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Abstract
The interfacial Dzyaloshinskii−Moriya interaction (iDMI) is attracting great interest for
spintronics. An iDMI constant larger than 3 mJ m−2 is expected to minimize the size of
skyrmions and to optimize the domain-wall dynamics. In this study, we experimentally
demonstrate a giant iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular
magnetization. The iDMI constants were measured using a field-driven creep regime domain
expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is
comprehensively understood with the help of ab-initio calculations. Thermal annealing has been
used to crystallize the MgO thin layer to improve the tunneling magneto-resistance (TMR), but
interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI
constant of up to 3.3 mJ m−2 is shown, which is promising for the scaling down of skyrmion
electronics.

Supplementary material for this article is available online

Keywords: Dzyaloshinskii−Moriya interaction (DMI), inserted layer, annealing, domain-
walls (DW)

(Some figures may appear in colour only in the online journal)

Introduction

The Dzyaloshinskii−Moriya interaction (DMI) is an anti-
symmetric exchange interaction that appears in inversion
asymmetric structures and which leads to chiral spin texture.
In most of the magnetic thin films, the interfacial DMI
(iDMI), as the dominant contribution of DMI, is one of the
key ingredients for magnetic skyrmions [1–4] and chiral
domain-walls (DWs) [5–7]. It has been intensively studied in
the past few years, and has been reported to influence the DW

spin structures [8] and their current-driven dynamics
[5, 6, 9, 10]. Moreover, the DMI is responsible for estab-
lishing and controlling the size of magnetic skyrmions [11].
These small chiral spin textures are promising potential
information carriers in future non-volatile spintronic appli-
cations, due to their unique properties including propagation
driven by ultralow current densities [12–14] and re-writability
using spin-polarized currents [15]. Although some theoretical
and experimental efforts have been devoted to unveiling the
mechanism of DMI, it is still elusive, particularly in non-
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epitaxial sputtered thin films. In systems of interest for spin-
tronic applications, a strong DMI is urgently needed to
overcome the exchange interaction and destabilize the uni-
form ferromagnetic state. Therefore, manipulating DMI effi-
ciently is a crucial task for the development of advanced
memory devices [16].

Our previous study [17] has proven that insertion of a
‘dusting’ Mg layer in a Pt/Co/MgO system can prevent the
deterioration of the Co/MgO interface during the deposition,
further facilitating better crystallization for both the ferro-
magnetic and insulating layers. In this paper, we propose the
use of Ta as an alternative inserted material and explore the
role of thermal annealing to further enhance the DMI.
Experimental results with first principle calculations are
compared to explain why Ta, as the inserted layer, gives rise
to slightly higher iDMI energy than Mg does. We also
experimentally unveil a relationship between the DMI and
thermal annealing. The effective DMI fields of annealed
samples were quantified by analyzing the domain-wall motion
in the presence of an in-plane field. All of the samples exhibit
an annealing-temperature-dependent DMI, which firstly
increases and tends to decrease in the end. To the best of our
knowledge, this is the first report of a DMI constant for Pt/
Co/MgO multilayers of over 3 mJ m−2.

Sample preparation and basic characterization

We use magnetron sputtering at room temperature to deposit
multilayers with composition Ta(3 nm)/Pt(4 nm)/Co(1 nm)/
X(0.2 nm)/MgO(t)/Pt(5 nm), as shown in figure 1(a). The
inserted layer X is designed to be Ta or Mg, while the MgO
thickness, t, varies from 0 to 2.0 nm. The inserted layer X is
used for protecting the Co from excessive oxidation. More-
over, we hope to strengthen the DMI through this layer.
Samples with different MgO thicknesses were also prepared
to examine the variance of DMI. The top Pt provides a pro-
tective layer preventing the film from oxidation.

A sectional view using a spherical aberration corrected
transmission electron microscope (TEM) is shown in the
insertion of figure 1(a) for the Pt/Co/Ta/MgO (1.2 nm)
sample. Referring to the nominal thickness, we indicate the
approximate borders of each layer with red dashed lines. The
clear Pt lattice proves the success of milling using the focused
ion beam (FIB) and the high quality of our multilayers. We
use an alternating gradient field magnetometer (AGFM) to
confirm the perpendicular magnetization and characterize the
magnetic properties of the samples with the two different
inserted layers at room temperature. The hysteresis loops for
the perpendicular applied field are depicted in figure 1(b). The
saturation magnetizations of samples with Ta inserted are
slightly higher than the group of samples inserted with Mg.
We think the reason could be that the deposited Ta layer is
more compact than the Mg layer and that the Ta atomic mass
is larger than that of the Mg. The quality of the inserted layer
directly influences the intermixing between the Co and MgO

layer. Results of in-plan loops can be found in figure S1 of the
supplementary information, available online at stacks.iop.
org/NANO/31/155705/mmedia.

