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We study the quench of a degenerate ultracold Bose gas to the unitary regime, where interactions are as
strong as allowed by quantum mechanics. We lay the foundation of a cumulant theory able to simultaneously
capture the three-body Efimov effect and ergodic evolution. After an initial period of rapid quantum depletion,
a universal prethermal stage is established, characterized by a kinetic temperature and an emergent Bogoliubov
dispersion law, while the microscopic degrees of freedom remain far from equilibrium. Integrability is then
broken by higher-order interaction terms in the many-body Hamiltonian, leading to a momentum-dependent
departure from power law to decaying exponential behavior of the occupation numbers at large momentum.
We also find signatures of the Efimov effect in the many-body dynamics and make a precise identification
between the observed beating phenomenon and the binding energy of an Efimov trimer. Throughout the paper,
our predictions for a uniform gas are quantitatively compared with experimental results for quenched unitary
Bose gases in uniform potentials.

DOI: 10.1103/PhysRevA.102.063314

I. INTRODUCTION

Precision control of interatomic interactions in dilute ultra-
cold quantum gases has made possible remarkable progress in
our understanding of strongly correlated many-body systems.
Here, strongly interacting quantum fluids can be studied in
the laboratory, with a great flexibility in the way in which the
system is manipulated and probed. Ultracold quantum gases
are typically dilute with respect to the range of the specific
interatomic interaction and sensitive only to the two-body
s-wave scattering length a, which sets the effective interaction
strength [1]. Experiments have typically focused on measur-
ing equilibrium or near-equilibrium properties, such as the
equation of state or elementary excitations. This picture is
realized in two-component Fermi gases [2–4] even in the uni-
tary regime n|a|3 � 1, where n is the atomic density, [5–10].
Here, system properties behave universally, scaling continu-
ously as powers of the remaining density (Fermi) scales kn =
(6π2n)1/3, En = h̄2k2

n/2m, and tn = h̄/En and can be related
to other strongly interacting Fermi systems such as the inner
crust of neutron stars [11–15].

In ultracold quantum gases where multibody effects are not
suppressed by the Pauli exclusion principle, an infinite num-
ber of three-body bound Efimov states form whose finite size
and discrete scaling leads to a spectacular departure from this
universal paradigm [16–21]. This includes three-component
Fermi gases, whose rich phase diagram is predicted to con-
tain a trimer phase at low densities reminiscent of quantum
chromodynamics [22,23]. It also includes (single-component)

*Corresponding author: colussiv@gmail.com

Bose gases, where quasiequilibrated states have recently been
achieved through fast ramps onto the unitary regime before
loss-induced heating dominates [24–27]. Here, the conversion
of correlation dynamics into a mixture of free atoms, Fesh-
bach dimers, and Efimov trimers was observed in an ultracold
Bose gas of 85Rb by sweeping the unitary gas back onto the
weakly interacting regime [25]. Within a three-body model,
this conversion was shown to be dominated by the Efimov
trimer with a size comparable to the interparticle spacing [28],
which also leads to an enhanced growth of triplet correlations
at early times after the quench [29,30]. Extending these early-
time, few-body studies to Fermi timescales requires that the
Efimov effect be woven into a many-body framework, which
remains an outstanding theoretical challenge.

At the same time, performing a deep quench leaves
these strongly interacting systems in a highly excited state.
Here, different quantities can effectively prethermalize, equi-
librating before the system has relaxed to the true thermal
equilibrium [31]. Experimentally, signs of a universal prether-
mal state characterized by Bogoliubov scalings (phonons and
free particles at low and high momenta, respectively) were ob-
served in a quenched ultracold Bose gas of 39K [27]. Whether
this prethermal steady state is due to integrable dephasing
dynamics, as in the weakly interacting regime [32], or to
ergodic mechanisms is unclear. State-of-the-art integrable the-
ories of the postquench evolution [33–36] are by definition
unable to capture the relaxation dynamics which must occur
in this ergodic system. Additionally, the usual perturbative
inclusion of such processes using Boltzmannian approaches
[37] is not justified in this regime where the distinctness of
collisions is blurred and all rates are on the order of the Fermi
scale. The challenge of constructing a many-body framework,
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both ergodic and strongly interacting, therefore remains cen-
tral.

In this paper, we establish the foundations of a general
approach able to capture both the Efimov effect and ergod-
icity in far-from-equilibrium, strongly interacting ultracold
Bose gases. Using the method of cumulants, we track the
sequential growth of genuine few-body correlations system-
atically encoded in the cumulants of the quenched many-body
system [29,30,38–44]. Containing only two-body correla-
tions, the cumulant theory at the doublet level is equivalent
to the time-dependent Hartree-Fock-Bogoliubov (HFB) and
Nozières-Saint James (NSJ) variational approaches studied in
Refs. [33–35,44–46]. Here, we show how a universal prether-
mal stage emerges from the integrable dynamics, providing a
framework for the conceptual and quantitative understanding
of the universal Bogoliubov scalings observed experimen-
tally. We find that the next truncation level that includes
higher-order correlations while respecting the underlying con-
servation laws is the cumulant theory at the quadruplet level.
Although we provide explicit expressions for the cumulant
equations of motion in the quadruplet model, its full simula-
tion remains numerically intractable. Therefore, we simulate
the cumulant theory truncated at the triplet level, which al-
ready contains the Efimov effect, as demonstrated in a study
of the embedded few-body problem in Ref. [44]. Within the
triplet model, we explore the various manifestations of Efimov
physics in the many-body observables, including the instan-
taneous chemical potential, quantum depletion, pairing field,
and two- and three-body contacts. This analysis is performed
at times before the violation of energy conservation muddies
the long-time dynamics and any physical connections with
thermalization.

The organization of this paper is as follows. In Sec. II, we
outline the many-body model, calibrated to reproduce finite-
range corrections near resonance and reformulated in the
symmetry-breaking picture to describe Bose-condensation in
the system. In Sec. III, the method of cumulants is introduced
and explicit expressions for the cumulant equations of motion
are derived, connected with the underlying few-body physics,
and the interplay between their truncation and conservation
laws is detailed. In Sec. IV, the prethermal stage that emerges
in the doublet model is analyzed and compared with exper-
iments. In Sec. V, the departure from the prethermal stage
and Efimovian dynamics are analyzed in the triplet model,
and we conclude in Sec. VI. The more formal and technical
discussions in this paper can be found in the Appendices. In
Appendix A, details of the calibrated, finite-range potential
are given along with the resulting Efimov spectrum. In Ap-
pendix B, the cumulant equations are given in a form more
suitable for simulation and their numerical implementation is
discussed. In Appendix C, we provide the formal, explicit ex-
pressions for the quadruplet equations of motion and discuss
their solution. In Appendix D, we connect the cumulant theory
outlined in this paper with alternative approaches found in the
literature.

II. MANY-BODY MODEL

In this paper, we study a quenched uniform gas of degen-
erate bosons in a cubic volume V . We consider short-range

single-channel interactions that capture the broad, entrance-
channel dominated Feshbach resonances used experimentally
[24–27,47]. First, we introduce the many-body Hamiltonian
in Sec. II A and discuss the potential parameters calibrated
to match finite-range corrections near resonance, referring the
interested reader to Appendix A for more details. In Sec. II B,
we move to the symmetry-breaking picture to describe Bose
condensation in the system. In Sec. II C, the many-body
Hamiltonian is reformulated in preparation for the cumulant
expansion in the following section (Sec. III).

A. Hamiltonian

In an ultracold Bose gas, atoms interact through a local s-
wave pairwise potential 〈rin|V̂ |rout〉 = V (|rin|)δ(3)(rout − rin )
with relative coordinates rin and rout [48] of the two incoming
and outgoing atoms. The corresponding many-body Hamilto-
nian is given by

Ĥ =
∫

d3rψ̂†(r)

(
− h̄2

2m
�r

)
ψ̂ (r)

+ 1

2

∫
d3rd3r′ψ̂†(r)ψ̂†(r′)V (|r − r′|)ψ̂ (r′)ψ̂ (r), (1)

where rin = r − r′ is the relative position for incoming par-
ticles located at r and r′. To diagonalize the kinetic energy
part of this Hamiltonian, we introduce the Fourier operators
ψ̂ (r) = (1/

√
V )

∑
k âkeik·r for a uniform gas occupying a

cubic volume V , which can be taken to infinity in the ther-
modynamic limit. In Fourier space, this Hamiltonian reads

Ĥ =
∑

k

εkâ†
kâk + 1

2V

∑
k,k′,q

Vqâ†
k′+qâ†

k−qâkâk′ , (2)

where εk = h̄2k2/2m is the one-body kinetic energy and the
Fourier components of the local potential are given by

〈k|V̂ |k′〉 = Vk′−k =
∫

d3r eir·(k−k′ )V (|r|), (3)

which depends only on the magnitude of the difference in
relative momenta k and k′.

The physical properties of ultracold Bose gases are typ-
ically characterized by a single parameter, the two-body
s-wave scattering length a, which sets the effective strength
of two-body interactions and can be adjusted precisely by
tuning the binding energy of a Feshbach molecule via ex-
ternal magnetic fields [1,47]. On resonance, the cross section
becomes independent of the scattering length in the unitarity
limit σ = 8π/k2 [48]. The gas is both dilute with respect
to the range of the interatomic interaction parametrized by
the van der Waals length rvdW = (mC6/h̄2)1/4/2, where m
is the atomic mass and C6 is the dispersion coefficient as-
sociated with the van der Waals interaction between neutral
ground-state atoms [47], while being simultaneously strongly
interacting |a|/rvdW � 1. The short-range details of the poten-
tial are therefore relatively unimportant, and there is freedom
in choosing the potential. All formulas in the main text are
therefore given in terms of a local potential for concision
but the numerical calculations are actually performed with
a separable pairwise potential (see Appendix A) with renor-
malized effective interaction strength g = U0� where U0 =
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4π h̄2a/m and � = 1/(1 − 2a	/π ). To match finite-range
effects in the vicinity of the Feshbach resonance, the rela-
tive momentum cutoff is calibrated as 	 = 2/π ā, where ā =
4πrvdW/�(1/4)2 ≈ 0.956rvdW is the mean scattering length
and �(x) is the Gamma function [44,49,50]. This gives g =
−π3h̄2ā/m for the effective interaction strength at unitarity.
Importantly, this calibration has consequences on the three-
body level for the spectrum of Efimov states, and we refer
the interested reader to Appendix A for more details on the
few-body physics contained in this model.

B. Symmetry-breaking picture

The gas is initially condensed in the k = 0 mode, which
means that the population

N0 ≡ 〈â†
0â0〉 � N (4)

is macroscopic. We describe only evolution that preserves
this property, which, for very energetic quenches where all
particles are eventually ejected out of the condensate, restricts
us to short times. We use the symmetry-breaking picture [51]
to describe the dynamics of the condensate: the condensate
operator â0 is replaced by a wave function ψ0 = 〈â0〉/

√
V

acting as an order parameter. The Gross-Pitaevskii equation
(GPE) describing the dynamics of this wave function ψ0 is
obtained by treating Ĥ as a classical Hamiltonian and ψ0 and
ψ∗

0 as canonically conjugated variables,

ih̄∂tψ0 =
〈

∂Ĥ

∂ψ∗
0

〉
= V0nψ0 + ψ0

1

V

∑
k 
=0

Vk〈â†
kâk〉

+ ψ∗
0

1

V

∑
k 
=0

Vk〈â−kâk〉 + 1

V 3/2

∑
k,q 
=0

Vq〈â†
k+qâkâq〉,

(5)

where n = N/V is the total atomic density (n0 = N0/V =
|ψ0|2 being the density of condensed particles).

To eliminate the condensate variables and focus on the dy-
namics of the excited fraction, we decompose the condensate
wave function into its modulus and phase,

ψ0 = √
n0eiθ0 , (6)

and introduce the operators unrotated by the condensate
phase:

b̂k = e−iθ0 âk. (7)

The dynamics of the b̂ operators now incorporates the evolu-
tion of θ0 [52]:

ih̄∂t b̂k = [b̂k, Ĥb],

with Ĥb = Ĥ + h̄∂tθ0

∑
k

(b̂†
kb̂k − 〈b̂†

kb̂k〉). (8)

We note that the summation involving 〈b̂†
kb̂k〉 has been triv-

ially added to Ĥb to ensure that 〈Ĥb〉 = 〈Ĥ〉. In Ĥb, the number
of particles in the condensate is no longer treated as an inde-
pendent variable and is related to the b̂ field and total number
of particles by the conservation equation:

N0 = N −
∑

k

〈b̂†
kb̂k〉. (9)

The phase derivative can also be expressed in terms of b̂,
which finally eliminates the condensate variables from the
dynamics:

h̄
dθ0

dt
= − 1

2n0

(
ψ∗

0 ih̄
dψ0

dt
− ih̄

dψ∗
0

dt
ψ0

)
, (10)

= −
[

V0n + 1

V

∑
k

[
Vk〈b̂†

kb̂k〉 + VkRe 〈b̂−kb̂k〉
]

+ 1√
n0V 3

∑
kq

VqRe 〈b̂†
k+qb̂kb̂q〉

]
. (11)

In Sec. IV, we use the interpretation of this equation as a
second Josephson relation h̄∂tθ0 = −μ(t ) to generalize the
notion of an instantaneous chemical potential to our out-of-
equilibrium system [53,54].

C. Expansion of the Hamiltonian

We start by expanding the many-body Hamiltonian Ĥb in
powers of the noncondensed field b̂:

Ĥb = E0(t ) + Ĥ2 + Ĥ3 + Ĥ4, (12)

E0 = V0N2
0

2V
− h̄∂tθ0(N − N0), (13)

Ĥ2 =
∑

k

([εk + (Vk + V0)n0 + h̄∂tθ0]b̂†
kb̂k

+Vkn0

2
[b̂−kb̂k + b̂†

kb̂†
−k]), (14)

Ĥ3 =
√

n0

V

∑
k,q

Vq(b̂†
k+qb̂kb̂q + H.c.), (15)

Ĥ4 = 1

2V

∑
k,k′,q

Vqb†
k′+qb̂†

k−qb̂kb̂k′ . (16)

The usual Bogoliubov approach (Ĥ3 = Ĥ4 = 0) reduces the
many-body Hamiltonian to quadratic form and is justified by
an expansion in powers of na3 [1,32]. This approach describes
two-body processes at the level of the Born approximation,
which will not give the correct unitarity limit σ (k) = 8π/k2

of the s-wave partial cross section [48]. To overcome this and
produce a theory that reproduces the HFB equations at lowest
order [55], we rewrite the many-body Hamiltonian by adding
and subtracting the partial contraction [56] of Ĥ4 defined as

δĤ2 = 1

2

∑
k

[δ�∗
kb̂−kb̂k + c.c.] +

∑
k

δεkb̂†
kb̂k, (17)

with

�k = 1

V

∑
q

Vq〈b̂−k−qb̂k+q〉, (18)

δεk = 1

V

∑
q

(V0 + Vq)〈b̂†
k+qb̂k+q〉. (19)
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This yields an effective quartic Ĥ eff
4 = Ĥ4 − δĤ2 and

quadratic Hamiltonian,

Ĥ eff
2 = Ĥ2 + δĤ2 ≡

∑
k

(
Ekb̂†

kb̂k +
[
�∗

k

2
b̂−kb̂k + H.c.

])
,

(20)
whose diagonal and anomalous matrix elements are, respec-
tively,

Ek = εk + (V0 + Vk )n0 + δεk + h̄∂tθ0, (21)

�k = Vkn0 + δ�k. (22)

In the following section, we use the cumulant expansion
method to construct equations of motion from this reformu-
lated many-body Hamiltonian.

III. EQUATIONS OF MOTION

Prior to the quench, all N bosons in the gas are prepared in
a noninteracting uniform Bose condensate at zero temperature
such that n0 = n. A sudden projection of the pure condensate
into the unitary regime approximates the effect of the rapid in-
teraction quench. The fully condensed initial state is actually
a highly excited state in the strong-coupling regime (for com-
parison, the ground state of superfluid 4He has a condensed
fraction of the order of 0.07 [57]), and the gas begins to rapidly
quantum deplete such that N − N0 becomes comparable to
N . As the gas evolves, correlations begin to develop amongst
excitations and the system becomes strongly correlated. Cor-
relations that intrinsically relate larger numbers of excitations,
however, develop sequentially, beginning from the generation
of correlated pairs out of the condensate [29,30,41–43]. We
can use this picture to construct a many-body description
of this far-from-equilibrium, strongly interacting system by
systematically including intrinsically higher-order effects into
our theory, using the method of cumulants. In this section, we
outline the cumulant theory, beginning in Sec. III A with an
introduction to the cumulant hierarchy. In Sec. III B we detail
how truncating this hierarchy impacts the underlying conser-
vation laws. In Sec. III C, the cumulant equations of motion
are given explicitly, and in Sec. III D we discuss how they
may be solved in a way that reveals the underlying few-body
physics at each level of the hierarchy.

