
from this large number as we cannot recognize nor synthesize speech in that many languages.

4.1.6 Architecture
This section presents the architecture of the multilingual VUI.

Conceptual view
The conceptual view describes how the system works and what it does
on a high-level without describing the realization details.

The conceptual flow of the solution is shown in Figure 9. The flow starts
when the user utters a command. The speech is captured as a speech
audio. The audio is transcribed to a text. This text can then be translated
into English. Now, we can use Lex or some other NLU service to
understand the meaning of the translated text. After extracting the
intent, NLU service Lex usually responds to the user with some
predefined phrase. This response is translated back to the native
language of the user. Next, the response speech is synthesized and
played back to the user.

Design Alternatives
There are multiple ways to map functionality, such as speech
recognition, translation, and synthesis, to architectural components. In
this section I discuss three architectural approaches and their trade-offs:

• All in the client

• All in the back end

• Audio processing in the client, text in the back end

The main driving forces of architecture are reusability and performance.
The system must be easy to reuse in another project, to add a VUI for
another TFS application. From the performance side, the application has
to be quick in responding to the user’s requests.

There are two extremes: Either control everything directly in the
browser or hide everything behind a backend service.

All in client
On way to tie all the services together is to do it in the client application.
This is the simplest approach, as it completely avoids building a backend
service.

Example technology choices for each functionality:

• Speech Recognition – Web Speech API10

• Translation – Google Translate API11

• NLU – Amazon Lex12

• Speech Synthesis – Amazon Polly13

10 Web Speech API: https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
11 Google Translate API: https://cloud.google.com/translate/docs
12 Amazon Lex: https://aws.amazon.com/lex/
13 Amazon Polly: https://aws.amazon.com/polly/

Figure 9: Activities
performed during one
request-response cycle

https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://cloud.google.com/translate/docs
https://aws.amazon.com/lex/
https://aws.amazon.com/polly/

17

Nevertheless, it comes with some consequences: There can be no reuse between UI platforms. When
adding a new user interface on another platform (VR, Android, iOS), all the functionality would have
to be recreated. Therefore, this design alternative does not satisfy the reusability requirement.

All in backend
To satisfy the reusability requirement, we can move as much logic as we can into a separate web-
accessible backend service as illustrated in Figure 11. In this architecture, the core of the application
is in the Backend Service. The client applications only capture the user’s speech and playback the
response. This allows reusing all the core logic with many different client applications, except voice
capture and playback. This solution also allows connecting other types of clients such as a VR client or
mobile client easily, as we only must integrate each client with Backend Service, not four different
external services.

Figure 11: Architectural option: Core functionality in the backend

Nevertheless, it does not make sense to continuously stream audio from all applications to a backend
service, as it would be a huge waste of network bandwidth and strain for backend service to process.

Audio in the client, text in the backend
To cut down the strain on the bandwidth, we can alter the architecture and make the speech bypass
backend service entirely as illustrated in Figure 12.

Figure 10: Architectural option: All functionality in the Web Application

18

Figure 12: Architectural option: text in the backend.

When the user utters a sentence, (1) it is transcribed by the web application either by relying on a
Web Speech API or some web service such as Amazon Transcribe. (2) It sends the transcription to a
backend service. The backend service translates it, predicts its intent, formulates a response,
translates the response, and sends the translated response to the synthesis service. The synthesis
service provides the backend service with an URL where an audio file can be found. The backend
returns the URL to the web application. (3) The client application downloads the audio and plays it to
the user.

This solution allows medium code reuse across platforms (everything that is in the backend service)
while avoiding a high network load on the backend service.

4.1.7 Design
This section describes the design of the translated bot service. It is the service, ties together three
external services to provide a multilingual chatbot service. It is used by the IM webpage to provide
multilingual VUI. The context diagram of the service is shown in Figure 13.

Figure 13: Context diagram of Translated Bot Service

Onion architecture and Ports and adapters
The design of the translated bot service has been heavily influenced by two related architectural
patterns: “Ports and Adapters” [15] (previously also known as “Hexagonal Architecture”) by Alistair
Cockburn. and “Onion Architecture” [16] by Jeffery Palermo.

Onion architecture is an architectural pattern that uses the concept of layers where each layer can
only use layers below, but the use is different from the classic layered architecture. In the classic
layered architecture, the data access lowest layer is the data access layer. The lower layers depend
on infrastructure - databases and external APIs. In onion architecture, the central layer is the domain
layer that holds the domain objects and entities. These entities do not have any external
dependencies. Furthermore, the infrastructure dependencies have been moved to outermost layers,
making the core of the application independent of specific infrastructure.

Ports and Adapters architectural pattern specifies that the application’s communication to external
infrastructure should happen through ports and adapters. Each port represents a connection from
the application to the outside world. A port represents the purpose of interacting with the external

19

world without a knowledge of a concrete implementation. Usually, in the code, a port is the interface
declaration while the adapter is the technology-specific implementation of that interface.

Translated Bot Service has 4 ports that are shown in Figure 14 in yellow. API port is the driving port
that defines the interface of the Translated Bot service. It is used by the HTTP API adapter, to provide
this functionality over HTTP. The other three ports are driven by the application and used to query
external services. Each port has a respective adapter that defines how exactly the external service is
queried.

Figure 14: Ports and Adapters in Translated Bot Service

Both architectural patterns make a clear distinction between the application core and the
infrastructure. Infrastructure is the code that connects the application core to databases, third-party
APIs, and user interfaces. The application core contains the business logic and has no knowledge of
the external entities and infrastructure. Both architectural patterns focus on externalizing the
infrastructure to ensure that the application core is not dependent on the infrastructure.

I followed these patterns to create a technology-independent application core and easily
exchangeable infrastructure. It means that the external infrastructure such as databases, messaging
queues, user interfaces, and externals APIs can be switched without the need to modify the
application core. The resulting architecture allows the developers to easily switch technologies while
retaining the business logic, making it easy to quickly test out different technologies. Also, it
improves the testability of the service, by simplifies testing of the application core in isolation,
without making queries to external infrastructure.

4.1.8 Deployment
The translated bot is a serverless application deployed to Amazon Web Services (AWS) using
Serverless Framework14 – an open-source web framework for building serverless applications. For
software developers, Serverless Framework increases developer velocity by simplifying the process of
deploying serverless applications. The framework is provider agnostic, meaning that switching the
cloud service provider to Microsoft Azure or Google Cloud Platform provider is easy. Compared to
using CloudFormation directly, this avoids vendor lock-in. The following design decision summarizes
the justification for and against the choice.

14 Serverless Framework: https://www.serverless.com/

https://www.serverless.com/

20

Design decision:
In the context of creating a multilingual voice user interface,
facing the need to deploy the back end to AWS
we decided to use the Serverless Framework
and not Elastic Compute Cloud(EC2), CloudFormation, or Serverless Application Model (SAM),
to achieve: increased developer velocity, ease of deployment, no server administration, automatic
scalability, vendor independence
accepting that long-running processes cannot be run on serverless functions

Using serverless architecture eliminates the need to manage the infrastructure such as servers and
virtual machines. Instead, the code is uploaded as a serverless function. The provisioning of the
runtime environment for that function is fully managed by the cloud service provider. This means
that as a developer I can focus on designing applications and not have to worry about provisioning
infrastructure. The cloud service provider scales the service automatically with demand, charging
only for the number of executions and their duration, making it also a very cost-effective solution.
For example, if there are no requests in a certain time-frame, the cost of the service is 0. This
automatic scalability is especially useful in cases of unpredictable workloads.

Serverless functions have some limitations concerning execution time and resource usage. Most
notably, a single execution of the function cannot run for very long and has a limited amount of RAM.
Each service provider has its own quotas, but in AWS, the Lambda cannot run longer than 15 minutes
or use more than 3GB of RAM. [17] For our use case, all these limitations are completely acceptable.

Serverless Framework deployment on AWS
Serverless Framework uses AWS CloudFormation15 to create and configure resources on the AWS
cloud. When building a serverless application, it creates an API Gateway for accepting HTTP requests,
and Lambda functions for executing code. Additionally, it creates an S3 bucket for storing
deployment template and IAM roles for lambdas. Figure 15 illustrates how Serverless Framework
uses CloudFormation to deploy an application stack on AWS.

Figure 15: Serverless framework uses CloudFormation to deploy a serverless application

Figure 16 illustrates the resources deployed to the AWS cloud and their interactions with other
components of the system. The API Gateway provides an HTTP interface with two endpoints: POST
/askBot and POST /botSpeak – each responsible for invoking the respective lambda functions. The
lambda functions contain the code and business logic and interact with external API’s to fulfill their
goals.

15 AWS CloudFormation: https://aws.amazon.com/cloudformation/

https://aws.amazon.com/cloudformation/

21

Figure 16: VUI resources deployed in AWS

API Gateway acts as a “front door” for the application and is usually responsible for access control,
throttling and monitoring. For example, the endpoints in this experiment are throttled to three
requests per second to avoid excessive costs in case the client code misbehaves and starts generating
a lot of requests. No access control is currently performed on the endpoints.

4.1.9 Implementation
The multilingual bot was written in TypeScript16 – a language that builds upon JavaScript by adding
syntax for static typing. This allows the code to be type-checked before execution for errors,
improving the reliability of the application. Furthermore, static typing improves developer experience
by allowing the IDE to provide better code completion and refactoring functionality.

I picked TypeScript because I built the first iterations of this experiment to be run in the browser. In
this environment, the only natively available language is JavaScript, but languages that can be
transpiled17 to JavaScript can also be used. To get the benefits of static typing, I chose to use
Typescript and transpile it to JavaScript. Later, the same code was deployed as a serverless function
and developed further, demonstrating the high portability of this language.

Code Quality Aspects
To improve code reliability and maintainability, I used ESLint18 to lint the code and Prettier19 to
automatically format it. ESLint is a linting utility that can detect defects, problematic patterns, and
possible bugs in the code. It warns the developer of problems during development and suggests
improvements. Prettier is an opinionated code formatter that can be used to automatically format
code. This ensures that the code formatting is consistent across the whole codebase. Consistency of
the code has a positive impact on the readability and maintainability of the code. Together those

16 TypeScript: https://www.typescriptlang.org/
17 Transpiling is the process of transforming one programming language to another, similar language.
18 ESLint: https://eslint.org/
19 Prettier: https://prettier.io/

https://www.typescriptlang.org/
https://eslint.org/
https://prettier.io/

22

tools make sure that the code adheres to a consistent set of formatting and coding standards, making
the code easier to read and modify.

Source code organization
Source code is organized according to the layers in onion
architecture and by ports in “ports and adapters” architecture.
The content of the src folder is shown in Figure 17.

Handlers define the HTTP API of this service. They act as adapters
between the HTTP API and the technology-independent API
offered by the application core.

Multilingual-bot.ts represents the core of the application. It
defines the conceptual API and contains the main business logic
of the application.

Natural-language-understanding, speech-synthesis, and
translation-service folders contain the ports and the adapters to
respective services. I declared the technology-independent
interface in core.ts files and each service-specific adapter in a
separate file.

Domain.ts contains all domain objects that are used across the
application such as enumerations of written and spoken
languages.

