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Background and Aims: The endoscopic evaluation of narrow-band imaging (NBI) zoom imagery in Barrett’s

esophagus (BE) is associated with suboptimal diagnostic accuracy and poor interobserver agreement. Computer-
aided diagnosis (CAD) systems may assist endoscopists in the characterization of Barrett’s mucosa. Our aim was
to demonstrate the feasibility of a deep-learning CAD system for tissue characterization of NBI zoom imagery in BE.

Methods: The CAD system was first trained using 494,364 endoscopic images of general endoscopic imagery.
Next, 690 neoplastic BE and 557 nondysplastic BE (NDBE) white-light endoscopy overview images were used
for refinement training. Subsequently, a third dataset of 112 neoplastic and 71 NDBE NBI zoom images with his-
tologic correlation was used for training and internal validation. Finally, the CAD system was further trained and
validated with a fourth, histologically confirmed dataset of 59 neoplastic and 98 NDBE NBI zoom videos. Perfor-
mance was evaluated using fourfold cross-validation. The primary outcome was the diagnostic performance of the
CAD system for classification of neoplasia in NBI zoom videos.

Results: The CAD system demonstrated accuracy, sensitivity, and specificity for detection of BE neoplasia using
NBI zoom images of 84%, 88%, and 78%, respectively. In total, 30,021 individual video frames were analyzed by
the CAD system. Accuracy, sensitivity, and specificity of the video-based CAD system were 83% (95% confidence
interval [CI], 78%-89%), 85% (95% CI, 76%-94%), and 83% (95% CI, 76%-90%), respectively. The mean assessment
speed was 38 frames per second.

Conclusion: We have demonstrated promising diagnostic accuracy of predicting the presence/absence of Bar-
rett’s neoplasia on histologically confirmed unaltered NBI zoom videos with fast corresponding assessment
time. (Gastrointest Endosc 2021;93:89-98.)
ns: AUC, area under the curve; BE, Barrett’s esophagus;
uter-aided detection; CADx, computer-aided diagnosis; CI,
interval; EAC, esophageal adenocarcinoma; HGD, high-
asia; IQR, interquartile range; NBI, narrow-band imaging;
ysplastic Barrett’s esophagus; ROC, receiver operating char-
LE, white-light endoscopy.
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Computer-assisted algorithm for NBI-based tissue characterization in BE Struyvenberg et al
INTRODUCTION

Barrett’s esophagus (BE) is a known precursor for
esophageal adenocarcinoma (EAC), which is often pre-
ceded by the presence of high-grade dysplasia (HGD). Pa-
tients with BE undergo regular endoscopic surveillance to
detect neoplasia (ie, HGD/EAC) at an early stage. Early
neoplasia can be treated endoscopically with preservation
of the esophagus and an excellent prognosis.1-4 However,
the current BE surveillance protocol, consisting of inspec-
tion with white-light endoscopy (WLE) and random bi-
opsies, is suboptimal. The endoscopic detection of early
neoplasia is difficult due to its subtle endoscopic appear-
ance, and random biopsies are associated with sampling
error.5,6

The endoscopic diagnosis of BE neoplasia is generally a
2-step process of primary detection in WLE in overview,
followed by detailed inspection of these visible abnormal-
ities for characterization. This detailed inspection is often
performed using narrow-band imaging (NBI; Olympus, To-
kyo, Japan) in magnification because of its ability to
improve visualization of mucosal and vascular patterns.
However, correct characterization in NBI magnified view
is challenging for endoscopists performing BE surveillance.
Several NBI classification systems have been proposed us-
ing a variety of criteria but are still suboptimal.7-12