A. Hierarchy of cumulants

To describe the coupled-correlation dynamics, we intro-
duce the cumulant of a p-body operator as〈

l∏
i=0

b̂†
ki

m∏
j=0

b̂k′
j

〉
c

= (−1)m
l∏

i=0

∂

∂xi

m∏
j=0

∂

∂y∗
j

× ln
〈
e
∑l

i=0 xib̂
†
ki e

∑m
j=0 y∗

j b̂k′
j

〉∣∣∣
x,y=0

. (23)

We call the cumulant of an p-body operator (here p = l + m),
a p uplet. In practice, a p uplet is obtained by subtracting
from the quantum average value (the “moment” of the p-body
operator) all the possible contractions into products of n-body
operator average, with n < p [38,39]. This recursive definition
of the cumulants is shown in Table I up to the quadruplet

TABLE I. Relations between the cumulant 〈Ô〉c and the quantum
average value (the moment) 〈Ô〉 for operators up to the quadruplet
level. The one-body operators â, b̂, ĉ, and d̂ ∈ {b̂k, b̂†

k, k 
= 0} are
normally ordered. The cancellation of the singlets 〈â〉c = 0 (used
implicitly in the third and fourth lines of the table) is a consequence
of the spatial homogeneity of the gas.

Cumulant order Moment expansion

Singlet 〈â〉c = 〈â〉 = 0
Doublet 〈âb̂〉c = 〈âb̂〉 − 〈â〉c〈b̂〉c = 〈âb̂〉
Triplet 〈âb̂ĉ〉c = 〈âb̂ĉ〉
Quadruplet 〈âb̂ĉd̂〉c = 〈âb̂ĉd̂〉 − 〈âb̂〉c〈ĉd̂〉c − 〈âĉ〉c〈b̂d̂〉c

−〈âd̂〉c〈b̂ĉ〉c

... ...

level. In the homogeneous system considered here, only the
cumulants that conserve the total momentum [that is, verify∑

i ki = ∑
j k′

j , in the notations of Eq. (23)] can become
nonzero during the time evolution. This implies in particular
that the singlets 〈b̂k〉k 
=0 remain zero at all times.

Due to the cubic and quartic parts of the many-body
Hamiltonian (Ĥ3 and Ĥ eff

4 , respectively) the doublet dynamics
couple to triplets and quadruplets. Therefore, the depletion
of the condensate into opposite momentum pairs in turn will
sequentially generate higher-order few-body correlations, be-
ginning at the three- and four-body levels. At the next level of
the hierarchy, the triplets couple to doublets, quadruplets, and
quintuplets, and this trend is repeated to all orders. In practice,
this hierarchy must be truncated, which limits the range of
validity of the model to times before higher-order few-body
correlations become non-negligible [42]. We address trunca-
tion of the cumulant hierarchy in the following section.

B. Truncation scheme and conservation laws

When the time evolution of the many-body system is de-
scribed only approximately, namely, in a truncated cumulant
expansion, it is unclear whether the same constants of motion
associated with the many-body Hamiltonian arise [55]. There-
fore, it is not guaranteed a priori that truncation at a given
level of cumulants results in a theory which respects all of the
underlying conservation laws. With that caveat, we note that
all of the truncation schemes studied in this paper conserve the
average number of atoms by construction [see Eq. (9)]. We
discuss now in detail the interplay between truncation order
and the conservation of energy.

1. Doublet truncation

The simplest model within the cumulant theory (the dou-
blet model), which corresponds to the HFB theory [55], can
be constructed by keeping only the doublets while setting all
higher-order cumulants to zero [58]. This yields the equations
of motion:

ih̄∂t 〈âb̂〉 �
doub

〈[
âb̂, Ĥ eff

2

]〉
, (24)

where we have used the abbreviation doub to indicate this par-
ticular truncation scheme. The total energy E ≡ 〈Ĥ〉 = 〈Ĥb〉
is here approximated by E �

doub
〈Ĥ eff

2 〉, and its time derivative
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vanishes, as can by checked by summing over the doublets
âb̂ in Eq. (24) to form the derivative of Ĥ eff

2 . Alternatively,
these conclusions are anticipated by the variational derivation
[55]. Simulation results for the doublet model are the subject
of Sec. IV.

2. Triplet truncation

To go beyond the doublet model, one can first choose to
also retain the triplets (the triplet model) in the truncation
scheme. This yields the equations of motion

ih̄∂t 〈âb̂〉 �
tri

〈[
âb̂, Ĥ eff

2 + Ĥ3
]〉
, (25)

ih̄∂t 〈âb̂ĉ〉 �
tri

〈[âb̂ĉ, Ĥb]〉 − 〈[
âb̂ĉ, Ĥ3 + Ĥ eff

4

]〉
c, (26)

where we have used the abbreviation tri to indicate truncation
at the triplet level. From the exact time derivative ih̄∂t 〈âb̂〉 =
〈[âb̂, Ĥb]〉, it also subtracts 〈[âb̂, Ĥ eff

4 ]〉, which is by construc-
tion composed only of quadruplets, resulting in Eq. (25).
From the exact time derivative ih̄∂t 〈âb̂ĉ〉 = 〈[âb̂ĉ, Ĥb]〉, it
also subtracts the quadruplets and quintuplets contained in
〈[âb̂ĉ, Ĥ3]〉 and 〈[âb̂ĉ, Ĥ eff

4 ]〉, respectively, while the corre-
sponding doublet-doublet and triplet-doublet contributions
remain in Eq. (26). Additionally, the triplet truncation of the
total energy is E �

tri
〈Ĥ eff

2 + Ĥ3〉, and its time derivative does

not vanish:

ih̄∂t E �
tri

〈[
Ĥ3, Ĥ eff

4

]〉 − 〈[
Ĥ3, Ĥ eff

4

]〉
c 
= 0. (27)

This can be obtained by summing over the doublets and
triplets in Eqs. (25) and (26) to form the time derivatives
of Ĥ eff

2 and Ĥ3, respectively. From the above remarks, the
origin of this violation is therefore clear: whereas the cumu-
lant equations of motion [Eqs. (25) and (26)] follow from
the full Hamiltonian Ĥb, the energy is computed from the
truncated Hamiltonian Ĥ eff

2 + Ĥ3. Simulation results for the
triplet model are the subject of Sec. V, and energy violation
results can be found in Appendix B.

3. Quadruplet truncation

Going beyond the doublet model in a way that does not
violate energy-conservation therefore requires the addition of
quadruplets (the quadruplet model) so the energy is computed
from the full Hamiltonian Ĥb. This yields the equations of
motion

ih̄∂t 〈âb̂〉 = 〈[âb̂, Ĥb]〉, (28)

ih̄∂t 〈âb̂ĉ〉 �
quad

〈[âb̂ĉ, Ĥb]〉 − 〈[
âb̂ĉ, Ĥ eff

4

]〉
c, (29)

ih̄∂t 〈âb̂ĉd̂〉 �
quad

〈[âb̂ĉd̂, Ĥb]〉 − 〈[âb̂ĉd̂, Ĥ3]〉c

−〈[
âb̂ĉd̂, Ĥ eff

4

]〉
c, (30)

where we have used the abbreviation quad to indicate trun-
cation at the quadruplet level [59]. Although the doublet
equations of motion are now exact, the quadruplet truncation
scheme subtracts 〈[âb̂ĉ, Ĥ eff

4 ]〉c from the exact time deriva-
tive ih̄∂t 〈âb̂ĉ〉 = 〈[âb̂ĉ, Ĥb]〉 to produce Eq. (29) and subtracts
the quintuplets 〈[âb̂ĉd̂, Ĥ3]〉c and sextuplets 〈[âb̂ĉd̂, Ĥ eff

4 ]〉c

from the exact time derivative ih̄∂t 〈âb̂ĉd̂〉 = 〈[âb̂ĉd̂, Ĥb]〉 to

produce Eq. (30). The quadruplet model trivially conserves
the total energy because the full Hamiltonian Ĥb is used to
evolve both the energy and cumulants. Although the quadru-
plet model is not simulated in this paper due to the large
resource requirements, with the size of a p-dimensional cu-
mulant array scaling roughly as 	p−1 (see Appendix B), we
give the general cumulant equations in the following section.

C. Cumulant equations of motion

We now give the equations of motion for the doublet,
triplet, and quadruplet cumulants [Eqs. (28–30)] within the
quadruplet model. We use Greek letters α, β, γ . . . to denote
the wave vector indices of the considered cumulants and we
keep the bold letters k, q for the wave vectors which are
summed over. The cumulants that compose the closed system
of equations of motion are denoted:

nα = 〈b̂†
α b̂α〉, cα = 〈b̂−α b̂α〉,

Mα,β = 〈b̂†
α−β b̂†

β b̂α〉, Rα,β = 〈b̂β−α b̂α b̂−β〉,
Qα,β;γ = 〈b̂†

α+β−γ b̂†
γ b̂α b̂β〉c, Pα,β,γ = 〈b̂†

α+β+γ b̂α b̂β b̂γ 〉c,

Tα,β,γ = 〈b̂−α−β−γ b̂α b̂β b̂γ 〉c. (31)

To obtain compact and readable expressions, one should ex-
ploit the invariance of the cumulants under permutation of
their indices (for example Mα+β,β is invariant under the ex-
change of α and β, Pα,β,γ is invariant under the exchange of
α, β, and γ ). For this purpose, we introduce the symmetrizer
Sα1,...,αn which sums all the values of a function f (α1, . . . , αn)
obtained after permutation of its arguments:

S{α1,...,αn}[ f (α1, . . . , αn)] =
∑

σ∈S(n)

f (ασ (1), . . . , ασ (n) ), (32)

where S(n) is the set of permutations of {1, . . . n}. For the
cumulant Q, which obeys the symmetry relation Q∗

α,β;γ =
Qγ ,α+β−γ ;α , we will also need the antisymmetrizer:

A{(α,β ),(γ ,δ)}[ f (α, β; γ , δ)]

= f (α, β; γ , δ) − [ f (γ , δ; α, β )]∗. (33)

All the equations of motion we give here can be checked using
the computer algebra program available online [60].

Let us first reexpress the coefficients of Ĥ eff
2 [Eqs. (21)

and (22)] and the phase derivative [Eq. (11)] in terms of the
doublets and triplets,

Eα = εα + V0n + Vαn0 + 1

V

∑
q

Vqnα+q + h̄∂tθ0,

(34)

�α = Vαn0 + 1

V

∑
q

Vqcα+q, (35)

h̄
dθ0

dt
= −

[
V0n + 1

V

∑
q

Vq(nq + Re cq)

+ 1√
n0V 3

∑
k,q

VqRe M∗
k+q,k

]
, (36)
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where Eα and �α are the expressions for the Hartree-Fock
Hamiltonian and pairing field, respectively, in the rotating
frame [55,61].

For the doublet equations of motion (assuming the in-
variance of the triplets under parity, M−α,−β = Mα,β and
R−α,−β = Rα,β ), we have

ih̄∂t nα = 2iIm

(
�αc∗

α +
√

n0

V

∑
q

[VqM∗
α,q − (Vq + Vα )M∗

α+q,α] + 1

V

∑
k,q

VqQα+q,k;α

)
, (37)

ih̄∂t cα = 2Eαcα + �α (2nα + 1) + 2

√
n0

V

∑
q

[VqRα,−q + (Vα + Vq)M∗
q,α] + 2

V

∑
k,q

VqPα,q−α,k. (38)

We note that these doublet equations of motion are equivalent to the Hyperbolic Bloch equations discussed in Ref. [42].
For the triplet equations of motion, we have

ih̄∂t Mα+β,β =(Eα+β − Eα − Eβ )Mα+β,β − �∗
αM∗

β,α+β − �∗
βM∗

α,α+β + �α+βR∗
α,α+β + MH3

α,β + MH4
α,β, (39)

ih̄∂t Rα,α+β =(Eα + Eβ + Eα+β )Rα,α+β + �αM∗
−α,β + �βM−β,α + �α+βM∗

α+β,α + RH3
α,β + RH4

α,β, (40)

where we have written separately the contribution of the cubic and quartic Hamiltonians. The former contains both doublet
products and quadruplets,

MH3
α,β√

n0/V
= S{α,β}

[
Vα[nαnβ − nγ (1 + nα + nβ )] − cγ c∗

α (Vγ + Vβ ) − nγ c∗
α (Vγ + Vα ) + nαc∗

β (Vβ + Vγ )

+
∑

q

{
Vγ + Vq

2
P∗

α,β,q − (Vβ + Vq)Qγ ,q;α − Vq

[
P∗

α,q,β−q − 1

2
Qγ−q,q;α

]}]
, (41)

RH3
α,β√

n0/V
= S{α,β,γ ′}

[
Vβ{cβcγ ′ + cα (1 + nβ + nγ ′ )} +

∑
q

{Vα + Vq

2
Pα+q,β,γ ′ + Vq

2
Tβ,γ ′,q

}]
, (42)

while the latter contains products of doublets and triplets

MH4
α,β = −S{α,β}

V

[∑
q

Vq
1 + nα + nβ

2
Mγ ,α−q + (Vα + Vq)(nγ − nβ )Mγ−q,α

+ (Vγ + Vβ+q)c∗
βM∗

γ+q,γ + Vq
{
cγ R∗

β,q−α − c∗
βM∗

α,q−β )
}]

, (43)

RH4
α,β = S{α,β,γ ′}

V

[∑
q

Vq

2
(1 + nα + nβ )Rα−q,−γ ′ + (Vα + Vq−γ ′ )cβM∗

α+q,α

]
. (44)

In these expressions, γ (in MH3 and MH4 ) and γ ′ (in RH3 and RH4 ), which denote the third wave vector deduced from α

and β by momentum conservation, should be replaced, respectively, by γ = α + β and γ ′ = −α − β after the action of the
symmetrizer S .

Finally, for the quadruplets, using the notations δ = α + β − γ , δ′ = α + β + γ , and δ′′ = −α − β − γ for the fourth wave
vector of, respectively, Qαβ;γ , Pα,β,γ and Tα,β,γ , we have

ih̄∂t Qα,β;γ = (Eα + Eβ − Eγ − Eδ )Qαβ;γ + S{α,β}[�αP∗
−α,γ ,δ] − S{γ ,δ}[�∗

γ P∗
α,β,−γ ] + QH3

α,β;γ + QH4
α,β;γ , (45)

ih̄∂t Pα,β,γ = (Eα + Eβ + Eγ − Eδ′ )Pα,β,γ + S{α,β,γ }[�αQβ,γ ;δ′ ] − �∗
δ′Tα,β,γ + PH3

α,β,γ + PH4
α,β,γ , (46)

ih̄∂t Tα,β,γ = (Eα + Eβ + Eγ + Eδ′′ )Tα,β,γ + S{α,β,γ ,δ′′}[�αPβ,γ ,δ′′ ] + T H3
α,β,γ + T H4

α,β,γ . (47)

The lengthy expressions for QH3
α,β;γ , QH4

α,β;γ , PH3
α,β,γ , PH4

α,β,γ ,

T H3
α,β,γ , and T H4

α,β,γ can be found in Appendix C.
For completeness, the cumulant equations of motion up

to the level of triplets can be found given explicitly in Ap-
pendix B for a separable potential, which allows for modest
simplifications important for numerical implementation. Fol-
lowing this formal discussion of the cumulant equations in the

quadruplet model, we now analyze their structure and solution
at early times following the quench in the following section.

D. Few-body physics and the early-time structure of the
cumulant hierarchy

In this section, we discuss in greater detail the sequen-
tial correlation buildup picture using the cumulant equations
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of motion outlined in Sec. III C. This discussion also high-
lights the few-body physics contained at each level of the
hierarchy and is therefore crucial to understanding how the
Efimov effect is introduced into the many-body model. The
sequential buildup of correlations can be understood formally
from the structure of the homogeneous and inhomogeneous
(drive) terms in the cumulant equations of motion given in
Sec. III C. At the lowest level, the correlation buildup be-
gins with the generation of (α,−α) pairs from the drive
term Vαn0 in Eq. (38). Consequently, the occupation of mo-
mentum modes is reflected in the dynamics of nα , which
remains small compared to unity at early times such that
the Bose-enhancement factors (1 + nα + nβ ) ≈ 1 can be ig-
nored and the exponentiation (nα )m in the drive terms of the
higher-order cumulants vanishes as m tends to infinity. The
three-excitation Beliaev-Landau type processes described by
M and R cumulants, are the next level to be driven by terms
of the form Vαnγ

√
n0/V and Vβcα

√
n0/V in Eqs. (39) and

(40), respectively. At the next level, the quadruplet processes
described by Q, P, and T are driven by terms of the form
Mγ+δ,γ

√
n0/V and Vγ−αnγ nδ , VβM∗

δ′,α
√

n0/V and Vα+γ cγ nδ′ ,
and VαRγ ,−δ′′

√
n0/V and Vα+δ′′cγ cδ′′ in Eqs. (45)–(47) (see

Appendix C), respectively. From these examples, it is clear
that the sequential buildup behavior is a general property of
the postquench early-time dynamics of cumulants. Indeed,
this property serves as the motivation for using cumulants in
the present study to describe the buildup of correlations even
in the strongly-interacting regime where a natural truncation
parameter is lacking.