HTTP API
The backend service exposes two endpoints: askBot and botSpeak. The first one is for interacting
with the multilingual bot and the second one is for synthesizing speech.

POST /askBot
The main interaction with the multilingual bot happens through the POST /askBot endpoint. This is
the endpoint for speaking with the bot. The endpoint expects the JSON payload to contain the
transcription of the user’s utterance and a language of that utterance:

{

 "language": "et",

 "utterance": "Liigu vasakule"

}

The supported languages and language tags are defined in an enum and are as follows:

enum WrittenLanguage {

 Dutch = "nl",

 English = "en",

 Estonian = "et",

 French = "fr",

 German = "de",

 Mandarin_Chinese = "cmn",

 Turkish = "tr",

 Russian = "ru",

}

The language tags conform to IETF BCP 47– best current practice published by Internet Engineering
Task Force. [18]

Figure 17: Source code
organization in the src folder

23

The language parameter is optional. When the payload contains only the utterance as in

{"utterance": "ga naar links"}, the service tries to predict the source language of the

utterance by relying on the external translation service.

An example JSON response structure from /askBot endpoint looks as follows:

{

 "message": "OK! Ik zal het podium naar links verplaatsen!",

 "intentName": "MicroscopeMoveDirection",

 "dialogState": "Fulfilled",

 "slots": { "moveDirection": "left" },

 "synthesisUrl": "https://polly.eu-west-1.amazonaws.com/v1/speech[...]"

}

It contains the response in text format on the “message” field that can be shown to the user and the
“synthesisUrl” points to the mp3 file of the synthesized speech that can be played back to the user.
“intentName”, “dialogState”, and “slots” are Amazon Lex specific fields. Notable ones are the name
of the intent and slots that were detected from the user’s utterance. These are used to trigger
respective actions in the microscope backend.

POST /botSpeak
botSpeak endpoint can be used to synthesize translated speech in any supported language. The
endpoint expects a message to be synthesized in English and the target language. For example:

{

 "message": "I found 10 mitochondria",

 "language": "nl-NL"

}

The list of supported synthesis languages are as follows:

SpokenLanguage {

 Dutch = "nl-NL",

 English_British = "en-GB",

 English_US = "en-US",

 Estonian = "et-EE",

 French = "fr-FR",

 French_Canadian = "fr-CA",

 German = "de-DE",

 Mandarin_Chinese = "cmn-CN",

 Turkish = "tr-TR",

 Russian = "ru-RU",

}

As with written-language tags, the spoken-language tags also conform to IEFT BCP 47. Spoken-
language tags have an additional subtag to differentiate between language variants spoken in
different regions. For example, the multilingual bot supports British English and US English. It also
supports French and Canadian French.

After the translation and synthesis are done, the endpoint responds with the translated message and
an URL of the synthesized speech that can be played back to the user. The JSON response from
/botSpeak looks as follows:

{

24

 "message": "Ik heb 10 mitochondriën gevonden",

 "url": "https://polly.eu-west-1.amazonaws.com/v1/speech?OutputF..."

}.

Incompatible tags between services

Each external service used by the multilingual bot has its own system of tagging languages. This

makes integrating them cumbersome, as the tags have to be converted between services. when

using the multilingual bot in Chinese (language tag: "cmn-CN"), the google translate service expects a

language tag "zh-CN", and Amazon Polly expects the name of the voice "Zhiyu". To have a clear

separation between the used tags, the application core uses IEFT BCP-47 tags for each supported

language. Each service adapter converts this tag to their service-specific tag.

What makes it even more cumbersome, is that there is no one-to-one mapping between languages
between the services. Services for speech synthesis and speech recognition usually provide multiple
versions of English based on dialect: British English, American English, Australian English, and others.
On the other hand, text translation services have only one version of English. To reflect this, there are
two sets of languages used in the application: written languages and spoken languages. The
application contains an explicit conversion table from spoken languages to respective written
languages.

4.1.10 Validation

Testing speech-recognition services in English
In IM1 and IM2, the transcription of the speech happened in the AWS Lex service. The transcription-

accuracy in this service is commendable, as it almost always transcribes the commands exactly as

uttered. Most probably, Lex service trains a new speech transcription model whenever the list of

expected utterances is changed. This allows the service to be very accurate in transcribing this limited

and defined set of utterances.

In the pursuit of making the IM3 multilingual, I tried using general-purpose transcription services

instead. This would allow us to transcribe other languages than English. The first pick for the system

was Google Transcribe because of its wide range of supported languages, but we also tested Amazon

Transcribe and IBM Watson.

To assess the accuracy of each service, we subjected them to the same utterances in English that the

original Lex bot would need to transcribe. We repeated each utterance at least three times and up to

ten times and recorded the percentage of correctly transcribed utterances. We chose 75%

transcription rate as "reasonable"; if a transcription is correct three out of four times, it is good

enough.

Testing results
As can be seen in Table 6, out of the 45 chosen utterances, Lex bot transcribed 42 with a

transcription rate higher than 75%. Most of the utterances were correctly understood every single

time. Only three posed some problems for Lex. For example, "Switch to microscope six" was

frequently transcribed as "select microscope zero.” It is unknown why number six causes problems,

but four, five, and other numbers are transcribed correctly almost 100% of the time.

Table 6: Comparison of accuracy of speech-recognition services

25

General-purpose speech-recognition services did not fare so well. Their accuracy in transcribing the

same utterances was far worse. The best one, Google Transcribe, was able to transcribe only 20 out

of 45 utterances with a reasonable >75% transcription rate. Amazon Transcribe and IBM Watson

were even worse.

These results highlight the inaccuracy of general-purpose transcription models in transcribing the

utterances needed for the Intelligent Microscope. Nevertheless, based on those results, we

continued using Google Transcribe for building the multilingual VUI to see how well it would work in

a complete setup, as Lex is sometimes able to understand the intent even when the speech is slightly

mistranscribed.

Testing VUI in four languages
To assess the usability and accuracy of the multilingual voice user interface as a whole, we tested it in

four languages. There were four participants, each proficient in a different language: English, Turkish,

Chinese, and Dutch.

The participants were asked to interact with the application and record the resulting transcriptions

and intentions that the system recognized. Each participant was given a list of intents that can be

triggered (taking an image, zooming in) and example phrases in English ("capture an image,” "zoom

in,” "set field of view to 20 micrometers"). The participants were asked to utter those phrases in their

language, observe the results, and record them to the spreadsheet.

Process
Each participant received an e-mail with a link to the application to test and a spreadsheet to fill out.

Participants were asked to try each utterance at least three times. On utterances that sometimes

failed, we asked the participant to repeat it six to ten times to get a better feeling for the accuracy of

that particular utterance.

Testing Results
The initial plan was to test a wide range of VUI functionality, but manual data collection using a

spreadsheet proved to be too cumbersome for the participants to support it. Therefore, most

participants stopped after testing the first three main functionalities: making an acquisition, changing

the zoom level, and moving the stage.

The results of the test are summarized in Table 7. The accuracy of the system in detecting a particular

event was rated in three levels: "High" when an utterance would trigger the correct intent more than

90% of the time, "Medium" if more than 75% of the time, and "Low" if less than 75%.

Table 7: Accuracy of the system in detecting an Intent

The worst results came for the Chinese language. Based on the responses, there is a suspicion that

noise cancellation was interfering with the speech recognition (See section “Sensitivity to noise

cancellation software”), as there are many errors in transcribing the first word of the utterance.

Taking an image works very well in all languages except Chinese where the first part of the utterance

is sometimes mistranscribed, failing the whole intent detection flow.

Zooming works well in English, but in other languages not that much. In Dutch and Turkish, "zoom in"

works well, but "zoom out" is problematic. While the problematic intent is the same, the reasons for

26

failure are different. For Dutch, the problem lies in transcription: the zoom uit can be transcribed as

zo meid. For Turkish, the problem lies in translation: "uzaklaştır" is transcribed correctly, but

translated to English as “too.” In Chinese, the participant zoomed in using the utterance "放大". The

translation service translates this into "Amplification,” which the Lex does not understand. This could

be solved either by using a custom translation model or adding "Amplification" to the list of

utterances Lex should recognize.

Setting the field of view directly in Dutch with the utterance "zet gezichtsveld naar 20 micrometer"

works perfectly with many different numbers. It seems that longer utterances help in transcribing the

neighboring words with higher accuracy. The speech-recognition service struggles the most with

short utterances such as "move up" or "zoom out."

Surprisingly, moving the stage works best in Chinese, even better than in English, but that comes with

a caveat. In Chinese "move left" can be formulated into a two-word or four-word expression and the

system works best with the longer form. In other languages, moving the stage in some directions is

easier than others. For example, moving stage up in Turkish works perfectly, but trying to move it

right succeeds only 20% of the time. A similar issue comes up in Dutch, where moving the stage

works well in directions left and up, but poorly in others (right and down). This shows how in each

language, the general-purpose speech-recognition service struggles with some words but excels in

detecting others.

Selecting a microscope was tested only in English and Dutch. In this use, the speech recognition

worked fairly well in both languages, but some numbers did provide challenges. As an example, in

English, the number four is frequently transcribed as “for,” leaving the user unable to select the

microscope number four, as the command is transcribed as "Select microscope for.” In Turkish, the

translation service provides a translation with an unexpected word order with numbers two and four:

“microscope choose two,” “choose four microscope,” also causing the intent detection to fail. On

numbers one and ten, the translation is even worse, changing the whole meaning of the request by

translating it to "choose on from the microscope" and "choose it from microscope" respectively.

These results indicate a strong need for improving the accuracy of both the transcription of speech to

text and accuracy of translating text to English.

Sensitivity to noise cancellation software
Many laptops come today with noise-canceling software preinstalled, to help their users have a

pleasant video and voice-calling experience. These algorithms suppress background noises and bring

out the voice of the user. Usually, when no speech is detected in front of the computer, the

microphone signal is muted. Unfortunately, this extra processing hinders speech recognition,

reducing its accuracy. The largest symptom of this issue is skipping of the first uttered word or

mistranscription of the first word; "Move stage up" is transcribed as "stage up" and "向左移动" is

transcribed as “左移动” or “做移动.”

In practice, this means that each user must be instructed to manually turn off any noise cancellation

or extra processing of the microphone signal.

Retrospective on the testing process
Filling out a spreadsheet is error-prone and tedious for the participant. Each participant filled the

sheets in a bit differently, sometimes summarizing the results in the notes section: "worked 3 out of

10.” For this quick test, this method was acceptable, as we only needed to get an approximate feel

for accuracy.

27

For the future, nevertheless, it makes sense to automate the data collection process by recording the
results directly inside the application. Furthermore, this approach would allow the application to
guide the participant through the testing process step by step, making it easier for the participant.

Conclusions from testing
Overall, the testing results point to the fact that the accuracy of the system is not satisfactory for

comfortable use. Although some commands work well, most of the time the user has to be careful to

pronounce all the words properly to invoke the correct action. Even then, mistranscriptions and

mistranslations are frequent.

4.1.11 Conclusions
The goal of this experiment was to assess the feasibility of using general-purpose machine translation
services such as Google Translate to turn an existing IM English-language VUI into a multilingual VUI.

