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Abstract
In the present days, electric city buses have captured a major mar-
ket share as a result of ambitions set by modern cities to reduce
the local carbon emissions. This leads to more research and devel-
opment in electric vehicles, especially in modeling to approximate
the actual behavior of these vehicles. Current energy consump-
tion prediction methodologies for electric vehicles suffer several
practical limitations and challenges for dealing with uncertainties.
This research explores an energy consumption prediction approach
for electric city buses based on measurement data for a given bus
route. An online correction algorithm is designed based on a re-
cursive algorithm and Kalman filter to improve real-time energy
consumption prediction capabilities. Results show that the offline
model can give a rough prediction before the trip, and the online
model can improve the estimate to a promising accuracy.

Keywords Real-Time Energy Consumption Prediction, Electric City Buses,
Electric Vehicle, Energy Consumption Model, Estimation Algo-
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Foreword

Foreword (by Kristian K. Winge, CEO of Sycada)

The energy consumption of electric buses has proven to be more sensitive to driving style and external
conditions, such as ambient temperature, than their fossil fuelled cousins. This sensitivity, coupled
with a shorter range and the need to opportunity charge during the day, means that the operations in
public transport is exposed to more volatility as well as planning uncertainty. This volatility requires
bus operators to invest in additional battery capacity, or to acquire more assets, or to adopt new tools
and technologies that bring more visibility and adaptability to the operation. From an economical and
societal point of view, the latter would seem the better choice.

Accurately predicting the energy consumption of a bus in a given route is one of those critical tools,
but it is not trivial task to accomplish. Current energy consumption prediction models suffer from
several practical or computational limitations and more often than not fail to factor in environmental
and contextual parameters. Hence have limited real value in a dynamic planning context. As a result,
most, if not all, bus operators plan their zero-emissions operations based on limited historical data-sets
for buses and routes. But these estimations are inherently inaccurate with an error margin up to 40%.

The unique online energy consumption prediction model developed in the context of the Cloud-Your-
Bus (CYB) innovation programme has demonstrated to potentially bring this error margin down to
an average close to 1%. When made available to bus operators, the more accurate information can
facilitate better and faster decision making and help optimise route and charge planning throughout
the day. This in turn has a massive positive impact on both capital and operational expenses and will
help accelerate the transition to zero-emission public transport in Europe and beyond.

The energy prediction tool that has been developed as part of this project is a living example of how
academia and business can work together to develop new tools and to create a positive impact on one
of the biggest challenges we collectively face: creating a more sustainable world.

At Sycada, we are proud of the work that has been achieved and I want to take this opportunity to
express our sincere thanks to Dhruv Jagga and his colleagues and mentors at TU/e for having brought
this work from research to practical implementation.

Kind Regards,

Kristian K. Winge
CEO, Sycada
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Foreword

Foreword (by Igo Besselink)

In the transition from an internal combustion engine to a battery electric powertrain, various new
challenges arise. The prediction of the energy consumption becomes very important due to the limited
energy density of a battery in comparison to diesel. This applies in particular to city busses, which are
used intensively and have to operate as (cost) efficiently as possible. As part of the “Cloud Your Bus”
project a novel energy consumption prediction method has been developed.

The fact that city busses drive fixed routes is exploited. This requires collecting, analyzing and pro-
cessing historical trip data, which was done by Dhruv and Yuzhe together. The estimate for the total
energy consumption for a specific trip is adapted while the bus is driving to provide near real time
updates. Dhruv has designed and evaluated the parameter estimation process. Furthermore he worked
closely with Dan to get a prototype of the software running on an embedded device, which will be
evaluated on a real bus in the near future.

The results obtained so far show great promise and Dhruv has made important contributions to the
development of this energy consumption prediction tool. I also think that it was a very useful expe-
rience for him to be involved in the process from idea and concept development to realization and
implementation, with all (practical) issues that come along the way.

Kind Regards,

Igo Besselink
Associate professor, Mechanical Engineering
TU Eindhoven
October 2020
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Preface

This report is one of the deliverables of the graduation project for the degree of Professional Doctorate
in Engineering in Automotive Systems Design (PDEng, ASD). This report comprehends the design,
development, testing, and integration of a real-time energy consumption prediction system. It aims to
allow the technical reader of this report to understand the procedure in detail and give the opportu-
nity to either replicate the results or extend the method of the electric vehicle’s energy consumption
prediction system.

This report describes new ideas to incorporate real-world data into physical models and make them
more realistic and reliable.

This report gives a detailed explanation of the implementation of prediction algorithms for energy
consumption prediction systems in real-time.

This report describes the process of system design. It explains the step-by-step transition of the system
development, starting from the stakeholder expectations.

This report can serve as a reference for implementation of energy consumption prediction systems in
the commercial ecosystem.

Ir. Dhruv Jagga

October 2020

Cloud Your Bus v



Eindhoven University of Technology

vi Cloud Your Bus



Eindhoven University of Technology

Acknowledgements

The culmination of this PDEng project would not have been possible without some external support.
First, I would like to thank all the program community people for maintaining a stimulating envi-
ronment, which has helped shape the trainee’s overall personality during this two-year tenure at the
Eindhoven University of Technology.

I want to express my deepest gratitude to my supervisor, dr.ir. Igo Besselink for providing me the
opportunity to work on such a promising research topic. I would also like to thank him for his contin-
uous support and guidance throughout the project. I would like to extend my gratitude to my project
mentors from Sycada B.V., Kristian Winge, and Rogier Mulder for having fruitful discussions and
feedback sessions. I am also indebted to the discussions carried out in the update meetings with Prof.
dr. Henk Nijmeijer that helped me to think more about the subject leading to improving my work.

I also would like to thank my colleagues Camiel Beckers and Yuzhe Ma. They helped me get started
with a relatively new domain and assisted me in expanding my knowledge base in energy modeling
of electric vehicles by sharing useful resources and conducive discussions on the topic. A big thanks
also go to Dan Chirascu. Later in the project, he translated the prototype software developed by me to
an executable version that needed to be run on the device, which helped me validate my system and
conclude my project.

In addition, I am honored to have my program manager as dr. Peter Heuberger, whose honest guidance
and support were always available during the past two years, and helped me grow in this fellowship
program. I would also like to thank Ellen van Hoof-Rompen for her continued support during the
program. Furthermore, I cherished each and every discussion made with my colleagues from the
PDEng ASD/MSD program, which helped me to improve my work - especially Siddhesh Rane, Arash
Arjmandi, Mohamed Kamel, and Navaneeth Bhat.

Finally, I would like to express my deepest gratitude and love towards my family and my mentor Dr.
Daisaku Ikeda, to provide unconditional support, love, and faith in me.

Special thanks to my dear friends Ajar, Hemant, Sabyasachi, Swaraj, Kirti, Ketan, and Ishant for
always being there.

Eindhoven University of Technology
September 22, 2020

Cloud Your Bus vii



Eindhoven University of Technology

viii Cloud Your Bus



Eindhoven University of Technology

Executive Summary

Zero-emission transportation is blooming swiftly with the earliest movers to be public transport in this
field. Electric buses are replacing conventional ICE engine buses in the city areas in entire Europe
to deal with the issues concerning greenhouse-gas emissions. The bus operators are amongst the top
pioneers to adapt to the leading-edge technologies to make this transition possible.

The transformation of public transportation from classical ICE buses to electric buses brings about
startling challenges in operational ambiguities, vulnerabilities, and costs. The ambition of the EU
funded Cloud Your Bus project (an EM Europe Research and Innovation Project) is to stimulate the
transition to zero-emission public transport in Europe. The business goal revolves around reducing
the risks and costs of this transition to zero-emission bus operations. The project concentrates on
establishing an online synergic electric bus (e-Bus) data platform to establish operational excellence
in zero-emission public transportation. This data platform is intended to be kept independent from the
original equipment manufacturer (OEM) and will reinforce the operational usage of a fleet of electric
city buses.

The transition to electric counterparts in the public transport system turns up to bring the unforeseen
challenges with the higher factor of operational uncertainties. The electric buses drive significantly
less distance as compared to their fuel-based counterparts on a fully charged battery. It requires special
occasions for charging during the operation. Furthermore, the energy usage pattern of electric buses is
more uncertain than the diesel buses. This induces more dynamicity in operation and tactical planning
and hence introduce more vulnerability.

The high operational vulnerability can be resolved by adding more assets to the fleet, a cost-inefficient
approach. Another approach is to have real-time insights on the status of the electric vehicles and
their batteries and the progress of their charging cycles. With this real-time information, the dynamic
re-planning of operations of these buses can be facilitated. Within the project, solutions are being
introduced to reduce the risks and costs involved.

A cutting edge energy modeling technique is used amalgamated with the advanced energy estima-
tion algorithm to create a toolbox to give more accurate predictions on the energy estimates. This
toolbox has capabilities to self-learn from the data perceived from the environment and handle any
perturbations in the operational domain of the large fleet of vehicles while ensuring the robustness in
the efficiency and accuracy of energy predictions. These predictions in the current energy estimation
infrastructure can go about 40 % off from the actual consumption. The real-time energy estimation
system is capable to bound the error in energy estimations to < 2% on an average. When available with
the bus operators, the more accurate information can facilitate in making better and faster decisions in
optimizing the re-scheduling of the electric city buses. This provides a sustainable solution that can
lead to avoiding operational uncertainties and vulnerabilities and helps reduce the costs of operation.
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Glossary

ASD Automotive Systems Design
OEM Original Equipment Manufacturer
PDEng Professional Doctorate in Engineering
PSG Project Steering Group
TU/e Eindhoven University of Technology
RMSE Route Mean Squared Error
GPS Global Positioning System
RCI Route Characteristics Indicator
HMI Human Machine Interface
CO2 Carbon-di-oxide
UNFCCC United Nations Framework Convention on Climate Change
EV Electric Vehicle
ICE Internal Combustion Engine
BEV Battery Electric Vehicle
HEV Hybrid Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
FCEV Fuel Cell Electric Vehicle
ECU Electronic Control Unit
UC Ultra Capacitors
AC Air-Conditioning
SOC State of Charge
MVLR Multi-Variate Linear Regression
e-Bus Electric Bus
OCPP Open Charge Point Protocol
OCPI Open Charge Point Interface
GR General Requirements
CAN Controller Area Network
SW Software
ID Identification
RI Route Information
CSV Comma Separated Value
LQE Linear Quadratic Estimator
AKA Also Known As
ARM Advanced RISC Machine
API Application Programming Interface
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List of symbols

E Energy
m Mass
me f f Mass (Effective)
Fr Rolling Resistance Force
Fx Propulsion Force
ax Acceleration
fr Rolling resistance coefficient
g Gravitational constant
α Road Slope
Faer o Aerodynamic Drag
ρ Air Density
Cd Aerodynamic drag coefficient
A f Front Area of Vehicle
v Velocity
W Wind Speed
Fg Road Slope Force
η Drive-train Efficiency
t ,T Time
s,S Distance
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Paux Auxiliary Power
Pbat Battery Power
Pdr i ve Drive-train Power
Vdr i ve Drive-train Voltage
Idr i ve Drive-train Current
Vbat Battery Voltage
Ibat Battery Current
ψ Regressor Vector
θ Parameter Vector
K Gain Matrix
P Error-Covariance Matrix
γ Gamma

Cloud Your Bus xiii



Eindhoven University of Technology

xiv Cloud Your Bus



Eindhoven University of Technology

List of Tables

3.1 High-Level System Requirements for Real-time energy estimation system . . . . . . . 15
3.2 Use-Case mapping with High-Level Requirements . . . . . . . . . . . . . . . . . . . . . 18

5.1 Rationale for selection of type of Online Parameter Estimation . . . . . . . . . . . . . . 41

C.1 Embedded Device Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Cloud Your Bus xv



Eindhoven University of Technology

xvi Cloud Your Bus



Eindhoven University of Technology

List of Figures

1.1 Annual Global Electric Vehicle Sales [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Energy Consumption Scheme: Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Classification scheme for the state-of-the-art EV energy modeling . . . . . . . . . . . . 5

2.1 CAFCR Model: Different Process Views [16] . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 CAFCR Model: Real-time Energy Consumption Prediction . . . . . . . . . . . . . . . . 10
2.3 V-Model: Harmony of System Engineering and System Development . . . . . . . . . . 11
2.4 Project Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Workflow: Requirements Analysis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Use-Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 System Context Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Block Definition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Detailed Block Definition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Interface Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 System Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 State Chart Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Power Measurement Configuration of Electric City Buses . . . . . . . . . . . . . . . . . 31
4.2 Adaptive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Kalman filter cycle. Sample update projects the current state estimate before the ac-

tual measurement is available. The projected estimate is later updated by measur ement
update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Selected Test Route: GPS coordinate map . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Evolving of root-mean squared error (RMSE) with the progression of data from No.

of trips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Base Data Reference Profile computed offline using 16 trip data cycles. . . . . . . . . . 40
5.4 Total energy consumption from 16 cycle data . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Flow Chart: Online Energy Estimation Software Algorithm . . . . . . . . . . . . . . . . 43

6.1 Simulation Software Setup: MATLAB-Simulink . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Simulation Results: Test Scenario 1 ( Estimations using Training Data Set 1) . . . . . 47
6.3 Simulation Results: Test Scenario 1 ( Estimations using Training Data Set 1) . . . . . 48
6.4 RCI Profile generated in real-time as mass estimation is updated. . . . . . . . . . . . . 49
6.5 Comparison between base and updated RCI and Power Profile . . . . . . . . . . . . . . 50
6.6 Simulation Results: Test Scenario 2 ( Estimations using Training Data Set 2) . . . . . 51
6.7 Simulation Results: Test Scenario 2 ( Estimations using Training Data Set 2) . . . . . 52

Cloud Your Bus xvii



Eindhoven University of Technology

6.8 Simulation Results: Test Scenario 3 ( Estimations using Validation Data Set 1) . . . . 53
6.9 Simulation Results: Test Scenario 3 ( Estimations using Validation Data Set 1) . . . . 54
6.10 Comparison of absolute accumulative error in estimations for offline and online en-

ergy predictions done over base reference profile. . . . . . . . . . . . . . . . . . . . . . 55
6.11 Progression of absolute accumulative error for online energy estimation w.r.t % of

distance travelled over the route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.12 Comparison of absolute error in estimations for online energy predictions done over

base and updated reference profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.13 Comparison of absolute accumulative error in estimations for online energy predic-

tions done over base and updated reference profile. . . . . . . . . . . . . . . . . . . . . 57

C.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.1 Hardware in the Loop Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
D.2 Hardware in the Loop Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
D.3 Hardware in the Loop Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

F.1 HMI: Real-time Energy Estimation System . . . . . . . . . . . . . . . . . . . . . . . . . 117

xviii Cloud Your Bus



Eindhoven University of Technology

Contents

Foreword i

Preface v

Acknowledgements vii

Executive Summary ix

Glossary xi

List of symbols xiii

List of tables xiv

List of figures xv

1 Introduction 1
1.1 Zero Emission Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methodology 9
2.1 Work Phase Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Project Timeline and Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 System Architecture and Design Description 13
3.1 Model-Based Systems Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Theoretical Framework 27

Cloud Your Bus xix



Eindhoven University of Technology

4.1 Energy Consumption Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Online Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Online Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Design Implementation 37
5.1 Offline Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Online Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 System Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Validation and Results 45
6.1 Simulation Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion and Recommendation 59
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Appendix: Requirements Documentation 65

B Appendix: Interface Documentation 77

C Appendix: Hardware Setup 85

D Appendix: Additional Results from Hardware-in-the-Loop Test 87

E Appendix: Test Plan and Test Results 91

F Appendix: HMI Aspects 117

G Appendix: Project Management Documentation 119
G.1 Stakeholder Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
G.2 Project Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
G.3 Risk Management - Risk Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
G.4 Quality Management Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
G.5 Version Control Management Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

H Appendix: Software Manual and Function Library 131
H.1 Pre-Requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
H.2 Building and Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

I Appendix: Scientific Paper 149

xx Cloud Your Bus



Eindhoven University of Technology

1 Introduction

This chapter describes the context of the project while diving deeper into the current infrastructure
or the status of the technologies considered for the project. This chapter also describes the project
background and scope for the advancement of the technology.

1.1 Zero Emission Transportation

Climate change has become an enormous concern around the world; this requires an immediate ac-
knowledgment from the global leaders to address the CO2 emission problems caused by transporta-
tion. To ensure this, in 2016, the Paris Agreement was signed within the United Nations Framework
Convention on Climate Change (UNFCCC), which deals with the issues concerning the greenhouse-
gas-emissions mitigation, adaptation, and finances by the members of UNFCCC [1]. This pact in-
volves a portfolio of strategies that must be engaged to subdue the transportation-related pollution
and its dependencies on fossil fuels. The industry, public agencies, and the research bodies, therefore,
promote the electrification of transportation. Electric vehicles (EVs) are among the most effective
transiting options towards a low-carbon emission transportation system. To promote the electric ve-
hicles, some countries are proposing the strict laws on developing internal combustion engine (ICE)
vehicles. On the one hand, Norway is aiming to have 100% of its new car sales as EVs by 2025.
France, United Kingdom, and California in the United States have indicated diminishing the sales of
its ICE vehicles by 2040. China is promoting its EVs sales and aims to reach sales of 7 million units
annually by the year 2025. This huge shift towards the EVs is resulting in a paradigm shift in the
automotive industry towards the electric drive-train [2]. This shift can be observed by analyzing the
sales of these vehicles around the world, as shown in Figure 1.1 [3].

1.2 Electric Vehicles

In most general terms, the electric vehicles are road vehicles whose propulsion unit is electricity in-
stead of burning fossil fuel. The fleet of the electric vehicle consists of battery electric vehicle (BEVs),
hybrid electric vehicle (HEVs), plug-in hybrid electric vehicle (PHEVs), and fuel cell electric vehicle
(FCEVs). A full electric vehicle configuration includes three major subsystems: electric propulsion,
energy source, and auxiliary systems. The electric propulsion subsystem usually consists of a mo-
tor, transmission, power converters, and electronic control units (ECUs). The main constituents of
the energy source subsystem are energy storage unit, energy management unit, and charging unit. In
operation, the most extensively used energy storage device is the battery. The auxiliary subsystem
includes power steering unit, HVAC, lighting, brakes, and air suspension.

The vehicle under consideration for this project is battery electric city buses. The operating range of
these vehicles is directly dependent on the capacity of the battery and various other factors, including

Cloud Your Bus 1



Eindhoven University of Technology

Figure 1.1: Annual Global Electric Vehicle Sales [3]

vehicle characteristics, e.g., weight, configuration, driving style, road, weather, traffic, and payload
conditions [4].

1.3 State of the Art

In the present day, electric city buses have captured the market interest due to ambitions set by cities
to reduce the carbon emissions. This leads to more research in the field of electric vehicles, especially
in creating efficient models to approximate the actual behavior of these vehicles. These models can
further facilitate to develop advanced technologies, One of such technologies is energy consumption
estimation.

Taxonomy of Influential Variables on EV Energy Estimation

Numerous factors affect the energy consumption of an electric vehicle. These factors are broadly clas-
sified into four major categories: vehicle component, vehicle dynamics, traffic, and the environment.

• Vehicle Component: The operating states of the critical parts of the propulsion (e.g., electric
motors, mechanical transmissions), and energy flow in energy storage and auxiliary systems
are governed by vehicle component related parameters. Motor and transmission efficiencies
play a crucial role in determining the withdrawal of the energy from the source used for the
propulsion. The energy withdrawal can vary based upon specifically chosen configurations of
EVs and the motor and transmission technology. The initial state of charge of the battery can
also aggravate or mitigate the EV driver’s range anxiety. This has subsequent effects on their
driving behavior and hence the energy consumption by the vehicle. The auxiliary power is
required for air conditioning, ventilation, radio, monitoring panel, lights, power steering, and
pneumatics. This is also a significant contributor to the energy demand from the battery for
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the electric city bus case. A basic energy consumption scheme for the EVs can be observed in
Figure 1.2

• Vehicle Dynamics: Vehicle dynamics include aspects of the motion of the vehicles comprising
speed, acceleration, and tractive/brake torque. This leads to an energy demand from the vehicle,
which is governed by the laws of physics. The road load, physically related to rolling resistance,
aerodynamic drag, and road gradient, can be specifically linked to the key parameter; speed [5].

Drivetrain Power Auxiliary Power

Figure 1.2: Energy Consumption Scheme: Electric Vehicles

• Traffic Conditions: Traffic conditions play a significant role in the energy consumption of
electric vehicles. The downstream traffic signal status, congestion situations, and vehicle type
mix in traffic flow influence EV energy consumption. These conditions can be classified as cat-
egorical or interval variables. On the one hand, the categorical variable can determine whether
a trip is operated in a certain time or spatial resolution, e.g., time of the day (peak hour vs.
non-peak hour), day of the week (weekday, weekend, or holiday), or a month of the year (in-
cluding seasonal effects). Various techniques are being used to model categorical behavior,
such as regression or neural-network models [6]. On another hand, interval variables represent
the traffic conditions as a function of continuous vehicle dynamics or overall state of the traffic.
To indicate a realistic traffic condition over a trip1, the ratio of time or number of stops over
the travel time can be used as an indicator. This variable is found as a significant estimate for
energy consumption in some research [7]. In some other researches efforts were witnessed to

1Trip is defined as a journey from start coordinate to the end coordinate of the given route
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define the congestion index (i.e., the mean speed of vehicle divided by the standard deviation
of the vehicle speed over the route2) and was found to be of great significance in the energy
consumption models [8].

• Environment Conditions: Another important factor influencing the energy consumption of
the electric vehicle is the environment. This involves information about road characteristics and
meteorological conditions. The most widely used variables in this category are road grade, road
type, wind direction, wind speed, ambient temperature, humidity, and lighting conditions [9].
With the advancement in technology, especially the outdoor positioning, road grade informa-
tion availability with the real-world data, the energy consumption models can be made more
accurate. Furthermore, the most commonly used roadway characteristics related variable in the
current literature is the road type (freeway vs. arterial). Attributes involving the road infras-
tructure, including traffic light, speed limit, are used continuously as the independent variables
to estimate the consumption [10]. The meteorological variable is the ambient temperature and
humidity that affects the auxiliary power for heating or cooling demand of the vehicle. In some
studies, the relationship between the meteorological parameters and battery performance was
explored by measuring the temperature of the battery cells. In one particular study, the regres-
sion model was developed, including a dummy variable representing the day and night time. It
was concluded that the lightning conditions were strongly correlated with the EV energy con-
sumption [9]. Moreover, the ambient temperature, and humidity were measured or estimated
based on the GPS coordinates of the driving location. This assist in assessing the potential en-
ergy consumption for in-cabin heating or cooling. The temperature and humidity has its affects
on aerodynamic drag and can influence the energy consumption.

Methodology for Modeling

The methods for modeling the energy consumption behavior of electric vehicles are classified into
three categories: rule-based, data-driven, and hybrid. This classification is visualized in Figure 1.3.

