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Introduction

Time-varying data play an important role in our every-day lives. Data on the weather,

stock markets, tra�c, spreading diseases, power consumption, and public transport,

all have attributes that change continuously over time. We use this data all the time:

as we get up in the morning, the weather forecast helps us decide what to wear, and

over a longer timespan helps us decide what clothes to bring on our vacation. We can

quickly check if our �ight is delayed before leaving for the airport, or choose the right

mode of transport by checking for tra�c jams and disruptions in public transport.

Maybe we decide to cancel our trip after an outbreak of a contagious disease, which

is predicted to a�ect the destination. Furthermore, as we go by our daily activities,

we get noti�cations of all sorts on smart devices: warnings for low physical activity,

suggestions for shows to stream based on recent views, and announcements for new

items that are added to an online store we recently ordered from.

Using time-varying data in this way is made possible through technological advances.

Examples of these advances are better tracking of changing attributes through GPS

and other sensors, mass storage of data in the cloud and global wireless communi-

cation allowing for easy access to such storages. As a result, we have multiple ways

to use all this data at our disposal. We can easily adapt to live data, such as (air)

tra�c and stock prices, simply through apps that give access to the (raw) data that

is available. While this is su�cient for some kinds of data, in other cases it is ben-

e�cial to closely analyze the data to gain insights into the underlying patterns and

processes. These insights can then be used to predict future changes. For weather
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1 Introduction

Figure 1.1 The host of a wifi hotspot (blue) tries to maintain a central position to

keep their friends (yellow) connected on a bustling market place.

forecasts, such predictions are already done on large scale. Not only is it convenient

to have accurate forecasts to plan our activities, but in case of natural disasters such

as hurricanes, correctly predicting the trajectory of a hurricane can save many lives.

It is therefore important that the analysis of and computation with time-varying

data leads to correct insights: these insights can then be used to make educated

predictions and decisions.

Stability When working with time-varying data, stability can be both a restriction

and a requirement. Consider the following examples. You are on a city trip with some

of your friends, and you are the only person with internet connectivity, hence you

host a hotspot for everyone else. To ensure that a friend stays connected, you have

to be in proximity of them at all times. During a visit to the local market, everybody

wants to see di�erent stalls and you split up. You �nd a position for yourself at

most a couple of meters away from your friends, to keep them connected to your

hotspot as they move through the crowded market area. Your own position on the

market, as you try to keep everybody connected, traces a trajectory over time (see

Figure 1.1). This trajectory has an important constraint, namely that your position

cannot change much in a short amount of time, nor can it change discontinuously:

the market is too crowded for you to run and you cannot teleport either. As a result,

the temporal pattern must change smoothly and slowly over time.

2
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Figure 1.2 Changing the connecting lines in a set visualization communicates

change in the data, even when sets and positions are unchanged.

For the next example we want to visualize planes in the vicinity of an airport, by

showing their position on a map. We are especially interested in showing which

planes are in service to the same airline company, hence we put such planes together

in a set. Note that planes are often shared by multiple airlines and hence can be in

multiple sets. Sets are visualized by connecting the planes with lines, using a mini-

mal amount of those lines to not clutter the map (see Figure 1.2). Over time, planes

land and take o�, board at terminals or are being taken to maintenance, which re-

sults in stationary, moving, appearing and disappearing planes in the visualization.

The positions of the planes are time-varying data, and serve as the input of the visu-

alization. Any changes in the visualization should accurately re�ect what happens

in the data. Making changes in the visualization while the data is unchanged, even

changing only the connecting lines without changing the positions of the planes,

would give a user the false impression that the underlying data is changing: The

visualizations in Figure 1.2 look quite di�erent, while they show the exact same sets

and positions. Thus, for visualizations, there are also constraints on the amount of

change that can happen over time.
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Figure 1.3 Points connected by lines, while minimizing the total line length. Small

changes in the positions of points change the layout of optimal lines.

In both examples stability plays an important role: small changes in the time-varying

data should lead to small changes in the output of the analysis or visualization. In

the �rst example, we solve a facility location problem, in which a facility (the hotspot)

should be located close to the input points (the locations of friends). The stability

is forced by physical constraints, as it is impossible to quickly move the hotspot on

a crowded market. In the second example we considered a visualization of time-

varying data. Visualizations are an e�ective way of communicating data to humans,

as humans are very good at identifying visual patterns. A visualization helps the user

in forming a mental map, a representation of various entities and relations between

them in the user’s mind. For time-varying data, a visualization should help the

user to maintain their mental map as the data changes over time. However, sudden

changes in a visualization basically invalidate the established mental map, as we saw

in the example: when the visualization changes, but the data does not, then the user

can no longer match its own representation of the data to the visualization. This

shows that stability is required to make the visualization e�ective: the visualization

must not only truthfully show the data at certain points in time, but should also

ensure that temporal patterns are accurately depicted.

Algorithms for time-varying data The problems posed in the two examples are

typically solved by an algorithm; a procedure or sequence of instructions to solve a

(class of) problem(s). Traditionally, algorithms are judged on two important criteria:

their solution quality and running time. The solution quality is usually measured by

an optimization function f , while the running time is measured by the number of

instructions that an algorithm has to execute to solve a problem. Ideally, an algorithm

computes an optimal solution e�ciently, with few instructions, but in some cases

this is impossible. As an example, for so called NP-hard problems, no e�cient exact

algorithms are known. Thus, a trade-o� must be made between solution quality and

4



running time. Approximation algorithms show this trade-o� clearly, by improving

on the running time of exact algorithms, while provably keeping the solution quality

close to optimal: An algorithm is an �-approximation if the solution is at most a

factor � worse than an optimal solution, in terms of solution quality.

As we saw in the two examples, stability is a third important quality criterion for

algorithms. However, stability often directly contradicts high solution quality: again

consider the set visualization example, where we connect the positions of moving

planes on a map using lines. In such a visualization, we often want to use minimize

ink usage, to prevent clutter on the map. An algorithm producing this kind of

visualization would have high solution quality, if it e�ectively minimized the total

line length used. However, as the points in the visualization move, the optimal

solution may change drastically even though the input points changed only a little

(see Figure 1.3). This shows that a solution with optimal solution quality is not

necessarily stable.

On the other hand, if we force stability, then the solution quality may deteriorate,

and the result will be useless: in the set visualization we could simply use the same

sets throughout the whole visualization. While this is obviously extremely stable,

the visualization may eventually clutter the map due to the lines becoming very

stretched, and hence the visualization has low quality. This shows that we need

to understand the trade-o� between stability and solution quality. It is not hard

to imagine that there will be more trade-o�s, for example between the stability

and running time of an algorithm. Figure 1.4 gives an overview of the trade-o�s

between the three criteria. The ultimate goal is to understand all these trade-o�s,

between solution quality, running time and stability. However, grasping the trade-

o� between solution quality and stability is a crucial �rst step in the development

of stable algorithms for time-varying data.

Related work The stability of algorithms or methods has been well-studied in

a variety of research areas, such as numerical analysis [60], machine learning [18],

control systems [5], and topology [29, 72]. In contrast, the stability of combinato-

rial algorithms for time-varying data has received little attention in the theoretical

computer science community so far. An example where stability has been taken

into account is in dynamic map labelling [11, 47, 48, 83], where we label points

on a zoomable map. The labels keep the same absolute size and position on the

map, while a user can zoom in and out on the map. To prevent labels from overlap-

ping, only a subset of the labels can be shown at a certain zoom level. If we do not

carefully choose the labels at each zoom level, some labels may appear and disap-
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Solution quality Running time
Approximation

algorithms

Stability

Figure 1.4 Trade-o�s between quality criteria for algorithms. Traditional criteria

and trade-o�s are shown in black, while additional trade-o�s for time-

varying data are shown in blue.

pear often while zooming, causing inexplicable �ickering. The consistent dynamic

labelling model allows a label to appear and disappear only once. Every label has

a single connected zoom range where it is visible, preventing �ickering and hence

making the labeling much more stable. Furthermore, the so-called simultaneous

embeddings [19, 41, 49] ask to create an embedding for multiple graphs on the same

set of vertices, such that for each graph no edges intersect. The input of this problem

can be interpreted as a time-varying graph where edges appear and disappear over

time. Then, the position of the vertices must be stable over time in the solution.

In computational geometry there is a lot of work on algorithms for time-varying data,

in the form of kinetic data structures (KDSs), introduced by Basch and Guibas [9].

These data structures are used to e�ciently maintain optimal solutions to geometric

problems with time-varying input. A solution is maintained using a set of certi�cates,

which together prove that the solution is correct. The certi�cates check properties

of a solution, and as long as no certi�cate fails, the data structure does not need to be

updated. For the set visualization on moving points, the certi�cates in a KDS would

prove that a certain combination of lines minimizes the total line length. However, if

one of the lines becomes too long, and a di�erent shorter line would also keep the set

connected, then a certi�cate would fail. For each certi�cate we can compute when

it will fail, and hence we can e�ciently maintain a solution by jumping to the next

6



certi�cate failure, and updating the data structure. Such certi�cate failures are called

events. An event can coincide with a change in the combinatorial structure of the

solution, such as changing the lines in the set visualization, in which case it is called

an external event. On the other hand, an event can also be necessary only to update

a certi�cate, and is then named an internal event. When it comes to stability, kinetic

data structures o�er not much more than an evaluation of the number of events.

Of the few results on stability in computational geometry, most are on the facility

location problem [13, 17, 16, 14, 36, 37], and these results come close to how we

envision stability analysis: instead of considering stability in isolation, it is of par-

ticular interest to understand the trade-o�s between solution quality, running time,

and stability. The facility location problem is a generalization of the problem we

tried to solve in the wi� hotspot example: we choose locations for a set of facilities

(hotspots), such that the distance to clients (connected to the hotspot) is minimized.

In the time-varying setting the input points are moving and the facilities can move as

well to remain close to the points. While for optimal placement of the facilities, the

speed at which the facilities move can be unbounded, existing results show that this

speed can be brought down, while still approximating the optimal distance between

facilities and clients. Thus we can make trade-o�s between stability and solution

quality for facility location problems.

A framework for stability Although the aforementioned related work considers

the stability of algorithms, there is no established theoretical framework to analyze

algorithm stability. Such a framework should unify the existing results, and allow

us to identify more problems for which a similar analysis works. Furthermore, a

framework o�ers de�nitions and instructions to respectively describe the stability

of algorithms and analyze the trade-o�s between stability and solution quality. Even

though stability is motivated by real world problems, having a theoretical framework

is still very useful, as it allows for provable guarantees on the output of algorithms:

visualizations produced by stable algorithms would have the guarantee that they are

of high quality and truthfully represent temporal patterns in the input data.

In this thesis, we propose a framework for algorithms stability. The framework dis-

tinguishes between various types of stability and characterizes algorithms on traits

that in�uence stability. Since optimal solutions may be unstable, the focus of the

framework is on the trade-o� between solution quality and stability. As we have

seen throughout the introduction, in the areas of (geo)-visualization, graph drawing,

and computational geometry, time-varying data is used in various ways. What these

areas have in common, is that the time-varying data is often geometric: planes can be
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(a) (b) (c)

Figure 1.5 Examples of kinetic (a), dynamic (b), and time-varying data (c).

represented as sets of moving points, consistent labels are non-overlapping rectan-

gles, and in facility location problems we cover moving points with disks or squares.

For this reason, we focus on geometric algorithms, even though the framework can

be applied to other types of algorithms as well. We apply this framework to vari-

ous theoretical problems from computational geometry, to obtain insights into the

trade-o�s between solution quality and stability. We then take a more applied point

of view and show the e�ects of improving stability on visualization techniques that

summarize data in a single dimension. In the remainder of this section, we describe

the distinction between types of time-varying data. Finally, the contributions of this

thesis are explained in Section 1.1.

Types of time-varying data As we have seen in the introduction, time-varying

data comes in many forms: from moving objects, to changing prices, and from

measurements of complex systems such as the weather, to tra�c jams that appear

and disappear. Depending on which attributes of a dataset are changing over time,

we distinguish three types of data. See Figure 1.5 for examples.

kinetic data has a spatial location that changes continuously over time. This data

mostly originates from moving objects in the real world, whose movement

has been traced over time via geolocation. A school of moving �sh is a great

example of kinetic data that is retrieved through geolocation. During geolo-

cation the spatial location of the �sh is stored as two- or three-dimensional

coordinates. For this reason, kinetic data is inherently geometric and forms

the basis for many problems in computational geometry. In the next chapters

we introduce three geometric problems, which are all kinetic: they take a set

of two-dimensional moving points as input.

The aforementioned geolocation usually does not result in continuous data, as

it is executed only at (ir)regular intervals. The output of the geolocation is then

a set of sampled data points. However, if the granularity is low enough, the

8
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di�erence between two consecutive samples is small. In that case, we would

like to abstract from the data samples and interpret the data as continuous: the

coordinates of moving objects change continuously over time. In this thesis,

whenever we work with kinetic data, we assume the data to be continuous,

unless stated otherwise.

dynamic data has data points which over time disappear from the data set, or

are (re)introduced. Such changes in the data are respectively called deletions

and insertions. For example, consider the group of front runners in a cycle

race. As some cyclists catch up to the group, others might fall behind due

to fatigue. The newly added front runners are inserted into the group, while

the dropouts are deleted. While all problems considered in this thesis have

dynamic variants, our focus is on their kinetic counterparts.

time-varying data The last type of data has attributes other than its spatial lo-

cation or presence, which change continuously over time, and is called time-

varying data. The attributes in question are usually of a statistical nature, such

as population over time, or income, but can also be general attributes such as

the size or color of a data point.

While data can be of a single type, it often falls into multiple categories. For example,

we might have data of a �ock of birds that migrates from one area to another. The

spatial location of the birds changes over time, making this a kinetic dataset. How-

ever, during the migration birds might enter the �ock, or stay behind to roost, adding

a dynamic aspect to the dataset. Furthermore, as we will see in Chapter 5, certain

visual summaries are generated for data that is both kinetic and time-varying: the

spatial location of the data points is used to compute the structure of a visualization,

which can then show various statistical time-varying attributes of the data points.

▶ 1.1 Contributions
In this thesis we study the stability of algorithms from a theoretical point of view,

and show how to improve applications that bene�t from being stable. We start by

introducing a framework that aids in analyzing the stability of algorithms in various

ways, each with di�erent advantages and drawbacks. The framework allows us to

make trade-o�s between solution quality and stability, to create stable algorithms

that produce approximations to optimal solutions. By applying the framework to

the Euclidean minimum spanning tree problem, we show how such trade-o�s can

be made. We proceed to use the framework to analyze the stability of both the k-
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center and orientation-based shape descriptor problems. Finally, we move from the

theoretical problems in computational geometry, to a practical point of view, and

improve the stability of visualizations of time-varying data that use orderings.

We end this section with a detailed overview of the contributions in this thesis.

A Framework for Algorithm Stability

We introduce the framework for algorithm stability in Chapter 2. For our frame-

work we subdivide algorithms for time-varying data into stateless, state-aware and

clairvoyant algorithms, which respectively have access to data at the current time

step, data calculated from previous time steps or data at every time step. Depending

on the type of algorithm, di�erent levels of stability can be achieved. Additionally,

the framework provides three de�nitions for measuring stability that each address

di�erent aspects. The event stability of a problem counts the number of times the

combinatorial structure of the output changes. The topological and Lipschitz stabil-

ity both enforce the output of an algorithm to change continuously, by imposing a

topology or metric on the output space of the algorithm. The Lipschitz stability of

an algorithm additionally limits how fast an output can change depending on the

change in the input. Because of this additional constraint, Lipschitz stability comes

closest to our intuitive de�nition of stability, namely small changes in the input

should lead to small changes in the solution, and is therefore the preferred type of

analysis. However, Lipschitz stability analysis is often prohibitively challenging or

infeasible. The other types of stability analysis simplify the stability requirements,

making the analysis signi�cantly easier. Although these types of stability analysis

do not fully capture all aspects of stability, they do o�er useful insight into the in-

terplay between problem instances, solutions, and the optimization function. These

insights are invaluable for the development of stable algorithms.

We then show how to analyze algorithms using the framework, by proposing stable

state-aware algorithms for the Euclidean minimum spanning tree (EMST) problem.

To improve the event stability of optimal EMSTs we introduce k-optimal solutions,

where moving the input at most k units can turn the solution into an optimal solu-

tion. We work under the assumption that the trajectories of the input points follow

polynomials of bounded degree, and the points stay reasonably spread out during

their motion. This results in a constant factor approximation of an optimal EMST,

which undergoes at most a linear number of discrete changes. For the topological

stability we propose edge slides and edge rotations to continuously move between

spanning trees. These operations move one endpoint of an edge to an adjacent or

10
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to any reachable vertex respectively. We then prove upper and lower bounds on the

length of topologically stable EMSTs with respect to the length of optimal EMSTs,

using edge slides or rotations. Finally, for edge slides we can prove that the solution

quality of Lipschitz stable EMSTs can become arbitrarily bad, if the solution cannot

change fast enough.

This chapter is based on joint work with Wouter Meulemans, Bettina Speckmann,

and Kevin Verbeek [78] which appeared in the Proceedings of the 13th Latin Ameri-

can Symposium on Theoretical Informatics (LATIN 2018).

Kinetic k-Centers

Ìn Chapter 3, we study the k-center problem in a kinetic setting: given a set of

continuously moving points P in the plane, determine a set of k (moving) shapes

that cover P at every time step, such that the shapes are as small as possible at any

point in time. Existing results for this problem require the shapes to move with

a bounded speed. Under these conditions it is impossible to approximate optimal

solutions for k > 2. We therefore study the topological stability of k-centers, which

does not bound the speed at which the covering shapes can change.

We consider 4 variants of the k-center problem: in the Euclidean (k-EC) or rectilinear

(k-RC) variant of the problem, the k covering shapes are disks or squares, respec-

tively. For each of these variants we distinguish between two di�erent optimization

functions: minimizing the radius of the largest shape (-minmax) or minimizing the

sum of radii (-minsum). We prove upper and lower bounds on the ratio between

the radii of an optimal but unstable solution and the radii of a topologically stable

solution—the topological stability ratio. For k-RC-minmax, k-RC-minsum and k-EC-

minsum, we prove that the topological stability ratio is exactly 2. The k-EC-minmax

problem turns out to be harder: for k = 2 we again provide a tight bound of 2, while

for k > 2 we provide a generic lower bound and tools for investigating the structure

of situations where the optimal solution is not unique; these tools allow us to provide

a nontrivial upper bound for small k.

Finally, we provide a clairvoyant algorithm to compute an upper bound on the topo-

logical stability ratio of an instance to the k-center problem in polynomial time for

constant k. The algorithm �rst computes both an optimal solution and a topologi-

cally stable solution, after which the topological stability ratio is found by looking

for the maximum ratio between the two solutions over time. Since a full topolog-

ically stable solution is computed, we also explore the trade-o� between running

time and stability for the k-center problem.

11
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This chapter is based on joint work with Ivor van der Hoog, Marc van Kreveld,

Wouter Meulemans and Kevin Verbeek [63] and appeared in the Proceedings of

the 13th Conference and Workshops on Algorithms and Computation (Best paper

WALCOM 2019).

Kinetic Orientation-Based Shape Descriptors
We study three orientation-based shape descriptors on a set of continuously moving

points in Chapter 4. Speci�cally, we study the �rst principal component, the small-

est oriented bounding box, and the thinnest strip. Each of these shape descriptors

essentially de�nes a cost capturing the quality of the descriptor and uses the orien-

tation that minimizes the cost. We use these functions to make a trade-o� between

solution quality and stability.

We �rst show that there is no stateless algorithm, an algorithm that keeps no state

over time, that both approximates the minimum cost of a shape descriptor and

achieves continuous motion for the shape descriptor. On the other hand, if we turn

to state-aware algorithms, we can prove tight bounds on the topological stability ra-

tio for all three shape descriptors. To prove an upper bound on the Lipschitz stabiltiy,

we de�ne chasing algorithms that attempt to follow the optimal orientation with

bounded speed. We show that, under mild conditions, chasing algorithms with su�-

cient bounded speed approximate the optimal cost at all times for oriented bounding

boxes and strips. Since the analysis of such chasing algorithms is challenging and

has received little attention in literature, the contributions in this chapter not only

include the proved bounds, but also the methods used in the analysis.

This chapter is based on joint work with Wouter Meulemans and Kevin Verbeek [79].

Spatially and Temporally Coherent Visual Summaries
In Chapter 4 we focus on visual summaries using 1D orderings for entities moving in

2D. When exploring large time-varying data sets, visual summaries are a useful tool

to identify time intervals of interest for further consideration. A typical approach is

to represent the data elements at each time step in a compact one-dimensional form

or via a one-dimensional ordering. Such 1D representations can then be placed in

temporal order along a time line. As with the output of the theoretical geometric

problems, the two main criteria to assess the quality of the resulting visual sum-

maries are the spatial quality – how well does the 1D representation capture the

structure of the data at each time step, and the stability – how coherent are the 1D

representations over consecutive time steps or temporal ranges?
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We introduce stable techniques, inspired by our work on orientation-based shape de-

scriptors, which are based on well-established dimensionality-reduction techniques:

Principle Component Analysis (PCA), Sammon mapping, and t-SNE. These tech-

niques are not inherently stable, hence we adapt them to take stability into account.

While for Sammon mapping and t-SNE, we initialize every time step by the solution

to the previous time step, for PCA we develop a new clairvoyant algorithm, which we

call Stable Principal Component (SPC). The SPC method is explicitly parametrized

for stability, allowing a trade-o� between the two quality criteria. To take into ac-

count that the input data can be clustered, we extend SPC to the Clustered Principal

Component (CPC) algorithm, which �rst �nds a clustering on the data, and applies

SPC to the di�erent clusters.

We conduct quantitative experiments that compare our stable methods to various

state-of-the-art approaches using a set of well-established quality metrics that cap-

ture the two main criteria. The quality metrics for spatial quality evaluate for each

point whether its k-nearest neighbors in the data are still close in 1D ordering. For

stability, we again look for changes in the k-nearest neighbors of each point, but

we do so between orderings for consecutive time steps in the output. These experi-

ments demonstrate that stable algorithms outperform existing methods on stability,

without sacri�cing spatial quality or e�ciency. That is, the spatial quality of the

best stable algorithm is essentially equivalent to the best spatial quality obtained by

any method, while achieving higher stability and often higher e�ciency as well.

This chapter is based on joint work with Juri Buchmüller, Wouter Meulemans, Bet-

tina Speckmann, and Kevin Verbeek [119].

Other Results
In addition to the contributions in this thesis, the author also worked on grid-based

set visualization [51], on movement of point objects by repulsion [52], and on the

algorithmic complexity of puzzles in the game The Witness [70].
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A Framework for
Algorithm Stability

Algorithms play an important role in the analysis and visualization of time-varying

data. To understand the temporal patterns in the data, it is important that changes

in the output of the algorithm for consecutive time steps correctly re�ect changes

in the time-varying data. In other words, these algorithms must be stable: small

changes in the data lead to small changes in the output. In this chapter we present

a theoretical framework for algorithm stability.

As mentioned in the introduction, stability is one of the important criteria in the

analysis of algorithms for time-varying data. Traditionally, we care for the solution

quality and running time of an algorithm, and these criteria are con�icting: algo-

rithms that �nd optimal solutions are typically slower than algorithms that are more

lenient in solution quality, and compute only approximations to optimal solutions.

We expect to �nd similar trade-o�s between stability, and solution quality or running

time. For example, a visualization algorithm has high solution quality if at every

point in time the produced visual representation represents the time-varying input

data well. However, this visualization can be unstable, when there are very sudden

changes in the visualization that are not representative of changes in the data. A

stable visualization algorithm must therefore ensure that those sudden changes no

longer occur, and hence trade some solution quality for stability. The purpose of the

theoretical framework for algorithm stability is to formally study this trade-o�.
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Although stability has often been considered an important criterion for the analysis

or visualization of time-varying data, there are currently no suitable generic tools

available to formally analyze trade-o�s involving stability. The bene�t of introducing

a theoretical framework for algorithm stability is that it provides a uniform way of

analyzing stability and guides in structurally �nding stable algorithms. Furthermore,

we gain deeper insights in the trade-o� between stability and solution quality, and

can provide provable bounds on the quality and stability of solutions. An important

aspect of this framework is how to measure the stability of an algorithm, and how

to analyze trade-o�s. In addition, we need to re�ne the model of an algorithm based

on how it interacts with the time-varying data, for which there are several options.

The main focus of the theoretical framework presented in this chapter is to analyze

the trade-o� between stability and solution quality. While we could simply introduce

a measure for stability and analyze the trade-o� with solution quality, it turns out

that this approach is very cumbersome and unwieldy, and does not often lead to

meaningful results. Instead we analyze the solution quality that can be obtained

when bounding the stability of the algorithm. Even though the resulting analysis

can still be very challenging, we provide di�erent ways to loosen the requirements

on stability. Less restrictive stability requirements typically make it easier to analyze

the optimal solution quality under these requirements, enabling us to obtain results

and insights about the trade-o� between stability and solution quality where this

would otherwise be prohibitively di�cult or impossible.

The framework is set up as follows. We introduce three types of stability analysis of

increasing degrees of complexity, along with increasing stability requirements: event

stability, topological stability, and Lipschitz stability. While event stability deals only

with discrete changes in a solution, topological and Lipschitz stability require the

solution to behave continuously. For Lipschitz stability we additionally restrict how

fast a solution can change, with respect to changes in the input. Besides these modes

of analysis, we distinguish between three models for algorithms on time-varying

data: stateless, state-aware and clairvoyant algorithms. The model of an algorithm is

based on the availability of time-varying input, and in�uences how much stability

can be achieved. In this chapter, we elaborate further on our stability framework

and demonstrate the use of the framework by applying it to the problem of kinetic

Euclidean minimum spanning trees (EMSTs). For this problem a set of moving points

is connected with line segments at every time step. A solution of high quality ensures

that the total length of the line segments is minimized. During the movement of the

points, discrete changes to the combinatorial structure of an EMST are necessary to

keep a solution optimal. It is therefore an interesting problem for stability analysis.
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Related work Even though there are currently no tools available to formally

analyze the stability of algorithms, there is still some related work on the topic. In

computational geometry, algorithms for time-varying data are extensively studied

in the context of kinetic data structures (KDSs). These data structures, introduced by

Basch and Guibas [9], e�ciently maintain solutions to algorithmic problems. Kinetic

data structures use a set of certi�cates, which show that a solution is valid at all

times. Whenever a certi�cate fails, the certi�cates are updated to again ensure that

the solution is valid. Such certi�cate failures, or events, can be counted to analyze

the stability of the solution. However, the focus of KDSs is not on stability but on the

trade-o� between solution quality and running time, and hence we get little insight

into the trade-o�s involving stability. On the other hand, one of the few times the

trade-o� between stability and solution quality was examined, was for the facility

location problem [13, 17, 16, 14, 36, 37]. The facility location problem in the kinetic

setting asks to �nd locations for a set of (possibly moving) facilities, which are in

close proximity to the moving clients they provide to. This is equivalent to covering

a set of moving points with covering shapes, such as disks or rectangles. Solutions

that use smaller shapes are then considered of higher quality. The authors show that

optimal covering shapes can move arbitrarily fast with respect to the movement of

the points. However, the speed can be reduced in some cases, without increasing

the size of the covering shapes by much. Such provable trade-o�s between stability

and solution quality are exactly what we want to structurally achieve with our

framework. In Chapter 3 we apply our framework to the facility location problem

to extend the existing results.

Organization In Section 2.1 we give an overview of our framework for algorithm

stability and in Section 2.2 we formally introduce the kinetic EMST problem. In Sec-

tions 2.3, 2.4, and 2.5 we describe event stability, topological stability, and Lipschitz

stability, respectively. In each of these sections we �rst describe the respective type

of stability analysis in a generic setting, followed by speci�c results using that type

of stability analysis on the kinetic EMST problem. In Section 2.6 we make some

concluding remarks on our stability framework.

▶ 2.1 Algorithm stability framework
Intuitively, we can say that an algorithm is stable, if small changes in the input lead

to small changes in the output. More formally, let Π be an optimization problem

that, given an input instance I from a set , asks for a solution S from a set  that

minimizes (or maximizes) some optimization function f ∶  ×  → ℝ.
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An algorithm  for Π maps an input instance I to a solution S. For an optimal

solutionOPT∶  →  of input instance I , it holds that f (I , OPT(I )) = minS∈ f (I , S)
is minimal over all possible solutions S ∈  for I . Note that we did not de�ne  as a

function between input and output. This is intentional and will be further elaborated

on in Section 2.1.2, where we distinguish between various algorithmic models that

interact di�erently with the time-varying aspect of the data.

When working with time-varying data, the input instance is not static, and for the

purpose of introducing time-varying input, we model time-varying input instances

as a sequence of T static inputs I1, I2, … , IT . In this time-varying setting, algorithm

 maps the input sequence I1, I2, … , IT to a sequence of solutions S1, S2, … , ST . An

optimal solution OPT for Π on this time-varying input is then de�ned by individual

static solutions OPT for each input Ii in the sequence, such that f (Ii , OPT(Ii)) is

minimized for each input separately. Note that such a solution has optimal solution

quality, and completely ignores stability.

To de�ne the stability of an algorithm, we need to quantify changes in the input

instances and in the solutions. We can do so by imposing a metric on  and  . Let

d ∶  ×  → ℝ≥0 be a metric for  and let d ∶  ×  → ℝ≥0 be a metric for

 . Figure 2.1 gives an overview of the above de�nitions. For an input sequence

�I = I1, I2, … , IT and a sequence of solutions �S = S1, S2, … , ST we can de�ne the

stability of this solution relative to the input as follows.

St(�I , �S ) = max
i∈[1,T−1]

d (Si , Si+1)
d (Ii , Ii+1)

(2.1)

Finally, let Σ be the set of all sequences of input instances. We can then de�ne the

stability of an algorithm , which maps every input Ii in sequence �I to a solution

Si in a sequence of solutions �S , as follows.

St() = sup
�I ∈ΣI

St(�I , �S ) (2.2)

The lower the value for St(), the more stable we consider the algorithm  to

be. Note that St() does not depend on f , and hence the stability analysis is not

dependent on whether Π is a minimization or maximization problem.

There are many other ways to de�ne the stability of an algorithm given the metrics,

and the de�nition above does not cover all scenarios in which we want to analyze

stability. Recall the examples in the introduction: a time-varying set visualization

and hosting a wi� hotspot for friends. In the above de�nition, if there is no change

in the input (Ii = Ii+1) then there should not be any change in the output either
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Ii Si

Ii+1 Si+1

 

d (Ii , Ii+1) d (Si , Si+1)

Figure 2.1 Algorithm  maps input instances from the input space  to the solu-

tion space . Metrics d and d allow us to reason about how di�erent

two instances are in respectively the input and solution space.

(Si = Si+1), otherwise St() is unbounded. This �ts the visualization example, where

we want to see no changes in the visualization, unless the data is changing. However,

when hosting a hotspot for friends, the hotspot can (slowly) move into a better

position even though none of the friends are moving. We can adapt Equation 2.1 to

express these conditions as well.

St(�I , �S ) =
maxi∈[1,T−1] d (Si , Si+1)
maxi∈[1,T−1] d (Ii , Ii+1)

(2.3)

In this de�nition, instead of using the amount of change between time steps, we

use an upper bound for both the input and solution. Since the upper bound on the

changes in the solution can occur between di�erent time steps than the upper bound

on the changes in the input, St()will not be unbounded when the solution changes

without any change in the input. Our framework will allow for stability analysis

that can adhere to either of these models, whichever �ts the problem at hand.

Kinetic time-varying data is typically gathered through geo-location, as already

explained in the introduction. Hence, the above setting would su�ce to analyze

the stability of this kind of time-varying data. However, as the rate at which the

movement data is recorded becomes higher, and the di�erence between consecutive

data points becomes smaller, the data closely resembles the continuous motion of

real-life objects. In our theoretical framework we would therefore like to abstract

from the discrete nature of the data, and work with continuously changing inputs.

This approach is very natural for geometric problems and is used abundantly in

computational geometry, for example by using continuously moving points as input.
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Instead of a sequence of static inputs, we now get a continuous path I ∶ [0, 1] → 
through the input space . For each time t ∈ [0, 1], algorithm  maps I (t) ∈  to

a solution S(t) ∈  . Note that the resulting time-varying solution S ∶ [0, 1] → 
is not necessarily continuous. An optimal solution OPT for input I minimizes (or

maximizes) f (I (t), OPT(I (t))) for every t ∈ [0, 1], and may have discontinuities as

well. The abstraction to (continuous) paths allows us to make a distinction between

continuous and discrete changes in the output, which possibly lead to instabilities.

The stability of a solution S relative to I can then be de�ned similarly to the dis-

crete case, using the metrics on  and  . The stability is then a generalization of

Equation 2.1

St(I , S) = sup
t∈[0,1)

lim
�→0

d (S(t), S(t + �))
d (I (t), I (t + �))

(2.4)

In this de�nition of stability, part of the formula is essentially a metric derivative,

as we compare the speed along parameterized paths I (t) and S(t) in metric spaces

(, d ) and ( , d ), respectively. Let  be the set of continuous paths through .

The stability of an algorithm  can now also be generalized from Equation 2.2.

St() = sup
I ∈

St(I , S) (2.5)

Again, this de�nition assumes that no change in the input should result in no change

in the output, otherwise St() is unbounded. If we want the stability to be less strict

as in Equation 2.3, we can also generalize this to the continuous setting:

St(I , S) =
supt∈[0,1) lim�→0 d (S(t), S(t + �))
supt∈[0,1) lim�→0 d (I (t), I (t + �))

(2.6)

▶ 2.1.1 Stability vs. solution quality
As we saw in the set visualization example in Chapter 1, optimal solutions are not

necessarily stable, since small changes in the input can drastically change the visual-

ization. In the above de�nities this scenario leads to instability as well: the stability

of optimal solutions St(OPT) is in�uenced by how far apart consecutive solutions

are in the solution space, with respect to the distance between the corresponding

inputs in the input space. For many optimization problems, the optimal solutions

produced by OPT may be very unstable. The instabilities can be the result of OPT
changing very fast, albeit continuously, or due to OPT having discontinuities. This

suggests an interesting trade-o� between the stability of an algorithm and the so-

lution quality: since OPT is unstable, stable solutions cannot have optimal solution

quality either.

20



2.1 Algorithm stability framework

Although the de�nitions described above (in Equations 2.2 and 2.5) nicely capture

the stability of an algorithm, they do not directly allow a feasible analysis of the

trade-o� between stability and solution quality: it is hard to compute the stability

of an algorithm (as it depends on all input sequences/paths), let alone reason about

all possible algorithms. Furthermore, it requires the de�nition of suitable metrics d
and d , and it is not always clear how to choose these metrics so that we can obtain

meaningful results. Additionally, it is not always clear how to handle optimization

problems with continuous input and discrete solutions: when using Equation 2.4 to

de�ne stability, any change in solution would result in unbounded stability. However,

we would still like to distinguish between solutions that change often from solutions

that change rarely, which can be considered more stable.

As we have seen above, the trade-o� between stability and solution quality is mainly

in�uenced by the following three aspects: (1) how often the combinatorial structure

of a solution changes, (2) whether there are discrete changes in a solution or only

continuous changes, and (3) how far apart di�erent solutions are, or how fast one

solution can transform into another. In our framework we aim to overcome the

drawbacks of the described formulation of stability, by tackling the three aspects

in�uencing the trade-o� in isolation. Hence to analyze the trade-o� between stability

and solution quality, we propose to measure how the solution quality is a�ected by

imposing various requirements on the stability of an algorithm. These requirements

are formalized in the following three types of stability.