Is the chosen approach viable as a solution for building a multilingual UI?
At this moment, using general-purpose speech-recognition and translation services is not a viable

approach for creating a multilingual VUI for microscope operation. The main obstacle in this

approach is the insufficient accuracy of general-purpose speech-recognition services in transcribing

the commands.

Is VUI easier to translate than a GUI?
Indeed, the length of the text does not impact VUIs as much as it impacts the layout of a GUI.
Nevertheless, VUI is not easier to translate than a GUI, because having a Voice User Interface brings
its own technical and usability challenges. The largest technical challenges revolve around capturing
and understanding the user’s intent. It needs an excellent speech-recognition system to capture the
user’s speech and natural-language-understanding service to interpret it.

4.1.12 Future Work
How to go forward with multilingual VUI?
One approach would be to accept the current accuracy and wait for general-purpose transcription

and translation services to improve over the years. The hope is that as time goes by, those services

improve, and their accuracy becomes high enough for our use case.

Another approach would be to train custom transcription and translation models for our specific use
case - models specifically trained to recognize only our commands and translate them correctly. The
effort to do this would be high, as domain-specific transcription and translation models have to be
trained for each language. This approach would probably mean collecting hours of audio for training
the transcription models.

As a next step, I suggest evaluating the accuracy of (1) Speech to Text service from Microsoft20 or (2)
alternative ML-models offered by Google Cloud Speech-to-Text service21. This is because as of June
2020, Microsoft’s Speech to Text service and the alternative models by Google are reported to have
lower mean word error rates than the default ML model from Google. [19] The current solution relies
on the standard model from Google, used by Web Speech API, but other models such as the
command-and-search recognition model or enhanced video model could result in higher accuracy.

What else did I learn from this experiment?
I had a very pleasant experience with Serverless Framework and serverless architecture in general.
Serverless Framework is a very simple-to-use tool for deploying serverless applications. It abstracted
away a lot of deployment details and automates the deployment process.

This framework allowed me to get the benefits of serverless architecture (extreme scalability, cost
efficiency) without the drawbacks of vendor lock-in and complicated setup of cloud resources. It

20 Microsoft Azure Speech to Text: https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
21 Google Cloud Speech to text models: https://cloud.google.com/speech-to-text/docs/basics#select-model

https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://cloud.google.com/speech-to-text/docs/basics#select-model

28

allowed me to quickly iterate on the code and immediately have it deployed in the cloud. Based on
this experience, I suggest trying out the Serverless Framework in new cloud projects in TFS.

29

4.2 VIRTUAL REALITY
This challenge started from a general question: how would the future microscope operators use the
microscope through VR? In this chapter, I investigate the usefulness and feasibility of applying Virtual
Reality in electron microscopy in TFS. The following sections will cover the experiments I carried out
with VR to assess the feasibility and usefulness of applying the technology.

4.2.1 Introduction
Virtual Reality (VR) is a technology used to create an interactive, simulated experience where the
user has the feeling of being present in a virtual world. [20] Out of all the identified novel
technologies, VR seemed interesting because of its ability to immerse a person in a completely
artificial environment. This environment could be designed to improve the focus, awareness, and
performance of the user while interacting with the microscope. The expected benefits and
possibilities of using VR in microscopy that led up to trying out VR in this project are the following:

• Immersion and presence

• Large working space

• “Wow”-factor

• Collaborative environments

Immersion, presence, full engagement, and absorption
Virtual reality can improve the performance of the user by improving her attention and focus on a
given task. This improvement can be achieved through mental immersion – a state of being deeply
engaged in the activity at hand. Another word to describe this is “presence.” A well-designed VR
experience can create a feeling of presence – a perception of being physically present in a non-
physical world – immersing the user in the activity.

Large working space
VR offers the possibility of creating a large, 360-degree working area around the user. All this space
can be used to show a lot of images captured with a microscope or controls to interact with it. Even
the floor and sky can be filled with controls and resulting images. Compared to traditional GUIs,
where the size of the screen limits the available space, in VR the limiting factor is the 3D space
around the user. This 3D space can offer a much larger area for UI designers to work on.

Furthermore, using a 3D space, we can tap into the spatial memory of the user. Instead of forcing the
user to switch windows or tabs in a flat GUI application, the user can look around in the 3D world to
find the desired functionality.

Excitement and “wow”-factor
VR is currently mostly used in the entertainment industry. A lot of gaming arcades have popped up
around the world and VR experiences are used in museums as VR has a high “wow”-factor, especially
among people who have not tried it yet. Nevertheless, outside of the specific installations and
specialized rooms, VR is currently not widely used, as it needs significant monetary investment.

Collaborative Environments
Virtual space can be shared with other users, creating a shared, collaborative environment.
Collaborative environments enable users to interact with one another over large distances.

SWOT analysis for VR
Table 8 presents the strengths, weaknesses, opportunities, and threats being faced when applying VR
in the microscopy domain.

30

Table 8: SWOT analysis for VR

 Beneficial Harmful
In

te
rn

al

Strengths

• Might improve users’ efficiency by
making them feel more present
and immersed (when the
experience is well designed)

• Ability to trigger empathetic
reactions through the first-hand
experience (this is a strength of VR
that is not useful in microscopy)

Weaknesses

• Users need specialized hardware;
High cost at this moment.

• Users need extra training for
unconventional UI

• Technological annoyances: VR can
cause motion sickness; headsets are
uncomfortable to use with glasses.

• To create a well-designed experience,
developers, and designers with very
specialized knowledge are needed.

Ex
te

rn
al

Opportunities

• High VR adoption improves
interest, demand, and the use of
TFS solutions.

Threats

• Excitement about VR dies

• Users consider the VR experience as
just a showy toy, not a serious tool.

4.2.2 Hardware
For the experiment, I used HTC VIVE Pro VR Full Kit22 - a full VR kit that allows the user to see, move
in, and interact with the 3D VR environment. It includes a VR headset, two handheld controllers, two
base stations, and all the accessories to set up the system. The main components of the kit are
shown in Figure 18.

Figure 18: The main components of the VIVE Pro Full Kit. From top to bottom: two base stations,
headset, and two handheld controllers. [21]

For the user, the headset is the “window” to the VR world. It covers the user’s vision and contains
two AMOLED screens, one for each eye, that show the virtual environment to the user. The two
handheld controllers can be used to interact with the virtual environment. They have multiple input
methods, such as a trackpad, grip buttons, trigger, and buttons. The location and the orientation of
the headset and the controllers are tracked using base stations. Base stations emit infrared pulses
that are picked up by the sensors on the headset and controllers, allowing the system to determine
their position and orientation. The base stations are mounted in opposite corners of the physical
environment. [21]

22 HTC VIVE Pro full Kit: https://www.vive.com/eu/product/vive-pro/

31

4.2.3 Research Objective
The objective of this experiment was to assess the realizability and usefulness of allowing the user to
operate TFS electron microscopes using VR. In Chapter 3.2, we defined two hypothesizes:

Hypothesis 1: It is possible to show microscopy images and interact with IM in VR.

Hypothesis 2: VR can be used to intuitively and comfortably navigate (pan and zoom) the sample in
the electron microscope.

The first hypothesis focuses on the realizability of making the connection between VR and the IM
platform. The second focuses on the usefulness and comfortability of using the VR medium in
zooming and panning. To test the second hypothesis, I looked for ways the user could intuitively
explore images in VR and later integrated it with the existing IM platform, to test the first hypothesis.

4.2.4 Zooming in VR
This section focuses on exploring the ways the user could intuitively explore microscope acquisitions
in VR. Exploring an image involves zooming and panning. While zooming and panning are simple on
flat-screen devices, they do not translate well to immersive VR environments. Trying to map head
motion to panning runs into complications such as simulation sickness. [22]

I replicated the “Circle mode” from [22] where the center of the viewing field is covered by a
“magnifying glass.” The solution offers a huge improvement in usability over the naïve approach of
just reducing the field of view, but as it obscures part of the viewing field, it makes it hard to locate
objects. The paper proposes two improved modes, “Alpha Circle Mode” and “Zoom Circle Mode,” to
reduce this problem. These two modes make the magnifying glass disappear when the user makes
rapid head movements. Therefore, the zooming is triggered whenever the user stops the head
movement. Although these two modes solve the problem of obscuring the view, they suffer from a
high chance of triggering zooming inadvertently; as soon as the user stops, the zoom is triggered.

Ways to trigger zoom
There are many ways to trigger an action, such as pressing buttons, giving voice commands, or
stepping on foot switches. In Chang’s paper [22], the trigger to start zoom was a stop of head
movement. In our project, we have handheld controllers available with position sensors, a trackpad,
trigger, buttons, and haptic feedback. They provide an additional input modality, allowing us to avoid
the drawback of an inadvertent triggering of functionality.

Table 9 illustrates the differences between three different methods of triggering zoom action: a head
movement stop, a controller button click, and a voice command.

Table 9: Comparison of zoom triggers in VR

 Method for triggering zoom:

Aspect Head movement stop
Controller button
click

A voice command

Latency Medium Very low Medium

Risk of
inadvertent
triggering

High Low Medium

Other
No need for
extra hardware

Immediate tactile
feedback

Ability to trigger many
different actions

The latency of using head movement as a trigger depends on the dwell-time. If dwell time is set to
low, then triggering is quick, but it has an increased risk of inadvertent triggering. When the dwell-
time is set higher, the risk of inadvertent triggering decreases, but it also forces the user to stay still
for longer to trigger the zoom, making the whole process slower.

The button click triggers the action virtually immediately and gives immediate and clear tactile
feedback to the user.

32

Voice command has a clear advantage in giving a user the ability to trigger a wide selection of
different actions based on an utterance. Compared to the button, voice command is slow, as it takes
time to speak, analyze, and process the utterance. Length of utterance is important to reduce the
time from user intent to action. An utterance “Zoom” is preferred to “Microscope, please zoom in,”
as it takes less time to say and less time to process. Nevertheless, the shorter utterances increase the
likelihood of inadvertent triggering by noise or other similar utterances.

It makes sense to use trigger methods based on the ratio between the latency of the trigger and the
length of the action. Higher latency is acceptable for triggering actions that take a long time or are
infrequently used. Therefore, for zooming, an action that is used frequently, I suggest using a
controller button click as a trigger.

Ways to aim
Table 10 illustrates the differences between three main ways of pointing and aiming in VR: pointing
with a laser pointer, head orientation, and eye gaze

Table 10: Comparison of aiming methods in VR

 Method for aiming:

Aspect Controller – laser pointer
Head orientation –
the center of the
view

Eye gaze

Speed High High Extremely high

Intuitiveness High Medium Low

Hardware
availability

Yes Yes No

Using controllers to point VR is very intuitive and provides a quick way to indicate the location with a
laser pointer. Using the Head Mounted Display (HMD) to point is a good option when controllers are
not available. It is fairly intuitive, but not as prevalently used as pointing by hand. Eye gaze is an
extremely fast pointing method, as eyesight can quickly and easily jump from one object to another.
The eye gaze arrives at the target even before the user is conscious of the fact [citation needed].
Nevertheless, it is an extremely non-intuitive way of interacting with the system as eyes are not used
to interact with the world in daily life, but only to ingest information.