• Rule-Based: In comparison to the configuration of internal combustion engine powered ve-
hicle, the configuration and energy flow in electric drive-train is less complicated. Also, the
individual component-wise energy efficiency of an EV is more constant. The concepts of fuzzy
logic were used in some research to model the regenerative braking, while others assumed
simply the understanding of the speed of the vehicle [11]. The rule-based models are simpler
to implement, but their accuracy might not be satisfactory when applied to a specific vehicle
or scenario. This approach further has some challenges when extrapolated to the macroscopic
scale. In application to the macroscopic scale, the estimation errors can accumulate if the energy
consumption by a fleet of EV is under consideration.

• Data-Driven: In the data-driven modeling approach, the data is available from the sensors, au-
tomotive electronics, and telematic vehicular technology and can be used to model the energy
consumption of the electric vehicle. The most popular statistical method used to date is multi-
variate linear regression (MVLR). The models built with these methods usually include the
instantaneous speed, acceleration, and the interaction terms between them. These interaction
terms are generally the independent variables and assume their relationships with a linear pre-
dictor function. Other high-level machine learning and high-performance computing algorithms
involve artificial neural networks that have been employed to calculate energy consumption

2Route is defined as a path followed by vehicle in-between two locations
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estimation for electric vehicle. Other useful methods involve unsupervised learning methods
(e.g., clustering) for data pre-processing and pattern recognition [12][13][14]. The data-driven
approaches can be usefully applied to various data sources, such as vehicle dynamics, traffic
information, network profile, and meteorological conditions. There are some limitations of us-
ing these models: these models may fail to perform satisfactorily outside their training data
sets. Therefore, it is imperative to ensure that the training data is a good representative of the
required information about the vehicle. Secondly, these black-box models can provide satisfac-
tory accuracy. Still, it explains a little about the different details of the parameters within and
its implications on the energy consumption of the vehicle.

Methodology

Rule-Based Data-Driven

Fuzzy Logic

Physics-Based

Regression

Clustering

Neural-Network

Hybrid

Figure 1.3: Classification scheme for the state-of-the-art EV energy modeling

• Hybrid Models: To combine the advantages of both the rule-based methods (simplicity of the
model and generalized formulation) and data-driven methods (model accuracy and customiza-
tion), the hybrid approach can be implemented to have an estimate on the energy consumption
of electric vehicles. The feature selection for the data-set is based upon the physical princi-
ples, whereas the model parameters are trained to attain the best performance for the selected
scenarios [15].
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1.4 Project Description

Project Background

Zero-emission transportation is intended to flourish with the earliest movers to be public transport
in this field. An increasing number of electric buses are replacing conventional ICE engine buses in
the city areas in entire Europe. The bus operators, particularly in the Netherlands, are amongst the
pioneers to adapt to the new technology.

The evolution of public transportation from classical ICE buses to electric buses leads to compelling
challenges in operational uncertainties, vulnerabilities, and costs. The ambition of the EU funded
Cloud Your Bus project an EM Europe Research and Innovation Project is to stimulate the transition
to zero-emission public transport in Europe. The business goal revolves around reducing the risks and
costs of this transition to zero-emission bus operations. The project concentrates on the establishment
of an online synergic electric bus (e-Bus) data platform with the intent to establish operational excel-
lence in zero-emission public transportation. This data platform is intended to be kept independent
from the original equipment manufacturer (OEM) and will reinforce the operational usage of a fleet
of electric city busses.

The transition to electric counterparts in the public transport system turns up to bring the unforeseen
challenges with the higher factor of operational uncertainties. A diesel bus, e.g., can drive quickly
for a range of about 300 km on a regular shift and can be refueled at the depot overnight. Its electric
counterpart, on the other hand, drives significantly less distance on a fully charged battery. It requires
special occasions for charging during the operation. Furthermore, the energy usage pattern of electric
buses is more uncertain than the diesel buses. This induces more dynamics in operation and tactical
planning and hence introduce more vulnerability.

The high operational vulnerability can be resolved by adding more vehicles to the fleet, a cost-
inefficient approach. Another approach is to have real-time insights on the status of the electric ve-
hicles and their batteries and the progress of their charging cycles. With this real-time information,
the dynamic planning of operations of these buses can be facilitated. Within the project, solutions are
being introduced to reduce the risks and costs involved.

The following work packages are defined in this project:

• eBus data taxonomy: Streaming a set of standardized BMS/eBus data across different bus
types within the context of emerging standards.

• Live charging data: Integrating live charge point data in operational planning, integrating the
latest OCPP/OCPI protocols.

• Drive Style optimization : Influencing drivers to adopt the lowest possible energy profile by
providing feedback on drive style specifically tailored to electric buses while driving.

• Planning optimization : Adapting line and charge planning in real-time by monitoring set
line/charge schedules and performing dynamic re-planning in case of exceptions.

• Battery monitoring: Monitoring life-time battery state-of-health by evaluating degradation
patterns based on driving and charging patterns. Ensuring that buses are used in conformity
with warranty conditions and proactive alerting if this is not the case.

• Energy consumption modeling: Optimising the fleet asset base per concession area by de-
veloping energy models based on actual energy usage for different road segments, ambient

6 Cloud Your Bus



Eindhoven University of Technology

temperature, load, drive style, traffic intensity.

More information regarding the project is available on https://cloudyourbus.com/

Project Aim

TU/e is responsible for working package Energy Consumption Modeling having its impact on work-
ing package Drive Style Optimization. In the context of energy modeling package, this project aims
to develop an energy consumption model for battery-electric buses that can facilitate the dynamic
planning of operations of electric buses in real-time.

Project Scope

The project scope evolves around developing and upgrading the energy consumption model for battery
electric busses and determining the parameters for this model using real-world data while creating an
energy consumption prediction tool for integration in planning systems for urban bus operations.

Project Objective

• Develop and upgrade the generic energy consumption model for battery electric busses.

• Identify the relevant data and its frequency to be recorded from the busses for parameter iden-
tification.

• Perform parameter identification on a generic energy consumption model using real-world data.

• Validate the generic energy consumption model using different real-world data.

• Fine-tune the generic energy consumption model.

• Create an energy prediction tool for integration in the planning system for urban bus operations.

Project Contribution

The main contributions of the project are as follows:

• Cutting-edge model: The energy consumption model developed in this research use only few
parameters hence, avoiding the estimations for a large number of model parameter variables
leading to more complexities and non-reliable estimations.

• Advanced estimation techniques: In this research an advanced algorithm has been designed,
which has the capability of self-learning from the data collected and make corrections for un-
certainties during the vehicle’s operation. These corrections were made over its predictions
throughout the route as the newer data was made available during the trip.

• Facilitate the Operator: The output of the real-time energy estimation system allow the user
of the system to have more information regarding the energy consumed by the electric city bus
over the selected route for any given trip. A reliability index assure that the operator had enough
capability to make informed/guided decisions when re-planning the operations schedule.

Cloud Your Bus 7
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1.5 Report Outline

The report is organized as follows:

• Chapter 2: This chapter describes the methodology of the working process that was carried out
during the project.

• Chapter 3: This chapter gives a detailed description of the architecture developed for the sys-
tem under development. It also provides an overview of the design decisions taken during the
project.

• Chapter 4: This chapter provides a theoretical background on the subjects required for the
development of the real-time energy estimation system.

• Chapter 5: This chapter gives an overview of the design implementation work carried out during
the prototyping phase of the project.

• Chapter 6: This chapter demonstrates the effectiveness of the proposed methodology through
simulations using various test scenarios.

• Chapter 7: This chapter summarizes conclusions and recommendations for future work.
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2 Methodology

This chapter describes the methodology followed during the project. It defines the project’s different
phases, and activities carried out in the subsequent phases.

2.1 Work Phase Plan

The project is divided into certain phases to make the development process streamlined and easy to
manage. These phases are as follows:

• Scope Definition and Planning: This phase involves understanding the project and stakeholder
concerns in order to define the high-level system requirements. The initial project timeline was
documented in this phase. This was managed in the form of Gantt Chart using the tool Microsoft
Project.

• System Architecture: After the scope was defined, the CAFCR framework was used to decom-
pose the architecture description and to set a building block for the design architecture. This
was further elaborated in Section 2.2.

• Design Implementation: Based upon the V-Model in Section 2.2, the design, development,
and testing have been carried out on the defined system.

• Validation: This phase was necessary to validate the design implementation. The experiments
were done, and the results were analyzed in order to check the functionality of the developed
system.

2.2 Development Process

This section discusses the processes used in the development phase of the project.

CAFCR

The “CAFCR” model is used for the design and development of complicated systems. It is a de-
composition of system description into five views, as shown in Figure 2.1. The different views can
be understood as the customer objectives view (What does the customer want to achieve?) and the
application view (How does the customer realize his goals?) capture the needs of the customer. The
needs of the customer (what and how) provide the justification (Why) for the specification and the
design choices made. The functional view describes what of the product, which includes (despite its
name) the non-functional requirements. The how of the product is described in the conceptual and
realization views. On the one hand, the conceptual view deals with the conceptual picture of the pro-
posed design, whereas the realization view burrows deeper into how these concepts will be realized
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as a design [16].

Figure 2.1: CAFCR Model: Different Process Views [16]

The particular approach was applied to the project. The CAFCR structure obtained by gathering all
relevant views in a single frame is shown in Figure 2.2

CAFCR- Architecture Framework
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Figure 2.2: CAFCR Model: Real-time Energy Consumption Prediction
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The CAFCR framework’s supports the development of the main functionality for the system under
investigation. It can be clearly seen from Figure 2.2 that the primary function of the project is to create
a generic real-time energy consumption prediction system for electric buses. Each of these views is
intertwined and can be linked together. The ideas that need to be realized can be traced back to the
customers’ actual objectives through the intermediate views. The CAFCR framework gives the basis
to define further the system requirements which are discussed in Chapter 3.

V-Model

The rational integrated systems development process emphasizes using the classic "V" diagram. The
left section of the V-model describes the top-down design approach. In contrast, the right-hand section
describes the bottom-up integration aspects from unit testing to the final stage of system development,
which is acceptance testing [17].

Using the notation of the Change Request on the workflow, the high-level interrupt can be visualized
on the process. This will ensure that whenever an interrupt occurs, the process must start from the
requirements analysis phase. The harmony process, as shown in Figure 2.3 consists of two closely
cohabited sub-processes.

• Harmony of System Engineering

• Harmony of System Development
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Design Synthesis
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Procedure
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and Baseline Model

Software Implementation

Model

Figure 2.3: V-Model: Harmony of System Engineering and System Development

The system engineering workflow is iterative with incremental cycles through the requirements anal-
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ysis, system functional analysis, and design synthesis. These increments are based upon use cases.
On the other hand, the system development phase’s workflow iterates through system analysis and
design phase, implementation phase, and different levels of integration and testing. The system en-
gineering and development are going through the process, providing something demonstrable with
each iteration. The creation and use of requirements related test scenarios during the initial phases of
the process is useful for assisting the integration and testing during the later phases. It is crucial to
understand that a central model-driven approach is useful in creating the correct workflow.

2.3 Project Timeline and Milestones

The project timeline gives a detailed overview of the time for different phases during the project. The
initial version of the timeline was proposed during the project’s initiation phase and was updated from
time to time. A detailed version of the timeline with its corresponding milestones achieved can be
seen in Figure 2.4

Figure 2.4: Project Timeline

2.4 Summary

In this chapter, the methodology is provided to carry out the development of the project. It explains
how the different work phases are planned throughout the project which helps in allowing the formu-
lation of the work breakdown structure. This chapter also gives a foundation on the system thinking
concept developed for real-time energy consumption prediction system using the CAFCR model of
development. The V-model also allows to develop a realistic timeline for the project.
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3 System Architecture and Design Description

Understanding the functionality of the system can be attained through a descriptive architecture of the
system. This chapter elaborates and document the architecture and design decisions for the real-time
energy consumption prediction system.

3.1 Model-Based Systems Engineering

The objective of model-based system engineering revolves around identification and derivation of
desired system functionality. It is also important to identify the associated system modes and states
and finally allocating the identified functionality and modes/states to a sub-system structure on a high-
level of abstraction with regards to modeling. The attention remains on identification and allotment of
required functionality and state-based behavior and not on the detailed functional behavior. Model-
based systems engineering begins with analyzing the concerns of the stakeholders. The next section
3.2 describes these concerns in detail.

3.2 Stakeholder Analysis

It is crucial to analyze the concerns of the stakeholders. The two major stakeholders in the project
were dr.ir. Igo Besselink (project lead from TU/e) and Sycada (direct client from Cloud Your Bus
Consortium). Below the primary concerns of these two key stakeholders are listed:

Technical University Eindhoven

• Understanding the energy usage pattern of electric city buses.

• Accounting for the uncertainties such as weather, traffic, road, and payload conditions affecting
the energy consumption of electric city buses.

• Identifying the relevant standardized messages to be sent to the cloud.

Sycada

• Logging data in real-time.

• Analysis of status of electric vehicles and charging point infrastructure.

• Facilitate the energy consumption prediction for optimizing dynamic scheduling.
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3.3 Requirement Analysis

The intention of performing the requirement analysis is to inspect the process inputs. The stakeholder
concerns are the starting point to define the requirements for the system to be developed. These system
requirements educate the developers about the functionality of the system and its performance. More
concrete functional and performance requirements can then be derived from key system requirements
in the developing phase.

The workflow adopted in the requirement analysis phase to make a transition to define the use cases
for the system is described in Figure 3.1

Stop

Analyse/Refine 

Stakeholder 

Requirements

Define System Use 

Cases

Map System 

Requirements to 

System Use Cases

Prioritize and Partition 

System Use Cases

Start

Figure 3.1: Workflow: Requirements Analysis Phase

This process has gone through a few iterations with refinements in the stakeholder requirements before
starting the system’s design. The requirements were prepared and documented in the Requirements
document (See Appendix A for a detailed look at functional and performance requirements and how
these requirements were mapped with the stakeholder concerns). The most high-level requirements
are presented in the Table 3.1. Here GR means that these requirements are contained in General
Requirements packages (More details in Appendix A).
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High-Level Requirements

Table 3.1: High-Level System Requirements for Real-time energy estimation system

ID Name Specification Status

GR - 1 Predict Energy
Consumption

The system must predict the energy consumption needed
for a trip of battery-electric busses.

Done

GR - 2 Generic Model The system must work on vehicles of different
OEM’s.

Done

GR - 3 Cloud Service The system must create a relevant message to be sent to
cloud service.

Done

GR - 4 Dynamic
Scheduling

The system must send a relevant message to the cloud to be
used in dynamic scheduling.

Done

GR - 5 Trip Status The system must be able to identify the start and
stop of the trip cycle for the respective route.

Done

GR - 6 Update
Parameters

The system must account for uncertainties and update the
model parameters periodically to give accurate
energy consumption estimates.

Done

GR - 7 Energy The system must provide as output a pre-determined
energy consumption estimate for the given route and corrected
predicted/estimated energy for the given route.

Done

GR - 8 Database The system must have an updated database to store parameters
for different routes.

Done

GR - 9 Source Code The system must run locally on the embedded device. Done

GR - 10 Reliability The system must produce reliable estimations of the
predicted energy consumption.

Done

3.4 Use Case

After the first set of requirements are detailed, the next step is to identify the use-cases and to make
use-case descriptions. A use-case diagram is mandatory to understand the operational aspects of
the system. The use-case usually is the means to specify the system’s behavior as perceived by the
actors/users of the system. The use-cases actors can be a person, another system, a piece of hardware,
or another software. The system’s internal structure can not be implied or revealed using a use-case
diagram.

The use-case diagram for the real-time energy consumption prediction system was made, and is shown
in Figure 3.2. It can be seen that the system has two primary use cases, also called base use-cases,
which are "Receive CAN-Bus and GPS Data" and "Send information to Sycada Software (SW)". These
two base use-cases are linked with other sub-use cases with the directed relationships explained next:
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Real-time Energy Estimation System
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Figure 3.2: Use-Case Diagram

• Receive CAN-Bus and GPS Data: The base use-case includes the use-cases such as "Identify
route from database", "Identify route start and stop" and "Load initial model parameters and
reference profile". This «include» relationship allows the use-case to be entertained alone while
checking the completeness of the base use-case. On the other hand the "Update reference
profile" use-case was added with «extend» relationship. This relationship allows conditional
usage of the use cases so the base use-case can be used without this extension.

• Send information to Sycada SW: This base use-case includes the use-case "Estimate energy
consumption". The generalization relationship was used with this use-case since it was allowed
to use any other use cases conditionally. The conditional use cases were "Load initial model pa-
rameters and reference profile" and "Update model parameter". Finally, an include relationship
was used amongst the use-case "Perform parameter estimation"

Understanding the use-case description is equally important as understanding the directed relation-
ships among them. A use-case description involves an overview of the actions defining the actors’
interactions and the system to attain a goal. In the following section, a descriptive understanding of
these use-cases is made.

Use-Case Description

• UC-1 : Receive CAN-Bus and GPS Data (Base Use-Case)

1. The data available on the CAN-Bus and GPS data is accessed by the estimation system.
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2. The data is pre-processed before being used in the algorithms of the estimation system.

3. The pre-processed data is checked.

• UC-2 : Send Information to Sycada SW (Base Use-Case)

1. The energy estimation data is recorded and sent to Sycada SW.

• UC-3 : Identify route from database (Sub Use-Case)

1. The estimation system receives the route identification number from the Sycada SW.

2. The estimation system compares the received identification number from the list of iden-
tification numbers and its corresponding parameters and profile in the memory.

3. The estimation system identifies the current route from the set of the available routes.

• UC-4 : Identify route start and stop (Sub Use-Case)

1. The estimation system reads the GPS data available after the pre-processing.

2. The estimation system compares the current start and stop GPS coordinate parameters
from the selected GPS start and stop coordinate route parameters.

3. The estimation system raises a flag (Start Route) when current GPS coordinates are near
the selected start GPS route coordinates.

4. The estimation system raises a flag (Stop Route) when current GPS coordinates are near
the selected stop GPS route coordinates.

• UC-5 : Load initial model parameters and reference profiles (Sub Use-Case)

1. The estimation system checks if the route has started and the Start Route flag is raised.

2. The estimation system loads initial model parameters and reference profiles to be used.

• UC-6 : Update reference profile (Sub Use-Case)

1. The estimation system collects the real-time data from the algorithm.

2. The estimation system updates the reference profile for better estimation.

• UC-7 : Estimate energy consumption (Sub Use-Case)

1. The estimation system performs the real-time estimation and correction on drive-train
energy.

2. The estimation system performs the real-time estimation and correction on auxiliary en-
ergy.

• UC-8 : Update model parameter (Sub Use-Case)

1. The estimation system collects the data in real-time.

2. The estimation system updates the model parameters to correct for discrepancies in the
estimates and actual values.

• UC-9 : Perform parameter estimation (Sub Use-Case)

1. The estimation system performs online-parameter estimation to improve the predictions.
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Use-Case and Requirements Tractability

In order to understand if all the functional and performance requirements of the system are covered by
the use-cases, it is required to associate the use-cases with the requirements. Here, the association is
done with the high-level requirements of the real-time energy consumption prediction system. Further,
this association can be linked to all functional, performance, and technical requirements by using the
mapping between the requirements from the Requirements Document made available in Appendix
A

Table 3.2: Use-Case mapping with High-Level Requirements

ID Name Satisfied with

GR - 1 Predicted Energy Consumption UC-7
GR - 2 Generic Model UC-8
GR - 3 Cloud Service UC-2
GR - 4 Dynamic Scheduling UC-2
GR - 5 Trip Status UC-4
GR - 6 Update Parameters UC-8, UC-9
GR - 7 Energy UC-7
GR - 8 Database UC-3, UC-5, UC-6
GR - 9 Source Code UC-1, UC-2
GR - 10 Reliability UC-7, UC-8

3.5 Architecture

After deriving the use-cases and ensuring the completeness of the system functionality within these
use-cases, the steps involved in further establishing the system’s architecture are the definition of
the structural and behavioral diagrams for the system under development. The tasks of creating the
structural and behavioral diagrams were handled simultaneously.

Structural Diagrams

The structural diagrams explain the static structure of the system and its parts at different abstraction
and application levels. They also describe how these parts are interconnected. The elements in the
structural diagram represent meaningful concepts of the system, like implementation in the real world.
The first diagrams in this category is the system context diagram.

System Context Diagram: The system context diagram is a high-level view of the system that defines
the boundaries of the system and its environment. It shows all the entities present in the environment
with which the system interacts. It also gives complete information about the flow of information
between the system and the entities in the environment. The entities available in the environment can
be sensors, actuators, users, other systems, or software. The system context diagram is described in
Figure 3.3. In this figure, it can be seen that the system of interest is a real-time energy consumption
prediction system that is in-acting with other systems in the environment. Its direct linkage is with the
communication layer which is the software prepared by the stakeholder [Sycada], which further inter-
acts with the CAN-Bus and the cloud unit. The input in this case for the real-time energy estimation
system will be the CAN-Bus data, and the output from the system will be the energy consumption
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estimates.

BUS

Operator

CLOUD UNIT

Operator Command

Cloud Informa�on

Cloud Informa�on

Figure 3.3: System Context Diagram

Block Definition Diagram: The block definition diagram shows the essential structural elements or
blocks of the system and their relationships/dependencies. For the real-time energy estimation system,
the blocks are defined in Figure 3.4. The detailed functionality of each block is as follows:

• Cloud Unit: The block cloud unit is used to send the route information by the operator for
the particular bus schedule. The information is received by the communication layer software
developed by Sycada from this block. This block is actually out of the system scope and is
drawn just to connect the dots. The functional blocks in scope are the ones contained in the
On-board unit section in Figure 3.4.

• Receive Data: The block receiving data is in direct contact with the communication layer
software. It receives the relevant information required for a real-time energy estimation system
to work, such as CAN-Bus and GPS data and the route information.

• Lookup Table: For corresponding route ID’s certain parameters that are unique to the route ID
are stored in the lookup table block.

• Database: The database block stores the reference data profiles both base and updated reference
profiles for the specific routes. This database stores information on data profiles to perform the
estimations. These data profiles are Road Characteristic Indicator (RCI), velocity, voltages and
currents, distance traveled, time, and auxiliary power profile.

• Online Parameter Estimation: This block performs the parameter estimations to correct the
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estimates as the data becomes available in real-time.

• Measure Data: This block performs all the tasks involved with measured data. The tasks
include pre-processing and performing health checks.

• Model Parameter: This block allows the parameter values to be fed into energy estimation
model parameters. It handles both the initial and updated parameters required by the model to
provide energy estimates.

• Energy Consumption Model: This block contains the model of energy consumption by the
electric vehicle.

• Energy Computation: Taking its inputs from the energy consumption model, this block pro-
vides at any specific moment in the trip, the estimate for the energy consumed by the vehicle by
the end of the trip.