At early times, these properties of the cumulant hierarchy
can be used to generate solutions highlighting the underlying
few-body physics in the many-body system. First, the hier-
archy is recast into a reduced early-time form by ignoring
the p + 1 and p + 2 higher-order correlation functions in the
equation of motion for cumulants of order p, identical to the
truncation scheme in Ref. [39]. At the level of the doublets,
the c cumulant equation [Eq. (38)] reduces to

ih̄∂t |ct , ct 〉 = Ĥ12(t )|ct , ct 〉 + V̂ |ψ0,t , ψ0,t 〉, (48)

where Ĥ12(t ) = ε̂1 + ε̂2 − 2μ(t ) + V̂ is the two-body Hamil-
tonian in the rotating frame of the condensate, written in
terms of the one-body kinetic energy-operator ε̂|α〉 = εα|α〉
and the pairwise potential V̂ . The second Josephson re-
lation gives the instantaneous chemical potential μ(t ) ≡
−h̄θ̇0(t ). Additionally, the pair matrix has been cast into

basis-independent symmetric state 〈α, β|ct , ct 〉 = cα (t )δα,−β ,
which reflects its behavior under unitary transformations
[55]. We have also defined the generalized rank (0,2) ten-
sor |ψ0,t , ψ0,t 〉 = n0(t )|0, 0〉, where tensor subscripts in the
ket indicate the time. Equation (48) can be solved for-
mally using the two-body evolution operator Û12(t − t0) =
exp [−i

∫ t
t0

dτ Ĥ12(τ )/h̄] as

|ct , ct 〉 = Û12(t − t0)|ct0 , ct0〉

+ 1

ih̄

∫ t

t0

dτ Û12(t − τ )V̂ |ψ0,τ , ψ0,τ 〉, (49)

where the initial conditions at t = t0 are encoded in the
first term on the right-hand side of the above equality.
Analogously, the M-cumulant equation of motion [Eq. (39)]
becomes

ih̄∂t |Mt 〉〈Mt , Mt | = Ĥ1(t )|Mt 〉〈Mt , Mt |
− |Mt 〉〈Mt , Mt |Ĥ12(t )

− |nt 〉〈nt , ψ0,t |(1 + P̂12)V̂ , (50)

where Ĥ1(t ) = ε̂ − μ(t ) is the one-body Hamiltonian
in the rotating frame of the condensate, and P̂12 is
the cyclic permutation operator. We have defined rank
(1,2) tensors 〈α|Mt 〉〈Mt , Mt |β, γ 〉 = Mα,β (t )δα,β+γ

√
V and

〈α, β|ψ0,t , nt 〉〈nt |γ 〉 = δγ ,αδβnα (t )
√

n0(t ). Equation (50) can
be solved formally as

|Mt 〉〈Mt , Mt | = Û1(t − t0)|Mt0〉〈Mt0 , Mt0 |Û12(t0 − t )

− 1

ih̄

∫ t

t0

dτ Û1(t − τ )|nτ 〉〈nτ , ψ0,τ |(1 + P̂12)

× V̂ Û12(τ − t ), (51)

where Û1(t − t0) = exp [−i
∫ t

t0
dτ Ĥ1(τ )/h̄] is the one-body

evolution operator. We have chosen to write the cumulant
equations of motion in basis-independent form to facilitate
and emphasize the generality of the discussion that follows.

From the formal integral relations [Eqs. (49) and (51)], it is
possible to solve for the dynamics of the energies μ(t ), Eα (t ),
and �α (t ). Approximating the quench as a sudden projection
of a pure, noninteracting condensate onto unitarity, the initial
conditions in Eqs. (49) and (51) are neglected. Inserting the
formal solutions into Eq. (36), we find the time-dependent
expression for the chemical potential

N0(t )μ(t ) = Tr

[
Re

[∫ t

t0

dτ T̂+(t − τ )|ψ0,τ , ψ0,τ 〉〈ψ0,t , ψ0,t | + T̂+(t − τ )(1 + P̂12)|nτ , ψ0,τ 〉〈ψ0,t , nτ |Û1(τ − t )

]]
, (52)

μ(t ) = Re
∫ t

t0

dτT+(0, 0, t − τ )n0(τ ) + Re
∫ t

t0

dτ

∫
d3q

[
T+

(q
2
,

q
2
, t − τ

)

+ T+
(q

2
,−q

2
, t − τ

)]√n0(τ )

n0(t )
nq(τ )U1(q, τ − t ), (53)

where Û1(t )|k〉 = U1(k, t )|k〉, and we have defined the re-
tarded two-body T operator in the rotating frame of the

condensate [62]

T̂+(t ) = δ(t )V̂ + 1

ih̄
θ (t )V̂ Û12(t )V̂ , (54)
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with θ (t ) the Heaviside function and
〈k + q, k − q|T̂+(t )|k′ + p, k′ − p〉 = δk,k′T+(q, p, t ). From
Eq. (52), we see that as t − t0 → 0+, T̂+(0) = δ(0)V̂ and
therefore μ(t ) = V0n0, which is the first Born approximation
for the chemical potential of a pure condensate. Analogously,
inserting the formal solutions into Eq. (35), we find an
expression for the time-dependent pairing field,

|�,�〉 =
∫ t

t0

dτ T̂+(t − τ )|ψ0,τ , ψ0,τ 〉, (55)

�k(t ) =
∫ t

t0

dτT+(k, 0, t − τ )n0(τ ), (56)

which has been written in basis-independent form
〈α, β|�,�〉 = �αδα,−β . As t − t0 → 0+, the first Born
appoximation �α (t ) = Vαn0 is recovered. As time evolves,
the memory kernels in Eqs. (52) and (56) are integrated over
larger intervals of time. Here, the unitarity limit of the s-wave
cross section σ ∝ 1/k2 translates into the universal behavior
T̂+(t ) ∝ exp[−2iθ0(t )]/

√
t reflecting the gradual decay of

resonant collisions. The energy Eα (t ), however, contains the
Hartree-Fock mean-field energy E (HF)

α = (V0 + Vα )n0 + δεα

that remains at the level of the first Born approximation
regardless of the system dynamics. To estimate the relevance
of the Hartree-Fock mean-field energies in the unitary
regime, we rescale to the Fermi energy En, finding in general
E (HF)

α /En ∝ n1/3rvdW due to the calibration of the effective
interaction strength g ∝ rvdW for the resonance coupling
strength (see Appendix A). Therefore, the Hartree-Fock
mean-field energies can be neglected in the unitary regime
for realistic systems where the criterion nr3

vdW � 1 is well
satisfied.

The presence of few-body operators in the solutions of the
cumulant equations of motion reveals how few-body effects
are woven into the early-time structure of the hierarchy. To

demonstrate this explicitly, we spectrally decompose the evo-
lution operator Û12(t ) as

Û12(t ) =
∑

i

e−iεit/h̄|φi〉〈φi| +
∫

dε e−iεt/h̄|φ(ε)〉〈φ(ε)|
(57)

into the vacuum bound states |φi〉 with binding energy εi and
two-body continuum states |φ(ε)〉. Qualitatively, the response
of the system at a dimer binding energy depends on the over-
lap between the |φi〉’s and the driving terms of the memory
kernels in Eqs. (49) and (51). At unitarity, the s-wave dimer
state is at threshold; however, the system may still respond at
any of the infinite number of bound three-body Efimov trimers
that exist in vacuum. To understand how the Efimov frequen-
cies enter the cumulant hierarchy, we reduce the equation of
motion for the R cumulant [Eq. (40)] to the early-time form

ih̄∂t |Rt , Rt , Rt 〉 = Ĥ123(t )|Rt , Rt , Rt 〉 + (1 + P̂+ + P̂−)

× [
(V̂12 + V̂13)|ψ0,t , ct , ct 〉

]
, (58)

where 〈α, β, γ |V̂12|γ ′, β ′, α′〉 = δα,α′ 〈β, γ |V̂ |γ ′, β ′〉, and
Ĥ123(t ) = (1 + P̂+ + P̂−)Ĥ12 is the vacuum three-body
Hamiltonian in the rotating frame of the condensate,
written in terms of the cyclic and anticyclic permutation
operators P̂+ ≡ P̂123 and P̂− ≡ P̂132, respectively, with
P̂123|α, β, γ 〉 = |γ , α, β〉. In Refs. [44,63], Eq. (58) was
shown to yield generalized three-body T matrices satisfying
the Faddeev equations. These T matrices appear in the
Gross-Pitaevskii equation as higher-order corrections due to
effective three-body scattering, encapsulated in the scattering
hypervolume [63–66]. We have also defined the rank (0,3)
tensor 〈α,−β, γ |Rt , Rt , Rt 〉 = Rα,β (t )δα−β,−γ

√
V , whose

formal solution is

|Rt , Rt , Rt 〉 = Û123(t − t0)|Rt0 , Rt0 , Rt0〉 + 1

ih̄

∫ t

t0

dτ Û123(t − τ )(1 + P̂+ + P̂−)(V̂12 + V̂13)|ψ0,τ , cτ , cτ 〉, (59)

where Û123(t − t0) = exp [−i
∫ t

t0
dτ Ĥ123(τ )/h̄] is the three-

body evolution operator in the rotating frame of the con-
densate. The eigendecomposition of the three-body evolution
operator is [67]

Û123(t ) =
∑

s

[∑
n

e−iEs,nt/h̄|�s,n〉〈�s,n|

+
∫

dE e−iEt/h̄|�s(E )〉〈�s(E )|
]
, (60)

expressed in terms of the vacuum three-body continuum states
|�s(E )〉 and vacuum three-body bound-states |�n,s(E )〉 with
binding energy Es,n. The three-body spectrum can be de-
composed into universal channels s2 > 0 that do not support
bound states and the Efimovian channel s = is0 with s0 ≈
1.006 that supports an infinite number of trimers. The intro-
duction of additional length scales in the Efimov channel due
to the finite size of Efimov trimers can break the universal

scaling of system properties with the density [28–30]. In prin-
ciple, the system can respond at any one of the infinity of
Efimov trimer frequencies, determined by the overlap between
the Efimov trimer wave functions |φis0,n〉 and the driving terms
in the memory kernel of Eq. (59), which will be studied in
Sec. V.

What is the range of validity of the early-time form of the
cumulant equations? In Ref. [39], this scheme was designed
to include multiple scatterings in the cumulant equations of
motion to extend their range of validity. By design, such multi-
ple scatterings are described by the vacuum T -operators—the
so-called free dynamics. In Sec. IV, we will see, however,
that this picture is spoiled in the presence of strong quantum
depletion. In particular, the energy �α , which is negligible and
can be ignored at early times, rapidly grows toward the Fermi
scale at later times as correlations develop. Consequently,
the triplet cumulant dynamics become strongly coupled and
therefore can no longer be treated separately as in Eqs. (51)
and (59), spoiling the appearance of vacuum operators and
energies.
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We note that the equations of motion for each of the
quadruplets can also be reduced to their early-time forms and
solved as integral equations. As in Eqs. (49) and (59), the
vacuum one-, two-, three-, and four-body evolution operators
also appear in the memory kernels for the Q, P, and T cu-
mulants. However, because the numerical simulation of the
full quadruplet cumulant theory outlined in this section re-
mains an outstanding numerical challenge, this mostly formal
discussion can be found in Appendix C. Having established
the cumulant equations, justified their truncation for quenched
systems, and highlighted the underlying few-body physics, we
now simulate the doublet model in Sec. IV and the triplet
model in Sec. V.

IV. DOUBLET MODEL OF THE QUENCHED
UNITARY BOSE GAS

In this section, we study the quenched unitary Bose gas
within the doublet model by neglecting all third- and fourth-
order cumulants in Sec. III such that only nk and ck remain.
To mimic the experimental sequence of Refs. [24–27], we
make the sudden approximation and model the quench as
infinitely fast. An initially pure, noninteracting condensate
is then evolved in the unitary regime for a variable amount
of time up to t ∼ 2.5tn, where nk begins to exceed unity
and the exclusion of strongly-driven higher-order cumulants
cannot be justified [44,45]. The condensate is depleted by
pairwise excitations (k,−k) described by the c cumulant. In
this section, we compare the doublet model results to the ex-
perimental data from Refs. [26,27] for quenched unitary Bose
gases in a uniform system. The early-time agreement with
experiment found in this section motivates an investigation of
higher-order effects that will be addressed in Sec. V.

A. Energy and number dynamics

Before comparing against experiment, we study the
time dependence of the characteristic energies � and μ(t )
[Eqs. (35) and (36), respectively] in the doublet model
simulation as a function of the van der Waals diluteness pa-
rameter nr3

vdW. The dynamics of these energies are shown in
Figs. 1(a)–1(c), where we have used the fact that �k ≡ �

is independent of k within the regime of interest (|k| � 	).
Although not shown, the Hartree-Fock mean-field energies
[Eq. (34)] are negligible behaving as finite-range effects which
decrease relative to En as powers of nr3

vdW. Such finite-range
effects are responsible for the long-time differences between
the population dynamics seen in Fig. 1(d). By nr3

vdW ≈ 10−7,
finite-range contributions to the population dynamics are neg-
ligible as the time-dependence is set purely by the Fermi
scales characteristic of the universal regime. We compare this
with the range of densities 10−7 � nr3

vdW � 10−9 studied ex-
perimentally in Refs. [26,27] for quenched unitary Bose gases
in a uniform system.

The pairing field and instantaneous chemical potential are
also initially nonuniversal, depending on finite-range physics
as �(t = 0+) = μ(t = 0+) = gn. However, these energies
quickly evolve toward the Fermi scale and approach the uni-
versal steady state μ(t ) ≈ � ≈ −0.5En. We understand the
universality of the μ and � steady states from their evolution

(a) (b)

(c) (d)

FIG. 1. Dynamics of (a)–(c) energy scales and (d) populations
for different values of the van der Waals diluteness parameter within
the doublet model. The asymptotic values of the pairing field and
phase derivative are roughly equal � ≈ μ ≈ −0.5En, where the
development of the real part and decay of the imaginary part of
the pairing field in the laboratory (� exp 2iθ0) and condensate (�)
frames are shown in (c) for density nr3

vdW = 1.1 × 10−7.

with the two-body T matrix in Eqs. (52) and (56), which is
dominated by the unitarity limit of the s-wave partial cross
section on resonance [48]. Importantly, the reality of � at long
times [68] is due to working in the frame of the condensate
as shown in Fig. 1(c). In the laboratory-frame description of
this steady state, the pairing field rotates as ∼ exp(−2iμt/h̄)
characteristic of the behavior at true equilibrium. We under-
stand the approximate equality of μ and � from the rapid
growth of pairing correlations, which leads to dominance of
the c-cumulant contributions in Eqs. (35) and (36) (see also
Appendix B) such that Re � ≈ (g/V )

∑
q Re cq ≈ μ. Even

though these energies approach a steady state, other observ-
ables in the system remain far from equilibrium as we now
discuss. In Fig. 2(a), the doublet model results for nk are com-
pared to the relevant experimental results [70] of Ref. [27].
This comparison is not made in the grey shaded region k <

2μm−1 ≈ 0.3kn where the experimental results are not quan-
titatively reliable due to initial cloud size and non-infinite time
of flight [27]. Qualitatively, it is clear that the nodal pattern
of the doublet model results is absent from the experimental
data. To quantify these results, we follow Ref. [27] and fit
the initial growth of k3

nn(expt)
k = 3nk/4π for fixed k shown in

Fig. 2(b) to a sigmoid f (t ) = a + b/(exp(−c(t + d )) + 1),
obtaining plateau value n̄k = a + b and halfway time τk de-
fined as n̄k = 2nk(τk ), finding generally good agreement [71],
consistent with Refs. [34,35], as shown in Fig. 3.

1. Prethermal state

The equilibration of many-body observables in a quenched
system while the microscopic degrees of freedom remain
strongly out of equilibrium is characteristic of prethermaliza-
tion [31]. To describe this stage of the doublet model in the
universal limit (nr3

vdW → 0), we solve the doublet model using
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(a)

(b)

FIG. 2. Dynamics of the momentum distribution for kn =
6.7μm−1 with tn = 27μs. We note that due to different normal-
izations, the experimental momentum distribution is related as
k3

nn(expt)
k = 3nk/4π . The results of the doublet model simulation

(solid lines) are compared against the experimental findings of
Refs. [27,69] (dashed-dotted lines connecting ∼200 raw data points
each following the presentation in those works) at times t = tn (blue)
and t = 2tn (orange). Experimental results in the shaded region are
not quantitatively reliable (see the Methods section of Ref. [27]). The
inset shows the 1/k4 power-law behavior of nk at large-k. (b) Time
dependence of the momentum distribution for at fixed k, comparing
the results of the doublet model (solid lines) with the experimental
data points of Refs. [27,69]. Each line has been multiplied by a
numerical factor to increase visibility.

the asymptotic values for � and μ shown in Figs. 1(a) and 1(b)
while the doublets nk and ck remain periodic in time [72],

nk(t ) = nk(t0) + �Re αk(t0)

2ω2
k

[1 − cos(2ωk(t − t0))]

− �Im αk(t0)

2ξkωk
sin(2ωk(t − t0)), (61)

|ck|2 = nk(1 + nk ), (62)

in agreement with Ref. [34] [see in particular Eq. (S32)
therein]. The eigenfrequency of these oscillations matches the
HFB spectrum [73]

ωk =
√

ξ 2
k − �2, (63)

(with ξk = εk − μ in the limit nr3
vdW → 0 when gn � μ) and

the energy αk(t0) = �[1 + 2nk(t0)] + 2ξkck(t0) encodes the
initial condition at t0 (with t > t0 � tn). We note that αk = 0
gives the HFB ground state [74].

(a)

(b)

FIG. 3. (a) The momentum dependent half-way time τk (a) and
the plateau value n̄k (b) for three different densities considered in
Refs. [27,69] compared against the results of the doublet model sim-
ulation (purple filled circles). In (a), the asymptotic behaviors tk =
kn/k and tk = (kn/k)2 for the characteristic prethermal timescale tk

found in Sec. IVA1 are indicated by the dashed and dotted lines, re-
spectively. The two asymptotes cross at kc = 2mcpth/h̄ = √

2/ξpth ≈
kn (vertical solid). In (b), we compare against the decaying expo-
nential 1.53 exp(−3.62k/kn ) found experimentally, indicated by the
solid line.