Choosing methods
The main criteria for selecting a trigger and aiming method for the Intelligent Microscope are:

• Availability of hardware (to end users)

• Intuitiveness

• Speed or latency of the interaction method

Based on these criteria, I suggest the following:

• When possible, use the controller both for aiming and triggering the zoom.

• When controllers are not available, Use the head for aiming. To trigger an action, use dwell-

time or a short utterance.

Therefore, for our project, using controllers for aiming and triggering zoom is the best choice.

33

4.2.5 Architecture

Integration with the Intelligent Microscope
Virtual Reality UI was integrated with
the existing IM platform to allow the
operator to benefit from the
functionality already present in the IM.
The IM platform handles the microscope
control, AI functionality, and voice
interactions. VR UI presents an
interactive 3D world to the operator
where she can interact with microscopy
images. To interact with the system, the
operator must have both applications
running at the same time: the existing
IM web application and the new VR UI.

Figure 19 illustrates how the new VR
components interact with the existing
IM platform. VR UI shows images from
IM backend and subscribes to the events
that the IM backend publishes. The
voice commands are still handled by the
existing IM Web application. Now
whenever a command is fulfilled, a
message is published to notify VR of a
new result.

The same communication process is also illustrated in Figure 20. The figure shows the process
followed during one voice command. The flow starts when the operator utters a voice command. In
response to that, the IM web application triggers the respective functionality in the IM back end by
making an HTTP API call. IM backend fulfills the request and as soon as the new image is ready,
notifies the VR UI through the Pusher messaging channel. When the VR UI receives a notification
about a new image, it downloads it from the backend and presents it to the user.

Figure 20: Communication process between the components when the user utters a voice command

Figure 19: VR UI interaction with existing Intelligent
Microscope components

34

4.2.6 Implementation
The VR user interface was built using Unity – a development platform for creating 2D and 3D games
and interactive experiences. [23] It supports deployment to a wide selection of platforms. In addition
to desktop and mobile devices, Unity supports deployment to VR and AR devices including Microsoft
HoloLens, Oculus, and HTC Vive.

The wide support of VR devices has been achieved using SteamVR. SteamVR provides a high-level
Input API for VR controllers and Interaction System. It is a collection of scripts, prefabs, and assets
such as hands, VR controllers, and a VR camera that you can use in Unity. The most important asset is
the Player prefab. By adding this to a Unity scene, a VR HMD can be used to look around in the scene
and VR controllers can be used to interact with the scene. The player object contains the VR camera
and all the logic handling the controllers.

The initial scene is simple; There is a floor to stand on, a simple light source, and a SteamVR Player
object. Additionally, there is one canvas floating in front of the player with a high-resolution image
for testing the zooming ability and another canvas for displaying the images coming from the
Intelligent Microscope.

To create the magnifying-glass effect, I added a zoom camera and a zoom-projection plane to the 3D
scene. The camera is used to capture a zoomed-in version of the view that the user is currently
seeing through the VR. The camera is configured with a very narrow field of view (FOV), emulating
the telephoto lens. Because of this, the zoom camera captures just a small area in the center of the
player’s view. The difference in FOV is illustrated in Figure 21. The resulting zoomed-in image is then
projected onto the zoom projection plane in front of the player. I scripted both to follow the
movement of the user’s head: the camera follows exactly the position and orientation of the VR
camera and the projection plane floats 1.8m in front of the player’s current view.

Figure 21: FOV of the VR camera and the zoom camera. The zoom-projection plane is in the center of the
player's view.

The zoom projection plane is configured to be invisible to the zoom camera because the projection
plane is right in front of the zoom camera. Otherwise, the zoom camera would zoom into the zoomed
image creating an infinite loop.

4.2.7 Conclusions
This experiment aimed to assess the realizability and usefulness of applying VR in operating an
electron microscope. With the prototype, I confirmed the hypothesis that it is possible to transfer
images from the Intelligent Microscope platform to the VR environment over the existing REST API.
Additionally, I found that it is possible to have real-time updates from the microscope to VR UI by
using Pusher messaging channel.

35

Within this experiment, I successfully replicated the zooming functionality described in the work of
Chang et al. I can conclude that the solution provided for navigating high-resolution images is
pleasant to use when the hardware is limited only to an HMD. Nevertheless, when controllers are
available, I suggest using them with laser pointers for more intuitive zoom control.

During the experimentation with the VR systems, I uncovered some technical risks and difficulties
that are important to keep in mind when pursuing a VR project with Unity.

• Difficult to use NuGet packages – Unity does not have native support for NuGet- a package
manager for .NET. This makes it difficult to reuse code written by the .NET community. The
lack of native support forces the developer to resort to manual copying of DLLs that is an
error-prone or to use non-standard solutions provided by the Unity community.

• Asynchronous code in Unity is handled with coroutines. This is incompatible with the Task-
based asynchronous programming model in C# where async/await keywords are used.

4.2.8 Future Work
For TFS, I recommend further experimentation with VR. Using it as an alternative to classical GUIs is
technically feasible but finding a suitable use case is not trivial. I suggest looking for specific use cases
or workflows where the user clearly benefits from the immersiveness of the VR medium. For the
users to embrace VR over existing GUIs, the benefits have to be higher than the cumbersomeness of
using an HMD.

To support the development of alternative user interfaces such as VR and VUI, it would help to have
microscope functionalities available through technology-independent APIs using standard protocols
such as HTTP or gRPC. This would enable developers to quickly experiment with new UIs and
services.

37

4.3 PEER-TO-PEER PLATFORM FOR SHARING NEURAL NETWORKS
This section covers the third and final experiment in the Intelligent Microscope III project.

The challenge started from a set of broad questions from TFS: how could electron microscopes share
knowledge between each other? If one microscope has learned something new, how could it share
that knowledge with other microscopes? Would peer-to-peer architecture be useful in such a
system?

The following sections cover the background of the challenge, the research questions to answer,
different aspects of the challenge, the overview of implementation, and finally, conclusions and
recommendations for future work.

4.3.1 Introduction
Every electron microscope made by TFS works as a standalone, independent system. One microscope
system consists of a microscope enclosure and a Windows workstation that is used to control
everything happening inside the enclosure. Because each system is independent and there is no
central management, it means that when the user needs to set up, configure, or use multiple
microscopes, she has to do it one by one through the workstations attached to the microscopes, as
depicted in Figure 22.

Figure 22: User working on multiple microscopes

Today, one of the customers of TFS has 50 identical microscopes on their premises. Currently, if the
customer needs to use machine learning on the microscopes, then the model must be deployed
manually on each microscope – one by one. Furthermore, if a new model is trained in one of the
microscopes, then the manual deployment must be repeated on all the microscopes, which is a
tedious process. It would be more convenient for the customer if the microscopes could share the
models between each other automatically; if one microscope learns something, then others learn it
too.

TFS has already created a solution for this problem, by creating a central machine learning service
that each microscope can use to execute inference tasks. The goal of this experiment was to explore
the opposite direction: how we could share the neural networks directly between the microscopes
without relying on any external servers.

38

4.3.2 The Domain of Machine Learning
This section serves as an introductory overview of basic supervised machine learning processes and
transfer learning. This overview is given to familiarize the reader with commonly used terms such as
training, inference, machine-learning model, transfer learning, and fine-tuning.

Supervised machine learning processes
Supervised machine learning can be split roughly into two major processes: training and inference,
as depicted in Figure 23. Training is the process of preparing the machine learning model to be useful
by showing it labeled training data that it can learn from. Inference is the process of using an existing
trained machine learning model to make useful predictions about the new unlabeled data.

Figure 23: Traditional Machine Learning process. The model is trained using a training dataset. Later, the
trained model can be used in the inference process to make predictions on new data.

When training a deep neural network from scratch, a lot of labeled training data is needed for the
training process. Furthermore, in traditional machine learning, this training process has to be
repeated for every different prediction task. This means that each task also needs a separate training
dataset. Sometimes, creating a large dataset of labeled samples can be difficult or just economically
infeasible. To overcome this difficulty, it is common to use pre-trained deep learning models as a
starting point and then train it further a particular task. Transfer learning is the key machine learning
approach for achieving this.

Transfer learning
Transfer Learning is a method in deep learning where an existing well-trained model is retrained for
another similar task. With this method, the training time and the number of needed samples can be
greatly reduced. Instead of starting the training from a completely randomly initialized and untrained
model, training is started from a model that has been trained for a similar task. Using an existing pre-
trained model as a starting point for training is illustrated in Figure 24. [24]

Figure 24: Transfer learning. A pre-trained model has been trained on a large training dataset. A small
training dataset is used to fine-tune the pre-trained model to suit a particular task.

39

For TFS customers, transfer learning can be used to train many similar, but task-specific neural
networks quickly and without the need to build large datasets for training each model.

Domain example
For example, neural networks can be used to detect defects in the manufactured MEMS devices by
analyzing microscope acquisitions. I assume if a microchip manufacturing company has a trained
neural network to detect defects in one type of MEMS device, it can be retrained to detect defects in
another MEMS device. Compared to traditional machine learning, transfer learning allows the
company to train the second model faster and with far fewer training samples.

4.3.3 Research Objectives
As stated in Section 3.3, the research questions are: Is it possible to set up a P2P system for sharing
neural networks? If so, what kind of opportunities and technical challenges would it bring?

To answer this question, the objective of this experiment was to build a prototype system where
multiple nodes exchange trained neural networks between each other in a peer-to-peer manner.

Because the broader goal of the IM project is to de-risk novel technologies and to uncover novel
opportunities, then with this investigation, we tried to answer the following questions:

• What challenges and risks appear when trying to build this system using peer-to-peer
architecture?

• Is it more fault tolerant to use a peer-to-peer system over a centralized system and why?

• What other opportunities does this approach open?

The main benefits that TFS expects from a peer-to-peer model-distribution system are cost reduction
and fault-tolerance to hardware and software failures. Cost reduction is expected from not having a
separate centralized system for model storage and inference. Fault tolerance is the system’s ability to
maintain an acceptable level of service in the event of a failure in some of its components, such as
hardware or software failure. This fault tolerance of a P2P system is expected to come from not
having a single point of failure. Each node in the system is independent and can continue working if
others fail.

4.3.4 Problem Analysis
What does “sharing knowledge” mean?
In our experiment, “sharing knowledge” means sharing trained models between microscopes.
Nevertheless, depending on whether we focus on sharing information during the training or the
inference process, the word pair “sharing knowledge” can have two distinct interpretations. We
focus on the inference side and assume that the models have already been trained. The challenge
here is to distribute trained models across a large number of microscopes efficiently and reliably.

Where to perform the inference?
There are two main options in choosing the deployment location for inference: local and remote. The
local deployment means placing the inference service in the workstation that is directly connected to
the microscope. The remote deployment means placing the inference service into another network-
accessible computer or cluster.

This remote deployment could be on the premises or in the public cloud. Private cloud deployment
means placing the service in a network-accessible computer or cluster on the customer premises.
Public cloud deployment leverages the cloud resources (storage and servers) owned and provided by
a third-party such as Amazon Web Services or Microsoft Azure.

