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Abstract: This paper considers process systems whose dynamics are described by conservation
laws for extensive variables and second law of thermodynamics and which can also been
considered as interconnected (network) systems. In representing the dynamics and the analysis
of network systems Tellegen’s theorem and the passivity theory are used. Different from the
usual application of these two methods on large scale systems, in this work, we only consider
a single unit (node). For a single process unit, we apply the Tellegen’s theorem and using a
suitable storage function, derive the expression for the rate of change of the storage function.
This expression is obtained for the cases of single phase and binary phases.
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1. INTRODUCTION

Chemical process systems can be viewed as a network
consisting of interconnected processes with mixing reac-
tion and separation. Such subsystems interact with each
other via exchange of energy, mass, momentum and in-
formation, operating at different timescales and governed
by thermodynamic laws. Analysis of system theoretical
properties, control and optimization of these systems have
been the subject of research for quite some time (Gilles,
1998; Hangos et al., 1999; Kumar and Daoutidis, 2002; Liu
et al., 2011).

Network theory was originally developed for the analysis
of electric circuits. In network theory, Tellegen’s theorem
plays an important role since it forms the foundation of
several theorems for the energy distribution in the circuit
theory (Penfield et al., 1970). For an electric network with
a given topology consisting of nodes and edges between
nodes, Tellegen’s theorem is derived from conservation
of current (flow) and uniqueness of the potentials at the
nodes. Potential difference provide driving force for flow.
The strength of Tellegen’s theorem is its generality. It
can be applied to any network provided the topology is
known. Due to this generality. it has been extended to
general thermodynamic, reaction and process systems (Os-
ter et al., 1973; Oster and Perelson, 1973, 1974; Peusner,
1981; Mikulecky, 2001; Jillson and Ydstie, 2005, 2007;
Wartmann and Ydstie, 2009). In these applications the
corresponding flows obey local conservations laws and
uniquesness of potentials.

� Work done during the sabbatical leave of the first author from
Eindhoven University of Technology

Stability and control of networks can be addressed using
the passivity theory and the application of passivity can
provide for design of decentralised controllers. This is moti-
vated by the property that the interconnection of passive
subsystems result in a passive system. Passivity theory
requires a storage function which is an indication of the
energy in the system and it is used to derive sufficient con-
ditions for a stable network under decentralised feedback
control. A storage function (availability function) suitable
for chemical processes has been proposed in Alonso and
Ydstie (1997, 2001) and the conditions for which the
process systems are dissipative have been studied.

In this work, we take a bottom-up approach and apply
the passivity theory together with the Tellegen’s theorem
to a process represented by a single node in the process
network context. Our main goal is to derive the sufficient
conditions for passivity of single and multiphase systems.
Therefore, this paper focuses on deriving an expression for
the rate of change of the storage (availability) function.

This paper is organized as follows. Section 2 presents the
problem statement. In Section 3, we define systems that
are considered and provide necessary definitions and the-
orems. Section 4 states the passivity theory and describes
the availability function used as a storage function for
thermodynamic systems. This section also presents the
expression for the rate of change of availability function
for the single unit (node) case. In Section 5, we state our
conclusions and future work.

2. PROBLEM STATEMENT

In this paper, we address the question, ”Does there exist a
general stability analysis for process networks consisting of
multicomponent, multiphase subunits with phase equilib-
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control. A storage function (availability function) suitable
for chemical processes has been proposed in Alonso and
Ydstie (1997, 2001) and the conditions for which the
process systems are dissipative have been studied.

In this work, we take a bottom-up approach and apply
the passivity theory together with the Tellegen’s theorem
to a process represented by a single node in the process
network context. Our main goal is to derive the sufficient
conditions for passivity of single and multiphase systems.
Therefore, this paper focuses on deriving an expression for
the rate of change of the storage (availability) function.

This paper is organized as follows. Section 2 presents the
problem statement. In Section 3, we define systems that
are considered and provide necessary definitions and the-
orems. Section 4 states the passivity theory and describes
the availability function used as a storage function for
thermodynamic systems. This section also presents the
expression for the rate of change of availability function
for the single unit (node) case. In Section 5, we state our
conclusions and future work.

2. PROBLEM STATEMENT

In this paper, we address the question, ”Does there exist a
general stability analysis for process networks consisting of
multicomponent, multiphase subunits with phase equilib-
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rium?”. Here, the equilibrium means that net flow of mass
and energy between the phases is equal to zero. A first
step to answer this question is to come up with a suitable
storage function (Lyapunov function) and derive the rate
of change of this function. To this end, we are going to
make use of the passivity, graph theory, Tellegen’s theorem
and thermodynamic availability function.