Event stability follows the setting of kinetic data structures. That is, the input

(a set of moving objects) changes continuously as a function over time. How-

ever, contrary to typical KDSs where a constraint is imposed on the solution

quality, we aim to enforce the stability of the algorithm. For event stability

we disallow the algorithm to change the solution too often. Doing so directly

is problematic, but we formalize this approach using the concept of k-optimal

solutions. We can then obtain a trade-o� between stability and quality that

can be tuned by the parameter k. Note that event stability captures only how

often a solution changes, but not how much a solution changes at each event.

Topological stability takes a �rst step towards the de�nition of stability described

in Equation 2.5. However, instead of measuring the amount of change using

a metric, we merely require the solution to behave continuously. To do so we

need to de�ne only a topology on the solution space  that captures stable

behavior. We work under the assumption that the input follows a continuous

path through the input space over time, and thus there is also a topology

on the input space de�ning the stable behavior of the input. Surprisingly,
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even though we ignore the amount of change in a single time step, this type

of analysis still provides meaningful information on the trade-o� between

solution quality and stability. In fact, the resulting trade-o� can be seen as a

lower bound for any analysis involving metrics that follow the used topology.

Lipschitz stability fully captures the de�nition in Equation 2.5. As the name sug-

gests, it is inspired by Lipschitz continuity: if we see an algorithm as a function

from input to output, then this function should be Lipschitz continuous. We

provide an upper bound on the Lipschitz constant K , which restricts the speed

at which the solution can change, relative to the change in the input. This

further restricts the stability compared to topological stability, where there

is no bound on the speed at which the solution could change. We are then

again interested in the quality of the solutions that can be obtained with any

K -Lipschitz stable algorithm. Given the complexity of this type of analysis, a

complete trade-o� for any value of the Lipschitz constant K is typically out

of reach, but results for su�ciently small or large values can be of interest.

Lipschitz stability analysis follows the algorithm stability de�nition introduced ear-

lier and is thus the preferred type of analysis. However, its reliance on metrics d
and d and speed parameter K often makes Lipschitz stability analysis prohibitively

challenging or infeasible. The other types of stability analysis simplify the stability

requirement, making the analysis signi�cantly easier. Speci�cally, topological sta-

bility analysis only relies on topologies on input and solution space, and for event

stability analysis we need to count only the number of changes in a solution. Al-

though these types of analysis do not fully capture all aspects of stability, they do

o�er useful insight into the interplay between problem instances, solutions, and the

optimization function, which is invaluable for the development of stable algorithms.

▶ 2.1.2 Algorithmic models

When applying either of the above de�nitions to analyze stability, we should always

be aware of the algorithm at hand. Algorithms for time-varying input can adhere

to di�erent models, which are di�erentiated by the availability of the input. The

model of an algorithm  in�uences the results of the stability analysis. For input

I (t) depending on time t , we distinguish the following models.

Stateless algorithms depend only on the input I (t) at a particular point in time,

and no other information of earlier times. This in particular means that if

I (t1) = I (t2), then  produces the same output at time t1 and at time t2. These

algorithms are essentially functions from input to output.
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Stability Algorithm

Event

Topological

Lipschitz

Stateless

State-aware

Clairvoyant

Figure 2.2 Overview of the stability types and algorithmic models defined by our

stability framework.

State-aware algorithms have access not only to the input I (t) at a particular time,

but also maintain a state over time; in practice this is typically the output at

the previous point in time. Thus, even if I (t1) = I (t2), then  may produce

di�erent results at time t1 and t2 if the states at those times are di�erent.

Clairvoyant algorithms have access to the complete function I (t) and can adapt

to future inputs. Thus, the complete output can be computed o�ine.

While this distinction between types of algorithms resembles characterizations made

in other areas of algorithmic research, we chose these names to signify how stability

is in�uenced by the type of algorithm. For example, the state of an algorithm can

be seen as knowing its history, which is a term used in kinetic data structures to

explain how the motion of the input up to a certain point in time in�uences the

current state of the data structure. However, for stability we are interested only in

recent history, as we want to ensure that the current solution does not change too

quickly. Furthermore, clairvoyant algorithms are often called o�ine algorithms in

terms of streaming algorithms and dynamic data, since the complete output over

time can be computed o�ine. However, for stability the clairvoyant aspect of this

model is most important: adapting solutions to future inputs to minimize instabilities.

In addition, stateless and state-aware algorithms are often called online algorithms

for dynamic data, or algorithms in the black-box model for kinetic data structures, as

the complete input over time is not known in advance. While this property indeed

in�uences stability, we choose to make an additional distinction between stateless

and state-aware: the stability between these models can di�er, as shown in Chapter 4.

Figure 2.2 gives an overview of all parts of the framework. In this chapter we fo-

cus only on state-aware algorithms, while in Chapters 3 and 4 we also consider

clairvoyant and stateless algorithms. State-aware algorithms are arguably the most
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2 A Framework for Algorithm Stability

interesting of the three models for the following reasons. For many applications,

for example online route planning, the input data is not available in full beforehand,

rendering clairvoyant algorithms infeasible in such cases. Furthermore, a stateless

algorithm cannot utilize the history to ensure stability, which sometimes results is

worse stability compared to state-aware algorithms (see Chapter 4 for an example).

We conclude this section with a discussion on how to use our framework.

▶ 2.1.3 Applying the framework

As described earlier in this chapter, the most intuitive way to analyze the trade-o�

between stability and solution quality is as follows. We enforce stability on the

solutions to an optimization problem Π, and measure how good the solution quality

can still be under this restriction. In our framework, this is done by choosing a type of

stability along with a model for the algorithm solving the problem, and analyzing the

solution quality that can be achieved. Preferably, we can still use optimal solutions,

but in case those are unstable, we want to approximate an optimal solution as well

as possible.

In general there are two approaches to �nd stable solutions with good quality: (1)

we can start from an optimal solution OPT and use optimization function f of Π to

look for solutions close to OPT that are stable, or (2) we can try to de�ne a structure

that is inherently stable according to our chosen type of stability, and analyze its

solution quality using optimization function f . For stateless algorithms, the �rst

approach is not a viable strategy: guided by f , a stateless algorithm will always �nd

OPT, since it can access only the data at a particular point in time and use f to look

for an optimal solution. Furthermore, using the latter approach, stateless algorithms

should always output continuous functions when analyzing topological or Lipschitz

stable solutions, as a stateless algorithm is always a function and discontinuities are

not allowed for these types of stability.

The stable structures in the second approach are often inherently stateless. An

example of this can be found in the stability analysis of the kinetic Euclidean 2-

center problem by Durocher and Kirkpatrick [37]. In the kinetic Euclidean 2-center

problem, a set of moving points should be covered by two disks of minimum radius.

They de�ne re�ection-based 2-centers, as a stable alternative to optimal Euclidean

2-centers. To �nd a re�ection-based 2-center, we place a single disk and re�ect its

position through a re�ection center, a central location in the point set. This can

be computed on a static input, and hence a stateless algorithm can �nd the same

solution on a time-varying input. To do so, the solution space  must be restricted
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to solution space ′, consisting only of stable solutions, such as re�ection-based

2-centers. A stateless algorithm can then �nd a stable optimal solution OPT′ in ′,
and ideally OPT′ should approximate the solution quality of OPT. Note that in the

other algorithmic models, this stateless computation can be mimicked, since those

models are less restrictive in their access to data.

In practice, we often use a combination of the two approaches: the �rst approach,

guided by the optimization function f of Π, requires analysis of optimal and approx-

imate solutions, and hence usually results in the most theoretical insights into the

stability of those solutions. Even though the second approach is less straightforward

and guided, the (often stateless) nature of this approach can simplify the stability

analysis, making it a viable alternative when results are otherwise hard to achieve.

▶ 2.2 Kinetic Euclidean minimum spanning tree

A Euclidean minimum spanning tree (EMST) on a set of n points in the plane con-

nects all points with a set of edges, such that the total edge length is minimized.

The EMST problem is a classic problem in computational geometry, and is strongly

related to other geometric structures: the edges of an EMST are also edges of the

Gabriel graph, which in turn is a subgraph of a Delaunay triangulation of the same

point set. EMSTs can be e�ciently computed by �rst computing a Delaunay triangu-

lation in O(n log n) time, followed by running a textbook algorithm such as Prim’s

or Kruskal’s algorithm. In the kinetic setting, when the input points are moving con-

tinuously through the plane, an EMST can be maintained by growing and shrinking

the edges. In certain scenarios, an EMST can undergo discrete changes to its combi-

natorial structure called edge �ips. During an edge �ip, one of the edges of the EMST

is replaced by a di�erent edge, to ensure that the total edge length remains minimal

(see Figure 2.3).

Kinetic Euclidean minimum spanning trees and related structures have been stud-

ied extensively, albeit mostly in the setting of kinetic data structures. Katoh et

al. [66] proved an upper bound of O(n32�(n)) for the number of external events

of d-dimensional EMSTs of n linearly moving points, where �(n) is the inverse Ack-

ermann function. Rahmati et al. [89] present a KDS for EMSTs in the plane that

processes O(n3�22s+2(n) log n) events in the worst case, where �s(n) = �s(n)/n is an

extremely slow-growing function. In this formula, �s(n) represents the maximum

length of an order s Davenport-Schinzel sequence [101] on n distinct values, and

parameter s measures the complexity of the point trajectories. The best known

lower bound for external events of EMSTs in d dimensions is Ω(nd ) [81]. Approxi-
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Figure 2.3 The points move to a position where there are multiple optimal EMSTs.

As the movement proceeds, the red edges are replaced by blue edges.

mations of EMSTs and related structures such as Delaunay triangulations are also

a highly researched topic, but the number of discrete changes still remains at least

roughly Ω(n2). Since the EMST is a subset of the Delaunay triangulation, we can

also consider to kinetically maintain the Delaunay triangulation in a KDS to �nd

a bound on the number of combinatorial changes in an EMST. Fu and Lee [44],

and Guibas et al. [56] show that the Delaunay triangulation undergoes O(n2�s+2(n))
external events (near-cubic), where �s(n) is again the maximum length of (n, s)-
Davenport-Schinzel sequence [101]. On the other hand, the best known lower bound

for external events of the Delaunay triangulation is onlyΩ(n2) [101]. Rubin improves

the upper bound to O(n2+" ), for any " > 0, if the number of degenerate events (four

points co-circular/three points collinear) is limited [97], or if each point moves along

a straight line with unit speed [96]). Agarwal et al. [1] also consider a more stable

version of the Delaunay triangulation, which undergoes at most a nearly quadratic

number of external events. However, external events for EMSTs do not necessarily

coincide with external events of the Delaunay triangulation [90]. To further reduce

the number of external events, we can consider approximations of the EMST, for

example via spanners or well-separated pair decompositions [4]. However, kinetic

t-spanners already undergo Ω(n
2

t2 ) external events [46].

In the next section, we analyze the event stability of EMSTs. We further reduce the

number of external events, as a �rst restriction on the stability of EMSTs. Using

k-optimal EMSTs, we prove that the resulting solution approximates a EMST well.
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2.3 Event stability

▶ 2.3 Event stability

The least restricting form of stability is event stability. Like the number of external

events in KDSs, event stability captures only how often the solution changes.

▶ 2.3.1 Event stability analysis

Let Π be an optimization problem with a set of input instances , a set of solutions

 , and optimization function f ∶  ×  → ℝ. Following the framework of kinetic

data structures, we assume that the input instances include certain parameters that

change as a function of time, such as point coordinates. To apply event stability

analysis, we require that all solutions have a combinatorial description, that is, the

solution description does not use the time-varying parameters of the input instance.

We further require that every solution S ∈  is feasible for every input instance

I ∈ . Insertions or deletions of elements can break this assumption: a spanning

tree on n points is not a feasible solution for n + 1 point, since one edge is missing.

Note that an insertion or a deletion would typically force an event, and a kinetic

data structure would be allowed to recompute. Thus it makes sense to apply our

event stability analysis only between such insertions and deletions.

For example, in the setting of kinetic EMSTs, the input instances would consist of a

�xed set of points. The coordinates of these points then change as a function over

time. A solution of the kinetic EMST problem consists of the combinatorial descrip-

tion of a tree on the set of input points. Note that every tree describes a feasible

solution for any input instance, if we do not insist on any additional restrictions like,

e.g., planarity. The minimization function f then simply measures the total length of

the tree, which does depend on the time-varying parameters of the problem instance.

We want to restrict how often a solution changes, in such a way that the solution

is still close to an optimal solution in solution quality. Instead of doing so directly,

we introduce the concept of k-optimal solutions. Let d be a metric on the input in-

stances, and let OPT∶  →  describe the optimal solutions. We say that a solution

S ∈  is k-optimal for an instance I ∈  if there exists an input instance I ′ ∈  such

that f (I ′, S) = f (I ′, OPT (I ′)) and d (I , I ′) ≤ k. Any optimal solution is therefore

always 0-optimal. We need to point out that the above de�nition requires a form

of normalization on the metric d , similar to that of, e.g., smoothed analysis [103].

We therefore require that there exists a constant c such that every solution S ∈ 
is c-optimal for every instance I ∈ . For technical reasons we require the latter

condition to hold only for some time interval [0, T ] of interest. Note that the con-
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cept of k-optimal solutions is closely related to backward error analysis in numerical

analysis [117].

Following the framework of kinetic data structures, we typically require the func-

tions of the time-varying parameters to be well-behaved (e.g., polynomial functions),

for otherwise we cannot derive meaningful bounds. The event stability analysis then

considers two aspects. First, we analyze how often the solution needs to change to

maintain a k-optimal solution for every point in time. Second, we analyze how

well a k-optimal solution approximates an optimal solution. Intuitively, k-optimal

solutions approximate optimal solutions well, as the input did not change much

since the solution was actually optimal. We can then enforce stability by ignoring

all events that happen, required to keep the solution optimal, as long as a solution

stays k-optimal. Once the solution is no longer k-optimal, we recompute to �nd the

optimal solution, and repeat the process. This reduces the number of events, while

the solution quality becomes only moderately worse. Typically we are not able to di-

rectly obtain good bounds on the approximation ratio, but given certain reasonable

assumptions, good approximation bounds as a function of k can be provided.

▶ 2.3.2 Event stability for EMSTs
Our input consists of a set of points P = {p1, … , pn} where each point pi describes a

trajectory by the function pi ∶ [0, T ] → ℝd . The goal is to maintain a combinatorial

description of a short spanning tree on P that does not change often. We assume

that the functions xi are polynomials with bounded degree s.

To use the concept of k-optimal solutions, we �rst need to normalize the coordinates.

We simply assume that pi(t) ∈ [0, 1]d for t ∈ [0, T ]. This assumption may seem overly

restrictive for kinetic point sets, but note that we are interested only in relative

positions, and thus the frame of reference may move with the points. Next, we

de�ne the metric d along the trajectory of all points as follows.

d (I , I ′) = maxi ‖pi − p′i ‖ (2.7)

Note that this metric, and the resulting de�nition of k-optimal solutions, is not

speci�c to EMSTs and can be used in general for problems with kinetic point sets as

input. In our case ‖a − b‖ denotes the distance between a and b in the (Euclidean) �2
norm. Now let S(t) = OPT (t) be the EMST at time t . Then, by de�nition, S(t) is k-

optimal at time t′ if d (I (t), I (t′)) ≤ k. As explained before, our approach is now very

simple: we compute the EMST and keep that solution as long as it is k-optimal, after

which we compute the new EMST, and so forth. Below we analyze this approach.
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O( 1n ) k

Figure 2.4 The blue points are stationary, while the red point moves along a tra-

jectory of degree 3, triggering Ω( sk ) events. The trajectory is shown as

an arrow along the 1D space; the gray part has already been traversed.

Number of events To bound the number of events, we �rst need to bound the

speed of any point with a polynomial trajectory and bounded coordinates. For this

we can use a classic result known as the Markov Brothers’ inequality.

2.3.1 Lemma ([75]). Let ℎ(t) be a polynomial with degree at most s such that ℎ(t) ∈ [0, 1]
for t ∈ [0, T ], then |dℎ(t)/dt| ≤ s2/T for all t ∈ [0, T ].

2.3.2 Lemma. For a kinetic point set P with degree-s polynomial trajectories pi(t) ∈ [0, 1]d

(t ∈ [0, T ]) we need O( s
2

k ) changes to maintain a k-optimal solution for constant d .

Proof. By Lemma 2.3.1 the velocity of any point is at most s2/T in one dimension,

and thus at most

√
d s2/T = O(s2/T ) in d dimensions, assuming d is constant. Now

assume that we have computed an optimal solution S for some time t . The solution

S remains k-optimal until one of the points has moved at least k units. Since the

velocity of the points is bounded, this takes at least Δt = Ω(kT /s2) time, at which

point we can recompute the optimal solution. Since the total time interval is of

length T , this can happen at most T /Δt = O(s2/k) times. □

Next we show that this upper bound is tight up to a factor of s, using Chebyshev

polynomials of the �rst kind [94]. A Chebyshev polynomial of degree s with range

[0, 1] and domain [0, T ] passes through the entire range exactly s times.

2.3.3 Lemma. For a kinetic point set P of n points with degree-s polynomial trajectories

pi(t) ∈ [0, 1]d (t ∈ [0, T ]) we need Ω(min( sk , sn)) changes in the worst case to maintain

a k-optimal solution.

Proof. We can restrict ourselves to d = 1. Let p1 move along a Chebyshev polynomial

of degree s, and let the remaining points be stationary and placed equidistantly along

the interval [0, 1]. As soon as p1 meets one of the other points, then p1 can travel at
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most k units before the solution is no longer k-optimal (see Figure 2.4). Therefore, p1
moving through the entire interval requires Ω(min(1/k, n)) changes to the solution.

Doing so s times gives the desired bound. □

It is important to notice that this behavior is fairly speci�c for polynomial trajectories.

If we allow more general trajectories, then we can prove a stronger bound.

2.3.4 Lemma. For a kinetic point set P of n points with degree-s pseudo-algebraic trajec-
tories pi(t) ∈ [0, 1]d (t ∈ [0, T ]) we need Ω(min( snk , sn

2)) changes in the worst case to

maintain a k-optimal solution.

Proof. We can restrict ourselves to d = 1. Any two pseudo-algebraic trajectories of

degree at most s can cross each other at most s times. We make n/2 points stationary

and place them equidistantly along the interval [0, 1]. The other n/2 points follow

trajectories that take them through the entire interval s times, in such a way that

every point moves through the entire interval completely before another point does

so. The resulting trajectories are clearly pseudo-algebraic, and each time a point

moves through the entire interval it requires Ω(min(1/k, n)) changes to the solution.

As a result, the total number of changes is Ω(min( snk , sn
2)). □

We can show the same lower bound for algebraic trajectories of degree at most s,
but this is slightly more involved.

2.3.5 Lemma. For a kinetic point set P of n points with degree-s algebraic trajectories pi(t) ∈
[0, 1]d (t ∈ [0, T ]) we need Ω(min( snk , sn

2)) changes in the worst case to maintain a

k-optimal solution.

Proof. We can restrict ourselves to d = 1. We make n/2 points stationary and place

them equidistantly along the interval [0, 1]. The other n/2 points follow trajectories

that take them through the entire interval s/4 times, in such a way that every point

moves through the entire interval completely before another point does so. The

trajectory of a non-stationary point is pi(t) = ∑s/4
j=0

1
(t−10⋅j−10⋅i⋅s/4)4+1 . The trajectory

consists of s/4 moves through the stationary points, one such move every 10 time

units (see Figure 2.5). The i-th point will be �nished 10 ∗ s/4 time units after it starts

its �rst move through the stationary points, while the (i + 1)-st point starts 10 units

after the i-th point �nishes. The resulting trajectories are clearly algebraic, and each

time a point moves through the entire interval it requires Ω(min(1/k, n)) changes to

the solution. As a result, the total number of changes is Ω(min( snk , sn
2)). □
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t = 20 t = 30

Figure 2.5 The blue points are stationary, while the red point moves along a tra-

jectory of degree 8 and is the second point to start moving through

the blue points (p1(t) = ∑2
j=0

1
(t−10⋅j−20)4+1 ). The trajectory is shown as

an arrow along the 1D space; the gray part has already been traversed.

Solution quality To analyze the solution quality of k-optimal solutions, we prove

a bound on the ratio between the length of k-optimal solutions and the length of

optimal EMSTs. In general, we cannot expect k-optimal solutions to b a good approx-

imation of an optimal EMST’s length: if all points are within distance k from each

other, then all solutions are k-optimal. We therefore need to make the assumption

that the points are spread out reasonably throughout the motion. To quantify this,

we use a measure inspired by the order-l spread, as de�ned by Erickson [38]. Let

mindistl (P) be the smallest distance in P between a point and its l-th nearest neigh-

bor. We assume that mindistl (P) ≥ 1/Δl throughout the motion, for some value of

Δl . We can use this assumption to give a lower bound on the length of the EMST.

Pick an arbitrary point and remove all points from P that are within distance 1/Δl ,
and repeat this process until the smallest distance is at least 1/Δl . By our assumption,

we remove at most l − 1 points for each chosen point, so at least n/l points are left.

The distance between each pair of points is now at least 1/Δl , hence an EMST on the

remaining points has length Ω( nlΔl ). This readily forms a lower bound on the length

of the EMST on P : even if all removed points were Steiner points, adding back those

points can improve the length of an EMST only by a constant factor [28].

2.3.6 Lemma. A k-optimal solution of the EMST problem on a set of n points P is an

O(1+klΔl )-approximation of the EMST, under the assumption that mindistl (P) ≥ 1/Δl .

Proof. Let S be a k-optimal solution of P and let OPT be an optimal solution of P . By

de�nition there is a point set P ′, with d (P , P ′) ≤ k, for which the length of solution

S is at most that of the optimal solution OPT′ of P ′. Since d (P , P ′) ≤ k, the length
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of each edge can grow or shrink by at most 2k when moving from P ′ to P . Therefore

we can state that f (P , S) ≤ f (P, OPT) + 4kn, as in the worst case every edge in the

k-optimal solution can have grown by 2k while in an optimal solution every edge

can have shrunk by 2k. Now, using the lower bound of Ω( nlΔl ) on the length of an

EMST, we obtain the following.

f (P , OPT) + 4kn ≤ f (P, OPT) + 4kO(f (P, OPT)lΔl )
= O(1 + klΔl ) ⋅ f (P , OPT) □

Note that there is a clear trade-o� between the approximation ratio and how restric-

tive the assumption on the spread is. Regardless, we can obtain a decent approxima-

tion, while processing only a small number of events. Choosing reasonable values

k = O(1/n), l = O(1), and Δl = O(n), then, under the assumptions, a constant-factor

approximation of the EMST can be maintained while processing only O(n) events.

▶ 2.4 Topological stability

The event stability analysis has two major drawbacks: (1) it is applicable only to

problems for which the solutions are always feasible and described combinatorially,

and (2) it does not distinguish between small and large structural changes. Topo-

logical stability analysis is applicable to a wide variety of problems and enforces

continuous changes to the solution.

▶ 2.4.1 Topological stability analysis
Let Π be an optimization problem with input instances , solutions  , and optimiza-

tion function f . An algorithm  is topologically stable if, for any continuous path

I ∶ [0, 1] →  in ,  maps it to a continuous path S in  . To properly de�ne a

continuous path in  and  , we need to specify a topology  on  and a topology

 on  . An overview of this model can be found in Figure 2.6. Alternatively, we

could specify metrics d and d , but this is typically more involved. Let  be the

set of continuous paths through . We then want to analyze the approximation ratio

�TS of any topologically stable algorithm with respect to OPT, which we will call

the topological stability ratio. That is, we are interested in the ratio

�TS(Π,  ,  ) = inf
sup
I ∈

sup
t∈[0,1]

f (I (t), S(t))
f (I (t), OPT(I (t)))

(2.8)

where the in�mum is taken over all topologically stable algorithms. Naturally, ifOPT
is already topologically stable, then this type of analysis does not provide any insight
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I (t)
S(t)

I (t′)
S(t′)

 

I S

Figure 2.6 Algorithm  maps input instances from the input space  to the solu-

tion space  . Continuous path I in the space defined by topology  ,

is mapped to continuous path S in the space defined by topology  .

and the ratio is simply 1. However, OPT is not topologically stable if it undergoes

discrete changes, and in that case topological stability allows you to measure what

solution quality can be achieved by requiring continuity.

The above analysis can even be applied when the solution space (or the input space)

is discrete. In such cases, continuity can often be de�ned using the graph topology

of so-called �ip graphs, for example, based on edge �ips for triangulations or rota-

tions in rooted binary trees. The vertices of such a graph each represent a solution

(or input) with a di�erent combinatorial structure, while the edges represent the

possible transitions between solutions. To create a continuous solution space, we

still represent the discrete space using the vertices of the �ip graph, but we create

continuity on the edges: we de�ne a (continuous) topological space by representing

vertices by points, and representing every edge of the graph by a copy of the unit

interval [0, 1]. These intervals are glued together at the vertices. In other words, we

consider the corresponding simplicial 1-complex.

For EMSTs we can do exactly what we just described, since the solution space is

discrete and the vertices of a �ip graph represent spanning trees. Although the

points in the interior of the edges of this topological space do not represent proper

spanning trees, we can still use this topological space in Equation 2.8 by extending f
over the edges via linear interpolation. This ensures that the value of f for one of the

vertices incident to an edge is as least as high as the value of f anywhere on the edge.

We therefore need to consider only the vertices of the �ip graph (which represent

proper spanning trees) to compute the topological stability ratio. Figure 2.7 shows

an example of such a topological space for spanning trees.
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(a) (b)

Figure 2.7 Topological spaces defined by flip graphs for edge slides/rotations. (a)
The complete solution space for three vertices, along with an interme-

diate solution. (b) A partially drawn solution space for four vertices.

Proving bounds on �TS To prove an upper bound on the topological stability

ratio, we have to describe a state-aware algorithm that produces a topologically sta-

ble solution. If this algorithm computes an r-approximation of the optimal solution,

then we have found an upper bound of r on �TS. While such an algorithm works

on time-varying data, we usually consider static inputs that allow multiple optimal

solutions, when proving an upper bound. The optimal solution would undergo a

discrete change when such an input was encountered during motion. We de�ne a

continuous transformation that works for any such static input, and transforms one

optimal solution of the static input into another. Note that the continuous trans-

formation should follow the chosen topology  . If during this transformation, the

solution is at most a factor r worse than OPT according to f , then we immediately

obtain an upper bound of r on �TS: an algorithm can wait until a discrete change

happens and then apply the transformation to produce an r-approximation. This

approximation is topologically stable, since the transformation is continuous, and

topological stability does not bound the speed at which the solution can change.

Hence, at the point in time where the discrete change would happen, the algorithm

may "freeze time" and apply the transformation to swap between optimal solutions.

For a lower bound on the topological stability ratio, we should consider a full time-

varying input, for which an approximation ratio of r is always necessary. However,
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we can again use static inputs that allow multiple optimal solutions, to simplify the

analysis. We �rst construct a static input I , where every continuous transformation

from one optimal solution to another, requires a solution that is at least a factor r
worse than OPT. Thus, any algorithm computing a continuous transformation for I
produces at least an r-approximation. Finally, we �nd a motion of the input points in

which I occurs at some time t , and this motion should force the continuous transfor-

mation to happen somewhere during the motion. This is achieved by ensuring that

keeping the same solution during the complete motion, or attempting a continuous

transformation before/after t results in a solution that is even worse. The best any

algorithm can do, is transforming exactly at t , but this requires a solution that is at

least a factor r worse thanOPT. Thus every topologically stable algorithm computes

at least an r-approximation on this time-varying input: �TS is lower bounded by r .

Note that since we constructed a state-aware algorithm to prove an upper bound on

the topological stability ratio �TS, we also prove a bound on the topological stability

ratio of clairvoyant algorithms. A clairvoyant algorithm can simply emulate a state-

aware algorithm, by only looking ahead in time. On the other hand, the method

we describe to prove a lower bound on �TS for state-aware algorithms, shows that

every topologically stable algorithm requires an r-approximation. Thus we prove a

stronger statement than required: even a clairvoyant algorithm cannot do better.

▶ 2.4.2 Topological stability of EMSTs

We use the same setting of the kinetic EMST problem as in Section 2.3.2, except

that we do not restrict the trajectories of the points and we do not normalize the

coordinates. We merely require that the trajectories are continuous. To de�ne this

properly, we need to de�ne a topology on the input space, but for a kinetic point

set with n points in d dimensions we can simply use the standard topology on ℝdn

as  . To apply topological stability analysis, we also need to specify a topology on

the (discrete) solution space. As the points move, the minimum spanning tree may

have to change at some point in time by removing one edge and inserting another

edge. We do not consider this operation to be stable, since the edge can reinserted

anywhere in the tree. Instead we de�ne the topology of  using a �ip graph, where

the operations are either edge slides or edge rotations [3, 50, 82] (see Figure 2.7). The

optimization function f , measuring the quality of the EMST, is naturally de�ned for

the vertices of the �ip graph as the length of the spanning tree, and we use linear

interpolation to de�ne f on the edges of the �ip graph. For edge slides and rotations

we provide upper and lower bounds on �TS(EMST,  ,  ).
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x

e

e′

C

Figure 2.8 A configuration where x is the longest edge when sliding from e to e′.

Edge slides An edge slide is de�ned as the operation of moving one endpoint of

an edge to one of its neighboring vertices along the edge to that neighbor. More

formally, an edge (u, v) in the tree can be replaced by (u, w) if w is a neighbor of v
and w ≠ u. Since this operation is very local, we consider it to be stable. Note that a

tree stays connected after edge slides.

2.4.1 Lemma. If  is de�ned by edge slides, then �TS(EMST,  ,  ) ≤ 3
2 .

Proof. Consider a time where the EMST has to be updated by removing an edge e
and inserting an edge e′, where |e| = |e′|. Note that e and e′ form a cycle C with

other edges of the EMST. We now slide edge e to edge e′ by sliding its endpoints

along the edges of C . Let x be the longest intermediate edge when sliding from e
to e′ (see Figure 2.8). To allow x to be as long as possible with respect to the length

of the EMST, the EMST should be fully contained in C . By the triangle inequality

we get that 2|x| ≤ |C|. Since the length of the EMST is OPT = |C| − |e|, we get that

|x| ≤ OPT /2 + |e|/2. Thus, the length of the intermediate tree is |C| − 2|e| + |x| =
OPT−|e| + |x| ≤ 3

2 OPT. □

2.4.2 Lemma. If  is de�ned by edge slides, then �TS(EMST,  ,  ) ≥ �+1
� ≈ 1.318.

Proof. Consider a point in time where the EMST has to be updated by removing

an edge e and inserting an edge e′, where |e| = |e′| is very small. Let the remaining

points be arranged in a circle with diameter d , as shown in Figure 2.9a. Furthermore,

let OPT be the length of the EMST, then we get that OPT < d� , since OPT cannot

form a cycle around the circle. Simply using edge slides to move e toward e′ will

always grow e to be length at least d − ". We can make this construction for any

" > 0 by using su�ciently many points around the circle and consequently making

e and e′ arbitrarily short. Alternatively, e can take a shortcut by sliding over another

edge e∗ as a chord (see Figure 2.9b). Doing so would require e∗ to �rst slide into

this position. The shortcut is only bene�cial if |e| + |e∗| < d − ". However, if e∗
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e′

e

(a) Edge e slides to e′ and becomes the di-

ameter of the circular configuration.

e′

e

e∗
> �

(b) Sliding edge e∗ to form a chord creates

an even longer spanning tree.

Figure 2.9 This configuration is a (�+1� − ")-approximation of the EMST.

helps e to avoid becoming a diameter of the circle, then e and e∗, as chords, must

span an angle larger than � together. As a result, for a circle of diameter d , we get

|e| + |e∗| ≥ d > d − " by triangle inequality.

A motion of the points that forces e to slide to e′ in this particular con�guration

looks as follows. The points start at e and move at constant speed along the circle,

half of the points clockwise and the other half counter clockwise. The speeds are

assigned in such a way that at some point all points are evenly spread along the

circle. Once all points are evenly spread, they start moving towards e′, again along

the circle. Any edge sliding from e to e′ during the motion must have length d − "
at some point throughout the motion. On the other hand, OPT is largest when the

points are evenly spread along the circle. Let the circle have diameter d , then OPT
has length at most d� − |e|, and equivalently d ≥ OPT /� + |e|. Since we argued that

the sliding edge will always have length d −" at some point, the largest intermediate

solution has length at most OPT−|e| + d − ". Thus, for any small constant " > 0, we

show that �TS(EMST,  ,  ) ≥ OPT−|e|+d−"
OPT ≥ OPT+OPT /�−"

OPT ≥ �+1
� − " ≈ 1.318 − ". □

Edge rotations Edge rotations are a generalization of edge slides, that allow one

endpoint of an edge to move to any other vertex. These operations are clearly not

as stable as edge slides, but they are still more stable than the deletion and insertion

of arbitrary edges.
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e

e′

x

u v

u′ v′

C

(a) If one part of C is small enough, then

we can rotate one endpoint of e di-

rectly to one endpoint of e′.

e

e′

u v

u′ v′

eReL

uR

vRvL

uL

C

(b) Potential intermediate edges when ro-

tating edge e to e′ using two edge ro-

tations.

Figure 2.10 Potential intermediate edges when rotating e to e′.

2.4.3 Lemma. If  is de�ned by edge rotations, then �TS(EMST,  ,  ) ≤ 4
3 .

Proof. Consider a time where the EMST has to be updated by removing an edge

e = (u, v) and inserting an edge e′ = (u′, v′), where |e| = |e′|. Note that e and e′ form

a cycle C with other edges of the EMST. We now rotate edge e to edge e′ along some

of the vertices of C . Let x be the longest intermediate edge when optimally rotating

from e to e′. To allow x to be as long as possible with respect to the length of the

EMST, the EMST should be fully contained in C . We argue that |x| ≤ OPT /3 + |e|,
where OPT is the length of the EMST. Removing e and e′ from C splits C into two

parts, where we assume that u and u′ (v and v′) are in the left (right) part. First

assume without loss of generality that the left part has length at most OPT /3. Then

we can rotate e to (u, v′), and then to e′, which implies that |x| = |(u, v′)| ≤ OPT /3+|e|
by the triangle inequality (see Figure 2.10(a)).

Now assume that both parts have length at leastOPT /3. Let eL = (uL, vL) be the edge

in the left part that contains the midpoint of that part, and let eR = (uR , vR) be the

edge in the right part that contains the midpoint of that part, where uL and uR are

closest to e (see Figure 2.10(b)). Furthermore, let Z be the length of C ⧵ {e, e′, eL, eR}.

Now consider the potential edges (u, vR), (v, vL), (u′, uR), and (v′, uL). By the triangle

inequality, the sum of the lengths of these edges is at most 4|e|+2|eL|+2|eR |+Z . Thus,

one of these potential edges has length at most |e| + |eL|/2 + |eR |/2 + Z/4. Without loss

of generality let (u, vR) be that edge (the construction is fully symmetric). We can
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e′

e

Figure 2.11 Lower bound construction for edge rotations.

now rotate e to (u, vR), then to (u′, vR), and �nally to e′. As each part of C has length

at most 2OPT /3, we get that |(u′, vR)| ≤ OPT /3 + |e| by construction. Furthermore

we have that OPT = |e| + |eL| + |eR | + Z . Thus, |(u, vR)| ≤ |e| + |eL|/2 + |eR |/2 + Z/4 =
OPT /3+2|e|/3+|eL|/6+|eR |/6−Z/12. Since e needs to be removed to update the EMST,

it must be the longest edge in C . Therefore |(u, vR)| ≤ OPT /3 + |e|, which shows that

|x| ≤ OPT /3 + |e|. Since the length of the intermediate tree is OPT−|e| + |x| ≤ 4
3 OPT,

we obtain that �TS(EMST,  ,  ) ≤ 4
3 . □

2.4.4 Lemma. If  is de�ned by edge rotations, then, �TS(EMST,  ,  ) ≥ 10−2
√
2

9−2
√
2 ≈ 1.162.