40

Figure 25: Deployment options for inference service

All three options are depicted in Figure 25: Local inference on the workstation, remote inference in a
private cloud, and remote inference on a public cloud. A comparison of inference deployment can be
seen in Table 11.

Table 11: Comparison of inference deployment options

Type Local Remote

Location Workstation Private cloud Public cloud

Horizontal
Scalability

Limited – single workstation High Nearly unlimited

Only vertical scaling is
possible. (Adding more
computational power and
storage to the machine
attached to the microscope)

There is exactly one inference
node for each microscope.

Both vertical and horizontal scaling is possible.
Computational load can be distributed across
multiple remote nodes.

The number of inference nodes can be
changed independently of the number of
microscopes as computational demand
changes

Network load Low

Only inference results and
models are transferred over
the network. (Network load is
low only when inference
results and models are small)

High

Full acquisitions are
transferred over the
local network to
inference machines.

High

Full acquisitions are
transferred over the
internet

The main benefit of local inference is that the data produced by the microscope can be processed
locally and does not have to be sent over the network. By performing inference on the machine
attached to the microscope, we can avoid building high-bandwidth networks. Furthermore, we can
reuse the computing power of the machine that is already supplied with the microscope.

Design decision:
In the context of machine learning in electron microscopy,
facing the need to perform inference on electron microscope acquisitions
we decided to perform inference on the local machine
and not in a remote computer or cluster,
to achieve low network load
accepting that only vertical scaling of computational power is possible.

41

How to distribute the models?
To allow microscopes to perform machine-learning inference locally, the trained models must be
present on each microscope. Therefore, one of the challenges of this experiment is distributing the
models.

There are two main architectural approaches in building a system for distributing neural networks
between the microscopes: centralized distribution or peer-to-peer distribution. The approaches are
visualized in Figure 26. Centralized architecture would mean creating central storage of models that
can be accessed by all microscopes deployed in the company. Each microscope can download
existing networks and use them for local inference. The second would be to build a peer-to-peer
network of connected microscopes that all work together to distribute known models among
themselves.

Figure 26: Centralized and peer-to-peer model distribution

For this experiment, we have chosen to investigate only peer-to-peer architecture for model
distribution. We believe that centralized model distribution is straightforward to build and therefore
does not need de-risking. Building a peer-to-peer model distribution system poses more
uncertainties and unknowns and therefore is chosen for de-risking.

The main benefits that TFS expected from the peer-to-peer model distribution system were cost
reduction and fault tolerance. Cost reduction was expected from not needing separate hardware for
the central model store. Instead, existing workstations already attached to microscopes could be
used for this purpose. Because of the lack of a single point of failure, the peer-to-peer architecture
was also expected to be more fault tolerant in the case of hardware and software failures. Table 12
summarizes the differences between the two approaches.

Table 12: Comparison between centralized and decentralized model distribution

 Centralized (client-server) Decentralized (Peer to Peer)

Summary The Server provides service (model
storage service) to clients. The clients
use the service to upload and download
models.

Each node in a network can request for
models and can also provide models.

Cost Extra hardware for central model store

Complexity A standard solution. Straightforward to
develop and understand.

Complex to develop unless an existing
solution is found and leveraged.

Fault
tolerance

The central store is the single point of
failure. If this stops, the sharing stops.

No single point of failure.

Storage Server stores all models in a centralized
location

Each node stores all models

Scalability Each client has one connection. (const)
For the server, each new device adds
one connection. (linear)

Each new device adds one potential
connection to each peer in the
network. (linear)

42

Risks
Building a peer-to-peer model distribution system brings out some risks:

• If each node has to store all of the models, then the total storage space needed by the
system grows fast. (The storage load grows in steps of M*N, where M is the size of a model
and N is the number of microscope nodes in the network)

• For each peer, the number of possible connections rises linearly, as more nodes are added.

• Communication cost – all models are transferred to all the microscopes.

Design decision:
In the context of using machine learning models in electron microscopes
facing the need to distribute models to microscopes
we decided to use peer-to-peer architecture
and not centralized client-server architecture
to achieve fault tolerance of the system by eliminating a single point of failure and removing the
need for extra hardware.
accepting the complexity of development, complexity of debugging, and reduced visibility of the
system’s state.

4.3.5 Requirements

Functional requirements
Functional requirements describe what the system does without specifying the solution, or how the
system does it. The main functional requirements that this system has are:

• Local Inference: Each node in the network can perform local inference.
Each microscope must be able to perform inference on local hardware, without sending the
data to a remote node.

• Exchanging models: When a new model is added to one of the microscopes, then eventually
it will be available in all other microscopes.

Non-functional requirements

• Fault tolerance: When there is a hardware or software failure in one node, the other nodes
will stay operational and continue sharing models.

Design constraints

• Must be a peer-to-peer system – This is the technology TFS is interested validating

• Must work “offline”, without the connection to the Internet – the system cannot rely on
external services or servers that are outside of the local network because many of TFS
customers keep microscopes isolated from the internet for security reasons.

Conceptual view (Product “How”)
As a solution, we decided to build a simple application that would be able to exchange models
between other instances of itself.

• Each node publishes a list of available models.

• At the user’s request, the system performs a local inference using one of the locally available
models.

• Each peer can upload any model to any peer

• When a new model is added to one node, it will notify other peers.

• When a node gets a notification from a peer about a new model and it is not present on the
node, the node will try to download it.

• Alternatively to the previous two points, the nodes could just “Push” the new model to other
peers directly by upload.

43

4.3.6 Architecture
This section presents the system architecture that was created based on the requirements defined in
Section 4.3.5.

Context diagram of the expected use of P2P model service:

Figure 27: Context diagram of the expected use of the “P2P Model service”

The P2P Model service is envisioned to run on the microscope workstation, next to the microscopy
application that needs to use ML models as illustrated in Figure 27. The Microscopy Application
acquires images from the microscope and uses the P2P Model service to perform inference tasks. At
the same time, the P2P Model service exchanges models with other microscope workstations that
have the same service installed.

The model Service consists of two applications:

• P2P Model Exchange - for exchanging models with other nodes

• Inference service - for serving ML models

These two applications with their interactions with other components are shown in Figure 28. The
Model Exchange service accepts models from other nodes and saves them to the filesystem.
TensorFlow serving can then load the models from the filesystem and provide inference service.

Figure 28: Applications inside a microscope workstation

Data delivery: Pull versus Push
In a distributed system, there are two classic approaches used to disseminate files and data: push-
based data delivery (upload) and pull-based data delivery (download). The difference lies in which
side of the transfer is active and which is passive.

Traditional client-server systems transfer data using pull-based data delivery. In a pull-based data
delivery, the clients actively request data from the passive server node. The advantage of a pull-
based approach is that the client nodes can play an active role in requesting the data they need
rather than relying on the pushes from the server. However, there is also an important scalability
disadvantage in a pull-based system: as the number of client nodes and the number of requests rises,
the higher is the risk of overloading the source node with pull requests. [25]

44

In a push-based data delivery, the source node is actively uploading data to passive destination
nodes. This allows the source node to be in control of the dissemination of the data, circumventing
the risk of overloading the source.

Design decision:
In the context of machine learning model distribution
facing the need to transfer large files to a large number of nodes
we decided to push-based data delivery
and not pull-based data delivery
to avoid overloading the source node
accepting that receiving nodes are not in control of what is being sent to them

Peer discovery
Decentralized applications require some way of discovering other nodes in a network before any data
transfer can happen. The process of locating the nodes in a peer-to-peer network is called peer
discovery. Many techniques can be used for this purpose. Peers can be discovered via multicast DNS
(mDNS), Distributed Hash Tables, and other techniques. The selection of the optimal technique
depends on the use case, as each one has its own strengths and weaknesses. [26]

In our implementation, we skip the peer-discovery process and just assume that each peer is
accessible through a predictable hostname such as “microscope-1” and “microscope-2”. When this is
not possible anymore, we can take the next step and start using mDNS.

4.3.7 Implementation

P2P Model Exchange Service – Django application
Model exchange service is a custom Django application responsible for accepting new models and
exchanging models with other nodes in the P2P network. Figure 29 illustrates how P2P Model
Exchange Service relates to the user and other components in the system. It is mainly responsible for
accepting models from data scientists and peers on the network. It stores the models on a filesystem
and instructs the TensorFlow Serving to load the models whenever there is a change in the list of
models. The service is also responsible for distributing the model to other peers by uploading it to
the HTTP endpoint.

Figure 29: P2P Model Exchange service

45

Whenever a new model is received it is checked for validity and stored on the file system. Next, the
TensorFlow serving is notified of the new model so it can start serving it. Finally, the model is
distributed to other peers. This flow is illustrated in Figure 30.

Figure 30: Process of accepting a new model into the system.

Inference server – TensorFlow Serving
For serving the models and performing inference, I used TensorFlow Serving [27] – a high-
performance serving system for ML models. It provides a standard gRPC and REST APIs for inference
tasks such as classification and prediction as illustrated in Figure 31. By default, it supports serving
TensorFlow models stored in SavedModel format that are loaded from a filesystem.

Figure 31: TensorFlow Serving serves an ML model to a client application

TensorFlow Serve is deployed inside a Docker container as it is the easiest deployment options. There
is one limitation though - Docker on Windows does not provide access to GPUs on the host machine.
This might make inference in containers not a viable option on current microscope workstations if
GPU acceleration is needed.

For our experiment, going forward without GPU support was acceptable, but if GPU is needed, then
there are three options to overcome this limitation:

• Deploy ML services natively to the Windows workstation, without a container

• Move ML service to separate Linux node

• Start using Linux on workstations

I would suggest the first option, as is the easiest to apply immediately but comes with the downside
of having to forego the benefits of containerized services. The second one needs an additional PC or
cluster. The last solution is not feasible, as it would mean rewriting all the Windows-dependent code
currently running on the workstation.

Deployment view
During this experiment, all the components were deployed on a single development-machine. To
simulate multiple P2P nodes, I used docker-compose to spin-up multiple identical sets of containers.

Development view
The development view describes the system from a programmers’ perspective.

Pipenv
To ensure future developers can easily reproduce the experiment, I decided to use Pipenv. Pipenv is a
tool for managing Python virtual environments and source code dependencies. With a single
command “pipenv install” it sets up a python virtual environment with using the correct python
version and recursively installs all dependencies needed to run the source code. The expected python

46

version and the dependencies of the source code are declared in Pipfile and the exact pinned
versions of the packages are stored in Pipfile.lock, ensuring deterministic setup every time.

4.3.8 Conclusions
The goal of this experiment was to explore how neural networks could be directly exchanged
between the microscopes using a peer-to-peer architecture.

Generally, it seems that P2P architecture is a viable solution for distributing neural networks,
although technically more complex than a system with a central control. Transferring SavedModel
files over the network to a node and then deploying them in TensorFlow Serve works well. This
proves the first hypothesis defined in Section 3.3. The complex part of the system is building a
reliable and efficient P2P network, where this transfer could happen.