Computer-aided diagnosis (CAD) using deep-learning
techniques has shown promising results in different scien-
tific research domains, including GI endoscopy.13-16 An
important distinction is made between computer-aided
detection (CADe) and computer-aided diagnosis (CADx).
CADe systems are produced to detect pathology (ie, detec-
tion of neoplastic lesions), in contrast to CADx systems,
which are developed to classify pathology (ie, characteriza-
tion as nondysplastic or neoplastic). Recently, our group
demonstrated a computer-aided detection system that
recognized and localized BE neoplasia on white-light over-
view images with high accuracy, enabling primary detec-
tion.17,18 We speculated that this system might be
supplemented by a second CADx algorithm using NBI for
tissue characterization. The aim of the current study was
to investigate the feasibility of a novel deep-learning
CADx system for the characterization of NBI zoom imagery
in BE.
METHODS

Setting
This study was performed at the Departments of Gastro-

enterology and Hepatology of the Amsterdam University
Medical Centers (Academic Medical Center) and Karolinska
University Hospital (Stockholm), both tertiary referral cen-
ters for Barrett’s neoplasia, and at the Department of Elec-
trical Engineering of the Eindhoven University of
Technology. Official approval for the use of all imagery
90 GASTROINTESTINAL ENDOSCOPY Volume 93, No. 1 : 2021
was obtained from the local Ethics Committee at both
medical centers.

CAD system architecture
Deep-learning models in endoscopy are generally pre-

trained using large natural image databases (eg, Image-
Net19) consisting of a large variety of classes of “general
imagery” such as boats, cars, and dogs. We envisioned
that an endoscopic CAD system would gain more
discriminative knowledge from specific, endoscopy-driven
pretraining. We used the GastroNet database comprising
494,364 labeled endoscopic images obtained from upper-
and lower-GI endoscopy to pretrain our deep-learning sys-
tem to learn informative discriminative patterns.20 These
informative patterns were then exploited by application
of transfer learning techniques on our specific BE datasets.

The overall architecture of our CADx system involved a
custom-made convolutional neural network (hybrid
ResNet-UNet architecture). Via transfer learning tech-
niques, we trained the CADx system in a stepwise manner
using 4 endoscopic datasets and finally tested its perfor-
mance on NBI zoom imagery. All WLE images in datasets
1 and 2 were used solely for pretraining the system. Data-
sets 3 and 4 contained only NBI imagery that was used to
train and test the CADx system. Images or videos obtained
from the same patient were always allocated to either the
training or the test set to prevent data leakage and thereby
risk of overfitting (ie, patient-split analysis). See Table 1 for
the stepwise construction of our CADx system architecture
using the 4 endoscopic databases.

Datasets used for CAD (pre)training and testing
Dataset 1: GastroNet. The CADx system was pre-

trained on a dataset of 494,364 labeled endoscopic images
from 15,286 patients, named GastroNet.18 These images
contained a variety of endoscopic imagery (eg, colon,
stomach, duodenum, esophagus). All images were
collected retrospectively, during 2012 to 2018 at the
Amsterdam UMC (location AMC) and automatically de-
identified after extraction from the database. Olympus
HQ190, HQ180, and HQ290 endoscopes, and Fujifilm
700 series endoscopes were used to record all images.
Next, each image was labeled by organ system using a
separate semi-supervised computer algorithm created for
this project.20

Dataset 2: WLE overview images. Subsequently, the
CADx system was further pretrained and enhanced on a da-
taset consisting of 690 WLE overview images of BE
neoplasia (ie, HGD/EAC) from 198 patients and 557 non-
dysplastic BE (NDBE) images from 216 patients. The le-
sions on the neoplastic images were delineated by 2
experts (M.S., A.J.G.), and the NDBE images were reviewed
by the same experts for absence of visible neoplasia.