We quantified the strength of DMI in our samples,
employing a Kerr microscope to observe asymmetric DW
movement in the creep regime with an in-plane field HX and a
perpendicular field H .Z The dependence of DW velocities on
the in-plane field is found to be roughly quadratic, where the
minimum occurs at a non-zero value of H ,X which is defined
as the effective DMI field HDMI [18–20]. For typical examples

Figure 1. (a) Schematic of the Ta/Pt/Co/X/MgO stack structure.
The inserted sub-figure is a cross profile of the as-deposited Pt/Co/
Ta/MgO sample with MgO thickness=1.2 nm as measured by
transmission electron microscopy. (b) Hysteresis loops with
perpendicular applied field for Pt/Co/Mg/MgO(t) and Pt/Co/Ta/
MgO(t) structures.
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see figures S2–S4 in the supplementary information. From the
DMI field HDMI one can extract the DMI constant

m=D M H A K , 1S DMI eff0∣ ∣ ∣ ∣ ( )/

using values of MS and Keff as obtained from the measured
hysteresis loops, and A from literature. For more details on
the operation and analysis see our previous work [17].
Figure 2(a) exhibits the experimental results of DMI for as-
deposited samples inserted by Mg and Ta, with various MgO
thickness. It can be deduced that DMI almost remain
unchanged with the increment of MgO thickness beyond a
certain saturation level (1.2–2.0 nm here). Samples with a Pt/
Co/Ta/MgO structure and those with a Pt/Co/Mg/MgO
structure are found to have approximately the same saturation
value of the DMI constant D ,∣ ∣ as shown in figure 2(a). First-
principle calculations were adopted to judge the performance
of Ta and Mg on DMI and to give a reasonable physical
explanation.

First-principle calculations

We use ab initio calculations to compare the DMI of the Pt/
Co/MgO structure after inserting Mg and Ta. One has to
realize that the total DMI is a sum of contributions due to the
Pt/Co and Co/X/MgO interface, as will be discussed later in
more detail. From the calculations we extract the additional
DMI from the Co/X/MgO interface. As a comparison, the
DMI coefficient of the Co/MgO interface is also calculated.
The DMI energy (EDMI) can be depicted as

å= ´
á ñ

E d S S , 2DMI
i j

ij i j
,

· ( ) ( )

where Si and Sj are nearest neighboring normalized spins and
dij is the corresponding DMI vector. The total DMI strength
d ,tot introduced according to = -d E Etot

CW ACW( )/12 [21],
can be calculated by identifying the difference between the
clockwise energy ECW and anticlockwise energy EACW (as
defined in [22]) based on the density functional theory (DFT).
The DMI strength can also be expressed by the micro
magnetic energy per volume unit of the magnetic film with
the corresponding coefficient D .tot We can write Dtot as

=D ,tot d

N r

3 2

2

tot

F
2 in which r is the distance between two nearest

neighbor Co atoms and NF is the number of the magnetic
atomic layers [21].

The VASP package [22, 23] was employed using
supercells with a monolayer (ML) of MgO on 3ML of Co
with the surface of MgO passivated by hydrogen, as well as a
ML of Mg or Ta on 3ML of Co (figures 2(b)–(d)).

It has been calculated in [34] that the DMI energies at Pt/
Co and Co/MgO interfaces are comparable, and we assume
that the DMI energy at the Pt/Co interface is not affected by
changing the inserted layer X. Considering the interfacial
structure for multilayers grown by magnetron sputtering, the
inserted monolayer is more likely not to be a closed layer but
formed by a distribution of ‘islands’ between the Co and
MgO. Figures 2(b)–(d) show the ideal interfacial atomic
structure used for the DMI constant calculation for Co/MgO,
Co/Mg and Co/Ta, respectively. In figure 2(e), the total DMI
coefficients dtot and the micro-magnetic DMI energy Dtot for
the three structures are compared. The values of Co/Mg
(0.30 meV) and Co/Ta (−0.14 meV) are found to be much
smaller than those of Co/MgO (1.86 meV). To some extent
this indicates that bringing additional DMI is not the domi-
nant function of the inserted layer. Rather, since the ab-initio
calculations predict that DMI should reduce at atomic loca-
tions where a closed layer of X forms, this means that at
places where the interface can be considered as Co/MgO-like
(without X), i.e. at places where Co–O bonds dominate, the
DMI should have increased. Therefore, we conjecture that
insertion of Ta and Mg makes the pristine interface better, i.e.,
it overcompensates the loss of DMI by the presence of Ta or
Mg. Based on the opposite sign of Dtot for Ta and Mg, this
effect should be stronger for Ta than for Mg, since the cal-
culated reduction of DMI for Ta is larger than for Mg. In this
way, Ta is slightly better than Mg in enhancing the DMI