3. PRELIMINARIES

3.1 System Description

We consider the interconnected system in Fig. 1. Each
subsystem Mk has a conservation law of the form,

Fig. 1. Representation of a network with eight nodes and
one zero node in black

Mk :
dzk
dt

= pk +

n∑
i,i�=k

qik (1)

In this expression, z ∈ Rn denotes the inventory variables,
p is the production terms and qik represents the dedicated
flow terms. For each subsystem Mk we define the poten-
tials

w(z)k =

(
∂S

∂z

)

k

(2)

where S represents an entropy function. The entropy
function is homogenous degree 1, differentiable once and
has a unique maximum.

In this work, we are concerned with the process networks
as defined in Jillson and Ydstie (2005); Baldea et al.
(2013). To illustrate, consider a node with a potential w,

convective flow v = [ v1 v2 v3 ]
T

and exchanging heat Q
with the surroundings as shown in Fig. 2. For chemical
process systems, the extensive variable z and the intensive
variable w are

z =

[
U
V
N

]
, w =




1

T
P

T−µ

T




(3)

This system has the balances for the inventory variables
so that

Q

w

2

v3

Fig. 2. A single node representing a chemical process in a
complex process network

ż =




∑
in

vinhin −
∑
out

vouthout +Q− P
dV

dt

Φ+
∑
in

vinṽin −
∑
out

voutṽout

r +
∑
in

vinxin −
∑
out

voutxout




(4)

A crucial step is to define the corresponding flow qi and
production p terms in Eq. 1. We define the flow term q as

q = vz̃ + L∆w (5)

which is the form for the phenomenological relation as in
Onsager (1931). In the single node case L = 0, and with
h = u + Pvṽ the dynamics of inventory variables for this
node becomes




dU

dt

dV

dt

dN

dt



k︸ ︷︷ ︸

dzk
dt

=




rhr − P
dV

dt
+Q+

∑
(vṽP )in−∑

(vṽP )out

Φ

r



k︸ ︷︷ ︸

pk

+




∑
i

viui

∑
i

viṽi

∑
i

vixi



k︸ ︷︷ ︸∑

qi

In Table 1, we provide information on the notation and
corresponding physical units.

To further illustrate, we consider the case in which we
have two processes interacting with each other as shown
in Fig. 3

w1, z1 w2,z2

3 4

w3,z3 w4,z4

v03 v31

v21

v24 v40

process 1 process 2

Q1 Q2

Fig. 3. Two interacting processes
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Table 1. Nomenclature

Symbol Definition Unit

U Internal Energy J
V Volume m3

N number of moles mol

v molar flowrate mol
sec.

ṽ molar volume m3

mol
Φ volume change due to mixing/reaction m3

P pressure kPa
T temperature C

µ chemical potential J
mol

hr heat of reaction J

h molar enthalpy J
mol

u molar internal energy J
mol

r reaction rate

x mole fraction mol
mol

Q heat exchange J
L symmetric matrix
w intensive vector variables
z extensive vector variable
z̃ molar extensive vector variable

In this case, the dynamics of the first node, according to
Eq. 1, can be described as

dz1
dt

= p1 + q1 − q2 (6)

= p1 + v31z̃3 − (7)

[v12z̃1 − v21z̃2 + L2(w2 − w1)] (8)

In this situation, q1 = v31z̃3, q2 = [v12z̃1 − v21z̃2+
L2(w2 − w1)]

It was pointed out by Oster and Desoer (1971) that
network representations can be constructed for a wide
variety of physical systems. In such a network, the nodes
corresponds to the components/units/subsystems and the
edges correspond to the interconnections between them.
Some examples are; electric circuits, mechanical systems,
hydraulic networks, power systems, membranes and in our
paper chemical process systems.

Having defined the topology of the network as a directed
graph (see Appendix.A) we can use tools (laws of Kirch-
hoff) originally developed for electric networks to analyse
process networks. Given any network topology Kirchhoff
laws state:

Lemma 3.1. Kirchhoff’s Current Law (KCL): The
sum of flows (across variable measurements) identified by
the edges in a given network is zero at any instant of time.
In a compact form, we have

M(G)F = 0 (9)

where M(G) is the incidence matrix as defined in Def. A.4
and F is the vector of flows along the edges in the network.