Dataset 3: NBI zoom images. Dataset 3 consisted of
71 NDBE NBI zoom images of 50 patients, and 112
neoplastic (HGD/EAC) NBI zoom images of 50 other
www.giejournal.org
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TABLE 1. Overview of the stepwise construction of our CADx system architecture using 4 endoscopic datasets

Type of imagery
Number of
images Type of labeling Purpose of dataset

Dataset 1 (GastroNet) WLE overview (eg, colon,
stomach, duodenum, esophagus)

494,364 Hand-labeled subset by experts,
followed by automatic

pseudo-labeling

Pretraining

Dataset 2 WLE overview 1247 Refinement training

Neoplastic images 690 Delineated by 2 experts

NDBE images 557 Hand-labeled by 2 experts

Dataset 3 NBI zoom images 183 Refinement training and internal
validation

Neoplastic images 112 Correlating pathology

NDBE images 71 Correlating pathology

Dataset 4 NBI zoom videos 157 External validation

Neoplastic videos 59 Correlating pathology

NDBE videos 98 Correlating pathology

CADx, Computer-aided diagnosis; WLE, white-light endoscopy; NDBE, nondysplastic Barrett’s esophagus; NBI, narrow-band imaging.
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patients. If more than 1 region of interest was selected per
patient, every NBI image was obtained at a different area in
the BE segment. All images were collected in previous
studies by our group and had corresponding histology of
that specific area confirmed by an expert BE patholo-
gist.21-23 The CADx system was trained and internally vali-
dated on dataset 3, using 4-fold cross-validation
methodology.

Dataset 4: NBI zoom videos. We hypothesized that
video analysis would enhance CAD performance. There-
fore, we further trained and tested the CADx system on
98 nondysplastic NBI zoom videos of 33 patients with BE
and 59 neoplastic NBI zoom videos of 17 patients with
BE. These were all unaltered NBI zoom videos; that is,
no human processing or manual video-frame selection
was performed. All NBI zoom videos contained corre-
sponding histopathology of each area and were confirmed
by an expert BE pathologist (M.V.). The videos were ob-
tained using the same protocol in the Amsterdam UMC
and Karolinska University Hospital by 3 endoscopists
with experience in zoom endoscopy (J.B., R.P., and
F.B.S.). Only videos from flat-type mucosa were selected
(Fig. 1). The average duration of each NBI video was 10
seconds, each consisting of approximately 250 video
frames.

Automated video analysis
First, we trained our CADx system using the NBI still im-

ages from dataset 3, resulting in an image-based perfor-
mance. We envisioned increasing this image-based
performance using automated video analysis because
videos contain multiple frames and thereby additional tem-
poral (and spatial) information in contrast to single still im-
ages. In the video analysis, the system automatically
created 1 single prediction for each video by calculating
www.giejournal.org
the average of all frame predictions, in contrast to calcu-
lating the likelihood of neoplasia per individual frame. To
assess the incremental value of this approach, we calcu-
lated the increase in CADx system performance using auto-
mated video analysis against its performance per individual
frame. In both analyses, the threshold for a NBI zoom im-
age or video to be scored as neoplastic was 70%. For
example, in the still image analysis, if an NBI zoom image
contained a likelihood of neoplasia �70%, this image was
considered neoplastic. In the video analysis, this means
that a video was scored neoplastic if the average of all
frames within a video contained a likelihood of
neoplasia �70%. The optimal neoplasia cutoff value of
70% was determined based on the NBI image dataset,
and this value was subsequently used to evaluate the per-
formance metrics on the NBI video dataset. Figure 2
provides 3 examples of NBI zoom videos and their
corresponding likelihood of neoplasia prediction and
illustrates the temporal information available in the
analysis of subsequent video frames.

Comparison of pretraining strategies
To assess the incremental value of different pretraining

strategies, we analyzed the same NBI zoom videos using a
CADx system with pretraining using GastroNet (ie,
endoscopy-driven pretraining), pretraining using ImageNet
(ie, generic imagery for pretraining), and a CADx system
without pretraining. Architecture design and associated hy-
per parameters of these different CADx systems were iden-
tical to allow for a correct comparison. Performance of the
CADx system was evaluated using the receiver operating
characteristic (ROC) curve and corresponding area under
the curve (AUC).