• Send Data: This block is used to send the relevant information required to the cloud unit using
the communication layer software.

Cloud Unit

Route Informa�on

(Route ID)

Operator

Figure 3.4: Block Definition Diagram

Detailed Block Definition Diagram: A detailed block definition diagram was designed to complement
the design architecture. It defines the functions of the system under development in more detail. It was
designed, keeping in mind all technical design, functional, and performance requirements captured in
the Requirements Document. The scope of the system design can be seen in Figure 3.5. The blocks
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captured in the bottom left of the figure surrounded by the dotted orange line are out of the scope of
the system design.

The diagram captures the internal structure of the system blocks in terms of its properties and connec-
tions between these properties. The interactions between the components and the information flow in
the system can be observed with the detailed block definition diagram.
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Figure 3.5: Detailed Block Definition Diagram

The system requires a flow of information from the communication layer software to ensure its func-
tioning. Route Information (RI) is one of the critical signals needed to identify the actual route of
the bus. Using this information, the corresponding reference profile is extracted from the database
to allow the estimation algorithm to start predicting the energy consumption. As soon as the new
measurements are available, the estimation algorithm tries to improve the estimations by minimizing
the error between the measured and estimated value of energy. The estimations are reviewed for their
reliability. The estimated energy is sent back to the communication layer software, ensuring the cor-
rect information can be made available to the user over the cloud service. Furthermore, during the
operation, some data is stored in memory for post-processing and updating the reference profiles in
the database. Also, system checks are performed during the whole operation (Described in Section
5.3).

Interface Diagram: The energy consumption prediction system (software) developed has to work
in harmony with the software developed by the client. It was essential to understand the interfaces
between these two software in order to ensure the overall functionality and deployment of the system.
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The interface diagram is shown in Figure 3.6.
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Figure 3.6: Interface Diagram

This diagram is used to understand the information flow between the two software’s and in what
direction. More details regarding the description, type, resolution and format of the signals is available
in the Interface Documentation (Refer Appendix B).

Behavioural Diagrams

The behavioral diagrams explain the functional and dynamic behavior of the objects in the system.
These behaviors can be described as a series of changes to the system over time. Each behavioral
diagram plays a specific role in describing the use-case behavior. The Activity Diagram can be used
to describe the overall functional flow of the use-case. It allows to group functional requirements
in action with the equivalent operations and grants a link in between them. On the other hand, the
Sequence Diagram elaborates upon the interactions between the actual operations and the actors.
A State-Chart Diagram assembles the information from the activity and sequence diagram. This
diagram allows putting this information into the context of the system states. It adds to it the behavior
of the system due to external stimuli of the different priorities [17].

System Activity Diagram: These diagrams show sequence and conditions for coordinating lower-level
behaviors and are comparable to the classic flowcharts. It can define a workflow, process, or algorithm
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by decomposing the flow of the implementation into a set of actions and sub-activities linked by
transitions and various connectors. An activity diagram usually is a simple line order of actions, but
it can also be a complex series of parallel actions with conditional branching and concurrency.

Figure 3.7: System Activity Diagram

The system activity diagram in Figure 3.7 illustrates four features in the developed system in Mat-
lab/Simulink. These features of the system are as follows:

• Offline Estimate: This feature in the system is used to have an energy estimate for the given
route as soon as the route has been selected. The energy estimate for the route is made available
before the start of the trip on that particular route.
For this feature the line of order of actions starts with storing the data required by the system
for every trip cycle for the given route. It is then followed with some data pre-processing on the
individual trip cycle. This data is further saved in the different data profiles as structured data
for each individual trip cycle and saved in the form of files (.mat or CSV). After the 16 data
files with data information from individual trip cycles are available, an averaged data profile
is created and stored as an individual file. The rationale for the selection of 16 data files is
provided in Chapter 5.

• Parameter: This feature in the system exists in order to store certain route parameters, data
reference profiles, and other information in memory.
Once the averaged data profile is available from the offline estimation tasks performed, the
available individual data file is stored as "Base Data Reference Profile" in the memory, which is
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later used by online parameter estimations to perform the estimations. Similarly, it also stores
the "Updated Data Reference Profile" as the result of the post-processing feature.

• Online Estimation: The most critical feature of the system is performing the estimations in
real-time and executing corrections on the previous estimates as the new measurement data
becomes available.
The action starts with checking if the "Updated Data Reference Profile" is available in the
memory. If this file is available, then the online estimations are initialized with the updated
profile; otherwise, the estimation algorithm uses the "Base Data Reference Profile". Once the
parameters and the data profiles are loaded, and the system receives the CAN-Data, it starts
checking if the trip has begun using the GPS coordinates data. Once the information is there
that the trip has begun, the energy estimations start. Simultaneously, the Road Characteristics
Index (RCI) profile [more explanation in Chapter 5] is created, which is required for updating
the reference data profile. Concurrently, it is also ensured that the system checks are being
performed by the system.

• Post-Processing: Another important feature of the system is to carry out the processing of data
during estimations to update the reference profile with the new incoming data. This allows the
system to learn by itself and improve the estimations while accounting for the uncertainties
occurring in the operational domain of the vehicle.
The activity action starts with the collection of the relevant data during the estimations and
saving this data as individual profiles. When the two trip cycles (see Remark 3.5.2) have been
finished, and the data from both trips are available in the form of files. This data is averaged
in order to create an "Updated Data Reference Profile" which is stored in the system memory.
The system also ensures the good health of the data files saved in the memory by performing
relevant checks.

Remark 3.5.1 As shown in Figure 3.7, the Data Profile is the data structure in which some data is
stored as reference data, which is used by the estimation algorithms. This data structure includes
arrays of data of the distance traveled on the route, time taken for the trip cycle, RCI profile estimated
during the trip cycle, and auxiliary power consumed during the trip cycle.

Remark 3.5.2 The rationale for updating the Updated Data Reference Profile after the two trip
cycles is because, during the analysis of data collected on for about three weeks from a unique bus.
It was observed that the particular bus was scheduled to travel on the same given (selected) route at
most two times in a day. It then made more sense to update the reference profile on a daily basis to
account for the uncertainties of the weather, traffic, and payload conditions and to adapt the reference
profile with these conditions to have a better estimate.
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State Chart Diagram: A state-chart diagram describes the state-based behavior of a block. It is one of
the most significant behavioral diagrams as it has the ability to combine information from the activity
diagram or sequence diagram and adds to it the event-driven block behavior. A state-chart diagram is
mostly composed of a set of states joined by transitions and various connectors. Whenever an event
is triggered, it leads to the transition from one state to another state. Also, it is capable of performing
actions on transitions and on state entry or exit.

Figure 3.8: State Chart Diagram

In Figure 3.8, it can be observed that upon booting the device, the system enters into the "Energy
Estimation System" state. Upon its entry to this state, it is first initialized. Once the initialization
is completed with the loading of parameters and data reference profiles, the system jumps into the
"Check Trip Status" state. Here, it monitors if the trip has yet started or not. Upon the start of the trip,
the system moves to the "Energy Estimation" state, where it performs the desired functions. Upon
completing the trip, the system stores the relevant data into memory and checks for the number of trip
cycles already done for the selected route. If the number of trip count is less than 2, it enters the "Check
Trip Status" state; otherwise, the system enters into the "Post-processing" state. Here, it performs the
required activities of updating the reference data profile. As the reference data profile file is updated
with the new reference data profile, the system goes to the "Initialization" state and performs the
assigned duties to ensure that the "Updated Reference Data Profile" is loaded, and further estimations
are occurring using the new profile.
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3.6 Summary

In this chapter, the model-based systems engineering approach was used to define the system and
make design description more tangible. The concerns of the stakeholders were examined to make a
descriptive analysis on the requirements and defining the system specifications. Later, with the help
of the descriptive structural and behavioural architectural diagrams a design concept was proposed for
the implementation.
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4 Theoretical Framework

A crucial aspect in predicting the energy consumed by an electric vehicle is the selection of a suitable
model. There exists two categories of energy consumption models: physical models and data-driven
models. Physical models are analytical models established on underlying principles of physics. On
the other hand, data-driven models are statistical models representing correlations between input pa-
rameters and consumed energy using real-world data. Nonetheless, the characteristics of these models
is confined to the quality of data. Also, in circumstances when the model is used to anticipate the ve-
hicle behavior outside the range of available data, the accuracy of the model can not be ensured. There
are also studies in which the concept of the physical and data-driven model are combined. This idea
is adopted for the energy consumption prediction system for electric city buses, where the practiced
methodology is principally data-driven but is backed with the model design that is solidly based on
physics [18].

This chapter discusses the energy consumption modeling of electric city buses in Section 4.1 and the
idea of parameter estimations in Section 4.2.

4.1 Energy Consumption Model

The energy consumption of vehicle is influenced by a number of factors, be it vehicle usage and
driving behavior and various environmental factors. Some of the key elements are as follows:

1. Forces acting on the vehicle such as rolling resistance force, aerodynamic force, force due to
the road slope, etc.

2. Effective mass of the vehicle and mass due to varying passenger load over the route.

3. Drive-train efficiency.

The equation of motion of a vehicle is used to calculate the energy consumption of the drive-train of
the vehicle. The longitudinal forces can be expressed by (4.1).

me f f ax = Fx −Fr −Faer o −Fg sin(α) (4.1)

here, ax is the acceleration of vehicle in (m/s2); Fx is the propulsion force acting on the wheels in
(N ). me f f is vehicle effective mass, which is sum of the vehicle mass and equivalent mass of the
motor and wheel inertia. The effective mass is commonly 102% of the total mass of the vehicle. Fr is
rolling resistance force expressed in (4.2) [19][20].

Fr = fr mg cos(α) (4.2)
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here, fr is coefficient of rolling resistance in (−); g is acceleration due to gravity and α is the road
slope. Faer o is force occurring due to aerodynamic drag and is expressed in (4.3).

Faer o = 1

2
ρCd A f (v −W )2 (4.3)

here, ρ is the air density in (K g /m3); Cd is coefficient of aerodynamic drag in (−); A f is the front
area of vehicle in (m2); v is the vehicle velocity in (m/s) and W is wind speed in the direction of the
vehicle in (m/s). The road slope force Fg is expressed as follows:

Fg = mg sin(α) (4.4)

Substituting the above equations in (4.1) and rearranging them; the resultant force equation can be
used to derive the expression for the power drawn by the drive-train from the battery and is expressed
as a function of vehicle velocity (v) and acceleration (ax) by (4.5).

Pdr i ve =
v

η
[me f f ax + fr mg cos(α)+ 1

2
ρCd A f (v −W )2 +mg sin(α)] (4.5)

here, η is drive-train efficiency.

In most of the research, the vehicle’s motion is assumed to be a function of time. Hence, the total
energy dissipated can be modeled as the sum of drive-train and auxiliary power integrated over time.
In the time domain, the model can be represented by (4.6).

E(T ) =
∫ T

0

v(t )

η
[me f f ax (t )+ fr mg cos(α))+ 1

2
ρCd A f (v(t )−W (t ))2 +mg sin(α)]d t

+
∫ T

0
Paux (t )d t

(4.6)

where, E(T ) is the total energy consumed at time T for a given route.

The model in (4.6) has a set of vehicle parameters (η,m,Cd ,A f ) and other set of environmental param-
eters ( fr ,α,ρ,g ). In order to use this model, it is required to accurately determine each of the model
parameters, which is a challenging task. It is almost practically impossible; due to the presence of
uncertainties in the operation domain of the vehicle, for e.g. variations in weather, road, traffic and
payload conditions. Some of the challenges in estimating the parameters is explained below:

1. Rolling resistance coefficient ( fr ): This coefficient can vary due to various reasons such as;
road type, ambient pressure, ambient temperature, humidity, tire pressures, snow, rain etc.

2. Vehicle mass (m): The mass of the vehicle can change when the nuumber of passengers
changes.

3. Road gradient (α): The road gradient depends upon the construction of the road and can be
extracted from available online elevation data with additional efforts (like setting up API con-
nections).

After studying the use case of electric city buses, it was observed that making a prediction of vehicle
energy consumption for a given route will be difficult if the multi-parameter model was used for
estimation. For city public transportation, the route location is always fixed. On the other hand,
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driving time taken can vary depending upon traffic conditions or other delays. So, instead of using the
driving time based traditional model, it was decided to use a distance-based model in order to produce
more reliable energy consumption estimation for a given route with less uncertainties.

Since energy dissipated is estimated with respect to distance traveled, it is logical to implement this
method for the estimation of drive-train energy consumption. In this case, only the energy is consumed
once the vehicle starts to move. On the other hand, auxiliary peripheral’s continue to use the energy
from the battery even if the vehicle was standing still. Estimations can thus not be solely based on
the distance traveled approach. A hybrid approach will be used in which both aspects of estimation
using the distance-based and time-based approach are considered. Energy can be described by forces
acting on the body during the displacement or power dissipated over time. Hence, (4.6) was updated
as follows:

E(T ) =
∫ s(T )

0

1

η
[me f f ax (s(t ))+ fr mg cos(α(s(t )))+ 1

2
ρCd A f (v(s(t ))−W (s(t )))2

+mg sin(α(s(t )))]d s +
∫ T

0
Paux (t )d t

(4.7)

the travelled distance s(t ) is a function of time t and can be expressed as:

s(t ) =
∫ T

0
v(t )d t (4.8)

Here, the energy E(T ) now depends upon both the distance traveled and time. The velocity and
acceleration are interpolated w.r.t. distance. This approach is expected to reduce the uncertainty due
to variations in time taken for a given route.

It can be seen in (4.7), all terms except aerodynamic force are mass-dependent. The propulsion force
term can be hence normalized with the mass ′m′, which remains constant during the sections of the
trip. This makes (4.7) as:

E(T ) =
∫ s(T )

0

m

η
[
me f f ax (s(t ))

m
+ fr g cos(α(s(t )))+ 1

2m
ρCd A f (v(s(t ))−W (s(t )))2

+ g sin(α(s(t )))]d s +
∫ T

0
Paux (t )d t

(4.9)

The energy consumption prediction is focused on electric city buses and limited to city travel; it is
assumed that the impact of aerodynamic drag on the energy consumption estimation is small and can
be ignored for this use case. (4.7) can be written in terms of propulsion force Fx and mass terms as
follows:

E(T ) = m

η

∫ s(T )

0
(

Fx (s(t ))

m
)d s +

∫ T

0
Paux (t )d t (4.10)

Equation 4.10 standalone can represent the road characteristics with non-vehicular parameters and
also the drive-train efficiencies. A new term has been introduced with this equation which is RCI
(Route Characteristics Indicator). The RCI is defined as energy consumed per unit distance per unit
mass in (J/(K g )(m) = K g (m2)/(K g )(m)s2 = m/s2) giving it the unit of acceleration. So, (4.10) can
more easily be expressed as:
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E(T ) = m
∫ s(T )

0
RCI(s(t ))d s +

∫ T

0
Paux (t )d t (4.11)

The RCI can be calculated from the drive-train power request from the battery and the vehicle velocity
for a given route.

RCI= Fx

m
= Pdr i ve

m v
(4.12)

The drive-train power Pdr i ve in the equation can be calculated by measuring the voltages and currents
at drive-train terminals. See Figure 4.1.

Pdr i ve =Vdr i ve Idr i ve (4.13)

The auxiliary power request can be calculated by measuring the voltages and currents at battery and
drive-train respectively.

Paux = Pbat −Pdr i ve (4.14)

where,

Pbat =Vbat Ibat (4.15)

The initial version of the model was designed by using the real-world data collected from a passenger
electric research vehicle (TU/e Lupo EL) [21][22]. The model (4.11) uses the reference RC I for
a given route for offline estimations by using the data collected over multiple cycles for the route
repeatedly. This part was updated later for making the estimations and corrections over the drive-
train energy estimation part for online estimation case (explained in Chapter 5). On the other hand, a
passenger electric vehicle withdraws almost a constant amount of auxiliary power over the entire trip
for a given route. So a mean value of auxiliary energy measured over multiple cycles was added over
the drive-train energy in order to get the overall total energy estimation of the trip for a given route.

After the application of the same model on electric city buses, it was observed from the results that
the auxiliary and drive-train power request are not as consistent as passenger electric vehicle over
different cycles for a given route. In the case of electric city buses, the drive-train power request is
influenced by the weight of passengers being carried for a particular trip on a given route. Several
factors influenced the auxiliary request; one of the most dominant is ventilation and air conditioning,
which is further dependent upon a number of other factors, such as; number of passengers travelling
in the bus and environmental conditions. So, it is proposed to update the mass term for drive-train
energy estimation and adding a correction term for the auxiliary energy estimation part that accounts
for the above-mentioned influencing factors on auxiliary energy estimation. Both of these terms were
subjected to change as the trip progress to make corrections in real-time energy estimation of a given
route. Similar to the drive-train energy estimation case, a reference Paux profile was used for a given
route [23]. The updated model is described in equation 4.16

E(T ) = m(s(t ))
∫ s(T )

0
RC I (s(t ))d s +n(t )

∫ T

0
Paux (t )d t (4.16)
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Figure 4.1: Power Measurement Configuration of Electric City Buses

In (4.10) m(s(t )) is a coefficient described as a function of travelled distance which is further the
function of time, this term not only accounts for the mass variation of the vehicle over the route but also
accounts for other environment uncertainties such as rolling resistance, road slope and aerodynamic
drag etc. n(t ) is coefficient described as function of time that accounts for the variable demand of
energy from the auxiliary units.

4.2 Online Identification

Based upon the use-case of the energy estimation model discussed in Section 4.1 on the electric
city buses, it is quite useful to have a reference profile to be available on-line when the system is in
operation. This on-line available reference model allow the system to make the best predictions for
the next outputs and can be regarded as an adaptive prediction method (see Figure 4.2).

SYSTEM

DECISION

Figure 4.2: Adaptive Methods
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The challenge now is concerned with estimating the parameters m and n of the model as the new data
is made available during the operation. A typical choice is made, and estimation is performed using
recursive algorithms (also known as online, real-time identification, adaptive parameter estimation, or
sequential parameter estimation). The algorithm estimates the parameter values at each time step by
using currently made observations (measurement data) and using previous parameter estimates. These
algorithms are a viable option because they are efficient in terms of memory usage and also posses
smaller computational demands [24].

4.3 Online Parameter Estimation

The recursive algorithms used for online parameter estimation can be parted into two categories. The
infinite-history algorithm and finite-history algorithm. The infinite-history algorithm aims to mini-
mize the error between the measured and the estimated outputs for all time steps from the beginning.
Whereas, the finite-history algorithm aims to minimize the error between the measured and the esti-
mated outputs for a finite number of past time steps. In order to carry out estimation for this particular
application; i.e. estimation on mass and auxiliary power correction gain, relevant results were ob-
tained when the complete route data was handled in order to capture different behaviour of energy
consumption over the given route

So, the infinite-history recursive estimation algorithm was used for this particular application.

Remark 4.3.1 The finite-history recursive algorithms are generally easier to tune as compared to the
infinite-history recursive algorithms when the parameters have accelerated and possibly considerable
alterations over time.

Recursive Infinite-History Estimation

In the estimations using the least square approach, unknown parameters of a linear model are adapted
such that the actual difference between the observed and the computed value stays minimum. In
the general form of the recursive estimation algorithm, it follows a set of regression equations that
minimizes cost function. For the linear model (4.16) in consideration it translates to finding the
parameter that minimizes the cost function (4.17).

J (θ̂,k) = 1

2

k1∑
k=1

[y(k)− ŷ(k)]2 (4.17)

the predicted estimate of the parameter is given by the following equation:

θ̂(k) = θ̂(k −1)+K (k)[y(k)− ŷ(k)] (4.18)

where θ̂(k) is the estimation of parameter at every sample k, y(k) is the observed or measured output
at sample k and ŷ(k) is the estimation of y(k) based on observations up to samples k −1. K (k) gain
determines how much the current estimate error [y(k)− ŷ(k)] affects the estimate of the parameter.
The main idea of the algorithm is to minimize the prediction error term.

The model used to obtain the energy estimation (refer to equation 4.16) is linear, and hence, a linear-
regression form of the model is used for online parameter estimation. Thus, the role of the gradient
ψ(k) can be expressed by the following equation.
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y(k) =ψT (k)θ0(k)+e(k) (4.19)

The predicted estimate of the output is given by the following equation:

ŷ(k) =ψT (k)θ̂(k −1) (4.20)

where, ψ(k) is the regressor vector or gradient of the predicted output ŷ(k|θ) with respect to param-
eters θ, which is computed based upon the previously measured input and output values. e(k) is
assumed to be white noise. The definitive form of ψ(k) is determined by the structure of the polyno-
mial model.

The estimation gain K has the following form.

K (k) =Q(k)ψ(k) (4.21)

The parameters that are needed to be estimated are time-varying, and it is required to keep track of
these variations over time. So, the infinite-history recursive estimation algorithm becomes a viable
choice. This has different types; forgetting factor, Kalman filter and gradient-based approach to com-
pute the estimation gain K (k) and covariance Q(k) which are discussed further in the next sections.

Forgetting Factor

In some applications where the time-varying parameter estimation techniques are employed, periodic
resetting of the estimation schemes can possibly capture the new values of the parameters when the
parameter values changes abruptly. When parameters are varying continuously with a slow rate, a
different approach can be employed. The concept of a forgetting factor can be a viable approach. In
this algorithm, the older data is discarded gradually in favour of the most recent incoming information.
In the least square approach, the forgetting factor can be viewed as dispensing less weights to the older
data and more the newer data [25]. The cost function takes the following form in this approach:

J (θ̂,k) = 1

2

k1∑
k=1

λk1−k [y(k)− ŷ(k)]2 (4.22)

λ used in Equation 4.22 is the forgetting factor, with the value in the range 0 < λ ≤ 1. This operates
as the weight which shrinks for the more outlying data. The difference in using this approach is
the update of the correction gain K (k). The equations used in the Forgetting Factor algorithm are
summarized below:

K (k) =Q(k)ψ(k) (4.23)

Q(k) = P (k −1)

λ+ψT (k)P (k −1)ψ(k)
(4.24)

P (k) = 1

λ

(
P (k −1)− P (k −1)ψ(k)ψT (k)P (k −1)

λ+ψT (k)P (k −1)ψ(k)

)
(4.25)
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The forgetting factor approach discounts old measurements exponentially such that an observation
that is τ samples old carries weight equal to λτ times the weight of the current observations. τ= 1

1−λ
is the memory horizon of the algorithm. Typically, the measurements older than τ = 1

1−λ carries a
weight that is less than 0.3.