F = [ f1 f2 · · · fe ]

Lemma 3.2. Kirchhoff’s Voltage Law (KVL): The
sum of all the potential differences around a loop equals
zero

∑
∆w(z)ij = w(z)ni

− w(z)nj
= 0 ∀ n ∈ L

where L is a loop (see Def. A.7).

We now describe one important theorem known as Telle-
gen’s theorem in electrical network theory. This theorem is
later adjusted for process networks of dynamical systems
obeying the balance equations (1) and the uniqueness of
the potentials (2) that follow from the definition of the
entropy function .

Theorem 3.1. Tellegen’s Theorem: Consider an arbi-
trary network with a topology defined by G with n nodes
and e edges. Let ∆w be any set of potentials satisfying
KVL for G and let F be any set of flows of satisfying KCL
for G. Then:

∆wTF = 0 (10)

Proof:

For a directed and connected graph G, let us choose a
ground node w0. Then, we define an incidence matrix
M(G). Since F satisfies the balance equation 1 and since
for some node-to ground we have

M(G)F = 0 (11)

Since ∆w is unique and for some node-to-ground poten-
tials w0, we have

∆w = M(G)T∆w0 (12)

We can then write

(∆w)TF = (M(G)Tw0)
TF (13)

= ∆wT
0 (M(G)T )TF︸ ︷︷ ︸

=0

(14)

= ∆wT
0 0 = 0 (15)

As the potential of the 0-node is assumed to be zero, we can
show that the application of Tellegen’s theorem to process
network gives the following expression. We know that
MTF = 0. This results in conservation laws. Assuming
w0 = 0, we have

[
wT

1 wT
2 · · · wT

n

]




dz1
dt

− p1 +
∑

q1j
dz2
dt

− p2 +
∑

q2j
...

dzn
dt

− pn −
∑

qnj



= 0 (16)

In this case, we define F as

FT =

[
dzT1
dt

dzT2
dt

· · · dzTn
dt

pT1 pT2 · · · pTn q12 q13 · · ·
]

(17)

Expressing the inner product in Equation 16 explicitly, we
obtain

WT
n

dZn

dt
= WT

n P −WT
n Q (18)

where Wn, Zn, Pn and Q are the vectors of potentials wi,
extensive variables zi, production terms pi and the summa-
tion of the flows

∑
qij respectively. We can further express

the dynamics of the network including the terminals, as
follows.



dZn

dt
dZt

dt


 =

[
Pn

Pt

]
+

[
Iq 0
0 It

] [
Q
T

]
(19)
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Table 1. Nomenclature

Symbol Definition Unit

U Internal Energy J
V Volume m3

N number of moles mol

v molar flowrate mol
sec.

ṽ molar volume m3

mol
Φ volume change due to mixing/reaction m3

P pressure kPa
T temperature C

µ chemical potential J
mol

hr heat of reaction J

h molar enthalpy J
mol

u molar internal energy J
mol

r reaction rate

x mole fraction mol
mol

Q heat exchange J
L symmetric matrix
w intensive vector variables
z extensive vector variable
z̃ molar extensive vector variable

In this case, the dynamics of the first node, according to
Eq. 1, can be described as

dz1
dt

= p1 + q1 − q2 (6)

= p1 + v31z̃3 − (7)

[v12z̃1 − v21z̃2 + L2(w2 − w1)] (8)

In this situation, q1 = v31z̃3, q2 = [v12z̃1 − v21z̃2+
L2(w2 − w1)]

It was pointed out by Oster and Desoer (1971) that
network representations can be constructed for a wide
variety of physical systems. In such a network, the nodes
corresponds to the components/units/subsystems and the
edges correspond to the interconnections between them.
Some examples are; electric circuits, mechanical systems,
hydraulic networks, power systems, membranes and in our
paper chemical process systems.

Having defined the topology of the network as a directed
graph (see Appendix.A) we can use tools (laws of Kirch-
hoff) originally developed for electric networks to analyse
process networks. Given any network topology Kirchhoff
laws state:

Lemma 3.1. Kirchhoff’s Current Law (KCL): The
sum of flows (across variable measurements) identified by
the edges in a given network is zero at any instant of time.
In a compact form, we have

M(G)F = 0 (9)

where M(G) is the incidence matrix as defined in Def. A.4
and F is the vector of flows along the edges in the network.