In a second analysis, we assessed the true confidence
estimate of these different CADx systems when assessing
Volume 93, No. 1 : 2021 GASTROINTESTINAL ENDOSCOPY 91
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Figure 1. A, Colon and gastric images derived from dataset 1. B, Nondysplastic and neoplastic Barrett white-light overview images derived from dataset 2.
C, Nondysplastic and neoplastic Barrett narrow-band imaging zoom images derived from dataset 3.
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Figure 2. Temporal information on subsequent narrow-band imaging (NBI) zoom video frames and their likelihood of neoplasia prediction. A, Nondys-
plastic NBI video with a correct nondysplastic Barrett’s esophagus (NDBE) video diagnosis after application of automated video analysis. Almost all video
frames show a correct nondysplastic diagnosis with a 0% likelihood of neoplasia. B, Neoplastic NBI video with a correct neoplasia video diagnosis after
application of automated video analysis. Almost all video frames show a correct neoplastic diagnosis with a 100% likelihood of neoplasia. C, Neoplastic NBI
video with an incorrect NDBE video diagnosis. Video frames 100 to 175 showed a large section of the video with an incorrect diagnosis, most likely due to
an out-of-focus lens and thus the presence of multiple low-quality non-informative frames.

Struyvenberg et al Computer-assisted algorithm for NBI-based tissue characterization in BE
an NBI video. The confidence estimate was defined by
the uncalibrated confidence of the system for a given
diagnosis from 0% to 100%. For a neoplastic video, the
most correct neoplastic diagnosis was 100%. For a non-
dysplastic video, the most correct nondysplastic diag-
nosis was also 100%, calculated by 100, the likelihood
for neoplasia. For example, if the system correctly pro-
vided a neoplastic video with a high likelihood of
www.giejournal.org
neoplasia of 90%, the true confidence estimate was
90%. If the system incorrectly provided a nondysplastic
video with a high likelihood of neoplasia of 90%, the
true confidence estimate was 100% – 90% Z 10%.
When this analysis was used, the system’s prediction
was evaluated in a quantitative manner compared with
a binominal analysis of correct versus incorrect based
on a cutoff value of 70%.
Volume 93, No. 1 : 2021 GASTROINTESTINAL ENDOSCOPY 93
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TABLE 2. Diagnostic accuracy of the computer-aided diagnosis
system for differentiating between nondysplastic and neoplastic
Barrett’s esophagus using 157 narrow-band imaging (NIB) zoom
videos

Accuracy,
% (n/N)

Sensitivity,
% (n/N)

Specificity,
% (n/N)

Fold1 92 (23/25) 71 (5/7) 100 (18/18)

Fold2 74 (46/62) 88 (22/25) 65 (24/37)

Fold3 84 (27/32) 79 (11/14) 89 (16/18)

Fold4 92 (35/38) 92 (12/13) 92 (23/25)

Total 83 (131/157) 85 (50/59) 83 (81/98)

Statistical analysis performed using 4-fold cross-validation. NBI zoom videos
obtained from the same patient were always allocated to either the training or the
test set (eg, patient-split analysis).

Computer-assisted algorithm for NBI-based tissue characterization in BE Struyvenberg et al
Outcome measures
Primary outcome measure.

� Diagnostic performance (accuracy, sensitivity, and spec-
ificity) of the CADx system for characterization of
neoplastic BE on NBI zoom images (dataset 3)

� Diagnostic performance (accuracy, sensitivity, and spec-
ificity) of the CADx system for characterization of
neoplastic BE on NBI zoom videos (dataset 4), assessed
per individual frame and per video
Secondary outcome measures.