In the dilute limit where the van der Waals diluteness
parameter nr3

vdW tends toward 0, the mean-field energy gn/En

also vanishes relative to the Fermi energy (see Sec. III D)
while �/En remains finite. According to Ref. [73], μ = gn +
�, which implies μ = � in the dilute strong-interacting limit.
This matches the long-time, steady-state dynamics shown in
Fig. 1. Remarkably, this condition μ = � produces a gapless
excitation spectrum (ω0 = 0), and the elementary excitations
follow a Bogoliubov dispersion law ωk = √

εk(εk + 2|μ|).
We therefore find long-wavelength phonons with energy h̄ck
and sound velocity cpth = √|μ|/m � 0.5h̄kn/m in the unitary
regime. The smooth crossover to the particle-regime occurs
for εk ∼ mc2

pth � 0.5En, which allows us to define a char-
acteristic healing length [1] in the prethermal state (t � tn),
k = 1/ξpth, such that knξpth � √

2. This is to be contrasted
against the usual Bogoliubov dispersion law at weak interac-
tions ω0

k = √
εk(εk + 2U0n) with U0 = 4π h̄2a/m, discussed

in Sec. II A, and a � 0 [1]. The dispersion laws ωk and ω0
k

are connected by replacing the usual mean-field energy U0n
by En/2, i.e. through a mapping of the form a → 1/kn. In
Ref. [75], U0n was replaced ad hoc by 4En/3π , by assuming
a universal Bogoliubov excitation spectrum. In the present
paper, this replacement is not assumed a priori, rather a uni-
versal Bogoliubov spectrum emerges within the prethermal
steady state at strong interactions. In a quasistationary picture,
the mapping of quantities between vacuum and Fermi scales
occurs smoothly as a result of the interplay between quantum
depletion and few-body processes in the system [44].

From the inverse of the excitation energy, we obtain the
characteristic timescale tk = h̄/ωk, behaving asymptotically
as tk/tn = kn/k for ξpthk � 1 and tk/tn = (kn/k)2 for ξpthk �
1. In Fig. 3(a), these scalings (dashed and dotted lines) are
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compared directly against the numerical and experimental
results (symbols) for the half-way times τk and are in excellent
quantitative agreement without adjustment. This comparison
assumes that the system has entered the prethermal stage
on a timescale comparable to the range of τk considered in
Fig. 3(a). We address this assumption later in this section by
defining a “prethermalization time” tpth from the dynamics
of the kinetic temperature following Ref. [31]. Qualitatively,
the smooth crossover between sound and free-particle regimes
takes place when k ∼ h̄/ξpth, which is of order O(kn) consis-
tent with the experimental findings of Ref. [27].

B. Dynamics of the two-body contact

Whereas the decaying exponential in Fig. 3(a) describes
the full range of experimental data, the profile of nk in the
doublet model simulation transitions to a 1/k4 power-law tail,
as can be seen in the inset of Fig. 2(a). We discuss this power-
law behavior in the doublet model presently. In an ultracold
quantum gases, typical momentum scales (kn, λ−1

dB , etc.) are
such that k/	 � 1, where 	 corresponds to the inverse range
of the potential. In this regime, when two bosons separated by
a distance r = |r1 − r2| come together such that 	−1 � r �
{n−1/3, |a|, λdB}, their relative wave function is proportional
to φ(r) = (1 − a/r), and the many-body wave function |�〉
(normalized as 〈�|�〉 = N) takes the form

�(r1, r2, . . . , rN) ≈ φ(r)A(c12, r3 . . . , rN), (64)

with center-of-mass coordinate c12 = (r1 + r2)/2. This mi-
croscopic behavior of the many-body wave function can be
used to derive a set of important relationships between system
properties, revolving around the extensive quantity C2 ≡

k→∞
V k4nk known as the two-body contact that measures the
probability for pairs of atoms to be close together [77–81].
The intensive counterpart C2 is the two-body contact density
related to the (extensive) two-body contact as VC2 = C2. The
two-body contact is also related to the total interaction energy
U = 〈Ĥint〉 as C2 = 2m2gU/h̄4, where Ĥint is the interaction
part of the many-body Hamiltonian [Eq. (2)]. Although these
relations were derived for equilibrium states, they give consis-
tent results for the dynamical two-body contact C2(t ) within
the doublet model shown in Fig. 4(a). Additionally, these
findings are consistent with previous studies, namely the uni-
versal early-time growth n−4/3C2(t ) = 128πt/(6π2)2/3tn and
asymptotic value n−4/3C2(t ) ≈ 12 found in Refs. [33,46].

Although we have found consistent results for the dy-
namical two-body contact by blindly applying equilibrium
relations within the doublet model, counterexamples from
quenches in one-dimension [82] highlight that care should
be taken when generalizing these relations to nonequilibrium
scenarios. Therefore, we revisit the assumptions needed to
derive the equilibrium contact relations. The simple form of
the microscopic two-body wave function φ(r) [Eq. (64)] holds
locally, regardless of whether the many-body system is in
equilibrium or not, and one can define then the dynamical
two-body contact C2(t ) density by integrating over the coordi-

(a)

(b)

FIG. 4. (a) Universal two-body contact dynamics obtained via
the k−4 power-law tail of nk (solid blue) and from the inter-
action energy (circles) for nr3

vdW = 7.2 × 10−8. We also compare
with the universal early-time growth rate (dash-dotted) obtained in
Ref. [46] and the asymptotic result (dotted) obtained in Ref. [33].
(b) Universal dynamics of the restricted kinetic energy per particle
〈ε〉k={2kn,2.5kn,3kn} for nr3

vdW = 7.2 × 10−8 (dashed blue) and nr3
vdW =

1.1 × 10−7 (solid red) compared against the experimental data of
Refs. [26,76] (blue diamonds). Inset: Nonuniversal dynamics of the
full kinetic energy per particle 〈ε〉 as predicted in the doublet model.

nates of the two-body regular part, A, of the many-body wave
function in Eq. (64) to obtain

g(2)(r, t ) ≡ 〈ψ̂†(r)ψ̂†(0)ψ̂ (0)ψ̂ (r)〉(t )

n2
, (65)

=
r→0

C2(t )

16π2n2r2
(66)

for the functional form of the pair correlation function in a
uniform system. The interaction energy relation results then
from balancing the divergence of g(2)(0, t ) by powers of the
potential V (0) and neglecting subleading finite-range correc-
tions decaying as powers of 1/	 [80,81,83]. To generalize
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the k−4 power-law-tail equilibrium definition, in addition, one
must consider the Fourier transform,

nk(t ) = 1

V

∑
i

∫ (∏
l 
=i

d3rl

)

×
∣∣∣∣
∫

d3rie
−ik·ri�(r1, r2, . . . , rN, t )

∣∣∣∣
2

, (67)

where the sums are taken over all particles. When the short-
distance divergent behavior in Eq. (64) dominates the large-k
limit of Eq. (67), one obtains the power-law behavior nk ∝
1/k4 and the equilibrium definition follows [80,83,84]. Al-
though this argument holds in equilibrium, it is not guaranteed
in a dynamical system due to the possibility of energetic
nonlocal physics as shown in one dimension [82]. We note that
this caveat also anticipates the difficulties encountered within
the triplet model in the next section (Sec. V.)

C. Kinetic temperature

The two-body contact provides valuable insight into the
dynamics of the interaction energy per particle 〈u〉 = U/N
and the kinetic energy per particle 〈ε〉 = 〈Ĥkin〉/N , where Ĥkin

is the kinetic part of the many-body Hamiltonian [Eq. (2)].
Within the sudden approximation, the quench generates corre-
lation waves out to arbitrarily large energies [82]. Finite-range
effects cure this ultraviolet divergence by providing a natural
short-range cutoff at the scale of 	, calibrated to the scale
of the van der Waals energy EvdW = h̄2/mr2

vdW in our model
(see Appendix A). Although the total energy per particle in
the doublet model simulation 〈etot〉 = 〈u〉 + 〈ε〉 is negligible
(〈etot〉/En ∝ n1/3rvdW), both the interaction energy per particle
〈u〉 and kinetic energy per particle 〈ε〉 diverge. This diver-
gence can be understood by collecting powers of 	 in the
contact relation 〈u(t )〉 = (h̄4/2gnm2)C2(t ). Whereas C2 scales
universally with the density, the bare interaction scales as g ∝
1/	, and therefore 〈u(t )〉 scales linearly with 	. In our model,
this translates into a finite-range effect such that 〈u(t )〉 ∝
r−1

vdW. This behaviors applies analogously to 〈ε〉 due to
energy conservation 〈ε〉/En = −〈u〉/En + O(n1/3rvdW). This
explains the early-time linear growth, late-time asymptotics,
and divergence with r−1

vdW of 〈ε〉 shown in the inset of Fig. 4(b).
The rapid equipartion of kinetic and potential energies

with 〈ε〉/〈u〉 ≈ −1 provides the basis for discussing, in the
far-from-equilibrium many-body system, a kinetic tempera-
ture proportional to 〈ε(t )〉 [31]. In contrast to mode-specific
quantities, 〈ε(t )〉 provides a mode-averaged measure of the
rate at which the system prethermalizes. Therefore, follow-
ing in the spirit of the original treatment in Ref. [31], we
define a prethermal time ttph from the criterion |〈ε(tpth )〉 −
〈ε〉as.|/〈ε〉as. � 0.2 for t > tpth using the asymptotic esti-
mate of C2(t ) [33] to obtain 〈ε〉as. ≈ (−h̄4/gm2)6n1/3. We
find tpth � 0.4 − 0.5, which is consistent with the saturation
timescale estimate in Ref. [33] and the equilibration time of
the largest momenta modes measured in Ref. [24]. Addition-
ally, τk > tpth, for momenta in the crossover between sound
and free-particle regimes shown in Fig. 3(a), clarifying the
assumptions made in Sec. IVA1.

How can the dependence of 〈ε〉 on the nonuniversal short-
range scales be reconciled with the universal dynamics of
the kinetic energy per particle observed in Ref. [26]? We
understand this discrepancy then from the comparatively lim-
ited range of experimentally accessible momenta (cf. Figs. 2
and 3). To compare with experiment, we therefore define the
restricted kinetic energy per particle 〈ε〉k = ∫ k

0 d3k′nk′εk′/n
and compare with the experiment as shown in Fig. 4(b). Here
the doublet model simulation results are roughly consistent
with the universal evolution of 〈ε〉2kn for early times t � tn.
The oscillations of 〈ε〉k are due to the periodicities of the
underlying nk as discussed in Sec. IVA1. As the integration
includes a larger range of modes, the oscillations dephase
and are absent in 〈ε〉. We note that the time range studied
is, however, still less than the time t ∼ 4tn where the kinetic
temperature of the experimental data begins to follow the
power law 〈ε〉 ∝ t2/13 for recombinative heating in the thermal
regime [85]. In the intermediate time 1 � t/tn � 4, however,
the effects of heating and lossless correlation dynamics are
difficult to differentiate, requiring a theoretical investigation
of each contribution individually.

D. Summary

In this section, the quenched unitary Bose gas was studied
within the doublet model. This theory describes the univer-
sal prethermal state that rapidly forms as the condensate is
depleted by pairing excitations. The signature of this prether-
mal state is the establishment of steady-state values for μ

and � even while the momentum distribution dynamics re-
main far from equilibrium. Within this steady-state, one finds
the emergence of a universal Bogoliubov dispersion law,
which quantitively matches the prethermal timescales ob-
served experimentally. This behavior at strong interactions
is in stark contrast to quenches at weak interactions where
the Bogoliubov dispersion law can be assumed [32]. Finding
disagreement with the exponential tail of nk found experi-
mentally, we analyze the origin of the 1/k4 power-law tail
observed in the doublet model by studying the dynamical
two-body contact. In turn, the universal dynamics of the two-
body contact were used to shed light on the nonuniversal
growth of the kinetic temperature of the gas, which diverges
for quenches treated within the sudden approximation. To
connect with experiment, we consider the kinetic temperature
one would obtain with access to only a restricted range of
momentum modes, finding agreement at early times. In the
next section (Sec. V), we go beyond the doublet model and
also retain the triplet cumulants to understand the impact of
three-body correlations on the prethermal state and to search
for nonuniversal signatures of the Efimov effect.

V. TRIPLET MODEL OF THE QUENCHED
UNITARY BOSE GAS

In this section, we study the quenched unitary Bose gas
within the triplet model by neglecting all fourth-order cumu-
lants in Sec. III such that only nk, ck, Mk,q, and Rk,q remain.
For consistency, we follow the same quench sequence as in
Sec. IV, starting from an initially pure condensate. As the
gas evolves in the unitary regime, the condensate is depleted
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by both pairwise and three-body effects. However, the triplet
model suffers from a violation of energy conservation as
discussed in Sec. III B. This violation leads to unphysical
behavior of the triplet model at long times (see Appendix B).
We therefore limit our analysis to times t � tn before these
effects become significant. In this section, we focus on (i)
departures from the prethermal state found in Sec. IVA1 due
to the ergodic dynamics introduced by Ĥ3 and Ĥ eff

4 and (ii)
signatures of the Efimov effect in the system, motivated by
few-body studies [28–30], the discussion in Sec. III D, and
the experimental observation of a macroscopic population of
Efimov trimers in Ref. [25].

Due to the limitations of the triplet model to times t � tn,
we simulate only the dominant parts of the drive terms MH4

k,q

and RH4
k,q [Eqs. (43) and (44)] so

MH4
α,β ≈ − 1

V
S{α,β}

[∑
q

Vq
1 + nα + nβ

2
Mγ ,α−q

]
, (68)

RH4
α,β ≈ 1

V
S{α,β,γ ′}

[∑
q

Vq

2
(1 + nα + nβ )Rα−q,−γ ′

]
. (69)

This contains the vacuum contribution (the 1 in 1 + n + n),
which dominates at short times and ensures that few-body in-
teractions at unitarity (see Sec. III D) are correctly described.
Additionally, due to the increased computation resources re-
quired to simulating the triplet model, the results in this
section are limited to densities nr3

vdW � 6.9 × 10−6, which in-
cludes a portion of the density range studied in Ref. [25] but is
more dense than the range considered in Refs. [24,26,27]. We
refer the interested reader to Appendix B3, where technical
details related to convergence of the triplet model simulations
and the computational hardware used are discussed.

A. Energy and number dynamics

We begin by revisiting the time dependence of the charac-
teristic energies � and μ(t ) in the triplet model as a function
of the van der Waals diluteness parameter nr3

vdW shown in
Figs. 5(a)–5(c). Compared to the doublet model, μ(t ) now has
an additional contribution from the triplet M-cumulant [see
Eq. (36)], whereas the expression for � [Eq. (35)] remains
unchanged. This has the effect of introducing oscillations
into the dynamics of μ(t ), which can be see in Figs. 5(b)
and 5(c). These oscillations, which are absent in the doublet
model results, black dashed lines in Fig. 5, are signatures of
Efimov states. The oscillation frequency is set by the three-
body parameter κ∗rvdW = 0.211 (see Appendix A) and is
therefore non-universal (density independent). This behavior
is in contrast with the dynamics of � shown in Fig 5(a), with
oscillations that are comparatively less visible and therefore
weakly dependent on κ∗. By t ∼ tn, we see that � seems to be
converging to � ∼ −0.4En with decreasing imaginary com-
ponent visible in Fig 5(c). The population dynamics shown
in Fig. 5(d) also depend weakly on κ∗, and we see that the
addition of three-body effects lead to more rapid depletion
of the condensate than in the doublet model [compare with
Fig. 1(d)]. Although not shown, the Hartree-Fock mean-field
energies remain negligible as nr3

vdW is decreased, which fol-
lows from the general conclusions in Sec. III D. As the

(a)

(c) (d)

(b)

FIG. 5. Dynamics of (a)–(c) energy scales and (d) populations
for different values of the van der Waals diluteness parameter within
the triplet model. We compare with the doublet model results for
density nr3

vdW = 7.2 × 10−8 (black dashed) in this section, which is
sufficiently dilute to be universal. (c) The dynamics of the instanta-
neous chemical potential μ(t ) and the real and imaginary parts of the
pairing field shown for density nr3

vdW = 6.9 × 10−6.

energies � and μ begin to display steady-state and periodic
behaviors, the dynamics of nk remain far from equilibrium.
The triplet and doublet model dynamics of nk are shown
in Fig. 6. By t = 0.5tn, we already see a departure in the
large momentum behavior of nk from the 1/k4 power-law tail
toward a decaying exponential. The formation of a decaying
exponential tail in nk is a robust feature of the triplet model
and can be found even at much later times (even though
positivity of nk becomes violated at low momenta due to vio-
lation of energy conservation.) Although the amplitude of the
exponential tail grows in time, the decay rate remains roughly
constant as nk ∝ exp(−0.25k/kn ) for nr3

vdW = 7.0 × 10−6,

FIG. 6. Evolution of the single-particle momentum distribution
within the triplet model at density nr3

vdW = 6.9 × 10−6 (blue) and the
universal doublet model (black). Inset: Dynamics of nk at fixed k =
4kn from triplet and doublet models illustrating the transition out of
the prethermal state.
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which is more gradual than experimentally observed decay
nk ∝ exp(−3.62k/kn ) [27]. Although not shown, similar ex-
ponential decay of nk at large momentum can be found over
the full range of densities considered in this section. As noted
in Ref. [27], the development of a decaying exponential tail
at large momenta is not consistent with the power-law tail
predictions from local short-range physics. Ultimately, due to
its absence in the doublet model, the decaying exponential is
necessarily due to three-body processes.

