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Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics
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We study the quench of a degenerate ultracold Bose gas to the unitary regime, where interactions are as
strong as allowed by quantum mechanics. We lay the foundation of a cumulant theory able to simultaneously
capture the three-body Efimov effect and ergodic evolution. After an initial period of rapid quantum depletion,
a universal prethermal stage is established, characterized by a kinetic temperature and an emergent Bogoliubov
dispersion law, while the microscopic degrees of freedom remain far from equilibrium. Integrability is then
broken by higher-order interaction terms in the many-body Hamiltonian, leading to a momentum-dependent
departure from power law to decaying exponential behavior of the occupation numbers at large momentum.
We also find signatures of the Efimov effect in the many-body dynamics and make a precise identification
between the observed beating phenomenon and the binding energy of an Efimov trimer. Throughout the paper,
our predictions for a uniform gas are quantitatively compared with experimental results for quenched unitary

Bose gases in uniform potentials.

DOI: 10.1103/PhysRevA.102.063314

I. INTRODUCTION

Precision control of interatomic interactions in dilute ultra-
cold quantum gases has made possible remarkable progress in
our understanding of strongly correlated many-body systems.
Here, strongly interacting quantum fluids can be studied in
the laboratory, with a great flexibility in the way in which the
system is manipulated and probed. Ultracold quantum gases
are typically dilute with respect to the range of the specific
interatomic interaction and sensitive only to the two-body
s-wave scattering length a, which sets the effective interaction
strength [1]. Experiments have typically focused on measur-
ing equilibrium or near-equilibrium properties, such as the
equation of state or elementary excitations. This picture is
realized in two-component Fermi gases [2-4] even in the uni-
tary regime n|a|®> > 1, where n is the atomic density, [5-10].
Here, system properties behave universally, scaling continu-
ously as powers of the remaining density (Fermi) scales k, =
(6723, E, = h2k§/2m, and t, = hi/E, and can be related
to other strongly interacting Fermi systems such as the inner
crust of neutron stars [11-15].

In ultracold quantum gases where multibody effects are not
suppressed by the Pauli exclusion principle, an infinite num-
ber of three-body bound Efimov states form whose finite size
and discrete scaling leads to a spectacular departure from this
universal paradigm [16-21]. This includes three-component
Fermi gases, whose rich phase diagram is predicted to con-
tain a trimer phase at low densities reminiscent of quantum
chromodynamics [22,23]. It also includes (single-component)
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Bose gases, where quasiequilibrated states have recently been
achieved through fast ramps onto the unitary regime before
loss-induced heating dominates [24-27]. Here, the conversion
of correlation dynamics into a mixture of free atoms, Fesh-
bach dimers, and Efimov trimers was observed in an ultracold
Bose gas of 8Rb by sweeping the unitary gas back onto the
weakly interacting regime [25]. Within a three-body model,
this conversion was shown to be dominated by the Efimov
trimer with a size comparable to the interparticle spacing [28],
which also leads to an enhanced growth of triplet correlations
at early times after the quench [29,30]. Extending these early-
time, few-body studies to Fermi timescales requires that the
Efimov effect be woven into a many-body framework, which
remains an outstanding theoretical challenge.

At the same time, performing a deep quench leaves
these strongly interacting systems in a highly excited state.
Here, different quantities can effectively prethermalize, equi-
librating before the system has relaxed to the true thermal
equilibrium [31]. Experimentally, signs of a universal prether-
mal state characterized by Bogoliubov scalings (phonons and
free particles at low and high momenta, respectively) were ob-
served in a quenched ultracold Bose gas of ¥K [27]. Whether
this prethermal steady state is due to integrable dephasing
dynamics, as in the weakly interacting regime [32], or to
ergodic mechanisms is unclear. State-of-the-art integrable the-
ories of the postquench evolution [33-36] are by definition
unable to capture the relaxation dynamics which must occur
in this ergodic system. Additionally, the usual perturbative
inclusion of such processes using Boltzmannian approaches
[37] is not justified in this regime where the distinctness of
collisions is blurred and all rates are on the order of the Fermi
scale. The challenge of constructing a many-body framework,

©2020 American Physical Society
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both ergodic and strongly interacting, therefore remains cen-
tral.