Proof. Consider a point in time where the EMST has to be updated by removing an

edge e and inserting an edge e′. Let the remaining points be arranged in a diamond

shape as shown in Figure 2.11, where the side length of the diamond is 2, and |e| =
|e′| = 1. As a result, the distance between an endpoint of e and the left or right corner

of the diamond is 2 − 1
2
√
2. Now we de�ne a top-connector as an edge that intersects

the vertical diagonal of the diamond, but is completely above the horizontal diagonal

of the diamond. A bottom-connector is de�ned analogously, but must be completely

below the horizontal diagonal. Finally, a cross-connector is an edge that crosses or

touches both diagonals of the diamond. Note that a cross-connector has length at

least 2, and a top- or bottom-connector has length at least |e| = 1. In the considered

update, we start with a top-connector and end with a bottom-connector. Since we

cannot rotate from a top-connector to a bottom-connector in one step, we must

reach a state that either has both a top-connector and a bottom-connector, or a

single cross-connector. In both options the length of the spanning tree is equal to

four times 2− 12
√
2, plus the connector(s) of length at least 2. This gives a total length

of 10 − 2
√
2, while the minimum spanning tree has no cross-connector, but a single

top- or bottom-connector and hence a total length of 9 − 2
√
2.
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To force the update from e to e′ in this con�guration, we can use the following

motion. The points start at the endpoints of e and move with constant speeds to a

position where the points are evenly spread around the left and right corner of the

diamond. Then the points move with constant speeds to the endpoints of e′. The

argument above still implies that we need edges of total length at least 2 intersecting

the vertical diagonal of the diamond at some point during the motion. On the other

hand, OPT ≤ 9 − 2
√
2 throughout the motion. Thus �TS(EMST,  ,  ) ≥ 10−2

√
2

9−2
√
2 ≈

1.162. □

▶ 2.5 Lipschitz stability
The major drawback of topological stability analysis is that it still does not fully

capture stable behavior; the algorithm must be continuous, but we can still make

many changes to the solution in an arbitrarily small time frame. In Lipschitz stability

analysis we additionally limit how fast the solution can change.

▶ 2.5.1 Lipschitz stability analysis

To formally de�ne Lipschitz stability, we return to the continuous setting in Sec-

tion 2.1. Let Π be an optimization problem with input instances from the set ,

solutions from the set  , and optimization function f . An input I ∶ [0, 1] → 
is a continuous path through input space  and an algorithm  maps I (t) ∈ 
to a solution S(t) ∈  for each time t ∈ [0, 1]. To quantify how fast a solution

changes as the input changes, we need to specify metrics d and d on  and  ,

respectively. An algorithm  is K -Lipschitz stable if St() ≤ K , where St() is

de�ned as in Equations 2.4 and 2.5. For an output S of a K -Lipschitz stable algo-

rithm, this means that we bound how quickly S can change relative to input I . In

particular, if we consider two times t, t′ ∈ [0, 1], then for this output S it holds that

Δ (S(t), S(t′)) ≤ KΔ (I (t), I (t′)), where Δ and Δ measure the distance traveled in

solution and input space, respectively. Figure 2.12 gives an overview the above.

Note that by de�ning K -Lipschitz stability using Equation 2.4, we require that, for

bounded K , a solution S does not change unless input I also changes. However,

we can instead use the de�nition of stability in Equation 2.6. Using that de�nition

with the assumption that the input changes with at most unit speed (e.g., points

moving with unit speed), allows the solution S to change with speed at most K . This

assumption is common in computational geometry, and we use it in Chapter 4 to

perform K -Lipschitz stability analysis.
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I (t)
S(t)

I (t′)
S(t′)

 

I

Δ (S(t), S(t′)) ≤ K ⋅ Δ (I (t), I (t′))

S

Figure 2.12 Algorithm  maps input instances from input space  to solution

space  . The metrics d and d allow us measure the distance trav-

eled in input (Δ ) and output (Δ ).

Let  be the set of continuous paths through . We are again interested in the

approximation ratio �LS of any K -Lipschitz stable algorithm with respect to OPT.

We call this ratio the Lipschitz stability ratio, which is de�ned as

�LS(Π, K, d , d ) = inf
sup
I ∈

sup
t∈[0,1]

f (I (t), S(t))
f (I (t), OPT(I (t)))

(2.9)

where the in�mum is taken over all K -Lipschitz stable algorithms. It is easy to

see that �LS(Π, K, d , d ) is lower bounded by �TS(Π,  ,  ) for the corresponding

topologies  and  of d and d , respectively.

As mentioned in Section 2.1, analyses of this type are often di�cult. First, we need to

be very careful when choosing metrics the d and d , as they should behave similarly

with respect to scale. For example, let the input consist of a set of points in the plane

and let cI for I ∈  be the instance obtained by scaling all coordinates of the points

in I by the factor c. Now d depends linearly on scale, that is d (cI , cI ′) ∼ cd (I , I ′).
Moreover, assume that d is independent of scale. If we now scale the input instance,

we change the relative speed between changes in the input and changes in the

solution. Thus without scale invariance, the analysis is rendered meaningless.

Second, we need to be careful with discrete solution spaces. Using the �ip graphs

as mentioned in Section 2.4 we can extend a discrete solution space to a continuous

space by including the edges. However, it is not always straightforward to extend

d over the edges of the �ip graph: the distance between (combinatorial) solutions,

which are represented by vertices in the �ip graph, and between intermediate solu-
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tions, on the edges of the �ip graph, can change as the input moves. In Section 2.5.2,

we show how to overcome this problem for EMSTs, by carefully de�ning d .

Typically we expect it to be hard to fully describe �LS(Π, K, d , d ) as a function of

K . However, it may be possible to obtain interesting results for certain values of

K . One value of interest is the value of K for which the approximation ratio equals

or approaches the approximation ratio of the corresponding topological stability

analysis. Another potential value of interest is the value of K below which any K -

Lipschitz stable algorithm performs asymptotically as poorly as a constant algorithm,

always computing the same solution regardless of instance.

▶ 2.5.2 Lipschitz stability of EMSTs

We use the same setting of the kinetic EMST problem as in Section 2.4.2, except

that, instead of topologies, we specify metrics for  and  . For d we can simply

use the metric in Equation 2.7, which implies that points move with a bounded

speed. For d we use a metric inspired by the edge slides of Section 2.4.2. To that

end, we need to de�ne how long a particular edge slide takes, or equivalently, how

“far” an edge slide is. To make sure that d and d behave similarly with respect

to scale, we let d measure the distance the sliding endpoint has traveled during

an edge slide. However, this creates an interesting problem: the edge on which the

endpoint is sliding may be moving and stretching/shrinking during the operation.

This in�uences how long it takes to perform the edge slide. We need to be more

speci�c to make this approach work: we de�ne that (1) as the points are moving,

the relative position (between 0 and 1 from starting endpoint to �nishing endpoint)

of a sliding endpoint is maintained without cost in d , and (2) d measures the

di�erence in relative position multiplied by the length L(t) of the edge on which the

endpoint is sliding. More tangibly, an edge slide performed by a K -Lipschitz stable

algorithm can be performed in t∗ time such that ∫ t
∗

0
K
L(t)dt = 1, where L(t) describes

the length of the edge on which the endpoint slides as a function of time. Finally,

the optimization function f simply computes a linear interpolation of the cost on

the edges of the �ip graph de�ned by edge slides.

We now give an upper bound onK below which anyK -Lipschitz stable algorithm for

kinetic EMST performs asymptotically as bad as any �xed tree. Given the complexity

of the problem, our bound is fairly crude. We state it anyway to demonstrate the use

of our framework, but we believe that a stronger bound exists. Before we go into

the details, we �rst show the asymptotic approximation ratio of any spanning tree.
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(a) Red and blue points move

in opposite directions.

T

(b) The red edge slides over

stretching edge T .

t

x
T

(c) The length of edge T at

time t is

√
x2 + t2.

Figure 2.13 An instance where any
c

log n -Lipschitz stable algorithm performs

poorly, for small enough constant c > 0.

2.5.1 Lemma. Any spanning tree on a set of n points is an O(n)-approximation of the EMST.

Proof. Let T be an EMST on point set P with total edge length OPT. Additionally

let u, v ∈ P , and observe that the path along T from u to v is at least the Euclidean

distance between u and v, ‖u, v‖ ≤ pathT (u, v). Furthermore, any path along an

EMST is at most as long as the total length of an EMST, pathT (u, v) ≤ OPT. If we now

take an arbitrary spanning tree T ′ on the same point set P , then we know that each

edge (u′, v′) in this spanning tree has at most length ‖u′, v′‖ ≤ pathT (u′, v′) ≤ OPT.

Since T ′ has n − 1 edges, its total length is O(n) ⋅ OPT. □

2.5.2 Lemma. Let d be the metric for edge slides, then �LS(EMST, c
log n , d , d ) = Ω(n) for

a small enough constant c > 0, where n is the number of points.

Proof. Consider the instance where n points are placed equidistantly vertically above

each other with distance 1/n between two consecutive points. Now let  be any

(c/ log n)-Lipschitz stable algorithm for the kinetic EMST problem and let T be the

tree computed by  on this point set. We now color the points red and blue based

on a 2-coloring of T . We then move the red points to the left by
1
2 and the blue

points to the right by
1
2 in the time interval [0, 1] (see Figure 2.13a). This way every

edge of T will be stretched to a length of Ω(1) and thus the length of T will be Ω(n).
On the other hand, the length of the EMST in the �nal con�guration is OPT = O(1).
Therefore, we must perform an edge slide (see Figure 2.13b). However, we show

that  cannot complete any edge slide. Consider any edge of T and let x be the

initial (vertical) distance between its endpoints. Then the length of this edge can be

described as L(t) =
√
x2 + t2 (see Figure 2.13c). Now assume that we want to slide

an endpoint over this edge. To �nish this edge slide before t = 1, we require that

∫ 10
c

log n
√
x2+t2

dt ≥ 1. This solves to c log(1/x+
√
1 + 1/x2) ≥ log n. However, since x ≥
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1/n, we get that c log(1/x +
√
1 + 1/x2) ≤ c log(n+

√
1 + n2) < log n for c small enough.

Finally, since one edge slide can reduce the length of only one edge to o(1), the cost

of the solution at t = 1 computed by  isΩ(n). Thus, �LS(EMST, c
log n , d , d ) = Ω(n)

for a small enough constant c > 0. □

▶ 2.6 Conclusion
We presented a framework for algorithm stability, which includes three types of

stability analysis: event stability, topological stability, and Lipschitz stability. The

framework also distinguishes between three models for algorithms on time-varying

data: stateless, state-aware and clairvoyant algorithms. We also demonstrated the

use of this framework by applying the di�erent types of analysis to state-aware algo-

rithms for the kinetic EMST problem, deriving new interesting results. By providing

di�erent types of stability analysis with increasing degrees of complexity, we make

stability analysis for algorithms more accessible. Chapters 3 and 4 show this by pre-

senting more results on the stability of geometric algorithms, for both the k-center

and orientation-based shape descriptor problems.

However, the framework that we presented does not (yet) give a complete picture:

we do not consider the algorithmic aspect of stability, which gives insights into the

trade-o�s with running time. For example, can we develop a clairvoyant algorithm

to e�ciently compute a stable function of solutions over time that is optimal with

regard to solution quality? Or, in a more restricted sense, can we e�ciently compute

one solution that is best for all inputs over time? Even for state-aware algorithms we

can consider designing e�cient algorithms that are K -Lipschitz stable and perform

well with regard to solution quality. The latter question is further explored in Chap-

ter 4, we analyze K -Lipschitz stable state-aware algorithms for orientation-based

shape descriptors. We develop a clairvoyant algorithm to compute a topological

stable solution to the k-center problem in Chapter 3.

Additionally, there are still many problems left open for the kinetic EMST problem.

Future work could focus on the algorithmic models other than state-aware algo-

rithms. However, for state-aware algorithms we could strive to tighten the bounds

on the topological stability ratio for both edge slides and rotations. We would also

like to extend our results on the Lipschitz stability of kinetic EMSTs, by considering

K -Lipschitz stable solutions for di�erent values of K . A description of the Lipschitz

stability ratio as a function of K would be the ultimate goal.
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Kinetic k-Centers

In the previous chapter, we introduced a framework for algorithm stability. We will

apply our framework to facility location problems in this chapter, speci�cally, to

variations of the kinetic k-center problem. The k-center problem asks for a set of

k shapes (e.g. disks) that cover a given set of n points, such that the radii of the

shapes are as small as possible. The problem can be interpreted as placing a set of

k facilities (e.g. stores) such that the distance from every point (e.g. client) to the

closest facility is minimized. While this usually means that the maximum distance

between point and facility is minimized, we also consider variations in which the

sum of distances between points and the closest facilities are minimized.

Since the introduction of the k-center problem by Sylvester [105], the problem has

been widely studied and has found many applications in practice, for example, in

urban planning where a limited number of facilities should be available to all citizens

in a reasonable radius around their homes. The complexity of the k-center problem

varies with the function used to measure the distance between facilities and input

points. The most commonly used variants of the problem are the Euclidean and

rectilinear k-center problem, which measure distances under the �2 norm and the

�∞ norm, respectively. In these variants, the shapes in a solution are disks and axis-

aligned squares, respectively. Although the k-center problem is NP-hard in both

settings, if k is part of the input [76], e�cient algorithms have been developed for

small k. Using rectilinear distance, the problem can be solved in O(n) time [34, 62,

102] for k = 2, 3 and in O(n log n) time [84, 99] for k = 4, 5. The problem becomes
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Figure 3.1 A small change in point positions causes a large change in the smallest

2 covering disks.

harder when using Euclidean distance, and the currently best known algorithm for

Euclidean 2-centers runs in O(n log2 n(log log n)2) time [26].

In the kinetic version of the k-center problem, the input points are moving. This

problem �nds a lot of practical applications in, for example, mobile networks and

robotics. A number of kinetic data structures have been developed for maintaining

(approximate) k-centers [31, 43, 45, 46]. In many practical applications, the disks in

the solution should move smoothly as the input points are moving smoothly. For

example, this is the case when the disks in the solution represent objects in the

physical world such as the mobile hotspots considered in Chapter 1, or if the shapes

are used to represent groups of animals in a time-varying visualization. Stability is

therefore of utmost importance for the k-center problem, as small changes in the

input should lead to small changes to the disks. The optimal k-center may exhibit

discontinuous changes as points move: the disks in an optimal solution do not follow

continuous trajectories, as can be seen in Figure 3.1. This makes the k-center problem

a perfect candidate for �nding trade-o�s between solution quality and stability.

In computational geometry there are a few results on the trade-o� between solution

quality and stability, and almost all of them concern the facility location problems.

Speci�cally, the stability of kinetic 1-center and 1-median problems has been studied

by Bespamyatnikh et al. [13, 17, 16]. These problems ask to �nd the mean/median

position for a set of moving points. They showed that the speed at which the cen-

ter/median point moves is higher than the speed of the input points. Futhermore,

they developed various approximations by �xing the speed of the center/median

point and provide results on the trade-o� between solution quality and speed. A

simple example of such an approximation is the rectilinear 1-center, which approx-

imates the Euclidean 1-center, and moves with speed at most

√
2 when the input

moves at unit speed. Durocher and Kirkpatrick [36, 37] studied the stability of the
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Figure 3.2 An instance for k = 3 with unbounded Lipschitz stability.

kinetic Euclidean 2-center problem, for which the center points can undergo dis-

continuous movement. They showed that an approximation ratio of 8/� ≈ 2.55 can

be maintained when the disks can move with speed 8/� + 1 ≈ 3.55. Similarly, in

the black-box KDS model, de Berg et al. [14] showed an approximation ratio of 2.29
for Euclidean 2-centers with maximum speed 4

√
2. In our framework, these exist-

ing results would be classi�ed as analyzing the Lipschitz stability of state-aware

algorithms for the k-center problem with k = 1, 2.

In this chapter, we continue this line of research and analyze the stability of the

k-center problem for k > 2. For k-centers with k > 2, no approximation factor

can be guaranteed with disks of any bounded speed, as shown by Durocher and

Kirkpatrick [35]. Figure 3.2 shows an instance that requires in�nite speed of the disk

centers for k = 3. In Figure 3.2a we see point a and b moving closer, and c and d
moving apart. When the distance between a and b becomes less than the distance

between c and d , one of the disks covering a or b has to move to c or d , to keep the

radius of the disks minimal. The resulting solution can be seen in Figure 3.2b. Since

the distance between a, b and c, d can be arbitrarily large, either a disk has to move

with arbitrarily high speed, or, given bounded speed, the radius of the disk has to be

arbitrarily large to ensure that all points are covered at all times. This con�guration

can occur in any instance of the k-center problem for k ≥ 3, hence the K -Lipschitz

stability ratio of the k-center problem may be unbounded for any bounded K .

The previous example shows that it is impossible to improve the Lipschitz stability

of the k-center problem for k > 2. However, in our framework we de�ned topological

stability as a less restrictive version of Lipschitz stability, to still be able to analyze

stability whenever Lipschitz stability is unachievable: in contrast to Lipschitz stabil-

ity, there is no bound on the speed at which the output can change for topological

stability. Before we can analyze the topological stability of the k-center problem, we

must �rst de�ne an optimization function. In this chapter, we consider four variants

of the k-center problem, each with a unique optimization function.
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k-center variants An instance of the k-center problem is characterized by three

choices: the number k of covering shapes, the geometry of the covering shapes and

the criterion that measures solution quality. In this chapter, we consider two types of

covering shapes: (a) in the Euclidean model, the covering shapes are disks; (b) in the

rectilinear model, the shapes are axis-aligned squares. The radius of a covering shape

is the distance from its center to its boundary, under the �2 norm for the Euclidean

model and the �∞ norm for the rectilinear model. Furthermore, we distinguish two

criteria: (a) in the minmax model, the quality of a solution is the maximum radius

of its covering shapes, and the optimization criterion is to minimize this maximum

radius; (b) in the minsum model, the quality of a solution is the sum of radii of all k
covering shapes, and the optimization criterion is to minimize this sum of radii.

The above results in four variants of the problem that can be de�ned for any k ≥ 2.
We use the notation k-EC and k-RC to denote the Euclidean and rectilinear k-centers

problem, and append either -minmax or -minsum to indicate the quality criterion.

Topological stability In the context of the k-centers problem, topological sta-

bility is determined by the following parameters. Let  denote the input space

of n (stationary) points in ℝ2 and k
the solution space of all con�gurations of k

disks or squares of varying radii. Let Π denote the k-center problem with criterion

f ∶  × k → ℝ (minmax or minsum). We call a solution in k
valid for an in-

stance in  if it covers all points of the instance. An optimal algorithm OPT maps

an instance of  to a solution in k
that is valid and minimizes f .

We capture the continuous motion of points in a topology  , here chosen as the

standard topology on ℝ2n , and we capture the continuity of solutions in a topology

 k
 , of k disks or squares with continuously moving centers and radii. Remember

that a topologically stable algorithm  maps a path I in  to a path S in  k
 .

Results and organization In Section 3.1, we prove various bounds on the topo-

logical stability of state-aware algorithms for the k-center problem. Starting with

k-EC-minmax, the topological stability ratio is

√
2 for k = 2, while for arbitrary k,

we prove an upper bound of 2 and a lower bound that converges to 2 as k tends

to in�nity. For small k, we show an upper bound strictly below 2 as well. For the

other three variants, the stability ratio is exactly 2 for any k ≥ 2. In Section 3.2,

we provide a clairvoyant algorithm to compute a topologically stable solution for

an instance of the kinetic k-center problem in polynomial time for constant k. The

approximation ratio of such a solution is generally better than the generic bounds

we prove in Section 3.1.
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▶ 3.1 Bounds on topological stability

As illustrated in Figure 3.1, some point sets have more than one optimal solution.

Recall from Chapter 2 that if we can transform an optimal solution into another, by

growing the covering disks or squares at most (or at least) a factor r , we immedi-

ately obtain an upper bound (or respectively a lower bound) of r on the topological

stability. To analyze the topological stability of the k-center problem, we therefore

start with an input instance for which there is more than one optimal solution, and

continuously transform one optimal solution into another. This transformation al-

lows the centers to move along a continuous path, while their radii can grow and

shrink continuously. At any point during this transformation, the intermediate solu-

tion should cover all points of the input. The maximum approximation ratio r that

we need for such a transformation, gives a bound on the topological stability ratio.

We can simply consider the input to be static during the transformation, since for

topological stability the solution can move arbitrarily fast.

Before analyzing topological stability, we �rst introduce some tools to help us model

and reason about these transformations. We then focus on the Euclidean minmax

case, and �nally, we consider the minsum and rectilinear cases.

2-colored intersection graphs Consider a point set P and two sets of k convex

shapes (disks, squares, ...), such that each set covers all points in P : we use R to

denote the one set (red) and B to denote the other set (blue). We now de�ne the

2-colored intersection graph GR,B = (V , E): each vertex represents a shape (V = R ∪ B)

and is either red or blue; E contains an edge for each pair of di�erently colored,

intersecting shapes. A 2-colored intersection graph always contains equally many

red nodes as blue nodes, as there are k shapes of each color. The shapes of both

colors in a 2-colored intersection graph must cover all points: points may only be

in the area of intersection between a blue and red shape, otherwise a point is not

covered by one of the two colors. In the remainder, we use intersection graph to refer

to 2-colored intersection graphs. Furthermore, we refer to the intersection graph as

an intersection forest, if the underlying graph is a forest.

3.1.1 Lemma. An intersection forest has at least one node of degree at most 1 of each color.

Proof. Let F be an intersection forest. We prove that F has at least one red node of

degree at most 1; the blue case is symmetric. Since F contains equally many blue

and red nodes, there must be a tree T in F having at least as many red nodes as blue

nodes. To arrive at a contradiction, assume that T has only blue leaves.
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We decompose T into paths as follows. Pick an arbitrary leaf as a root. Partition the

nodes of T into paths such that each path starts at a nonroot leaf, e.g. by running a

BFS from each such leaf simultaneously following edges towards the root or using

a heavy-path decomposition. Because T is part of an intersection graph, each path

alternates between red and blue nodes. Hence, the path ending at the root, starting

and ending at a blue leaf, has one more blue node than red nodes; the other paths

cannot have more red nodes than blue nodes, since at least one endpoint is a leaf

and thus blue. Now, T has more blue than red nodes, which contradicts that T has

at least as many red as blue nodes. Thus, T cannot have only blue leaves. □

3.1.2 Lemma. Consider two sets R and B of k convex translates each covering a point set P .
If intersection graph GR,B is a forest, then R can morph onto B without increasing the

shape size, while covering all points in P .

Proof. We prove this lemma by induction on k. For the base case, k = 0, intersection

graph GR,B is empty and thus morphing all red shapes onto blue shapes is trivial.

For k > 0, we reason as follows. Since GR,B is a forest, Lemma 3.1.1 tells us that there

is a red node r with degree at most 1. If r has degree 1, then its one neighbor b must

be a blue node; if r has degree 0, then we pick any blue node b. We morph r onto

b by linearly moving the center of r to the center of b. Since r and b are convex

translates, this covers their intersection at all times. Now, the new position of the

red shape covers any point originally covered by r or b. Consider R′ = R ⧵ {r} and

B′ = B ⧵ {b}. These sets have size k − 1 and de�ne an intersection forest GR′,B′ with

k − 1 shapes. The induction hypothesis readily tells us that there is a morph from R′

into B′ without increasing their size. The morph of r onto b, followed by the morph

of the smaller instance yields us a morph from R to B. □

Euclidean minmax case We are now ready to analyze the Euclidean minmax

case. Without loss of generality, we assume here that the disks all have the same

radius. We �rst need a few results on (static) intersection graphs, to argue later

about topological stability.

3.1.3 Lemma. Let R and B to be optimal solutions to a point set P for k-EC-minmax. Assume

the intersection graph GR,B has a 4-cycle with a red degree-2 vertex. To transform R in

such a way that GR,B misses one edge of the 4-cycle, while covering the area initially
covered by both sets, it su�ces to increase the disk radius of a red disk by a factor

√
2.

Proof. To morph from R to B, a red disk r1 has to grow to cover the intersection of

an adjacent blue disk b with the other (red) neighbor r2 of b. Once r1 has grown to

overlap the intersection between a blue disk and r2, r2 no longer has to cover this
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(a) Angle � occurs at a blue disk b. Red disk r1
can grow to radius x + 1 to also cover the

overlap between b and r2.

�

(b) Angle � occurs at a red disk.

Figure 3.3 The smallest angle � occurs in a cycle of overlapping disks.

intersection and can be treated as a degree-1 vertex in GR,B . The intersection graph

no longer has the 4-cycle now.

As we have a 4-cycle of intersections, a, b, c, d , we either have to cover both a and c
while covering d or b, or we have to cover b and d while covering either a or c. Let

pa ∈ a and pc ∈ c be the pair of points whose distance is the longest of any pair from

a and c, and similarly pb ∈ b and pd ∈ d for b and d . We claim that distance (pa , pc )
or (pb , pd ) is shorter than 2

√
2. Assume that distance (pa , pc ) > 2

√
2, otherwise we

are done. Since the disks have radius 1, distances (pa , pb), (pb , pc ), (pc , pd ), (pd , pa) are

at most 2. Our assumption on (pa , pc ) now implies that the distance from either pb
or pd to the middle of the line between pa and pc is shorter than

√
2. By the triangle

inequality, distance (pb , pd ) is now shorter than 2
√
2.

Assume without loss of generality that (pa , pc ) is shorter than 2
√
2 and that pa and pb

are covered by a red disk with only two overlaps. Combining this with the fact that

(pa , pb), (pb , pc ) are at most 2, we can conclude that triple (pa , pb , pc ) can be covered

by growing the red disk with only two overlaps to radius

√
2. □

3.1.4 Lemma. Let R and B to be optimal solutions to a point set P for k-EC-minmax. Assume

the intersection graph GR,B has only degree-2 vertices. To transform the disks of R onto

B, while covering the area initially covered by both sets, it is su�cient to increase the

disk radius by a factor (1 +
√
1 + 8 cos2( �2k )) /2.

Proof. As the problem is invariant under scaling, we assume without loss of gener-

ality that the radii of disks are 1. To morph from R to B, a red disk r1 has to grow to
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cover the intersection of an adjacent blue disk b with the other (red) neighbor r2 of

b (see dashed red disk in Figure 3.3). Instead of growing r1 to tightly cover the two

intersections b has with its neighbors, we grow r1 to fully cover its initial disk and

the intersection between b and r2. As a result, we now have to consider only r1, b, r2
without concerning ourselves with the other neighbor of r1 or r2.

Let r1 be the red disk that has to grow the least, of all red disks in our instance. Let

0 ≤ d1, d2 ≤ 2 be the distance between the centers of r1 and b and between r2 and

b respectively. We know that d1 ≤ d2, as otherwise r2 has to grow less than r1 to

cover the other intersection of b. However, if d2 is smaller, the intersection between

b and r2 is larger so r1 may have to grow more. We can therefore conclude that in

the worst case d1 = d2 = d .

We use � to denote the angle at the center point of b (see Figure 3.3a). Larger values

of � readily lead to a higher maximum radius for stretching r1. Since GR,B is a

cycle, the 2k disk centers thus form the vertices of a simple polygon and we �nd

that � ≤ �(k−1)
k . The boundaries of b and r2 intersect in at least one point; we are

interested in the point i that is the furthest away from the center point of r1. Let

� denote the angle at the center of b between rays towards i and the center of r2.
We know that cos(�) = d/2. The distance x between i and the center of r1 can be

found using the Law of Cosines: x2 = d2 + 12 − 2d cos(� + �). The diameter of r1
when overlapping its initial area and the intersection between b and r2 is 1+x . If the

described con�guration occurs only with the smallest angle � at a red disk (instead

of at a blue disk as in our construction), the red disk can grow to overlap both its

intersections and fully cover one of the blue disks adjacent to it. This also results in

a disk with diameter 1 + x that allows us to break the cycle. Figure 3.3b shows this

con�guration.

Since d1 = d2 = d , the problem is fully symmetric and r1 has an equivalent of point

i under the same angle � . Since all points covered by b are in the intersections

with r1 and r2, the angle � + 2� must enclose a diametrical pair for b to be an

optimal disk, thus we �nd � + 2� ≥ � . As spanning more than the diametrical

pair only forces d to become smaller, we �nd that in the worst case, this is in fact

an equality and we get � = � 1
2k . Hence, � + � = � − � and we can derive that

cos(� + �) = cos(� − �) = − cos(�). Since. d = 2 cos(�) we can conclude that

1 + x ≤ 1 +
√
1 + d2 − 2d cos(� + �) ≤ 1 +

√
1 + 8 cos2( �2k ). The diameter of r1 after

growing is exactly 1 + x , thus its radius is exactly half this expression. □
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Figure 3.4 Lower bound construction for the stable minmax Euclidean k-center

problem, shown for k = 2, 3, 4. The optimal solution changes from the

red to the blue solution. To break the cycle one of the red disks has to

grow to the dashed red disk.

3.1.5 Lemma. Let R and B be optimal solutions to a point set P for k-EC-minmax. Assume

the intersection graph GR,B has only degree-2 vertices. To transform the disks of R onto

B, while covering the area initially covered by both sets, it may be necessary to increase

the disk radius by a factor 2 sin(�(k−1)2k ).

Proof. Consider a point set of 2k points, positioned such that they are the corners of

a regular 2k-gon with unit radius, i.e., equidistantly spread along the boundary of a

unit circle. There are exactly two optimal solutions for these points (see Figure 3.4).

To morph from R to B, one of the red disks r1 has to grow to cover the intersection

of an adjacent blue disk b with the other (red) neighbor r2 of b (see dashed red disk

in Figure 3.4). Since the points are all at equal distance from each other on a unit

circle, they are the vertices of a regular 2k-gon. The diameter of the disks in our

optimal solution equals the length of a side of this regular 2k-gon. This means that a

red disk has to grow such that its diameter is equal to the distance between a vertex

of the 2k-gon and a second-order neighbor. Hence, the radius of r1 has to grow to

with a factor 2 sin(�(k−1)2k ). Once r1 has grown to overlap the intersection between

b and r2, r2 no longer has to cover the points in the intersection and can be treated

as a degree-1 vertex in GR,B . Since that makes the intersection graph a tree, we can

morph R into B without further increasing the radii using Lemma 3.1.2. □
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We are now ready to prove bounds on the topological stability of the k-EC-minmax

problem for moving points. The upcoming lemmata establish the following theorem.

3.1.6 Theorem. For k-EC-minmax, we obtain the following bounds:

• �TS(2-EC-minmax,  ,  2
 ) =

√
2

•

√
3 ≤ �TS(3-EC-minmax,  ,  3

 ) ≤ (1 +
√
7)/2

• 2 sin(�(k−1)2k ) ≤ �TS(k-EC-minmax,  ,  k
 ) ≤ 2 for k > 3.

3.1.7 Lemma. �TS(k-EC-minmax,  ,  k
 ) ≤ 2 for k ≥ 2.

Proof. Consider a point in time t where there are two optimal solutions; let R denote

the solution that matches the optimal solution at t − " and B the solution at t + "
for arbitrarily small " > 0. Let C be the maximum radius of the disks in R and in

B. Furthermore, let intersection graph GR,B describe the above situation. First we

make a maximal matching between red and blue vertices that are adjacent in GR,B ,

implying a matching between a number of red and blue disks. The intersection

graph of the remaining red and blue disks has no edges, and we match these red and

blue disks in any way.

We �nd a bound on the topological stability as follows. All the red disks that are

matched to blue disks they already intersect, grow to overlap their initial disk and

the matched blue disk. Now the remaining red disks can safely move to the blue

disks they are matched to, and adjust their radii to fully cover the blue disks. Each

blue disk is now fully covered by the red disk that it was matched to. Finally, all red

disks shrink to match the size of the matched blue disk to �nish the morph. When

all the red disks are overlapping blue disks, the maximum of their radii is at most

2C , since each red disk grows by at most the radius of the matched blue disk. □

3.1.8 Lemma. �TS(k-EC-minmax,  ,  k
 ) ≥ 2 sin(

�(k−1)
2k ) for k ≥ 2.

Proof. The bound readily follows from Lemma 3.1.5, if we can show that a set of

moving points can force the exact same swap to happen. To this end, consider

the 2k points in the construction to move at unit speed along tangents of the unit

circle, which de�ne the point placement. The direction of the points is alternately

clockwise and counterclockwise with respect to the circle. We use t to indicate the

time at which the points are in the positions needed for Lemma 3.1.5 (see Figure 3.4).

To see that this morph has to happen at time t , consider the following. At some

time t′ before t , the pairs of points covered by the red disks in the construction

at time t , are all coinciding: hence the optimal solution then has maximum radius
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0; to not violate our bound, we must have this solution at that time. Morphing R
into B between t′ and t requires a red disk to grow its radius more than a factor

2 sin(�(k−1)2k ), since the red disks are still smaller than the blue disks, and the next

point to cover is further away. Analogously, we can argue that we must morph to

the blue solution, before a time t′′ at which the pairs covered by blue disks in the

construction coincide. Additionally, the morph cannot happen between t and t′′,
since this requires a radius more than a factor 2 sin(�(k−1)2k ) larger than optimal. We

conclude that the morph has to happen at time t and thus requires the maximum

radius to grow by a factor 2 sin(�(k−1)2k ). □

3.1.9 Lemma. �TS(2-EC-minmax,  ,  2
 ) =

√
2.

Proof. The lower bound follows directly from Lemma 3.1.8 by using k = 2. For the

upper bound, consider a point in time t where there are two optimal solutions; let

R denote the solution that matches the optimal solution at t − " and B the solution

at t + " for arbitrarily small " > 0. If GR,B is a forest, Lemma 3.1.2 applies and we

do not need to increase the maximum radius during the morph. If GR,B contains a

cycle, the entire graph must be a 4-cycle. Lemma 3.1.3 gives an upper bound of

√
2

for transforming GR,B from a 4-cycle into a tree. Finally, we can morph R into B
without further increasing the maximum radius using Lemma 3.1.2. □

3.1.10 Lemma.
√
3 ≤ �TS(3-EC-minmax,  ,  3

 ) ≤ (1 +
√
7)/2.

Proof. Consider a point in time t where there are two optimal solutions; let R denote

the solution that matches the optimal solution at t − " and B the solution at t + "
for arbitrarily small " > 0. If intersection graph GR,B is a forest, then Lemma 3.1.2

applies and we do not need to increase the maximum radius during the morph. If

GR,B contains a cycle, then either the entire graph is a 6-cycle, or there are smaller

cycles. If the entire graph is a 6-cycle, the upper bound follows from Lemma 3.1.4

and the lower bound from Lemma 3.1.8.

Consider the case where GR,B contains a cycle, but no 6-cycle. There is at least one

4-cycle. As k = 3, every vertex has degree at most 3. Note that two overlapping

disks can be covered by a single disk without increasing the maximum radius beyond

(1 +
√
7)/2, if 1 + d/2 ≤ (1 +

√
7)/2, where d is the distance between the centers of

the disks. We now distinguish the following cases:

• If there is at most one red degree-3 vertex, every 4-cycle contains at least

one degree-2 red vertex. Therefore, Lemma 3.1.3 can be used to break one

of the 4-cycles by increasing the radius of a red disk by at most

√
2. If GR,B

has another 4-cycle after breaking the �rst one, we can apply Lemma 3.1.3
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d
2 − d

d

Figure 3.5 Multiple red disks overlap three blue disks. The distance between

the center points of the red disks is at most 2 − d , when the distance

between the center points of the red and blue pairs is at least d .

again. However, if breaking the �rst 4-cycle resulted in a 6-cycle, then the

distance between the center points of two adjacent disks in the 4-cycle was

less than

√
2 <

√
7 − 1. We can therefore fully cover this pair of adjacent disks

with the red disk instead of breaking the 4-cycle. We need a radius of at most

1 +
√
2/2 < 1 + (

√
7 − 1)/2 = (1 +

√
7)/2 for this. Since the red disk now covers

all intersections of the blue disk, the resulting intersection graph is a tree.