Remark 4.3.2 In the conventional recursive least square approach the covariance matrix P (k) is
updated and vanishes to zero with time. This makes the algorithm losing its capability to keep track of
the changes in the parameters. However, in the forgetting factor approach, the covariance matrix is
divided by λ at every update and allows the slowing down of the fading out of the covariance matrix.
Also, the algorithm must ensure that the covariance estimator must be kept bounded in order to assure
that the tracking error will be bounded. More rigorous mathematical arguments can be found in [26]

Remark 4.3.3 The Forgetting Factor algorithm becomes a Kalman Filter if λ= 1 with R1 = 0 and R2

= 1

Kalman Filter

Kalman filter, also called as Linear Quadratic Estimator (LQE), is essentially a set of mathematical
equations which implements a predictor-corrector type estimator, these estimations are optimal as it
minimizes the error covariance when certain conditions are met. It is a method that uses the sequence
of measurements observed over time, that accommodates statistical noise and other inaccuracies. This
algorithm yields estimates of unknown variable that conduces more accuracy than those based upon
single measurements. These estimates are made by using a joint probability distribution over the
variables for each time-frame.

The Kalman filter handles a process by using a feedback: the filter estimates the process parameter at
certain sample and obtains feedback in the form of measurements. The related algorithms for the filter
fall under two categories: sample update equations and measurements update equations. The sample
update equations are usually responsible for projecting ahead in sample, the current parameter and its
error covariance estimation to realize a pr i or i estimate for the next sample step. The measurement
update equations ensures for the feedback - i.e for incorporating a new measurement into the a pr i or i
estimate to retrieve an improved a poster i or i estimate. The estimation algorithm hence resembles
of a predictor-corrector algorithm.

The equations used in Kalman filter adaptation algorithm are summarized to compute the Kalman
gain K (k) as in (4.21).

K (k) =Q(k)ψ(k) (4.26)

Q(k) = P (k −1)

R2 +ψT (k)P (k −1)ψ(k)
(4.27)

P (k) = P (k −1)− P (k −1)ψ(k)ψT (k)P (k −1)

R2 +ψT (k)P (k −1)ψ(k)
(4.28)

In the prediction step the Kalman filter projects the parameter and error co-variance ahead in sample.
It then performs a correction step and computes the Kalman gain. It then updates the estimates with
measurements y(k) and finally updates the error co-variance P (k). This process is repeated with
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SAMPLE

UPDATE

(“Predict”)

MEASUREMENT 

UPDATE

(“Correct”)

Figure 4.3: Kalman filter cycle. Sample update projects the current state estimate before the
actual measurement is available. The projected estimate is later updated by measur ement update.

previous a poster i or i estimate used to project new a pr i or i estimate. This recursive nature of
Kalman filter makes it useful for practical estimation [27].

It is ensured that the P (k) computed is a positive-definite matrix.

Assumption 1 P (k) is computed assuming that the residuals (the difference between estimated and
measured output) are white noise, and the variance of these residuals is 1.

The R1 and R2 in Kalman filter algorithms are the process error co-variance (co-variance matrix of
parameter changes) and measurement error co-variance (variance of residuals).

Assumption 2 Q(k) computed in Equation 4.27 to calculate the Kalman gain assumes that the pa-
rameters θ0(k) are described by the random walk.

θ0(k) = θ0(k −1)+w(k) (4.29)

where w(k) is Gaussian white noise with the covariance matrix R1 as:

E [w(k)wT (k)] = R1 (4.30)

R2 is the variance of the e(k)

y(k) =ψT (k)θ0(k)+e(k) (4.31)

Assumption 3 It is assumed that R1 and P (0) matrices are scaled such that R2 = 1.
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Normalized and Unnormalized Gradient

In the linear regression case, the gradient method is also known as the least mean square (LMS)
approach. The only variation in this case from the above-discussed cases is in the computation of the
gain used for estimation of the parameters. The gain Q used for computation of estimation gain K in
Equation 4.21 uses the following form in case of unnormalized gradient case:

Q(k) = γ (4.32)

and in case of normalized gradient case:

Q(k) = γ

|ψ(k)|2 +Bi as
(4.33)

The normalized gradient algorithm is used to scale the adaptation gain, γ, at every step by the square
of the two-norm of the gradient vector. In case if the gradient vector is closer to zero, a bias term is
introduced in the scaling factor to avoid uncertain jumps in the estimated parameters [24].

4.4 Summary

The work established in this chapter provides a novel approach for modeling the energy consumption
of the electric vehicles. This involves introduction of a new concept for estimation of the drive-
train energy consumption using the Road Characteristics Indicator. An approach which requires the
inclusion of minimal number of the parameter variables to be introduced in the energy modeling
concept. This ensures the inclusion of self adapting estimation policy feasible to be applied to have
predictions from the proposed model.

36 Cloud Your Bus



Eindhoven University of Technology

5 Design Implementation

The key objectives of having a model-based system engineering concept, as discussed in Chapter 3
are as follows:

• Identification and derivation of required system functions.

• Identification of associated system modes and states.

• Allocation of the identified system functions and modes to a subsystem structure.

In Chapter 4, the theoretic framework was developed. Using the knowledge gained from both these
subjects, the design of the system was implemented in Matlab/Simulink. This chapter will give the
reader a description about the implementation of the proposed design.

5.1 Offline Energy Estimation

In some research, emphasis is put on accurately measuring the energy estimate by using the driving
cycle and vehicle parameters (mass, rolling resistance coefficient, air drag coefficient, active frontal
area), gradient of the road, and vehicle speed relative to air. Although some of these parameters can
be determined relatively easy, others are more strenuous to assess and show variation in the operation
domain of the vehicle. This makes the energy estimation for electric vehicle a challenging task.
Moreover, for an electric city bus, the load will vary during a daily trip on a given route; this makes
it even more difficult to accurately predict the energy consumption by these vehicles. Instead of
estimating many parameters, this research is limited to estimate only two correction parameters, as
explained. This part of the system development are the building block for the development of a real-
time energy consumption prediction system.

In this section the a procedure will be discussed to prepare the reference RCI profile with pre-
processing the data stored offline from the multiple trip cycles of a city electric bus running on a
given route. The data was collected from the beginning of the route to the end of the route, and a
database was established from this historical collection of data. A list of the most important signals
required to maintain this database includes; time, GPS (latitude, longitude, and heading), vehicle
speed, battery voltages and currents, and the drive-train voltages and current. The data for these sig-
nals were collected from the vehicle CAN-Bus. The sampling frequency of the data collected for the
establishment of the system feature was 10 Hz. Using the reference RCI and Power profile obtained
using the data, the initial estimations on the energy consumption can be made at the offline estimation
stage.
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Data Pre-processing

The data used in the research and development of the real-time energy estimation system has been
collected from a city electric bus, which was in operation in the city transportation setting. To create
the profiles from the pool of the data collected over various routes in the city, a particular route data
was extracted using the selected route’s GPS coordinates. The time-based data was interpolated to the
distance-based data.

• Route Range: The GPS coordinates of the starting bus stop and the final bus stop was extracted
from the Google Maps. These two coordinate points were used to extract the data in between the
two locations by using a function "idxStartStop" developed in the software library of the system.
This function uses the pre-allocated parameters of GPS coordinates (Start and Stop location) to
extract the relevant data, See Figure 5.1 for the route description. To ensure the robustness of
the functionality of this function, a two-step coordinate verification was developed while giving
an uncertainty range around the given GPS coordinates to raise Start Route and Stop Route
flags. The uncertainty range was kept to 0.0004 in latitude and longitude (which means a range
of about 40 m in the distance). The uncertainty range allows a fail proof functionality of this
function. It ensure the precision of the route start and stop identification by the system. The
range was selected after performing the tests on the available data.
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Figure 5.1: Selected Test Route: GPS coordinate map

• Re-sampling Data: The data collected from the CAN-Bus has the total distance travelled val-
ues varying from segment to segment (for different trip cycles) due to GPS operating errors or
driver behaviour of using the bus. An averaged total route distance was calculated from the
collected data. Next an equi-sampled distance data array was created with which the other data
signals were interpolated. This technique ensured the identical number of sampling points for
the stored data arrays in the reference data structure.
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Reference RCI and Auxiliary Power Profile

For a given route, the RCI can be determined for every trip using (4.12). The RCI profile obtained
was re-sampled to the travelled distance domain. Similar actions were employed to create the power
profile for the auxiliary estimations. Averaging of multiple individual RCI and power profile has been
done to obtain the averaged reference profiles.

To create the averaged reference profile, a minimum number of trip is required for the selected route to
capture different dynamics. The determination for minimum trip cycle size came from the evolution
of root-mean-square error (RMSE) of the latest profile with the chosen baseline profile. The primary
deciding factor is the RCI profile and not the auxiliary power profile due to the dominance of the
contribution from the RCI profile in the total energy consumption. The RMSE between the newest
RCI profile and the baseline RCI profile is described by (5.1).

RMSERC I =
√∑n

i=1(RC INew −RC IB ase )2

n
(5.1)

where n is number of data points in the RCI profile, RC INew is the averaged RCI profile created using
multiple data profiles. RC IB ase is the baseline profile which can be defined as the selected route trip
reference profile.
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Figure 5.2: Evolving of root-mean squared error
(RMSE) with the progression of data from No. of trips

It can be observed from the Figure 5.2 that as the number of trips increases the RMSE value goes
up. It can also be observed that it became fairly steady after the 16 trip cycle data, which can be
considered as the inflection point for the RMSE tendency for variation in the value. Therefore, as
the RMSE becomes consistent after 16 trip cycles, it was concluded that 16 trip data cycle would
be sufficient to create the offline reference profile (AKA Base Data Reference Profile, which include
both the averaged RCI and auxiliary power profile and other relevant data (check Remark 3.5.1)). The
averaged reference data profile will be sufficient to capture the different dynamics of the model and
will be suitable to perform estimations.
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Offline Energy Estimate

With the availability of the averaged reference profile as shown in Figure 5.3, the offline energy
consumption can be estimated.

(a) Averaged RCI Profile
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(b) Averaged Auxiliary Power Profile

Figure 5.3: Base Data Reference Profile computed offline using 16 trip data cycles.

The total energy estimation for the selected route using the base data reference profile is shown in
Figure 5.4 with a varying range of ± 2.5 kWh

Figure 5.4: Total energy consumption from 16 cycle data

While estimating offline, the correction term, which is the mass of the bus, remains constant. This
forces the estimated total energy consumption for the investigated route to stay fixed for the entire
route.

40 Cloud Your Bus



Eindhoven University of Technology

5.2 Online Energy Estimation

To improve the accuracy of the energy consumption prediction, it was required to update the model
parameters in real-time as the bus is driving along the route. The parameters of the model in real-time
(online) estimation algorithms were updated as the new measurements are available. Two parameters
needed to be updated in real-time were mass-estimate for drive-train estimation and auxiliary power
correction gain-estimate for auxiliary estimation. (refer to equation 4.16). All other influencing factors
on energy estimation were considered as perturbations [28].

In Section 4.3, various methods are discussed to perform the online estimation. These algorithms were
developed and deployed for this application. The linear Kalman filter approach was chosen for the
final deployment because of its superiority and its fit with the application. The rationale for choosing
this approach is provided in the Table 5.1 below:

Table 5.1: Rationale for selection of type of Online Parameter Estimation

Algorithm Type Pros Cons

Gradient based
Simple implementation Correction gain remain constant

Less memory and processing
required

Less Robust

Absolute error is ≈ 5%

Forgetting factor

Adaptive gain estimation
based upon error co-variance

Gain estimation is sensitive.
Better for system with quick

changing dynamics in which last
few measurements are critical

Absolute error is ≈ 8%

Kalman filter

Adaptive gain estimation
based upon error co-variance

Relatively complex to
implement

Absolute error is < 2%

More robust results
(tested on limited data)

Better estimation on
overall historical data

The Kalman Filter uses various equations which are summarized in Section 4.3

Remark 5.2.1 Applying the terminology of the Kalman Filter to this application in discrete time, the
regressor vector ψ(k) is

∑k
0 RC I (k) and parameter vector θ is m(k) for drive-train estimation and

correction. While for auxiliary estimation and correction, the regressor vector ψ(k) is
∑k

0 Paux (k)
and parameter vector θ is n(k).

To use the Kalman recursive algorithms, an initial value is required. In the drive-train energy consump-
tion estimation and correction algorithm, the parameter vector θ̂(0) is initialized with the unladen mass
of the vehicle (which is 19000 Kg) and covariance matrix P (0) that indicates the parameter error was
initialized with the identity matrix. Furthermore, in the auxiliary energy consumption estimation and
correction algorithm, the parameter vector θ̂(0) was initialized with 0.1 (which was sufficient for the
slowly varying linear energy demand) and covariance matrix P (0) that indicates the parameter error
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was initialized with the identity matrix. The algorithm always ensure that the covariance matrix P (k)
was a positive-definite matrix by using a square root algorithm to update it. [29]

This allows to tune the algorithm with only one tuning factor, R1. In the case of drive-train estimation,
it was observed that the consumption of the energy over different cycles could vary with the range
of uncertainty of 2.5 kW h, the value of the R1 was set to 2.5∗ 103 to giving an uncertainty range
to the algorithm for the predictions. It also meant that the process variance allowed was larger, and
actual measurement will be trusted more than the predicted value. This means that the estimates
will deviate away less from the actual measured value. On the other hand, this value cannot be kept
too large to prevent the algorithm’s trust from shifting significantly towards the noisy measurements.
The auxiliary energy consumption profile remain relatively constant and linear for different trip cycles
except for some exceptional trips. So, the process variance allowed was kept smaller; in this case, R1 =
10−5, and the algorithm was pushed to trust the predicted value more than the actual measurements.

Online Energy Estimates: Flow Chart of Algorithm

In Figure 5.5, a flow chart of the implemented algorithm is shown to explain the functionality of
the estimation algorithm itself. While the system software was receiving the CAN-Bus data, it was
being processed by the algorithm. Once the GPS coordinates come closer to the start coordinates,
the startRoute flag was raised, acknowledging the start of the trip. The algorithm reset the estimation
signals and starts predicting the new estimates. When the bus has traveled 100 m, the mass estimations
start to update using the recursive algorithm approach. Once the bus was closer to the stop coordinate
and the stopRoute flag was raised or the data samples in the reference profile end, then the algorithm
stops the estimation.
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Figure 5.5: Flow Chart: Online Energy Estimation Software Algorithm
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5.3 System Checks

To ensure reliability and debug system errors it was decided to accommodate the energy estimation
system with some checks. These checks are as follows:

• CAN-Bus Data Check: The CAN-Bus data check ensure that the data received is in good
health. Once the defined conditions for this check are met, "CANdataReceivigOK" check flag
is raised.

• Data Pre-processing Check: This check ensures that the pre-processed data before going to
estimation algorithm remains in good health. When the design criteria is met, "DataPrepro-
cessingOK" check flag is raised in the system software.

• Estimations Check: Once the system has started doing estimations. A criteria check is done
to ensure that estimates are in good health and respective flags ("EstimationActiveOK",
"EstimationDrivetrainOK","EstimationAuxOK") are raised in the system software.

• Reliability Check: On meeting the defined specification set for reliability (> 80%) the "relia-
bilityOK" check flag is raised.

• Post-processing Checks: Various conditions are introduced to check health of the reference
profiles generated by the system software. These profiles when only in good health are stored
in the system memory. The check flags raised in software are
"postProcessingOK","tripDataHealth"

These conditions and criteria are such as the data signals must not be NaN (Not a Number) as the
estimations are calculated, the data signal can not be zero, if the vehicle is moving (vx > 0) and the
frequency of these data signals must be ≈ 10 Hz. [More specific information on these conditions and
criteria is available in Appendix A and Appendix E]

5.4 Summary

This chapter discusses the implementation of the concept proposed in Chapter 3 using the algorithms
discussed in Chapter 4. In this chapter a detailed description was given to prepare the reference
data profiles for the proposed algorithms and descriptive rationale for some choices made for the
design during the implementation phase. This chapter also includes very first results from the offline
algorithm produced, which later complemented the functionality of the online algorithms in the energy
estimation system.
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6 Validation and Results

The focus of this chapter is on the validation of the system design and ensuring a working prototype
by the means of simulations. The test scenarios and results are discussed in this chapter.

6.1 Simulation Software Setup

To start developing the real-time energy consumption prediction system for the electric vehicles, the
development was started at the prototype level using simulations. The system functionality requires
some pre-collected data from the vehicle over the given route. For the purpose of collecting data from
the vehicle, and an ARM-based embedded device is installed on the vehicle. This device has access to
CAN-Bus and GPS data of the vehicle. The device logged the data of the vehicle’s entire motion for
a couple of weeks, which includes all relevant charging and discharging data. From the data logged,
the appropriate segments are extracted associated with the selected route. It was observed that 21 trips
of the selected route could be extracted from the logged data, which was sufficient to begin with the
development. Since this application require the estimation of parameters using the data, it is necessary
to categorize the available data into training data and validation data.

Remark 6.1.1 The training data has been used to build the base reference model and tuning the
parameters of the algorithm. Whereas on the other hand, validation data was used to provide an
unbiased evaluation of the final results from the estimation and correction algorithm. The validation
data has never been used in the training of the algorithms. By the rule of thumb, 70 % of total data
collected was allocated to training, which was approximately 16 cycle data, this fortunately matches
up with the decision of choosing 16 data cycles for preparing base data reference profile using RMSE
criteria as was explained in Section 5.1. The rest of the 30 % data, which was the remaining 5 cycle
data, was used as validation data.

The Matlab scripts are written to further process this data. A dedicated library and a Simulation setup
are prepared to emulate real-time simulations of the scenarios. The final estimation results from the
emulated scenarios were called back into the Matlab script to perform the post-processing and data
visualization and analysis. The visual description of this software setup can be seen in Figure 6.1
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Figure 6.1: Simulation Software Setup: MATLAB-Simulink

6.2 Test Scenarios

Three test scenarios were designed to check the overall functionality of the real-time energy consump-
tion prediction system.

Test Scenario 1: Estimations using Training Data Set 1

In this test scenario, the real-time energy consumption prediction system was simulated with the first
two cycles of the training data (called as training data set 1). The base reference profile was used
for estimation and corrections. It can be observed from figure 6.2a, that the system identifies when
to activate the real-time estimation. Here 1 means the system is active (calculate energy estimates)
and 0 means it is inactive. The two-cycle data was simulated together which means that electric
city bus travels on the selected route two times. This scenario is captured by trip counter in Figure
6.2b This has been clearly identified by the system, and energy estimations are made. The system
does the drive-train and auxiliary energy estimation separately, which can be seen in Figure 6.2c and
6.2d respectively. It can be observed that the estimations are tracking the actual measurements. The
corresponding correction parameters evolution (m, mass estimation and n, auxiliary power correction
gain estimation) can be observed in Figure 6.2e and 6.2f respectively. From these results it can be
noticed that the estimations algorithms are capable to perform the tracking of the actual measurements
efficiently and with high accuracy.
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Figure 6.2: Simulation Results: Test Scenario 1 ( Estimations using Training Data Set 1)
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The total energy consumption estimation from drive-train and auxiliary estimation & correction algo-
rithms can be observed in figure 6.3a. The error between the estimated value and actual measured
values can be observed in figure 6.3b; it can be seen that as the more data was getting available, the
resulting error starts decreasing and eventually becomes bounded around zero. It was also important
to observe the reliability of the energy estimation and correction algorithm, which was based upon the
evolution of the error. To trust the predicted energy estimates, it was important to know if the estima-
tion’s reliability (See Remark 6.2.1) was high or not. It can be observed that the reliability stays above
80% for most part of the trip, especially at the later part of the trip when more data was available.
This can be observed in figure 6.3d. This means that more trusted energy estimates can be expected
from the system as the trip progresses. Another important aspect was to analyze the performance of
real-time estimation compared to the the offline estimations for a particular trip cycle of the selected
route. The importance of real-time estimation in this particular application can be measured by using a
term deviation from Offline Estimation, which at any particular time gives an idea about the deviation
of the current estimates from the initial estimate, made in the beginning of the trip.
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Figure 6.3: Simulation Results: Test Scenario 1 ( Estimations using Training Data Set 1)
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Remark 6.2.1 The reliability of the estimations are calculated based upon the assumption that the
maximum allowable instantaneous error between estimations and measurements is 20 %. If the esti-
mation error is greater than 20 % than the reliability is assumed to be zero. Otherwise, the reliability
is scaled with respect to error using the formula:

Rel i abi l i t y(%) = 100−|Er r or |∗5 (6.1)

The error is calculated using the following formula:

Er r or (%) = E sti mati on −Measur ement

Measur ement
∗100 (6.2)

where, Estimation refers to calculated current energy estimates form the algorithm and Measurement
refers to the actual energy measurements from the CAN-Bus

Remark 6.2.2 The Deviation from the offline estimate is calculated using the following formula:

Devi ati on(%) = E sti mati onOnli ne −E sti mati onO f f l i ne

E sti mati onO f f l i ne
∗100 (6.3)

The online and offline estimations are total predicted energy estimation for the entire trip during the
trip and before the trip respectively.

It is also essential to calculate and record the updated (real-time) RC I profile using the power, velocity,
and mass estimates of the drive-train estimation (shown in figure 6.4) using the Equation 4.12. This
profile will later be processed in the post-processing step and will be used to generate a new updated
reference profile for the energy estimation system.
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Figure 6.4: RCI Profile generated in real-time as mass estimation is updated.

The result of Test 1 generate an updated reference profile (averaged profile). Now, when the real-
time energy estimation system runs next time over the selected route, then instead of using the base
reference profile, the updated reference profile is used. This will ensure the adaptability of the energy
estimation system towards changes in the environment, weather, traffic, road conditions, and also the
commuters traveling trend, etc.
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Figure 6.5: Comparison between base and updated RCI and Power Profile

Test Scenario 2: Estimations using Training Data Set 2

In this test scenario the real-time energy consumption prediction system has been simulated with the
different cycles of the training data. The updated reference profile was used for estimation and cor-
rections. It can be observed from figure 6.6a, that the system identifies when to activate the real-time
estimation and correction function. The system does the drive-train and auxiliary energy estimation
separately which can be seen in figure 6.6c and 6.6d respectively. The corresponding model parame-
ters evolution can be observed in 6.6e and 6.6f respectively.

The combined energy consumption estimation from drive-train and auxiliary estimation & correction
algorithms can be observed in figure 6.7a. The error between the estimated value and actual measured
values can be observed in figure 6.7b; it can be seen that as more data was getting available, the error
starts decreasing and eventually becomes bounded around zero. The reliability can be observed in
figure 6.7d. The deviation from the initial estimate can be observed in figure 6.7c
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Figure 6.6: Simulation Results: Test Scenario 2 ( Estimations using Training Data Set 2)
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Figure 6.7: Simulation Results: Test Scenario 2 ( Estimations using Training Data Set 2)

Test Scenario 3: Estimations using Validation Data Set 1

In this test scenario, the real-time energy estimation system was simulated with the validation data.
These data cycles have not been seen by the estimation and correction algorithm during the devel-
opment of the system and were kept solely to perform the software-in-the-loop (SIL) testing. The
updated reference profile was used for estimation and corrections. The active system status can be
observed in figure 6.8a. The system does the drive-train and auxiliary energy estimation separately
which can be seen in figure 6.8c and 6.8d respectively. The corresponding correction parameters
evolution can be observed in 6.8e and 6.8f respectively.