In this paper, we establish the foundations of a general
approach able to capture both the Efimov effect and ergod-
icity in far-from-equilibrium, strongly interacting ultracold
Bose gases. Using the method of cumulants, we track the
sequential growth of genuine few-body correlations system-
atically encoded in the cumulants of the quenched many-body
system [29,30,38—44]. Containing only two-body correla-
tions, the cumulant theory at the doublet level is equivalent
to the time-dependent Hartree-Fock-Bogoliubov (HFB) and
Nozieres-Saint James (NSJ) variational approaches studied in
Refs. [33-35,44-46]. Here, we show how a universal prether-
mal stage emerges from the integrable dynamics, providing a
framework for the conceptual and quantitative understanding
of the universal Bogoliubov scalings observed experimen-
tally. We find that the next truncation level that includes
higher-order correlations while respecting the underlying con-
servation laws is the cumulant theory at the quadruplet level.
Although we provide explicit expressions for the cumulant
equations of motion in the quadruplet model, its full simula-
tion remains numerically intractable. Therefore, we simulate
the cumulant theory truncated at the triplet level, which al-
ready contains the Efimov effect, as demonstrated in a study
of the embedded few-body problem in Ref. [44]. Within the
triplet model, we explore the various manifestations of Efimov
physics in the many-body observables, including the instan-
taneous chemical potential, quantum depletion, pairing field,
and two- and three-body contacts. This analysis is performed
at times before the violation of energy conservation muddies
the long-time dynamics and any physical connections with
thermalization.

The organization of this paper is as follows. In Sec. II, we
outline the many-body model, calibrated to reproduce finite-
range corrections near resonance and reformulated in the
symmetry-breaking picture to describe Bose-condensation in
the system. In Sec. III, the method of cumulants is introduced
and explicit expressions for the cumulant equations of motion
are derived, connected with the underlying few-body physics,
and the interplay between their truncation and conservation
laws is detailed. In Sec. IV, the prethermal stage that emerges
in the doublet model is analyzed and compared with exper-
iments. In Sec. V, the departure from the prethermal stage
and Efimovian dynamics are analyzed in the triplet model,
and we conclude in Sec. VI. The more formal and technical
discussions in this paper can be found in the Appendices. In
Appendix A, details of the calibrated, finite-range potential
are given along with the resulting Efimov spectrum. In Ap-
pendix B, the cumulant equations are given in a form more
suitable for simulation and their numerical implementation is
discussed. In Appendix C, we provide the formal, explicit ex-
pressions for the quadruplet equations of motion and discuss
their solution. In Appendix D, we connect the cumulant theory
outlined in this paper with alternative approaches found in the
literature.

II. MANY-BODY MODEL

In this paper, we study a quenched uniform gas of degen-
erate bosons in a cubic volume V. We consider short-range

single-channel interactions that capture the broad, entrance-
channel dominated Feshbach resonances used experimentally
[24-27,47]. First, we introduce the many-body Hamiltonian
in Sec. IT A and discuss the potential parameters calibrated
to match finite-range corrections near resonance, referring the
interested reader to Appendix A for more details. In Sec. II B,
we move to the symmetry-breaking picture to describe Bose
condensation in the system. In Sec. IIC, the many-body
Hamiltonian is reformulated in preparation for the cumulant
expansion in the following section (Sec. III).

A. Hamiltonian

In an ultracold Bose gas, atoms interact through a local s-
wave pairwise potential (ri |V |[Fou) = V(rin D8P (Four — Tin)
with relative coordinates rj, and rqy [48] of the two incoming
and outgoing atoms. The corresponding many-body Hamilto-
nian is given by

. R .
ﬁ:/ﬁ%ﬁ@(——ﬂow@)
2m
1 ne i n R
+§/meW@wawu—ﬂwwwvxa>

where ry, = r — r’ is the relative position for incoming par-
ticles located at r and r’. To diagonalize the kinetic energy
part of this Hamiltonian, we introduce the Fourier operators
() = (1//V) Dk axe™™ for a uniform gas occupying a
cubic volume V, which can be taken to infinity in the ther-
modynamic limit. In Fourier space, this Hamiltonian reads

. 1 N A
H = Z Ekaltak + W Z ank/-ﬁ-qalt—qakak” (2)
k kk'.q

where € = i*k?/2m is the one-body kinetic energy and the
Fourier components of the local potential are given by

KV K) = w4=ffm“”Wmu 3)

which depends only on the magnitude of the difference in
relative momenta k and k’.