• If there are two or more red degree-3 vertices, we look at the distances d
between the center points of the overlapping disks. If there is a pair of red

and blue disks for which 1 + d/2 ≤ (1 +
√
7)/2, we can fully cover the blue

disk with the red disk. The remainder of the red disks can now be seen as

vertices of degree-2 or less in the intersection graph. If there is still a 4-cycle,

then Lemma 3.1.3 can be used to break the cycle. If for every pair of red and

blue disks 1 + d/2 > (1 +
√
7)/2 holds, then the centers of the red disks that

overlap the three blue disks can be at most 2 − d away from each other (see

Figure 3.5). We can cover two red disks r1, r2 with a single red disk r1 of radius

1 + (2 − d)/2 < 1 − (1 +
√
7)/4 < (1 +

√
7)/2. We can then freely transform red

disk r2 to a blue disk. Again the remainder of the red disks can now be seen

as vertices of degree-2 or less in the intersection graph. If a 4-cycle remains,

then Lemma 3.1.3 can be used to break the cycle.

In both cases GR,B consists of trees after the changes that were made, thus R can

morph into B without further increasing the maximum radius by Lemma 3.1.2. In

all the above cases we need to grow the maximum radius during the transformation

from R to B by at most a factor (1 +
√
7)/2, in some it is necessary to grow to

√
3. □
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1

(a) The optimal solution (of radius 1)
changes from the solid red to the

dashed blue solution.

2

(b) A red square of radius 2 is re-

quired to cover at least three

points.

Figure 3.6 Lower bound construction for kinetic minmax rectilinear 2-center.

The above proof shows the strengths and weaknesses of the earlier lemmata. While

in many cases we can get close to tight bounds, dealing with high degree vertices

in the intersection graph requires additional analysis. Furthermore, in general we

cannot upper bound the Lipschitz stability ratio [35], but the bounds in Theorem 3.1.6

act as lower bounds for such bounded speed solutions.

Rectilinear and minsum cases We now turn to the remaining cases, for which

the stability ratio is 2 when k ≥ 2. This is captured in the following theorems.

3.1.11 Theorem. �TS(k-RC-minmax,  ,  k
 ) = 2 for k ≥ 2.

Proof. The upper bound readily follows from the argument of Lemma 3.1.7. We

prove the lower bound for k = 2, using that higher values of k cannot lead to a

weaker lower bound.

Consider an instance consisting of four points, two points move with unit speed over

the lines y = 2 and y = −2 respectively, in opposite directions, while the other two

points move with unit speed along the lines x = −2 and x = 2 in opposite directions.

Assume that at some time t the points are in the positions (0, 2), (2, 0), (0, −2), (−2, 0).
There is exactly one optimum solution for this instance before t and exactly one after

t . However at time t there are two possible optimum solutions (see Figure 3.6a).

To ensure that the squares together cover all points at all times, and that the centers

of the squares move in continuous fashion, one of the squares has to grow to cover
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3 Kinetic k-Centers

at least three of the points. After this has happened the second square can move

in position of the other optimum solution, followed by shrinking the square that

covers three points. To cover at least three points, one of the squares has to grow its

radius (r = 2) to two times the size of the maximum radius of any of the optimum

solutions (r = 2) (see Figure 3.6b).

Strictly before or after t it is impossible to achieve the same ratio: The radius of

the largest square in the optimum solution is smaller before and after t , hence the

di�erence between the necessary radius and the optimum radius increases. □

3.1.12 Lemma. �TS(k-EC-minsum,  ,  k
 ) ≤ 2 for k ≥ 2.

Proof. Consider a point in time t where there are two optimal solutions; let R denote

the solution that matches the optimal solution at t − " and B the optimal solution at

t + " for arbitrarily small " > 0. Let C be the sum of radii of R, and equivalently the

sum of radii of B. We morph R onto B while covering all the points with a sum of

radii of at most 2C .

First make a matching between disks in R and disks in B. If we look at the intersection

graph GR,B , we want to create a matching between red and blue vertices that are

adjacent. Finding such a matching is easy for cycles since they have as many red

disks as blue disks. However in some cases we might not be able to �nd a matching

between overlapping disks. When GR,B is a forest there can be trees that have more

red disks than blue disks and vice versa. In these cases we map the remaining red

disks (leaves in GR,B) to the remaining blue disks (also leaves in GR,B) arbitrarily.

We �nd a bound on the topological stability as follows. All the red disks that are

matched to blue disks they already intersect grow to overlap their initial disk and

the blue disk they are matched to. Now the remaining red disks can safely move to

the blue disks they are matched to, and adjust their radius to fully cover the blue

disks. Finally, all red disks shrink to match the size of the blue disk they overlap to

�nish the morph. When all the red disks are overlapping blue disks, the sum of radii

is at most 2C , since the radius Cr of each red disk r grows by at most the radius Cb
of the blue disk b it is matched to. □

3.1.13 Theorem. �TS(k-EC-minsum,  ,  k
 ) = �TS(k-RC-minsum,  ,  k

 ) = 2 for k ≥ 2.

Proof. The upper bound for the Euclidean case follows from Lemma 3.1.12. The

proof only use the triangle inequality and therefore work for general metrics, in

particular they work for �2 and �∞.
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3.2 Algorithms for kinetic k-center

1

(a) The optimal solution changes

from the solid red to the dashed

blue; the smaller disks have ra-

dius 0, thus the total radius is 1.

1

(b) Doubly covering the center point

is required (as illustrated) or one

disk should cover all points (not

illustrated); the total radius is 2.

Figure 3.7 Lower bound construction for kinetic minsum Euclidean 2-center.

The lower bound construction for k = 2 uses three points: (0, −2), (0, 0), (0, 2), admit-

ting two optimal solutions, both with a disk of radius 1 and a disk of radius 0 (see

Figure 3.7a). Morphing between these requires an intermediate state that double-

covers (0, 0) (see Figure 3.7b), or one disk covering all three: the total radius is then

2. Since the lower bound construction is essentially one dimensional, the disks can

be traded for squares, and thus works for both the Euclidean and rectilinear case. □

▶ 3.2 Algorithms for kinetic k-center
Topological stability captures the worst-case penalty that arises from making transi-

tions in a solution continuous. In this section we are interested in the corresponding

algorithmic problems that generally result in smaller penalties for a speci�c instance:

how e�ciently can we compute an (unstable) k-center for an instance with n moving

points, and how e�ciently can we compute a topologically stable k-center? When

we combine these two algorithms, we can determine for any instance how large

the penalty is, when solving the given instance in a topologically stable way. We

examine these questions for all four k-center variants.

The second algorithm gives us a topologically stable solution to a particular instance

of k-center. This solution can be used in a practical application requiring stability,

such as the wi� hotspot scenario sketched in the introduction: if k people are hosting

wi� hotspots for n of their friends, for example at a festival, then we may assume

that the friends stay stationary or move slowly most of the time. A solution to the

k-center problem, which corresponds to the position of the k wi� hotspots, may

change with arbitrary speed, but since the friends are stationary, there is plenty of

time to move the hotspots to their new positions.
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3 Kinetic k-Centers

(a) A point set is shown at two points in time. Pairs of dashed disks form valid candidate k-

centers, while pairs of filled disks form valid candidate k-centers with minimal maximum

radius. Disks of the same color are defined by the same points. Disks not drawn are either

larger than drawn disks, or require a larger disk to form a valid candidate k-center.

Figure 3.8 Visualization of the unstable k-EC-minmax algorithm (for k = 2).

▶ 3.2.1 Unstable k-center algorithms

Let P be a set of n points moving in the plane, each represented by a constant-degree

algebraic function that maps time to the plane. We denote the point set at time t as

P(t) and will develop an algorithm that computes the smallest maximum radius r
needed to cover all points with k disks at any point in time.

Observe that the minimum covering disks of a point set P(t), denoted S∗(t), is a set of

k disks where each disk is de�ned by three points in P(t), two points as a diametrical

pair, or a singleton point. In other words, we can de�ne S∗ as the Cartesian product

of k triples, pairs, and singletons of distinct points from the set P(t). Not every

triple is always relevant: if the circumcircle of the three points is not the boundary

of the smallest covering disk, then the triple is irrelevant at that time. Each triple

is relevant on O(1) time intervals. On the other hand, pairs and singletons always

de�ne relevant disks. This allows us to de�ne what we call candidate k-centers.

3.2.1 De�nition (Candidate k-centers). Any set of k disks D1, … , Dk where each disk

is the minimum covering disk of one, two or three points in P(t) is called a candidate

k-center and is denoted S(t). A candidate k-center is valid if the union of its disks

cover all points of P(t).

This de�nition allows us to rephrase the goal of the algorithm: for each time t we

want to compute the smallest value C(t), such that there exists a valid candidate

k-center S(t) where the disks in S(t) have at most radius C(t) or where their radii

sum to C(t) for the minmax and minsum model respectively.
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(b) The arrangement obtained by plo�ing the radii of the drawn disks and disks on

singleton points. In the right arrangement, curves that are not maxcurves are

dashed, while the maximum radii of the optimal solution are marked in grey.

Unstable k-EC-minmax For each singleton, pair, or triple in P we can �nd the

minimum covering disk. Let the radius of such a disk be r . As the points move

along their trajectories, the radius of the minimum covering disk changes over time

(unless de�ned by a singleton point). The function over time which gives this radius

is continuous, because the points that de�ne this radius move continuously. We refer

to the images of these functions as curves, for brevity. Taking every singleton, pair,

and triple of points, we get O(n3) curves that represent the radii of the minimum

covering disks. Any pair of these curves intersects O(1) times, since the points

corresponding to each curve follow constant degree algebraic functions. This implies

that the curves form an arrangement of complexity O(n6).

3.2.2 Observation. Each of the O(n3) curves can be split into O(n) pieces where the same

subset of points of P(t) are inside the disk corresponding to the curve.

We are not interested in the arrangement as a whole, but only in the parts where

the curves show the maximum radius of a valid k-center: we want to know when

a minimum covering disk is the largest of the k disks that cover all the points. The

curve of such a pair or triple may de�ne a part of the solution in the minmax model.

For ease of description we will now �rst continue with the algorithm for the 2-center

case, and then show how to extend it to larger values of k.

Assume that a pair a, b or triple a, b, c ∈ P has a minimum covering disk D1 with

radius r1 at time t . Let P1 ⊆ P be all the points covered by D1. To solve the 2-center

problem, we need to cover all other points with another disk. Let the minimum

covering disk of P2 = P ⧵ P1 be D2 with radius r2. We say that the curve for pair a, b
or triple a, b, c is a maxcurve at time t if r1 ≥ r2 at time t .

A curve can only become a maxcurve at intersections of the curves, since the radii

of two covering disks will be equal at an intersection. We refer to a piece of curve

between intersections as an arc. The arrangement of all maxcurves still has com-
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3 Kinetic k-Centers

plexity O(n6). It takes O(n7) time to compute this arrangement, since we need to

check for every arc whether it is a maxcurve. Note that this has to be done only

once for every arc in the arrangement. As we take all maxcurve arcs, we know that

we keep only the parts of the initial arrangement where the maximum radius of a

solution is represented. The lower envelope of this arrangement will therefore show

the maximum radius of an optimum solution at any point in time (see Figure 3.8).

Finding the lower envelope of this arrangement takes O(�s+1(n6) log(n)) time when

every pair of curves intersects at most s times [59], where �s(n) is the maximum

length of a Davenport–Schinzel sequence of order s with n distinct values [101].

The time needed to compute the lower envelope is dominated by the O(n7) time we

spend on computing the arrangement of maxcurves itself.

To extend this algorithm to the Euclidean k-center problem, we observe that we

can start with the same set of O(n3) curves for all singletons, pairs, and triples of

moving points. We de�ne a curve to be maxcurve if the not yet covered points can

be covered by at most k − 1 disks of no larger radius. For each of the O(n6) arcs of

the arrangement this implies solving a static (k − 1)-center problem, which takes

O(n2k−1) [33] or nO(
√
k)

time [64] and dominates computing the lower envelope.

3.2.3 Theorem. Given a set of n points in the plane moving along constant-degree algebraic

functions, the 2-EC-minmax problem can be solved in O(n7) time. The k-EC minmax

problem can be solved in O(n2k+5) or nO(
√
k)
time.

Unstable k-EC-minsum We continue with the minsum version of the Euclidean

k-center problem. In this variant we can no longer use maxcurves, since a solution

should minimize the sum of radii, instead of the maximum radius. Instead, choose k
curves and their corresponding k-center, and trace it over time to determine when

the k-center covers all points. The number of times when a point enters or leaves

any of the k disks of the k-center is O(kn) = O(n). Hence, any choice of k curves

gives O(n) time intervals where the corresponding disks form a valid solution. We

sum the k curves (the radii of the disks) on these intervals to get candidate k-center

values for k-EC-minsum. In total, there are O(n3k+1) new curves that are the sum of

k original curves, and their lower envelope represents the desired solution S∗(t).

3.2.4 Theorem. Given a set of n points in the plane moving along constant-degree algebraic

functions, the k-EC-minsum problem can be solved in O(�s(n3k+1) log n) time for some

constant s, where �s(n) is the maximum length of a (n, s)-Davenport–Schinzel sequence.
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3.2 Algorithms for kinetic k-center

Unstable k-RC-minmax The rectilinear version of the k-center problem in the

minmax model is solved by similar methods as the Euclidean variant, albeit simpler

and more e�cient. We use pairs of points to de�ne curves that plot the radius of a

smallest covering square over time. The points should be on opposite sides of the

covering square. This square is not unique, since there are O(n) di�erent subsets

of points that can be covered by such a square. We �rst consider the 2-center case,

where it is su�cient to take the two extreme squares: if the second square must

cover points that lie beyond two opposite sides of the �rst square, then that second

square must be larger. Therefore, in comparison the solution using two extreme

squares has a smaller or equal maximum radius.

In total we have O(n2) curves that form an arrangement of complexity O(n4). We

again use the concept of maxcurves: we are interested in those arcs of the arrange-

ment, for which the not yet covered points can be covered by a square of no larger

size. While we can test this easily in linear time for each of the O(n4) arcs, we can

use the arrangement to do this faster. For each curve C corresponding to a square R,

we process the points moving in and out of R and maintain the leftmost, rightmost,

bottommost, and topmost uncovered points, for example using heaps. As the points

move, each square will start and stop covering other points O(n) times. The uncov-

ered points can swap places O(n2) times in an ordering of their x- or y-coordinates.

Thus we can maintain the left-, right, top-, and bottommost points in O(n2 log n) for

each curve C , and determine in constant time whether each of the O(n2) arcs along

the curve is a maxcurve. Finally, we compute the lower envelop of the maxcurves

in time linear in the number of maxcurves, since the maxcurves are disjoint arcs.

For k-centers, the observation that one can use the two extreme squares no longer

holds. We therefore de�ne squares by triples as in the Euclidean case, the main

di�erence being that the O(n3) curves we get, have considerable overlap: there must

still be two de�ning points on opposite sides of the covering squares de�ned by

triples, hence all O(n) squares that have these exact points on opposite sides must

have the same area. The arrangement of the O(n3) curves is therefore equivalent to

the arrangement for the O(n2) curves de�ned above, and each arc of the arrange-

ment can be part of O(n) curves. Since the O(n2) curves form an arrangement of

complexity O(n4), we need to test O(n5) arcs for being maxcurves. Following the

analysis as in the Euclidean case, we obtain:

3.2.5 Theorem. Given a set of n points in the plane moving along constant-degree algebraic

functions, the 2-RC-minmax problem can be solved in O(n4 log n) time. The k-RC-
minmax problem can be solved in O(n2k+4) or nO(

√
k)
time.
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Unstable k-RC-minsum We can use exactly the same approach as in the Eu-

clidean case, and obtain the following result:

3.2.6 Theorem. Given a set of n points in the plane moving along constant-degree algebraic

functions, the k-RC-minsum problem can be solved in O(�s(n3k+1) log n) time for some

constant s, where �s(n) is the maximum length of a (n, s)-Davenport–Schinzel sequence.

▶ 3.2.2 Topologically stable k-center algorithms

In this section we describe an algorithm to compute a topologically stable solution for

the Euclidean k-center variants. We use only combinatorial properties of solutions,

which also hold for the rectilinear k-center variants. Hence the same algorithm,

replacing disks by squares, also solves the rectilinear variants.

Intuitively, the unstable algorithm �nds the lower envelope of all the valid radii by

traversing the arrangement of all valid radii over time. At each time t a minimal

enclosing disk D1 (de�ned by a set of at most three points) in the set of optimal disks

S∗(t) needs to be replaced with another disk D2, we “hop” from our previous curve

to the curve corresponding to the new disk D2. If we require that the algorithm is

topologically stable these hops have a cost associated with them.

We �rst show how to model and compute the cost C(t) of a topologically stable

transition between any two k-centers at a �xed time t . We then extend this approach

to work over time. Let t be a �xed moment in time where we want to go from one

k-center S1 to another candidate k-center S2. The transition can happen at in�nite

speed but must be continuous. We denote the in�nitesimal time frame around t in

which we do the transition as [0, T ]. We extend the concept of a k-center with a

corresponding partition of P over the disks in the k-center:

3.2.7 De�nition (Disk set). For each disk Di of a candidate k-center S for P(t)we de�ne

its disk set Pi ⊆ P(t) ∩ Di as the subset of points assigned to Di . A candidate k-center

S with disk sets P1, … , Pk is valid if the disk sets partition P(t). We say S is valid if

there exist disk sets P1, … , Pk such that S with disk sets P1, … , Pk is valid.

During a continuous tranformation, the disk sets of a valid candidate k-center will

change in the time interval [0, T ] while the points P(t) do not move. In essence the

time t is equivalent to the whole interval [0, T ]. For ease of understanding, we use t′

to denote any time in the interval [0, T ]. Observe that our de�nition of topological

stability leads to an intuitive way of recognizing a stable transition:
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3.2 Algorithms for kinetic k-center

3.2.8 Lemma. A transition from candidate k-center 1(t) to candidate k-center 2(t) in
the time interval [0, T ] is topologically stable if and only if the change of the disks’

centers and radii is continuous over [0, T ] and at each time t′ ∈ [0, T ], (t′) is valid.

Proof. By de�nition the disks must be transformed continuously and all points in

P(t) are covered in [0, T ] precisely when a valid candidate k-center exists. □

Now that we can recognize a topologically stable transition, we can reason about

what such a transition looks like:

3.2.9 Lemma. Any topologically stable transition from k-center S1(t) to k-center S2(t) in
the timespan [0, T ] that minimizes C(t) (the largest occurring minsum/minmax over

[0, T ]) can be obtained by a sequence of events where in each event, occurring at a time

t′ ∈ [0, T ], a disk Di ∈ S(t′) adds a point to Pi and a disk Dj ∈ S(t′) removes a point

from Pj . We call this transferring.

Proof. This proof is by construction. Assume we have a transition from S1(t) to S2(t),
which minimizes either the sum or the maximum of all radii, and also assume that it

contains simultaneous continuous movement. Let this transition take place in [0, T ].

To determine C(t) we need to consider only times t′ ∈ [0, T ], where a disk Di ∈ 
adds a point p to its disk set Pi and disk Dj removes p from Pj . Only at t′ must both

disks contain p; before t′ disk Dj may be smaller and after t′ disk Di may be smaller.

We claim that for any optimal simultaneous continuous movement of cost C(t), we

can discretize the movement into a sequence of events with cost no larger than C(t).
We do so recursively: for the continuous movement there exists a t0 ∈ [0, T ] which

is the �rst time a disk Di ∈ S adds a point p to Pi . Then at t0, Di has to contain both

Pi and p and must have a certain size d . All the other disks Dj ∈ S with j ≠ i only

have to contain the points in Pj so they have optimal size if they have not moved

from time 0. In other words, it is optimal to �rst let Di obtain p in an event and to

then continue the transition in [t0, T ]. This allows us to recursively discretize the

simultaneous movement into sequential events. □

3.2.10 Corollary. Any topologically stable transition from k-center S1(t) to k-center S2(t)
in the timespan [0, T ] that minimizes C(t) (the largest occurring minsum/minmax

over [0, T ]) can be obtained by a sequence of events where in each event the following

happens: a disk Di ∈ S1(t) that was de�ned by one, two or three points in P(t) is now
de�ned by a new set of points in P(t) where the two sets di�er in only one element.

With every event, Pi must be updated with a corresponding insert and/or delete. We

call these events a swap because we intuitively swap one of the de�ning elements.
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Figure 3.10 The G2 graph on four points. Vertices of G2 in the grey area all have

an edge to the vertex on the right. This rightmost vertex has two

disks defined by the pairs red and blue, and yellow and green.

The cost of a single stable transition Corollary 3.2.10 allows us to model a

stable transition as a sequence of swaps, but how do we �nd the optimal sequence of

swaps? A single minimal covering disk at time t is de�ned by at most three unique

elements from P(t), so there are at most O(n3) subsets of P(t) that could de�ne one

disk of a k-center. Let these O(n3) sets be the vertices of a graph G. We create

an edge between two vertices vi and vj , if we can transition from one disk to the

other with a single swap and that transition is topologically stable. Each vertex is

incident to only a constant number of edges (apart from degenerate cases) because

during a swap the disk Di corresponding to vi can only add/remove one element to

Pi . Moreover, the radius of the disk is maximal on vertices in G and not on edges.

The graph G has O(n3) complexity and takes O(n4) time to construct, as we need to

check for each vertex which edges should be added. This can be done by checking

all O(n) vertices for which the disk set di�ers by one element.

This graph provides a framework to trace the radius of the transition from a single

disk to another disk. However, we want to transition from one k-center to another.

We use the previous graph to construct a new graph Gk where each vertex wi rep-

resents a set of k disks: a candidate k-center Si . We again create an edge between

vertices wi and wj if we can go from the candidate k-center Si to Sj in a single swap.

With a similar argument as above, each vertex is only connected to O(k) edges. The

graph thus has O(n3k ) complexity and can be constructed in O(n3k+1) time. This
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time each of the O(n3k ) vertices has to check O(kn) = O(n) other vertices to deter-

mine whether there should be an edge: for each of the k disks there are O(n) vertices

for which the disk set di�ers by one element. Each vertex wi gets assigned the cost

(minmax/minsum) of the k-center Si where the cost is ∞ if Si is invalid. Figure 3.10

shows an example of a G2 graph.

Any connected path in this graph from wi to wj without vertices with cost ∞ rep-

resents a stable transition from wi to wj by Corollary 3.2.10, where the cost of the

path (transition) is the maximum value of the vertices on the path. We can now �nd

the optimal sequence of swaps to transition from any vertex wi to wj by �nding

the cheapest path in this graph in O(n3k log n) time, for example using an adapted

version of Dijkstra’s algorithm to maintain the highest cost of the cheapest path.

The running time is dominated by the O(n3k+1) time it takes to construct the graph.

Maintaining the cost of a flip For a single point in time we can now determine

the cost of a topologically stable transition from a k-center Si to Sj in O(n3k+1) time.

If we want to maintain the cost C(t) for all times t , the costs of the vertices in the

graph must also change over time. If we plot the changes of these costs over time,

the graph consists of monotonously increasing or decreasing segments, separated

by moments in time (events) where two radii of disks are equal. A straightforward

counting results in O(n3k ) of such events, dominated by splitting the cost function of

each vertex in monotone segments. These events also contain all events where the

structure of our graph Gk changes and all the moments where a vertex in our graph

becomes invalid and thus gets cost ∞, which happen when four points become co-

circular. The result of these observations is that we have a O(n3k ) size graph, with

O(n3k ) relevant changes, where with each change we spend O(kn) = O(n) time per

vertex to restore the graph by recomputing the edge set. We can then compute

an optimal solution as described in the previous section, at each event update Gk ,

and use the updated graph to �nd the cost of a continuous transition, if the event

coincides with a discrete change in the optimal solution. This leads to an algorithm

which can determine the cost of a topologically stable solution in O(n6k+1) time.

3.2.11 Theorem. Given a set of n points in the plane moving along constant-degree algebraic

functions, the cost of a topologically stable solution to the k-EC-minmax/-minsum

problem can be solved in O(n6k+1) time.

If we run the unstable and stable algorithms on the moving points, we obtain two

functions that map time to a cost. The ratio of these two costs over time corresponds

to the approximation ratio of the computed topologically stable solution at any point

in time. The maximum of this ratio over time is the topological stability ratio of
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this solutoin, which is therefore obtained in O(n6k+1) time as well. Since the stable

algorithm is constructive, we can also �nd a topologically stable solution in the same

time, by returning the set of disks corresponding to the minimum cost path through

the time-varying graph Gk .

▶ 3.3 Conclusion
We considered the topological stability of common variants of the kinetic k-center

problem. Topolocially stable solutions to these problems must change continuously

but may do so arbitrarily fast. We have established tight bounds for the minsum case

(Euclidean and rectilinear) as well as for the rectilinear minmax case for any k ≥ 2.
For the Euclidean minmax case, we proved nontrivial upper bounds for small values

of k and presented a general lower bound tending towards 2 for large values of k.

We also presented algorithms to compute topologically stable solutions together

with the cost of stability for a set of moving points. This cost is measured by the

approximation factor that our solution achieves for that particular set of moving

points at any point in time. A practical application of these algorithms would be to

identify points in time where we could slow down the solutions produced by the

algorithms, to explicitly show stable transitions between optimal solutions.

Future work It remains open whether a general upper bound strictly below 2 is

achievable for k-EC-minmax. We conjecture that this bound is indeed smaller than 2

for any constant k. For this, we need more insight in how to continuously transform

solutions represented by an intersection graph with more general structures. Our

algorithms to compute the cost of stability for an instance have high (albeit polyno-

mial) run-time complexity. Can the results for KDS (e.g. [14]) help us speed up these

algorithms? Alternatively, can we approximate the cost of stability more e�ciently?

We considered topological stability in this chapter, but for typical applications, a

bound on the speed at which a solution may change is required. We would hence

like Lipschitz stable k-centers, but for k > 2 the Lipschitz stability ratio can be

unbounded, if the centers have to move continuously [35]. A potentially interesting

variant of the solution space topology is one where a disk may shrink to radius 0, at

which point it disappears and may reappear at another location. Since this alleviates

the problem in the example, it raises the question: would it allow us to bound the

Lipschitz stability?
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Chapter



Kinetic Orientation-Based
Shape Descriptors

Shape descriptors are simpli�ed representations of more complex shapes. They are

used as summaries of a large collection of data, where we are not interested in all the

details, but simply want to have an overview of the most important features. Shape

descriptors play an important role in many �elds that perform shape analysis, such

as computer vision (shape recognition) [12, 20, 122], computer graphics (bounding

boxes for broad-phase collision detection) [7, 54, 68, 15], medical imaging (diagnosis

or surgical planning) [22, 55, 67, 123], and machine learning (shape classi�cation)

[104, 113, 120, 121]. We study orientation-based shape descriptors, that speci�cally

capture the orientation of the input – in our case a point set. Such shape descriptors

can be used in applications that ask for an orientation, even when it might not be

very pronounced. For example, we can visualize how a large set of moving points

evolves, by drawing a glyph that captures the direction of movement (for example an

arrow or line segment) for a few subsets of the points. A di�erent application that

can bene�t from utilizing orientation-based shape descriptors is the MotionRugs

visualization technique [23], which produces visual summaries for movement data.

These summaries consist of reasonable 1D representations of moving points, and

one way of �nding such representations is by projecting the input points to a line at

each time step. High-quality summaries are obtained, if the orientation of this line

coincides with a principal component of the point set, as we show in Chapter 5.
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4 Kinetic Orientation-Based Shape Descriptors

Figure 4.1 A flip in orientation for pc, obb and strip. Small changes in the posi-

tions of the points make one orientation optimal over the other.

The three shape descriptors we consider in this chapter are the �rst principal com-

ponent (pc), the smallest area oriented bounding box (obb) and the thinnest covering

strip (strip). We study these orientation-based shape descriptors in the kinetic set-

ting: the n points that are used as input continuously change their position over time,

while we compute their shape descriptors. However, even small changes in the point

cloud can result in discrete “�ips” in the optimal orientation of all three shape de-

scriptors (see Figure 4.1). We propose stable algorithms for these orientation-based

shape descriptors, and analyze their topological and Lipschitz stability.

Problem description Our input consists of a set of n moving points P = P(t) =
{p1(t), … , pn(t)} in two dimensions, where the trajectory pi(t) of each point is a con-

tinuous function pi ∶ [0, T ] → ℝ2. We assume that, at each time t , not all points are

at the same position. The output consists of an orientation � = �(t) of the shape

descriptor for every point in time t ∈ [0, T ], which need not match the optimal orien-

tation due to stability constraints. While an orientation �(t) is an element of the real

projective line ℝℙ1, we typically represent �(t) by a unit vector in ℝ2 and implicitly

identify opposite vectors, which is equivalent. To quantify the quality of any output

orientation, we de�ne each of the three shape descriptors Π as the minimum of an

optimization function fΠ(�, P). Let (�) be the set of lines with orientation � , and

let d(L, p) be the distance between a point p and a line L. Furthermore, let the extent

of P along a unit vector � be w� (P) = maxp,q∈P (p − q) ⋅ � , and let �⟂ be the vector

(orientation) orthogonal to � . We can de�ne the orientation of pc, obb or strip as

the orientation � that minimizes the following functions:

Principal component: fpc(�, P) = minL∈(�)∑p∈P d(L, p)2

Oriented bounding box: fobb(�, P) = w� (P)w�⟂ (P)

Covering strip: fstrip(�, P) = w�⟂ (P)
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Though various other options are possible, we believe these functions naturally �t

to the shape descriptors. The optimization functions quantify the quality of a shape

descriptor for any orientation � . This allows us to also consider shape descriptors of

suboptimal quality, which do not fully minimize the optimization function. This in

turn enables us to make a trade-o� between quality and stability. When computing

a shape descriptor, we typically compute more than just an orientation, such as the

exact position and dimensions of the descriptor. However, the stability is mostly

a�ected by the optimal orientation: if the optimal orientation changes continuously

and the points move continuously, then the shape descriptor changes continuously

as well. We therefore ignore other aspects of the shape descriptors to analyze their

stability, and assume that these aspects are chosen optimally for the given orien-

tation without any cost with regard to the stability. Under this assumption, every

orientation de�nes a unique shape descriptor.

Algorithmic models In this chapter we consider both stateless and state-aware

algorithms, and we de�ne a special kind of state-aware algorithm called a chasing

algorithm. Remember that a stateless algorithm can be topologically stable only if it

de�nes a mapping from input to output that is naturally continuous. On the other

hand, a state-aware algorithm can enforce continuity by using its state to keep track

of earlier outputs. Let  be an algorithm mapping input to output, and let I (t) be

the input depending on time t . We can then de�ne a chasing algorithm as follows.

Chasing algorithm: The algorithm  maintains the most recent output (in our

case the orientation � of a shape descriptor) as the state S and uses only

the input at the current time I (t) to �nd a new optimal solution OPT. The

algorithm then moves the solution in S towards the new optimal solutionOPT
at the maximum allowed speed. This solution is the output for the current

time t and is subsequently stored in S.

For Lipschitz stable chasing algorithms the output at time t might not coincide with

OPT, as the solution in S was too di�erent from OPT and the maximum allowed

speed did not allow S to catch up to OPT: the output of our algorithm chases after

the optimal solution. The challenge lies in bounding the ratio between the quality of

the solutions used by the algorithm and the (unstable) optimal quality. We assume

that a chasing algorithm maintains a solution over time, and it can choose the rate

of change of the solution (e.g., rotation speed/direction) at every point in time.
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4 Kinetic Orientation-Based Shape Descriptors

Stability analysis In this chapter we analyze the topological and Lipschitz stabil-

ity of the orientation-based shape descriptors. First, we need to choose appropriate

topologies on the input space and the output space for the topological stability analy-

sis. Given the described problem setting, choosing the topologies is straightforward:

the input space is ℝ2n , for which we choose the standard topology. The output space

is topologically equivalent to the unit circle, which we denote here by O.

Second, for the Lipschitz stability analysis we need metrics to measure the distance

between input instances and between solutions we output. We measure the output

in radians, hence the di�erence between two outputs is a signed angle. For the

input we use the maximum di�erence in position of the points under the �2 norm

(equivalent to the measure used in Chapter 2).

Following the de�nition of K -Lipschitz stability described in Chapter 2, we assume

the input points move with at most unit speed, and allow the orientation of the

output to change with a speed of at most K radians per time unit. To accommodate

the use of a chasing algorithm, we allow the orientation of the output to change,

even when the input points stay stationary.

Remember that K -Lipschitz stability requires scale invariance: to derive meaningful

bounds on the K -Lipschitz stability ratio, it is necessary that the relation between

distances and speeds in input and output space should be scale invariant. This is

currently not the case: if we scale the coordinates of the points, then the distances in

the input space change accordingly, but the distances in the output space (between

orientations) do not. To remedy this problem, we require that diameter D of P(t)
is at least 1 for every time t . Note that we can always appropriately scale to meet

these assumptions, if not all points coincide in a single location. The unit diameter

assumption is only mild, if points represent actual objects; the objects, for example

humans or �sh, have a certain size and cannot occupy the same physical space.

Related work Shape descriptors are a wide topic, studied in various sub�elds

of computer science. We focus on the related work for pc, obb, and strip, which

shows that these three shape descriptors are related, yet slightly di�erent. The ra-

tio between the volume of the bounding box using the orientation of pc and the

minimal-volume bounding box is unbounded [32]. Similar to pc, other �tness mea-

sures have been considered with respect to oriented lines, such as the sum of dis-

tances or vertical distances [27]. Computing obb for static point sets is a classic

problem in computational geometry. In two dimensions, one side of the optimal

box aligns with a side of the convex hull and it can be computed in linear time af-

ter �nding the convex hull [42, 108]; a similar property holds in three dimensions,
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4.1 Stateless algorithms

allowing a cubic-time algorithm [85]. The relevance of bounding boxes in 3D as a

component of other algorithms also led to e�cient approximation algorithms, such

as a (1 + �)-approximation algorithm in O(n + 1/�4.5) time or an easier algorithm

with running time O(n log n + n/�3) [8]. Bounding boxes �nd applications in tree

structures for spatial indexing [10, 58, 95, 100] and in speeding up collision detection

and ray-tracing techniques [7, 54, 15]. The optimal strip can be computed using the

same techniques as obb in two dimensions [42, 108]. Agarwal et al. [2] provide an

O(n + 1/�O(1))-time approximation algorithm via �-kernels for various measures of

a point set, including strip and obb. Finally, the medial axis of a point set is a shape

descriptor that is often used in computational topology. While this shape descriptor

is not orientation-based, we mention it because it is the subject of one of the few

results on stability in computational geometry. Letscher and Sykes [72] show that

the medial axis for a union of disks changes continuously under certain conditions

or if it is pruned appropriately.

Results and organization In Section 4.1 we prove that there exists no stateless

algorithm for any of the three shape descriptors that is both topologically stable

and achieves a bounded approximation ratio for the quality of an optimal shape

descriptor. We then consider state-aware algorithms and analyze the topological

stability for each of the shape descriptors in Section 4.2. In Section 4.3 we analyze

the Lipschitz stability of chasing algorithms for all three shape descriptors. We show

that chasing algorithms with su�cient speed can achieve a constant approximation

ratio for obb and strip, if we indeed assume that the points move with at most unit

speed and that the diameter of the point set is always at least 1. We brie�y discuss

why this algorithm is not viable for pc. To the best of our knowledge, this is the �rst

time a chasing algorithm has been analyzed, which deals with discrete changes. We

conclude this chapter in Section 4.4.