The total energy estimation from drive-train and auxiliary estimation & correction algorithms can be
observed in figure 6.9a. The error can be observed in figure 6.9b. The reliability can be observed
in figure 6.9d. The deviation from the initial estimate can be observed in figure 6.9c. The result
appear to follow the similar trends as from the previous tests ensuring the robustness of the estimation
algorithms towards different data sets representing different operating and environmental conditions.
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Figure 6.8: Simulation Results: Test Scenario 3 ( Estimations using Validation Data Set 1)
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Figure 6.9: Simulation Results: Test Scenario 3 ( Estimations using Validation Data Set 1)

6.3 Results

From the simulation test results in section 6.2, it can be clearly seen that the energy consumption
prediction system is an advanced system capable of estimating the approximate energy consumed by
the electric city bus over the given route well in time, and is also producing the robust results for
different data cycles. A detailed analysis is also made on the system’s accuracy and precision by
observing the absolute accumulative error (see Remark 6.3.1) while using the base reference profile.

Remark 6.3.1 The absolute accumulative error computed in the Figure 6.10 is calculated for the
estimations done over the trip cycle distance travelled using the following formula:

Er r or Absolute (%) = |∑s(T )
0 E sti mati on −∑s(T )

0 Measur ement |∑s(T )
0 Measur ement

∗100(%) (6.4)

In Figure 6.10, it can be clearly observed that the performance of real-time (online) energy estimation
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Figure 6.10: Comparison of absolute accumulative error in estimations
for offline and online energy predictions done over base reference profile.
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system is more accurate than the offline estimations. In offline estimations, the absolute accumulative
error over some cycles can go as high as 40 % and, on an average, remains at 18.5%.

On the other hand, in real-time (online) energy estimations, the absolute accumulative error is under
4 % and on average remains 1.2%.

This illustrates the superior performance of the developed real-time energy consumption prediction
system.

In Figure 6.11, the error results are compiled as a function of travelled distance for all available data
cycles with reference profile used as base data profile. It can be seen that the performance of the real-
time energy consumption prediction is good in the region from 30% to 80% of the traveled distance.
Outside this region, the performance remains reasonably good, and the system tries to bound the
error. The reason behind the difference in this performance is that the electric city bus does not have a
dedicated path to complete the trip, especially outside the above-mentioned range. Another possible
reason is the abrupt fluctuations in the number of passengers around some very busy bus stops, where
a lot of passengers board or de-board the vehicle.
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Figure 6.12: Comparison of absolute error in estimations for on-
line energy predictions done over base and updated reference profile.

In Figure 6.12, the training data cycles were used to calculate the accumulative absolute error in energy
estimations using the base and updated reference profiles respectively. It can be observed while the
base data reference profile was used, the overall absolute accumulative error remains consistently
small throughout the trip. In the case when updated reference data profile was used, the absolute
accumulative error was relatively high in the beginning; it can be because of two reasons; one was
not using the dedicated path at the beginning of the trip and the other being the updated reference
data profile was a bit volatile as it uses the averaged data from a smaller number of trips (two in
this case). It can also be observed that very quickly, the absolute accumulative error tends to zero,
and the trend was almost exponential (negative) in nature; this happens due to the availability of most
recent data from capturing the operating domain characteristics of the electric city buses. The absolute
accumulative error by the end of the trip in the case where updated reference profile was used was
much less than the one compared to the base reference profile. It can be concluded that the predictions
only get better when using the updated reference data profile with the online estimation algorithms.
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A similar phenomenon was observed in the case when the validation data cycle was used, see Figure
6.13.
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Figure 6.13: Comparison of absolute accumulative error in estimations for
online energy predictions done over base and updated reference profile.

6.4 Summary

In this chapter, simulations were carried out using the proposed energy consumption model with the
real-time operation data collected, from the devices installed on the bus. The parameter estimation
and correction algorithm was tested using various test scenarios designed to evaluate the functionality
of all features of the system. These tests gave robust results while minimizing the error in the energy
predictions for the trip cycles on given route. The proposed online technique was seen to perform
better than the offline estimation technique. Also, the self learning and adapting feature of the online
algorithm allows the predictions to improve when subsequent trips were made on the selected route.
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7 Conclusion and Recommendation

In section 7.1, the research conclusions are summarized. In section 7.2, the recommendations and
future research objectives are given.

7.1 Conclusion

Current research in energy estimation suffers from the shortcomings of estimating many parameters
required for the models to capture the characteristics of the electric vehicle. This makes it difficult
to update these parameters when the vehicle is subjected to disturbances in its operational domain.
To tackle this problem, this dissertation aims to design a real-time energy consumption prediction
system that can work in a more general way on different types of electric vehicles. In public trans-
portation route remains fixed, and the propelling force can be characterized by using the historical
data collected. It allows the estimation model to pack all the parameter variables in traditional model-
ing techniques altogether. This allows omitting the necessity to upgrade all conventional parameters
individually. The proposed scheme uses the Kalman filter regression algorithm to correct the model
parameters that allows the system to be more adaptable to the changes. Overall the real-time energy
estimation system has the capability of self-learning by updating the reference profile by itself to make
better predictions on estimations.

The following conclusions can be drawn:

• The presented system is able to identify the start and stop of a particular trip cycle on a selected
route without failing using GPS coordinates matching. This ensures that estimations will be
available from the system every time the trip cycle starts.

• The estimation and correction scheme achieves asymptotic tracking of the actual measurements
and ensures that the tracking error decayed to zero.

• The estimation and correction scheme is capable to produce reliable predictions in the pres-
ence of disturbances occurring due to the weather, traffic, payload conditions, and driving style
behavior.

• The system is able to successfully update the reference profiles used by the estimation and
correction algorithm and is able to adapt and learn with the availability of new data. This allows
the system to produce better estimations on the subsequent trips and ensures high accuracy in
predictions.

• The system could ensure a good reliability index number for the estimations during the trip, and
the reliability increases by the end of a trip.

Cloud Your Bus 59



Eindhoven University of Technology

7.2 Recommendations

In this section some of the recommendations are presented as follows:

• Improving offline model: The offline model has the potential to be improved. This model
can further be optimized by including relevant factors not only from the vehicle itself but also
from the environmental aspect. For instance, the temperature varies from season to season or
from day to night, which also influences the energy consumption. The time of the operation
determines the level of the variation of passenger load, which is also a significant component in
energy usage. Considering more factors can improve the estimating accuracy.

• Increase the amount of memory of the embedded device: More memory is required if at
some point the infrastructure is needed to be expanded to store more number of reference pro-
files based upon various operating conditions such as weather dependent conditions, time of the
day travel conditions, off-peak and peak hours travel conditions and seasonal based conditions
are considered. Also, if the architecture will be expanded to consider multiple route estimations
on the same device, then multiple such reference profiles have to be stored, which requires more
memory space on the device.

• Expansion of the design: The current infrastructure can be expanded to accommodate the
additional functionalities, such as performing the estimations on multiple routes and saving
conditional based reference profiles used for estimations.

• Autonomy in the generation of reference profile: The current infrastructure for the energy
estimation system requires a base reference data profile pre-loaded in the memory. This data
profile is computed offline. Future steps can accommodate the creation of this base reference
profile more autonomously on the embedded device itself.

• Geo-fencing: Future versions of the software can also use the mapping of the energy estima-
tions with the GPS coordinates. This will further assist in improving the estimation algorithm
by helping in aligning the data concerning the location and analyzing the correlations between
the energy consumed and the road characteristics. This feature could not be achieved due to the
limitation of the memory available on the device and due to time constraints.

• Route ID: Route identification is required to load the relevant data profiles and parameters into
the memory, which are used by the estimation and correction algorithms to make the predictions
on the energy. In the current infrastructure this is hard-coded and limited to a single route.
When the software infrastructure will be expanded to account for energy estimations on multiple
routes, than system will require the route updates during the operation to identify the correct
route. An Application Programming Interface (API) based solution can be used to receive this
information on a specific embedded device.

• Cloud computing: Another recommendation would be changing the design entirely from a
more local based device to a global cloud computing solution. These database and estimation
algorithms can be maintained and run on the cloud service while just transferring the vital
information between bus and cloud.

• Expanding HMI: The HMI developed for the prototype version can be extended to the real-
time browser-based or application-based service while expanding it for more features.
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Stakeholder Concerns: 
In this section, the concerns of the key stakeholders of the project are captured. The two major stakeholders in the project 

were dr.ir. Igo Besselink (project lead from TU/e) and Sycada (direct client from Cloud Your Bus Consortium).  Below 

are mentioned the major concerns: 

ID Name Specification 

C – 1 Energy Usage Understanding the energy usage pattern of the electric city buses 

C – 2 Uncertainties Accounting for uncertainties affecting energy consumption of the electric city buses. 

C – 3 Messages Identifying the relevant standardized messages to be sent to the cloud. 

C – 4 Data Logging Data in real-time. 

C – 5 Planning Facilitate the energy consumption prediction for optimizing dynamic scheduling. 

 

Requirements Packages: 
The requirements package has been divided into two major sections concerning the project and system respectively. It 

also includes the relevant assumptions and constraints linked to the project and system. 

1. Project:  
This section includes the relevant requirements, assumptions, and constraints linked to the project. 

1.1 Project Requirements: 

This section includes the project requirements. 

ID Name Specification 

PR – 1 Energy Prediction 
The energy prediction model should be generic and must be deployable on electric 

buses from various operators. 

PR – 2 Data Collection 
The data from the electric buses have to be collected by Sycada over various trips 

for the selected route. 

PR – 3 Data Type The data must be delivered in the format usable with MATLAB (text or CSV files). 

PR – 4 Run Locally The system is needed to be run locally on the HW installed in Bus. 

PR – 5 Functions The system functions must be made relevant to the Linux operating system. 

 

1.2 Project Constraints: 

This section includes the constraints related to the project. 

ID Name Specification 

PC – 1 Data Collection 
Data can not be collected over the 10 Hz frequency due to limitations of CAN bus 

bandwidth. 

PC – 2 Network The network used to receive/transmit data from/to the bus is on a 2G network. 

PC – 3 Timeline The implementation of testing on the HW level on the bus can take up to 3 months. 

PC – 4 Diversions 
The energy consumption model might not produce viable results in case of any 

diversions (different route) taken on the route. 
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1.3 Project Assumptions: 

This section includes the assumptions related to the project. 

ID Name Specification 

PAS – 1 Data Collection It is assumed that the data delivered by Sycada is of good health.  

PAS – 2 Route Identifier It is assumed that a route identifier/operator is always there to monitor the bus route. 

PAS – 3 City Travel It is assumed that the bus is traveling in the city all time. 

PAS – 4 Intended Route 
The bus is always intended to use the fixed-route on the selection of routes before the 

journey begins. 

PAS – 5 Bus-lanes 
The buses are assumed to be running on dedicated bus-lanes and hence, the traffic 

flow is assumed to be smooth. 

PAS – 6 
Ambient 

Temperature 

The ambient temperature inside the bus is maintained when delivered at the first bus-

stop. 

 

2. System:  
This section includes the relevant requirements, assumptions, and constraints linked to the system. 

2.1 System Requirements: 

This section discusses the system requirements, which are divided into five major packages including two major 

types of requirements; functional requirements and performance requirements. 

• General Requirement Package. 

• Data Requirement Package. 

• Model Requirements Package. 

• Technical Requirements Package. 

• Performance Requirements Package. 

 

The general requirements package is derived from stakeholder concerns. General, data, model, and technical 

requirements packages include the functional requirements for the given system. These requirements are required to 

ensure the operational capability of the system. On the other part, the performance requirements are required to 

understand the extent to which a function must be executed. The columns ‘mapping’ and ‘status’ in the table below 

show the source of the requirement from where it is derived and the current status of the requirement respectively.  

 

ID Name Specification Mapping Status 

GR – 1 
Predict Energy 

Consumption 

The system must predict the energy consumption of battery-

electric busses. 

C – 1 Done 

GR – 2 Generic Model The system must work on vehicles from different OEM's. C – 1 Done 

GR – 3 Cloud Service 
The system must have a relevant message to be sent to the 

cloud service.  

C – 3 Done 

GR – 4 
Dynamic 

Scheduling 

The system must send a relevant message to the cloud to be 

used in dynamic scheduling.  

C – 5 Done 

GR – 5  Trip Status 
The system must be able to identify the starting and stopping 

of the trip cycle for the respective route. 

C – 4 Done 

GR – 6 Update Parameters 

The system must account for uncertainties and update the 

model parameters periodically (10 Hz) to give accurate energy 

consumption estimates. 

C – 2 Done 

GR – 7 Energy 

The system must provide (as output) a pre-determined energy 

estimate for the given route and corrected predicted/estimated 

energy for the given route by the end of the selected route. 

C – 3 Done 

GR – 8 Database 
The system must have an updated database to store initial 

parameters for different routes. 

C – 1 Done 



7 

 

GR – 9  Source Code 
The system source code must run locally on the embedded 

device. 

C – 1 Done 

GR – 10  Reliability 
The system must produce reliable estimations on the predicted 

energy. 

C – 1 Done 

DR – 1 Velocity Profile 

The system must record/collect velocity data of the vehicle 

from CAN-Bus at a sample rate of 10 Hz over respective 

routes.  

GR – 7 Done 

DR – 2 
Acceleration 

Profile 

The system must record/collect acceleration data of the vehicle 

from CAN-Bus at a sample rate of 10 Hz over respective 

routes.  

GR – 7 Done 

DR – 3 Mass Profile 
The system must record/collect bellow pressure data of the 

vehicle from CAN-Bus over respective routes. 

GR – 7 Done 

DR – 4 State of Charge 

The system must record/collect the state of charge of battery 

data of the vehicle from CAN-Bus at a sample rate of 10 Hz 

over respective routes. 

GR – 7 Done 

DR – 5 Distance Profile 

The system must record/collect distance traveled data of the 

vehicle from CAN-Bus at a sample rate of 10 Hz over 

respective routes. 

GR – 7 Done 

DR – 6 Voltage 

The system must record/collect voltage data at the battery and 

drive-train terminal of the vehicle from CAN-Bus at a sample 

rate of 10 Hz over respective routes. 

GR – 7 Done 

DR – 7 Current 

The system must record/collect current data at the battery and 

drive-train terminal of the vehicle from CAN-Bus at a sample 

rate of 10 Hz over respective routes. 

GR – 7 Done 

DR – 8  GPS Coordinates 

The system must record/collect GPS data (latitude, longitude, 

and heading) of the vehicle from CAN-Bus at a sample rate of 

10 Hz over respective routes. 

GR – 5 Done 

MR – 1 Road Load 
The model must account for energy consumption by the 

number of passengers/load. 

GR – 6 Done 

MR – 2 Auxillary System 
The model must account for energy consumption by auxiliary 

systems including Ventilation and Air Cooling system. 

GR – 6 Done 

MR – 3 Road Topography 
The model must account for energy consumption by road 

topography (height, slope). 

GR – 6 Done 

MR – 4 
Ambient 

Temperature 

The model must account for energy consumption due to 

changes in ambient weather (temperature). 

GR – 6 Done 

MR – 5 Aerodynamic drag 
The model may account for energy consumption due to 

aerodynamic drag. 

GR – 6 Done 

MR – 6 Gradient 
The model must account for energy consumption due to the 

gradient of the road for the route. 

GR – 6 Done 

MR – 7 Mass Estimate 
The model must estimate the mass profile from available 

bellow pressure data.  

GR – 6 Not Done 

TR – 1  Trip Start [Range] 

The system must identify the start of the trip when GPS 

coordinates are in the range of 0.0004 in latitude and longitude 

and 50° in heading angle. 

GR – 5 Done 

TR – 2  Trip Stop [Range] 

The system must identify the stop of the trip when GPS 

coordinates are in the range of 0.0004 in latitude and longitude 

and 50° in heading angle. 

GR – 5 Done 

TR – 3  Output Message 
The system must send an output message to Sycada software at 

a sample rate of 10 Hz. 

GR – 4 Done 
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TR – 4 Database (1) 
The system must store a base reference profile in memory for 

estimations. 

GR – 8 Done 

TR – 5 Database (2) 
The system must be able to perform the estimation for a given 

route with the base reference profile. 

GR – 8 Done 

TR – 6 Database (3) 
The system must be able to create its own base reference 

profile for the given route. 

GR – 8 Not Done 

TR – 7 Database (4) 
The system must be able to perform the estimation for a given 

route with the updated reference profile. 

GR – 8 Done 

TR – 8 Database (5) 
The system must create a new updated reference profile after 

every second trip cycle for the given route. 

GR – 8 Done 

TR – 9 Database (6) 
The system must ensure that estimations are done using the 

updated reference profile when available. 

GR – 8 Done 

TR – 10 Database (7) 

The system must ensure that estimations are done using the 

base reference profile when an updated reference profile is not 

available or is not a healthy data profile. 

GR – 8 Done 

TR – 11 Multiple Route 
The system must be able to perform estimations for multiple 

routes. 

GR – 1 Done 

(Simulation) 

PER – 1 Error (1) 

The system should not have more than 20 % instantaneous 

error in energy estimation using the energy consumption 

model and correction algorithm. 

GR – 10 Done 

PER – 2  Error (2) 

Thes system should not have more than 5 % absolute error (for 

the entire route) in energy estimation using an energy 

consumption model and correction algorithm. 

GR – 10 Done 

PER – 3 Deviation 
The allowed deviation in estimated energy and actual energy 

should be less than 0.1 KWh. 

GR – 10 Done 

PER – 4 Reliability The reliability of estimations must be more than 80 %. GR – 10 Done 

PER – 5  Checks 
The system must have the warning/failure checks to identify 

the fault during operation. 

GR – 10 Done 
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Interface: 
The software developed by TU/e for estimating the energy consumption of electric busses has an interface with the 

software developed Sycada, which is acting as a communication layer in between the energy consumption logic 

developed by TU/e and data available on the hardware level (See Figure 1). The interface parameters are selected and 

are available in Table 1. For these interface parameters, the data types, the data specifications is also available in Table 

1. While collecting the data as described, each variable's value is captured along with the time stamp. This is required 

to run the algorithm and make desired calculations from energy consumption logic. 

 
Table 1: Data Specifications 

S.No Name Description Type Resolution Unit Format  

1 Time Time stamp i/p 0.1 (10 Hz) sec double RD 

2. Velocity Average longitudinal velocity i/p 0.1 (10 Hz) m/s 
[km/h] 

double RD 

3. Distance Travelled distance i/p 0.1 (10 Hz) m 
[km] 

double RD 

4. V (Battery) Voltage [Battery terminal] i/p 0.1 (10 Hz) V double RD 

5. I  (Battery) Current [Battery terminal] i/p 0.1 (10 Hz) A double RD 

6. V 
(Drivetrain) 

Voltage [Drivetrain terminal] i/p 0.1 (10 Hz) V double RD 

7. I(Drivetrain) Current [Drivetrain terminal] i/p 0.1 (10 Hz) A double RD 

8. RI Route information i/p 0.1 (10 Hz) - int RD 

9. GPS_{lon} GPS longitudinal coordinate i/p 0.1 (10 Hz) Deg double RD 

10. GPS_{lat} GPS latitudinal coordinate i/p 0.1 (10 Hz) Deg double RD 

11. GPS_{hea} GPS Heading angle i/p 0.1 (10 Hz) Deg double RD 

12. Time (Est) Time stamp (Estimations)  o/p 0.1 (10 Hz) sec double RD/RW 

13. Normative E Offline predicted energy estimate o/p 0.1 (10 Hz) kWh double RD/RW 

14. Projected E Online predicted energy estimate o/p 0.1 (10 Hz) kWh double RD/RW 

15. Reliability Reliability of estimations o/p 0.1 (10 Hz) % double RD/RW 
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Interface Diagram: 

 

Figure 1: Interface between Software’s 
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C Appendix: Hardware Setup

The hardware setup made for doing the experiments (Hardware In the Loop - HIL testing) is shown
in Figure C.1. A developer’s PC was used on which the real-time estimation system software was
written. This software was compiled into executable file in binary format which was transferred to
the embedded device (using RS-232 and USB connector) and was run on the device. The CAN data
was loaded as the re-playable data on the embedded device using a GSM afaik connection. This
data is available on the embedded device in form of csv files. While the energy estimation system
software is running on the embedded device it requires the CAN data information from these csv files.
The data is being received via an intermediate software prepared by the client; which made available
the CAN data in readable form on the protobuf queues. Protobuf (Protocol Buffers) is a method of
serializing the structured data. This method is used in developing programs to communicate with
one another over the wired connection or for storing the data. The protobuf involves and interface
description language describing the structure of the data and a program which is capable of generating
a source code from the given description for generating or parsing a stream of bytes that represents
the structured data. [30]

Embedded
Device

GPS
Tracking
Device

Developer 
PC

RS-232 to
USB

Connector

Figure C.1: Hardware Setup

The hardware used, especially the embedded device is prepared by one of the partners in the consor-
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tium of Cloud Your Bus project. [31] The specification of this device is available in Table C.1

Table C.1: Embedded Device Specifications

Features Device Specifications

Processor / MHz ARM9 / 400
Linux Kernel (OS) 2.6.36
RAM 32 MB / 64 MB
Flash 64 MB + 32 GB with uSD
Micro-SD Card Available
GNSS u-blox
GSM / GPRS Gemalto
Digital I/O 10
Analog Inputs 4
RS-232 Available
RS-485 Available
Accelerometer Available
CAN Available
GSM / GPS Connector Type FAKRA
USB Host 2
Ethernet Available
Internal Battery 1800 mAh
Protection IP30
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D Appendix: Additional Results from Hardware-in-the-
Loop Test

In the testing phase of the project. The three level testing approach was used. The extensive Software
in the Loop (SIL) testing was done first. The results of these tests are shown in Chapter 6. Moving
one step further from here the experiments were conducted on the hardware. The results from the
Hardware in the Loop (HIL) testing is shown in this Appendix D. The third level of testing was
Factory Acceptance Test (FAT) and the results of these tests are shown in Appendix E using a test
plan.

The hardware in the loop test was done on the embedded device with a re-playable data. The base
reference profile was used for estimations and corrections. It clearly identified that the system does
the drive-train and auxiliary energy estimation separately which can be seen in Figure D.1a and D.1b
respectively. The corresponding correction parameters evolution can be observed in Figure D.1c and
D.1d respectively.