1. Departure from the prethermal state

Such deviations from the integrable doublet model dy-
namics also signal the departure from the prethermal state.
Physically, this is expected due to the ergodic dynamics
introduced by Ĥ3 and Ĥ eff

4 , which take the system toward
true thermalization. For quenches in the weakly interacting
regime, the timescales between the prethermal and thermal
stages are separated by orders of magnitude [32] as nonin-
tegrable Beliaev-Landau scatterings drive the system toward
full thermalization. On resonance, this picture of distinct on-
shell quasiparticle scatterings begins to breakdown, and one
expects generically that all rates scale with the Fermi time
so that distinct stages in the evolution of the gas may not
be well-separated. Indeed, we see from Fig. 6 that the de-
parture from the integrable doublet model dynamics occurs
at a momentum-dependent rate evidenced by the widening
gap between power-law and exponential tails at large mo-
mentum. This departure from the prethermal dynamics is
shown explicitly in the inset of Fig. 6 in the dynamics of
n4kn where the enhanced growth and damped oscillations in
the triplet model are clearly visible at later times. We note
that because the triplet model dynamics inherently violate
energy conservation, the breaking of integrability removes the
system from the initial phase-space manifold, which muddies
the physical connection between the long-time dynamics and
thermalization.

As the system shifts away from the prethermal state, the
gradual decay in the occupation of large momentum modes
leads to an increase in the average kinetic energy per particle
〈ε〉 relative to the doublet model as shown in Fig. 7. To
understand which modes are responsible for this growth, we
examine in Fig. 7 how the dynamics of the restricted kinetic-
energy per particle 〈ε〉k change as the large momentum modes
transition into an exponentially decaying tail. First, we ob-
serve that the momentum-dependent departure of nk from the
prethermal doublet dynamics is also mirrored in 〈ε〉k. Second,
the kinetic energy per particle for modes k � 0.3kn decreases
relative to the doublet model dynamics, which illustrates the
large pileup of kinetic energy in the decaying exponential
tail and draining of kinetic energy from the low momentum
modes. This accumulation of kinetic energy in the exponential
tail is a signature of imbalanced three-body kinetics within
the triplet model. Specifically, the three-body processes in
the kinetic equation [Eq. (37)] require contributions from the
quadruplet in order to satisfy the condition of detailed balance,
which will be demonstrated in a forthcoming publication [86].
Because the total energy is not conserved, the rapid equiparti-
tion of energy observed in the doublet model (see Sec. IV C) is
not observed distinctly in the triplet model, such that a kinetic

0 0.2 0.4 0.6 0.8 1
t/tn

0

0.5

1

1.5

2

0 1t/tn
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10

FIG. 7. Dynamics of the restricted kinetic energy per particle
〈ε〉k={2kn,3kn,4kn,5kn} for the triplet model with nr3

vdW = 6.9 × 10−6

(solid blue) and the universal doublet model (dotted black). Inset:
Nonuniversal dynamics of the full kinetic energy per particle 〈ε〉
within the triplet model for nr3

vdW = 6.9 × 10−6 (solid blue) and
nr3

vdW = 1.9 × 10−5 (dashed orange).

temperature cannot be so clearly defined as before. Here, the
growth of the total kinetic energy results instead in an effective
heating of the system. Due to this violation, the dynamics of
〈ε〉 cannot be connected to the dynamical two-body contact
C2(t ) as was done in Sec. IV, and we must turn to other
methods as we discuss now.

B. Dynamics of the contacts

In addition to having pairs of correlated bosons close
together, in the triplet model it is also possible to have
triples of bosons clustered together, experiencing the at-
tractive 1/R2 effective three-body potential in the Efimov
channel. When three bosons in a configuration parameter-
ized by hyperradius R =

√
(r2 + ρ2)/2 and hyperangles � =

{ρ̂, r̂, α = arctan(r/ρ)}, with Jacobi coordinates r = r1 − r2
and ρ = (2r3 − r1 − r2)/

√
3 and spherical angles ρ̂ and r̂,

come together 	−1 � R � {n−1/3, |a|, λdB}) their relative
wave function is proportional to [80]

�(R,�) = 1

R2
sin

(
s0 ln

R

Rt

) φis0 (�)√〈φis0 |φis0〉
. (70)

Here, Rt is related to the three-body parameter κ∗
as Rt = √

2 exp(Im ln[�(1 + is0)]/s0)/κ∗ where �(x) is
the Gamma function and s0 = 1.006. The hyperangular
function describing s-wave pairwise scatterings is [87]
φs0 (�) = (1 + P̂13 + P̂23)ϕs0 (α)/ sin(2α)

√
4π with ϕs(α) =

sin(s(π/2 − α)) where P̂i j swaps particles i and j. When this
occurs, the many-body wave function |�〉 takes the form

�(r1, r2, r3, . . . , rN) ≈ �(R,�)B(c123, r3 . . . , rN), (71)

where c123 = (r1 + r2 + r3)/3 is the three-body center of
mass, and B is the three-body regular part of the many-body
wave function. The microscopic behaviors of the many-body
wave function [Eqs. (64) and (71), respectively] can be used
to derive a set of important relationships between system
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properties extending the two-body contact relations discussed
in Sec. IV B to when the Efimov effect arises,

V nk → 1

k4
C2 + F (k)

k5
C3, (72)

C2 = m2g2

h̄4 〈d̂†d̂〉 − 4m3g3

	2h̄6

(
H + J

π
+ J

2a	

)
〈t̂†t̂〉, (73)

C3 = − m2g2

2h̄4	2

(
H ′ + J ′

a	

)
〈t̂†t̂〉, (74)

where d̂ = ψ̂ (0)ψ̂ (0) and t̂ = ψ̂ (0)ψ̂ (0)ψ̂ (0) [80,81]. Here,
the probability to measure such Efimovian triples is quantified
by the (total) three-body contact C3 and three-body contact
density C3 related as VC3 = C3. The quantities F , H , and J
are log-periodic functions of k and 	, given by

F (k) = A sin(2s0 ln(k/κ∗) + 2φ), (75)

H (ln(	/	∗)) = h0
C − s0S

C + s0S
, (76)

J (ln(	/	∗)) = j0 + j1(2SC) + j2(C2 − S2)

(C + s0S)2
, (77)

where C = cos(s0 ln(	/	∗)) and S = sin(s0 ln(	/	∗)) and
with universal constants A = 89.262, φ = −0.669, h0 =
0.879, j0 = −0.148, j1 = −0.892, j2 = −0.087 and renor-
malization scale s0 ln(	∗/κ∗) = 0.971 mod π . The ′ notation
indicates a partial derivative with respect to ln(	/	∗). The
log-periodic dependency in Eqs. (72)–(74) on the discrete
scaling eπ/s0 ≈ 22.7, reflects the infinite number of Efi-
mov trimers which form at unitarity with binding energies
scaling in the zero-range limit as E (n)

3b = −e−2nπ/s0 h̄2κ2
∗/m

for any integer n. For finite-range potentials, the Efimov
trimer spectrum is bounded from below n � 0, and the
three-body parameter κ∗ sets the wavenumber of the ground
Efimov trimer E (0)

3b = −h̄2κ2
∗/m and, importantly, introduces

a nonuniversal, finite length scale [18–20]. For the pairwise
potential considered in this paper, the three-body parameter
is κ∗rvdW = 0.211 (see discussion in Appendix A), which is
in fair agreement with the universal result κ∗rvdW ≈ 0.226
near the broad Feshbach resonances used experimentally
[47,88,89].

Although the formal caveats in Sec. IV B were cautionary,
Eq. (72) clearly fails when generalized to the triplet model
of the quenched unitary Bose gas. It is necessary then to
revisit the assumptions underlying Eqs. (72)–(74). Formally,
Eqs. (73) and (74) follow directly from the forms of two- and
three-body microscopic wave functions φ(r) and �(R,�),
respectively, that both hold locally, regardless of whether the
many-body system is in equilibrium or not. One can then
define the dynamical three-body contact density by integrating
over the three-body regular part, B, of the many-body wave
function in Eq. (71) to obtain the relation [80]

g(3)(0, r, r′, t ) ≡ 〈ψ̂†(r)ψ̂†(r′)ψ̂†(0)ψ̂ (0)ψ̂ (r′)ψ̂ (r)〉(t )

n3
,

=
R→0

|�(R,�)|2 8

n3s2
0

√
3
C3(t ) (78)

for the functional form of the triplet correlation function in
the R → 0 limit written here specifically for uniform systems.

FIG. 8. Dynamics of the two-body contact [Eqs. (73)] over a
range of densities and times up to 1.0tn. Results for the dimensionless
two-body contact density n−4/3C2 from the triplet model over the
range of densities indicated in the key. We also show the two-body

contact density C〈d†d〉
2 obtained from neglecting the term 〈t†t〉 in

Eq. (73). This is shown only for the most and least dense cases as
solid curves attached to the corresponding n−4/3C2 results to illustrate
the diminishing of this extra contribution in the zero-range limit.
The universal doublet model results C (d)

2 along with the universal
early-time growth rate obtained in Ref. [46] are indicated by the
black dashed-dotted curves.

To obtain Eq. (72), one must make additional assumptions
that the short-distance divergent behaviors Eqs. (64) and (71)
dominate the large-k limit of the Fourier transform of the
many-body wave function [Eq. (67)]. This clearly no longer
holds for the dynamics of nk in the triplet model, highlighting
the nonlocal origin of the decaying exponential. Finally, we
note the additional 〈t̂†t̂〉 dependence in Eq. (73) absent in the
doublet model, following the convention of Ref. [81]. This
extra contribution becomes negligible, scaling as 1/	 and has
been included here for completeness. We now discuss results
for the dynamical two and three-body contacts using Eqs. (73)
and (74), respectively.

1. C2 dynamics

In Fig. 8, the numerical results for the dynamical two-body
contact in the triplet model are shown over a range of densities
and times up to t = 1.0tn. Formally, we note that the cumulant
decomposition of the dominant contribution 〈d̂†d̂〉 to C2 is the
same as in Sec. IV B with the addition now of the triplet M-

cumulant. Here we differentiate between C〈d̂†d̂〉
2 (t ) and C2(t )

defined without and with the 〈t̂†t̂〉 contribution, respectively,
in Eq. (73) to demonstrate how this term becomes negligi-
ble as nr3

vdW is decreased. Comparing against the early-time
doublet results, we find that linear early-time growth rate is
approached as nr3

vdW is decreased. The early-time dynamics of
C2(t ) are therefore insensitive to the Efimov effect, consistent
with Ref. [30]. We note that the nonzero offset C2(0) = g2n2 is
a finite-range effect scaling as 1/	2. By t ∼ 0.2tn, the triplet
and doublet model results for C2(t ) begin to depart signifi-
cantly after a period of universal growth. Echoing the findings
of Ref. [30], we interpret this development as the timescale
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FIG. 9. Dynamics of the three-body contact [Eq. (74)] over a
range of densities and times up to 1.0tn. Results for the dimension-
less three-body contact density n−5/3C3 (key same as Fig. 8) from
the triplet model. For comparison, we show the range of quadratic
early-time growths (dashed-dotted) found in Ref. [29]. For scale
comparison, we also display the universal fit n−5/3C3 ≈ 2.1 [90]
(grey solid) extracted from the experimental results of Ref. [24]
under the assumption of a locally equilibrated metastable state.

when clustered pairs become sensitive to the surrounding
“few-body medium” consisting of a third boson. This sensitiv-
ity leads to the secondary dependence of C2(t ) on the Efimov
effect, as its dynamics display the characteristic nonuniversal
beating phenomenon at the frequency of an Efimov trimer.
At later times, the probability of finding pairs of atoms close
together becomes less likely than in the doublet model. In the
triplet model, there is now the competition between forming
clustered pairs or triples, which develop more slowly as we
find from the analysis of C3(t ) below.

2. C3 dynamics

So far, in the analysis of this section, we have assumed
that the nonuniversal oscillations found in μ(t ), C2(t ) and to
a lesser extend �(t ), which has no explicit dependence on
triplet cumulants, are signatures of an Efimov state. Here,
we analyze the triplet model results for C3(t ), which directly
measures the probability to measure short-range Efimovian
triples as correlations develop in the many-body system. In
Fig. 9, the numerical results for the dynamical three-body
contact are shown over a range of densities and times up to
t = 1.0tn. At all times, the dynamics are density dependent,
and the nonuniversal oscillations in time become visible as
nr3

vdW is decreased. To analyze these results, we first motivate
why such oscillations should appear distinctly in C3(t ), then
to make the discussion more quantitative, the triplet model
results for C3(t ) are fit first for t � 0.25tn to obtain the relevant
early-time scalings and then fit at later times t < 0.5tn to
extract the oscillation frequencies, enabling a unambiguous
identification of the Efimov state present in the many-body
system.

Counting powers of 	 in the cumulant expansions in
Eqs. (73) and (74) reveals that the dynamical two- and three-
body contacts are dominated by the dynamics of the c and
R cumulants, respectively. In Sec. III D, we discussed how
the post-quench response of these cumulants [Eqs. (49) and
(59)] is determined by the overlap between the few-body
spectrum and the driving effect of the lower-order cumulants.
For example, away from resonance, the dynamical two-body
contact responds at the natural frequency of the universal

TABLE II. Fits of the early-time triplet dynamics of
n−5/3(C3(t ) − C3(0)) to power law f1(t ) = a1t a2 and oscillatory
f2(t ) = b1t2 + b2

√
t sin2(b3t/2h̄ − b4) functions. For densities

where n−5/3C3(t ) does not display a full period of oscillation in the
early-time dynamics, we fit to f1(t ) in the window t � 0.25tn to
obtain the growth rates and power laws. For densities where a full
period is observable, we fit to f2(t ) in the larger window t � 0.5tn

to obtain growth rates and precise estimation of the oscillation
frequency. We note that using f1(t ) in this latter regime would result
in an overestimation of the growth rates. The estimate of the ratio
|b3/E (0)

3b | is obtained by averaging over multiple fits in the window
0.4 � t/tn � 0.6 and the uncertainty is given simply by the standard
deviation.

nr3
vdW knR(0)

3b a1 a2

3.0 × 10−4 1.42 15.06 2.65
8.8 × 10−5 0.95 9.31 2.19
3.7 × 10−5 0.71 9.54 2.17
1.9 × 10−5 0.57 10.10 2.11

nr3
vdW knR(0)

3b b1 b2 |b3/E (0)
3b | b4

1.1 × 10−5 0.48 0.25 1.02 0.97(3) 0.09
6.9 × 10−6 0.41 0.43 0.71 1.01(2) 0.14

dimer −h̄2/ma2 as studied in Refs. [35,46]. At unitarity, the
dimer energy is at threshold, however, the three-body contact
can now respond at the frequency of any one of the infinity
of three-body bound Efimov trimers. In practice, the Efi-

mov trimer whose size R( j)
3b =

√
2(1 + s2

0)/3 exp( jπ/s0)/κ∗
is comparable to the interparticle spacing R( j)

3b ∼ kn has the
greatest overlap with the drive of the lower-order cumulants
[see Eq. (59)]. Consequently, the infinity of trimers accumu-
lating at threshold play a negligible role in the dynamics of the
three-body contact as was found in Refs. [29,30]. For densities
in the regime |E ( j)

3b | � En, the jth Efimov state is optimally
embedded in the many-body configuration, and the mode-
matching |E ( j)

3b | ∼ En signals maximally enhanced growth of
the dynamical three-body contact at early times as found in
Refs. [29,30]. When |E ( j)

3b | � En, the Fermi and Efimovian
timescales are distinct, and the frequency of the jth Efimov
state is observable in the early-time dynamics of the three-
body contact [29,30]. Finally, when |E ( j)

3b | � En, there is little
overlap between density scales and the jth Efimov state, and
therefore all deeply bound Efimov states relative to En play a
negligible role in the dynamics. This behavior is then repeated
over a full log-period (factor ∼22.73) in the density.

Whereas C2(t ) displays a universal linear growth at early
times, C3(t ) was shown to follow a range of gradual, density-
dependent quadratic growth rates in Refs. [29,30]. In Fig. 9,
we compare the triplet model results against the predictions
of these few-body models, noting the absence of inelastic
three-body losses in the present paper. To quantify this com-
parison, we fit the early-time (t � 0.25tn) triplet model results
for n−5/3C3(t ) to the function f1(t ) = a1t a2 and extract the
growth rates a1 and power laws a2. From averaging the fits
given in Table II, we estimate a a2 = 2.3(2) scaling law. These
fits are compared directly against the triplet model results in

063314-16



CUMULANT THEORY OF THE UNITARY BOSE GAS: … PHYSICAL REVIEW A 102, 063314 (2020)

10-1

10

10-2

1

10-2

1

10-2

1

10-2 10-1

 0

 0.4

 0

 0.2

 0  0.1  0.2  0.3  0.4  0.5
t/tn

t/tn

FIG. 10. Fits (dashed lines) of the early-time triplet model results
(data points) for n−5/3C3(t ) over a range of densities, corresponding
in descending order to the key of Fig. 8. The results are fit to the func-
tions (a) f1(t ) = a1t a2 and (b) f2(t ) = b1t2 + b2

√
t sin2(b3t/2h̄ −

b4). The fit parameters are given in Table II.

Fig. 10(a), where the breakdown of the early-time power-law
growth becomes apparent by t ∼ 0.5tn. Even though quadratic
growth is approached for decreasing density, the rates remain
larger than the predictions of Refs. [29,30] indicated by the
black dashed-dotted lines in Fig. 9. At later times, however,
we see that this growth is overestimated as dynamics become
oscillatory, which indicates that a more sophisticated fitting
function should be used for the lowest densities studied in this
section as we address now.