The physical properties of ultracold Bose gases are typ-
ically characterized by a single parameter, the two-body
s-wave scattering length a, which sets the effective strength
of two-body interactions and can be adjusted precisely by
tuning the binding energy of a Feshbach molecule via ex-
ternal magnetic fields [1,47]. On resonance, the cross section
becomes independent of the scattering length in the unitarity
limit o = 87 /k* [48]. The gas is both dilute with respect
to the range of the interatomic interaction parametrized by
the van der Waals length rygw = (mCs/H?)'/*/2, where m
is the atomic mass and Cg is the dispersion coefficient as-
sociated with the van der Waals interaction between neutral
ground-state atoms [47], while being simultaneously strongly
interacting |a|/ryaqw > 1. The short-range details of the poten-
tial are therefore relatively unimportant, and there is freedom
in choosing the potential. All formulas in the main text are
therefore given in terms of a local potential for concision
but the numerical calculations are actually performed with
a separable pairwise potential (see Appendix A) with renor-
malized effective interaction strength g = Uy" where Uy =

063314-2
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4rh*a/m and T = 1/(1 —2aA /7). To match finite-range
effects in the vicinity of the Feshbach resonance, the rela-
tive momentum cutoff is calibrated as A = 2/ma, where a =
4 reaw /T (1 /4)2 ~ 0.956rygw is the mean scattering length
and I'(x) is the Gamma function [44,49,50]. This gives g =
—m3h%a/m for the effective interaction strength at unitarity.
Importantly, this calibration has consequences on the three-
body level for the spectrum of Efimov states, and we refer
the interested reader to Appendix A for more details on the
few-body physics contained in this model.

B. Symmetry-breaking picture

The gas is initially condensed in the k = 0 mode, which
means that the population

No = (abao) SN 4

is macroscopic. We describe only evolution that preserves
this property, which, for very energetic quenches where all
particles are eventually ejected out of the condensate, restricts
us to short times. We use the symmetry-breaking picture [51]
to describe the dynamics of the condensate: the condensate
operator g is replaced by a wave function Vo = (Go)/vV
acting as an order parameter. The Gross-Pitaevskii equation
(GPE) describing the dynamics of this wave function v is
obtained by treating A as a classical Hamiltonian and v and
Y as canonically conjugated variables,

ihdy Yo = > Vonro + l/fo— > Yl

< oH
) k;éO

+ 1/«3“1, > Vidawan) + # D Valal, jandy),
k=20 k,q#0

®)
where n = N/V is the total atomic density (ng = Np/V =

|¥o|? being the density of condensed particles).
To eliminate the condensate variables and focus on the dy-
namics of the excited fraction, we decompose the condensate

wave function into its modulus and phase,

Yo = Jrige™, ©6)
and introduce the operators unrotated by the condensate
phase:

5]( = e*"("]&k. (7)
The dynamics of the b operators now incorporates the evolu-
tion of 6y [52]:

ihalgk = [ékaﬁb]a

with H, = H + 19,6, Z(BLBk — (bibx)).  (8)

Kk
We note that the summation involving (BL;S.J has been triv-
ially added to Hj, to ensure that (H,) = (H). In H,, the number
of particles in the condensate is no longer treated as an inde-

pendent variable and is related to the b field and total number
of particles by the conservation equation:

No=N =Y (bib). )
k

The phase derivative can also be expressed in terms of b,
which finally eliminates the condensate variables from the
dynamics:

d90 _ _L % dwo d%
" T g (w‘”h di %) (10)

|:V()I’l + = Z Vk B l; + VkRe <l;7k5k>]

1
+—— VRe (bl biby) (11)
TOV3 %: q k+q k :|

In Sec. IV, we use the interpretation of this equation as a
second Josephson relation 7d,60y) = —u(t) to generalize the
notion of an instantaneous chemical potential to our out-of-
equilibrium system [53,54].