The combined total energy estimation from drive-train and auxiliary estimation-correction algorithms
can be observed in Figure D.2a. The error resulting in between the estimated value and actual mea-
sured values can be observed in Figure D.2b, it can be seen that as the more data is getting available
the resulting error starts decreasing and eventually becomes bounded around zero. It was also crucial
to observe the reliability of the energy estimation and correction algorithm which is based upon the
evolution of the error. To trust the predicted energy estimates it was important to know if the reliability
of the estimation was higher or not. This can be observed in Figure D.2d

The Updated Reference Data Profile generated by the system after completion of two trips cycles on
the selected route is shown in Figure D.3
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Figure D.1: Hardware in the Loop Test Results
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Figure D.2: Hardware in the Loop Test Results
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Figure D.3: Hardware in the Loop Test Results
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E Appendix: Test Plan and Test Results
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F Appendix: HMI Aspects

A Human-Machine Interface (HMI) (or user interface or dashboard) was designed in order to connect
a user with the system. This allows the user to interact with a system in many ways while giving
important information about the system. Some of these ways in which an HMI can be used are as
follows:

• Visually inspect the data on the display.

• Tracking the trends in system performance.

• Overseeing the Key Performance Index’s (KPI’s) of the system.

• Monitoring system input and outputs.

The HMI designed for the application of real-time energy estimation is shown in Figure F.1.

Figure F.1: HMI: Real-time Energy Estimation System

This particular HMI has the following capabilities:

• Route and Vehicle Information: In the top (middle) of the HMI can be seen the the informa-
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tion regarding the route on which bus is travelling. This comes in the form of Route ID. Also
unique vehicle ID is displayed in the same panel.

• System Status: In the same panel an LED is available with name Trip Status giving the in-
formation regarding the activation status of the real-time energy estimation system. When it is
green the energy estimation system is switched ON and is switched OFF when red.

• System Functionality Checks: In the top (left) part of HMI, a panel is made available keeping
a check on the various functionalities of the system. A warning is raised with LED turning red
when something goes wrong.

• Offline Estimations: In the middle (right) of the HMI, expected pre-determined (offline) esti-
mates and distance to be travelled by bus are made available

• Online Estimations: In the top (right) part of HMI, a panel is made available keeping the track
of the estimated energy during the trip cycle and also about the distance travelled during that
trip cycle. A visualization of these estimations are also made available in the bottom (left) part
of the HMI.

• Location Tracking: In the bottom of the HMI the live GPS location of the bus can be tracked.

• Velocity Profile Tracking: In the middle (left) of the HMI the current velocity profile of the
bus can be traced.

• Reliability Meter: Reliability meter is made available in order to built the trust of the user on
the estimated energy numbers. The system is capable of checking the reliability of the estimates
based upon the errors occurring during estimations.
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G Appendix: Project Management Documentation

G.1 Stakeholder Register
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H Appendix: Software Manual and Function Library

This manual describes the steps for building and running the provided software package. The Matlab
prototype version software can be built and run on any computer with Matlab/Simulink installed on
it. It does not require any other external Matlab toolbox package to compile this software library.

H.1 Pre-Requisites

1. 1 laptop with sufficient memory and processing power. (Recommended Specification > 8GB
RAM)

2. Clone of the repository. (Is available on TU/e Github and TU/e Research Drive)

3. MATLAB/Simulink. (This package is developed with version 2020a)

H.2 Building and Running

Unzip the provided software package on the local drive on your computer. The system software
package unzips a folder named "Cloud Your Bus - Energy Estimation for EV". This folder have
several sub-folders in it and some Matlab scripts and Data (.mat) files in the main folder. The run
script for the Real-time Energy Estimation System is "EnergyEstimationMain". This file can be run
directly to simulate the test scenarios directly. To save files in the directory during the simulation it is
required to update the directory name in the run script to your local computer directory name.

1 % This file is the 'Run Script' file to prepare data for the Simulink ...
(Energy Estimation System) file to run

2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 % Clear Workspace
10 clc;
11 clear;
12 close all;
13

14 % Create path in the current directory
15 directory.current = pwd; % returns path of current ...

directory
16 addpath(genpath('./Offline Estimate')); % add the folder and ...
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subfolders to the working path (workspace)
17 addpath(genpath('./Parameter')); % add the folder and ...

subfolders to the working path (workspace)
18 addpath(genpath('./Post Processing')); % add the folder and ...

subfolders to the working path (workspace)
19

20 % Load test data profile
21 load('testDataRoute401_A_2Cycle.mat');
22 %load('validationDataRoute401_A_2Cycle.mat');
23

24 % Vehicle ID
25 vehicleID = sym(358679068436426);
26

27 % Establishing a new data (Just for Simulation - Has to be extracted from ...
Bison API)

28 % Route Information
29 routeInfo = 4011;
30

31 % Extracting data from the data structure
32

33 time = m.data(:,1)-m.data(1,1);
34 dt = [0;diff(time)]; % used as ...

weighted sample space
35

36 lat = m.data(:,2); % degree
37 lon = m.data(:,3); % degree
38 head = m.data(:,4); % degree
39

40 v = m.data(:,5); % kmph
41 v = v * (5/18); % mps
42

43 vin = m.data(:,6);
44

45 VoltBat = m.data(:,7); % V
46 AmpBat = m.data(:,8); % A
47

48 VoltDrive = m.data(:,9); % V
49 AmpDrive = m.data(:,10); % A
50

51 PressFA = m.data(:,11); % KPa
52 PressRA = m.data(:,12); % KPa
53 PressAA = m.data(:,13); % KPa
54

55 % Pre-processing the extracted data
56 s = cumsum(v.*dt); % m
57

58 PowerBat = (VoltBat.*AmpBat); % W
59 EnergyBat = cumsum(PowerBat.*dt)/(3.6e6); % KWh
60

61 PowerDrive = (VoltDrive.*AmpDrive); % W
62 EnergyDrive = cumsum(PowerDrive.*dt)/3.6e6; % KWh
63

64 PowerAux = PowerBat - PowerDrive; % W
65 EnergyAux = EnergyBat - EnergyDrive; % KWh
66

67 % Convert the loaded data as timeseries data
68 time = timeseries(m.data(:,1)-m.data(1,1),m.data(:,1)-m.data(1,1)); ...
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% [s]
69 Vx = timeseries(v,m.data(:,1)-m.data(1,1)); ...

% [m/s]
70 VoltBat = timeseries(VoltBat,m.data(:,1)-m.data(1,1)); ...

% [V]
71 AmpBat = timeseries(AmpBat,m.data(:,1)-m.data(1,1)); ...

% [A]
72 VoltDrive = timeseries(VoltDrive,m.data(:,1)-m.data(1,1)); ...

% [V]
73 AmpDrive = timeseries(AmpDrive,m.data(:,1)-m.data(1,1)); ...

% [A]
74 PressFA = timeseries(PressFA,m.data(:,1)-m.data(1,1)); ...

% [KPa]
75 PressRA = timeseries(PressRA,m.data(:,1)-m.data(1,1)); ...

% [KPa]
76 PressAA = timeseries(PressAA,m.data(:,1)-m.data(1,1)); ...

% [KPa]
77

78 s = timeseries(s,m.data(:,1)-m.data(1,1)); ...
% [KPa]

79 PowerBat = timeseries(PowerBat,m.data(:,1)-m.data(1,1)); ...
% [KPa]

80 EnergyBat = timeseries(EnergyBat,m.data(:,1)-m.data(1,1)); ...
% [KPa]

81 PowerDrive = timeseries(PowerDrive,m.data(:,1)-m.data(1,1)); ...
% [KPa]

82 EnergyDrive= timeseries(EnergyDrive,m.data(:,1)-m.data(1,1)); ...
% [KPa]

83 PowerAux = timeseries(PowerAux,m.data(:,1)-m.data(1,1)); ...
% [KPa]

84 EnergyAux = timeseries(EnergyAux,m.data(:,1)-m.data(1,1)); ...
% [KPa]

85

86

87 % Preprocessing the GPS data (Replace the NaN value with the last recorded ...
value)

88 for k = find(isnan(lat))
89 lat(k) = lat(k-1);
90 end
91

92 for l = find(isnan(lon))
93 lon(l) = lon(l-1);
94 end
95

96 for n = find(isnan(head))
97 head(n) = head(n-1);
98 end
99

100 GPSlat = timeseries(lat,m.data(:,1)-m.data(1,1)); ...
% [deg.]

101 GPSlon = timeseries(lon,m.data(:,1)-m.data(1,1)); ...
% [deg.]

102 GPShead = timeseries(head,m.data(:,1)-m.data(1,1)); ...
% [deg.]

103

104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105 % Load relevent trip data
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106 % Load Erate and other necessary data profiles for energy estimation and ...
correction

107 trip = routeData(routeInfo);
108 trip = trip.trip;
109

110 % Load start and stop coordinates for the relevent trip
111 [start,stop] = routeParameter(routeInfo);
112

113 % Perform the simulation
114 out=sim('EnergyEstimationCorrection.slx');
115

116 % Post processing of data and updating database
117 % Step 1 - Extract Data segments of the different cycles of the route
118 [ErateExt,timeExt,sExt,PauxExt,energyTripExt,checkflag] = extractData(out);
119

120 % Step 2 - Make individual data structures for these subsequent trips
121 [tripPost] = dataStruct(ErateExt,timeExt,sExt,PauxExt,energyTripExt,out);
122

123 % Save the trip data structure into the Output Data Profile Folder in ...
directory

124 savdir = 'C:\Users\20184719\Documents\Final Project - Module 5\Source ...
Code\MATLAB\Cloud Your Bus - Energy Estimation System for EV\Post ...
Processing\DataProfile-Route_401';

125

126 % Save trip data - Route 401 - Cycle 1
127 if tripPost.trip1.tripDataHealth == true
128 trip = tripPost.trip1;
129 save(fullfile(savdir,'ErateProfile401_A_01'),'trip');
130 end
131

132 % Save trip data - Route 401 - Cycle 2
133 if tripPost.trip2.tripDataHealth == true
134 trip = tripPost.trip2;
135 save(fullfile(savdir,'ErateProfile401_A_02'),'trip');
136 end
137

138 % Step 3 - Do averaging of these data structures to make a unique data ...
structure

139 tripUpdate = avgDataStruct(out,tripPost);
140

141 savdirUp = 'C:\Users\20184719\Documents\Final Project - Module 5\Source ...
Code\MATLAB\Cloud Your Bus - Energy Estimation System for ...
EV\Parameter\UpdatedProfile';

142

143 if tripUpdate.tripDataHealth == true
144 trip = tripUpdate;
145 save(fullfile(savdirUp,'UpdatedErateProfile401_A'),'trip');
146 end
147

148 % Checking for Absolute error of respective cycles of the trips made (For ...
Analysis purpose only)

149 absError = absoluteError(out);

Besides the run script there are some other scripts used for data visualization and plotting and can
be used once the entire run is completed. Other than the script files this folder also contains already
prepared data files, these data files emulate the CAN-Bus data. The test and validation data cycles
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are made available in this folder. There exist then the folders in the main folder. The content of each
folder is explained below:

• Results - Online Estimation: This folder contains the saved work-spaces of the runs conducted
for the test scenarios (Software-in-the-Loop Testing) explained in Chapter 6.

• HIL Test: This folder contains the saved files form the embedded device to analyze the results
of runs available from the Hardware-in-the-Loop Testing

• Plots: This folder contains the plot figures from these results for data visualization and analysis.

Now apart from these 3 folder, there are some folders which are necessarily required to run the simula-
tions for the real-time energy estimation system and are regarded as important folders which compose
the software toolbox package (functional library)

• Offline Estimate: This folder is used to make the Offline estimations on the selected route and
is important to create the "Base Data Reference Profile"

• Parameter: This folder contains the parameter information for the selected route. The "Base
Data Reference Profile" and "Updated Data Reference Profile" are stored in this folder for the
given route. This folder also contains two function scripts. "routeData" It stores the information
of the data profiles for the specific routes and load subsequent data related to given route ID. In
simulation the 2 different routes can be identified and selected based upon this signal route ID
information.

1 function trip = routeData(routeInfo)
2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 % Available routes
10

11 route401_A = 4011;
12 route401_B = 4012;
13

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15

16 % Creating an Empty trip data structure
17

18 trip0.mveh = 19000; % Kg
19 trip0.s = 0;
20 trip0.sRoute = zeros(10000,1);
21

22 trip0.time = zeros(10000,1);
23

24 % Saving updated Erate profile
25 trip0.Erate = zeros(10000,1);
26

27 % Saving updated Paux profile
28 trip0.Paux = zeros(10000,1);
29

30 % Creating Drivetrain trip profile
31 trip0.EuseDrive = zeros(10000,1);
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32

33 % Creating Auxiliary trip profile
34 trip0.EuseAux = zeros(10000,1);
35 trip0.timeAux = zeros(10000,1);
36

37 trip0.Etrip_measured = 0;
38 trip0.tripDataHealth = false;
39

40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 % Operating directory to look for relevant files
42 opdir = 'C:\Users\20184719\Documents\Final Project - Module 5\Source ...

Code\MATLAB\Cloud Your Bus - Energy Estimation System for ...
EV\Parameter\UpdatedProfile';

43

44 % Check the presence of relevent files in the directory
45 statusUpdatedDataFile = ...

isfile(fullfile(opdir,'UpdatedErateProfile401_A.mat'));
46

47 % Load the relevent data set
48

49 switch(routeInfo)
50 case route401_A
51 if statusUpdatedDataFile == true
52 trip = load('UpdatedErateProfile401_A.mat');
53 else
54 trip = load('ErateAvgRoute401_A.mat');
55 end
56 case route401_B
57 trip = load('ErateAvgRoute401_B.mat');
58 otherwise
59 trip = trip0;
60 end
61

62 end

Similarly there exist another function "routeParameter" which has the information regarding
the starting and stopping coordinates of the respective routes.

1 function [start,stop,routeState] = routeParameter(routeInfo)
2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 route401_A = 4011;
10 route401_B = 4012;
11

12 routeState = routeInfo;
13

14 switch(routeInfo)
15 case route401_A
16

17 % Define starting point and ending point of the route using GPS ...
coordinates
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18 % [The below entered route coordinates is for line 401 moving in ...
between Eindhoven Station and Airport]

19 % Direction - Station to Airport
20

21 start.lat = 51.4442; % ...
Physically/manually entered GPS latitude

22 start.lon = 5.4788; % ...
Physically/manually entered GPS longitude

23 start.head = 278; % ...
Physically/manually entered GPS heading

24

25 % Allowing variation/deviation with following range [in degrees] ...
around GPS coordinate

26 start.latRange = 0.0004; % ...
Physically/manually entered

27 start.lonRange = 0.0004; % ...
Physically/manually entered

28 start.headRange= 50; % ...
Physically/manually entered

29

30 stop.lat = 51.4567; % ...
Physically/manually entered GPS latitude

31 stop.lon = 5.3933; % ...
Physically/manually entered GPS longitude

32 stop.head = 309; % ...
Physically/manually entered GPS heading

33

34 % Allowing variation/deviation with following range [in degrees] ...
around GPS coordinate

35 stop.latRange = 0.0004; % ...
Physically/manually entered

36 stop.lonRange = 0.0004; % ...
Physically/manually entered

37 stop.headRange= 50; % ...
Physically/manually entered

38

39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40

41 case route401_B
42

43 % Direction - Airport to Station
44

45 start.lat = 51.4501; % ...
Physically/manually entered GPS latitude

46 start.lon = 5.4027; % ...
Physically/manually entered GPS longitude

47 start.head = 154; % ...
Physically/manually entered GPS heading

48

49 % Allowing variation/deviation with following range [in degrees] ...
around GPS coordinate

50 start.latRange = 0.0003; % ...
Physically/manually entered

51 start.lonRange = 0.0003; % ...
Physically/manually entered

52 start.headRange= 5; % ...
Physically/manually entered
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53

54 stop.lat = 51.4442; % ...
Physically/manually entered GPS latitude

55 stop.lon = 5.4788; % ...
Physically/manually entered GPS longitude

56 stop.head = 72; % ...
Physically/manually entered GPS heading

57

58 % Allowing variation/deviation with following range [in degrees] ...
around GPS coordinate

59 stop.latRange = 0.0004; % ...
Physically/manually entered

60 stop.lonRange = 0.0004; % ...
Physically/manually entered

61 stop.headRange= 5; % ...
Physically/manually entered

62

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64

65 otherwise
66 start.lat = 0; % ...

Physically/manually entered GPS latitude
67 start.lon = 0; % ...

Physically/manually entered GPS longitude
68 start.head = 0; % ...

Physically/manually entered GPS heading
69

70 % Allowing variation/deviation with following range [in degrees] ...
around GPS coordinate

71 start.latRange = 0; % ...
Physically/manually entered

72 start.lonRange = 0; % ...
Physically/manually entered

73 start.headRange= 0; % ...
Physically/manually entered

74

75 stop.lat = 0; % ...
Physically/manually entered GPS latitude

76 stop.lon = 0; % ...
Physically/manually entered GPS longitude

77 stop.head = 0; % ...
Physically/manually entered GPS heading

78

79 % Allowing variation/deviation with following range [in degrees] ...
around GPS coordinate

80 stop.latRange = 0; % ...
Physically/manually entered

81 stop.lonRange = 0; % ...
Physically/manually entered

82 stop.headRange= 0; % ...
Physically/manually entered

83 end
84 end

• Online Estimation: This feature contains the functions that are built in Simulink. It start with
the, Identification of the start and stop of the trip cycle. The function used to perform this
identification based upon the stored parameter is "InitiateStartStop"
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1 function [startRoute, stopRoute] = ...
fcn(time,GPSlat,GPSlon,GPShead,start,stop)

2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 % Define and Initializing the variables
10 % Initiated as persistent variables for retaining values of these ...

variables
11 % to be used in the next time cycle
12

13 persistent routeStart routeStop xStart xStop
14 if isempty(routeStart)
15 routeStart = false; % ...

vector which checks if current GPS coordinate is closer to ...
start coordinate

16 end
17

18 if isempty(routeStop)
19 routeStop = false; % ...

vector which checks if current GPS coordinate is closer to ...
stop coordinate

20 end
21

22 if isempty(xStart)
23 xStart = false;
24 end
25

26 if isempty(xStop)
27 xStop = true;
28 end
29

30 global counterStart counterStop
31

32 startRoute = false; % ...
checking the number of times the xStart state is active

33 stopRoute = false; % ...
checking the number of times the xStop state is active

34

35 % Storing the values in variable to be used as previous value
36 routeStart_prev = routeStart;
37 routeStop_prev = routeStop;
38

39 % Compare current GPS coordinate with the specified GPS coordinates ...
of Starting point

40 if abs(GPSlat - start.lat) < start.latRange && abs(GPSlon - ...
start.lon) < start.lonRange && abs(GPShead - start.head) < ...
start.headRange

41 routeStart = true;
42 routeStop = false;
43

44 if (routeStart_prev == true && routeStart == true) && xStart == ...
false && xStop == true % check if 2 ...
consecutive points are closer to start coordinate

Cloud Your Bus 139



Eindhoven University of Technology

45 xStart = true; ...
...

% then raise the flag that route has started
46 xStop = false;
47 startRoute = xStart;
48

49 if xStart == true
50 counterStart = counterStart + 1; ...

...
% update the route counter

51 counterStop = counterStop;
52 end
53 end
54

55 % Compare the current GPS coordinate and heading with the Fixed ...
stopping point GPS coordinate

56 elseif abs(GPSlat - stop.lat) < stop.latRange && abs(GPSlon - ...
stop.lon) < stop.lonRange && abs(GPShead - stop.head) < stop.headRange

57

58 routeStart = false;
59 routeStop = true;
60

61 if (routeStop_prev == true && routeStop == true) && xStart == ...
true && xStop == false % check if 2 ...
consecutive points are closer to stop coordinate

62 xStart = false; ...
...

% then raise the flag that route has stopped
63 xStop = true;
64 stopRoute = xStop;
65

66 if xStop == true
67 counterStop = counterStop + 1; ...

% update ...
the route counter

68 counterStart = counterStart;
69 end
70 end
71

72 else
73 % No changes are made if both the conditions are not met
74

75 routeStart = false;
76 routeStop = false;
77 end
78

79 % Reset counter
80 if counterStart ≥ 100 && counterStop ≥ 100
81 counterStart = 0;
82 counterStop = 0;
83 end
84

85 end

The energy estimation algorithm comes into play after the system identifies the start of the
route. The drive-train and auxiliary energy estimations are done separately but simultaneously
using the Kalman Filter approach as discussed in Chapter 4. The function works similar so only
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the one with drive-train energy estimation is shown in this manual.

1 % Author: Dhruv Jagga
2 % Project: Source Code - Cloud Your Bus
3 % email: d.jagga@tue.nl
4 % Date: 10-12-2019;
5 % Revised: 06-08-2020
6

7 % Define and Initializing the variables
8 % Initiated as persistent variables for retaining values of these ...

variables
9 % to be used in the next time cycle

10

11 persistent timeStamp sStamp EbatStamp EdriveStamp P massEstimatePrev
12

13 if isempty(timeStamp)
14 timeStamp = 0.0;
15 end
16

17 if isempty(sStamp)
18 sStamp = 0.0;
19 end
20

21 if isempty(EbatStamp)
22 EbatStamp = 0.0;
23 end
24

25 if isempty(EdriveStamp)
26 EdriveStamp = 0.0;
27 end
28

29 if isempty(P)
30 P = eye(1);
31 end
32

33 if isempty(massEstimatePrev)
34 massEstimatePrev = trip.mveh;
35 end
36

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % Variable time stamp resetting
39

40 if startRoute == true && stopRoute == false
41 timeStamp = time;
42 sStamp = s;
43 EbatStamp = Ebat;
44 EdriveStamp = Edrive;
45 massEstimatePrev = trip.mveh;
46 end
47

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 % Define States
50 eState1 = 0;
51 eState2 = 1;
52

53 persistent currentState
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54 if isempty(currentState)
55 currentState = eState1;
56 end
57

58 eState = currentState;
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60

61 % Switch to new state based upon value state register
62 switch(currentState)
63

64 case eState1 % State when the trip has not ...
yet started

65 timeRoute = 0;
66 sRoute = 0;
67 EbatRoute = 0;
68 EdriveRoute = 0;
69 energyDriveTrip= 0;
70 energyDriveTripCurrent = 0;
71 energyDriveActual= 0;
72 massEstimate = trip.mveh;
73 y = 0;
74 y_Estimate = 0;
75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76 % State Check
77

78 if startRoute == true && stopRoute == false
79 currentState = eState2;
80 else
81 currentState = eState1;
82 end
83

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85

86 case eState2 % State when the trip has started
87 timeRoute = time - timeStamp;
88 sRoute = s - sStamp;
89 EbatRoute = Ebat - EbatStamp;
90 EdriveRoute = Edrive - EdriveStamp;
91

92 % Energy estimate powertrain
93 EuseEstimate = cumsum(trip.Erate)*massEstimatePrev/3.6e6; ...

% Energy estimate in KWh
94 EuseFinal = EuseEstimate(length(EuseEstimate)); ...