▶ 4.1 Stateless algorithms
We prove that stateless algorithms cannot achieve bounded topological stability

ratio for any of the three shape descriptors. This readily implies an unbounded K -

Lipschitz stability ratio for any K . Important for the theorem below is that, if all

points of set P lie on a single line with orientation � , then fΠ(
 , P) = 0 i� 
 = � , for a

shape descriptor Π. The argument in the proof is entirely topological, and intuitively

works as follows: we construct a set of inputs that is topologically equivalent to a disk

in the input space. All inputs P at the boundary of this disk consist of n points that

lie on a single line with orientation � , hence the ratio between fΠ(
 , P) and fΠ(�, P),
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4 Kinetic Orientation-Based Shape Descriptors

with 
 ≠ � , will be unbounded. We show that no continuous function exists that

maps the inputs at the boundary of the topological disk to correct orientations.

4.1.1 Theorem. For stateless algorithms �TS (pc) = �TS (obb) = �TS (strip) = ∞ if the point

set contains at least three points.

Proof. The idea is to construct a continuous map j ∶ D2 → ℝ2n on a two-dimensional

closed disk D2, such that the image of j consists of valid point sets in ℝ2 (which do

not have all points at the same position), and that the image of )D2 under j forces

the orientation of the shape descriptor. We parameterize D2 using polar coordinates

(r , �) for 0 ≤ � < 2� and 0 ≤ r ≤ 1. We �rst construct a map j′ as follows:

j′(r , �) =
{

(
ri
n
sin �,

ri
n
cos �) ∣ 1 ≤ i ≤ n

}

Since j′ always places all points on a line for a given �, the orientation of the shape de-

scriptor is always forced (otherwise the approximation ratio is ∞). However, j′(0, �)
is not a valid point set, since it places all points at the origin. Now let P ∗ be a point

set of n points in ℝ2, consisting of least three points that are not all collinear. Inter-

preting P ∗ as a vector in ℝ2n , we de�ne j(r , �) = j′(r , �) + (1 − r)P ∗. By the choice

of P ∗, j(r , �) is always a valid point set. Furthermore, the orientation of the shape

descriptors is still �xed for point sets j(1, �) = j′(1, �), namely � = � (mod �). As

a result, any stateless algorithm with an approximation ratio � < ∞ de�nes, along

with j, a continuous mapping ℎ from D2 to unit circle O where )D2 is mapped twice

around O, i.e., a double cover of O. The continuous mapping ℎ is simply the output

of the stateless algorithm composed with j. We claim that mapping ℎ cannot exist.

For the sake of contradiction, assume that such a map ℎ exists. Let f , g ∶ O → D2 be

continuous functions. Function f maps every point x ∈ O to the boundary )D2 ⊆ D2

such that the mapping covers the whole boundary once, while g maps all x ∈ O to

a single point y ∈ D2. We can continuously shrink the image of f to a single point

in D2, in particular the image of g; hence f and g are homotopic. We now consider

ℎ◦f and ℎ◦g and use the degree of these mappings (as �rst de�ned in [21]) to show

that ℎ cannot exist. Since f maps O to the boundary )D2 ⊆ D2, and ℎ maps )D2

to a double cover of O, we know that the degree of ℎ◦f is two. On the other hand,

g maps all of O to a single point in D2, therefore ℎ◦g has degree 0. By the Hopf

theorem [80] ℎ◦f and ℎ◦g cannot be homotopic, as they can only be homotopic if

and only if their degrees are equal. However, ℎ◦f and ℎ◦g must be homotopic, since

homotopy equivalence is compatible with function composition and f is homotopic

to g. This contradiction implies that ℎ cannot exist. Thus the topological stability

ratio is ∞ for stateless algorithms. □
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4.2 Topological stability

Figure 4.2 A flip between the first (red) and second principal component (blue).

▶ 4.2 Topological stability
In this section we turn to state-aware algorithms, and we analyze the topological

stability of the shape descriptors. Speci�cally, we prove the following tight bounds.

4.2.1 Theorem. The topological stability ratios of the shape descriptors are:

• �TS(pc) = 1,

• �TS(obb) = 5
4 ,

• �TS(strip) =
√
2.

4.2.2 Lemma. �TS(pc) = 1

Proof. Consider a time t where the �rst principal component �ips between distinct

orientations, represented by unit vectors v⃗1 and v⃗2. The �rst principal component is

the orientation of the line that minimizes the sum of squared distances between the

points and the line, corresponding to the optimal solution de�ned by fpc. It can be

computed by centering the point set at the mean of the coordinates, computing the

covariance matrix of the resulting point coordinates, and extracting the eigenvector

of this matrix with the largest eigenvalue. Since eigenvalues change continuously if

the data changes continuously [109, Theorem 3.9.1], both v⃗1 and v⃗2 must have some

eigenvalue �∗ at time t . But that means that every interpolated vector v⃗ = (1−u)v⃗1 +
uv⃗2 also has eigenvalue �∗, since Cv⃗ = (1−u)Cv⃗1 +uCv⃗2 = (1−u)�∗v⃗1 +u�∗v⃗2 = �∗v⃗.

As a result, fpc(v⃗) = fpc(v⃗1), and we can continuously change orientation from v⃗1 to

v⃗2 without decreasing the quality of the shape descriptor. □

The bounds on �TS(obb) and �TS(strip) are split into upper and lower bounds. and

hence in the upcoming proofs we follow the general structure outlined in Chapter 2.
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Figure 4.3 Construction of closed formula for area of intermediate solution C.

4.2.3 Lemma. �TS(obb) ≤ 5
4

Proof. Consider a time t at which two distinct oriented bounding boxes A and B
have minimum area; both are assumed to have the smallest area 1 without loss

of generality, as the problem at hand is invariant under scaling. At this time t
we continuously change the orientation of the box between that of A and B while

making sure that the box still contains all points (see Figure 4.3a). The goal is to

compute the maximal size of the intermediate box in the worst case. Note that we

may rotate either clockwise or counterclockwise; we always choose the direction

that minimizes this maximal intermediate size.

Let a and b denote the length of the major axes of A and B respectively. Let angle

� denote the smallest angle between the orientations of the major axes. Note that

� ∈ {0, �/2} leads to A and B being identical, and that our problem is invariant under

rotation, re�ection and translation. We thus assume without loss of generality:

• b ≥ a ≥ 1;

• 0 < � < �/2;

• B is centered at the origin, and A at (dx, dy);

• the major axis of A is horizontal;

• � describes a counterclockwise angle from the major axis of A to the major

axis of B.

The points P must all be contained in the intersection of A and B, for otherwise A
and B would not be bounding boxes. Furthermore, no side of A may be completely
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4.2 Topological stability

outside B or vice versa, for otherwise one of the boxes could be made smaller. Thus,

all sides intersect, and we are interested in four of these intersections I1, … , I4 (see

Figure 4.3b). Speci�cally, we want to use the intersections that allow us to derive

a valid upper bound on the size of the bounding box during rotation. Since the

intersections depend on the direction of rotation, we choose the intersections that

allow us to rotate from A to B in counterclockwise direction. The coordinates of the

intersections can easily be computed (see Figure 4.3b). For example, for I1 = (x1, y1)
we solve for the following two equations: x1 = dx −a/2 and x1 cos � +y1 sin � = −b/2.
The resulting coordinates of all intersections are:

• I1 = (− a2 + dx, −
b−(a−2dx) cos �

2 sin � )

• I2 = ( a2 + dx,
b−(a+2dx) cos �

2 sin � )

• I3 = ((− 1
2a + dy)

cos �
sin � +

1
2b sin � , −

1
2a + dy)

• I4 = (( 12a + dy)
cos �
sin � −

1
2b sin � ,

1
2a + dy)

Now consider an intermediate box C with angle � ≤ � with respect to box A (see

Figure 4.3c). Note that C contains the intersection of A and B as long as it contains

I1, … , I4. We can de�ne two vectors V1 = I2 − I1 and V2 = I4 − I3, which we project to

lines at angle � and � + �
2 to obtain the lengths of the sides of C . Note that V1 and

V2 depend only on a, b and � , but not on dx and dy . Thus, using V1 and V2 we can

obtain a formula for the area of C , which we call .

(a, b, �, �) = V1 ⋅ (cos �, sin �) × V2 ⋅ (− sin �, cos �)

=
(b sin(� − �) + a sin �) ∗ (a sin(� − �) + b sin �)

ab sin2 �

We are now interested in the maximum of. We start by �nding the partial derivative

of  with respect to � :

)
)�

=
(a2 + b2 − 2ab cos �) sin(� − 2�)

ab sin2 �

First observe that in the chosen domain
)
)� = 0 if and only if � = �/2, which implies

that we can set � = �/2. Using double-angle formulas, we may simplify .
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(a, b, �, �/2) =
(a + b)2 sin2(�/2)

ab sin2 �

=
(a + b)2 sin2(�/2)

ab(2 sin(�/2) cos(�/2))2

=
(a + b)2

2ab(2 cos2(�/2))

=
(a + b)2

2ab(1 + cos(�))

We now split the domain of � into (0, �4 ] and (�4 ,
�
2 ), and prove both cases separately.

In the �rst case, when � ∈ (0, �4 ], let c ≥ 1 be such that b = ca (since b ≥ a). As b is at

most the length of the diagonal ofA, we get that c ≤
√
a2 + (1/a)2/a =

√
1 + 1/a4 ≤

√
2

(since a ≥ 1). The resulting formula is (a, ca, �, �/2) = (1+c)2
2c(1+cos �) . This function is

maximized when c and � are maximized. We thus set � = �/4 and c =
√
2 to obtain

that (1,
√
2, �/4, �/8) ≤ 1

2 +
1
2
√
2 < 5

4 and thus this case meets the bound claimed.

What remains is to prove the case where � ∈ (�4 ,
�
2 ). It might now be bene�cial

to rotate A clockwise instead of counterclockwise, to align the minor axis of A
with the major axis of B: this clockwise rotation may result in smaller intermediate

solutions C . Since  can only deal with counterclockwise rotation, we have to use

di�erent parameters to deal with the described situation. To simulate the clockwise

rotation, we use (1/a, b, �/2 − �, �); this re�ects the whole setup over direction �/4
e�ectively considering the minor axis as the major axis instead. Note that we did not

use the assumption that a ≥ 1 anywhere above, until within the other case where

� ≤ �/4. Note that
)
)� = 0 depends on the parameters we �ll in, hence we can set

� = (�/2 − �)/2 = �/4 − �/2 to �nd a maximum in this case.

For all possible values of a, b and � , we need to �nd the area of the largest intermedi-

ate boxC . Since we can choose whether we rotate clockwise or counterclockwise, we

�nd the area by taking the minimum of (a, b, �, �/2) and (1/a, b, �/2−�, �/4−�/2).
We �rst simplify the latter.
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4.2 Topological stability

(1/a, b, �/2 − �, �/4 − �/2) =
( 1a + b)

2

2 1ab(1 + cos(�/2 − �))

=
a2( 1a + b)

2

2ab(1 + sin(�))

=
(1 + ab)2

2ab(1 + sin(�))

To �nd the maximum of the function, we can use a mathematical program that looks

for the values of a, b and � that comply to a set of constraints and maximize a target

function. All constraints come from the assumptions, but we add a �nal constraint

similar to what we did in the � ∈ (0, �4 ] case. To ensure that all four intersection

points exist, the projection of the diagonal of A to the major axis of B should be

larger than b. Hence we add the constraint b ≤ a cos � + 1
a sin � . The mathematical

program now looks as follows:

maximize min(
(a + b)2

2ab(1 + cos(�))
,

(1 + ab)2

2ab(1 + sin(�)))

subject to b ≤ a cos � +
1
a
sin �

�/4 < � < �/2
1 ≤ a ≤ b

Using the mathematical program we can verify, for example via Mathematica 11.2

[118], that the area is at most
5
4 . □

4.2.4 Lemma. �TS(obb) ≥ 5
4

Proof. Consider a point set P with four static points p1 = (0, 0), p2 = (2, 1), p3 =
(0.75, 1) and p4 = (1.25, 0), and point p5 moving linearly from (2, 0) to (1.2, 1.6); see

Figure 4.4. The static points allow two minimal bounding boxes of area 2 and aspect

ratio 2: one with orientation 0 (box A) and one with orientation 2 arctan( 12 ) ≈ 53.13
degrees (box B). As p5 is always in A or B, one of these boxes is always optimal.

Initially, only A contains p5 and in the end only box B does. The angles arctan( 12 )
(box C) and �/4 − arctan( 12 ) (box C′) give an intermediate box of size 2.5 = 5

4 ⋅ 2
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B
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C

C′

p1

p2

p4

p3

p5

Figure 4.4 Moving points forcing a flip from bounding box A to B. Rotating con-

tinuously, a bounding box at least as big as C or C′ is required.

on the static points. C is encountered on a counterclockwise rotation from A to B,

and C′ on a clockwise rotation. Neither C , C′, nor any box rotated more towards B
contains the initial location of p5. Similarly, neither C , C′, nor any box rotated more

towards A contains the �nal location.

To derive a contradiction, assume a continuously moving obb exists that achieves

a ratio strictly less that
5
4 . This ratio implies that initially the obb orientation is

clockwise between C and C′, and at the end of the motion it is not. However, as the

assumed obb moves continuously through O, it must at some point have been in the

orientation of C or C′. But this implies a ratio of
5
4 , contradicting our assumption

and proving the lower bound. □

4.2.5 Lemma. �TS(strip) ≤
√
2

Proof. Consider a time t at which there are two thinnest strips A and B of width

1 with di�erent orientations. All points must be contained in the diamond-shaped

intersection D of A and B (see Figure 4.5a). If we continuously rotate a strip C from

A to B, then at some point the width of C must be at least the length of one of the

diagonals of D. To maximize the length of the shortest diagonal, D must be a square

with side length 1. Therefore, the width of C is at most

√
2 during the rotation from

A to B. □

4.2.6 Lemma. �TS(strip) ≥
√
2

Proof. Let P consist of four points positioned in a unit square S. There are two

thinnest strips A and B for P , each of which is oriented along a di�erent pair of

parallel edges of S (see Figure 4.5b). If the orientation of a strip is �/4 away from A
and B, then its width is

√
2.
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D

(a) A configuration having

two minimal width strips

and overlapping area D.

S
A

A

B
B

(b) An instance of moving points where the thinnest strip

changes orientations. The configuration that leads to

the best intermediate solutions is shown in the middle.

Figure 4.5 Upper bound (a) and lower bound (b) construction for �TS(strip).

Now assume that the top points of S are moving along the vertical sides of S, starting

from high above. Clearly, at the start of this motion, any strip C approximating the

thinnest strip must align with A. At the end of this motion, when the top points

align with the bottom points of S, the strip C must align with B. Therefore, the

strip C must at some point make an angle of �/4 with A and B. If x is the distance

between the top and bottom points of S, then the width of C at this orientation is

(1 + x)
√
2/2. The minimal width is min(x, 1). It is easy to verify that this ratio is at

least

√
2, which concludes the proof. □

▶ 4.3 Lipschitz stability
To derive meaningful bounds on the Lipschitz stability ratio, we assume the points

move with at most unit speed, and we require that diameter D of P(t) is at least 1
for every time t . This assumption is su�cient to prove a bounded Lipschitz stability

ratio for obb and strip. For pc this is not su�cient, as we argue in Section 4.3.3.

To produce a K -Lipschitz stable solution we use a chasing algorithm similar to the

generic algorithm introduced in at the start of this chapter. The algorithm maintains

a solution over time, and it can rotate towards the optimal solution at every point in

time. However, there are two di�erences from the generic algorithm. First, instead

of chasing the orientation of an optimal solution obb, we chase the orientation of

the diametrical pair. Although chasing an optimal shape descriptor would be a more

intuitive approach, chasing the diametrical pair is easier to analyze and su�cient to
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obtain an upper bound on the K -Lipschitz stability ratio for obb and strip. Second,

K -Lipschitz stability enforces a maximum speed at which the algorithm can move

towards the solution we are chasing. This speed bound depends on parameter K
and on how quickly the input changes – faster moving points require faster rotation

to achieve the same ratio. Since we assume unit speed for the input, the K -Lipschitz

stable solution changes with at most K radians during the movement of the points.

▶ 4.3.1 Chasing the diametrical pair
We denote the orientation of the diametrical pair as � = �(t) and then de�ne the

diametric box of P(t) to be the smallest oriented bounding box with orientation �(t).
The dimensions of such a diametric box are de�ned by the diameter D = D(t) ≥ 1
of P(t) and the width W = W(t) of the thinnest strip with orientation �(t) covering

all points in P(t). Furthermore, let z = z(t) = W (t)/D(t) be the aspect ratio of the

diametric box with orientation �(t). Finally, our chasing algorithm has orientation

� = �(t) and can change orientation with at most constant speed K . We generally

omit the dependence on t if t is clear from the context.

Approach The main goal is to keep orientation � as close as possible to orientation

� of an optimal diametric box, speci�cally within a su�ciently small interval around

� . The challenge lies with the discrete �ips of � . We must argue that, although �ips

happen instantaneously, a short time span does not admit many �ips over a large

angle in the same direction; otherwise we can never keep � close to � with a bounded

speed. Furthermore, the size of the interval must depend on the aspect ratio z, since

if z = 0, the interval around � must have zero size as well to guarantee a bounded

approximation ratio.

For the analysis we introduce three functions depending on z: T (z), H(z), and J (z).
Function H(z) de�nes an interval [� − H(z), � + H(z)] called the safe zone. We

aim to show that, if � leaves the safe zone at some time t , it must return to the

safe zone within the time interval (t, t + T (z)]. We also de�ne a larger interval

I = [� − H(z) − J (z), � + H(z) + J (z)]. We refer to the parts of I outside of the safe

zone as the danger zone. Figure 4.6 shows I at time t and time t + �. Although �
may momentarily end up in the danger zone due to discontinuous changes, it must

quickly �nd its way back to the safe zone. We aim to guarantee that � stays within I
at all times. Let E = E(t) refer to an endpoint of I . We call J (z) the jumping distance

and require that J (z) upper bounds how far E can “jump” instantaneously. Intuitively,

this requirement should ensure that � does fall outside I after a �ip of an optimal

diametric box. Let ΔE(z, Δt) denote how far E moves over a time period of length Δt ,
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�(t)

�(t)

�(t + �)

Figure 4.6 Intervals at time t (outer) and time t + � (inner). The safe and danger

zones are indicated in blue and dashed red respectively. Orientations

are shown in yellow, for the diametric box at time t and t + �, and for

the chasing algorithm at time t .

starting with a diametric box of aspect ratio z. We then require that ΔE(z, 0) ≤ J (z).
Note that by de�ning this upper bound, J (z) is de�ned recursively through E, since

by de�nition ΔE(z, Δt) is upper bounded by how much � , H(z) and J (z) change over

time Δt . Hence we need to carefully choose the right function for J (z). For the other

functions we choose T (z) = z/4 and H(z) = c arcsin(z) for a constant c (chosen later).

Changes in orientation and aspect ratio To verify that the chosen functions

T (z) and H(z) satisfy the intended requirements, and to de�ne the function J (z), we

need to bound how much � and z can change over a time period of length Δt . We

refer to these bounds as Δ�(z, Δt) and Δz(z, Δt), respectively. Note that, since the

diametric box can change discontinuously, we generally have that Δ�(z, 0) > 0 and

Δz(z, 0) > 0.

4.3.1 Lemma. Δ�(z, Δt) ≤ arcsin(z + Δt(2 + 2z)) for Δt ≤ (1 − z)/(2 + 2z).

Proof. Let D be the diameter at time t ; the width of the strip containing all points is

zD (see Figure 4.7a). Also, let D′ be the diameter at time t + Δt , and let (p′1, p
′
2) be

the diametrical pair at that time, such that the diametrical orientation di�ers by an

angle 
 from the orientation at time t (see Figure 4.7c). Note that Δt ≥ |D − D′|/2,
otherwise p′1 and p′2 must have moved faster than unit speed.

87



4 Kinetic Orientation-Based Shape Descriptors

D

zD

(a) (b)

Δt


D′
2 ⋅ sin 
 D

D′

zD/2

(c)

Figure 4.7 Illustrations supporting the proof of Lemma 4.3.1: (a) A diametric box

with dimensions D, zD containing all points. (b) If the orientation of

the diametrical pair changes, all points must lie in the blue area. (c)
The orientation can change further in the same direction, a�er some

points move outside the blue area to establish a new diameter.

Both p′1 and p′2 must have been in a diametric box at time t . During the time period

of length Δt , their movement can cause a �ip in the orientation of the diametric box

(see Figure 4.7b). As p′1 and p′2 move, possible outside the diametric box at time t , they

establish the new diameter D′ (see Figure 4.7c). We observe that Δt ≥ D′
2 sin(
 ) −

zD
2 .

As Δt is minimized when D ≥ D′, we can obtain a lower bound for Δt by equalizing

(D − D′)/2 = D′
2 sin(
 ) −

zD
2 . We obtain that Δt ≥ D′(sin(
 )−z)

2+2z ≥ sin(
 )−z
2+2z . This is

equivalent to 
 ≤ arcsin(z + Δt(2 + 2z)), which is well-de�ned only for Δt ≤ 1−z
2+2z . □

4.3.2 Lemma. Δz(z, Δt) ≤ z − sin( 12 arcsin(z))−2Δt
1+2Δt for Δt ≤ sin( 12 arcsin(z))/2.

Proof. Let diameter D at time t be realized by the pair of points (p1, p2) with orien-

tation � . The width of the diametric box is determined by two points q1 and q2; the

distance between q1 and q2 is at most D (see Figure 4.8a).

To minimize the aspect ratio of the diametric box at time t + Δt , we need to �nd a

thinnest strip that contains all of p1, p2, q1, and q2. For the thinnest strip, all four

points are on the boundary of the strip in the worst case, and we assume without

loss of generality that p1 and q1 are on the same side of the strip (same for p2 and

q2). Consider the following lines: L oriented in the orientation of the thinnest strip

(parallel to its boundary), Lp spanned by p1p2 and Lq spanned by q1q2. Let the angle

between Lp and Lq be 
 , 
 ≥ arcsin(z) (see Figure 4.8b). The distance between q1
and q2 is then zD/ sin(
 ). We denote the angle between L and Lp by 
p , and between
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p1

q1

p2

q2


 zDD

(a) A diametric box with aspect ratio

z and points p1, p2, q1 and q2 at

the boundary.

L

p1
q1

p2q2




q 
pD sin 
p

zD sin 
q
sin 


Lp

Lq

(b) A strip with points located at the

boundary, the width of the strip

is the maximum of the red lines.

p1

q1

p2

q2
(c) The smallest diametric box for time t + � and in red the distance the points

can travel in Δt to further shrink the aspect ratio.

Figure 4.8 Illustrations supporting the proof of Lemma 4.3.2.
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L and Lq by 
q . We observe that 
p + 
q = 
 , as the orientation of L must bisect the


 angle for the strip to be thinnest.

The width of the strip is max(D sin(
p), zD sin(
q)/ sin(
 )). We show that this width

is at least D sin( 12 arcsin(z)). This is clearly the case if 
p ≥ 1
2 arcsin(z), so assume

the contrary. Since the function sin(
 − 
p)/ sin(
 ) is increasing, it is optimal to set


 = arcsin(z). But then zD sin(
q)/ sin(
 ) = D sin(
q) > D sin( 12 arcsin(z)). Thus, the

width of the thinnest strip is at least D sin( 12 arcsin(z)).

The diametric box at time t can �ip to the orientation of this thinnest strip. However,

the points can move to further shrink the aspect ratio of the diametric box. As a

result, the width of the diametric box at time t +Δt is at least D sin( 12 arcsin(z)) −2Δt
(see Figure 4.8c). For the same reason, diameter D′ can shrink such that D′ ≤ D+2Δt .
The �nal aspect ratio is then z′ ≥ (D sin( 12 arcsin(z)) − 2Δt)/(D + 2Δt). Since D ≥ 1,
we obtain that Δz(z, Δt) ≤ z − (sin( 12 arcsin(z)) − 2Δt)/(1 + 2Δt). Note that this bound

is meaningful only for Δt ≤ sin( 12 arcsin(z))/2. □

Jumping distance. We can now derive a valid function for J (z). Recall that we

require that J (z) is at least the amount ΔE(z, Δt) that E can move in Δt = 0 time.

4.3.3 Lemma. J (z) = (c + 2) arcsin(z) is a valid jumping distance function.

Proof. Remember that the amount ΔE(z, Δt) that E can move is upper bounded by

the amount of change of � , H(z) and J (z) over time Δt . The interval I grows as z
grows, which makes it easier for � to stay inside I . Hence we analyze ΔE(z, Δt), as

� changes and z shrinks over time Δt = 0. Lemma 4.3.1 and Lemma 4.3.2 provide

the bounds Δ�(z, 0) ≤ arcsin(z) and Δz(z, 0) ≤ z − sin( 12 arcsin(z)). Combining the

above, we get:

ΔE(z, Δt) ≤ Δ�(z, Δt) + H(z) − H(z − Δz(z, Δt)) + J (z) − J (z − Δz(z, Δt))
ΔE(z, 0) ≤ Δ�(z, 0) + H(z) − H(z − Δz(z, 0)) + J (z) − J (z − Δz(z, 0))

≤ (1 + c/2) arcsin(z) + J (z) − J (sin(
1
2
arcsin(z)))

Since we require that J (z) ≥ ΔE(z, 0), it su�ces to show that the following holds:

J (sin( 12 arcsin(z))) ≥ (1 + c/2) arcsin(z). Using the provided function, we get that

J (sin( 12 arcsin(z))) = (c +2) arcsin(z)/2 as required, so the provided function is a valid

jumping distance function. □

4.3.4 Corollary. If � is in I , then |� − �| ≤ (2c + 2) arcsin(z).

90



4.3 Lipschitz stability

Bounding the speed To show that the orientation � stays within the interval I ,
we argue that over a time period of T (z) we can rotate � at least as far as E. As the

endpoint of the safe zone moves at most as fast as E, this implies that if � leaves the

safe zone at time t , it returns to it in the time period (t, t +T (z)]. Thus we require that

KT(z) ≥ ΔE(z, T (z)), as � can rotate at most K units when the points move at unit

speed. We need to keep up only when the safe zone does not span all orientations,

that is, the above inequality must hold only when H(z) ≤ �/2 or z ≤ sin( �2c ). To �nd

a suitable value for K in Lemma 4.3.7, we choose a speci�c value c = 3.1 Hence we

need to chase � only when z ≤ sin(�6 ) =
1
2 .

In our proofs we use the following trigonometric inequalities.

4.3.5 Lemma. The following inequalities hold for 0 ≤ x ≤ 1:

1. sin(� arcsin(x)) ≤ �x for � ≥ 1

2. sin(� arcsin(x)) ≥ �x for 0 < � ≤ 1.

Proof. We �rst show inequality (1). Let x = sin(y). We rewrite (1) into sin(�y) ≤
� sin(y). The derivative with respect of y is � cos(�y) for the left side and � cos(y)
for the right side. Since cos(y) ≥ cos(�y) for 0 ≤ y ≤ �/� and � ≥ 1, we get

that sin(�y) ≤ � sin(y) for 0 ≤ y ≤ �/�. In particular, for y = �/(2�) we get that

1 = sin(�y) ≤ � sin(y). Since sin(�y) ≤ 1 and � sin(y) attains its �rst maximum at

y = �/2, we thus also get that sin(�y) ≤ � sin(y) for 0 ≤ y ≤ �/2. Since x = sin(y)
and sin(�/2) = 1, the result follows.

For inequality (2), set x = sin( 1� arcsin(y)). We then rewrite inequality (2) into y ≥
� sin( 1� arcsin(y)). Note that y = sin(� arcsin(x)) ≤ 1, and hence

1
� ≥ sin( 1� arcsin(y)).

This inequality holds for 0 ≤ y ≤ 1, since we can apply (1) using
1
� ≥ 1. As y =

sin(��/2) < 1 implies x = sin( 1� arcsin(y)) = 1, (2) holds for 0 ≤ x ≤ 1. □

4.3.6 Lemma. x ≤ arcsin(x) ≤ arcsin(a)
a x for 0 ≤ a ≤ 1 and 0 ≤ x ≤ a.

Proof. First note that arcsin(x) is a convex function for 0 ≤ x ≤ 1. Since the derivative

of x and arcsin(x) is 1 at x = 0, this directly implies that x ≤ arcsin(x). Furthermore,

since arcsin(x) = arcsin(a)
a x for x = 0 and x = a, the convexity of arcsin(x) also

directly implies the second inequality. □

Using the above inequalities, we can show that � can stay in I , if the chasing algo-

rithm is allowed to change with su�cient speed.

1
We could have set c = 3 earlier and simpli�ed some of the earlier analysis. We did not do so in order

to demonstrate the general technique more clearly, rather than just speci�cally for this problem.
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4.3.7 Lemma. If K ≥ 43, then |�(t) − �(t)| ≤ 8 arcsin(z) (using c = 3) for all t .

Proof. Consider a time t when �(t) leaves the safe zone. We �rst argue that �(t′)will

be in the safe zone at some time t′ ∈ (t, t + T (z)]. To show this, we need to prove

that KT(z) ≥ ΔE(z, T (z)) for z ≤ 1
2 .

To apply the bounds of Lemmata 4.3.1 and 4.3.2, we must ensure that T (z) = z/4
satis�es the bounds for Δt . For Lemma 4.3.1, observe that (1−z)/(2+2z) is decreasing

and z/4 is increasing, and (1 − z)/(2 + 2z) = 1
6 ≥ z/4 for z = 1

2 . For Lemma 4.3.2 we

apply Lemma 4.3.5 to show that sin( 12 arcsin(z))/2 ≥ z/4. We thus get the provided

bounds on Δ�(z, T (z)) and Δz(z, T (z)), and as a result a bound on ΔE(z, T (z)). In

particular, for Δt ≤ T (z), we get:

ΔE(z, Δt) ≤ Δ�(z, Δt) + H(z) − H(z − Δz(z, Δt)) + J (z) − J (z − Δz(z, Δt))

= arcsin(z + Δt(2 + 2z)) + 8 arcsin(z) − 8 arcsin(
sin( 12 arcsin(z)) − 2Δt

1 + 2Δt ) .

We have that z ≤ 1
2 ,Δt ≤ z/4 ≤ 1

8 and z+Δt(2+2z) ≤ 7
8 . Then, using the inequalities of

Lemma 4.3.6, where 2 arcsin( 12 ) ≤ 1.05 and
8
7 arcsin(

7
8 ) ≤ 1.22, and using Lemma 4.3.5,

we get:

ΔE(z, Δt) ≤ 1.22(z + Δt(2 + 2z)) + 8.4z −
4z − 16Δt
1 + 2Δt

≤ 9.62z + 1.22Δt(2 + 2z),

where the last inequality uses the fact that Δt ≤ z/4, and thus 16Δt ≤ 4z. Finally,

�lling in Δt = T (z) = z/4, we get:

ΔE(z, T (z)) ≤ 10.23z + 0.61z2

≤ 10.6z for z ≤
1
2

≤ K
z
4

for K ≥ 43.

Finally, we need to argue that �(t) does not leave I in the interval (t, t + T (z)]. To

show this, we need to prove that KΔt ≥ ΔE(z, Δt) − J (z) for all Δt ∈ [0, T (z)]. Using

the inequalities above, we have:

ΔE(z, Δt) − J (z) ≤ arcsin(z + Δt(2 + 2z)) + 3 arcsin(z)

− 8 arcsin(
sin( 12 arcsin(z)) − 2Δt

1 + 2Δt ) .
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We �rst argue that this function is nondecreasing in z, such that ΔE(z, Δt) − J (z) ≤
ΔE( 12 , Δt) − J (

1
2 ). For that we consider its partial derivative in z:

)(ΔE(z, Δt) − J (z))
)z

=
3

√
1 − z2

+
1 + 2Δt

√
1 − (2Δt + z + 2Δtz)2

−

4 cos( 12 arcsin(z))√
1 − z2

√
(1 + 2Δt)2 − (sin( 12 arcsin(z)) − 2Δt)2

≥
3

√
1 − z2

+
1 + 2Δt
√
1 − z2

−
4

√
1 − z2

cos( 12 arcsin(z))√
1 − (sin( 12 arcsin(z)) − 2Δt)2

≥
4

√
1 − z2

⎛
⎜
⎜
⎝
1 −

cos( 12 arcsin(z))√
1 − sin2( 12 arcsin(z))

⎞
⎟
⎟
⎠

≥ 0

As a result we can conclude the following:

ΔE(z, Δt) − J (z) ≤ ΔE (
1
2
, Δt) − J (

1
2)

=
�
2
+ arcsin (

1
2
+ 3Δt) − 8 arcsin(1 −

4 +
√
6 −

√
2

4 + 8Δt )

Note that this bound is 0 whenever Δt = 0. It is now su�cient to show that the

derivative of this function with respect to Δt is at most K for 0 ≤ Δt ≤ 1
8 . Let

a = 4 +
√
6 −

√
2 ≈ 5.035.

)ΔE( 12 , Δt)
)Δt

=
6

√
4 − (1 + 3Δt)2

+
64a

(4 + 8Δt)2
√

2a
4+8Δt − (

a
4+8Δt )2

=
6

√
4 − (1 + 3Δt)2

+
64a

(4 + 8Δt)
√
2a(4 + 8Δt) − a2

≤
6

√
4 − (1 + 3Δt)2

+
16a

√
8a − a2

≤ 4.14 + 20.86 ≤ 43 ≤ K

Here we used that 3/
√
4 − (1 + 3Δt)2 is increasing in Δt and that Δt ≤ 1

8 . We conclude

that KΔt ≥ ΔE(z, Δt) − J (z) for all Δt ∈ [0, T (z)]. Thus, �(t) does not leave I in the

time period (t, t + T (z)]. By repeating this argument whenever �(t) leaves the safe

zone, we can conclude that |�(t) − �(t)| ≤ 8 arcsin(z) for all times t . □
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p2
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x ⋅ Dz

(1 − x) ⋅ Dz
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v1
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D

(b)
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D

v1

 ′

v2

(c)

Figure 4.9 Illustrations supporting the proof of Lemma 4.3.8.

▶ 4.3.2 Lipschitz stability ratio

What remains is to analyze the approximation ratio of the chasing algorithm for obb.

Corollary 4.3.4 implies that the orientation � of the chasing algorithm is at most an

angle (2c + 2) arcsin(z) away from the orientation of the diameter.

4.3.8 Lemma. If |� − �| ≤ (2c + 2) arcsin(z), then fobb(�, P) ≤ (4c + 6)min� fobb(�, P).

Proof. Assume that at some time t we have a diametric box with diameter D and

aspect ratio z, and let (p1, p2) be the diametrical pair. The smallest obb must con-

tain p1 and p2 and must hit the sides of the diametric box at, say, q1 and q2. The

smallest obb must contain the triangles formed by {p1, p2, q1} and {p1, p2, q2}. Let

the diametrical pair be located at a fraction x along the minor axis in the box, then

the heights of these triangles with base p1p2 are x ⋅ Dz and (1 − x) ⋅ Dz respectively.

Their combined area is thus D2z/2 and provides a lower bound for the area of obb.