� Diagnostic performance on NBI zoom videos using
different pretraining strategies (ie, endoscopy-driven
pretraining, pretraining using ImageNet, and no
pretraining)

� Assessment time of the CADx system for NBI zoom
imagery

Statistical analysis
Diagnostic performance of the system per image and per
video was calculated in terms of accuracy, sensitivity, spec-
ificity using the histology as criterion standard. A fourfold
cross-validation methodology was used to assess perfor-
mance on images and videos from datasets 3 and 4.
When this approach is used, data are randomly split into
4 equal parts, after which 1 part is used as a test set and
the other 3 parts are used for training. This is repeated a
total of 4 times, each time with a different test set. Subse-
quently, the scores of the 4 experiments are pooled into a
point estimate, yielding a result that is more robust against
data variation. The Wilcoxon signed-rank test was used to
allow for a paired comparison of the diagnostic accuracy
of the CADx system using the 3 different pretraining strate-
gies (ie, endoscopy-driven pretraining, pretraining using
ImageNet, and no pretraining). Because this was the first
study of its kind, developing a deep-learning CADx system
for characterization of BE neoplasia using NBI videos, no
formal sample size calculation was conducted. The CADx
system was developed in the PyTorch framework and sta-
tistical tests were performed with the Matlab 2018a soft-
ware package (Mathworks, Inc, Natick, Mass, USA).
RESULTS

Primary outcome measurements
Diagnostic performance on NBI zoom images

(dataset 3). The CADx system was first trained and tested
on NBI images from dataset 3, resulting in an accuracy of
84% (95% confidence interval [CI], 81%-88%), with a corre-
sponding sensitivity of 88% (95% CI, 86%-94%) and speci-
ficity of 78% (95% CI, 72%-84%) for correct differentiation
between NDBE and BE neoplasia.

Diagnostic performance on NBI zoom videos
(dataset 4) per individual video frame. In total,
30,021 individual video frames were analyzed by the CADx
system. Accuracy, sensitivity, and specificity of the CADx sys-
94 GASTROINTESTINAL ENDOSCOPY Volume 93, No. 1 : 2021
tem for characterization of BE neoplasia calculated per indi-
vidual frame were 85% (25,400 of 30,021), 75% (7698 of
10,265), and 90% (17,702 of 19,756), respectively.

Diagnostic performance on NBI zoom videos (da-
taset 4) per video. In a per patient analysis, diagnostic
accuracy, sensitivity, and specificity of the CADx system
for characterization of BE neoplasia were 83% (95% CI,
78%-89%), 85% (95% CI, 76%-94%), and 83% (95% CI,
76%-90%), respectively. These results are summarized in
Table 2.

Figure 2A and B shows the likelihood of a correct
diagnosis of neoplasia for a NBI zoom video using
automated video analysis. Figure 2C shows the likelihood
of neoplasia for a video with an incorrect NDBE diagnosis.

Secondary outcome measures
Comparison of pretraining strategies. The CADx

system without any form of pretraining resulted in an accu-
racy of 75% (118 of 157), sensitivity of 75% (44 of 59), and
specificity of 76% (74 of 98). The CADx system with pre-
training using ImageNet demonstrated an accuracy, sensi-
tivity, and specificity of 82% (128 of 157), 80% (47 of 59),
and 83% (81 of 98), respectively. Finally, the CADx system
with endoscopy-driven pretraining demonstrated an accu-
racy, sensitivity, and specificity of 83% (131 of 157), 85%
(50 of 59), and 83% (81 of 98), respectively. Endoscopy-
driven pretraining resulted in an AUC of 0.92 compared
with AUC of 0.88 with pretraining using ImageNet and an
AUC of 0.87 with no pretraining. See Figure 3 for the
corresponding ROC curves.