% Final energy estimated needed for trip ...
using the previous avg profiles

95 EuseCurrent = interp1(trip.sRoute,EuseEstimate,sRoute); ...
% Energy usage interpolated with respect to ...

distance travelled
96

97 % Total energy consumption estimate for the entire trip
98 energyDriveTrip = EuseFinal; ...

% Energy consumtion ...
Estimate given at the start of the trip for entire route

99 energyDriveTripCurrent = EuseCurrent;
100

101 % Actual energy consumption
102 energyDriveActual = EdriveRoute; ...
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% Actual total energy ...
consumed over the trip

103

104

105 % METHOD 4 - MASS ESTIMATE (Kalman Filter Approach)
106

107 y = EdriveRoute;
108

109 phi = cumsum(trip.Erate)/3.6e6;
110 phi = phi';
111

112 yEstimate = phi'*massEstimatePrev;
113 yEstimate = interp1(trip.sRoute,yEstimate,sRoute);
114

115 y_Estimate = yEstimate;
116

117 for i = 1:length(trip.Erate)
118 R1 = 2.5*1e3;
119 R2 = 1;
120 pPrev = P;
121

122 P = pPrev + R1 - ((pPrev*(phi(i)*phi(i)')*pPrev)/(R2 + ...
(phi(i)'*pPrev*phi(i))));

123 Q = pPrev/(R2 + (phi(i)'*pPrev*phi(i)));
124

125 K = Q * phi(i);
126 end
127

128 if sRoute > 100
129 massEstimate = massEstimatePrev + K * (y - yEstimate);
130 else
131 massEstimate = massEstimatePrev;
132 end
133

134 massEstimatePrev = massEstimate;
135

136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137 % State Check
138

139 if startRoute == false && stopRoute == true
140 currentState = eState1;
141 else
142 currentState = eState2;
143 end
144

145 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
146

147 otherwise
148 timeRoute = time;
149 sRoute = s;
150 EbatRoute = Ebat;
151 EdriveRoute = Edrive;
152 energyDriveTrip= 0;
153 energyDriveTripCurrent= 0;
154 energyDriveActual= 0;
155 massEstimate = trip.mveh;
156 y = 0;
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157 y_Estimate = 0;
158

159 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
160

161

162 end

With the estimations going on, the RCI profile (called as Erate in the Software) is being calcu-
lated by the function "ErateProfile"

1 function Erate = ErateProfile(Pdrive,Vx,eState,massEstimate)
2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 if eState == 1
10

11 if Vx == 0
12 ForceDrive = 0;
13 Erate = ForceDrive/massEstimate;
14 else
15 ForceDrive = Pdrive/Vx;
16 Erate = ForceDrive/massEstimate;
17 end
18

19 else eState == 0
20 Erate = 0;
21 end
22

23

24 end

Also the reliability function works concurrently to give information about the reliability of the
predictions made. The function is "ReliabilityFunction"

1 function [reliability, dispReliability] = fcn(eState,error)
2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 if eState == 1
10 if abs(error) ≤ 20
11 reliability = 100 - abs(error) * 5;
12 else
13 reliability = 0;
14 end
15

16 else
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17 reliability = 0;
18 end
19

20 if reliability > 95
21 dispReliability = 100;
22 else
23 dispReliability = reliability;
24 end
25

26 end

• Post-Processing: Once the real-time scenarios are emulated using the simulations. The data is
pre-processed and the reference data profiles are created using the averaging of the individual
trip cycle data. There are three functions used to perform the pre-processing. "extractData"
function extracts the data segments from the simulation results. The individual data structures
are prepared using the function "dataStruct". Finally these individual data structures are used to
create averaged data structure using the function "avgDataStruct" which is stored as "Updated
Data Reference Profile"

1 function [tripUpdate] = avgDataStruct(out,tripPost)
2

3 % Author: Dhruv Jagga
4 % Project: Source Code - Cloud Your Bus
5 % email: d.jagga@tue.nl
6 % Date: 10-12-2019;
7 % Revised: 06-08-2020
8

9 % Averaging 'n' number of cycles;
10 n = 2;
11

12 % Operating directory to look for relevant files
13 opdir = 'C:\Users\20184719\Documents\Final Project - Module 5\Source ...

Code\MATLAB\Cloud Your Bus - Energy Estimation System for EV\Post ...
Processing\DataProfile-Route_401';

14

15 % Check the presence of relevent files in the directory
16 statusDataFile1 = isfile(fullfile(opdir,'ErateProfile401_A_01.mat'));
17 statusDataFile2 = isfile(fullfile(opdir,'ErateProfile401_A_02.mat'));
18

19 % Checking when to activate averaging (Average when the counter is ...
set to desired number)

20 for z = 1:length(out.tout)
21 if out.postProcess.counter.Data(z) == n
22 activateAvg = true;
23 else
24 activateAvg = false;
25 end
26 end
27

28 % Load the files if the files are present in the directory
29 if statusDataFile1 == true
30 m1 = load("ErateProfile401_A_01.mat");
31 end
32

33 if statusDataFile2 == true
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34 m2 = load("ErateProfile401_A_02.mat");
35 end
36

37 switch activateAvg
38 case true
39

40 e1 = m1.trip.Erate;
41 e2 = m2.trip.Erate;
42

43 % Creating averaged Erate Profile
44 e = min([length(e1),length(e2)]);
45 s = min([m1.trip.s,m2.trip.s]);
46

47 ErateAvg = zeros(e,1);
48 timeAvg = zeros(e,1);
49

50 % Averaging the Erate and corresponding time array
51 for y = 1:e
52 ErateAvg(y) = (m1.trip.Erate(y)+m2.trip.Erate(y))/n;
53 timeAvg(y) = (m1.trip.time(y)+m2.trip.time(y))/n;
54 end
55

56 mveh = 19000;
57

58 % ErateAvg = ErateAvg';
59 % timeAvg = timeAvg';
60

61 % Creating time varying Auxiliary Power Profile
62 f = min([length(m1.trip.time),length(m2.trip.time)]);
63

64 % Extracting the time array from the data structure
65 timeAux1 = m1.trip.timeAux;
66 timeAux2 = m2.trip.timeAux;
67

68 % Extracting the Power array from the data structure
69 Paux1 = m1.trip.Paux;
70 Paux2 = m2.trip.Paux;
71

72 % Interpolating the Power according to the distance-time ...
interpolation

73 Paux1 = interp1(timeAux1,Paux1,m1.trip.time);
74 Paux2 = interp1(timeAux2,Paux2,m2.trip.time);
75

76 % Averaging the Auxiliary Power and corresponding time array
77 for j = 1:f
78 PauxAvg(j) = (Paux1(j) + Paux2(j))/n;
79 timeAuxAvg(j) = (m1.trip.time(j) + m2.trip.time(j))/n;
80 end
81

82 PauxAvg = PauxAvg';
83 timeAuxAvg = timeAuxAvg';
84 dt = [0;diff(timeAuxAvg)]; ...

% used as weighted sample space
85

86 sRoute = [1:1:s]'; ...
% distance vector ...

with sample of '1m' for particular route
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87 ds = [0;diff(sRoute)]; ...
% used as weighted sample ...

space
88

89 EuseDrive = cumsum(ErateAvg.*ds)*mveh/3.6e6;
90 EuseAux = cumsum(PauxAvg.*dt)/3.6e6;
91

92 Etrip_measured = mean([m1.trip.Etrip_measured ...
m2.trip.Etrip_measured]);

93

94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95

96 % Making a new trip parameter structure with average Erate (+ ...
all averaged profiles)

97 trip.sRoute = sRoute;
98 trip.mveh = mveh;
99

100 trip.s = s;
101 trip.time = timeAvg;
102

103 trip.Erate = ErateAvg;
104 trip.Paux = PauxAvg;
105

106 trip.Euse_estimate_drive = EuseDrive;
107 trip.Euse_estimate_aux = EuseAux;
108

109 trip.timeAux = timeAuxAvg;
110 trip.Etrip_measured = Etrip_measured;
111

112 % Checking health status of the stored data
113 trip.tripDataHealth = all(¬isnan(trip.Erate(:))) && ...

all(¬isnan(trip.Paux(:))) && (trip.Etrip_measured 6=0 || ¬...
isnan(trip.Etrip_measured));

114

115 tripUpdate = trip;
116

117 otherwise
118

119 tripUpdate = tripPost.trip0;
120 end
121

122 end
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Real-time energy consumption prediction for
electric city buses by characterizing the route

locations with real-world data
Yuzhe Ma, Dhruv Jagga, Igo Besselink, and Henk Nijmeijer, Fellow, IEEE

Abstract—Current energy consumption prediction methodolo-
gies for electric vehicles suffer several practical limitations. In
particular, many vehicle-specific parameters should be known
and estimated in many designed systems, which limits the prac-
tical applicability. Meanwhile, many existing prediction models
rely on the timeliness, which means the driving time should be
estimated as well. That further increases the challenge for dealing
with uncertainties. There are also some approaches requiring
a huge database to find out the characteristics of the driving
behavior, such as the machine learning method. But in some
cases that will be also limited by the on-board storage space
if a real-time prediction will be done. This research explores
an energy consumption prediction approach for electric buses,
which is based on limited measurement data for a given bus
route. The approach will mainly rely on the domain of distance
instead of time, which means the energy consumption can be
estimated as long as the travelled distance is known at the start.
Moreover, buses have the characteristics that the mass is changing
with passenger load and the auxiliary power increases over time,
which can not be predicted before the trip. Therefore, an online
correction algorithm is designed, which is based on recursive
algorithm and Kalman filter to improve the estimate accuracy in
real-time. Results show that the offline model can give a rough
prediction before the trip and the online model can improve the
estimate to a promising accuracy.

Index Terms—Energy consumption prediction, electric vehi-
cles, real-time, real-world data

I. INTRODUCTION

ELECTRIC vehicles (EV) have been more rapidly devel-
oped in recent years due to their contribution to reduce

greenhouse gases (GHG) emissions and fossil energy use.
In particular, the prediction of the energy consumption for
coming trips has been an important technique, which aims to
alleviate the range anxiety [1]. These possibilities can also
be conducive to build better infrastructures, which could help
achieve a higher rate of adoption of electric vehicles.

In the public transport sector, the energy consumption
prediction is helpful for optimizing the charging strategies
and the fleet management [2]. Compared to increasing the
available battery capacity, an accurate range estimation system
is less costly and it can avoid adding extra weight and
space. Various energy consumption estimate methods have
been investigated by researchers. Current prediction systems
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University of Technology, 5612AZ Eindhoven, The Netherlands (e-mail:
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are designed from two main aspects: One is the physical mod-
elling approach [3]−[5], the other is data analyzing approach
[6]−[8]. The physical model usually requires a complete set
of vehicle-specific parameters, which are usually not given
on the brochure. For obtaining those parameters, additional
tests should be designed. For instance, the rolling resistance
coefficient need to be determined by an extra coastdown test
[9]. Meanwhile, a motor efficiency map is also necessary for
an accurate physical model, which should be determined by
the dynamometer experiment. However, these kinds of tests are
costly and not always possible in practice unless you have an
automotive lab. Meanwhile, the environmental parameters are
also necessary for a physical model, such as the road gradients
and the weather conditions. For projects that no equipment
can be provided for completing the parameter-determination
tests, many current prediction models might be stuck with
insufficient inputs.

The data-driven model has the advantage of estimating the
realistic energy consumption, and less relies on the vehicle
dynamics. Especially for public transport, the data-driven
approach is more suitable because of the fixity of routes. Data
can be repeatedly collected from the bus on one route and
characterized. In literature, the simulation of most existing
data-driven models is based on the time series [10]−[12],
which always needs a time estimation as well. However, it is
usually not easy to do an accurate time prediction for the future
driving because the events on the road are randomly happen-
ing. As the locations on the route is alwasy fixed, therefore
the prediction will be more reliable if the model is based on
the locations that the vehicles are driven. Research [13] has a
distance-based simulation program, but many vehicle-specific
parameters need to be estimated.

An offline data-driven prediction model is always not
enough to guarantee the accuracy in real time. To solve this,
some researchers also design online correction to adjust the
predicting results from time to time. However, many models
still need some vehicular parameters even if the authors
thought those parameters were easy to obtain. For instance,
the real time prediction model in research [14] requires the in-
formation of air density, aerodynamic drag coefficient, frontal
area and even a prediction of rolling resistance coefficient.
The complexity of the model is still very high, which might
be limited in practice.

This paper aims to design an prediction algorithm for
electric city buses, which does not rely on plenty of vehicle
parameters and time series. Meanwhile, an online correction
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model which only requires a prediction for one parameter is
designed to keep the complexity low. This proposal consid-
ers to characterize the chosen route in location domain by
analyzing the historical data. The algorithm is divided into
two parts, the offline algorithm and the online algorithm. The
offline model uses the historical data to generate an initial
estimate of the energy consumption. The online model will
correct the prediction result by adjusting the vehicle mass
value. Additionally, the online approach is based on recursive
algorithm to adjust only two parameters, which simplifies the
practical complexity during the operation.

The outline of this paper is as follows. In Section II,
an energy consumption prediction model is proposed where
the algorithm is mainly simulated in the distance domain.
Route characteristic indicator (RCI) is defined for the use of
offline estimate. In Section III the procedures for generating a
reference RCI is discussed. An offline estimate of the energy
consumption can be made from this procedure as well. Section
IV introduces the online correction algorithm with using the
offline estimate and the recursive algorithm. In Section V, the
testing scenarios and the simulation results are presented. The
conclusions and recommendations are given in Section VI.

II. METHODOLOGY

The energy consumption for an electric vehicle can be
simulated by a model in time domain, which can be expressed
by

E(t1) =

∫ t1

0

[Pt(t) + Paux(t)]dt

=

∫ t1

0

{v(t)
η(t)

[frmg cos(α(s(t))) +
1

2
ρCdAf (v(t)

− vw(t))2 +mg sin(α(s(t))) +meffax(t)]

+ Paux(t)}dt

(1)

where E(t1) is the energy consumption at any time t1 on the
trip, Pt(t) is the power request as a function of time in the
drivetrain for propelling the vehicle, fr is the rolling resistance
coefficient, m is the vehicle mass, g is the gravitational
acceleration, α(s(t)) is the road gradient as a function of
distance s(t), the travelled distance s(t) is a function of the
time t, which can be expressed by

s(t1) =

∫ s(t1)

0

ds =

∫ t1

0

v(t)dt (2)

ρ is the air density, Cd is the aerodynamic drag coefficient, Af
is the frontal area, v(t) is the vehicle speed as a function of t,
η(t) is the drivetrain efficiency as a function of time, vw(t) is
the wind speed as a function of t, meff is the vehicle effective
mass, ax(t) is the acceleration as a function of t, Paux(t) is
the auxiliary power as a function of t and te is the time at the
end of the trip. For the purpose of validating such a model, all
those parameters should be known. Similarly, these parameters
should also be given if this model will be used for predicting
the future trips. However, in reality, not all the parameters
can be provided or measured due to practical limitations. And
a part of parameters are always changing randomly and they

might be also correlated with each other, it would be very com-
plicated to estimate them separately. For example, the rolling
resistance coefficient fr changes when the road type, ambient
pressure and ambient temperature change. The vehicle mass
m changes when the load in the vehicle changes. The road
gradient α is dependent on the road structure, you should give
additional efforts on extracting the available online elevation
data. The air density is changing with diverse ambient pressure
and ambient temperature. The vehicle speed v is changed by
various factors, which can not be known precisely before a
trip. Meanwhile, when estimating the future driving time, the
accuracy will be limited by different kinds of uncertainties the
vehicle could encounter on the road. Changing average driving
speed, uncertain waiting time for traffic lights and unexpected
accidents can all affect driving time. Therefore, predicting an
electric vehicle’s energy consumption would be not easy if
such a time-based and parameter-based method is adopted.

For a given route, the location is always fixed there. Com-
pared to predicting the driving time, using the fixed location
to determine the energy usage is more reliable. A vehicle can
only consume energy when it begins moving, which means
the energy consumption is actually dependent on the travelled
distance. An exception is the auxiliary system, which will still
cost energy when the car is standstill. With combing the two
aspects, the energy consumption calculation formula can be
divided into two terms. One is a distance-based term, and the
other is a time-based term. We define the expression as follows

E(t1) =

∫ s(t1)

0

Fs(s)ds+

∫ t1

0

Paux(t)dt (3)

where E(t1) is the energy consumption at any time t1 on the
trip, s(t1) is the travelled distance at t1, Fs(s) is the propelling
force in the drivetrain as a function of distance s(t). Compared
with Equation 1 which is fully dependent on time, Equation 3
reduces the impact of the time uncertainty. When the travelled
distance is s1, Fs can be expressed by

Fs[s(t1)] =frmg cos[α(s(t1))] +
1

2
ρCdAf [v(s(t1))

− vw(s(t1))]2 +mg sin[α(s(t1))]

+meffax[s(t1)]

(4)

This research aims to avoid using too many modelling inputs
but Equation 4 also involves a group of parameters. Mean-
while, the proposed approach will be a data-driven model
which is based on the average of the historical data. Averaging
parameters that are dramatically changing will make errors.
For a bus case on the fixed route, the gravitational acceleration
g, the aerodynamic drag coefficient Cd, the frontal area Af
and the effective vehicle mass meff are constant parameters.
The road gradient α is fixed with the route locations. The
rolling resistance coefficient fr can be a function of the
ambient temperature [15]. The ambient temperature is usually
not changing dramatically. Therefore, fr is relatively steady
during driving. The air density ρ is dependent on the ambient
temperature and air pressure, and the air pressure is not
changing heavily so that ρ is mostly steady. The wind speed
vw is small in the city area, and the bus driving speed is also
low. So the influence of the wind speed is not changing too
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much. The driving speed v can show a similar characteristic
of the profile between different cycles on the same route. The
vehicle mass m has variations due to the changing passenger
load. The passenger number from each stop is random and
cannot accurately predict accurately. Meanwhile, the mass
variation can have a significant influence on the propelling
force because the rolling resistance force, the road slope force
and the acceleration force are all related to the vehicle mass
m. The passenger number is also not easy to obtain in practice.
Therefore, averaging the mass m will be difficult and bring
inaccuracy. Above all, except for the vehicle mass m, all other
parameters can be characterized by averaging the historical
data. For excluding m from the model, Fs can be normalized
by the mass m. With considering the drivetrain efficiency η,
the normalized force from the motor can be expressed by

Fs[s(t1)]

mη[s(t1)]
=

1

η[s(t1)]
[frg cos(α(s(t1)))

+
1

2m
ρCdAf [v(s(t1))− vw(s(t1))]2

+ g sin[α(s(t1))] +
meff

m
ax(s(t1))]

(5)

We define Fs

mη as the route characteristic indicator (RCI). The
unit for RCI can be m/s2 because Fs

mη can be physically an
acceleration. It is not practical to directly measure the RCI,
Fs can be calculated by the drivetrain power request Pd from
the motor and vehicle speed v, which can be given as

Fs[s(t1)] =
Pd[s(t1)]η[s(t1)]

v[s(t1)]
(6)

Then RCI can be calculated by

RCI[s(t1)] =
Fs[s(t1)]

mη[s(t1)]
=

Pd[s(t1)]

mv[s(t1)]
(7)

Pd can be calculated by the product of the voltage and the
current of the drivetrain, which is

Pd[s(t1)] = Ud[s(t1)]Id[s(t1)] (8)

where Ud and Id are the voltage and the current of the
drivetrain, respectively. Assume the mass is constant for the
whole trip, the Equation 3 becomes

E(t1) = m

∫ s(t1)

0

RCI(s)ds+

∫ t1

0

Paux(t)dt (9)

The auxiliary power request Paux is the difference between
the battery power and the drivetrain power, which can be
calculated by

Paux[s(t1)] = Pb[s(t1)]− Pd[s(t1)] (10)

where Pb is the battery power and it can be determined by the
product of the battery voltage and battery current

Pb[s(t1)] = Ub[s(t1)]Ib[s(t1)] (11)

in which Ub and Ib are the voltage and the current of the
battery, respectively.
However, in case of electric city buses the drive-train power

request is significantly influenced by the weight of passengers
being carried for a particular trip on a given route. The
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Fig. 1: Power Measurement Configuration of Electric City
Buses

auxiliary request can be also influenced by several factors,
one of the most dominant is ventilation and air conditioning,
which is further dependent upon number of other factors, such
as; number of passengers travelling in the bus, environmental
conditions etc. Therefore, a new update was proposed in
this model, which was to update the mass term for drive-
train energy estimation and adding a correction term for the
auxiliary energy estimation part that accounts for the above
mentioned influencing factors on auxiliary energy estimation.
Both of these terms are subjected to change as the trip
progresses to make relevant corrections in real time on energy
estimation of a given route. Similar to the drive-train energy
estimation case a reference auxiliary power Paux profile was
used for a given route. The updated model is described in
Equation 12

E(t1) =m[s(t1)]

∫ s(t1)

0

RCI(s) ds

+ n(t1)

∫ t1

0

Paux(t) dt

(12)

In Equation 12 m[s(t1)] is a coefficient described as
function of travelled distance which is further the function
of time, this term not only accounts for the mass variation
of the vehicle over the route but also accounts for other
environment uncertainties such as rolling resistance, road slope
and aerodynamic drag etc. The detailed explanation of the
chosen algorithm for achieving the updating goal will be
discussed in Section IV, which is a re-calculation of the total
energy consumption from the start to the end of the given
route. n(t) is the gain for correcting the auxiliary energy
estimate over real-time.

III. OFFLINE ESTIMATE BASED ON HISTORICAL DATA

As a preparation for the online prediction, this section
will discuss the procedure to properly generate an offline
reference RCI as defined in Section II with processing multiple
collected runs from a given bus driving route. For a given
route from place A to place B, the data can be collected
repeatedly to establish a historical database. In this research,
the essential signals consist of the time, the GPS latitude,
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the GPS longitude, the vehicle speed, the battery voltage,
the battery current, the drivetrain voltage and the drivetrain
current. Normally, these signals can be easily collected by
the CAN bus on-board. Assuming the sampling frequency is
identical for all signal channels and the data lengths for all
channels are identical, the reference RCI profile and reference
auxiliary power profile can be obtained. Using the profiles, the
initial energy consumption estimate can be done on the offline
stage.

A. Data preprocessing

The data used in the research is from one of the buses in
operation of the city. Prior to bring the data to simulate the
model, some steps should be taken to process the raw data.
First, the locations of the start and end of the route should
be accurately selected. Second, a fixed-step travelled distance
data should be made by re-sampling.

1) Determine the range of route: According to the GPS
coordinates of the first and the last stops from Google Map,
the data between the two locations can be extracted from the
raw data. On the one hand, this step can remove points which
were collected when the bus was in standstill before or after
the trip. On the other hand, making the start and end locations
the same can be helpful to align the data size more easily.