C. Expansion of the Hamiltonian

We start by expanding the many-body Hamiltonian H, in
powers of the noncondensed field b:

H, = Ey(t) + H, + H; + H, (12)

VoN?
Ey = gVO — hd,60(N — No), (13)
Hy =) (lex + (Vi + Vodno + 1id, 6015 bi

k
Vkn PN

+ﬂ[b xbi + b6, 1), (14)
A no N A A
B = /7 Z Vy(by, by + Heeo), (15)

k.q
Hi= 5 Z Vabio s qbr_gPrbic. (16)
k.K.q

The usual Bogoliubov approach (H; = H; = 0) reduces the
many-body Hamiltonian to quadratic form and is justified by
an expansion in powers of na® [1,32]. This approach describes
two-body processes at the level of the Born approximation,
which will not give the correct unitarity limit o (k) = 8 /k?
of the s-wave partial cross section [48]. To overcome this and
produce a theory that reproduces the HFB equations at lowest
order [55], we rewrite the many-body Hamiltonian by adding
and subtracting the partial contraction [56] of H; defined as

.1 - .
SH, = 5 Z[(SA;’;b_kbk +ccl+ Z Sexbiby,  (17)

k k
with
1 ~ ~
M= Xq:vq<b_k_qbk+q>, (18)
1 PR
dex = v Z(VO + Vq)(bL+qbk+q)' (19)
q
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This yields an effective quartic I-?jfff :I—74 — 81—72 and
quadratic Hamiltonian,

X N N PN Af~ 0 4
ST=H,+8H, =) (EkblLbk + [kakbk + HCD
k
(20)
whose diagonal and anomalous matrix elements are, respec-
tively,

Ex = ex + (Vo + Ving + dex + 10,60, (21)
Ak = an() + 8Ak. (22)

In the following section, we use the cumulant expansion
method to construct equations of motion from this reformu-
lated many-body Hamiltonian.

III. EQUATIONS OF MOTION

Prior to the quench, all N bosons in the gas are prepared in
a noninteracting uniform Bose condensate at zero temperature
such that ny = n. A sudden projection of the pure condensate
into the unitary regime approximates the effect of the rapid in-
teraction quench. The fully condensed initial state is actually
a highly excited state in the strong-coupling regime (for com-
parison, the ground state of superfluid “He has a condensed
fraction of the order of 0.07 [57]), and the gas begins to rapidly
quantum deplete such that N — Ny becomes comparable to
N. As the gas evolves, correlations begin to develop amongst
excitations and the system becomes strongly correlated. Cor-
relations that intrinsically relate larger numbers of excitations,
however, develop sequentially, beginning from the generation
of correlated pairs out of the condensate [29,30,41-43]. We
can use this picture to construct a many-body description
of this far-from-equilibrium, strongly interacting system by
systematically including intrinsically higher-order effects into
our theory, using the method of cumulants. In this section, we
outline the cumulant theory, beginning in Sec. III A with an
introduction to the cumulant hierarchy. In Sec. III B we detail
how truncating this hierarchy impacts the underlying conser-
vation laws. In Sec. III C, the cumulant equations of motion
are given explicitly, and in Sec. IIID we discuss how they
may be solved in a way that reveals the underlying few-body
physics at each level of the hierarchy.

A. Hierarchy of cumulants

To describe the coupled-correlation dynamics, we intro-
duce the cumulant of a p-body operator as

l N m N 1 9 m 9

oy*
i=0 =0 9Yj

x In <er:° by 201, > (23)

x,y=0

We call the cumulant of an p-body operator (here p = [ + m),
a p uplet. In practice, a p uplet is obtained by subtracting
from the quantum average value (the “moment” of the p-body
operator) all the possible contractions into products of n-body
operator average, with n < p [38,39]. This recursive definition
of the cumulants is shown in Table I up to the quadruplet

TABLE L Relations between the cumulant (O). and the quantum
average value (the moment) (O) for operators up to the quadruplet
level. The one-body operators a, l;, ¢, and d e {l;k, IQL k # 0} are
normally ordered. The cancellation of the singlets (a). = 0 (used
implicitly in the third and fourth lines of the table) is a consequence

of the spatial homogeneity of the gas.