In the second analysis assessing the true confidence es-
timate, the CADx system, which received endoscopy-
driven pretraining using GastroNet, resulted in a median
accuracy of 89% (interquartile range [IQR], 67%-97%)
compared with 83% (IQR, 62%-89%) with pretraining using
ImageNet and 65% (IQR, 47%-82%) with no pretraining.
The CADx system, which received endoscopy-driven pre-
training, significantly outperformed both pretraining
with ImageNet and no pretraining, as shown in Figure 4
(P < .001).
www.giejournal.org
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Figure 4. Box and whiskers plot comparing 3 different pretraining strate-
gies. A computer-aided diagnosis (CADx) system architecture with
endoscopy-driven pretraining including GastroNet was compared with a
CADx system with ImageNet pretraining and with no pretraining. All algo-
rithms were trained and evaluated using the same narrow-band imaging
zoom videos. The CADx system that received endoscopy-driven pretrain-
ing using GastroNet significantly outperformed both pretraining with Im-
ageNet and no pretraining (P < .001, Wilcoxon signed-rank test).

Figure 3. Receiver operating curves (ROC) of 3 different computer-aided
diagnosis (CADx) system architectures. A CADx system with endoscopy-
driven pretraining was compared with a CADx system with ImageNet pre-
training and a CADx system that did not receive pretraining. AUC, Area un-
der the curve.
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Assessment time. The mean assessment time per NBI
zoom video with a duration of 10 seconds was 5.1 seconds
(standard deviation, �2.6 seconds). Mean assessment time
per video frame was 0.026 seconds (SD, �0.0024 seconds).
The CADx system was able to process 38 frames per
second.
DISCUSSION

Endoscopic diagnosis of early BE neoplasia is generally a
2-step process of primary detection in overview, followed
by secondary characterization of any visible abnormalities
with NBI used by most endoscopists. Endoscopists may
struggle in evaluating NBI zoom imagery for subtle abnor-
malities, because NBI classifications are either too crude
(regular vs irregular) or consist of too many subclassifica-
tions; all of them resulting in a subjective assessment. In
adjunct to our work on developing a CAD system using
WLE overview imagery, further characterization of suspi-
cious areas might benefit from a computer-assisted diag-
nosis system using NBI zoom imagery.

In this study, diagnostic accuracy of the CADx system on
NBI zoom images was reasonable, yet specificity remained
suboptimal. Presumably, this was caused by the relatively
small number of images available for training. In contrast,
video analysis provides a vast increase in the amount of
data available for training, displays temporal information
available in subsequent video frames, and has the potential
advantage of automatically excluding multiple frames of
www.giejournal.org
low quality. Our CADx system demonstrated promising
diagnostic accuracy, sensitivity, and specificity using unal-
tered NBI videos. In particular, the specificity of the
video-based CADx system increased when compared with
the image-based system. Our video-based CADx system
correctly classified 81 of 98 NDBE videos, demonstrating
a specificity of 83%. High specificity is vital for successful
clinical implementation of a CADx system for BE character-
ization. During surveillance endoscopies, endoscopists will
most likely first be alerted to abnormal areas in overview,
after which they will interrogate this area in detail for the
presence of neoplasia using NBI. A characterization CADx
system with high specificity would then be able to decrease
the number of false-positive predictions by endoscopists,
and thus decrease unnecessary biopsies.

Although the diagnostic performance of the current
CADx system was promising, the current results do not
yet support its application in clinical practice. A possible
explanation may be that the collection of NBI zoom videos
was performed in multiple hospitals, by different endo-
scopists and endoscopes, resulting in different levels of im-
age quality and levels of magnification. In particular, the
collection of NBI zoom images and videos was performed
using an Olympus ME-NBI endoscope (GIF-Q160Z;
maximal magnification, �115) and a GIF-HQ190 endo-
scope with near-focus mode. Due to the relatively small
sample size of videos used in this pilot study, the system
may not have been robust enough against this background
Volume 93, No. 1 : 2021 GASTROINTESTINAL ENDOSCOPY 95
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TABLE 3. Overview of the limitations of our study and the corresponding solutions that we will address in future research