For the lowest densities studied in the triplet model, the dy-
namical three-body contact displays oscillations with periods
visible even at early times t < 0.5tn. To quantify the fre-
quency of this oscillation, we fit the dynamics of n−5/3C3(t ) to
f2(t ) = b1t2 + b2

√
t sin2(b3t/2h̄ − b4) to obtain the growth

rates b1 and b2, the oscillation phase b4, and the oscillation
frequency b3 reported in units of the nearby ground-state
Efimov trimer binding energy E (0)

3b in Table II. The nonanalytic
form of f2(t ) was chosen as a combination of t2 and t5/2

power laws, motivated by the range of scalings found at larger
densities. This provides an excellent fit of the data in the
window t � 0.5tn as shown in Fig. 10(b) [91]. We note that
the b4 contribution to f2(t ) adds an additional

√
t scaling at

early-times, which is generally negligible as the phase offset is
typically small. From Table II, we find quadratic growth rates
more comparable with the findings of Refs. [29,30] and, im-
portantly, a precise identification of the oscillation frequency
of the ground Efimov trimer to within an uncertainty of a few
percent.

C. Summary

In this section, the quenched unitary Bose gas was studied
within the triplet model, focusing on (i) how the doublet
dynamics depart from the prethermal state and on (ii) sig-

natures of the Efimov effect in the many-body observables
of the system. Although the pairing field was found to ap-
proach a (roughly) universal steady-state, the dynamics of the
instantaneous chemical potential did not, displaying visible
non-universal oscillations at the frequency of the ground-state
Efimov trimer. The momentum distribution nk was found
to depart from the 1/k4 power law toward an exponentially
decaying tail at a momentum-dependent rate, although the
violation of the total energy in the triplet model prevented
any observation of the crossover to true thermalization. The
development of the exponentially-decaying tail was shown
to coincide with a large buildup of kinetic energy in the
large-k modes and a corresponding draining of kinetic energy
from the low-k modes relative to the doublet model results.
The dynamics of the two-body contact were shown to depart
nonuniversally from the doublet model results after a period of
universal growth at early times, and to display the character-
istic beating phenomenon at the frequency of the ground-state
Efimov trimer at later times, consistent with the behavior
found in the few-body studies [29,30]. The oscillatory dynam-
ics of the three-body contact, which quantify the probability of
measuring short-range Efimovian triples, were found to match
quantitatively to the frequency of the ground-state Efimov
trimer in vacuum, providing an important proof of the concept
of the calibrated triplet model. We note that the sensitivity of
the Efimov effect to the ultraviolet scales provides a stringent
benchmark on the implementation of the numerics that are
discussed further in Appendix B.

VI. CONCLUSION

We have illustrated that the cumulant expansion can be
used to study the sequential buildup of correlations in a de-
generate ultracold Bose gas quenched to the unitary regime.
After outlining the cumulant theory of the many-body system,
discussing its truncation, and identifying the few-body effects
included at each level of the hierarchy, the quenched unitary
Bose gas was then modeled at the doublet and triplet levels.
In the doublet model, the gas was found to reach a universal
prethermalized state after a period of rapid quantum depletion
of the initially pure Bose-Einstein condensate. In this state,
signatures of a universal Bogoliubov dispersion law emerge
in the far-from-equilibrium dynamics of the occupation num-
bers. This can be understood from the proximal universal
steady-states of the chemical potential and pairing fields in
the prethermalized state. Using the dynamical two-body con-
tact, we then analyzed the kinetic energy per particle and
connected with the finite, universal kinetic temperatures mea-
sured over a restricted momentum range in Ref. [26]. In the
triplet model, the introduction of nonintegrable three-particle
processes caused the system to depart from the prethermal
state at a momentum-dependent rate. This departure manifests
in the large−k occupation number dynamics as a transition
away from the 1/k4 power law toward a decaying exponential
exp(−αk), coinciding with a large pileup of kinetic energy.
Additionally, the many-body observables were found to dis-
play sensitivity to Efimovian length and time scales to varying
degrees. By analyzing the dynamical three-body contact, we
made a precise identification of this dynamical effect with
Efimov states.
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The Efimov effect is predicted not only to manifest
dynamically but also as log-periodic violations of the contin-
uous scaling of system observables with the atomic density
[28–30,44]. Such a study may shed more light on the in-
triguing scenario |E (n)

3b | ≈ En when an Efimov state becomes
embedded in the medium. Simulating the triplet model over
a factor ∼22.73 in the density, however, remains a practical
challenge due to the ∼	4 scaling of the calculation time for
the numerical implementation described in Appendix B.

More generally, this paper lays the groundwork for how
a cumulant approach can be used to systematically include
nonperturbative few-body effects in a description of strongly
correlated, far-from-equilibrium many-body systems. This
method provides a flexible tool for studying quenched quan-
tum gases, regardless of their quantum statistics, with the
flexibility of including, for instance, drive and loss terms to
study open systems and out-of-equilibrium phase transitions.
The range of possible extensions of this method highlights the
importance of developing methods for truncating the hierar-
chy while preserving the underlying conservation laws. These
topics, however, remain the subject of future study.
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APPENDIX A: FEW-BODY MODEL AT UNITARITY

In this Appendix, we detail the pairwise potential used to
produce the numerical data analyzed in Secs. IV and V. Our
choice of potentials is motivated by requirements to provide a
good approximation of few-body scattering and bound-states
on resonance while remaining computationally efficient.

1. Two-body calibration

The local potential introduced in Sec. II A can always be
expanded as a sum of nonlocal separable potentials

〈k|V̂ |k′〉 =
∑
j=1

g j〈k|ζ j〉〈ζ j |k′〉, (A1)

with form factors |ζ j〉 and interaction strengths g j [92]. Using
the separable expansion, the Lippman Schwinger equation for
the T operator T̂ (z) = V̂ + V̂ Ĝ(0)

2B (z)T̂ (z), with two-body free
Green’s function Ĝ(0)

2B (z) = (z − 2ε̂)−1 and one-body kinetic-
energy operator ε̂|k〉 = h̄2k2/2m|k〉, can be solved for a

closed expression of the T matrix T (k, k′, z) = 〈k|T̂ (z)|k′〉
as

T (k, k′, z) =
∑

i j

g j〈k|ζi〉〈ζ j |k′〉[�−1(k′, z)]i j, (A2)

where

�i j = 1

g j
δi j +

∫
d3k

(2π )3

〈k|ζ j〉〈ζi|k′〉
h̄2k2/m − z

. (A3)

In the limit where the binding energy of a shallow s-wave
bound state nears threshold, referred to as a zero-energy res-
onance, the scattering length becomes large and the partial
cross section approaches the unitarity limit [62]. In this case,
one of the �ii’s will vanish for z → 0, and the T matrix is
dominated by the corresponding simple pole,

T (k, k′, z) = 〈k|ζ 〉〈ζ |k′〉
�(z)

, (A4)

known as the unitary pole approximation [93]. Within this ap-
proximation, the actual potential can be replaced by a nonlocal
separable potential V̂ = g|ζ 〉〈ζ |, which reproduces Eq. (A4).

Following Refs. [44,45], we choose s-wave form factors
〈k|ζ 〉 = θ (	 − |k|) that are functions of the relative momen-
tum. The function θ (x) is the Heaviside function defined such
that θ (x � 0) = 1 and θ (x < 0) = 0. For a separable poten-
tial, the Lippmann-Schwinger equation for the two-body T
operator T̂ (z) = V̂ + V̂ Ĝ(0)

2B (z)T̂ (z) yields the closed expres-
sion

T̂ (z) = g|ζ 〉〈ζ |
1 − g〈ζ |Ĝ(0)

2B (z)|ζ 〉 , (A5)

=
⎧⎨
⎩

g|ζ 〉〈ζ |
1+g m

2π h̄2 [	−k tanh−1 ( 	
k )+ iπk

2 ] for z = h̄2k2

m

g|ζ 〉〈ζ |
1+g m

2π h̄2 [	−k tan−1 ( 	
k )] for z = − h̄2k2

m .
(A6)

The coupling constant g is determined by matching with the
low-energy limit of the on-shell T matrix for s-wave scattering

4π h̄2

m
a =

|k|→0
〈k,−k|T̂ (h̄2k2/m + i0)|k′,−k′〉, (A7)

=
(

1

g
+ m	

2π2h̄2

)−1

, (A8)

which yields the expression g = −2π2h̄2/m	 on resonance.
The cutoff 	 is calibrated to reproduce finite-range correc-
tions to the molecular binding energy −h̄2/m(a − ā)2 away
from resonance, where ā ≈ 0.956rvdW is the mean-scattering
length that is set by the van der Waals length rvdW for a give
atomic species [50]. For the 39K experiments modeled in this
paper, we take rvdW = 64.61a0 [47,94].

The simple pole of the T operator in Eq. (A5) gives the
binding energy ED = −h̄2κ2/m in the limit κ̃ = κ/	 � 1 as

πκ̃

2
− κ̃2 − π

2a	
= O

(
κ̃4

)
. (A9)
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Ignoring quartic and higher-order contributions and equating
with the molecular binding energy with finite range correc-
tions [47,50] yields

	 = 2

π ā(1 − ā/a)
≈ 2

π ā
, (A10)

which is expanded in the small parameter ā/a valid in the
strongly-interacting regime a/rvdW � 1. To understand the
significance of this calibration, we compare the effective
range approximation of the on-shell T matrix in the unitarity
limit

〈k|T̂ (h̄2k2/m + i0)|k′〉 ≈
k→0

4π h̄2

m

1

ik − reffk2/2
, (A11)

where |k| = |k′|, with the equivalent limit of Eq. (A5)

〈k|T̂ (h̄2k2/m + i0)|k′〉 ≈
k→0

4π h̄2

m

1

ik − 2k2/π	
, (A12)

which yields reff = 4π/	 = 2ā. We compare this with the
result reff = 3ā for a Lorentzian form factor [95] and with
the analytic result reff = �(1/4)4ā/6π2 ≈ 2.92ā for the ef-
fective range of a pure 1/r6 van der Waals interaction at
unitarity [50]. Taking the zero-range approximation yields
the well-known 1/k2 scaling of the unitarity bounded partial
cross section. It is instructive to also evaluate the equivalent
zero-range expression for the retarded T operator [62] in the

time domain

T̂+(τ ) = 1

2π h̄

∫ ∞

−∞
dEe−iEτ/h̄T̂ (E + i0),

= −θ (τ )
|ζ 〉〈ζ |√

τ

√
16iπ h̄5

m3
, (A13)

which can be obtained by analytic continuation of the Gaus-
sian integral I (z) = ∫ ∞

0 dke−k2z in the half plane Re [z] > 0.
We contrast this gradual τ−1/2 decay with the sharply peaked
Born approximation T̂+(τ ) = gδ(τ )|ζ 〉〈ζ |.

2. Efimov spectrum

The calibration scheme for the interaction parameters
yields finite range corrections to two-body binding energies
and scattering amplitudes due to the long-range van der Waals
interactions remaining on resonance. On the two-body level,
these corrections to the binding energy become less important
near unitarity as the ratio a/ā approaches infinity. However,
on the three-body level, the spectrum of three-body bound
Efimov states is set by finite-range effects. And so it is im-
portant to check that the calibration scheme produces a trimer
spectrum which matches roughly what has been observed
experimentally.

To solve the three-body problem in vacuum for our cali-
brated separable potential, we begin with the decomposition
of the three-body wave function |�3B〉 = |� (1)〉 + |� (2)〉 +
|� (3)〉 into Faddeev components [92], satisfying the bound-
state equation in momentum space

� (1)(q1, p1) = G(0)
3B (q1, p1, E )

∫
d3q′

(2π )3

∫
d3 p′

(2π )3
〈q1, p1|T̂23(E )|q′, p′〉〈q′, p′|P̂+ + P̂−|� (1)〉, (A14)

where T̂23(z) = V̂23 + V̂23Ĝ(0)
3B (E )T̂23(z), E is the binding en-

ergy, and Ĝ(0)
3B (z) = (z − ∑3

i=1 ε̂i )−1 is the vacuum three-body
Green’s function. In Eq. (A14), the three-body system with
single-particle wave vectors k1, k2, and k3 is parametrized
by Jacobi vectors q1 = (k2 − k3)/2 and p1 = (2k1 − k2 −

k3)/3. Following the original formulation of Skorniakov
and Ter-Martirosian [96], we make the ansatz |� (1)〉 =
NĜ(0)

3B (E )(|ζ 〉 ⊗ |F〉), where N is the normalization constant,
and the tensor product is defined as 〈q1, p1|(|ζ 〉 ⊗ |F〉) =
ζ (2q1)F (p1). Inserting this ansatz into Eq. (A14) yields the
one-dimensional integral equation

F (p1) = 2gτ

(
E − 3h̄2 p2

1

4m

)∫
d3 p′

(2π )3

ζ (|2p1 + p′|)ζ (|2p′ + p1|)
E − h̄2 p2

1
m − h̄2 p′2

m − h̄2p1·p′
m

F (p′), (A15)

where τ (z) = 1/(1 − g〈ζ |Ĝ(0)
2B (z)|ζ 〉). Nontrivial solutions of

Eq. (A15) correspond to the Efimov trimer binding ener-
gies at unitarity [96]. For the calibrated separable potential
introduced in Sec. A 1 and used in the many-body simula-
tions, the resulting trimer spectrum is given in Table III. The
wave number of the ground trimer κ∗ ≡ κ (0) = 0.211/rvdW is
the three-body parameter, which compares with the univer-
sal result κ∗rvdW ≈ 0.226 for broad, open-channel dominated
Feshbach resonances [47,88,89]. Additionally, the zero-range
model predictions for the 22.72 geometric scaling between
neighboring energies is recovered for the highly-excited Efi-

mov trimers as is expected in a finite-ranged model [18–20].
Ultimately, we see that our calibrated separable potential,
despite being tailored to corrections on the two-body level,
captures the sensitive dependence of Efimov physics on finite-
range effects on the three-body level.

APPENDIX B: NUMERICAL METHODS

In this section, the cumulant equations of motion of Sec. III
are rewritten for the nonlocal separable potential discussed in
Sec. A that is used in our numerics. We will see in Sec. B 2
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TABLE III. Approximate values for the ground and first-excited
Efimov trimer binding energies obtained from numerical solutions
of Eq. (A15) using the calibrated separable pairwise potential. In
practice, to obtain trimer binding energies from the integral equation
(Eq. (A15)), we follow the Nystrom method and convert the integral
equation into a summation over a Gauss-Legendre quadrature [97].
The resultant equation can be solved as an eigenvalue problem, with
eigenvalues corresponding to trimer binding energies.

j E ( j)
3b /EvdW E ( j)

3b /E ( j+1)
3b κ ( j)rvdW κ ( j)/	

0 0.0446 24.22 0.211 0.317
1 7.62 × 10−5 22.72 0.00873 0.0131

that the factorized form of the s-wave separable potential
effectively reduces some integrations in the triplet cumulant
equations of motions from 3D to 2D.

In Sec. B 1, we give this simulation form of the cumu-
lant equations. Besides the different interaction potentials,
these cumulant equations differ from those in Sec. III in
that we ignore all quadruplets to yield a triplet model, and
we simulate only a subset of the most dominant terms in
MH4 [Eq. (43)] and RH4 [Eq. (44)] to simplify numerics. In
Sec. B 2, we discuss our numerical methods for simulating
the cumulant equations. In Sec. B 3, the convergence of our
simulation with respect to grid parameters is analyzed for
completeness.