The solution built during this experiment is not a final solution for building a decentralized model
sharing network, because of multiple problems affecting its scalability. First, there is no peer
discovery and the node addresses are fixed. This makes adding and removing nodes to the network
cumbersome. Second, the peers have a naïve approach in handling the model exchange – they push
models to each other. The receiving node has little control over the upload process. In Django, the
request handler is run only after the upload has been completed. The more nodes there are in the
system, the more there is a chance that a single node is going to receive multiple uploads of the same
model. Nevertheless, this could be avoided by having a better communication model where nodes
would agree to the transfer prior to the actual upload.

4.3.9 Future Work
This project focused on the deployment and inference part of the machine learning and covered only
the distribution of trained models between the microscopes on the premises of one customer. It only
scratched the surface of what is possible in this domain. This section presents some pointers for
future experimentation.

Federated Learning
It would be interesting to also investigate the training part of the machine learning process.
Federated Learning could be used to train models without exchanging data samples between
microscopes or even different TFS customers. For this, TensorFlow Federated23 or OpenMined’s
PySyft24 could be used. PySyft would be extra interesting in use cases where the data must stay
private. This is the case when multiple customers of TF would like to collaborate on training a model,
but not share the original data.

Multicast Push
In a unicast transmission, IP packets are sent to a single recipient on a network. Given there are many
microscopes on the network, distributing large models to many nodes on a network in unicast
transmissions is not the most efficient use of the network bandwidth. A multicast transmission could
be used to send the data to a group of hosts on the network instead. This would allow pushing a
model to multiple nodes with only a single transmission, greatly reducing the network load. For this,
UFTP, UDP-based FTP with multicast, could be used. This is a file transfer program designed to
distribute large files to a large number of receivers simultaneously [28]

Data Replication Using IPFS and IPFS Cluster
Building a model distribution platform on existing P2P protocols could vastly reduce the development
effort needed to build a reliable and scalable platform. One such protocol is the InterPlanetary File
System25 (IPFS).

23 https://www.tensorflow.org/federated
24 https://github.com/OpenMined/PySyft
25 IPFS: https://ipfs.io/

https://www.tensorflow.org/federated
https://github.com/OpenMined/PySyft
https://ipfs.io/

47

IPFS is a protocol and peer-to-peer network for storing and sharing data in a distributed file system.
The system consists of many IPFS peers that store and exchange files.

IPFS Cluster26 is a distributed application (runs as a sidecar to IPFS peers) that maintains a cluster
pinset. Pinning is the action of keeping the file locally available on the nodes. By default, when adding
a file to an IPFS cluster, the file would be pinned (downloaded and kept locally) by all of the nodes.

Using a private IPFS cluster could be one approach to distribute models across a cluster of
microscopes using peer-to-peer connections.

26 IPFS Cluster: https://cluster.ipfs.io/

https://cluster.ipfs.io/

49

5. CONCLUSIONS

This chapter presents the conclusions of this report. Section 5.1 presents the obtained results and the
lessons learned. Recommendations for future work are presented in Section 5.2.

5.1 RESULTS
This section covers the most important results and insights gained from the three experiments. It
contains the high-level answers to research questions defined in Chapter 3. More detailed results and
insights can be found in the conclusions section of each respective experiment in Chapter 3.

5.1.1 Multilingual Voice User Interfaces
The goal of this experiment was to assess the feasibility of using general-purpose machine translation
services such as Google Translate to turn an existing IM English-language VUI into a multilingual VUI.
To answer the research question defined in Section 3.1, I built the multilingual VUI and tested it in
four languages. The hypothesis was that the system would work well for most of the use cases but
would have systematic errors caused by mistranslations that could be easily corrected.

After building and testing a multilingual VUI described in Section 4.1, I can conclude that at this
moment, using general-purpose transcription and translation services from Google, Amazon or IBM is
not a viable approach for creating a multilingual VUI for microscope operation. The main obstacle in
this approach is the insufficient accuracy of general-purpose transcription services in transcribing the
commands. The inaccuracy of transcriptions results in poor recognition of commands and makes the
VUI uncomfortable to use.

5.1.2 Virtual Reality
This experiment aimed to assess the realizability and usefulness of applying VR in operating an
electron microscope. TFS was interested in whether it is possible to operate the microscope from a
VR environment and what kind of technical challenges would it bring. Additionally, TFS was
interested in learning about the opportunities and benefits VR can bring.

To assess the realizability, I built a VR environment in Unity and integrated it with the existing
Intelligent Microscope software system. To assess the usefulness of VR in sample navigation, I
recreated the zooming technique described in [22] and compared that to other zooming methods.

After experimenting with VR as described in Section 4.2, I can confirm that VR can be used to control
and interact with TFS microscopes, as long as the needed functionality is available through existing
APIs. Interfacing with IM over HTTP and Pusher messaging channels is enough to trigger actions and
show microscope images in VR as they are taken.

Based on my experimentation, I could not make definitive conclusions on whether VR is better for
panning and zooming microscopy images compared to existing GUIs. VR is an immersive medium and
can potentially be used to enhance the user’s immersion in the task. Whether this benefit can be
leveraged, depends highly on a particular use case.

5.1.3 Peer-to-Peer Model Sharing platform
The goal of this experiment was to explore how we could share knowledge in the form of neural
networks directly between the microscopes without relying on any external servers. TFS was
interested in whether it is possible to create such a system using a P2P architecture and If so, what
kind of technical challenges would arise.

To guide this exploration, I built a prototype model sharing platform using Django and TensorFlow
Serve. This prototype could transfer models in SavedModel format from one peer to another and
load them into the local TensorFlow Serve instance.

50

Based on my experimentation, I would not advise TFS to follow the approach I took – building a P2P
platform from scratch. Instead, I suggest investigating into existing platforms such as IPFS and
leveraging those for reliable P2P file transfer and peer discovery.

Generally, it seems that P2P architecture is a viable solution for distributing neural networks,
although technically more complex than a system with a central server. Having the inference
available in a local machine, makes the microscope independent from the rest of the system,
improving its fault tolerance. Transferring SavedModel files over the network to a node and then
deploying them in TensorFlow Serve works well. The complex part of the system is building a reliable
and efficient P2P network, where this transfer could happen.

5.2 RECOMMENDATIONS FOR FUTURE WORK
IM3 project started with a very broad goal: to identify novel technologies that would improve the
ease of use of electron microscopes in five years. This goal can be used to research a myriad of
different technologies. IM3 project touched only 3: VUIs, VR, and P2P systems. To pursue the same
goal further, one can start from either re-evaluating the candidate technologies listed in Chapter 3
and pick a new potential disrupting technology to investigate. Another option is to go further with
the technologies selected in this project.

This section covers high-level recommendations for future work for each technology that was
investigated in IM. The more detailed version with specific technical recommendations can be found
in Section 4, in the last section of each experiment. For multilingual VUI: Section 4.1.12, for VR:
Section 4.2.8, for P2P platform: Section 4.3.9.

Multilingual VUI
The multilingual VUI designed in this project was not comfortable to use, because it was not accurate
enough in recognizing the user’s commands. To improve this, I suggest trying out other transcription
services such as Microsoft Speech to Text. Another approach is to wait for general-purpose
transcription and translation services to improve over time and perform this experiment again. The
hope is that as time goes by, those services improve, and their accuracy becomes high enough for our
use case.

Virtual Reality
In this project, confirmed the feasibility of bringing images from the IM into the VR world, but I could
not find a use case that would clearly benefit from that. For this reason, I suggest further
experimentation with VR, but this time starting the search from specific use cases where the user
would benefit from the immersiveness of the medium.

Peer-to-Peer Platform for Sharing Neural Networks
Although P2P architecture seems viable for sharing neural networks, building one from scratch is not
an easy task. For this reason, I suggest investigating existing P2P protocols and platforms such as
IPFS. Leveraging existing protocols for reliable P2P file transfer and peer discovery could vastly
reduce the development effort needed to build a reliable model-sharing platform.

In this project, I only investigated distributing already trained models. If the ultimate goal is to learn
from a distributed set of microscopes then I suggest investigating Federated learning. For this,
TensorFlow Federated or OpenMined’s PySyft libraries could be used.

51

6. PROJECT MANAGEMENT

Project management is an important part of a PDEng graduation project, as the trainee is expected
not only to design software, but also define, monitor, and manage the processes that will lead to a
successful conclusion of the project. This chapter presents the project management techniques and
processes that were used during this project.

6.1 INTRODUCTION
Project management is the application of knowledge, skills tools, and techniques to meet the project
requirements. It includes planning and executing the project, setting up and maintaining effective
communications with stakeholders, and balancing project constraints such as scope, schedule, and
resources. [29]

The decades-old iron triangle models the constraints of project management as three interlocked
components. It is a simplistic model to convey the idea that it is not possible to change one
constraint without also changing the others. Therefore, the job of a project manager is to balance the
following three constraints to ensure the successful conclusion of the project. [30]

• Scope – The number of features and their complexity and quality.

• Time – The amount of time allotted for the project

• Resources – available budget and the number of workers

For a project, it is important to clearly separate which of these components are fixed constraints and
which are negotiable. This separation allows the project manager to decide where to focus the
management activities. In the PDEng graduation project, the timeframe of the project has been fixed
to ten months and the human resources are fixed to one student. This leaves the PDEng trainee only
to vary the scope of the project as illustrated in Figure 32. By clearly separating the fixed and
negotiable components, I could choose the component that I should place my focus on managing.
Defining and controlling the scope was the main tool for keeping the project on track.

Figure 32: Iron triangle with variable scope

52

6.2 STAKEHOLDERS
A project stakeholder is an individual, group, or organization that may affect, be affected, or perceive
itself to be affected by a project. [29] The main identified stakeholders of the IM3 project are shown
in Table 13, along with their role in the project and their main interests.

Table 13: Stakeholders of the project, along with their roles and interests

Name Role Interests

Mark Laane PDEng Trainee • Successfully graduating from TU/e with
the PDEng degree

• Building an interesting, exciting system

• Gaining experience in project
management

Remco
Schoenmakers

Supervisor (TFS) • Sparking innovation in the company

• De-risking novel technologies

• Identifying valuable use cases for novel
technologies

Mykola
Pechenizkiy

Supervisor (TU/e) • Ensuring the academic quality of the final
report

• Contributing ideas towards the content
and technology

Pavel Potocek Domain Expert • Having a platform to showcase his
innovations

Yulong Pei Co-Supervisor (TU/e) • Sharing insights about Natural Language
Processing, Machine Learning, Artificial
Intelligence, and Graph Mining.

• Gaining experience in supervising

Yanja Dajsuren
and
Peter Heuberger

PDEng Program Director • Improving the reputation of the PDEng
program

• Improving the quality of the project
outputs and results

Stakeholder management is critical for the success of every project as no project exists in isolation.
The input from main stakeholders helps to define the goals of the project and the output of the
project has to be communicated effectively. This is needed to ensure the project produces useful
output and the stakeholders would understand the benefits of it. Effective communication is critical
to gain and keep stakeholders’ support throughout the project.