Limitations Solutions

Relatively small sample size of NBI zoom videos Additional data collection

No separate external validation dataset The CADx algorithm has to be tested using a separate external validation
dataset collected with the new-generation NBI scopes to ascertain the

performance

Low-grade dysplasia was not analyzed Include low-grade dysplasia cases in future studies

No comparison with physician interpretation Offer an independent external set of NBI images and videos to endoscopists
with different levels of endoscopic expertise and relate their performance to

that of the CADx system

NBI images and videos were captured with 2 different Olympus
endoscopes (Q160Z /HQ190) and thus different levels of
magnification. A CADx system may possibly learn to
discriminate based on image quality rather than neoplastic
features

The CADx system has to be tested using a separate external validation
dataset collected with the new-generation NBI scopes to ascertain the
performance. Robustness of the CADx system may be improved by

incorporating images of different quality and different NBI systems available

Optical zoom techniques, in contrast to NBI zoom (near-focus), is
mainly used by the Japanese and would limit its applicability
in western countries

Demonstrate the additional value of a fast, accurate, and easy-to-use NBI
zoom (near-focus) system when used by general endoscopists in western

countries

The diagnostic performance of the NBI-CADx system cannot be
compared with CADe systems focusing on primary detection
in WLE overview. This system serves a different purpose.

The NBI-CADx system in the current study serves as a characterization tool
after primary detection by the endoscopist or a WLE-CADe system, red

flagging areas of interest as potentially neoplastic. The post-test likelihood of
an NBI image being neoplastic therefore is a result of 2 sequential diagnostic

processes

Out-of-focus NBI images were included in the training of the
CADx system which may have affected the performance of the
algorithm.

In future CAD systems, we will exclude such non-informative frames to
optimize overall performance

The cutoff of 70% in the call for neoplasia in the NBI image/video
analysis was arbitrary and not validated based on a
performance characteristic analysis compared with the
criterion standard

Validate the cutoff in the call for neoplasia on a performance characteristic
analysis compared with the criterion standard

NBI, Narrow-band imaging; CADx, computer-aided diagnosis; WLE, white-light endoscopy; CADx, computer-aided detection.
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noise in our data. We do feel that the introduction of het-
erogeneous data is positive for the generalizability of the
algorithm, because once the system is ready for use in clin-
ical practice, it may be used by general endoscopists from
different countries using different endoscopes and levels of
magnification. In our ongoing studies, we are focusing on
current and next-generation NBI systems in which we try to
balance uniformity and heterogeneity of the imagery on
one side with performance and robustness of our algo-
rithms on the other. We observed that the diagnostic
performance of our system decreased when using a
patient-split analysis; that is, taking into account that all
videos obtained from the same patient are always allocated
to either the training or the test set. This study illustrates
the importance of performing a patient-split analysis,
which is not always routinely performed in CAD research.
Finally, upon review of the videos with an incorrect CADx
diagnosis, we noticed that these frequently showed
decreased image quality with blurring, specular reflections,
and movement of the lens, which may have compromised
performance. In future CAD systems, we will therefore
exclude such noninformative frames to optimize overall
performance. It is expected that additional data collection
and future refinement on external datasets may further in-
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crease the diagnostic value of CADx systems and ultimately
improve their effectiveness for surveillance of BE.

In addition, we calculated the assessment time of the
CADx system when analyzing the NBI zoom videos. The
CADx system was able to analyze 38 video frames per sec-
ond. This is approximately 1.5 times faster than required
for real-time video processing (ie, 25 frames per second).
Therefore, our execution speed enables real-time video
analyses. Given this execution speed, the diagnostic perfor-
mance may be increased in the future when non-
informative, low-quality frames are automatically excluded
by the CADx system.