Now consider the box of the chasing algorithm, whereΔ� = |�−�| ≤ (2c+2) arcsin(z).
The major axis (in direction �) has length at most D. Let the minor axis be bounded

by two points v1 and v2, and 
 the angle between the lines spanned by v1v2 and by

the diametrical pair p1p2, on the opposite side of Δ� with respect to p1p2. Let the

smallest angle between those two lines be 
 ′. Note that in the worst case v1 and v2
are located on the boundary of the diametric box. Would those points not lie on the

boundary, then we can move them there and increase the area of the chasing box. The

distance between v1 and v2 is therefore bounded by zD/ sin(
 ′). Whenever 
 ′ = 
 ,

the angle between the minor axis of the chasing box and the line through v1 and v2
is �/2 − 
 − Δ� . Thus, the length of the minor axis is zD cos(�/2 − 
 − Δ�)/ sin(
 ) =
zD sin(
 + Δ�)/ sin(
 ).
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However, it can also be the case that 
 ′ = � − 
 . The angle between the minor

axis of the box and the line through v1 and v2 is now �/2 − 
 ′ + Δ� . Analogously,

we hence �nd that the length of the minor axis is zD cos(�/2 − 
 ′ + Δ�)/ sin(
 ′) =
zD sin(
 ′ − Δ�)/ sin(
 ′). Using 
 ′ = � − 
 , the length of the minor axis can be

simpli�ed to zD sin(
 + Δ�)/ sin(
 ), which is the same expression as for 
 = 
 ′.

Since the function sin(
 + Δ�)/ sin(
 ) is decreasing in 
 , we attain the maximum

when z/ sin(
 ) = 1 or 
 = arcsin(z). Hence, using 
 = arcsin(z), we get that the area

of the box of the chasing algorithm is at most D2 sin((2c + 3) arcsin(z)), which is at

most D2z(2c + 3) by Lemma 4.3.5. Thus, fobb(�, P) ≤ (4c + 6)min�fobb(�, P). □

4.3.9 Lemma. If |� − �| ≤ (2c + 2) arcsin(z), then fstrip(�, P) ≤ (4c + 6)min� fstrip(�, P).

Proof. Assume that at some time t we have a diametric box with diameter D and

aspect ratio z, and let (p1, p2) be the diametrical pair. The width of the diametric box

is determined by two points q1 and q2.

We �rst derive a lower bound for the width of the thinnest strip; note that this fol-

lows the same rationale as in the proof of Lemma 4.3.2. Such a strip must contain the

points p1, p2, q1 and q2. As adding points to a point set can only widen the thinnest

strip, we consider just these four points for a lower bound. For the thinnest strip, all

four points are on the boundary of the strip in the worst case, and we assume w.l.o.g.

that p1 and q1 are on the same side of the strip (same for p2 and q2). Consider the

following lines: L oriented in the orientation of the strip (parallel to its boundary),

Lp spanned by p1p2 and Lq spanned by q1q2. Let the angle between Lp and Lq be


 , 
 ≥ arcsin(z). The distance between q1 and q2 is then zD/ sin(
 ). We denote

the angle between L and Lp by 
p , and between L and Lq by 
q . We observe that


p +
q = 
 , as the orientation of L must bisect the 
 angle for the strip to be thinnest.

The width of the strip is max(D sin(
p), zD sin(
q)/ sin(
 )). We show that this width

is at least D sin( 12 arcsin(z)). This is clearly the case if 
p ≥ 1
2 arcsin(z), so assume

the contrary. Since the function sin(
 − 
p)/ sin(
 ) is increasing, it is optimal to set


 = arcsin(z). But then zD sin(
q)/ sin(
 ) = D sin(
q) > D sin( 12 arcsin(z)). Thus, the

width of the thinnest strip is at least D sin( 12 arcsin(z)) ≥ Dz/2 by Lemma 4.3.5.

Now consider the strip of the chasing algorithm, with an orientation � di�ering at

most Δ� = |� −�| ≤ (2c +2) arcsin(z) from the orientation of the diametrical pair. Let

the width of the strip be bounded by two points v1 and v2, where the angle between

the line through v1 and v2 and the line through the diametrical pair p1p2, opposite

of Δ� with respect to p1p2, is 
 . Let the smallest angle between those two lines be 
 ′.
Note that, the distance between v1 and v2 is zD/ sin(
 ′), since they de�ne the width

of the diametric box. When 
 ′ = 
 , the angle between the vector perpendicular to
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4 Kinetic Orientation-Based Shape Descriptors

the orientation of the strip and the line through v1 and v2 is �/2 − 
 − Δ� . Thus, the

width of the strip is zD cos(�/2 − 
 − Δ�)/ sin(
 ) = zD sin(
 + Δ�)/ sin(
 ).

On the other hand, whenever 
 ′ = � −
 , the angle between the vector perpendicular

to � and the line v1v2 is �/2 − 
 ′ + Δ� . Analogously, we �nd that the width of the

strip is zD cos(�/2 − 
 ′ + Δ�)/ sin(
 ′) = zD sin(
 ′ − Δ�)/ sin(
 ′). Using 
 ′ = � − 
 ,

the width of the strip can be simpli�ed to zD sin(
 + Δ�)/ sin(
 ), which is the same

expression as for 
 ′ = 
 .

Since the function sin(
 + Δ�)/ sin(
 ) is decreasing in 
 , we attain the maximum

when z/ sin(
 ) = 1 or 
 = arcsin(z). Thus, using 
 = arcsin(z), the width of the strip

is at most D sin((2c + 3) arcsin(z)), which is at most Dz(2c + 3) by Lemma 4.3.5. We

�nally obtain that fstrip(�, P) ≤ (4c + 6)min� fstrip(�, P). □

By combining Lemmata 4.3.7, 4.3.8, and 4.3.9, we obtain the following bounds on the

Lipschitz stability of obb and strip.

4.3.10 Theorem. The following Lipschitz stability ratios hold for obb and strip, assuming

diameter D(t) ≥ 1 for all t and points move with at most unit speed:

• �LS(obb, 43) ≤ 18,

• �LS(strip, 43) ≤ 18.

▶ 4.3.3 Lipschitz stability of principal component
The chasing algorithm in the previous section does not work for the �rst principal

component. Speci�cally, our scale normalization, which requires the diameter to be

at least one at any point in time, does not help. This can intuitively be attributed

to the optimization function of pc. Rather than being de�ned by some form of

extremal points, fpc is determined by variance: although the diameter may be large,

many close points may still largely determine the �rst principal component. We

formalize this via the lemma below. It implies that requiring a minimal diameter

is not su�cient for a chasing algorithm with bounded speed to approximate pc.

The proof is inspired by the construction in [32] that shows the ratio on the areas

between a bounding box aligned with the principal components and the optimal

oriented bounding box can become in�nite.
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4.3 Lipschitz stability

Figure 4.10 The two points connected by the blue line form a diametrical pair

for the whole point set. The dense set of points located arbitrarily

close to the right point can move around it in an infinitesimally short

amount of time. Because the point set is so dense, the orientation of

the first principal component (in red) follows it regardless of how far

the le�most point is placed.

4.3.11 Lemma. For any constant K , there exists a point set P(t) with minimum diameter 1
at all times, such that any shape descriptor that approximates the optimum of fpc must

move with speed strictly greater than K .

Proof sketch. Consider the point set P containing two points that lie on a horizontal

line and form a diametrical pair for P . All other points in P form a dense subset

P ′ that is not collinear with the two points that form the diametrical pair, but are

located very close to only one of the two points. See Figure 4.10 for the construction.

Remember that the optimization function for the �rst principal component mini-

mizes the sum of squared distances from the points to the line. The dense subset P ′

contains so many points that any line that di�ers more than � from the orientation

of the line l through P ′, has a signi�cantly larger sum of squared distances from the

points in P to l. Hence pc follows P ′ regardless of the position of the two points

forming the diametrical pair.

For any constant K , the points in P ′ can be placed and moved in such a way that in

an in�nitesimally small time frame, they can move around one of the points of the

diametrical pair and change the orientation of pc by more than K . Thus any shape

descriptor that approximates the optimum of fpc must also change its orientation by

more than K . □
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4 Kinetic Orientation-Based Shape Descriptors

▶ 4.4 Conclusion
We studied the topological and Lipschitz stability of three common orientation-based

shape descriptors. Although stateless algorithms cannot achieve topological stability,

we proved tight bounds on the topological stability ratio for state-aware algorithms.

Our Lipschitz analysis focuses on upper bounds, showing that a chasing algorithm

achieves a constant approximation ratio for a constant maximum speed, for obb

and strip. Since pc is not su�ciently scale invariant under the conditions in our

analysis, it is left open whether the same algorithm can work for pc. Furthermore,

the analysis techniques for the Lipschitz stability upper bounds have the potential

to also work for other problems that could be approached via a chasing algorithm.

Finally, it remains open to establish whether lower bounds exist that are stronger

than those already given by our topological stability results.
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5Chapter



Spatially and Temporally
Coherent Visual Summaries

When exploring large time-varying data sets, visual summaries are a useful tool to

identify time intervals of interest for further consideration. A typical approach is to

represent the data elements at each time step in a compact one-dimensional form

or via a one-dimensional ordering. Such 1D representations can then be placed in

temporal order along a time line. There are two main criteria to assess the quality of

the resulting visual summary: spatial quality – how well do the 1D representations

capture the structure of the data at each time step, and stability – how coherent are

the 1D representations over consecutive time steps or temporal ranges? For exam-

ple, the 1D representation for dynamic graphs should capture the network structure,

under insertions and deletions. For hierarchical data the 1D representation should

capture the implied tree structure, under value changes and insertions and deletions.

Finally, for moving entities in 2D, the 1D representation should capture the spatial

proximity under continuous movement of the entities. We focus on techniques that

create such visual summaries for entities moving in 2D. Previous work has consid-

ered only the creation of 1D orderings, using spatial subdivisions and clustering

techniques. In contrast, taking inspiration from the previous chapter, we propose

to use methods based on principal component analysis and other dimensionality-

reduction techniques to compute stable and spatially informative 1D representations.

These more general 1D representations provide the user with additional visual cues
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5 Spatially and Temporally Coherent Visual Summaries

(c) (d) (e)

(a) (b)

Figure 5.1 Examples of visual summaries in existing work. (a) Dynamic StoryLine

graph [112], (b) Let It Flow for dynamic graphs [30], (c) Parallel Edge

Spla�ing [25], (d) Extended Massive Sequence Views [110] and (e)
Temporal Treemaps [69].

describing the spatial structure of the data, and naturally imply also a 1D order-

ing. To make dimensionality-reduction techniques suitable for visual summaries,

we introduce stable variants of principle component analysis, Sammon mapping,

and t-SNE in this chapter. Our Stable Principal Component method explicitly allows

a user-con�gurable trade-o� between the spatial quality and stability.

Visual summaries have been extensively used in various applications. For example,

there are a variety of methods to handle time-varying graphs, such as Parallel Edge

Splatting [25] (Figure 5.1c) and Extended Massive Sequence Views [110] (Figure 5.1d),

that show the temporal evolution by drawing the graph at each time step in a narrow

vertical strip. Similarly, Temporal Treemaps [69] (Figure 5.1e) encode hierarchies via

(essentially) one-dimensional intervals and show the temporal evolution by placing

these intervals consecutively along a line. Also Storyline Visualizations [73, 112]

(Figure 5.1a) use a compact representation at each time step (essentially a pixel per

protagonist); these representations must be coherent between consecutive time steps

and as such trace a trajectory for each actor.

Arguably the most compact representation for one time step is a 1D ordering of

the data objects. Such an ordering directly translates to a grid-based visualization

of associated attributes, where a vertical strip of n grid cells encodes n objects. In

principle, any aspect of the data can be used to create the ordering. For example,

MotionRugs by Buchmüller et al. [23] (Figure 5.2d) computes orders from spatial
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(b)

(c)

(d)

Figure 5.2 Visual summaries of fish movement data. (a) Sample frames of move-

ment data; background indicates spatial coloring. (b) Our Stable Prin-

cipal Component method translates moving entities into MotionLines;

color indicates spatial location. (c) MotionLines compacted via or-

dering into a MotionRug [23]. Chart below indicates spatial quality

(yellow) and stability (blue) per time step; high values indicate low

quality. (d) Unstable ordering using Hilbert curve, note the artifical

split between the green locations.
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5 Spatially and Temporally Coherent Visual Summaries

locations for entities moving in 2D, whereas Cui et al. [30] (Figure 5.1b) use node

degree to order dynamic graph data.

Previous work [23, 57] which computes 1D orderings for moving entities in 2D fo-

cuses on spatial subdivisions or clustering techniques. All are designed to maintain

spatial relations in the sense that entities which are close in the 1D ordering are also

close in the 2D input. In contrast, we want to ensure high spatial quality by commu-

nicating all data well. Speci�cally, data points which are close in 2D need to also be

close in the 1D representation. Furthermore, we would like to adequately represent

temporal patterns in the data through visual summaries: small changes in the data

should lead to small changes in the 1D representations. One way of achieving this, is

by making sure that the ordering in 1D does not change much between consecutive

representations. We propose to use actual dimensionality-reduction techniques to

compute meaningful visual summaries for entities moving in 2D: the resulting visual

summaries should both be stable and represent the data well.

Our stable dimensionality-reduction methods compute not only an ordering, but

a more general 1D representation which provides the user with additional visual

cues describing the spatial distribution of the data. We connect the position of

entities in this 1D representation across time-steps to form so-called MotionLines

(see Figure 5.2), which illustrate the potential of more general 1D representations.

Furthermore, we have augmented the visual summaries in Figure 5.2 with spatial

quality and stability information. These augmentations serve to show the quality of

1D representations; they can help a user in identifying interesting segments in the

data, as well as gauging the reliability of the visual summary.

Formal problem statement Our input is a set P = {p1, … , pn} of n point objects

moving in the plane. We sample their positions at T consecutive time steps. That

is, each object pi is a sequence of T locations or points in the plane. We use pi(t) to

denote the location of pi at time t , 1 ≤ t ≤ T , and, correspondingly, P(t) to denote

the complete point set at time t . A visual summary S of P is a sequence of 1D

representations of the points in P , one per time step. We denote the representation

at time t by St . A 1D representation naturally implies a 1D ordering. Thus, St (pi)
denotes either a 1D position or the rank of point object pi in the 1D representation

at time t . The quality of a visual summary S is determined by two criteria:

Spatial quality How well does St capture the spatial structure of P(t)? We charac-

terize the spatial structure via local neighborhoods: we say that a 1D repre-

sentation has high spatial quality if points that are spatially close in the input

are also close in the representation.
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Stability How consistent are the 1D representations over time? Here we can con-

sider absolute changes between representations or changes in local neighbor-

hoods, as captured by nearest neighbors in the ordering. Both types of mea-

sures can be considered for consecutive time steps or over temporal ranges.

Clearly, a visual summary that uses the same representation for all time steps is

maximally stable. However, the spatial quality of this representation will typically

be low. Conversely, optimizing spatial quality for each time step in isolation tends

to result in unstable summaries which make it more di�cult for the user to track

objects. Hence, we need algorithms that incorporate the temporal dimension into

solving each time step.

Contributions and organization To make dimensionality-reduction techniques

suitable for visual summaries, in Section 5.1 we introduce stable variants of Principle

Component Analysis (PCA), Sammon mapping, and t-SNE. Our Stable Principal

Component method [SPC] is explicitly parametrized for stability, allowing a trade-

o� between spatial quality and stability. We also describe a stable Clustered Principal

Component [CPC] method, particularly suited for data sets that exhibit clear clusters.

Since previous work has focused exclusively on 1D orderings, so does our quanti-

tative evaluation. In Section 5.2 we survey a representative set of state-of-the-art

ordering methods, which we compare against in our experiments. In Section 5.3 we

discuss the quality metrics we use to capture spatial quality and stability. In partic-

ular, for spatial quality we use the so-called Key Similarity measures proposed by

Guo and Gahegan [57] that characterize spatial proximity via k nearest neighbors.

For stability we consider two di�erent types of measures: absolute or neighborhood

changes in the linear order. For absolute stability we use the number of Jumps and

Crossing as proposed by Buchmüller et al. [23]. We model neighborhood changes

between orders via changes in the k nearest neighbors, and again use the Key Sim-

ilarity measures by Guo and Gahegan [57]. In Section 5.4 we report on the results

of our experiments, which use both real-world and synthetic data. We can conclude

that our stable dimensionality-reduction techniques outperform spatial subdivisions,

space �lling curves, and clustering techniques on stability, without sacri�cing spa-

tial quality or e�ciency. We close in Section 5.5 with discussion of our results and

directions for possible future work.
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5 Spatially and Temporally Coherent Visual Summaries

▶ 5.1 Stable dimensionality reduction
We describe four stable variants of well-established dimensionality-reduction tech-

niques – PCA, Sammon mapping, and t-SNE – which we use to create 1D representa-

tions for moving entities. The dimensionality reduction performed by PCA consists

of a projection onto a single vector, using the principal component for projections of

high spatial quality. To develop a stable PCA-based method, we can interpolate the

projection vector between time steps, instead of using the principal component at

each time step. This enables an explicit user-con�gurable trade-o� between spatial

quality and stability (see Section 5.1.1). We extend this method to incorporate the

presence of clusters in the data, preventing clusters from interleaving in 1D repre-

sentations. Sammon mapping and t-SNE rely on local search heuristics (gradient

descent) to compute the 1D representations. In Section 5.1.2 we show how we can

improve stability by choosing initial solutions for the local search heuristic.

▶ 5.1.1 Stable principal component analysis
PCA was �rst introduced by Pearson [87] and can be used for di-

mensionality reduction to 1D by projecting points onto the �rst

principal component: a vector in the direction along which the

point set has most variance. Projecting onto this vector maxi-

mally preserves spatial relations in the original point set.

In the previous chapter, we analyzed the trade-o� between spatial

quality and stability of orientation-based shape descriptors, including PCA, from a

theoretical point of view. The analysis shows that the principal components of a set

of moving points in 2D exhibit unstable behavior when the point set is not stretched,

that is, the variance along the �rst and second principal component is similar. Our

approach leverages this result by explicitly enforcing stability when the point set

is not stretched. The intuition behind this approach is as follows. If the variance

along the �rst principal component is clearly higher than the variance along the

second principal component, the direction is very discriminative: the point set is

clearly stretched in this direction and sorting the points along this vector tends to

lead to high spatial quality. If this is not the case, then the point set is “round” and

the spatial quality is roughly equivalent for other directions as well. Our goal is to

smoothly interpolate the projection vector in those cases.
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5.1 Stable dimensionality reduction

[SPC� ] Stable Principal Component To create a stable ver-

sion of PCA, we use the optimal direction (�rst principal com-

ponent) as projection vector for any t where P(t) is stretched, as

well as for the �rst and last time step. For all time steps in be-

tween (when the point set is not stretched) we linearly interpolate

the orientation of the projection vector. We use a parameter �
(0 ≤ � ≤ 1) to control when we consider a point set as stretched or not.

Concretely, the Stable Principal Component algorithm is implemented as follows (see

Algorithm 1 for an overview). To determine if a point set is stretched, we use the

corresponding eigenvalues �1 and �2 of the �rst and second principal components,

respectively. If �2/�1 > � , then the point set is stretched, and otherwise it is not. For

the time steps t where the point set is stretched (including t = 1 and t = T ), we simply

compute the �rst principal component as projection vector pv[t]. Note that −pv[t]
is equally good as projection vector, but results in a mirrored 1D representation. To

avoid �ipping, we therefore use the direction (pv[t] or −pv[t]) that is most consistent

with pv[t − 1] (computed using the dot product). For time steps t where the point set

is not stretched we also �rst compute the (consistent) �rst principal component. We

use these vectors to keep track of the signed angle � describing how the orientation

of the �rst principal component has changed since the last time t′ the point set

was stretched (or t′ = 1). Once we reach another time t′′ where the point set is

stretched (or t′′ = T ), we can linearly interpolate the orientation of the projection

vector for all times t with t′ < t < t′′. Although linear interpolation of orientations

is not unique in general, we can use the accumulated signed angle � to uniquely

interpolate the projection vector. Finally, we project the point sets for all time steps

onto the computed projection vectors pv[t].

Since the eigenvalues and principal components of n points in 2D can be computed

in O(n) time, it is easy to see that the entire algorithm runs in O(nT ) time. The

explicit trade-o� between spatial quality and stability can be con�gured via parame-

ter � . If � is set to a value close to 1, the focus of the algorithm is on spatial quality,

and only when the point set is very “round”, stability will be enforced; � = 1 elimi-

nates interpolation and always uses the �rst principal component in every time step.

However, if � is set closer to 0, the focus will be on stability and even for moderately

stretched point sets, linear interpolation can occur, thereby sacri�cing spatial quality

for stability; � = 0 causes one interpolation, from the �rst principal component at

t = 0 to the �rst principal component at t = T . Hence, by tuning � , the preferred

trade-o� between spatial quality and stability can be obtained.

107



5 Spatially and Temporally Coherent Visual Summaries

Algorithm 1 StablePrincipalComponent(P , �)
Input: Point set P over T time steps, and � ∈ [0, 1]
Output: Visual summary S for P

1: Set pv[1] to the �rst principal component vector (pc) for P(1)
2: Set t′ to 1 and � to 0
3: for t = 2 to T do
4: Set pv[t] to pc of P(t) and compute eigenvalues �1, �2
5: Add the signed angle between pv[t] and pv[t − 1] to �
6: if �2/�1 ≤ � or t = T then
7: for ts = t′ + 1 to t − 1 do
8: Set pv[ts] to pv[t′] rotated over � ⋅ ts−t

′

t−t′
9: Set t′ to t and � to 0

10: for t = 1 to T do
11: De�ne S[t] by projecting P(t) onto pv[t]
12: return S

[CPC� ] Clustered Principal Component If a point set is

strongly clustered, then we would expect a 1D representation

of this point set with high quality to separate the di�erent clus-

ters. However, in the Stable Principal Component algorithm de-

scribed above, two clusters may be interleaved if their projections

happen to overlap. Therefore, we also propose the Clustered

Principal Component algorithm, which is essentially a hybrid between SPC� and a

clustering algorithm (such hybrids have also been explored in [114]).

Intuitively, this algorithm performs SPC� on the separate clusters. More speci�cally,

for every frame we �rst perform Complete Linkage Clustering [53] [CLC] on the

point set, resulting in a hierarchical clustering. CLC is agglomerative and repeatedly

merges the two clusters that are closest, where the distance between two clusters is

determined by the farthest two points in di�erent clusters. To obtain a partitioning

of the points, we stop the process when the closest distance between clusters doubles

with respect to the previous iteration. While this heuristic su�ces to �nd salient

clusters in our data sets, many other techniques exist to �nd a good partitioning in

a hierarchical clustering [86].

Next, we perform SPC� on the individual clusters, with two small adaptations, result-

ing in projection vectors pvC [t] for a cluster C . First, we end the linear interpolation

pvC [t] when the clustering changes and there is no longer a cluster with exactly the
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5.1 Stable dimensionality reduction

same points as C . We basically treat the time step as t = T , and interpolate to the

last frame where cluster C still existed. Second, it is no longer straightforward to

determine the most consistent direction (pvC [t] or −pvC [t]) for a cluster when the

clustering changes. Here we use the projection vector used by the majority of the

points in the cluster at time t − 1 to determine the most consistent direction.

To �nd the global 1D representation at time t , we use the �rst principal component of

the whole set P to project the cluster centers. The 1D representations of points within

a cluster are then placed around the projection of its cluster center. Although this

approach may still result in overlap between two clusters when using 1D coordinates

as representation, we can easily separate the clusters if we use a 1D ordering: �rst,

we order the clusters according to their cluster centers, and then we order the points

within a cluster according to their internal ordering.

▶ 5.1.2 Gradient-descent methods
Many dimensionality-reduction techniques de�ne a cost function to describe the

spatial quality of the resulting representation, and aim to minimize that function.

For example, Sammon mapping uses a function that measures how well distances are

preserved, while t-SNE uses a function that measures how well local neighborhoods

are preserved. Since �nding the global minimum of such a cost function is typi-

cally hard, they often use local search heuristics (usually gradient descent) to �nd a

good solution. In our experiments we consider two such dimensionality-reduction

techniques: Sammon mapping and t-SNE. There are other dimensionality-reduction

techniques, such as MDS [71] and Isomap [107], but based on their cost functions we

believe that they give similar results (in fact, in the Euclidean plane, classical MDS

is equivalent to PCA). We �rst recall Sammon mapping and t-SNE for a static point

set, before explaining our adaptations for improved stability.

[SAM] Sammon Mapping Sammon mapping [98] aims to

preserve distances. Let dij denote the Euclidean distance between

points pi and pj , denote the resulting (1D) coordinates by xi , and

let �ij = |xi − xj |. Sammon mapping computes coordinates xi ,
attempting to minimize this cost function:

C =
1

∑1≤i<j≤n dij
∑

1≤i<j≤n

(dij − �ij )2

dij

The cost C is then minimized using a gradient descent starting from a random initial

solution.
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[SNE] t-Distributed Stochastic Neighbor Embedding The

goal of t-SNE [111] is to preserve local neighborhoods in the

result of the dimensionality reduction. Again, let dij denote the

Euclidean distance between points pi and pj . Similarities between

points are captured by a probability distribution:

j|i =
exp(−

d2ij
2�2i )

∑k≠i exp(−
d2ik
2�2i )

The values �i are chosen depending on the prede�ned perplexity � (see [111] for

details); in our experiments we use � = 40. We further de�ne ij = 1
2n (j|i + i|j )

and we set ij = 0 if i = j. Denote the resulting (1D) coordinates by xi , and de�ne

�ij as

�ij =
(1 + |xi − xj |2)−1

∑k≠l (1 + |xk − xl |2)−1

The cost function is de�ned by the Kullback-Leibler divergence as:

C = ∑
i≠j

ij log
ij
�ij

Finally, the cost C is again minimized using a (momentum-based) gradient descent
1

starting from a random initial solution.

Stability improvements Both Sammon mapping (SAM) and t-SNE (SNE) start

the gradient descent with a random initial solution, which may result in low stability

over time. To improve the stability of both algorithms, we initialize them with the

solution of the previous time step, resulting in two stable versions, [SAMp] and

[SNEp]. The rationale is that, if the local minimum found in the previous time

step still exists, but has slightly shifted, then this approach will likely �nd this local

minimum again rather than a random other local minimum.

Recently, Rauber et al. [91] described Dynamic t-SNE: a more explicit way of making

t-SNE stable over multiple time steps. Their approach performs a global optimization

1
We tried using the existing implementation at https://github.com/lejon/T-SNE-Java to com-

pute the t-SNE mapping. This implementation uses approximations to speed up the computation, which

lead to artifacts in our results. We therefore implemented the default version of t-SNE ourselves. See

supplementary material for more details.
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5.2 Computing 1D orderings

over all time steps simultaneously, using a separate copy of each point for each time

step. They enforce temporal coherence by adding a term to the optimization function

depending on the distance between two copies of the same point at consecutive time

steps. For two reasons we were not able to include this algorithm in our experiments.

First, it is very slow. The paper reports a running time of about 6 minutes per time

step. Although a single time step of our data consists of only hundreds of points, we

consider thousands of time steps, making their algorithm prohibitively slow. Second,

the implementation of Dynamic t-SNE rarely gives meaningful output when run on

our data
2
, which changes much faster than the data experimented on in [91]. We

further believe that Dynamic t-SNE would converge slowly on a time-varying data

set with many time steps: it would take at least T gradient descent iterations for

frames that are T time steps apart to a�ect each other. Since t-SNE is already known

to converge quite slowly, the combination may simply require too many iterations to

obtain a reasonable solution. Thus, Dynamic t-SNE exacerbates the usual downsides

of t-SNE, namely black-box parameter tuning and slow convergence.

▶ 5.2 Computing 1D orderings

Previous work by Guo and Gahegan [57] and Buchmüller et al. [23] which com-

putes 1D orderings for moving entities in 2D uses spatial subdivisions or clustering

techniques. For our experiments, we chose algorithms that performed best in their

experiments. We also include a baseline algorithm [FXD] that is solely focused on

stability. Figure 5.3 shows examples of orderings generated by some of the algo-

rithms, including dimensionality-reduction methods, for one time step of our data.

[FXD] Fixed Order This algorithm outputs the same arbitrary linear order for

every time step and hence serves as reference baseline for our experiments. With

FXD, each horizontal line always represents the same moving entity.

▶ 5.2.1 Spatial subdivisions
Several well-known linearization approaches, which are primarily used for spatial-

indexing applications, are based on the principle of iterating through some spatial

subdivision. These approaches encompass tree data structures and space-�lling

curves. We focus on four established, representative techniques from this area,

though many variations exist; see [74] for an overview.

2
The implementation often gives NaN as output. The authors [106] have veri�ed that this is a known

problem with the implementation.
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SPC

HILHIL

SNE

CLC

Figure 5.3 Orderings using dimensionality reduction (SPC and SNE), space-filling

curves (HIL) and clustering (CLC).

[HIL] Hilbert curve and [ZOR] Z-order curve The Hilbert

curve [61] is a continuous space-�lling curve. It can be applied

to cover a spatial region in arbitrary precision by repeating the

construction pattern recursively. A set of points in space can then

be linearized by sampling the curve and noting the order in which

the points are encoded on the curve. Another representative of

space-�lling curves is the Z-order curve, which di�ers from the

Hilbert curve in its geometrical construction pattern resembling

a Z shape, where the space is partitioned in four quadrants in

the order NW, NE, SW, SE (see bottom �gure on the right). Both

approaches di�er in neighborhood retention and construction

complexity, as Lu and Ooi describe [74]. Guo and Gahegan [57]

found that Hilbert curves avoid long jumps better than the Z-Order curve, which in

turn outperforms Hilbert curves in the average of the compared metrics. Since both

produce visually di�erent outcomes, we include both strategies in the comparison.

[PQR] Point �adtree Quadtrees [40] partition space recur-

sively in four parts, until each part contains only a single point.

Consequently, sparse areas cause fewer splits than dense areas.

Standard quadtrees divide the space in equal parts, while Point

Quadtrees split at an input point and thus potentially unevenly

in terms of area. To derive the 1D ordering, a depth-�rst tree-
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iteration strategy is used; given the neighborhood structure in the tree, this is more

suitable than a breadth-�rst strategy. See [39] for details on tree-iteration strate-

gies. The standard quadtree essentially re�ects a Z-Order curve linearization if the

same quadrant iteration is applied. Hence, we use the point quadtree variant which

produces di�erent orderings due to the intermittent partition.

[RTR] R-tree In R-Trees [58] objects are stored recursively

in minimum bounding rectangles (MBR). Each MBR can hold at

most a prede�ned number of objects, thus ensuring a minimum

�ll. In comparison to quadtrees, more complex balancing is nec-

essary, recomputing the MBRs, when the object limit is reached.

Note that MBRs can overlap. Again, a depth-�rst iteration strat-

egy is used to order points in an R-Tree.

▶ 5.2.2 Clustering
Another method to compute a linear order from a point set is to �rst compute a

hierarchical clustering on the point set, and then order the points in such a way that

clusters stay together. Algorithms of this type are de�ned by two aspects: (1) how

the points are clustered, and (2) how the linear order is computed from the clustering.

We use the following method to compute the linear order from the clustering.

The hierarchical clustering is represented by a tree with the individual points stored

in the leaves. We aim to order to leaves of such a tree without changing the cluster

structure: we can change only the order of the children of any internal node. We

follow the algorithm by Bar-Joseph et al. [6] to compute the order that minimizes the

length of the path formed by visiting the input points in that order. The algorithm

uses dynamic programming to e�ciently �nd the optimal order for every subtree

placing two speci�c points at the �rst and last position in the order.

[CLC] Complete Linkage Clustering Initially, every point

is considered as a separate cluster to be hierarchically merged in

a bottom-up fashion [53]. We do so by repeatedly merging the

closest two clusters, until we obtain a single cluster. Distance be-

tween clusters is measured as the distance between their farthest

points. While CPC also uses this clustering method, it di�ers as

SPC is executed within each cluster. For CLC we follow the procedure described

above, resulting in a linear order which relies only on the clustering.
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[SNN] Shared Nearest Neighbors This clustering algo-

rithm [65] works the same as CLC, but it uses a metric di�erent

from Euclidean distance to measure the dis(similarity) between

two points. For two points p and q, we �rst count the number x
of points that are in the set of k nearest neighbors for both p and

q. We then de�ne the shared nearest neighbor (SNN) distance be-

tween p and q as 1/(x + 1). In case of ties in SNN distance, we use Euclidean distance

to break ties. In our experiments we use k = 10.

▶ 5.3 Metrics

In this section we discuss the quality metrics we use to capture spatial quality and

stability. Since our quantitative evaluation focuses exclusively on 1D orderings (to be

able to compare to previous work), we will from now on discuss only 1D orderings.

▶ 5.3.1 Spatial quality

Spatial quality measures the correspondence between P(t) and the linear order St .
We capture this by considering the local neighborhood of a point, as characterized by

its nearest neighbors. One way to measure changes in local neighborhoods is using

an evaluation of dimensionality reduction via persistent homology as introduced by

Rieck and Leitte [93]. However, we choose not to use this type of measure. While

this approach is more recent than the measure we are using, it does not compare

to older results, it is more complex, and most importantly it is an indirect approach.

Hence, we use the Keys Similarity measures as described by Guo and Gahegan [57]

to directly measure the changes in nearest neighbors.

To simplify notation, we omit dependencies on time step t , as the metrics consider

each time step in isolation. Thus, P denotes a point set in the plane, and S denotes

a linear order. Let n(i, j) ∈ P denote the jtℎ nearest neighbor of pi in P , for each

j with 1 ≤ j ≤ k for some constant k. We use r(i, j) to denote the neighbor rank

in S between pi and n(i, j). However, the di�erence in rank |S(n(i, j)) − S(pi)| is not

unique. There are two neighbors at rank di�erence 1, two at rank di�erence 2, until

we reach one end of a linear order. To avoid arbitrariness, we do not break ties but

rather consider each pair with the same rank di�erence to have the same value for

r(i, j). Thus, there are two nodes with r(i, j) = 1 (rank di�erence 1), two nodes with

r(i, j) = 3 (rank di�erence 2), etc.
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Generally, Keys Similarity at time t is then de�ned as

KS(P, S) =
∑pi∈P ∑k

j=1 w(i, j) ⋅ r(i, j)

∑pi∈P ∑k
j=1 w(i, j)

,

where w(i, j) denotes the weight or importance of maintaining the jtℎ nearest neigh-

bor of pi at time t – note that these weights need not be the same at every time step.

We use two variants of Keys Similarity, as introduced by Guo and Gahegan [57].

[KSra] Rank-weighted Keys Similarity We de�ne w(i, j) = 1/j inversely pro-

portional to the rank of the jtℎ nearest neighbor in P , such that maintaining the

closest neighbors is considered more important than the more distant neighbors.

This gives the following metric, where Hk is the ktℎ harmonic number:

KSra(P, S) =
∑pi∈P ∑k

j=1 r(i, j)/j

∑pi∈P ∑k
j=1 1/j

=
∑pi∈P ∑k

j=1 r(i, j)/j
n ⋅ Hk

[KSdi] Distance-weighted Keys Similarity We de�ne w(i, j) = 1/‖pi − n(i, j)‖
inversely proportional to the Euclidean distance, such that maintaining close neigh-

bors is considered more important than distant neighbors. In contrast to KSra, this

variant does not treat neighbors at (nearly) identical distances di�erently.

KSdi(P, S) =
∑pi∈P ∑k

j=1 r(i, j)/‖pi − n(i, j)‖

∑pi∈P ∑k
j=1 1/‖pi − n(i, j)‖

Other facets Our metrics focus on combinatorial aspects of the position of the

point objects. Spatial structure in general knows many other facets, such as distances

and directions between points, as well as density. For 1D representations, such as

projections into a single dimension, distances and density and can factor into spatial

quality. However, a linear order inherently does not lend itself to represent such

concepts, as only neighbor rank can be read from an ordering.