1. Equations of motion

We begin by rewriting the many-body Hamiltonian
[Eq. (2)] for the nonlocal separable potential

Ĥ =
∑

k

εkâ†
kâk

+ g

2V

∑
p,p′,q

ζp−p′+2qζp−p′a†
p+qa†

p′−qâpâp′ , (B1)

where we have used the shorthand 〈k, k′|V̂ |k′′, k′′′〉 =
gδk+k′,k′′+k′′′ζk−k′ζk′′−k′′′ with ζk−k′ = θ (	 − |k − k′|/2) to
take expectation values of the form factors in the laboratory
frame. From the Gross-Pitaevskii equation

ih̄∂tψ0 =g

(
ζ 2

0 n0 + 2g

V

∑
l

ζ 2
l nl

)
ψ0 + gψ∗

0

V

∑
l

ζ0ζ2lcl

+ g

V 3/2

∑
l,s

ζlζ2s−lM
∗
l,s, (B2)

we extract the condensate phase derivative as in Eq. (11):

h̄
dθ0

dt
= − 1

2n0

(
ψ∗

0 ih̄
dψ0

dt
− ih̄

dψ∗
0

dt
ψ0

)
, (B3)

= −
[

gζ 2
0 n0 + 2g

V

∑
l

ζ 2
l nl + g

V

∑
l

ζ0ζ2lRe cl

+ g√
n0V 3

∑
l,s

ζlζ2s−lM
∗
l,s

]
. (B4)

From the Heisenberg equation for the unrotated operators b̂k
[see Eq. (8)], we obtain the form of the doublet equations of
motion for the separable potential,

ih̄∂t nk = 2i Im

[
�kc∗

k + 2g

√
n0

V

∑
l

ζ2k−lζlMl,k + g

√
n0

V

∑
l

ζkζ2l−kM∗
k,l

]
, (B5)

ih̄∂t ck = 2Ekck + (1 + 2nk )�k + 4g

√
n0

V

∑
l

ζl+kζl−kM∗
l,k + 2g

√
n0

V

∑
l

ζkζ2l−kRk,l, (B6)

where we use the forms of the Hartree-Fock Hamiltonian [Eq. (34)] and pairing field [Eq. (35)] for a separable potential:

Ek = εk + 2g

[
ζ 2

k n0 + 1

V

∑
l

ζ 2
k−lnl

]
+ h̄∂tθ0, (B7)

�k = gζ2k

[
ζ0n0 + 1

V

∑
l

ζ2lcl

]
. (B8)

For the triplet equations of motion, we obtain the forms of Eqs. (39) and (40) for a separable potential

ih̄∂t Mk,q = (Ek − Eq − Ek−q)Mk,q − �∗
k−qM∗

q,k − �∗
qM∗

k−q,k + �kR∗
k,q + MH3

k,q + MH4
k,q, (B9)

ih̄∂t Rk,q = (Ek + Eq + Ek−q)Rk,q + �kM∗
k,q + �qM∗

q,k + �k−qM∗
k−q,k + RH3

k,q + RH4
k,q, (B10)

where the doublet sources are the forms of Eqs. (41) and (42) for a separable potential

MH3
k,q√

n0/V
= 2g

(
ζ2k−qζqc∗

k−qnq + ζk+qζk−qnk−qc∗
q − nk(ζk+qζk−qc∗

q + ζqζ2k−qc∗
k−q)

)
+2g(ζ2q−kζknk−qnq − ζ2q−kζknk(1 + nq + nk−q) − ck(ζ2k−qζqc∗

q + ζk+qζk−qc∗
k−q)), (B11)
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RH3
k,q√

n0/V
= 2g(ζ2q−kζkck(1 + nq + nk−q) + ζ2k−qζqcq(1 + nk + nk−q) + ζk+qζk−qck−q(1 + nk + nq))

+2g(ζk−qζk+qckcq + ζqζ2k−qckck−q + ζkζ2q−kcqck−q). (B12)

We approximate the triplet terms MH4
k,q and RH4

k,q by calculating only their most dominant contributions:

MH4
k,q ≈ − g

V

∑
l

ζ2q−kζ2l−kMk,l
(
nk−q + nq + 1

)
, (B13)

RH4
k,q ≈ g

V

∑
l

(
ζ2q−kζ2l−kRl,k

(
nq + nk−q + 1

) + ζ2k−qζ2l−qRl,q
(
nk + nk−q + 1

)

+ζk+qζk−q+2lRl,k−q
(
nk + nq + 1

))
. (B14)

The +1 terms make the most dominant contributions to MH4

and RH4 at early times before quantum depletion becomes
appreciable. This can be understood by simply counting the
number of operator products, but is also something that we
confirmed numerically. From Sec. III D, we also know that
these terms are required to produce the correct form of the
interacting few-body Hamiltonian. In addition to the these
terms, we have included the subdominant Bose-enhancement
factors of the form 1 + n + n so scattering is described at the
level of the many-body T matrix, consistent with the equa-
tion of motion for the c cumulant [Eq. (B6)]. We emphasize,
however, that due to the restriction of our analysis of the
triplet simulation to t � tn before quantum depletion becomes
significant, the difference between vacuum and many-body T
matrices is minimal (cf. the discussion in Ref. [44]). Finally,
the approximations in Eqs. (43) and (44) also have a practical
purpose in significantly reducing the computational burden,
which is addressed in the following subsection on implemen-
tation.

2. Implementation

Because we simulate a uniform Bose gas at rest in three
dimensions, the doublets nk and ck are spherically symmetric
and can be represented as a vector with index ki = |k|i. For the
triplets Mk,q and Rk,q the situation is a little bit more compli-
cated. We have that they are encoded by two 3D momentum
vectors and should therefore depend on six parameters. How-
ever, we first have an overall rotation symmetry of k and
q simultaneously, which already excludes two angles, and
then also a rotation symmetry of q with respect to k, which
excludes another rotation angle. Therefore, we are left with
three independent parameters and we can parametrize Mk,q ≡
M(k, q, cos θk,q) as a 3D array on a grid (ki, qi, cos θ |i), where
ki are qi are the vector norms and cos θi is the discretized
cosine of the polar angle between k and q. Many operations
in the cumulant equations of motion in Sec. B 1 are pointwise
and can be evaluated directly within this parametrization.

For the implementation, we also need to evaluate objects
with swapped and/or shifted indices, like the doublet nk−q or
the triplets Mq,k or Mk−q,k. For the doublets, we can simply
evaluate the vector norm |k − q| = √

k2 + q2 − 2kq cos θk,q

and project the result to the nearest ki in our predefined
grid, so that now nk−q becomes a 3D array after interpola-
tion. If we have to swap two indices k and q of a triplet,
we can simply swap the first two momentum indices of the
3D array, since cos θk,q is invariant under the exchange of
the two momenta, i.e., Mq,k ≡ M(q, k, cos θk,q). To evaluate
Mk−q,k ≡ M(|k − q|, k, cos θk−q,k ), we also have to evaluate
cos θk−q,k = (k − q cos θk,q)/|k − q| if we align k along the z
axis, after which we can apply a zeroth-order interpolation in
3D, i.e., we select the 3D index (ki, qi, cos θ |i ) that is closest to
the point (|k − q|, k, cos θk−q,k ). We have numerically com-
pared the zeroth-order interpolation with first order and even
spline methods [97] but the result is indistinguishable when
the grid spacing is chosen finely enough. Note that zeroth-
order interpolation is essentially a map of indices and can be
precomputed, making it much more efficient than higher-order
interpolation schemes. The form factors ζk, ζ2q−k etc. can also
be precomputed for our 3D grid (ki, qi, cos θ |i ) and stored as
logical 3D arrays for later use in the equations of motion.

Furthermore, we have to evaluate the summations in
spherical coordinates. For example, in (B7), we encounter a
spherically symmetric summation, which can be evaluated as
follows:

∑
l

ζ2lcl ≡ V

2π2

∫ kmax

0
l2dl ζ (2l )c(l ) ≈ V �k

2π2

∑
i

k2
i ζ2ici.

(B15)
Here �k is the difference between two consecutive elements
in the vector ki (if uniform) and kmax is the numerical grid
cutoff and we do a simple form of Riemann integration,
where we use the spherically symmetric vectors ζi ≡ ζ (ki )
and ci ≡ c(ki ). In principle, more involved algorithms can be
implemented (like trapezoidal or Simpson’s rule) but with a
fine enough grid this turns out to be satisfactory.

Similarly, we also have integrals over a momentum index
of a (k, q) object. Also, in (B7) we find the summation

∑
q

ζ 2
k−qnq ≡ V

4π2

∫ kmax

0
q2dq

∫ 1

−1
d cos θ ζk−q(k, q, cos θ )n(q)

≈ V �k �c

4π2

∑
j,m

k2
j ζk−q;i, j,mn j ≡ Hi, (B16)
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where �c is the differential element of the cos θ |i and we
have defined the 3D array ζk−q with indexing ζk−q;i, j,m ≡
ζk−q(ki, q j, cos θ |m). The result Hi is again a spherically sym-
metric array. To summarize, we implement the summation
over an index of a (k, q)-object as a summation over two of
the three indices of the corresponding 3D array, with the cor-
rect differential element for the Riemann integration. We note
that using the seperable potential, any summation in (B5)–
(B14) can be evaluated with one of the two ways described
above, after construction of the right vector or 3D array as the
integrand.

3. Convergence

In this section, we provide details related to the numerical
convergence of the triplet simulation. We discuss the con-
vergence of various simulation quantities with respect to the
angular and momentum grid parameters. We also confirm that
the violation of the total energy in the triplet simulation agrees
with analytics, providing an additional convergence test. Fi-
nally, we detail the computing resources used to simulate the
triplet equations of motion.

We choose a uniformly spaced momentum grid k =
{ki}i=1,...nk extending from ki = �k to knk = kmax, where the
system volume V determines the grid spacing �k through
the usual relation V = (2π/�k)3. The numerical cutoff kmax,
which is a truncation in the single-particle plane-wave ba-
sis, is distinct from the form factor cutoff 	, which places
an upper bound on both incoming and outgoing relative
momentum involved in pairwise interactions. Therefore, the
pairwise generation of excitations with zero center of mass
momentum described by the c cumulant is inherently lim-
ited to single-particle momenta k � 	. Setting kmax = 	

is therefore justified for the HFB simulation, and we have
numerically confirmed that nk vanishes for k > 	. In the
triplet simulation, however, the R and M cumulants describe
interactions where the center of mass momentum of an in-
teracting pair does not vanish. In fact, if this pairwise center
of mass momentum does vanish, then the R and M cu-
mulants are zero by construction. For the R cumulant the
nonzero center of mass momentum of the interacting pair
is offset by the third spectator atom. For the M cumulant,
the nonzero center of mass momentum of the interacting
pair corresponds to the momentum of the incoming atom,
which has been defined in the rest frame of the con-
densate. Therefore, we have taken kmax > 	 in the triplet
simulation to allow for the complete description of these pro-
cesses.

The natural question then is what to choose for kmax in
the triplet simulation given that the processes described by
R and M can involve single-particle momenta larger than 	.
For example, consider the process described by Mk,q where
the incoming excitation with momentum k decays into two
excitations. The form factor for the incoming scattering will
be of the form ζk = θ (	 − |k|/2), which is restricted to mo-
mentum k � 2	. Conversely, this applies to the outgoing
excitation of the process described by M∗

k,q. The population of
single-particle modes in the triplet model is described by ṅk.
Inspection of Eq. (B6) reveals the form factors ζl and ζk, in the
second and third terms, respectively, which act to restrict scat-

(a)

(b)

FIG. 11. (a) Time evolution of the momentum distribution for
nr3

vdW = 6.9 × 10−6 up to time t = 2.5tn. The cutoff scale 	/kn ≈ 9
is indicated by the solid vertical line, and by k/	 = 2 the momentum
distribution remains vanishingly small for all times, demonstrating
convergence with respect to the numerical cutoff kmax. The devel-
opment and subsequent growth of the regime of negative nk near
k/kn can be seen for t/tn � 1. (b) Dynamics of �etot (diamonds)
versus 〈etot〉 (solid red) for three different densities. The simulation
parameters used to produce the data in (a) and (b) are nc = 150,
nk = 5kmax/n1/3, kmax = 2	, �t = m/2h̄k2

max, following the conver-
gence guidelines in Sec. B 3.

tering into single-particle modes beyond 2	. In Fig. 11(a), we
show how nk remains nonzero for 1 < k/	 < 2 in the triplet
model and confirm that nk is numerically zero by k = 2	.
We note that the choice of kmax also has consequences for
the spectrum of bound states in the simulation because of the
ultraviolet sensitivity of the three-body parameter discussed in
Sec. A 2. The choice kmax = 2	 of the numerical cutoff was
used to produce the results of Sec. V, which also matches the
expected frequency of the ground Efimov trimer in vacuum,
serving as an additional consistency check. As a general rule,
the chosen simulation time step, �t , must be at least as fast as
the frequency set by the largest energy in the simulation. In
practice, we choose �t = m/2h̄k2

max when the cutoff of the
single-particle momentum sets the largest frequency in the
simulation, which is generally the case. The simulation is then
run up to t ∼ tn, beyond which the positivity of nk becomes
violated typically for momentum in the vicinity of k/kn ∼ 2kn
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[see Fig. 11(a)], which becomes a persistent feature at later
times. Because this violation is not physical, in Sec. V we
have restricted our analysis to results before this behavior
occurs.

This violation is a symptom of the nonconservation of the
total energy, which is inherent in the triplet cumulant theory
as discussed in Sec. III B. Analytically, one can predict the
extent to which the total energy Etot = 〈Ĥ〉 will change by
calculating its time derivative from the restricted source term
[Eq. (B13)]:

h̄
dEtot

dt
= 2g2

V 3/2
Im

[
ψ∗

0

∑
q,k,l

ζ2q−kζ2l−k(1 + nq)M∗
k,l

]
. (B17)

In Fig. 11(b), we compare the total energy per particle 〈etot〉 =
Etot/N with the quantity, �etot = ∫

dt (d〈etot〉/dt ), which is
the result of simulating Eq. (B17) as an independent equa-
tion of motion supplied with an initial condition �etot (t =
0) = 〈etot (t = 0)〉. The excellent agreement between 〈etot〉 and
�etot indicates that the observed violation of the total energy
is inherent in the theory and not due to technical issues within
the simulation itself. Although not shown, we find in general
that the total number is conserved at all times within the triplet
simulation as expected.

We now discuss the choice of the number of momentum
and angular grid points and consequences for the conver-
gence of simulation results. To study the convergence, we
track the total energy per particle and the condensate frac-
tion as a function of nk and nc at the latest times t ∼ tn
analyzed in Sec. V. We fix nr3

vdW = 3.0 × 10−4, kmax = 2	,
and �t = m/2h̄k2

max and define the normalized variation of the
slope

δetot[xi, xi−1] =
∣∣∣∣1 − 〈etot〉[xi−1]/〈etot〉[xi]

xi − xi−1

∣∣∣∣, (B18)

δn0[xi, xi−1] =
∣∣∣∣1 − n0[xi−1]/n0[xi]

xi − xi−1

∣∣∣∣, (B19)

in terms of a vector of grid parameters x = {x1 . . . xf}
as our measure of convergence. In Fig. 12, we have
evaluated δetot and δn0 using to different grid vectors
nc = {25, 50, 100, 150, 200} and nk = { j × (kmax/n1/3)}6

j=1
rounded to the nearest integer. When evaluating convergence
with respect to nc, we fix nk = 5kmax/n1/3, and when evalu-
ating with respect to nk, we fix nc = 150. We find that the
simulation results for 〈etot〉 and n0 are converged to the level
of a percent or less when the normalized slope variations mea-
sured by δetot and δn0, respectively, are on the order of 10−4.
Therefore, we have taken nc = 150 and nk = 5kmax/n1/3 as
the standard grid parameters used to produce the data of
Sec. V. Although we have not discussed the convergence of
the HFB simulation, we follow the same guidelines for the
grid parameters.

Finally, we note that the HFB and triplet simulations
were run on an NVIDIA Tesla P100 GPGPU card which
has 16 GB of memory and 3584 cores. Although GPGPUs
greatly speed up pointwise arithmetic in the simulation, the
limited amount of memory means that triplet simulations
cannot be taken to large values of the numerical cutoff (be-

FIG. 12. Percent variation of the condensate fraction δn0

[Eq. (B19)] and total energy δetot [Eq. (B18)] as a function of mo-
mentum space and angular grid vectors nc = {25, 50, 100, 150, 200}
and nk = { j × (kmax/n1/3)}6

j=1, respectively. The simulation
parameters that remained fixed to produce this data at
density nr3

vdW = 3.0 × 10−4 and time t = tn are kmax = 2	

and �t = m/2h̄k2
max, following the convergence guidelines

in Sec. B 3.

yond kmax/n1/3 � 70 in our case) while simultaneously fixing
nc = 150 and nk = 5kmax/n1/3 to achieve convergence. This
hardware restriction places a practical limit on the range of
results presented in this paper. Additionally, we note that the
calculation time for the numerical implementation scheme
described in this section scales roughly as ∼	4. In practice,
the triplet simulations can be taken to larger values of kmax

on workstations with a large number of CPUs and mem-
ory, although the slowdown compared to a GPGPU becomes
significant.

APPENDIX C: QUADRUPLET CUMULANTS

To numerically simulate each of the quadruplets requires
storing a six-dimensional complex array, which requires an
enormous computational capacity and is beyond the present
paper. Motivations of completeness aside, it is illustrative to
discuss the explicit equations of motion for the quadruplets
and to discuss their structure and formal solution in the early-
time limit as we do in this section.