During the IM 3 project the following four steps in stakeholder management were taken:

• Identification of the stakeholders

• Prioritization/categorization of the stakeholders

• Establishment of the communication plan

• Engagement with the stakeholders

To develop an appropriate communication strategy with each identified stakeholder, the
stakeholders were prioritized and categorized using the power-interest grid shown in Figure 33. The
power-interest grid classifies the stakeholders into four categories based on their power over the

53

project and their interest in it. The categories with their respective general communication advice are
as follows:

• High interest, high power – manage closely

• High interest, low power – keep informed

• Low interest, high power – keep satisfied

• Low interest, low power – monitor

Figure 33: Stakeholder power-interest grid

The categories were used to develop an appropriate communication strategy for each stakeholder
and the strategy was recorded in the communication plan. This communication plan was used
throughout the project when engaging with the stakeholders.

6.3 WAY OF WORKING
The communication plan specified two types of recurrent meetings: weekly progress meetings and
monthly PSG meetings. Weekly meetings were held with the company supervisor on Mondays, to
share the latest developments and discuss the next steps. These meetings were used to reflect on
the last week and plan for the next one. Project steering group meetings were held monthly with all
supervisors, to share the project's general progress and steer its direction if needed. Meetings with
other stakeholders were held on an ad hoc basis. For running matters, e-mail was used with all
stakeholders.

The scope of the project was expected to change throughout the project. The scope was adapted
continuously to fit the time and resource constraints as I learned more about the domain, the
problems, potential solutions, and relevant technologies. Until the end of April, I was working in short
iterations and close customer collaboration on a meeting-to-meeting basis and adjusting goals
weekly. The risk with this kind of approach is that it is very easy to get sidetracked from long-term
goals and just build features that seem interesting at that moment. At the end of April, I created a
roadmap to visualize the long-term direction of the project.

For communicating the high-level strategic vision, direction, and progress, I used a roadmap. It is a
visual tool that is useful for aligning stakeholders setting priorities. An example of the roadmap used

54

in the project can be seen in Figure 34. The roadmap contains initiatives – descriptions of expected
outcomes and a broad timeline (past, now, next, later). The roadmap does not specify exact dates for
initiatives because its main goal is to convey priorities and strategy, not predict the future. Predicting
the future is difficult, especially with the uncertainty coming from the project’s explorative approach.
Creating a roadmap forced me to make hard decisions about priorities – what to tackle first and what
to leave for later. It also helped me to align the stakeholders on priorities of different initiatives, as I
used it during the PSG meetings.

Figure 34: The product roadmap used during the project

The near-term features and tasks were managed using a Kanban-style board that contained the next
tasks in a prioritized backlog, currently active task, and done or discarded tasks. Figure 35 shows the
physical board on the office wall.

Figure 35: The physical Kanban board for managing near-term features and tasks.

55

6.4 SCHEDULE
The IM3 project was a 10-month-long project with a fixed duration spanning from January 2020 to
October 2020. For development and exploration activities were executed in rapid iterations and only
a couple of weeks were planned ahead. From the project’s timeline, three major phases can be
identified in retrospect: initiation, experimentation, and closing. Figure 36 illustrates the major
phases of the project and shows the activities performed. The following sections describe the
activities carried out in each phase of the project.

6.4.1 Initiation
The initiation phase took place in January. During the initiation phase, I familiarized myself with the
goals of the company and with the existing work done in previous iterations of the project. Through
interviews, I extracted a list of potential goals and objectives for the project, mapped them, and
prioritized them according to the interest shown by TFS. This formed the basis for choosing the
technologies to investigate in the experimentation phase.

During the initiation phase, I also created the first versions of various project management
documents, such as stakeholder map and analysis, communication plan, and risks table and analysis.
These documents were later updated during the project as needed. This time was also used to set up
recurrent planning meetings and scheduling the first few PSG meetings.

6.4.2 Experimentation
The experimentation phase was the longest phase lasting 7 months from February to August. During
this period, the development of three experiments happened. First, the experimentation with VR,
then with multilingual VUI, and finally with P2P model sharing. The experimentation included setting
the goals for experiments, designing and implementing the software systems, and validating the
results. Additionally, during this time, I wrote parts of this project report iteratively, recording the
goals, results, and findings of the experimentation.

6.4.3 Closing
The closing phase took place in September and October. This time was used for writing and finalizing
this project report and preparing for the final defense presentation. The project report went through
multiple reviews by the supervisors to ensure and improve its quality. The end of September was
used to prepare for the final defense. Finally, the defense presentation was given at the beginning of
October.

56

Figure 36: Gantt chart of the activities and deadlines in the project

57

6.4.4 Tracking Project Deadlines
The most important deadlines related to the project and the report were tracked in Notion27 using a
simple to-do list in a table format. Each entry has a status, deadline date, and a next step. Figure 37
shows the state of the deadline table in August.

Figure 37: Deadlines related to the project and their progress as of August

These deadlines together with the project start and end date were used during project planning as
time constraints for the activities in the project plan.

6.5 RISK ANALYSIS
During the project, I identified, documented, and kept track of risks related to the project. Table 14
shows the identified risks along with the probability, impact, and the planned response in case the
risk should realize. Risks were discussed during the meetings with supervisors.

Table 14: Project risks

Title Description Probability Impact Planned Response

Expected low
interaction with
TU/e Supervisors

Interaction between
PDEng Trainee and
university supervisors
is low due to working
in physically separate
locations.

Medium Medium Propose working
from TU/e once a
week, providing an
opportunity to
interact more
frequently.

Low interaction
due to COVID
lockdowns

Interaction with the
TFS supervisor is
hindered after COVID
related lockdowns.

High Medium Mitigate: Schedule
weekly or bi-weekly
recurrent video
meetings.

27 Notion: https://notion.so

https://notion.so/

58

Title Description Probability Impact Planned Response

Uncertainty in
the final result

It is an exploratory
project, meaning it is
not exactly known
what will be learned or
how will the final
result look like.

High Medium Accept, but manage
the risk: Keep a
prioritized list of
initiatives and work
with the most
valuable items.

Negative
experiment
results

The result of an
experiment is
negative. For example:
Using the selected
technology in a chosen
way is not feasible.

High Low Accept: This is the
expected result of
an explorative

A TEC member is
not able to
attend the
defense

The supervisor not
able to attend the
defense

Low High Mitigate:
Communicate dates
early and ensure
everyone is on the
same page

Final Report not
ready for
submission

The final report is not
ready by the
submission deadline.

Medium High Mitigate:
Create report
iteratively: First,
focus on covering
mandatory sections
and then iteratively
revise, refine and
improve the report

The trainee has
no experience in
developing VR,
VUIs, or P2P
systems

All of the technologies
are completely new to
the trainee.

High Medium Accept: Learn as you
go – this is an
expected part of the
project.

6.6 REFLECTIONS ON PROJECT MANAGEMENT
At the beginning of this project, I decided to use a highly adaptive project lifecycle with rapid
iterations with fixed time and variable scope. This project lifecycle is preferred when the
requirements and scope of the product are difficult to define in advance. With fixed-time iterations, I
reduced the impact of unknown risks to the project. At the end of each iteration, the current state of
the product was demonstrated to the stakeholders.

Because the product that I was building was not well understood in the beginning, I could not have
used a predictive lifecycle. In a predictive lifecycle, the deliverables and the schedule are fixed right
from the start of the project. This is useful for projects where the risks are known and the product
has to be delivered in full to provide value for stakeholders. Luckily, in my project, I could avoid this
lifecycle by making sure that I deliver value incrementally.

In retrospect, I find that during this project the actual lifecycle reminded something in between. The
lifecycle was iterative, but I did not apply time-boxing consistently. I usually continued pursuing a
goal through multiple iterations. For this reason, the actual lifecycle was iterative, but not fixed-time,
but rather fixed-scope.

59

7. PROJECT RETROSPECTIVE

Without a doubt, the last ten months have been challenging. I have learned and developed a lot both
personally and professionally. In this chapter, I present my personal reflections on the process and
the work done during the last ten months.

This project was an individual assignment and came with all the benefits and challenges of working
alone. Compared to working in a software development team, working alone on a project comes with
a wide range of challenges. First, I had to play all the roles in a software development project.
Secondly, without a team, there were fewer opportunities for bouncing ideas, discussions, and
shared problem solving. Finally, there is the pressure of full responsibility for the project’s outcome
and the challenge of keeping the motivation up. The latter was especially difficult when dealing with
setbacks and negative results. I learned that communication is very important – especially at low
points. When working on an individual assignment, it helps to actively involve stakeholders to gain
more perspective and support. Frequent communication is also useful in managing their
expectations. Communicating slow progress or negative results keeps the expectations realistic and
serves as an opportunity to find a solution together.

The challenges of working alone were further accented by the COVID-19 lockdowns that closed the
offices and forced me, my stakeholders, and other TFS employees to work from home. This made the
threshold for communications higher, as there were fewer chances for simple informal
communications. Every connection had to be premeditated either by requesting an online meeting or
crafting an email. Having regular, repeating meetings alleviated this issue, providing space for sharing
progress and ideas without the overhead of needing to schedule individual meetings. Additionally,
the lockdown of the office also meant that there was no more access to VR hardware, prompting me
to continue with other topics.

During this project, I had the opportunity to assume a wide range of roles in the software
development process. I worked as a project manager, architect, tester, and developer to name a few.
Juggling many hats was challenging because I had to prioritize tasks across multiple roles rather than
concentrate only on the responsibilities of one role. Nevertheless, this opportunity gave me a chance
to explore non-technical roles that I did not have much experience with before. Coming from a
software engineering background, taking the project manager role was new and challenging for me.
In that role, I developed a project plan, defined and managed deliverables, communicated with
stakeholders, and managed their expectations. For me it was the first project where I felt I was fully
responsible for planning, communicating, and managing the whole project and not just a technical
side of it.

One of the challenging aspects of this project was that it was an exploratory project without pre-
defined goals, only an open-ended general vision. On the one hand, this was very liberating as I had
the freedom to choose my own path rather than a predefined one. On the other hand, however, with
freedom comes great responsibility – It was my responsibility to define the specific goals for the
project. Defining the goals was not an easy task and as the project evolved, so did the overall goals.

Furthermore, I found it difficult not to be able to start from specific end user problems. Rather than
solving the specific problems users have today, this project was focused on uncovering opportunities
that novel technologies might bring in the future. These opportunities might not be immediately
applicable to the end users today. As a designer, I am an end-user-centric problem solver. I like to
imagine and visualize how the solution is going to be accepted, adopted, and operated by the end
user. Visualizing the users’ goals and usage scenarios is important to me as it helps me to define the
goals and constraints that guide me towards a technical solution. In this project, I could not interview
the future user, but I had to envision the problems of a future user and make intuitive assumptions.
This left some uncertainty in the design. This uncertainty is acceptable in the project as it is just an
exploration, but uncomfortable and challenging for me to work with. All in all, I learned that working
at the forefront of technology needs a balance of both ways of thinking.

61

ABBREVIATIONS

API Application Programming Interface

ASR Automatic Speech Recognition

AWS Amazon Web Services

HMD Head-Mounted Display

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IM Intelligent Microscope

IM1, IM2, IM3 Intelligent Microscope I, II, and III (specific projects in the series)

IPFS InterPlanetary File System

ML Machine learning

P2P Peer to Peer

TFS Thermo Fisher Scientific

TU/e Eindhoven University of Technology

UI User Interface

URL Uniform Resource Locator

VR Virtual Reality

VUI Voice User Interface

63

BIBLIOGRAPHY

[1] A. Neely and J. Hii, "Innovation and business performance: a literature review," 1998.