We envisioned that specific, endoscopy-driven pretrain-
ing would increase the diagnostic performance of the
CADx system compared with pretraining with of images
of unrelated objects, such as in the ImageNet dataset.
Therefore, we compared the performance of the CADx sys-
tem after endoscopy-driven pretraining using GastroNet
with that of a CADx system with pretraining using Image-
Net and a CADx system without any form of pretraining.
Endoscopy-driven pretraining significantly outperformed
both other CADx systems with their associated pretraining
strategies. Based on these results, we hypothesize that
endoscopy-driven pretraining, using large databases of
www.giejournal.org
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Figure 5. A, Reduction of false-positive predictions using a combination of white-light CADe and subsequent characterization using NBI zoom CADx.
B, Confirmation of true-positive predictions using a combination of white-light CADe and subsequent characterization using NBI zoom CADx. CADe,
computer-aided detection; CADx, computer-aided diagnosis; NBI, narrow-band imaging.
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endoscopic imagery, may offer a promising alternative for
the development of different deep-learning CAD systems
in endoscopy. Future studies should investigate the feasi-
bility of this approach for other endoscopic classification
and localization problems and compare this against CAD
systems that received nonendoscopy driven pretraining
such as ImageNet.

Our study has several strengths. It is the first video-
based CADx system for characterization of BE neoplasia
using a unique multi-stage setup of endoscopy-driven pre-
training (including GastroNet). In addition, all NBI imagery
was matched with corresponding histology that was evalu-
ated by expert pathologists. Our study also has potential
limitations (Table 3). First, we analyzed nondysplastic and
neoplastic NBI zoom imagery only, reflecting the more
obvious pathologic cases. Images from low-grade dysplasia
were not included in the study. This may hamper the
extrinsic validity on larger datasets with a wider variety in
pathologic diagnosis. Second, we have not evaluated the
system’s performance using a separate external validation
dataset. Third, analysis was performed on retrospective im-
ages and videos. Fourth, no formal sample size calculation
was performed given the lack of a performance point esti-
www.giejournal.org
mate. Fifth, out-of-focus NBI images were included in the
training of the CADx system, which may have affected
the performance of the algorithm. Sixth, the cutoff of
70% in the call for neoplasia in the NBI image/video anal-
ysis was arbitrary and not validated based on a perfor-
mance characteristic analysis compared with the criterion
standard. Sixth, we did not compare the performance of
our system with the assessment of endoscopists. Future
studies should compare CADx system performance with
that of expert and nonexpert endoscopists.

Our group has recently published on a WLE-CADe sys-
tem that assists endoscopists in the primary detection of
early Barrett’s neoplasia using WLE overview images.18

The NBI-CADx described in the current study serves a
different purpose: it allows endoscopists to characterize
areas of interest as either normal or neoplastic. We envi-
sion that these 2 CAD systems will work in conjunction:
the WLE-CADe system will direct endoscopists to areas of
interest, red flagging areas with an abnormal white-light
appearance, which can then be further characterized using
the NBI-CADx system, as shown in Figure 5. The 2 CAD
systems are trained and tested using different types of
imagery (ie, WLE overview images for the WLE-CADe
Volume 93, No. 1 : 2021 GASTROINTESTINAL ENDOSCOPY 97
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system versus detailed NBI images for the NBI-CADx sys-
tem), and therefore their performance characteristics
cannot be compared. In addition, because the 2 systems
serve a different purpose, their performance characteristics
should indeed be different: the most relevant performance
characteristic of the WLE-CADe is a high sensitivity to avoid
missing neoplastic areas; for the NBI-CADx system, the
importance is in reducing the number of unnecessary bi-
opsies from false-positive areas red flagged by the WLE-
CADe system that are clearly non-neoplastic, hence, a
high specificity is the most dominant performance charac-
teristic here.

In conclusion, we have developed a CADx system for
NBI-based characterization of areas within a BE, which
may work in conjunction with a primary detection CADe
system.18 Future work will focus on optimizing our
current CADx system by automatically excluding low-
quality frames, validation of our results using a separate
prospective NBI zoom dataset containing a larger variety
of pathologic diagnoses, and benchmarking results against
endoscopists’ performance.
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