▶ 5.3.2 Stability
Stability or temporal coherence measures the similarity between consecutive orders

in S. In our evaluation, we use the following three measures for stability. The �rst

two are based on absolute changes in the order and match the measures used by
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Buchmüller et al. [23] to evaluate MotionRugs. The latter uses neighborhoods, based

on the concepts by Guo and Gahegan [57].

We aim to compare the similarity between two linear orders, St and St+1 for each t
with 1 ≤ t < T . We could easily use the same metrics to compare nonconsecutive

orders, but this provides little insight for such inherently sequential data. To consider

the stability over a temporal range [t, t′], we use standard summary statistics (e.g.,

average, minimum, or maximum) over all consecutive pairs.

[JMP] Jump distance We quantify the jump distance for a single point object pi
as the di�erence between its ranks in the two orders, that is, |St (pi) − St+1(pi)|. The

jump distance between two orders is then the sum over all jump distances for each

point object.

JMP t (P , S) = ∑
pi∈P

|St (pi) − St+1(pi)|

The value for JMP t (P , S) lies between 0 (perfectly stable) and n(n − 1)/2 (complete

inversion of the order).

[CRS] Crossings Whereas JMP penalizes any change in the order, many points

moving up together may not constitute much change. Instead we may count the

number of inversions or crossings in the order, that is, the pairs pi , pj for which

St (pi) < St (pj ) and St+1(pi) > St+1(pj ). The metric CRSt (P , S) lies between 0 (perfectly

stable) and n(n − 1)/2 (complete inversion of the order).

Buchmüller et al. [23] also use Kendall’s � coe�cient to evaluate stability. We choose

to omit this, as it is equivalent to 1 − 2 ⋅ CRSt (P , S)/(n(n − 1)/2). That is, Kendall’s �
is the same as CRS up to normalization to the range [−1, 1].

[KSte] Temporal Keys Similarity We may also take the same approach as for

spatial similarity and consider the similarity of local neighborhoods in both orders.

As distances are not inherently meaningful in the combinatorial order and simply

correspond to ranking di�erences, we use only the rank-weighted version of Keys

Similarity. Also for this metric KStet (P , S), we do not break ties in either order, but

rather give them the same rank.

▶ 5.4 Experimental evaluation
In this section we report on quantitative experiments which compare our stable

dimensionality-reduction techniques (Section 5.1) to existing 1D ordering techniques
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(Section 5.2). For each algorithm, we assess the spatial quality and stability of the

computed visual summaries according to the metrics discussed in Section 5.3. The

parameter for SPC is explored after settling on the most e�ective measures for spatial

quality and stability. Besides reporting on the introduced metrics, we also compare

all algorithms on their run-time measurements.

The visual summaries in this section use a 2D RGB colormap introduced in [24]. As

shown in Figure 5.2, the 1D representations in the visual summaries (b)-(d) visual-

ize the data points as pixels colored according to their 2D position in (a). In visual

summaries of high spatial quality, data points that are close in 2D should be close

in 1D, hence similar colors should end up close to each other. Only when points

separate into di�erent clusters in 2D, should we see sharp contrasts in 1D, such as

in Figure 5.2 between 0:48 and 1:00. Furthermore, in stable summaries the neighbor-

hoods do not change much in the 1D representations, and thus the colors should

smoothly change over time.

▶ 5.4.1 Data

For comparability, we use the same data as MotionRugs [23] along with two synthetic

data sets, one generated using Netlogo [115] and another generated with the well

known Reynolds model [92]. The �rst data set tracks 151 �sh of the Notemigonus

crysoleucas species (Golden shiner). Golden shiner �sh live in large groups called

“shoals”, moving in coordination at almost any given time. The 151 �sh were tracked

optically while moving through a 2.1m by 1.2m shallow water tank, thus avoiding

movement in the third dimension. The tank did not feature any obstacles or hin-

drances besides the side walls. Di�erent movement patterns can be observed in the

data, which allows us to test quality in di�erent situations. Among these patterns

are uniform group movements, partial and complete changes of direction, circular

movement patterns, splitting o� in separate clusters, and changes in group density,

speed, and acceleration. This data set is quite large, hence we use two excerpts of

2000 frames of movement, which were recorded at a rate of 25 frames per second.

For each frame, the spatial coordinates of each �sh are recorded in a Cartesian co-

ordinate system. In the �rst excerpt, the �sh �rst move around the boundary of

the tank and �nally enter a so-called milling formation, moving in a circular shape.

During this movement the �sh always form a single cluster. In contrast, the second

excerpt shows the �sh splitting in separate clusters, as can be seen in Figure 5.2a.

In addition to analyzing the �rst excerpt in full, we also zoom in on a part of the

movement data, which triggers so-called “phantom splits” [23] for certain ordering
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5 Spatially and Temporally Coherent Visual Summaries

methods, most notably HIL, PQR, or SNEp (see Figure 5.6). The shoal of �sh appears

to split, but this is purely an artifact of the method and not re�ecting the data.

The second data set is generated with Netlogo using the Flocking model [116] from

the openly available Models Library within the Netlogo application. Minimal adap-

tations were made to the model to ensure the boundaries of the canvas do not wrap

around, and the trajectories of the moving entities could be extracted easily.

The third dataset, which we use to demonstrate clustered movement, is generated

by an adaptation from the well known Reynolds model [92], where between the

movers of the three visible clusters only repulsion forces apply, but no attraction,

keeping the clusters separate. This data set was generated using code by Piljek [88].

The results of the experimental evaluation are split by data set and excerpt, to show

how the algorithms are in�uenced by the properties of data. Sections 5.4.3 to 5.4.6

consider these results per data set.

▶ 5.4.2 Running Time

We implemented and executed all algorithms in Java 11 on a workstation with two

Intel Xeon E5-2687W CPUs at 3.10GhZ, 16 Cores, 128GB Ram and an NVidia Quadro

M600 GPU, running Windows 10. We measure running times only for computing

the orderings excluding reading input, color mapping and rendering. The running

times range from a few milliseconds for the Z-Order curve (ZOR) to just over 8

hours for t-SNE (SNE). General observations include comparably good performance

for the subdivision methods (ZOR, HIL, PQR, RTR), with values under one second

(see Tables 5.1–5.4). Only SPC variants are on par with this speed. While CPC is

slower than SPC, it is still considerably faster than the remaining methods.

▶ 5.4.3 Experimental evaluation fish data set (excerpt 1)

Figures 5.6 and 5.8 show visual summaries for all algorithms for the �rst excerpt of

the �sh data set. The MotionRugs are accompanied by a visualization of the mean

KSdi and KSte values for each frame, cut o� slightly above the mean values of most

algorithms. This ensures that the di�erences between the average behavior of the

algorithms becomes visible at a glance. Table 5.1 provides summary statistics over

all time steps and for each metric. Below, we �rst discuss spatial quality and stability

statistics separately, along with a discussion on phantom splits. We follow up with

an exploration into the e�ects of the parameter value on the outcome of SPC and

�nally consider the trade-o� between spatial quality and stability for all methods.
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Figure 5.4 Spatial-quality metrics: mean KSra (le�) and KSdi (right) for all algo-

rithms over all frames of the first excerpt of the fish data set.

Spatial quality Figure 5.4 compares the spatial-quality measures KSra and KSdi,

as measured on all algorithms for the �rst excerpt of the �sh data set. For both

measures lower values indicate higher spatial quality. Overall, we see that the KSra

measurements are slightly lower for all algorithms, except SNEp where KSdi has

a minimal edge over KSra. As expected, FXD achieves the worst spatial quality.

Furthermore, SNEp and the algorithms using spatial subdivisions are outperformed

by the clustering algorithms, and other dimensionality-reduction techniques. It is

interesting that the spatial quality of SAMp is only marginally worse than SAM,

while the spatial quality of SNEp is clearly inferior to SNE. This shows that even

though the same adaptations were made to improve stability, these methods are

a�ected in very di�erent ways. Comparing the spatial quality of SPC and CPC to

the algorithms that perform best on spatial quality, we see that SPC and CPC both

achieve comparable spatial quality. The choices for parameter � of SPC on the �rst

excerpt of the �sh data set are 0, 1, and variables a = 0.35, b = 0.53, c = 0.78. The

choice for the intermediate values a, b and c is di�erent for the various data sets and

will be justi�ed in the parameter exploration. For this data set we choose � = 0.53 for

CPC. This is a parameter value that according to the parameter experiment performs

well on both spatial quality and stability. Due to the strong correlation of both spatial

quality measures, we focus on only KSdi in the remainder.
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Figure 5.5 Stability metrics: mean JMP, CRS (le� axis), and KSte (right axis) for

all methods over all frames of the first excerpt of the fish data set.

Stability Figure 5.5 compares the stability measures: JMP, CRS and KSte. While

JMP and CRS measure absolute changes between orders, KSte captures changes in

local neighborhoods. For each measure lower values indicate higher stability. We

see that CRS results in lower values than JMP, which is expected: two entities can

jump to di�erent positions in the next frame without crossing, but they cannot

cross each other without jumping. Looking at the individual strategies, for FXD the

result is again obvious: all measures are at their minimum. While JMP and CRS are

generally low, CLC, SNN and SNE show very high numbers. Those three algorithms

also perform worst according to the KSte metric. Another outlier that performs

poorly on KSte is RTR, which also performs comparatively poorly on JMP and CRS.

Of the remaining algorithms, the spatial subdivisions perform worst on KSte. The

SAM, SAMp and SNEp algorithms, the SPC variants and CPC show similar and

very low mean values of KSte. Again similar results across all data sets, with some

notable di�erences for the clustered data set. Here lower values are measured for the

absolute changes for clustering techniques, and CPC performs relatively better than

on other data sets. Both of these results are to be expected. Finally, SNE is less of an

outlier for this data set, as SNN performs worse on KSte. Again, we observe a strong

correlation between the metrics, and thus consider only KSte in the remainder.
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Phantom splits Let us brie�y consider the visual summaries as highlighted in

Figure 5.6. Each frame is represented by a horizontal column of pixels, where each

�sh corresponds to a pixel. The pixels are colored according to the position of

the �sh in 2D, as shown in Figure 5.2. The ordering method clearly de�nes the

resulting visual patterns. An anomaly can be identi�ed in the subdivision methods

(HIL, ZOR, PQR, RTR) and SNEp, the so-called phantom split pattern [23]. These

visual summaries suggest that the shoal of �sh somehow splits, but this is not the

case. Such patterns are hence undesirable, as they convey false information. Other

algorithms do not seem to be prone to these kind of visual artifacts or generally

produce too fuzzy visual results for such patterns to appear. Some algorithms, such

as CLC and SNE, result in such cluttered visuals despite having good spatial quality.

This clutter is a consequence of instability: the summaries fail to convey patterns

over time despite individual frames being objectively good.

SPC parameter We now investigate the parameter � of SPC and its e�ect on the

results. We run SPC for 101 di�erent values for � from 0 and 1 with increments

of 0.01. As discussed before, we use KSdi to measure the spatial quality of the

visual summaries, and speci�cally we use the mean over all frames. For stability

we use the mean as well as the max KSte to quantify stability. While mean KSte

captures cohesion over time, max KSte should be low to prevent visual artifacts

from disrupting temporal patterns. The results for the �rst excerpt of the �sh data

set are shown in Figures 5.7 and 5.8. Note that the highest plotted value of � is

0.95, while the lowest is 0.29. Values above and below these extremes are identical

to results with 0.95 and 0.29 respectively. The � values indicated by labels in the

�gures are chosen as representatives, and used in our other experiments.

Overall, we see an inverse relation between stability and spatial quality. Values of

� closer to 1 result in better spatial quality, while values closer to 0 sacri�ce some

spatial quality for more stability. This is to be expected, as SPC1 always projects the

�sh to the �rst principal component; this will likely lead to the best spatial quality

that can be achieved for any parameter value.

As � is decreased, SPC increasingly uses interpolated lines for projection instead.

This interpolation smooths changes in angle of the line, but the projection re�ects

spatial relations less accurately as a result. When � drops below 0.30, the interpo-

lation happens purely between the �rst and last frame of the data set. Contrary to

expectation, this negatively a�ects both spatial quality and stability: the �rst princi-

pal component rotates both clockwise and counterclockwise at varying speeds, not

matching the uniform interpolation over such a long time period; as a result, the
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Figure 5.6 Visual summaries for the first excerpt of the fish data set, focussed on

so-called phantom splits for SNEp, HIL, ZOR, PQR and RTR. Below

each summary we show KSdi (yellow) and KSte (blue), capped at 37.5

and 6.25, respectively.
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Figure 5.7 A comparison between the mean and mean (le�) as well as max and

mean (right) for KSte and for KSdi respectively, for uniformly dis-

tributed � of SPC� on the first excerpt of the fish data set.

interpolated lines do not correspond at all to the �rst principal components, neither

in angles nor in rotation direction. This mismatch in angles leads to poor spatial

quality per frame, while the mismatch in rotation direction also decreases stability.

Finally, we explicitly show the e�ects of changing � on the resulting visual sum-

maries using Figure 5.8. In this �gure, we visualize spatial quality in yellow and

stability in blue. On the left we show how much every data point contributes to

the measures, with brighter colors indicating worse spatial quality/stability, while

darker colors show placements in the ordering of high spatial quality or stability.

On the right the aggregated values over all points in a time step are visualized in a

histogram. Figure 5.8 speci�cally shows an instability that occurs in the �rst excerpt

of the �sh data set, using the same intermediate values for � as before. When the

�rst principal component is used without introducing stability (� = 1), we see a

short burst of instability, along with slightly elevated measurements in spatial qual-

ity. As � decreases and more stability is introduced by interpolating the direction

of the �rst principal component over larger time frames, we see that the instability

is distributed over more frames and decreases. The spatial quality is not negatively

impacted by this, until � becomes too low: when we interpolate over too many

frames at once, spatial quality will drastically deteriorate, as seen for � = 0.
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Figure 5.9 A comparison between the mean for KSte and for KSdi for all algo-

rithms on the first excerpt of the fish data set.

Trade-o�s Our main goal is to investigate the trade-o� between spatial quality

and stability. Figure 5.9 shows a scatterplot on the means of KSdi and KSte of all al-

gorithms. Since lower values indicate better quality for both, methods in the bottom-

left corner perform well on both aspects. In both �gures SPC variants and CPC are

colored in shades of red, SAM variants in blue and SNE variants in green. The “best”

variants have fully opaque colors, while the variants that are unstable or have worse

spatial quality have a lighter shade.

Methods based on spatial subdivisions (ZOR, HIL) and space-�lling curves (PQR,

RTR), albeit fast to compute, perform poorly on spatial quality and stability. The

clustering methods (CLC, SNN) as well as SNE, on the other hand, perform well on

spatial quality, but exhibit poor stability. These methods are also slow to compute.

The �xed order (FXD) and SNEp are on the other extreme, having good stability, but

very poor spatial quality. Furthermore, the strong in�uence of initialization for t-

SNE stands out. When initialized with random coordinates (SNE), the spatial quality

is very good, but the stability is extremely poor. On the other hand, initializing t-SNE

with the embedding of the previous time step (SNEp) greatly improves stability, but

spatial quality su�ers greatly.
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5 Spatially and Temporally Coherent Visual Summaries

That leaves SAM, SAMp, SPC variants, and CPC, which perform well on both aspects.

We note that SAM and SAMp perform very similarly on spatial quality (with a

di�erence of 0.03 between KDdi values), but SAMp performs signi�cantly better in

terms of stability. SPC variants also strike a good balance between spatial quality

and stability. All SPC variants have slightly worse spatial quality than SAM variants,

but also improve stability. However, recall that SPC is signi�cantly faster to compute

than the Sammon mapping algorithms SAM and SAMp. Finally, CPC performs equal

to SPC on the same value for � , which is expected since the �sh stay grouped in a

single cluster: on a single cluster CPC and SPC are equivalent.

It is also important for stability to be consistently low, to avoid visual artifacts and

ensure that visual patterns in the summary point to actual movement patterns. As

such, bursts of high instability are undesirable. We hence also consider the maximum

value of KSte; see Figure 5.10 for a scatterplot. The overall composition remains

similar, but di�erences in stability are highlighted. Note that SAM, SAMp and SNEp

are deteriorating with respect to other methods; we can also see clear bursts of

instability in Figure 5.6 for these methods.

Interestingly, SAMp performs worse here on stability than SAM, unlike for other data

sets. This shows that, although initializing the gradient descent with the solution of

the previous time step generally improves stability, there is no guarantee that it will

always do so. There may be outliers, as is the case here.

Figure 5.10 also highlights stability di�erences between SPC variants. SPC1 always

uses the �rst principal component, which can behave erratically for round point

sets, decreasing stability drastically in those situations. However, SPC overcomes

this problem for other values of � by interpolating over these bursts of instability.

Indeed, SPC is largely una�ected for lower parameter values, having the smallest

standard deviation overall (see Table 5.1).

Overall, stable methods such as SAMp, SNEp, and SPC for parameter values lower

than 1 perform very well in terms of average and worst-case stability, while only

marginally sacri�cing spatial quality in the case of SAMp and SPC. SPC does so at

a fraction of the computational cost necessary for more complex dimensionality-

reduction techniques. Considering all the above, we conclude that stable dimension-

ality-reduction methods are the best approach for computing visual summaries of

time-varying data.
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Figure 5.10 A comparison between the max for KSte and the mean for KSdi for

all algorithms on the first excerpt of the fish data set.
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Table 5.1 Statistics on the first excerpt of fish data set

Fish (excerpt 1) FXD HIL ZOR PQR RTR CLC SNN

Sp
at
ia
lQ

ua
li
ty

K
Sr
a
∙ min 72.17 11.56 12.37 11.36 16.53 7.43 8.45

max 79.37 25.17 26.33 25.69 32.76 15.60 19.92

mean 75.53 18.34 17.06 17.72 24.82 10.90 12.56

stdev 1.44 2.84 2.72 2.65 2.16 1.35 1.40

K
Sd

i∙

min 53.85 9.27 11.80 9.07 14.65 8.36 8.96

max 88.45 30.10 31.30 28.26 35.30 18.95 22.89

mean 75.99 19.23 17.97 18.85 26.11 12.64 14.34

stdev 2.14 3.51 3.27 3.08 2.61 1.69 1.78

St
ab

il
it
y

JM
P
∙ min 0.00 0.00 2.00 0.00 0.00 0.00 0.00

max 0.00 616.00 576.00 3032.00 7624.00 11400.00 11400.00

mean 0.00 126.06 111.71 108.31 736.84 5006.78 5147.02

stdev 0.00 95.39 84.41 127.33 1258.74 4065.33 3970.93

C
R
S
∙ min 0.00 0.00 1.00 0.00 0.00 0.00 0.00

max 0.00 369.00 401.00 1677.00 5647.00 11316.00 10993.00

mean 0.00 70.22 61.05 59.13 472.04 4015.75 4026.70

stdev 0.00 56.81 49.18 72.68 850.10 3531.41 3320.76

K
St
e
∙ min 2.81 2.81 2.83 2.81 2.81 2.81 2.81

max 2.81 10.18 10.26 18.94 50.16 18.83 22.67

mean 2.81 4.24 4.08 4.03 7.17 9.25 11.57

stdev 0.00 1.07 0.96 1.17 6.85 2.91 3.47

Run time (s) 0.0 0.180 0.065 0.072 0.965 233.6 257.9

128
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for all algorithms and all metrics, including run time in seconds.

SAM SAMp SNE SNEp SPC0 SPCa SPCb SPCc SPC1 CPC

8.20 8.27 7.21 7.30 8.58 8.35 8.35 8.35 8.35 8.35

15.07 15.14 17.16 37.14 27.59 18.12 17.97 15.69 15.97 17.98

11.44 11.45 10.92 23.66 15.19 12.33 12.17 11.68 11.66 12.17

1.97 1.98 1.69 9.59 4.27 2.74 2.67 2.01 1.98 2.67

6.29 6.37 6.54 6.48 6.80 6.67 6.71 6.71 6.71 6.71

15.69 16.34 19.04 45.97 30.60 19.33 19.10 17.26 17.64 19.12

11.86 11.89 11.60 23.31 16.07 12.94 12.78 12.30 12.29 12.78

2.05 2.09 1.85 9.21 4.74 2.91 2.83 2.20 2.19 2.83

24.00 0.00 12.00 2.00 6.00 6.00 4.00 4.00 4.00 4.00

11400.00 1782.00 11400.00 1070.00 110.00 94.00 102.00 202.00 542.00 94.00

153.18 38.98 7173.36 34.28 44.53 39.21 40.40 43.27 43.83 40.39

876.16 64.15 3526.70 60.82 15.64 14.43 15.99 26.05 37.70 15.98

12.00 0.00 6.00 1.00 3.00 3.00 2.00 2.00 2.00 2.00

11288.00 1222.00 11318.00 614.00 65.00 54.00 55.00 120.00 345.00 53.00

115.90 22.96 5597.44 18.98 23.56 20.61 21.26 23.03 23.46 21.26

865.29 43.46 3040.43 37.60 8.80 7.99 8.88 15.19 23.17 8.87

2.99 2.81 2.90 2.83 2.86 2.86 2.84 2.84 2.84 2.84

20.41 25.76 36.33 10.33 3.88 3.67 3.74 4.92 10.99 3.71

3.64 3.19 14.60 3.13 3.18 3.13 3.14 3.18 3.19 3.14

0.82 0.86 4.85 0.60 0.15 0.13 0.15 0.27 0.48 0.15

146.4 101.8 12661 9691 0.62 0.367 0.431 0.521 0.532 10.99
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5 Spatially and Temporally Coherent Visual Summaries

▶ 5.4.4 Experimental evaluation fish data set (excerpt 2)
This section gives an in-depth explanation of the results for the second excerpt of the

�sh data set. In this data set, the �sh start moving as a single cluster, after which they

split into two separate clusters, and eventually merge into a single cluster again. We

investigate the spatial quality and stability in isolation, followed by an exploration

of the parameter for SPC. We conclude this section with discussion of the trade-o�

between spatial quality and stability. Table 5.2 shows the summary statistics over

all time steps and for each metric.

Spatial quality In Figure 5.11 we can see the spatial quality measurements for

the second excerpt of the �sh data set, which are nearly identical to the results for

the �rst excerpt. Even though the movement patterns of the �sh are quite di�erent

in the two excerpts, this does not seem to a�ect the overall spatial quality of the

resulting orderings. One small but notable di�erence in the results is that SNEp no

longer has a higher KSra than KSdi measurements for the second excerpt.

Stability A similar overview of the stability for this data set can be found in Fig-

ure 5.12. Again we see very similar results in comparison to the �rst excerpt of the

�sh data set. Di�erences can be seen for SAM, and the spatial subdivision and clus-

tering techniques. These have both higher absolute values for all stability measures,

as well as higher values relative to the other techniques.

Parameter experiment The results of the parameter experiment can be found in

Figure 5.13. We choose the intermediate values of the parameter � to be a = 0.35, b =
0.49 and c = 0.65, and � = 0.40 for CPC. The cut-o� values are 0.30 and 0.86, meaning

all values below and above the respective cut-o�s result in the same summaries.

While the plotted measurements for all values of � look very similar to those of the

�rst excerpt, there are some small di�erences. We choose the intermediate values

to be in similar positions in the plot, so that they are nicely spread over all 101

measurements. However, the values are di�erent than for the �rst excerpt, which

indicates that we need di�erent parameter values to achieve similar spatial quality

and stability. Overall we see that the maximum values for KSte are also a lot higher

for the �rst excerpt of the �sh data set. This is probably due to the fact that in the

�rst excerpt the shoal of �sh becomes very rounded, hence forcing the �rst principal

component to change quickly. The di�erence in intermediate values is therefore not

unexpected: even though the stability measurements over the whole second excerpt

are very similar to the measurements for the �rst excerpt, individual instabilities

require di�erent parameter settings to result in stable 1D representations.
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Figure 5.11 Spatial-quality metrics: mean KSra (le�) and KSdi (right) for all algo-

rithms over all frames of the second excerpt of the fish data set.
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Figure 5.12 Stability metrics: mean JMP, CRS (le� axis), and KSte (right axis) for

all methods over all frames of the second excerpt of the fish data set.
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Figure 5.13 A comparison between the mean and mean (le�) as well as max and

mean (right) for KSte and for KSdi respectively, for uniformly dis-

tributed � of SPC� on the second excerpt of the fish data set.

Trade-o�s The trade-o� between spatial quality and stability is shown in Fig-

ures 5.14 and 5.15. As we already saw in the overall stability, SAM performs a lot

worse on the second excerpt of the �sh data set, compared to the �rst excerpt. Fur-

thermore, CPC performs a lot worse on maximum stability. This is due to the fact

that the �sh in the second excerpt split into di�erent clusters and afterwards merge

again. The changes in the clustering of CPC will cause big changes in the ordering,

leading to instability at the few frames where the clustering changes. Finally, we see

that SNE performs better, relative to its performance on the �rst excerpt, especially

for maximum KSte values.
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Figure 5.14 A comparison between the mean for KSte and for KSdi for all algo-

rithms on the second excerpt of the fish data set.
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Figure 5.15 A comparison between the max for KSte and the mean for KSdi for

all algorithms on the second excerpt of the fish data set.
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Table 5.2 Statistics on the second excerpt of fish data set

Fish (excerpt 2) FXD HIL ZOR PQR RTR CLC SNN

Sp
at
ia
lQ

ua
li
ty

K
Sr
a
∙ min 68.89 11.18 10.75 12.64 19.41 7.39 8.68

max 82.70 23.20 22.30 22.94 35.36 15.13 17.68

mean 75.32 16.43 15.49 16.91 26.77 10.45 12.12

stdev 2.52 2.22 2.29 1.95 2.74 1.37 1.40

K
Sd

i∙

min 43.32 8.60 8.56 7.00 12.81 5.49 6.00

max 91.97 28.83 24.55 24.60 40.92 17.65 21.54

mean 75.71 17.24 16.37 17.45 28.50 12.10 13.86

stdev 2.87 2.45 2.40 2.34 3.42 1.77 1.82

St
ab

il
it
y

JM
P
∙ min 0.00 0.00 0.00 0.00 0.00 0.00 0.00

max 0.00 536.00 442.00 998.00 8466.00 11400.00 11400.00

mean 0.00 89.84 76.19 88.62 879.72 4154.77 4103.39

stdev 0.00 80.68 66.93 85.90 1408.15 3733.44 3645.59

C
R
S
∙ min 0.00 0.00 0.00 0.00 0.00 0.00 0.00

max 0.00 296.00 298.00 552.00 6321.00 11324.00 11063.00

mean 0.00 48.74 40.93 47.48 581.10 3342.71 3223.36

stdev 0.00 46.03 38.09 47.83 977.84 3278.34 3077.72

K
St
e
∙ min 2.81 2.81 2.81 2.81 2.81 2.81 2.81

max 2.81 8.57 8.96 11.47 54.60 17.11 23.14

mean 2.81 3.82 3.69 3.81 7.46 8.37 10.53

stdev 0.00 0.90 0.81 0.88 7.31 3.04 3.65

Run time (s) 0.0 0.257 0.160 0.065 0.767 200.8 223.0
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for all algorithms and all metrics, including run time in seconds.

SAM SAMp SNE SNEp SPC0 SPCa SPCb SPCc SPC1 CPC

7.98 8.05 7.13 10.00 11.36 8.36 8.36 8.36 8.36 8.36

16.87 16.02 16.35 32.53 19.66 16.87 15.03 14.99 15.03 16.25

11.93 11.76 10.75 20.26 14.81 13.03 12.68 12.60 12.57 12.62

1.88 1.72 1.51 5.38 2.04 1.74 1.58 1.55 1.53 1.63

6.88 5.79 5.74 10.10 7.45 6.83 6.56 6.35 6.12 6.80

17.17 15.61 18.11 80.00 21.23 18.23 16.46 16.42 16.14 17.36

12.25 12.10 11.44 21.03 15.60 13.88 13.53 13.45 13.41 13.44

1.72 1.65 1.71 6.15 2.11 1.81 1.62 1.60 1.58 1.74

12.00 0.00 12.00 2.00 10.00 8.00 8.00 8.00 8.00 8.00

11360.00 2580.00 11400.00 1248.00 96.00 76.00 94.00 106.00 170.00 5078.00

191.18 34.94 7280.40 31.20 37.28 34.41 35.58 36.77 37.48 45.64

737.56 78.24 3242.40 71.86 14.15 10.98 12.17 14.83 19.55 193.91

6.00 0.00 6.00 1.00 5.00 5.00 4.00 4.00 4.00 4.00

10389.00 1821.00 11317.00 720.00 56.00 42.00 49.00 59.00 97.00 3799.00

130.86 20.75 5646.96 17.18 19.60 17.96 18.63 19.26 19.74 25.92

599.65 54.57 2850.57 42.87 7.86 5.99 6.66 8.12 11.07 138.97

2.90 2.81 2.90 2.83 2.88 2.88 2.87 2.87 2.87 2.87

52.29 38.64 33.02 10.52 3.72 3.47 3.63 3.81 4.47 58.84

4.56 3.16 15.14 3.09 3.12 3.09 3.10 3.11 3.12 3.24

5.15 1.07 4.40 0.65 0.13 0.10 0.11 0.14 0.19 2.54

189.5 106.9 14342 9504 0.647 0.402 0.460 0.484 0.526 10.41
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▶ 5.4.5 Experimental evaluation Netlogo data set
We examine the statistics for the Netlogo data set used in our experiments in more de-

tail in this section. Again, we �rst consider the spatial quality and stability separately,

followed by the parameter exploration for SPC. Finally we discuss the trade-o� be-

tween spatial quality and stability as observed on the Netlogo data set. Table 5.3

gives summary statistics over all time steps and for each metric.

Spatial quality As can be seen in Figure 5.16, while the absolute values for the

Netlogo data set are higher than for the �sh data set, the relative values are very

similar. The �xed order gives very bad results on spatial quality, followed by SNEp

and RTR. The spatial subdivision techniques all perform similarly, and are slightly

better than the previously mentioned techniques. Of the remaining algorithms, the

clustering techniques (CLC and SNN) perform slightly worse than all remaining

dimensionality-reduction techniques (SAM, SAMp, SNE, SPC and CPC). For the

Netlogo data set we have parameter values a = 0.40, b = 0.59 and c = 0.62 for SPC,

and � = 0.40 for CPC.

Stability In Figure 5.17 we plot the stability statistics for the Netlogo data set.

While the chart looks quite di�erent from the stability chart for the �sh data set, this

is mostly due to the fact that JMP and CRS count the absolute number of changes

in the orders, whereas KSte is normalized. Since the Netlogo data set behaves less

stable than the �sh data set, all metrics show higher values. However, the Netlogo

data set also contains more moving entities, which increases the absolute number

of changes even further.

Comparing the statistics of JMP and CRS, we see very similar performances of all

algorithms, with SNE being the least stable, while SAMp is the most stable (excluding

FXD). On the �sh data set SNE was the least stable method overall, and while it still

has the highest number of absolute changes on the Netlogo data set, it performs a

lot better according to KSte, meaning neighborhoods are perserved relatively well

over time. Now we see that RTR performs worst on KSte, followed by the space-

�lling curves (HIL and ZOR) and the clustering algorithms (CLC and SNN) together

with PQR. The SPC variants perform relatively worse than on the �sh data set, with

parameter values close to but lower than 1 being optimal for stability. Finally, SAM,

SAMp, SNEp, and CLC are the most stable according to KSte.
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Figure 5.16 Spatial-quality metrics: mean KSra (le�) and KSdi (right) for all algo-

rithms over all frames of the Netlogo data set.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

FXD HIL ZOR PQR RTR CLC SNN SAM SAMp SNE SNEp SPC0 SPCa SPCb SPCc SPC1 CPC

M
e
a

n
 f

o
r 

K
S

te

M
e

a
n

 f
o

r 
J
M

P
/C

R
S

JMP CRS KSte

Figure 5.17 Stability metrics: mean JMP, CRS (le� axis), and KSte (right axis) for

all methods over all frames of the Netlogo data set.
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Figure 5.18 A comparison between the mean for KSte and for KSdi, for uniformly

distributed � of SPC� on the Netlogo data set.

Parameter experiment The results of the parameter experiment are slightly dif-

ferent for the Netlogo data set. In Figures 5.18 and 5.19 the results are plotted. The

cut-o� values for � are 0.76 and 0.32, so everything above 0.76 uses exactly the �rst

principal component per frame, and similarly for values below 0.32 we always in-

terpolate between the �rst and last frame. The parameter values that are indicated

by labels in the �gures are the values we used in our other experiments (a = 0.40,
b = 0.59, and c = 0.62). Note that there are two blue labels, which represent other

values of interest that we will use in the analysis below.

We will consider the results between the values indicated by black labels in the

�gures. Starting from the lowest parameter value 0.32 we see that increasing �
has chaotic e�ects on both spatial quality and stability up to 0.40 where this �ckle

behavior ends. On closer inspection, the values between 0.32 and 0.40 constantly

pick up more frames where the entities are stretched enough to use the �rst principal

component. Since the intervals between which interpolation happens, constantly

change, the results do not steadily change, but are quite erratic. Parameter value

0.38 shows the worst combination, having both poor spatial quality and stability.
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Figure 5.19 A comparison between the max for KSte and the mean for KSdi, for

uniformly distributed � of SPC� on the Netlogo data set.

From 0.40 to 0.45 we see a steady decrease in stability and increase in spatial qual-

ity, as expected when increasing � . Further increasing the parameter to 0.59 has

negative e�ects on both the spatial quality and stability. On closer inspection, this

increase in spatial quality can be attributed to properties of the Netlogo data set.

During instabilities we can observe that at certain frames where SPC projects to

an interpolated line, the spatial quality is better than when we project to the �rst

principal component. While we expect projections to the �rst principal component

to have high spatial quality, it is not always the case, as we see here. In the Netlogo

data set this occurs when the cluster of points changes direction and shortly does

not form a convex shape. It is therefore not unreasonable that interpolating less

(and using �rst principal component more) when increasing � from 0.46 to 0.56 can

negatively e�ect spatial quality.

At 0.61 SPC splits the interpolation over the two consecutive instabilities that were

seen as one big instability. This split improves both spatial quality and stability, up to

0.62 where there are a couple of non-interpolation frames between the instabilities.

Increasing the parameter further leads to certain instabilities not being interpolated

over any longer, which negatively a�ects the maximum KSte values.
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Figure 5.20 A comparison between the mean for KSte and for KSdi for all algo-

rithms on the Netlogo data set.