1. Equations of motion

Here, we give explicit expressions of the cubic
〈[âb̂ĉd̂, Ĥ3]〉 and quartic 〈[âb̂ĉd̂, Ĥ eff

4 ]〉 contributions to the
equations of motion for the quadruplets Eqs. (45)–(47). The
contributions of the cubic Hamiltonian Ĥ3 are contractions
of five-body operators, hence products of doublets and
triplets:
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QH3
α,β;γ√
n0/V

= A{(α,β ),(γ ,δ)}S{α,β}S{γ ,δ}

[
Vα

2
(1 + nα + nβ )Mγ+δ,γ + Vα + Vα+β

2
cαMγ+δ,γ

+Vβ + Vα+β

2
cαR∗

γ ,−δ + M∗
δ,β

{
(Vγ + Vα−γ )(nγ − nα ) + c∗

γ (Vα + Vγ )
}]

, (C1)

PH3
α,β,γ√
n0/V

= S{α,β,γ }

[
Vβ (1 + nβ + nγ )M∗

δ′,α + Vα + Vα−δ′

2
(nδ′ − nα )M∗

β+γ ,β + Vδ′ + Vα−δ′

2
(nδ′ − nα )Rβ,−γ

+Vα + Vδ′

2
(c∗

δ′Rβ,−γ − cαM∗
β+γ ,β ) + (Vα + Vα+β )cαM∗

δ′,γ + (Vβ + Vα+β )cαMγ ,δ′

]
, (C2)

T H3
α,β,γ√
n0/V

= S{α,β,γ ,δ′′}
2

[
(Vα + Vα+β )cαRγ ,−δ′′ + (Vα + Vβ )

(
1

2
+ nα

)
Rγ ,−δ′′ + (Vβ + Vα+β )cαM∗

γ+δ′′,γ

]
. (C3)

The contributions of the quartic Hamiltonian Ĥ eff
4 are the most difficult. Since they are contractions of six-body operators, they

contain (i) products of (two or three) doublets, (ii) products of two triplets, and (iii) quadruplets eventually multiplied by a
doublet. Separating those three contributions, we have

QH4,doub
α,β;γ = 1

V
A{(α,β ),(γ ,δ)}S{α,β}S{γ ,δ}

[
Vγ−α

(
1

2
+ nβ

)
nγ nδ + (Vα+β + Vα−δ )cαc∗

δ nγ

]
, (C4)

PH4,doub
α,β,γ = 1

V
S{α,β,γ }[Vα+γ (1 + nα + nβ )cγ nδ′ + Vα+βcαcγ c∗

δ′ − Vα+βcαnβnγ ], (C5)

T H4,doub
α,β,γ = 1

V
S{α,β,γ ,δ′′}

[
Vα+δ′′

(
1

2
+ nβ

)
cγ cδ′′

]
, (C6)

QH4,tri
α,β;γ = 1

V
A{(α,β ),(γ ,δ)}S{α,β}S{γ ,δ}

∑
q

[
R∗

γ ,−δ

2
VqRα+q,−β + Mγ+δ,γ

2
(Vβ + Vq−α )M∗

β+q,β

+Mβ,γVqM∗
δ,α+q + M∗

γ ,β (Vδ + Vq+δ−α )Mδ+q,δ

]
, (C7)

PH4,tri
α,β,γ = 1

V
S{α,β,γ }

∑
q

[Rβ,−γ

2
(Vδ′ + Vq+β+γ )Mδ′+q,δ′ + M∗

δ′,β (Vα + Vq−γ )M∗
α+q,α + M∗

β+γ ,β

Vq

2
M∗

δ′,α−q

+Mβ,δ′VqRα,−γ−q − Rβ,−γ

Vq

2
Mα,δ′−q − M∗

β+γ ,β

Vα + Vq−β−γ

2
M∗

α+q,α

]
, (C8)

T H4,tri
α,β,γ = 1

2V
S{α,β,γ ,δ′′}

∑
q

[
M∗

γ+δ′′,γVqRα+q,−β + Rγ ,−δ′′ (Vβ + Vq−α )M∗
β+q,β

]
, (C9)

QH4,quad
α,β,γ = 1

V
A{(α,β ),(γ ,δ)}S{α,β}S{γ ,δ}

∑
q

[
Vq

1 + nα + nβ

4
Qα+q,β−q;γ + (Vα−γ + Vα−q)

nγ − nα

2
Qβ,q;δ

+Vqc∗
γ Pα+q,β,−γ−q + Vα+β + Vq+β

2
cβP∗

γ ,δ,q

]
, (C10)

PH4,quad
α,β,γ = 1

2V
S{α,β,γ }

∑
q

[Vq(1 + nα + nβ )Pα+q,β−q,γ + (Vα−δ′ + Vα−q)(nδ′ − nα )Pβ,γ ,q

+Vqcδ′ ∗Tα+q,β,γ + 2(Vα+β + Vq−β )cαQγ ,q;δ′ − VqcαQβ,γ ;δ′−q

]
, (C11)

T H4,quad
α,β,γ = 1

2V
S{α,β,γ ,δ′′}

∑
q

[
Vq

(
nβ + 1

2

)
Tα+q,γ ,δ′′ + (Vγ+δ′′ + Vα−q)cβPq,γ ,δ′′

]
. (C12)

Here the replacements of δ → α + β − γ , δ′ → α + β + γ , and δ′′ → −α − β − γ should be done after acting with the
symmetrizer and antisymetrizer.
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2. Solution

The length expressions in Eqs. (C4)–(C12) hide the underlying structure of the quadruplet equations of motion as coupled
few-body Schrödinger equations with nonlinear and drive terms. In this section, we follow Sec. III D and reduce these equations
to their early-time form to make this structure explicit and to illustrate how one-, two-, three-, and four-body physics are encoded
in the formal solutions.

First, we begin by reduced the equation of motion for the Q cumulant [Eq. (45)] to the early-time form

ih̄∂t |Qt , Qt 〉〈Qt , Qt | = Ĥ12(t )|Qt , Qt 〉〈Qt , Qt | − |Qt , Qt 〉〈Qt , Qt |Ĥ12(t ) + (1 + P̂12)V̂ [|ψt , Mt 〉〈Mt , Mt | + |n1,t , n2,t 〉〈n2,t , n1,t |]

− [|Mt , Mt 〉〈Mt , ψ0,t | + |n1,t , n2,t 〉〈n2,t , n1,t |]V̂ (1 + P̂12), (C13)

where we have defined the rank (2,2) tensors 〈α, β|Qt , Qt 〉〈Qt , Qt |γ , δ〉 = V Qαβ;γ (t )δα+β,−δ−γ and

〈α, β|n1,t , n2,t 〉〈n2,t , n1,t |δ, γ 〉 = nα (t )nβ (t )δα,γ δβ,δ. (C14)

Equation (C13) can be solved formally as

|Qt , Qt 〉〈Qt , Qt | =Û12(t − t0)|Qt0 , Qt0〉〈Qt0 , Qt0 |Û12(t0 − t )

+ 1

ih̄

∫ t

t0

dτ Û12(t − τ )V̂ (1 + P̂12)[|ψ0,τ , Mτ 〉〈Mτ , Mτ | + |n1,τ , n2,τ 〉〈n2,τ , n1,τ |](Û12(τ − t )

− 1

ih̄

∫ t

t0

dτ Û12(t − τ )[|Mτ , Mτ 〉〈ψ0,τ , Mτ | + |n1,τ , n2,τ 〉〈n2,τ , n1,τ |](1 + P̂12)V̂ Û12(τ − t ). (C15)

Here, we see that the |n1,τ , n2,τ 〉〈n2,τ , n1,τ | parts of the memory kernel describes forward and backward Boltzmannian scattering
in a classical dilute gas [37]. Including this contribution of Q in ṅk it is possible to retrieve the Boltzmann equation describing
two-body scattering as the level of the T matrix (cf. Ref. [98]).

Next, we reduce the equations of motion for the P cumulant [Eq. (46)] to the early time form

ih̄∂t |Pt , Pt , Pt 〉〈Pt | = Ĥ123(t )|Pt , Pt , Pt 〉〈Pt | − |Pt , Pt , Pt 〉〈Pt |Ĥ1(t ) + (1 + P̂+ + P̂−)(V̂12 + V̂13)[|nt , ct , ct 〉〈nt |
+ |ψ0,t , Mt , Mt 〉〈Mt |], (C16)

where we have defined the rank (1,3) tensor 〈α, β, γ |Pt , Pt , Pt 〉〈Pt |δ〉 = V Pα,β,γ (t )δα+β+γ ,δ . Equation (C16) can be formally
solved as

|Pt , Pt , Pt 〉〈Pt | = Û123(t − t0)|Pt0 , Pt0 , Pt0〉〈Pt0 |Û1(t0 − t ) + 1

ih̄

∫ t

t0

dτ Û123(t − τ )(1 + P̂+ + P̂−)(V̂12 + V̂13)[|nτ , cτ , cτ 〉〈nτ |

+ |ψ0,τ , Mτ , Mτ 〉〈Mτ |]Û1(τ − t ). (C17)

Finally, the T cumulant equation of motion reduces to the early-time form

ih̄∂t |Tt , Tt , Tt , Tt 〉 = Ĥ1234(t )|Tt , Tt , Tt , Tt 〉 + (1 + P̂1234 + P̂1324 + P̂1423)
(
V̂12 + V̂13 + V̂14

)|ψ0,t , Rt , Rt , Rt 〉

+ (
1 + P̂234 + P̂243

)(
V̂13 + V̂14 + V̂23 + V̂24

)|c1,t , c1,t , c2,t , c2,t 〉, (C18)

with P̂1234|α, β, γ , δ〉 = |δ, α, β, γ 〉, and where we have defined the range (0,4) tensor 〈α, β, γ , δ|Tt , Tt , Tt , Tt 〉 =
V Tα,β,γ (t )δα+β,−γ−δ and Ĥ1234 = ∑4

i< j Ĥi j (t ) as the vacuum four-body Hamiltonian in the rotating frame of the condensate.
Equation (C18) can be formally solved as

|Tt , Tt , Tt , Tt 〉 = Û1234(t − t0)|Tt0 , Tt0 , Tt0 , Tt0〉

+ 1

ih̄

∫ t

t0

dτ Û1234(t − τ )(1 + P̂1234 + P̂1324 + P̂1423)
(
V̂12 + V̂13 + V̂14

)|ψ0,τ , Rτ , Rτ , Rτ 〉

+ 1

ih̄

∫ t

t0

dτ Û1234(t − τ )
(
1 + P̂234 + P̂243

)(
V̂13 + V̂14 + V̂23 + V̂24

)|c1,τ , c1,τ , c2,τ , c2,τ 〉, (C19)

where Û1234(t ) = exp [−i
∫ t

t0
dτ Ĥ1234(τ )/h̄] is the four-body

evolution operator in the rotating frame of the conden-
sate. Analogous the connection between Eq. (59) and
the Faddeev equations [see Sec. III D and Refs. [44,63]),

Eq. (C18)] yields generalized four-body T matrices satisfying
the Yakubovsky equations [92]. To include the physics of
the four-body bound states tied to Efimov states [18–20,99]
in the cumulant theory of the unitary Bose gas, the hi-
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erarchy must be taken then to at least the quadruplet
level.

APPENDIX D: RELATION TO ALTERNATIVE
APPROACHES

To construct the cumulant theory used in this paper, we
make two main approximations. First, we describe Bose
condensation in the U (1)-symmetry-breaking approach and,
second, we truncate the cumulant hierarchy to consider cu-
mulants only up to some finite order. In this Appendix, we
first connect with the number-conserving description of Bose-
condensation [100,101] in Sec. D 1. Second, we group many
equivalent models of the quenched unitary Bose gas found
in the literature [33–35,44–46] under the umbrella of the
doublet model presented in the present paper in Sec. D 2. In
Sec. III, the connection between the HFB theory and the dou-
blet model was already established. We note that the Popov
and bath theories of Refs. [75,102,103] both set the effec-
tive interaction strength g in an ad hoc fashion and ignored
the c-cumulant dynamics. These works are not consistent
with the unitarity limit of the s-wave cross section σ ∝ 1/k2

and therefore do not describe resonant scattering processes.
We remark that the Hyperbolic Bloch equations, derived in
Ref. [42] [see Eqs. (37) and (38)], have not been simulated
to date as they require handling of the resource-intensive
quadruplets. The triplet model studied in Sec. V represents
the state of the art in this regard. Although these are mostly

formal remarks, making distinctions and connections between
approaches is instructive both for understanding the limita-
tions of the present paper and for uniting equivalent lines of
research on the quenched unitary Bose gas.

1. Number-conserving approach

In the number-conserving approach, one performs a quan-
tum modulus-phase decomposition of the condensate operator
â0:

â0 = eiθ̂0

√
N̂0. (D1)

The phase θ̂0 and population N̂0 of the condensate are canoni-
cally conjugated: [

θ̂0, N̂0
] = −i. (D2)

They inherit this relation from the bosonic nature of â0. Note
that this phase-modulus decomposition is possible only in the
approximation that the condensate is never empty.

We then introduce the excitation field for k 
= 0:

	̂k = e−iθ̂0 âk. (D3)

Conceptually, the advantage of using 	̂k rather than b̂k as in
the main text is that 	̂k conserves the number of particles
(it transfers one particle from the noncondensed fraction to
the condensate). Thus, one can still have nonzero anomalous
averages 〈	̂	̂〉 
= 0 even in states with a fixed number of
particles. In terms of 	̂, 	̂†, and N̂0, the Hamiltonian reads

Ĥ (NC) = V0N2

2V
+

∑
k

([
εk + VkN̂0

V

]
	̂

†
k	̂k + Vk

√
N̂0(N̂0 − 1)

2V
[	̂−k	̂k + 	̂

†
k	̂

†
−k]

)

+
√

N̂0

V

∑
k,q

Vq
(
	̂

†
k+q	̂k	̂q + H.c.

) + 1

2V

∑
k,k′,q

Vq	
†
k′+q	̂

†
k−q	̂k	̂k′ . (D4)

To avoid cumbersome restrictions in the sums over k, k′ and
q, we set 	̂0 = 0 by convention. Here, we collected the terms
proportional to V0 in the constant first term using conserva-
tion of the total number of particles N = N̂0 + ∑

k 	̂
†
k	̂k.

Although not done in the main text (Sec. II B), we note that
such simplification is also possible in the symmetry-breaking
picture. In Eq. (D4), we have kept the O(1/〈N̂0〉) corrections
that come from the noncommutation of θ̂0 and N̂0. In the
thermodynamic limit, these corrections are negligible (as long
as the condensate is macroscopically occupied).

We use the approach of Ref. [41] to identify all the terms
that become negligible in the thermodynamic limit. We define
N0(t ) ≡ 〈N̂0〉 and write N̂0 = N0(t ) + δN̂0, and similarly for
the macroscopic sums of the noncondensed field, for exam-
ple,

∑
k 	̂

†
k	̂k = ∑

k〈	̂†
k	̂k〉 + ∑

k δ(	̂†
k	̂k ). The product

of fluctuations is of order O(1/
√

N ) smaller than the leading
(nonscalar) terms in the Hamiltonian, so it can be neglected.
We then obtain

Ĥ (NC) � V0Nn

2
+

∑
k

(
[εk + Vkn0(t )]	̂†

k	̂k + Vkn0(t )

2
[	̂−k	̂k + 	̂

†
k	̂

†
−k]

)

+
√

n0(t )

V

∑
k,q

Vq
(
	̂

†
k+q	̂k	̂q + H.c.

) + 1

2V

∑
k,k′,q

Vq	
†
k′+q	̂

†
k−q	̂k	̂k′ − (N̂0 − N0(t ))

〈
h̄

d θ̂0

dt

〉
. (D5)
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This Hamiltonian is the same as Ĥb [Eq. (8)], the Hamiltonian found in the symmetry-breaking approach (up to the replacement
b̂ → 	̂, and the collection of the terms containing V0 discussed above). To show the complete equivalence of the two theories,
we calculate the phase derivative in the number-conserving approach from the commutator of N̂0 with the exact expression (D4)
of the Hamiltonian,〈

h̄
d θ̂0

dt

〉
= − 1

V

∑
k

[
Vk〈	̂†

k	̂k〉 + Vk

2

(〈	̂−k	̂k〉 + cc.
)] − 1

2
√

n0V 3

∑
kq

Vq
(〈	̂†

k+q	̂k	̂q〉 + cc.
)
, (D6)

which is the same as (11), up to the constant rotation velocity V0n.

2. Nozières-Saint James approach

The time-dependent generalization of the NSJ approach [33–35,46,74] is based on the variational ansatz for the ground-state
wave function,

|�NSJ(t )〉 = 1

N expt

[√
V α0(t )â†

0 + 1

2

∑
k

βk(t )â†
−kâ†

k

]
|0〉, (D7)

with normalization factor N , variational parameters α0(t ) and βk(t ), and factor of 1/2 in the summation to account for double
counting of pairs (k,−k). The NSJ variational parameters are connected to the single and doublet cumulants as ψ0 = α0,
c̃k = βk/(1 − |βk|2), and nk = |βk|2/(1 − |βk|2) with total number N = |α0|2 + ∑

k |βk|2/(1 − |βk|2). The equation of motion
for α0(t ) corresponding to the Hamiltonian [Eq. (2)] is

ih̄
dα0

dt
=nV0α0 + α0

1

V

∑
k

Vk
|βk|2

1 − |βk|2 + α∗
0

1

V

∑
k

Vk
βk

1 − |βk|2 , (D8)

where the term by term equivalence with the GPE [Eq. (5)] (for vanishing triplet contributions) is apparent. The corresponding
equation of motion for βk(t ) is

ih̄
dβk

dt
=2(εk + V0n)βk + Vk

(
α2

0 + (α∗
0 )2β2

k + 2|α0|2βk
) + 1

V

∑
q

Vk−q
2|βq|2βk + βq + β∗

qβ2
k

1 − |βq|2 . (D9)

To evaluate the equation of motion for the c cumulant, we consider the corresponding expression in the NSJ approach,

ih̄
d

dt

(
βk

1 − |βk|2
)

= ih̄
dβk

dt

1

(1 − |βk|2)2
−

(
−ih̄

dβ∗
k

dt

)
β2

k

(1 − |βk|2)2
, (D10)

=
[

2(εk + V0n)ck + 2

(
Vkn0 + 1

V

∑
q

Vk−qnq

)
ck

][
1

1 − |βk|2 − |βk|2
1 − |βk|2

]

+
[

Vkψ
2
0 + 1

V

∑
q

Vk−qcq

][
1

(1 − |βk|2)2
− |βk|4

(1 − |βk|2)2

]
, (D11)

where[
1

(1 − |βk|2)2
− |βk|4

(1 − |βk|2)2

]
= 1 + 2nk. (D12)

From the relation |ck|2 = nk(nk + 1), which is clear from the
definitions of c̃k and nk in terms of the variational parameters,
the equation of motion for ṅ follows immediately. Finally

setting ck = e−2iθ0 c̃k to switch to the rotating frame of the con-
densate, we see then that the NSJ approach yields equations
of motion that are identical to the doublet model [Eqs. (5),
(37), and (38)] considered in this paper. Therefore, both the
NSJ and HFB approaches are equivalent to each other, as also
suggested in Ref. [46], and all correspond to a truncation of
the cumulant hierarchy at the doublet level.
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âb̂〈ĉd̂〉 + 〈âĉ〉b̂d̂ + . . . .

[57] H. R. Glyde, R. T. Azuah, and W. G. Stirling, Phys. Rev. B 62,
14337 (2000).

[58] In the formal equations of motion (24)–(26) and (28)–(30), the
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4 ]〉,
i.e., those where a doublet is formed from two elements in
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