Figure 2. (a) Experimental trends of the effective DMI field
m HDMI0∣ ∣ and DMI constant D∣ ∣ as a function of MgO thickness with
different inserted layer X. Symbols with center dot represent
m HDMI0∣ ∣ and solid symbols represent D .∣ ∣ The ideal interfacial array
of atoms used for the first principle calculation, (b) Co/MgO, (c)
Co/Mg and (d) Co/Ta. (e) The total DMI strength dtot and the
micro-magnetic DMI energy Dtot of the three kinds of interfaces.
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energy of the Pt/Co/MgO system. A valance state analysis of
Co with different insertion layers could be another interesting
method to explain the role of the inserted layer quantitatively,
but we are not going to involve this subtle issue in this paper.

Annealing effects on magnetic properties

Different samples were annealed for half an hour at tem-
peratures ranging up to 380 °C, after which the hysteresis
loops and DW motion were measured at room temperature.
We controlled the rising rate and the duration of annealing
temperatures so that they remained the same, and applied a 50
mT perpendicular field while annealing. Hysteresis loops with
perpendicular magnetic field for the annealed samples with Ta
inserted are shown in figure 3(a), for MgO thicknessess
t=0.8, 1.2 and 1.5 nm. The corresponding in-plane field

loops can be found in the supplementary information as figure
S1. The sharp switching of the magnetization in the
perpendicular loops are consistent with perpendicular aniso-
tropy of all samples, although some details of the loops
depend on thermal annealing. Figure 3(b) shows the magnetic
properties extracted from the hysteresis loops for samples
with different annealing temperatures. We observe that the
saturation magnetization MS of the sample with the thickest
MgO shows hardly any dependence on annealing, whereas
for the thinnest oxide sample there is a trend of an initial
increase followed by a decrease. The effective anisotropy
field Hkeff

was obtained by extracting the field corresponding
to 90% of the saturated magnetization in the hysteresis loops
with in-plane magnetic field. As the annealing temperature
rises from 200 °C to 380 °C, Hkeff

shrinks to 60% upon
annealing. The effective magnetic anisotropy energy K ,eff

calculated as m=K Hk Meff eff S
1

2 0 [24, 25], shows similar

Figure 3. (a) Hysteresis loops applied with perpendicular field of annealed Pt/Co/Ta/MgO(t) structures while t=0.8 nm, 1.2 nm and
1.5 nm. Different annealing temperatures of the samples with the same structure are distinguished by different color in each subfigure. (b)
Magnetic properties obtained from the hysteresis loops for samples with different annealing temperatures. The subfigures in each line share
common scales and y-axis legends shown on the left.
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trends as M .S With the increase of annealing temperature, the
coercive field HC exhibits a 3–4 times growth compared with
the as-deposited samples, which is consistent with previous
studies [26]. Overall we find quite similar trends in the
magnetic properties upon annealing Pt/Co/Ta/MgO samples
with different MgO thickness.

Annealing effcts on dmi

A typical result of asymmetrical DW motions in the presence
of an in-plane field for two directions of the out of plane field
m Hz0 is shown in figure 4(a). The applied m Hz0 which varies
from several milli-tesla to tens of milli-tesla for different
samples, and the in-plane field m Hx0 was in the range of
±350mT. A selection of our DW velocity measurements can
be found in figures S2 to S4. We verified that domain-wall
motion is in the creep regime for all perpendicular fields
applied, as shown in figures S5 to S7 in the supplementary
material. Thus, an unambiguous value of the DMI parameter
is obtained for each sample at each annealing temperature.
The absolute value of the DMI constant D∣ ∣ can be calculated
with equation (1) [27]. By assuming the exchange stiffness
constant = -A 15 pJ m 1 [28, 29], our D∣ ∣ can reach as high as
3.3 -mJ m .2 We are aware that the assessment of the
exchange stiffness A is not trivial, since the annealing process
is quite likely to have an effect on it. Although the temper-
ature dependence was directly ignored in some literatures
[26, 30], other work has suggested an increasing exchange

stiffness with increasing annealing temperature in similar thin
films [31, 32]. The latter suggestion might mean that our
estimate of DMI would be a conservative estimate, and its
actual value could be higher. The effective DMI fields
m HDMI0∣ ∣ and DMI energy D∣ ∣ for three components Pt/Co/
Ta/MgO (0.8 nm, 1.2 nm and 1.5 nm) assuming a constant A
are depicted in figure 4(b). We thus found that the strength of
DMI manifests in differences for different MgO thickness, but
they all exhibit a trend of an initial increase followed by a
decrease. Within the investigated range, the DMI values
display an optimum at an annealing temperature of around
300 °C, independent of the MgO thickness.