F = [ f1 f2 · · · fe ]

Lemma 3.2. Kirchhoff’s Voltage Law (KVL): The
sum of all the potential differences around a loop equals
zero

∑
∆w(z)ij = w(z)ni

− w(z)nj
= 0 ∀ n ∈ L

where L is a loop (see Def. A.7).

We now describe one important theorem known as Telle-
gen’s theorem in electrical network theory. This theorem is
later adjusted for process networks of dynamical systems
obeying the balance equations (1) and the uniqueness of
the potentials (2) that follow from the definition of the
entropy function .

Theorem 3.1. Tellegen’s Theorem: Consider an arbi-
trary network with a topology defined by G with n nodes
and e edges. Let ∆w be any set of potentials satisfying
KVL for G and let F be any set of flows of satisfying KCL
for G. Then:

∆wTF = 0 (10)

Proof:

For a directed and connected graph G, let us choose a
ground node w0. Then, we define an incidence matrix
M(G). Since F satisfies the balance equation 1 and since
for some node-to ground we have

M(G)F = 0 (11)

Since ∆w is unique and for some node-to-ground poten-
tials w0, we have

∆w = M(G)T∆w0 (12)

We can then write

(∆w)TF = (M(G)Tw0)
TF (13)

= ∆wT
0 (M(G)T )TF︸ ︷︷ ︸

=0

(14)

= ∆wT
0 0 = 0 (15)

As the potential of the 0-node is assumed to be zero, we can
show that the application of Tellegen’s theorem to process
network gives the following expression. We know that
MTF = 0. This results in conservation laws. Assuming
w0 = 0, we have

[
wT

1 wT
2 · · · wT

n

]




dz1
dt

− p1 +
∑

q1j
dz2
dt

− p2 +
∑

q2j
...

dzn
dt

− pn −
∑

qnj



= 0 (16)

In this case, we define F as

FT =

[
dzT1
dt

dzT2
dt

· · · dzTn
dt

pT1 pT2 · · · pTn q12 q13 · · ·
]

(17)

Expressing the inner product in Equation 16 explicitly, we
obtain

WT
n

dZn

dt
= WT

n P −WT
n Q (18)

where Wn, Zn, Pn and Q are the vectors of potentials wi,
extensive variables zi, production terms pi and the summa-
tion of the flows

∑
qij respectively. We can further express

the dynamics of the network including the terminals, as
follows.



dZn

dt
dZt

dt


 =

[
Pn

Pt

]
+

[
Iq 0
0 It

] [
Q
T

]
(19)
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where T is the vector of flow terms through the terminals,
and I is the identity matrix with the corresponding dimen-
sions. The accumulation term dZt

dt and the production Pt

at the terminals are equal to zero.

Let us define a potential vector for the overall network,

W =

[
Wn

Wt

]

where Wn are the potentials at the nodes and Wt are
the potentials at the terminals. Application of Tellegen’s
theorem 16 both to nodes and terminals results in

[
WT

n WT
t

] d

dt

[
Zn

Zt

]
=
[
WT

n WT
t

] [ Pn

Pt

]
+
[
WT

n WT
t

]
[
Iq 0
0 It

] [
Q
T

]

The accumulation term and production terms at the
terminals are zero. So we get,

WT
n

dZn

dt
= WT

n P +WT
n Q+WT

t T

4. PASSIVITY AND ITS APPLICATION ON
THERMODYNAMIC SYSTEMS

A system with states x ∈ Rn, input u ∈ Rm and output
y ∈ Rm is passive if∫ t

0

u(s)T y(s)ds ≥ V (x(t))− V (x(0)) (20)

where V (x(t)) is a storage (Lyapunov) function. In the case
of process networks consisting of open multiphase systems,
the thermodynamics availability function is proposed and
used as a candidate for the storage function V (Alonso and
Ydstie, 1996, 1997, 2001)

We define the thermodynamic availability function

A(w, z) = (w∗)T z − S(z)

= (w∗)T z − (w)T z

=∆wT z

where w∗ is a fixed reference potential. The availability
function represents the distance of a supporting hyper-
plane tangent to the entropy curve at z = z∗ and the
entropy S(z) = wT z. It can be used as a Lyapunov
function to show stability provided that the appropriate
controls are in place. For asymptotic stability, Lyapunov
function is required to be strictly positive and the rate of
change of this function should be negative. The rate of
change of the availability function is derived as

dA

dt
= −(w − w∗)

dz

dt
− dwT

dt
z

The expression above can be simplified using the Gibbs-
Duhem relation (dwT )z = 0, which follows from homo-
geneity, to

dA

dt
= −∆wT

[
dz

dt
− dz∗

dt

]

= −∆wT d∆z

dt

where ∆w = (w − w∗), ∆z = (z − z∗) and dz∗

dt = 0. Here,
the availability function is considered for one process unit.
For a network of n processes, the total availability func-
tions is equal to the summation of availability functions of
each process.