Trade-o�s For the Netlogo data set the trade-o�s between spatial quality and

stability can be found in Figures 5.20 and 5.21. When considering the mean values

for KSte and KSdi, we see a similar spread as before: SAM and SPC variants along

with CPC are in the bottom left corner, SNEp and FXD have worse spatial quality but

good stability, while the remaining techniques (spatial subdivision, clustering and

SNE) have relatively good spatial quality but bad stability. However, SNE is more

stable than we have seen for the �sh data set, outperforming all spatial subdivision

and clustering techniques, except for PQR and CLC. For the maximum values of KSte,

we again see CPC perform worse than on the �rst excerpt of the �sh data set. The

Netlogo data set mostly consists of a single cluster, but the occasional outlier can

trigger the clustering in CPC to �nd di�erent clusters, resulting spikes of instability.
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Figure 5.21 A comparison between the max for KSte and the mean for KSdi for

all algorithms on the Netlogo data set.
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Table 5.3 Statistics on the Netlogo data set

Netlogo data set FXD HIL ZOR PQR RTR CLC SNN

Sp
at
ia
lQ

ua
li
ty

K
Sr
a
∙ min 189.76 19.67 17.13 23.51 38.22 13.43 14.82

max 208.59 39.67 35.79 44.13 70.81 27.51 28.80

mean 200.56 27.82 24.98 30.99 56.53 19.18 19.60

stdev 3.15 3.72 4.14 4.30 5.26 2.63 2.28

K
Sd

i∙

min 183.56 18.85 17.37 21.39 39.49 13.80 15.33

max 214.30 41.80 36.31 45.60 75.58 32.98 33.76

mean 200.59 27.89 25.26 32.38 59.03 21.22 21.66

stdev 4.12 4.18 4.51 5.18 6.06 3.38 3.01

St
ab

il
it
y

JM
P
∙ min 0.00 5528.00 4598.00 1858.00 4970.00 7880.00 6198.00

max 0.00 13758.00 12238.00 22992.00 46496.00 79982.00 79992.00

mean 0.00 9414.17 7065.75 5768.82 22164.50 41351.26 38720.13

stdev 0.00 1586.18 1286.40 2717.96 8014.49 23832.28 25768.68

C
R
S
∙ min 0.00 3753.00 2633.00 1204.00 3435.00 5493.00 4723.00

max 0.00 11287.00 8578.00 14010.00 35039.00 73754.00 72110.00

mean 0.00 6522.55 4737.94 3816.76 16814.07 32187.21 30593.19

stdev 0.00 1347.81 1245.45 1685.39 6389.95 20475.70 22200.35

K
St
e
∙ min 2.80 26.32 21.72 12.34 20.62 18.45 22.11

max 2.80 51.32 55.45 60.91 128.73 40.41 47.91

mean 2.80 37.48 34.96 28.80 61.95 27.83 31.61

stdev 0.00 5.39 7.35 8.48 20.52 4.59 4.79

Run time (s) 0.0 0.169 0.112 0.061 0.967 4481 3046
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for all algorithms and all metrics, including run time in seconds.

SAM SAMp SNE SNEp SPC0 SPCa SPCb SPCc SPC1 CPC

13.72 13.72 11.92 16.40 13.92 13.81 13.81 13.81 13.81 13.81

22.66 22.21 26.73 92.00 21.83 21.25 21.82 21.09 21.52 21.53

17.14 16.75 17.57 70.86 17.53 17.31 17.11 17.04 17.03 17.30

1.78 1.61 3.03 14.38 1.83 1.85 1.77 1.64 1.63 1.77

12.57 12.60 12.36 17.69 12.84 12.86 12.86 12.86 12.86 12.85

22.09 22.04 26.64 106.54 23.21 22.70 22.77 21.94 22.08 22.79

16.35 16.34 17.47 67.99 17.48 17.30 17.17 17.09 17.08 17.32

1.64 1.64 3.17 16.37 1.90 1.89 1.83 1.71 1.70 1.85

230.00 154.00 502.00 184.00 566.00 176.00 176.00 176.00 176.00 176.00

80000.00 4628.00 80000.00 16564.00 1884.00 2528.00 3406.00 3458.00 4986.00 9282.00

4020.88 1059.15 48987.86 1223.89 1078.29 1098.25 1187.71 1172.05 1171.03 1142.85

14884.00 900.08 26536.86 1488.21 333.65 558.37 957.94 1000.90 1053.44 735.88

126.00 81.00 288.00 99.00 340.00 93.00 93.00 93.00 93.00 93.00

79316.00 3070.00 79429.00 10479.00 1273.00 1667.00 2308.00 2332.00 3309.00 6218.00

3612.16 698.99 39300.60 792.62 693.40 707.86 763.85 753.85 752.84 735.16

14690.86 622.54 23131.64 964.32 232.17 381.28 647.36 677.40 711.94 497.88

3.61 3.35 4.93 3.45 5.21 3.42 3.42 3.42 3.42 3.42

41.88 30.52 83.19 36.73 13.76 17.72 23.76 24.21 33.09 61.30

8.90 8.56 30.39 8.29 8.36 8.58 9.25 9.17 9.17 8.82

5.51 5.47 12.08 4.62 2.15 3.45 5.94 6.23 6.59 4.58

294.4 221.6 29348 24414 0.201 0.225 0.282 0.292 0.304 23.05
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▶ 5.4.6 Experimental evaluation clustered data set

The results of our experimental evaluation for the clustered data set are presented

in this section. The structure of this section is similar to the previous two sections,

�rst considering spatial quality and stability in isolation, followed by the parameter

experiment. We end the section by considering the trade-o� between spatial quality

and stability. Table 5.4 provides summary statistics over all time steps.

Spatial quality The chart in Figure 5.22 shows the spatial quality for all tech-

niques. Familiar patterns can be found: FXD, RTR, and SNEp are the worst perform-

ers, but are this time joined by PQR as another technique that gives relatively worse

spatial quality. The other algorithms all score relatively close on spatial quality; in

order of increasing spatial quality (and decreasing measure values), the other spa-

tial subdivision techniques are followed by SPC variants, the clustering techniques

and �nally SNE, SAM, SAMp and CPC. Since there are multiple cluster in this data,

which do not interact with each other, it is not surprising that clustering techniques

and CPC perform so well.

Stability The results on the stability of the clustered data set are shown in Fig-

ure 5.23. These results are again very similar to the results on the excerpts of the

�sh data set, with the exception that clustering techniques and SNE perform better

in comparison to the other techniques. Since the clusters do not interact and contain

the same points in every frame, the clustering techniques also perform very well on

stability. Especially when considering the KSte we see the clustering techniques and

SNE perform better than on the other data sets. The clustering technique CLC even

beats some spatial subdivision techniques (HIL and ZOR) on this measure.

Parameter experiment The parameter experiment also gave some surprising

results for the clustered data set, as already explained in the main text. Figure 5.24

shows charts containing the results. The cut-o� values are 0.98 and 0.42 for this data

set, meaning that every value above 0.98 and below 0.42 uses exactly the projection

vectors as the visual summaries using the cut-o� values. The parameter values that

are indicated by labels in the �gures are the values we used in our other experiments.

As intermediate values we choose a = 0.50, b = 0.59, and c = 0.86, while for CPC we

choose � = 0.50.

Starting from 0.86, we see that lowering the parameter value shows an inverse re-

lation between spatial quality and stability: as the parameter value decreases, the
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Figure 5.22 Spatial-quality metrics: mean KSra (le�) and KSdi (right) for all algo-

rithms over all frames of the clustered data set.
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Figure 5.23 Stability metrics: mean JMP, CRS (le� axis), and KSte (right axis) for

all methods over all frames of the clustered data set.
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Figure 5.24 A comparison between the mean and mean (le�) as well as max and

mean (right) for KSte and for KSdi respectively, for uniformly dis-

tributed � of SPC� on the clustered data set.

stability increases while the spatial quality deteriorate. This is the expected behavior,

which we already saw for the �sh data set.

From 0.59 on, we see that lowering � improves both the spatial quality as well

as the stability, just as we saw for some parameters in the Netlogo data set. The

�rst principal component does not seem to be the vector that results in the best

spatial quality here, hence interpolating more can give better spatial quality, while

improving stability. Lowering � further after 0.50 results in worse spatial quality

and stability, as we saw in all other data sets as well.

Finally, when increasing � above 0.86 we see the stability improve. While this is

counterintuitive in general, it can be explained for this data set. As � increases, we

interpolate less and over con�gurations where the point set is not stretched. This

has a positive e�ect on the stability in this data set, since it prevents 2 clusters from

overlapping a lot: when interpolating, we get a lot of frames where the projected

points of two clusters interleave, while the points move in opposite directions. This

causes many changes in the neighborhood of all the points in those two clusters.

If we interpolate less, this behavior is prominent and contained in a few frames,

leading to higher stability according to KSte.
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Figure 5.25 A comparison between the mean and mean (le�) as well as max and

mean (right) for KSte and for KSdi respectively, for for all algorithms

on the clustered data set.

Trade-o�s The trade-o�s between spatial quality and stability for the clustered

data set can be observed in Figure 5.25. As we already observed when considering

stability in isolation, clustering techniques and SNE perform really well on this data

set, especially when considering maximum values for KSte. These techniques end

up in the bottom left corner, making them viable techniques for data sets that are

clustered. Still, they are still outperformed by SPC variants for low � values, SAMp,

SNEp and CPC, when it comes to stability. For � = 0.50 SPC performs particularly

well, even better than SAMp and CPC on maximum KSte. However, SAMp and CPC

also have very good spatial quality, making them the best techniques for this data.
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Table 5.4 Statistics on the clustered data set

Cluster data set FXD HIL ZOR PQR RTR CLC SNN

Sp
at
ia
lQ

ua
li
ty

K
Sr
a
∙ min 64.91 6.10 6.13 11.94 9.35 4.45 5.66

max 70.03 15.99 16.14 27.75 30.41 7.90 9.67

mean 67.36 9.69 9.15 18.79 16.31 5.45 7.60

stdev 0.95 1.85 1.63 2.94 3.18 0.53 0.63

K
Sd

i∙

min 65.11 6.93 7.03 13.86 11.12 5.61 7.06

max 68.33 17.45 18.22 30.05 33.49 9.67 11.89

mean 67.09 10.87 10.25 20.94 18.17 6.81 9.43

stdev 0.72 2.04 1.90 3.17 3.25 0.68 0.81

St
ab

il
it
y

JM
P
∙ min 0.00 34.00 28.00 0.00 0.00 0.00 0.00

max 0.00 574.00 480.00 2096.00 4592.00 8450.00 6832.00

mean 0.00 184.08 145.20 123.17 284.76 244.52 856.02

stdev 0.00 72.45 55.66 135.47 780.47 725.05 903.04

C
R
S
∙ min 0.00 18.00 14.00 0.00 0.00 0.00 0.00

max 0.00 400.00 281.00 1146.00 3410.00 8374.00 6433.00

mean 0.00 109.32 81.99 67.59 190.30 180.25 681.28

stdev 0.00 48.47 35.78 76.38 532.56 666.13 792.64

K
St
e
∙ min 2.81 3.21 3.09 2.81 2.81 2.81 2.81

max 2.81 10.90 8.15 18.49 43.91 8.90 13.27

mean 2.81 5.44 4.76 4.37 4.80 4.31 6.85

stdev 0.00 1.14 0.84 1.42 5.30 0.86 2.13

Run time (s) 0.0 0.189 0.143 0.055 0.563 75.67 87.29
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for all algorithms and all metrics, including run time in seconds.

SAM SAMp SNE SNEp SPC0 SPCa SPCb SPCc SPC1 CPC

4.40 4.43 4.41 7.70 5.86 5.82 5.60 5.60 5.60 4.39

7.50 7.36 11.78 21.09 16.43 12.18 17.00 25.54 26.39 7.06

5.09 5.14 5.61 15.00 8.84 8.03 9.23 8.55 8.42 5.11

0.56 0.57 1.13 3.97 2.04 1.40 1.96 2.30 2.01 0.59

5.21 5.25 5.21 8.82 6.76 6.68 6.47 6.46 6.46 5.23

8.39 8.27 13.12 22.85 18.00 13.31 18.65 28.18 29.22 7.95

5.92 5.98 6.51 16.44 9.88 8.98 10.32 9.58 9.44 5.96

0.56 0.61 1.25 4.20 2.23 1.47 2.15 2.52 2.20 0.64

18.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00

4364.00 276.00 8450.00 546.00 146.00 66.00 232.00 1842.00 4032.00 4294.00

217.57 3.07 5389.14 5.35 24.65 18.78 33.20 40.85 42.16 23.81

772.54 8.97 2212.80 17.60 19.22 11.33 31.75 106.54 173.01 283.74

9.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

2626.00 206.00 8385.00 518.00 85.00 34.00 133.00 1027.00 2416.00 2149.00

116.02 1.81 4151.47 2.95 12.95 9.74 17.55 22.00 23.21 11.97

402.28 6.32 1919.62 15.37 10.80 6.07 17.51 59.84 103.38 142.00

2.97 2.81 2.81 2.81 2.81 2.81 2.83 2.81 2.81 2.81

11.18 6.96 14.60 7.14 4.80 3.51 6.25 25.66 32.72 5.88

3.46 2.84 6.19 2.86 3.06 2.99 3.16 3.27 3.25 2.87

0.84 0.12 1.55 0.14 0.23 0.12 0.41 1.44 1.49 0.19

78.89 51.99 24420 3994 0.383 0.238 0.273 0.311 0.323 6.05
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▶ 5.5 Conclusion
We propose several stable methods for visual summaries using 1D representations,

based on existing dimensionality-reduction techniques. The quantitative analysis

indicates that our stable methods perform best, in particular SPC: it performs better

in stability, and performs as well as or better than its competitors in terms of spatial

quality and computational e�ciency. We leverage interpolation in our adaptation

of PCA to SPC, allowing explicit parametrization. Furthermore, CPC forms a useful

extension to SPC when the input data is heavily clustered, since it allows clusters

to be separated in 1D representations. SAM and SNE were modi�ed by changing

the initial state of the gradient-descent computation; while this generally improves

stability, the e�ect on spatial quality depends on the sensitivity of the underlying

measure to local minima. Below we discuss several avenues for future work, based

on the strengths and weaknesses of the available methods.

Movement characteristics In the �rst excerpt of the �sh data set, SPC performs

particularly well. This excerpt is of a single, mostly convex cluster of moving entities.

Thus, proximity is the primary concern for determining neighborhoods and hence

indicates which entities should be close to each other in the 1D representation. By

de�nition, the �rst principal component captures the most discriminating axis –

for our single cluster data this is most indicative of neighborhoods, explaining the

performance of our method in terms of spatial quality. Clustering methods su�er in

quality (either spatially or temporally) as there are no clear clusters to exploit.

With only a few clusters SPC still performs well, although the method emphasizes

the cluster order and the ordering within clusters may use a suboptimal axis, as seen

for the second excerpt of the �sh data set. The case of many clusters with only a

handful of entities we can consider to be e�ectively the same as a single cluster, as

each cluster de�nes a center and the order within a cluster has little to no in�uence

on the spatial quality.

With multiple, reasonably sized clusters, such as the clustered data set, separating

the di�erent clusters in a linear order can be desirable. By their nature, clustering-

based methods will perform better in separating these clusters. But our experiments

show that such methods will nonetheless struggle to �nd a good, stable order within

the identi�ed clusters.

We thus introduced our hybrid CPC method, combining the capabilities of SPC on a

single cluster with CLC to allow better ordering within a cluster. However, at points

in time where the cluster composition changes, stability is now harder to achieve.
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This contrasts our SPC method which uses both frames before and after the moment

of instability to achieve a stable, high-quality result. We leave to future work how

such a hybrid method can be turned into a clairvoyant algorithm that already aligns

the SPC axes of clusters before a change in clusters is actually occurring.

In the case of a complexly shaped cluster, we face yet another issue. Cluster detection

might not be adequate to �nd the necessary structure. Neither does a single, straight

projection axis necessarily capture proximity or neighborhood structure well and is

hence likely to give unsatisfactory results as well. Perhaps methods from topological

persistence can play an important role in identifying the structures of these clusters.

We leave the development and evaluation of algorithms for more complex data as

future work. Our results show the potential here, for adapting existing methods to

explicitly consider stability.

Beyond spatial data Our stable methods can be used in any situation with time-

varying data in at least two (numeric) dimensions, to determine the ordering. In a

MotionRug, another dimension is then used to color the elements in each order. Such

an approach may thus be useful for providing an overview also for abstract data.

However, we expect it to be primarily useful when proximity (or more generally,

neighborhoods) of items are meaningful in the dimensions used to derive principal

components. Investigating precise conditions under which this approach is e�ective

is left to future work.

Overview-first Visual summaries are primarily an overview-�rst tool. They are

intended to give an analyst a rough idea of what happens during the motion of

the entities, as a �rst entry point to �nd time spans or sets of entities to further

investigate. It is therefore important to understand how movement patterns relate

to patterns visible in the summary and vice versa.

To ensure that collective movement of subgroups leads to observable patterns in a

visual summary, we need the attribute used for coloring to be similar for spatially

close entities. The spatial coloring we use in this chapter inherently has this property,

but also double encodes space, as the 1D representation is also re�ecting the spatial

dimensions. In our data sets this is the case for speed and inherent in other prop-

erties derived from the spatial arrangement, such as distance to centroid; see [23]

for MotionRugs colored by for example speed. Without a relation between spatial

proximity and attribute value, the colors in the MotionRug may jump and it becomes

di�cult to follow entities or subgroups. One notable exception may be to simply

assign a distinct �xed color to each element. Though it is impossible to �nd su�-
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ciently many visually distinct colors when the number of entities is large, it would

eliminate ambiguity by entities changing their speed, or any other time-varying

property used for coloring.

Furthermore, we may want to augment a visual summary with information about

its spatial and temporal quality. To an analyst, this may also convey useful infor-

mation. Beyond communicating a certain level of reliability for observed patterns

in the overview, areas with large spatial distortion or high instability may indicate

times where unusual behavior is occurring, and may thus warrant further investi-

gation. We have augmented our summaries in Figures 5.2 and 5.6, using a simple

bar chart to show spatial quality and stability per time step. Figure 5.8 also shows a

�ne-grained representation of spatial and temporal quality, simply using this as an

attribute to color the visual summary. Various other encodings could be considered,

e.g. reducing the saturation of the colors or underlining the summary with two lines

where the pixel colors indicate the spatial and temporal quality. How to best visually

convey the spatial and temporal quality, and how this a�ects user understanding are

left to future work.

Finally, MotionLines can also be seen as an augmentation of very compressed vi-

sual summaries, such as MotionRugs. By using additional space, we can encode

more spatial properties into the summary: As can be seen in Figure 5.26, a Motion-

Lines visual summary not only communicates proximity via the ordering, but also

shows relative distances. The 1D representations produced by the dimensionality-

reduction techniques all provide this information, and can hence be used to create

more expressive visual summaries such as MotionLines. This hints at a possible

trade-o� between the compactness and expressiveness of visual summaries, which

can be further investigated in future work.
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Figure 5.26 A MotionLines and a MotionRug of the clustered data set, using 1D

representations produced by our CPC algorithm (� = 0.5).
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Conclusion and Future Work

In this thesis, we studied the stability of geometric algorithms. Intuitively, stability

means that small changes in the input of an algorithm should lead to small changes in

the output. We formalize this intuition by developing a framework for algorithm sta-

bility. In the framework, we propose various ways of analyzing the trade-o� between

the quality and stability of algorithms for time-varying data. We then applied this

framework to three problems in computational geometry: the kinetic Euclidean min-

imum spanning tree problem, the kinetic k-centers problem and kinetic orientation-

based shape descriptors. Furthermore, we proposed stable dimensionality-reduction

methods for visual summaries to compute meaningful overviews.

We give a more detailed summary of these results in Section 6.1 and discuss open

problems and perspectives for future work in Section 6.2.

▶ 6.1 Main results
We proposed a framework for algorithm stability, to study the trade-o� between the

quality and stability of solutions produces by an algorithm. The framework intro-

duces three types of stability analysis for algorithms on time-varying data: event

stability, topological stability and Lipschitz stability. The di�erent types of stability

gradually impose stronger stability requirements on the solutions of an algorithm.

Event stability measures only the number of discrete changes in the solution of

an algorithm; topological and Lipschitz stability measure how close to optimal a
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solution is, while requiring that the solution changes continuously. Additionally,

Lipschitz stability enforces a bound on the speed at which the solution can change

with respect to the changes in the input. Besides these types of analysis, we also

distinguish between di�erent models for algorithms on time-varying data: stateless,

state-aware and clairvoyant algorithms. These models depend on the availability of

the data and in�uence the stability that can be achieved. Stateless algorithms are

simply functions from input to output, while clairvoyant algorithms have access to

the full time-varying data. State-aware algorithm form a middle ground: they have

knowledge of the data only up to a certain point in time.

We �rst applied this framework to state-aware algorithms for the kinetic Euclidean

minimum spanning tree (EMST) problem: we obtained approximations to optimal

EMSTs that improve the event stability with respect to existing work, and approx-

imations that allow topologically stable solutions. We additionally showed that k-

Lipschitz stable spanning trees cannot approximate optimal EMSTs, for low values

of K . We then proved bounds on the topological stability ratio, a ratio on the quality

between stable and optimal solutions, for the kinetic k-center problem, and devel-

oped clairvoyant algorithms to compute this ratio. Furthermore, we analyzed the

stability of three orientation-based shape descriptors: the �rst principal component,

the minimal area oriented bounding box, and the thinnest strip. We showed that

no topologically stable stateless algorithm can exist for these shape descriptors, and

proved tight bounds on the topological stability ratio for state-aware algorithms.

Finally, we showed that chasing algorithms, algorithms which move the current

solution towards an optimal solution, with su�cient speed can produce Lipschitz

stable approximations to optimal oriented bounding boxes and thinnest strips.

Visual summaries give an overview of time-varying data, typically by computing a

1D representation of the data at each point in time, and placing these representations

along a time line. Such summaries have high quality if they are stable and represent

the spatial structure of the data well. We proposed to compute 1D representations

for visual summaries using stable dimensionality-reduction techniques. Speci�cally,

we developed the Stable Principal Component algorithm, which allows a user con-

�gurable trade-o� between spatial quality and stability. Via quantitative analysis,

we showed that the dimensionality-reduction methods produce 1D representations

that not only preserve spatial structure in the data, but are also coherent over time.
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▶ 6.2 Future work
While our framework for algorithm stability allowed us to gain many insights into

the trade-o�s between solution quality and stability of algorithms for time-varying

data, it opened even more opportunities for future work. In the remainder of this

section, we outline a few promising directions to explore further.

Applying and extending the framework In this thesis we apply our frame-

work to three theoretical problems in computational geometry, but there are many

other problems that can be considered for stability analysis. In graph drawing and

geographic information systems, algorithms are widely used to solve problems on

time-varying data, including network analysis, map labeling, trajectory analysis,

and so on. In many cases, optimal solutions and approximations for static data can

already be computed by algorithms. Hence it should be possible to formulate chasing

algorithms for time-varying variants of those problems, and analyze such chasing

algorithms using our framework.

Although our framework currently considers only the trade-o� between solution

quality and stability, it could potentially also incorporate the algorithmic aspect of

stability. This would allow us to get insights into the trade-o�s with the running

time of algorithms for time-varying data. For example, we would like to know how

e�ciently we can compute stable solutions. An example can be found in Chapter 3,

where we give a clairvoyant algorithm that produces topologically stable solutions

for the k-centers problem and analyze its running time. However, our framework

currently does not o�er any tools to speci�cally �nd stable solutions that can be

computed e�ciently. These solutions would be very valuable in practice: if we can

develop a state-aware algorithm that e�ciently computes a stable solution, then this

allows us to �nd stable solutions on the �y. Consider a situation where GPS data

is being processed in an online fashion. Such an algorithm would produce stable

solutions, by processing the GPS data as it is collected. However, it is important

that solutions are computed e�ciently, otherwise a state-aware algorithm has no

bene�ts over a clairvoyant one.

The visual summaries studied in Chapter 5 are only one of the many visualization

techniques that bene�t from stable algorithms. In the introduction we already con-

sidered a time-varying set visualization, where the elements of the set where moving

planes. While visualization techniques such as KelpFusion [77] are already able to

produce high quality set visualizations on static input data, no stable algorithms

currently exist. Sets are often visualized using spanning trees, and hence the topo-

157



6 Conclusion and Future Work

(a) (b)

Figure 6.1 A set visualization based on spanning trees: The green set either un-

dergoes a discrete change or overlaps other sets between (a) and (b).

logically stable spanning trees in Chapter 2 would form the perfect starting point for

a stable visualization technique. However, we are faced with many challenges when

moving from static to time-varying data. Static set visualizations often optimize

for minimal ink usage and few overlapping sets, and this can lead to instabilities or

visualizations of low quality in the time-varying setting. For example, to prevent

overlapping sets, one set can route around other sets as if they are obstacles. As

the points move, this detour can become needlessly long, requiring a di�erent rout-

ing to minimize ink usage. Such an update results in either a discrete change, or

overlapping sets during a continuous transformation (See Figure 6.1).

Human-in-the-loop algorithms also bene�t from being stable. Such algorithms

present the user with a solution, which they can then adapt to their liking, before

returning the solution back to the algorithm. Ideally the algorithm takes the newly

made changes into account and produces a new solution that still re�ects the changes

made by the user intermittently. However, if the algorithm simply looks for an opti-

mal solution, then it will always return to the initial solution that was presented to

the user. It is therefore important that such an algorithm is stable: the algorithm may

only make small changes to the solution, in the places where the user formulated

additional constraints.
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Summary

Stability of Geometric Algorithms

A large amount of data that is collected nowadays is time-varying: air tra�c, stock

prices and weather are all examples of every-day data that changes over time. To aid

humans in their decision making, this data has to be analyzed quickly and commu-

nicated e�ectively. Algorithms and visualizations together play an important part

in both these tasks; hence a variety of techniques is already developed and widely

available. For time-varying data it is especially important to not only communicate

data at one point in time, but also to show the evolution of the data over time. To pre-

serve temporal patterns in visualizations, it is important that they are stable: small

changes in the data should result in small changes in the visualization. Thus far, the

lack of theoretical tools to analyze and develop stable algorithms has hindered the

development of stable visualizations.

In this thesis we set out to tackle the shortage of theoretical tools by introducing

a framework for analyzing the stability of algorithms. More speci�cally, the frame-

work allows us to better understand the trade-o�s between stability and traditional

criteria for evaluating algorithms, such as solution quality and running time. For our

framework we subdivide algorithms for time-varying data into stateless, state-aware

and clairvoyant algorithms, which respectively have access to data at the current time

step, data calculated from previous time steps or data at every time step. Depending

on the type of algorithm, di�erent levels of stability can be achieved. The framework

provides three de�nitions for measuring stability that each address di�erent aspects.

The event stability of a problem counts the number of times the combinatorial struc-

ture of the output changes. This is closely related to the e�ciency of so-called kinetic

data structures. The topological and Lipschitz stability both expect the output of an

algorithm to change continuously, by imposing a topology or metric on the output
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space of the algorithm. Lipschitz stability additionally limits how fast an output can

change depending on the change in the input. Because of this constraint, Lipschitz

stability comes closest to our intuitive de�nition of stability, namely small changes

in the input should lead to small changes in the solution, and is therefore the pre-

ferred type of analysis. However, Lipschitz stability analysis is often prohibitively

challenging or infeasible. The other types of stability analysis simplify the stabil-

ity requirements, making the analysis signi�cantly easier. Although these types of

stability analysis do not fully capture all aspects of stability, they do o�er useful in-

sight into the interplay between problem instances, solutions, and the optimization

function. These insights are invaluable for the development of stable algorithms.

We �rst show how to use the framework by analyzing the stability of the kinetic

Euclidean minimum spanning tree problem. The input for this problem consists of

a set of moving points, which should be connected by straight lines between the

points, while minimizing the total line length. We show how to improve the event

stability, while approximating an optimal solution. Furthermore, we give upper and

lower bounds on the topological stability for di�erent ways of introducing continuity

on spanning trees, and show how to �nd a simple lower bound on Lipschitz stability

when the output changes slowly with respect to the input.

Second, we turn to the kinetic k-center problem. Here the input again is a set of mov-

ing points, which are covered by a set of k disks or squares whose size should be

minimized. For a natural way of introducing continuity, it is impossible to achieve

Lipschitz stability for this problem, when k is at least 3. Hence, we analyze only

the topological stability. Furthermore, we propose a clairvoyant algorithm to calcu-

late an upper bound on the approximation ratio required for a topologically stable

solution to an instance of the k-center problem.

Third, we analyze orientation-based shape descriptors on a set of moving points. As

the points move, the shape descriptor should give a low-complexity description of

the point set. The size of orientation-based shape descriptors is minimized by being

in a certain orientation. We investigate the topological and Lipschitz stability of

three such shape descriptors, �rst principal component, oriented bounding box, and

covering strip. We start by proving that no topologically stable stateless algorithm

can exist that approximates any of these three shape descriptors, and we therefore

turn to state-aware algorithms. To analyze the Lipschitz stability we introduce a

natural kind of state-aware algorithm, called a chasing algorithm. We prove that such

an algorithm, which always moves the stable solution towards an optimal solution,

approximates an optimal solution well while changing at a speed proportional to

the changes in the input.
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Finally, we consider an application that requires stability. Inspired by our work on

shape descriptors, we develop stable methods to generate a visual summary, a visu-

alization method that shows changes in time-varying data in a static way. The visual

summaries we study use one-dimensional representations, such as linearizations, of

the data at every time step. We propose stable versions of popular dimensionality-

reduction techniques, such as principal components, to create 1D representations

that do not only improve the summaries visually, but are also measurably of higher

quality. An extensive quantitative evaluation of the existing and newly introduced

methods shows that stable techniques improve on stability, without sacri�cing the

ability of the individual linearizations to represent the underlying data truthfully.
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Samenva�ing

Stabiliteit van Geometrische Algoritmen

Een grote hoeveelheid van alle data die tegenwoordig wordt verzameld is tijdsafhan-

kelijk: luchtverkeer, aandeelkoersen en het weer zijn voorbeelden van alledaagse

data die verandert over tijd. Om mensen te helpen in hun beslissingen, moet deze

data vlug worden geanalyseerd en e�ectief worden gecommuniceerd. Algoritmen en

visualisaties spelen samen een belangrijke rol in deze taken; daarom zijn een divers

aantal technieken reeds ontwikkeld and beschikbaar voor gebruik. Voor tijdsafhan-

kelijke data is het in het bijzonder belangrijk om niet alleen data op één bepaald punt

in de tijd te communiceren, maar ook de verandering van de data over tijd te tonen.

Om deze tijdgerelateerde patronen in visualisaties te behouden, is het belangrijk dat

deze stabiel zijn: kleine veranderingen in de data moeten resulteren in kleine ver-

anderingen in de visualisatie. Tot zover heeft het gebrek aan theoretische middelen

om stabiele algoritmen te analyseren en ontwikkelen, de ontwikkeling van stabiele

visualisaties verhinderd.

In deze thesis gaan we dit gebrek aan theoretische middelen aanpakken door een

raamwerk te introduceren om de stabiliteit van algoritmen te analyseren. Concreet

gezien, dit raamwerk stelt ons in staat om de afwegingen tussen stabiliteit en tradi-

tionele criteria voor het evalueren van algoritmen, zoals de kwaliteit van de uitvoer

en de looptijd, beter te begrijpen. Binnen ons raamwerk verdelen we algoritmen

voor tijdsafhankelijke data onder in staatloze, staatbewuste en helderziende algorit-

men, die respectievelijk toegang hebben tot de data op het huidige moment in de

tijd, data berekend met de voorgaande tijdstappen, en data op elk moment in de tijd.

Afhankelijk van het soort algoritme, kunnen verschillende niveaus van stabiliteit

worden behaald. Het raamwerk verstrekt drie de�nities om stabiliteit te meten, die

zich elk op andere aspecten richten. De gebeurtenisstabiliteit van een probleem telt
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het aantal keren dat de combinatorische structuur van de uitvoer verandert. Dit

is sterk gerelateerd aan de e�ciëntie van zogenoemde kinetische datastructuren.

De topologische en lipschitz-stabiliteit verwachten beide dat de uitvoer van een al-

goritme continu verandert, door het opleggen van een topologie of metriek op de

uitvoer ruimte van het algoritme. Bovendien beperkt lipschitz-stabiliteit hoe snel

de uitvoer kan veranderen, afhankelijk van de verandering in de invoer. Door deze

beperking komt lipschitz-stabiliteit het dichtst bij onze intuïtieve de�nitie van sta-

biliteit, namelijk dat kleine veranderingen in de invoer moeten leiden tot kleine

veranderingen in de uitvoer, en is daarom het soort analyse dat de voorkeur heeft.

Echter, lipschitz-stabiliteitsanalyse is vaak onoverkomelijk uitdagend of onhaalbaar.

De andere soorten stabiliteitsanalyse vereenvoudigen de stabiliteitsvoorwaarden, en

maken de analyse signi�cant makkelijker. Hoewel deze soorten stabiliteitsanalyse

niet alle aspecten van stabiliteit volledig vangen, bieden ze wel nuttige inzichten in

de wisselwerking tussen probleeminstanties, oplossingen en de optimalisatiefunctie.

Deze inzichten zijn waardevol voor de ontwikkeling van stabiele algoritmen.

Als eerste laten we zien hoe het raamwerk gebruikt kan worden om de stabiliteit

van het kinetische euclidische minimaal opspannende boom probleem te analyseren.

De invoer voor dit probleem bestaat uit een groep bewegende punten, die moeten

worden verbonden door rechte lijnstukken tussen de punten, terwijl de totale lijn-

lengte geminimaliseerd wordt. We laten zien hoe de gebeurtenis stabiliteit verbeterd

kan worden, en tegelijkertijd een optimale oplossing kan worden benaderd. Verder

geven we boven- en ondergrenzen op de topologische stabiliteit, voor verschillende

manieren waarop opspannende bomen continu kunnen veranderen, en laten we

zien hoe een simpele ondergrens op de lipschitz-stabiliteit gevonden kan worden

wanneer de uitvoer langzaam verandert ten opzichte van de invoer.

Als tweede richten we ons op het kinetische k-center probleem. Hier is de invoer al-

weer een groep bewegende punten, die bedekt worden door een groep van k schijven

of vierkanten, waarvan de grootte geminimaliseerd moet worden. Voor een natuur-

lijke manier waarop continuïteit geïntroduceerd kan worden, is het onmogelijk om

lipschitz-stabiliteit te behalen, wanneer k ten minste 3 is. Daarom analyseren we en-

kel de topologische stabiliteit. Bovendien bieden we een helderziend algoritme aan

om een bovengrens te berekenen op de verhouding tussen een topologisch stabiele

benadering en een optimale oplossing voor een instantie van het k-center probleem.

Als derde analyseren we oriëntatie gebaseerde vormbeschrijvingen op een groep van

bewegende punten. Terwijl de punten bewegen, geeft de vormbeschrijving een lage

complexiteit weergave van de groep punten. De grootte van de oriëntatie gebaseerde

vormbeschrijving wordt geminimaliseerd door in een bepaalde oriëntatie te zijn. We
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onderzoeken de topologische en lipschitz-stabiliteit van drie zulke vormbeschrijvin-

gen, eerste hoofdcomponent, georiënteerde begrenzende vak, en bedekkende strook.

We bewijzen eerst dat er geen topologisch stabiel staatloos algoritme kan bestaan

dat een van de drie vormbeschrijvingen benadert, en we richten ons om die reden

op staatbewuste algoritmen. Om de lipschitz-stabiliteit te analyseren introduceren

we een natuurlijk soort algoritme dat staatbewust is, genaamd een achtervolgend al-

goritme. We bewijzen dat dit soort algoritme, dat altijd de stabiele oplossing richting

een optimale oplossing beweegt, een optimale oplossing goed benadert terwijl het

verandert met een snelheid proportioneel aan de verandering in de invoer.

Tenslotte beschouwen we een toepassing die stabiliteit vereist. Geïnspireerd door

ons werk aan vormbeschrijvingen, ontwikkelen we stabiele methodes voor het ge-

nereren van een visuele overzicht, een visualizatie methode die veranderingen in

tijdsafhankelijke data op een statische manier laat zien. De visuele overzichten die

we bestuderen gebruiken eendimensionale representaties, zoals lineariseringen, van

de data op elk moment in de tijd. We bieden stabiele versies van populaire dimen-

sionaliteitsreductie technieken, zoals hoofdcomponenten, om 1D representaties te

creëren die niet alleen de overzichten visueel verbeteren, maar ook meetbaar van

hogere kwaliteit zijn. Een uitgebreide kwantitatieve evaluatie van de bestaande en

nieuw geïntroduceerde methodes laat zien dat de stabiele technieken de stabiliteit

verbeteren, zonder het vermogen van de individuele lineariseringen om de onderlig-

gende data waarheidsgetrouw weer te geven, op te o�eren.
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