[2] R. Lafaniere, "Domain analysis," [Online]. Available:
http://www.site.uottawa.ca/~laganier/seg2500/domain. [Accessed 29 07 2020].

[3] Thermo Fisher Scientific, "An Introduction to Electron Microscopy - Types of Microscopes,"
[Online]. Available: https://www.fei.com/introduction-to-electron-microscopy/type. [Accessed
29 07 2020].

[4] T. F. Scientific, "Practical Applications of Electron- and Ion-Beam Microscopy," [Online].
Available: https://www.fei.com/introduction-to-electron-microscopy/applications/. [Accessed
01 09 2020].

[5] US Government, "Wikipedia - SEM image of an ant," [Online]. Available:
https://commons.wikimedia.org/wiki/File:Ant_SEM.jpg. [Accessed 10 09 2020].

[6] H. A. Bullock and A. Tamin, "Public Health Image Library (PHIL)," 2020. [Online]. Available:
https://phil.cdc.gov/Details.aspx?pid=23354. [Accessed 10 09 2020].

[7] Amazon, "Amazon Lex - Conversational AI for Chatbots," [Online]. Available:
https://aws.amazon.com/lex/.

[8] Google, "Google Chrome Privacy Whitepaper," [Online]. Available:
https://www.google.com/chrome/privacy/whitepaper.html#speech. [Accessed 28 August
2020].

[9] "Voices in Amazon Polly," Amazon Web Services, [Online]. Available:
https://docs.aws.amazon.com/polly/latest/dg/voicelist.html. [Accessed 02 09 2020].

[10] "Google Cloud Text-to-Speech - Supported voices and languages," [Online]. Available:
https://cloud.google.com/text-to-speech/docs/voices. [Accessed 02 09 2020].

[11] "Microsoft Azure - Language and voice support for the Speech service," Microsoft, [Online].
Available: https://docs.microsoft.com/en-us/azure/cognitive-services/speech-
service/language-support#text-to-speech. [Accessed 02 09 2020].

[12] "What Is Amazon Translate?," Amazon Web Services, [Online]. Available:
https://docs.aws.amazon.com/translate/latest/dg/what-is.html. [Accessed 02 09 2020].

[13] "Language support," Google Cloud, [Online]. Available:
https://cloud.google.com/translate/docs/languages. [Accessed 02 09 2020].

[14] "Microsoft Translator - Languages," Microsoft, [Online]. Available:
https://www.microsoft.com/en-us/translator/business/languages/#list. [Accessed 02 09 2020].

[15] A. Cockburn, "Hexagonal architecture - Ports and Adapters," 4 January 2005. [Online].
Available: https://alistair.cockburn.us/hexagonal-architecture/. [Accessed 25 08 2020].

[16] J. Palermo, "The Onion Architecture," 29 July 2008. [Online]. Available:
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/. [Accessed 25 08 2020].

64

[17] AWS, "AWS Lambda quotas," [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html. [Accessed 18 09
2020].

[18] "BCP 47 - Tags for Identifying Languages," Internet Engineering Task Force (IETF), September
2009. [Online]. Available: https://tools.ietf.org/html/bcp47. [Accessed 04 September 2020].

[19] J. Jarmulak, "Speech-to-Text Accuracy Benchmark - June 2020 Results," 10 September 2020.
[Online]. Available: https://www.voicegain.ai/post/speech-to-text-accuracy-benchmark-june-
2020-results. [Accessed 21 September 21].

[20] J. Bardi, "What is Virtual Reality?," [Online]. Available: https://www.marxentlabs.com/what-is-
virtual-reality/.

[21] "VIVE Pro Full Kit | The professional-grade VR headset," HTC, [Online]. Available:
https://www.vive.com/eu/product/vive-pro-full-kit/. [Accessed 20 September 2020].

[22] H. Chang and M. F. Cohen, "Panning and Zooming High-Resolution Panoramas in Virtual Reality
Devices," in UIST '17: Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, Québec City QC Canada, 2017.

[23] "Unity Platform," Unity, [Online]. Available: https://unity.com/products/unity-platform.

[24] J. Yosinski, J. Clune, Y. Bengio and H. Lipson, "How transferable are features in deep neural,"
Advances in Neural Information Processing Systems, vol. arXiv:1411.1792 [cs.LG], no. 27, pp.
3320-3328, 2014.

[25] S. Acharya, M. Franklin and S. Zdonik, "Balancing Push and Pull for Data Broadcast," ACM
SIGMOID Record, vol. 26, 1998.

[26] J. Santell, "P2P Peer Discovery," 14 01 2020. [Online]. Available: https://jsantell.com/p2p-peer-
discovery/. [Accessed 09 08 2020].

[27] "TensorFlow - Serving Models," Google, [Online]. Available:
https://www.tensorflow.org/tfx/guide/serving.

[28] D. Bush, "UFTP - Encrypted UDP based FTP with multicast," [Online]. Available: http://uftp-
multicast.sourceforge.net/. [Accessed 31 07 2020].

[29] PMI, Ed., A Guide to the Project Management Body of Knowledge (PMBOK Guide), 5 ed.,
Project Management Institute, 2013.

[30] Atlassian, "The iron triangle of planning," [Online]. Available:
https://www.atlassian.com/agile/agile-at-scale/agile-iron-triangle. [Accessed 16 09 2020].

[31] JEOL, "JSM-F100 Schottky Field Emission Scanning Electron Microscope," [Online]. Available:
https://www.jeol.co.jp/en/products/detail/JSM-F100.html. [Accessed 2020 08 21].

[32] ZEISS, "ZEISS ZEN Intellesis for Image Segmentation in Microscopy," [Online]. Available:
https://www.zeiss.com/microscopy/int/products/microscope-software/zen-intellesis-image-
segmentation-by-deep-learning.html. [Accessed 2020 08 21].

[33] serverless, "Serverless Framework," [Online]. Available: https://www.serverless.com/.

65

ABOUT THE AUTHOR

Mark Laane received his bachelor’s degree in
Computer Engineering from the University of Tartu, Estonia, in
2015. In 2017 he graduated with a Master of Science in
Software Engineering from the University of Tartu. His master’s
thesis, “EyeTal – A Fully Eye-Controlled Map Editor,” involved
creating an eye-controlled application for editing spatial data.
During his master’s studies and afterward, he worked in an
international software development company Datel as a
software engineer.

Aiming to develop his skills further, in 2018, he joined
the PDEng Software Technology program at the Eindhoven
University of Technology. During the program, he was involved
as a developer, a Scrum Master, and an architect in several
projects with various industrial partners such as Philips, ASML,
and Thermo Fisher Scientific. He has a keen interest in DevOps,
lean and agile development practices, cloud and serverless
architectures, and full-stack web development.

PDEng SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	Report - Front Cover
	empty page
	Report - Intelligent Microscope III - Mark Laane
	Abstract
	Foreword
	Acknowledgments
	Preface
	Executive summary
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1 Context
	The vision of the project series
	Project series strategy

	1.2 Project Goal
	1.3 Outline

	2. Domain analysis
	2.1 Electron Microscopy
	2.1.1 Applications
	2.1.2 Users of Electron Microscopes

	2.2 Overview of Previous Projects in the Series
	Intelligent Microscope I
	Intelligent Microscope II

	3. Candidate Technologies in IM3
	3.1 Multilingual Voice User Interface
	3.2 Virtual Reality
	3.3 Peer-to-Peer Platform for Sharing Neural Networks

	4. Technologies Investigated
	4.1 Multilingual Voice User Interface
	4.1.1 Introduction
	4.1.2 Domain of VUIs
	Voice User Interface
	Virtual Assistant
	SWOT analysis for VUI

	4.1.3 Technical Challenge
	4.1.4 Choice of Approach
	Potential Approach 1: Using a VUI platform with support for multiple languages.
	Potential Approach 2: Automated Translation
	Choice of the approach

	4.1.5 External API Selection
	Choice of Speech-Recognition API
	APIs offered as a managed web service
	APIs offered by the application-platforms
	APIs by offline libraries
	Selection Criteria
	Web Speech API
	Choice of Speech synthesis API
	Choice of Translation API

	4.1.6 Architecture
	Conceptual view
	Design Alternatives
	All in client
	All in backend
	Audio in the client, text in the backend

	4.1.7 Design
	Onion architecture and Ports and adapters

	4.1.8 Deployment
	Design decision:
	Serverless Framework deployment on AWS

	4.1.9 Implementation
	Code Quality Aspects
	Source code organization
	HTTP API
	POST /askBot
	POST /botSpeak

	Incompatible tags between services

	4.1.10 Validation
	Testing speech-recognition services in English
	Testing results

	Testing VUI in four languages
	Process
	Testing Results
	Sensitivity to noise cancellation software
	Retrospective on the testing process
	Conclusions from testing

	4.1.11 Conclusions
	4.1.12 Future Work

	4.2 Virtual Reality
	4.2.1 Introduction
	Immersion, presence, full engagement, and absorption
	Large working space
	Excitement and “wow”-factor
	Collaborative Environments
	SWOT analysis for VR

	4.2.2 Hardware
	4.2.3 Research Objective
	4.2.4 Zooming in VR
	Ways to trigger zoom
	Ways to aim
	Choosing methods

	4.2.5 Architecture
	Integration with the Intelligent Microscope

	4.2.6 Implementation
	4.2.7 Conclusions
	4.2.8 Future Work

	4.3 Peer-to-Peer Platform for Sharing Neural Networks
	4.3.1 Introduction
	4.3.2 The Domain of Machine Learning
	Supervised machine learning processes
	Transfer learning
	Domain example

	4.3.3 Research Objectives
	4.3.4 Problem Analysis
	Design decision:
	Risks
	Design decision:

	4.3.5 Requirements
	Functional requirements
	Non-functional requirements
	Design constraints
	Conceptual view (Product “How”)

	4.3.6 Architecture
	Data delivery: Pull versus Push
	Design decision:

	Peer discovery

	4.3.7 Implementation
	P2P Model Exchange Service – Django application
	Inference server – TensorFlow Serving
	Deployment view
	Development view
	Pipenv

	4.3.8 Conclusions
	4.3.9 Future Work
	Federated Learning
	Multicast Push
	Data Replication Using IPFS and IPFS Cluster

	5. Conclusions
	5.1 Results
	5.1.1 Multilingual Voice User Interfaces
	5.1.2 Virtual Reality
	5.1.3 Peer-to-Peer Model Sharing platform

	5.2 Recommendations for future work
	Multilingual VUI
	Virtual Reality
	Peer-to-Peer Platform for Sharing Neural Networks

	6. Project Management
	6.1 Introduction
	6.2 Stakeholders
	6.3 Way of working
	6.4 Schedule
	6.4.1 Initiation
	6.4.2 Experimentation
	6.4.3 Closing
	6.4.4 Tracking Project Deadlines

	6.5 Risk analysis
	6.6 Reflections on project management

	7. Project Retrospective
	Abbreviations
	Bibliography
	About the Author

	TUe_PDEng_ST_Back_Cover