Atotal =

n∑
i

Ai =

n∑
i

∆wT
i zi

The rate of change of total availability can be expressed
as

dAtotal

dt
=

n∑
i

dAi

dt
=

n∑
i

∆wT
i

∆zi
dt

=−∆WT d∆Z

dt
The expression above is actually the difference operator ∆
applied to W and dZ

dt in Eq. 18. which is the outcome of
the application of Tellegen’s theorem on process networks.

dAtotal

dt
= −∆WT

n ∆P −∆WT
n ∆Q−∆WT

t T (21)

The next step is to extend the expression in the right hand
side and show that dAtotal

dt is indeed negative provided
that the right control actions are in place so that the
resulting closed loop system is passive. The properties and
the suitability of availability function A for the analysis of
stability have been discussed extensively in Ydstie (2018).
For multiphase systems, a new Lyapunov function which
consists of A and inventories equal to the number of phases
should be used.

4.1 The Rate of Change of Availability Function for a
Single Unit Process

We consider the single unit as shown in Fig. 4. In the
single phase case, we have two terminals (inlet and outlet)
and one node denoting the single unit process. Applying

w1, z1

2 3

w2,z2 w3,z3

vin vout

single phase 

w1, z1

2
3

w2,z2

w3,z3

vin

w4,z4

4

vg

vl

two phase 

Q

Fig. 4. Single node case

Tellegen’s theorem gives

wT
1

dz1
dt

= wT
1 p1 + wT

2 qin − wT
3 qout

In this expression, the flow terms are defined so that

qin = vinz̃2, qout = voutz̃3 (22)

whereas the production term p1 takes the form of

p1 =




(rhr)1 − P1
dV1

dt
+Q+ vinṽinP2 − voutṽoutP1

Φ1

r1




(23)

Let us express ∆wT
1 ∆

dz
dt explicitly.

∆wT
1 ∆

dz

dt
= ∆wT

1 ∆p1 +∆wT
2 ∆qin −∆wT

3 ∆qout (24)
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Extending the right hand side of Eq 24 into its components
gives

∆wT
1 ∆

dz

dt
= −vin

(
Ã+ Ã∗

)
in

+ vout

(
Ã+ Ã∗

)
out

+
1

T1T ∗
1

∆P1∆(TΦ)1 +∆

(
P

T

)

in

∆(vṽ)in

− ∆Pin

TinT ∗
in

∆(Tvṽ)in +

[
∆

(
1

T

)

1

−∆

(
1

T

)

in

]
∆(Pvṽ)in

+
∆Pout

ToutT ∗
out

∆(Tvṽ)out −
[
∆

(
1

T

)

1

−∆

(
1

T

)

out

]

∆(Pvṽ)out +∆

(
1

T

)

1

∆(rhr)1 +∆

(
1

T

)

1

∆(Q)+

∆

(
−µ

T

)

1

∆(r)1

where

Ã = (w∗ − w)T z̃ = −∆

(
1

T

)
u−∆

(
P

T

)
ṽ +∆

( µ

T

)T

x

Ã∗ = (w − w∗)T z̃∗ = ∆

(
1

T

)
u∗ +∆

(
P

T
ṽ∗
)
−∆

( µ

T

)T

x∗

Due to page limitations we only provide the end result.

Following the same procedure, we can also get an expres-
sion for −dAtotal

dt for the two phase case in Fig 4 such that

∆wT
1 ∆

dz

dt
=− vin

(
Ã+ Ã∗

)
in

+
∑
i=3,4
j=g,l

vi

(
Ã+ Ã∗

)
j
+

1

T1T ∗
1

∆P1∆(T (Φg +Φl)1 +∆

(
P

T

)

in

∆(vṽ)in−

∆Pin

TinT ∗
in

∆(Tvṽ)in +

[
∆

(
1

T

)

1

−∆

(
1

T

)

in

]
∆(Pvṽ)in

+
∑
i=3,4
j=g,l

∆Pi

TiT ∗
i

∆(Tivj ṽj)−
∑
i=3,4
j=g,l

[
∆

(
1

T

)