Cumulant order Moment expansion

Singlet @), =1(a)=0
Doublet (aby. = (ab) — (). (b). = (ab)
Triplet (abe), = (abeé)
Quadruplet (abed). = (abed)

level. In the homogeneous system considered here, only the
cumulants that conserve the total momentum [that is, verify
> ki =)k}, in the notations of Eq. (23)] can become
nonzero during the time evolution. This implies in particular
that the singlets (Ek)k#) remain zero at all times.

Due to the cubic and quartic parts of the many-body
Hamiltonian (A3 and HS™, respectively) the doublet dynamics
couple to triplets and quadruplets. Therefore, the depletion
of the condensate into opposite momentum pairs in turn will
sequentially generate higher-order few-body correlations, be-
ginning at the three- and four-body levels. At the next level of
the hierarchy, the triplets couple to doublets, quadruplets, and
quintuplets, and this trend is repeated to all orders. In practice,
this hierarchy must be truncated, which limits the range of
validity of the model to times before higher-order few-body
correlations become non-negligible [42]. We address trunca-
tion of the cumulant hierarchy in the following section.

B. Truncation scheme and conservation laws

When the time evolution of the many-body system is de-
scribed only approximately, namely, in a truncated cumulant
expansion, it is unclear whether the same constants of motion
associated with the many-body Hamiltonian arise [55]. There-
fore, it is not guaranteed a priori that truncation at a given
level of cumulants results in a theory which respects all of the
underlying conservation laws. With that caveat, we note that
all of the truncation schemes studied in this paper conserve the
average number of atoms by construction [see Eq. (9)]. We
discuss now in detail the interplay between truncation order
and the conservation of energy.

1. Doublet truncation

The simplest model within the cumulant theory (the dou-
blet model), which corresponds to the HFB theory [55], can
be constructed by keeping only the doublets while setting all
higher-order cumulants to zero [58]. This yields the equations
of motion:

ro ARy~ [[aF Freff
ihd,(@ab) > ([ab, H;"]), (24)
where we have used the abbreviation doub to indicate this par-
ticular truncation scheme. The total energy E = (H) = (Hp)
is here approximated by E d:b (A5™), and its time derivative
ou
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vanishes, as can by checked by summing over the doublets
ab in Eq. (24) to form the derivative of I-?;ff. Alternatively,
these conclusions are anticipated by the variational derivation
[55]. Simulation results for the doublet model are the subject
of Sec. IV.

2. Triplet truncation

To go beyond the doublet model, one can first choose to
also retain the triplets (the triplet model) in the truncation
scheme. This yields the equations of motion

ind;(ab) ~ ([ab, A5" + Hs]). (25)

ihd, (abe) ~

tri

([abe, Hy)) — ([abe, Hy + AS™)) . (26)
where we have used the abbreviation tri to indicate truncation
at the triplet level. From the exact time derivative %0, (&13) =
([&l;, ﬁb]), it also subtracts ([&13, ﬂfff]), which is by construc-
tion composed only of quadruplets, resulting in Eq. (25).
From the exact time derivative i%ho, (&136) = ([&56,1%]), it
also subtracts the quadruplets and quintuplets contained in
([&l;é, 1173]) and ([&136,1:Ifff]), respectively, while the corre-
sponding doublet-doublet and triplet-doublet contributions
remain in Eq. (26). Additionally, the triplet truncation of the
total energy is E (H eff 4 F;), and its time derivative does

not vanish:

it E = ([Hs, " ]) = ([, A"]). £0. - @7)
This can be obtained by summing over the doublets and
triplets in Egs. (25) and (26) to form the time derivatives
of ﬁfff and ﬁ3, respectively. From the above remarks, the
origin of this violation is therefore clear: whereas the cumu-
lant equations of motion [Egs. (25) and (26)] follow from
the full Hamiltonian H,, the energy is computed from the
truncated Hamiltonian A$T + H;. Simulation results for the
triplet model are the subject of Sec. V, and energy violation
results can be found in Appendix B.