Discussion

In the Pt/Co/MgO system, the large interfacial DMI
iDMIPt Co MgO/ / does not only come from the strong spin orbit
coupling (SOC) between the Pt and Co, but also has a sig-
nificant contribution from the Co/MgO interface, following
the expression = +iDMI iDMI iDMI .Pt Co MgO Pt Co Co MgO/ / / /

The DFT calculations have proven that iDMIPt Co/ and
iDMICo MgO/ have the same sign [33]. It has been accepted that
interfacial oxidation is related to large charge transfer and to
the large interfacial electric field that compensates the small
spin–orbital coupling of the atoms at the interface, which
directly increase the DMI [34, 35]. The inserted X layer
efficiently protects the Co layer from degradation, and a
proper material could strengthen the asymmetry of the whole
structure, and consequently enhance the DMI.

It was reported that the annealing process would homo-
genize the oxide layer [36, 37], and improve the Co/MgO
interface, though there has not been a layer X inserted
between the Co and MgO in former studies. To confirm this,
another TEM image is provided in figure 5(a). Compared with
figure 1(a), the degrees of crystallinity for Co and MgO layers
are appreciably improved. We also exhibit a comparison of
x-ray energy dispersive spectroscopy curves for the Pt/Co/
Ta/MgO (1.2 nm) sample before and after 300 °C thermal
annealing in figure 5(b), where the curves are shifted such that
the Co peak positions defined the zero position of the scan.
The O atoms’ peak position shows a small, but finite 5% shift
for the annealed sample, which would be consistent with the
slight growth of MS for the 300 °C annealed sample (seen as
figure 3(e)). Secondly, an improved ordering of the atoms at
the Pt/Co interface, which is brought about by annealing,
might be another reason for the initial enhancement of the
DMI, since the DMI is sensitive to the atomic arrangements at
the interface [10, 38]. Following the increasing trend, a higher
temperature will prompt the formation of a CoPt alloy at the
Pt/Co interface and reduces the number of Co–O bonds [37].
Furthermore, it was reported [21] that annealing at higher
temperatures leads to interfacial diffusion, being detrimental
for the DMI. Therefore, a decreasing trend of DMI appears
when the temperature goes above 300 °C. A similar trend was
also found in Ta/CoFeB/MgO tri-layers [39]. Above all, the
non-monotonic trend of DMI can be explained rationally.

Figure 4. (a) DW expansion of the same sample driven by an out-of-
plane magnetic fieldm Hz0∣ ∣=10.62 mT and a varying in-plane field
m H .x0 (b) Trends of the effective DMI field and DMI constant as a
function of annealing temperature. Square symbols, circular symbols
and triangle symbols stand for the MgO thickness t=0.8 nm,
1.2 nm and 1.5 nm separately. Symbols with center dot stand for
m HDMI0∣ ∣ while those solid ones stand for D .∣ ∣
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The Pt/Co/MgO structure we studied here is very
similar to the configuration of a tunnel barrier layer/free
layer/capping layer of the most popular magnetic tunnel
junction (MTJ) structure [40]. Thermal annealing is a neces-
sary method to produce a crystallized MgO tunnel barrier,
thus improving the tunneling magnetoresistance (TMR) effect
in magnetic multilayers [41]. Therefore, our study will be
very relevant for applications that make use of the electrical
detection of magnetic skyrmions through TMR in MTJ
devices. Further improvement of the lattice on asymmetric
interface by thermal annealing is an essential way to fine-tune
the DMI in Pt/Co/MgO samples which is valuable for the
induction of chiral magnetic order.

Conclusion

In summary, using a combined experimental and theoretical
study, we prove that insertion of both X=Ta and Mg in Pt/
Co/X/MgO structures improves DMI significantly, while the
effect on the interface quality may be slightly better for Ta
than for Mg. Furthermore, we investigated the effect of
thermal annealing on the DMI. Benefiting from the optim-
ization of interfaces, a significantly enhanced iDMI is found
in our annealed Pt/Co/Ta/MgO system. The optimal con-
dition for the Pt/Co/Ta/MgO structure is found to be
annealing around 300 °C, for 0.5 h, enhancing DMI to the
largest extent. The influence of annealing is attributed to both
Pt/Co and Co/MgO interface transformation. Our study will
significantly contribute to research that relies on strong DMI
in thin film systems, and to stabilize magnetic skyrmions at
room-temperature.
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