2) Re-sample the travelled distance: In the raw data, the
distance values between sampling points vary from segment
to segment. That would be difficult to align the same location
from different cycles just by directly searching it with the
sequence of the corresponding sample. To deal with this,
the travelled distance in the measurement can be divided
into fixed intervals. The value of the fixed interval can be
determined by averaging the historical actual intervals between
samples. Assume the route lengths based on the calculation
for all cycles are the same, the amount of points for all
cycles will be equal after re-sampling by this fixed interval.
But in practice, measured cycles may have slightly different
lengths due to the GPS operating errors or various driver
behaviors. The influence of this difference is neglected in this
research because it has been proven to be too small to have
an effect (just a few meters). A fixed total travelled distance
is also defined by averaging the total travelled distances of
all cycles. Consequently, we have the identical number of
sampling points and equal travelled distance for all measured
cycles, which means multiple cycles can be programmed
synchronously.

B. Reference RCI and auxiliary power

As defined in Section II, the term RCI can be determined
for a single cycle (Equation 7). With the re-sampled distance
domain determined in Section III-A2, a RCI profile can be ob-
tained. For the auxiliary power, the number of sampling points
are different from the number of re-sampled points. Therefore,
a further alignment should be done for the generation of the
auxiliary power profile. Once the data sizes are aligned, the
averaging can be done to generate the reference RCI profile
and auxiliary power profile. The sections also gives a simple
algorithm to determine the minimum number of RCI profiles

that are enough to be used to prepare the offline estimate,
which has the advantage on the memory saving in case a
practical limitation is considered.

1) RCI and auxiliary power for individual cycles: Equation
7 and Equation 10 are respectively for obtaining the RCI
profile and auxiliary power profile for a single cycle.

2) Interpolate sample size to match the size of re-sampled
distance: Due to the difference between the raw distance data
and the re-sampled distance data, RCI profile should also
be re-sampled. This can be achieved by MATLAB for an
interpolation. For the auxiliary power Paux(t), the time can
be also re-sampled by interpolating the time-distance relation
in the original data to the re-sampled distance. Then, Paux(t)
can be obtained by interpolating the time-Paux relation in the
original data to the re-sampled time.

3) Average multiple RCI profiles and auxiliary power pro-
files: RCI profiles and auxiliary power profiles then can be
made for all measured cycles. Meanwhile, the sample size for
all cycles are now identical. That is easy to make an averaging
for all RCI and auxiliary power profiles, which are thus the
reference RCI and reference auxiliary power profile.

4) Minimum sample size determination: Although it will be
more accurate with collecting the data as much as possible, a
huge amount of data might be not very necessary in some case.
Actually when the data is much enough, the averaged profile
will become steady. The determination of the minimum cycle
size can be operated by comparing the root mean square error
(RMSE) of the latest profile with a chosen baseline profile.
We only take RCI profile into account rather than auxiliary
power profile, which is because the RCI plays a bigger role in
the total energy consumption. RMSE of between the newest
RCI profile and the baseline RCI profile can be expressed by

RMSERCI =

√∑n
i=1(RCInew −RCIbase)2

n
(13)

where n is the number the data points, RCInew is the averaged
RCI profile with multiple RCI profiles and RCIbase is the
baseline RCI which can be defined by a random single cycle.
With increasing the amount of the cycles used for generating
the reference RCI, namely RCInew, RMSERCI will go up
dramatically when the amount of cycles is small and then
become steady after a specific amount of cycles.

Figure 2 illustrates the investigation of the inflection point
in the tendency. The change becomes much smaller after the
point that has 16 cycles involved. Therefore, in this case
16 cycles are sufficient to generate a reference RCI profile
with an acceptable accuracy. The plots of RCI and auxiliary
power profiles for all cycles are shown in Fig. 3 and Fig.
4, respectively. The similarity among different RCI profiles
can be seen, which makes the averaging method work. In the
auxiliary power profiles, the time varies from cycle to cycle.
This further explains the advantage of using distance domain
for prediction rather than time domain.

C. Off-line energy consumption estimate

With the reference RCI profile and reference auxiliary
power profile, the energy consumption is estimated by Equa-
tion 9. Fig. 5 shows the energy consumption calculated from
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Fig. 2: The tendency for RMSEs of averaged RCI profiles with
increasing the involved cycle amount

Fig. 3: RCI profiles from 16 cycles and the reference RCI (in
black)

Fig. 4: Auxiliary power profiles from 16 cycles and the
reference auxiliary power profile (in black)

the measured data for 16 cycles and the estimated energy
consumption based on the reference RCI and auxiliary power

Fig. 5: Energy consumption from 16 measured cycles and
the estimate based on the reference RCI and auxiliary power
profiles (in black)

profiles. Because the bus mass is assumed as a constant,
and the time for operating the auxiliary system is fixed, the
estimated total energy consumption for the investigated route
is fixed as well.

IV. ONLINE CORRECTION WITH TUNING PARAMETERS

To improve the accuracy of the energy consumption pre-
diction over the given route, it is required to update the
model parameters in real-time. The parameters of the model
in real-time (online) estimation algorithms are updated as the
new measurements are available during the operation of the
physical system. Now, the two major parameters needed two
be updated in real-time are mass-estimate for drive-train esti-
mation and correction gain-estimate for auxiliary estimation.
(refer to Equation 12). All other influencing factors on energy
estimation are considered as perturbation [17].

A. Online Identification
In this particular case, it is quite useful to have a reference

profile to be available online when the system is in operation.
This online available reference model allows the system to
make best predictions for next outputs and can be regarded as
the an adaptive prediction method (see Fig. 6).

Since, the challenge now is concerned with estimating the
parameter of the model as the new data is made available
during the operation. A typical choice is made and estimation
is performed using recursive algorithms (also known as on-
line, real-time identification, adaptive parameter estimation, or
sequential parameter estimation). This algorithm estimates the
parameter values at each time step by using currently made
observations (measurement data) and using previous parameter
estimates. These algorithms are a viable option because they
are efficient in terms of memory usage and also possess
smaller computational demands [18].

B. Recursive Algorithm: Online Parameter Estimation
The recursive algorithms used for online parameter estima-

tion can be parted into two categories. The infinite-history
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Fig. 6: A basic procedure for the adaptive method

algorithm and finite-history algorithm. The infinite-history
algorithm aims to minimize the error between the measured
and the estimated outputs for all time steps from the beginning.
Whereas, finite-history algorithm aims to minimize the error
between the measured and the estimated outputs for a finite
number of past time steps. In order to carry out estimation
for this particular application; i.e. estimation on mass and cor-
rection gain, relevant results are obtained when the complete
route data is handled in order to capture different behaviours
of energy consumption over the given route. Therefore, the
infinite-history recursive estimation algorithm was used.

1) Recursive Infinite-History Estimation: In the general
form of the recursive estimation algorithm, it follows a set
of regression equations that minimizes the following cost
function.

J(θ̂, k) =
1

2

k∑

k=1

[y(k)− ŷ(k)]2 (14)

the predicted estimate of the parameter is given by the follow-
ing equation:

θ̂(k) = θ̂(k − 1) +K(k)[y(k)− ŷ(k)] (15)

where, θ̂(k) is the estimation of parameter at every sample k.
y(k) is the observed or measured output at sample k and ŷ(k)
is the estimation of y(k) based on observations up to samples
k − 1. K(k) gain determines how much the current estimate
error [y(k)− ŷ(k)] affects the estimate of the parameter. The
main idea of the algorithm is to minimize the prediction-error
term.

The model used to obtain the energy estimation (refer to
Equation 12) is linear in relationship and hence, a linear-
regression form of model is used for online parameter esti-
mation. Thus, the role of the gradient ψ(k) can be visualised
by the following equation.

y(k) = ψT (k)θ0(k) + e(k) (16)

The predicted estimate of the output is given by the following
equation:

ŷ(k) = ψT (k)θ̂(k − 1) (17)

where, ψ(k) is the regressor vector or gradient of the predicted
output ŷ(k|θ) with respect to parameters θ, which is computed
based upon the previously measured input and output values.
e(k) is assumed to be white noise. The definitive form of ψ(k)
is determined by the structure of polynomial model.

The estimation gain has the following form.

K(t) = Q(k)ψ(k) (18)

Further, the infinite-history recursive estimation algorithm has
different types; forgetting factor, kalman filter and gradient
based approach. All these algorithms were developed and
deployed for this application, but kalman filter approach was
chosen for the final deployment because of its superiority and
its fit with the application. The rationale for choosing this
approach is also provided in the Table I below:

TABLE I: Rationale for selection of type of Online Parameter
Estimation

Algorithm Type Advantages Disadvantages
Simple implementation; Correction gain remain

constant;
Gradient based Less memory and pro-

cessing;
Less Robust.

Absolute error is ≈ 5%.
Gain estimation is sensi-
tive;

Forgetting factor Adaptive gain estima-
tion based upon error
co-variance

Better for system with
quick changing dynamics
in which last few mea-
surements are critical;
Absolute error is ≈ 8%.

Adaptive gain estima-
tion based upon error
co-variance;

Kalman filter Absolute error is < 2%; Relatively complex to
implement.

More robust results
tested on limited data;
Better estimation on
overall historical data.

2) Kalman Filter: Kalman filter, also recognised as Linear
Quadratic Estimator (LQE), is essentially a set of mathemat-
ical equations which implements a predictor-corrector type
estimator, these estimations are optimal as it minimizes the
error co-variance; as certain conditions are met. It is a method
that use sequence of measurements observed over time, that
accommodates statistical noise and other inaccuracies. This
algorithm yields estimates of unknown variable that conduces
more accuracy then those based upon single measurements.
These estimates are made by estimating a joint probability
distribution over the variables for each time-frame.

The Kalman filter handles a process by using a feedback
control: the filter estimates the process parameter at certain
sample and obtains feedback in the form of measurements.
The related algorithms for the filter falls under two categories:
sample update equations and measurements update equations.
The sample update equations are usually responsible for
projecting ahead in sample, the current parameter and its error
co-variance estimation to realize a priori estimate for the next
sample step. The measurement update equations ensures for
the feedback - i.e for incorporating a new measurement into
the a priori estimate to retrieve an improved a posteriori



7

SAMPLE

UPDATE

(“Predict”)

MEASUREMENT 

UPDATE

(“Correct”)

Fig. 7: Ongoing Kalman filter cycle. Sample update projects
the current state estimate before the actual measurement
is available. The projected estimate is later updated by
measurement update.

estimate. The estimation algorithm hence, resembles of a
predictor-corrector algorithm. The equations used in Kalman
filter adaptation algorithm are summarized to compute the
Kalman gain as in Equation 18

K(k) = Q(k)ψ(k) (19)

Q(k) =
P (k − 1)

R2 + ψT (k)P (k − 1)ψ(k)
(20)

P (k) = P (k − 1) +R1 −
P (k − 1)ψT (k)P (k − 1)

R2 + ψT (k)P (k − 1)ψ(k)
(21)

In the prediction step the Kalman filter projects the parameter
and error co-variance ahead in sample. It then jumps to the
correction step and first computes the Kalman gain. It then
updates the estimates with measurements y(k) and finally
update the error co-variance P (k). This process is repeated
with previous a posteriori estimate used to project new a
priori estimate. This recursive nature of Kalman filter makes
it useful for practical estimation [19].

Applying the terminology in this application in discrete
time, the regressor vector ψ(k) is

∑k
0 RCI(k) and parameter

vector θ is m(k) for drive-train estimation and correction.
While for auxiliary estimation and correction, the regressor
vector ψ(k) is

∑k
0 Paux(k) and parameter vector θ is n(k).

To use the Kalman recursive algorithms, an initial value is
required for its start-up. In the drive-train estimation and cor-
rection algorithm the parameter vector θ̂(0) is initialised with
the unladen mass of the vehicle and co-variance matrix P (0)
that indicates the parameter error is initialised with identity
matrix. Furthermore, in auxiliary estimation and correction
algorithm the parameter vector θ̂(0) is initialised with 0.1
and co-variance matrix P (0) that indicates the parameter error
is initialised with identity matrix. Also, the algorithm always
ensures that the co-variance matrix P (k) is a positive-definite
matrix by using a square root algorithm to update it [20].

P (k) is computed assuming that the residuals (difference
between estimated and measured output) is white noise, and
the variance of these residuals is 1. The R1 and R2 in
Kalman filter algorithms are the process error co-variance (co-
variance matrix of parameter changes) and measurement error
co-variance (variance of residuals). It is assumed that R1 and
P (0) matrices are scaled such that R2 = 1. This allows the
designer to tune the algorithm with only one tuning factor
in this case which is R1. In case of drive-train estimations, it
was observed that the consumption of the energy over different
cycles can vary with the uncertainty of 2.5 KWh, the value
of the R1 was set to 2.5 ∗ 103 to giving an uncertainty range
to the algorithm for the predictions. Also, it means that the
process variance allowed is larger and actual measurement
will be trusted more than the predicted value. This means that
the estimates will deviate away less from the actual measured
value. Also, this value cannot be kept too large in order to
prevent the trust of algorithm to shift significantly towards the
noisy measurements. On the other hand the auxiliary energy
profile remains fairly similar and linear for different trip cycles
except some exceptional trips. So, the process variance allowed
is kept smaller; in this case R1 = 10−5, and algorithm
is pushed to trust the predicted value more than the actual
measurements.

V. TESTINGS AND SIMULATION RESULTS

To start developing the novel real-time energy estimation
system for the electric vehicles; more focused on the electric
city buses, the development was made at the prototype level
using simulations. The system functionality required some pre-
collected data from the vehicle over the given route. For the
purpose of collecting data from the vehicle and ARM based
embedded device was installed on the vehicle. This device has
access to all CAN-Bus and GPS data of the vehicle for the
given route. During the experiment for the collection of data,
the device logged the data for the entire motion of the vehicle
for a couple of weeks, which includes all relevant charging and
discharging data. From this ocean of data logged; the relevant
data segments were extracted associated with the selected route
(From the city train station to the city airport, 8.6 km). It
was observed that 21 such cycles of the selected route can be
extracted from the total logged data, which was sufficient to
begin with the development. Since, this application requires
the estimation of certain parameters using the data, it was
necessary to categorize the available data into training data and
validation data.The training data was used to build the base
reference model and tuning the parameters of the algorithm.
Whereas, on the other hand validation data was used to provide
and unbiased evaluation of the final results from the estimation
and correction algorithm. The validation data has never been
used in the training of the algorithms. By the rule of thumb,
70 % of total data collected was allocated to training which
is approximately 16 cycle data and the rest of the 30 % data
which was the remaining 5 cycle data was used as validation
data.
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Fig. 8: Simulation Results: Test Scenario 1

A. Testing

To carry out the testing to check the overall functionality
of the real-time energy estimation system; three test scenarios
were designed.

1) Test Scenario 1: In this test scenario the real-time energy
estimation system was simulated with the first two cycles of
the training data. The base reference profile was used for
estimation and corrections. It can be observed from Fig. 8, that
the system identifies when to activate the real-time estimation
and correction function. Since two cycle data was simulated
together (which means that electric city bus travels on the
selected route two times). This has been clearly identified by
the system and estimations were made. The system does the
drive-train and auxiliary energy estimation separately which
can be seen in Fig. 8. The corresponding correction parameters
evolution can be observed in Fig. 8 as well.

The combined total energy estimation from drive-train and
auxiliary estimation & correction algorithms can be observed
in Fig. 9. The error resulting in between the estimated value
and actual measured values can be observed in Fig. 9, it can
be seen that as the more data is getting available the result-
ing error starts decreasing and eventually becomes bounded
around zero. It was also crucial to observe the reliability of
the energy estimation and correction algorithm which is based
upon the evolution of the error. To trust the predicted energy
estimates it was important to know if the reliability of the
estimation is higher or not. This can be observed in Fig. 9.
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Fig. 9: Simulation Results: Test Scenario 1
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Fig. 10: RCI Profile generated in real-time as mass estimation
is updated.

Also, another important aspect of real-time estimation was to
find its superiority from the offline estimations for a particular
trip cycle of the selected route. The importance of real-time
estimation in this particular application can be measured by
using a term deviation from Offline Estimation which at any
particular time gives an idea about the deviation of the current
estimates from the initial estimate made in the beginning of
the trip cycle for the given route.

While the estimations were happening, it was also important
to calculate and record the updated (real-time) RCI profile
using the power, velocity and mass estimates of the drive-
train estimation (shown in Fig. 10). This data profile will later
be processed in the post-processing step and will be used
to generate a new updated reference profile for the energy
estimation system.

The result of Test 1 generates the updated reference profile.
Now, when the real-time energy estimation system runs next
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time over the selected route, then instead of using the base
reference profile for estimations and corrections; the updated
reference profile is used. This will ensure the adaptability of
the energy estimation system towards changes in the environ-
ment, weather, traffic, road conditions and also the commuters
travelling trend etc.

2) Test Scenario 2: In this test scenario the real-time energy
estimation system was simulated with the different cycles of
the training data. The updated reference profile was used for
estimation and corrections. It can be observed from Fig. 11,
that the system identifies when to activate the real-time estima-
tion and correction function. The system does the drive-train
and auxiliary energy estimation separately. The corresponding
correction parameters evolution can be observed in Fig. 11
also.

The combined total energy estimation from drive-train and
auxiliary estimation & correction algorithms can be observed
in Fig. 12. From the error resulting in between the estimated
value and actual measured values, it can be seen that as
the more data is getting available the resulting error starts
decreasing and eventually becomes bounded around zero. The
reliability and the deviation from the initial estimate can be
also observed in Fig. 12.

3) Test Scenario 3: In this test scenario the real-time energy
estimation system was simulated with the different cycles of
the validation data. These data cycles are never seen by the
estimation and correction algorithm during the development
are kept solely to perform the software in the loop (SIL)
testing. The updated reference profile was used for estimation
and corrections. The active system status can be observed
from Fig. 13. The system does the drive-train and auxiliary
energy estimation separately. The corresponding correction
parameters evolution can be also observed in Fig. 13.

The combined total energy estimation from drive-train and
auxiliary estimation & correction algorithms can be observed
in Fig. 14. The error, the reliability and the deviation from the
initial estimate can be also observed in Fig. 14.

B. Results

From the simulation test results in Section V-A, it can
be clearly seen that the real-time estimation system is an
advanced system capable of estimating the approximate energy
consumed by the electric city bus over the given route well
in time, and is also producing the robust results over different
data cycles. A detailed analysis was also made on the accuracy
and precision of the system by observing the absolute error in
estimation over all these trip data cycles while using the base
reference profile. The absolute error computed in the Figure
15 is calculated for the estimations done over the trip cycle
distance travelled using the following formula:

eabs(%) =
|∑s(t)

0 Eest −
∑s(t)

0 Emea |∑s(t)
0 Emea

∗ 100(%) (22)

where Eest is the estimated energy consumption, Emea is the
measured energy consumption. In Fig. 15 it can be clearly
observed that the performance of real-time (online) energy
estimation system is a way more than the offline estimations.

Fig. 11: Simulation Results: Test Scenario 2
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Fig. 12: Simulation Results: Test Scenario 2

In offline estimations the absolute error over some cycles can
go as high as 40 % and on an average remains ≈ 18.5%.
Whereas, on the other hand in real-time (online) energy
estimations the absolute error is under 4 % and on an average
remains ≈ 1.2%. This assures the superior performance of
real-time energy estimation system. In Fig. 16 the results are
compiled for the progression of absolute error in estimation
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Fig. 13: Correction Gain Estimation

for all available data cycles with reference profile used as base
data profile. It can be seen that the performance of the real-
time energy estimation is exceptionally good in the region
from 30% to 80% of the travelled distance. Outside this region
the performance remains reasonably good and the system tries
to bound the error. The reason behind the difference in this
performance was due to the electric city bus does not have
the dedicated path to complete the selected route journey
especially outside the above mentioned range. It only uses
a patch of this route as a dedicated path lying in between
the region. In Fig. 17 results are compiled in order to make a
comparison between absolute error in estimation for a trip data
cycle when the base and updated reference profiles are used
for similar data trip cycle. Particularly in the case of Fig. 17
the training data cycles were used. It can be observed while
the base data reference profile is used the overall absolute
error remains consistently small throughout the trip. In the case
when updated reference data profile is used the absolute error
is quite high in the beginning, it can be because of two reasons;
one being not using the dedicated path in the beginning of
the trip and other being the updated reference data profile
is a bit volatile as it uses the averaged data from smaller
number of trips. It can also be observed that very quickly the
absolute error tends to zero and the trend is almost exponential
in nature; this happens due to the availability of most recent
data from capturing the operating domain characteristics of the
electric city buses. The absolute error by the end of trip in the
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Fig. 14: Simulation Results: Test Scenario 3
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Fig. 15: Comparison of absolute error in estimations for offline
and online energy predictions done over base reference profile.

case where updated reference profile is used is much less than
the one compared to the base reference profile. The similar
phenomenon was observed in the case when the validation
data cycle was used (see Fig. 18).

VI. CONCLUSION AND FUTURE WORK

The typical prediction method for electric vehicles are based
on simulating a physical model in time domain. However, a
physical model is not easy to build due to the complexity
on the parameters determination. Meanwhile, the time usage
is not stable for different individual cycles for a given route.
Alternatively, the energy consumption estimating model can be
built in distance domain, which is calculated by the propelling
force and the travelled distance. Especially for the public trans-
port, the travelled distance for a selected route is fixed and the
propelling force generated over the road can be characterized
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Fig. 16: Progression of absolute error for online energy esti-
mation w.r.t % of distance travelled over the route.
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Fig. 17: Comparison of absolute error in estimations for online
energy predictions done over base and updated reference
profile.

as long as sufficient data was collected. The advantage of
the model in the paper is that the model can just pack all
the parameters together, without any necessity to determine
individual parameters. Unlike the passenger cars, the city
buses have varying passenger load during the trip. Therefore,
the model excludes the mass from the propelling force by
normalization. The mass for normalization is the curb weight
of the vehicle. Based on this concept, the road characteristics
indicator is defined. The total energy consumption for an
electric vehicle also involves the auxiliary power as a function
of time. With the data repeatedly collected from one selected
route, the reference RCI profile and auxiliary power profile
can be determined. This is for the offline estimate, which is
only a constant value for a given route. The advantage of
the offline algorithm is that the estimate is from the actual
data which characterizes the route, while the disadvantage
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Fig. 18: Comparison of absolute error in estimations for online
energy predictions done over base and updated reference
profile.

is that the estimate is unchangeable for different situations.
For enhancing the flexibility, a correction can be considered
during the operation. Recursive algorithm and Kalman filter
are chosen as the best choices in this case. Different testings
were implemented with different data cycles and results show
that the real-time correction can further improve the prediction
accuracy significantly. For future work, the offline model can
be further optimized by developing more relevant factors not
only from the vehicle itself but also the environmental aspect.
For instance, the temperature varies from season to season or
from day to night, which also has an influence on the energy
consumption. The time of the operation determines the level of
the variation of passenger load, which is also a big component
in the energy usage. Considering more factors can improve
the estimating accuracy, but in the meantime will increase the
complexity of the model.
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