3. Quadruplet truncation

Going beyond the doublet model in a way that does not
violate energy-conservation therefore requires the addition of
quadruplets (the quadruplet model) so the energy is computed
from the full Hamiltonian Hj. This yields the equations of
motion

ihd,(ab) = ([ab. Hy]). (28)
ihd, (@be) ~ ([abe, Ay)) — ([abe, H"]),.  (29)

~ ([abed, Hyl) — ([abed, Hy)).
a

—([abed, HS™]),. (30)
where we have used the abbreviation quad to indicate trun-
cation at the quadruplet level [59]. Although the doublet
equations of motion are now exact, the quadruplet truncation
scheme subtracts ([&Bé H Eff]) from the exact time deriva-
tive ihi0; (&Bé) ([abc Hb]) to produce Eq. (29) and subtracts
the quintuplets ([abcd H3)). and sextuplets ([abcd Heff])
from the exact time derivative i%0; (abcd )y = ([abcd , Hb])

produce Eq. (30). The quadruplet model trivially conserves
the total energy because the full Hamiltonian A, is used to
evolve both the energy and cumulants. Although the quadru-
plet model is not simulated in this paper due to the large
resource requirements, with the size of a p-dimensional cu-
mulant array scaling roughly as A?~! (see Appendix B), we
give the general cumulant equations in the following section.

C. Cumulant equations of motion

We now give the equations of motion for the doublet,
triplet, and quadruplet cumulants [Eqs. (28-30)] within the
quadruplet model. We use Greek letters «, 8, y ... to denote
the wave vector indices of the considered cumulants and we
keep the bold letters k, q for the wave vectors which are
summed over. The cumulants that compose the closed system
of equations of motion are denoted:

ng = (bl by), Co = (b_oby),
Mop = (b a— ﬁbz o) Rop = <l;ﬂ—a£al;—ﬂ)a
Qu.pry = (bl p_ Bl bubp)e,  Pupy = (bl 5., bubpby)e,
Tupy = (b_o_p_,bubsh,).. (31)

To obtain compact and readable expressions, one should ex-
ploit the invariance of the cumulants under permutation of
their indices (for example M, g is invariant under the ex-
change of o and B, P, g, is invariant under the exchange of
o, B, and y). For this purpose, we introduce the symmetrizer
,,,,, o, Which sums all the values of a function f (e, ..., )
obtained after permutation of its arguments:

S{Oll ..... O(,,}[f(ala"'ﬂal’l)]z Z f(C(q(l),...,

oeS(n)

aa(n))’ (32)

where G(n) is the set of permutations of {1, ...n}. For the
cumulant Q, which obeys the symmetry relation Q;, 5, =
Oy a+p—y:a» We Will also need the antisymmetrizer:

Al@.p)..onlf(a, B;v,8)]
= f(a, B3y, 8) = [f(y, 8 a, B (33)

All the equations of motion we give here can be checked using
the computer algebra program available online [60].

Let us first reexpress the coefficients of HST [Egs. (21)
and (22)] and the phase derivative [Eq. (11)] in terms of the
doublets and triplets,

1
Ey = e+ Von + Vano + 57 ; Valta+q + hd;f0,

(34)
1
Mg =Vano + - Z VaCatqs (35)
q
dbo 1
s = - |:V0n +5 Xq: Vq(ng + Recq)

1
+—— VqReM;, .\ |. (36)
\/}’l0V3 k.q
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where E, and A, are the expressions for the Hartree-Fock For the doublet equations of motion (assuming the in-
Hamiltonian and pairing field, respectively, in the rotating variance of the triplets under parity, M_, g = M, g and
frame [55,61]. R_o,—p = Ry ), we have
. . « ny . . 1
ifidyng = 2iIm <Aaca /5 2o VaME g = Vo + VoM g ]+ 5D VqQH.,,k;a), (37)
q k.q
: no . 2
ihd o = 2Eoto + Da@no + 1) +2,/ 7 ;[VqRa,_q + Ve VMgl + o E VaPa.q-a.k- (38)

We note that these doublet equations of motion are equivalent to the Hyperbolic Bloch equations discussed in Ref. [42].
For the triplet equations of motion, we have

ihdiMyspp =(Eaip — Eo — Eg)Maipp — AgMp oip — AgMy g+ Do p R 5 + Mg?,s + MaH,4/3’ (39)
ihd Ry arp =(Eo + Ep + Easp)Raaip + DaM*y g+ AgM_g o + DospMi g o, + Ry + R, (40)

where we have written separately the contribution of the cubic and quartic Hamiltonians. The former contains both doublet
products and quadruplets,

M
a,fp * * *
T = Siu.p) |:Va[nanﬁ —ny (1 +ng +np)l — ¢, c;(V, + V) =,y (V, + Vo) + nacg (Vg +V5)
V + Vq * * 1
+ Z { . ) Popa— Ve + V)0 qo — Vq|: @.q.—q EQV—(L(I:O!] }:| (1)
q
Ry Vi +V, V.
o o q q
N Sia.p.v) [Vﬂ{cﬁcy’ + ca(l +ng +ny)} + ; [ 5 Parapy + jTﬂ,ycq} ; 42)
while the latter contains products of doublets and triplets
Sia. 1+n,+n
Ml = — {V*‘” [Z vﬂlf’f‘zwy,a_ql + (Vo + V) () — np)M,_ g
q
+ (V)/ + Vﬂ+q)C,§M;+q.y + V(I{CVR:‘},qfa - CZM;,(]/S)}:|’ (43)
o, _ Slpy) Va .
Rap =" ) 5 (Lt 10+ 1p)Re—q—y + Vo + Voy )epMo g0 |- (44)
q
In these expressions, y (in M™ and M) and y’ (in R™ and R™*), which denote the third wave vector deduced from «
and B by momentum conservation, should be replaced, respectively, by y =« 4+ 8 and y' = —a — B after the action of the
symmetrizer S.
Finally, for the quadruplets, using the notations§ =« + 8 —y,8 =a + B+ y,and 8" = —a — 8 — y for the fourth wave
vector of, respectively, Qqug.,, Pa,p,, and Ty, g ,,, we have
18, Qa piy = (Ea + Ep — Ey — Es)Qupy + Stap[BaP? g 51— Syl [ Ay P g )1+ Q05 + Qi @3)
. * H H.
iho Py gy = (Eq +Eg+E, —Es)P, 5, + S{a’ﬁ’y}[AaQﬁqy;y] —AsTy gy + Pa,ﬂ,y + ,Pa,jﬁ,y’ (46)
. H H
i T py = (Eq + Eg + Ey + Ey )T gy + Siacpy [ BaPpysrd + T, + T . “7)

(

The lengthy expressions for QoTﬁ:W Qfts  pH  phs quadruplet model, we now analyze their structure and solution

a.By> DBy Dapy

H H . - at early times following the quench in the following section.
Ty.p.y>and T, . can be found in Appendl.x C. .
For completeness, the cumulant equations of motion up
to the level of triplets can be found given explicitly in Ap- D. Few-body physics and the early-time structure of the
pendix B for a separable potential, which allows for modest cumulant hierarchy

simplifications important for numerical implementation. Fol-

E ' ) X AHON. In this section, we discuss in greater detail the sequen-
lowing this formal discussion of the cumulant equations in the

tial correlation buildup picture using the cumulant equations
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of motion outlined in Sec. III C. This discussion also high-
lights the few-body physics contained at each level of the
hierarchy and is therefore crucial to understanding how the
Efimov effect is introduced into the many-body model. The
sequential buildup of correlations can be understood formally
from the structure of the homogeneous and inhomogeneous
(drive) terms in the cumulant equations of motion given in
Sec. IIIC. At the lowest level, the correlation buildup be-
gins with the generation of (o, —«) pairs from the drive
term Vynp in Eq. (38). Consequently, the occupation of mo-
mentum modes is reflected in the dynamics of n,, which
remains small compared to unity at early times such that
the Bose-enhancement factors (1 4 n, +ng) ~ 1 can be ig-
nored and the exponentiation (n,)" in the drive terms of the
higher-order cumulants vanishes as m tends to infinity. The
three-excitation Beliaev-Landau type processes described by
M and R cumulants, are the next level to be driven by terms
of the form Vyn, /ng/V and Vgcy+/no/V in Egs. (39) and
(40), respectively. At the next level, the quadruplet processes
described by Q, P, and