1

−∆

(
1

T

)

i

]

∆(Pivj ṽj) + ∆

(
1

T

)

1

∆
(
(rhr)

g
1 + ((rhr)

l
1

)
+

∆

(
1

T

)

1

∆(Q) + ∆

(
−µ

T

)

1

∆
(
(r)g1 + (r)l1

)

In the two phase case, the production term is equal to

p1 =




(rhr)
g
1 + (rhr)

l
1 − P1(Φ

g
1 +Φl

1) +Q+ vinṽinP2−∑
j=g,l

vj ṽjP1

Φg
1 +Φl

1

rg1 + rl1




(25)

When we assume that the two phases are at equilibrium,
the exchange rates are equivalent and in the opposite
direction. This implies rg1 = −rl1, (rhr)

g
1 = −(rhr)

l
1,Φ

g
1 =

−Φl
1. Therefore, the terms with these variables cancel and

we get

∆wT
1 ∆

dz

dt
=− vin

(
Ã+ Ã∗

)
in

+
∑
i=3,4
j=g,l

vi

(
Ã+ Ã∗

)
j

1

T1T ∗
1

∆P1∆(T (Φg +Φl)1 +∆

(
P

T

)

in

∆(vṽ)in−

∆Pin

TinT ∗
in

∆(Tvṽ)in +

[
∆

(
1

T

)

1

−∆

(
1

T

)

in

]
∆(Pvṽ)in

+
∑
i=3,4
j=g,l

∆Pi

TiT ∗
i

∆(Tivj ṽj)−
∑
i=3,4
j=g,l

[
∆

(
1

T

)

1

−∆

(
1

T

)

i

]

∆(Pivj ṽj) + ∆

(
1

T

)

1

∆(Q)

We have derived expressions of the rate of change of avail-
ability function for two specific cases. However, obtaining
similar expressions for more general cases like multiple
inlet flows and multiple phases is straightforward. For
asymptotic stability, the rate of change of the availability
function should be negative. By investigating the condi-
tions of aysmptotic stability in the expression above, we
can find out the type of decentralized control strategy
(inout-output pairings) that needs to be used.

5. CONCLUSION AND FUTURE WORK

We have shown that dynamics of extensive variables of
a single unit can be obtained by the application of the
Tellegen’s theorem with the appropriate definitions of the
flow variables. Furthermore, availability function has been
introduced as a candidate Lyapunov function so that we
can design controllers based on passivity. To this end,
we derive an expression for the rate of the change of
the availability function. This expression has been derived
for a single unit with a single phase and binary phases
at equilibrium. An initial step forward is the analysis
of conditions and control design that leads to a passive
system. This work is also going to be extended to several
process units with multiple phases and components such
as distillation columns, membranes, batteries, fuel cells.
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Extending the right hand side of Eq 24 into its components
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∆(vṽ)in

− ∆Pin

TinT ∗
in

∆(Tvṽ)in +
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Due to page limitations we only provide the end result.

Following the same procedure, we can also get an expres-
sion for −dAtotal

dt for the two phase case in Fig 4 such that
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In the two phase case, the production term is equal to
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When we assume that the two phases are at equilibrium,
the exchange rates are equivalent and in the opposite
direction. This implies rg1 = −rl1, (rhr)

g
1 = −(rhr)

l
1,Φ

g
1 =

−Φl
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we get
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We have derived expressions of the rate of change of avail-
ability function for two specific cases. However, obtaining
similar expressions for more general cases like multiple
inlet flows and multiple phases is straightforward. For
asymptotic stability, the rate of change of the availability
function should be negative. By investigating the condi-
tions of aysmptotic stability in the expression above, we
can find out the type of decentralized control strategy
(inout-output pairings) that needs to be used.

5. CONCLUSION AND FUTURE WORK

We have shown that dynamics of extensive variables of
a single unit can be obtained by the application of the
Tellegen’s theorem with the appropriate definitions of the
flow variables. Furthermore, availability function has been
introduced as a candidate Lyapunov function so that we
can design controllers based on passivity. To this end,
we derive an expression for the rate of the change of
the availability function. This expression has been derived
for a single unit with a single phase and binary phases
at equilibrium. An initial step forward is the analysis
of conditions and control design that leads to a passive
system. This work is also going to be extended to several
process units with multiple phases and components such
as distillation columns, membranes, batteries, fuel cells.

REFERENCES

Alonso, A. and Ydstie, B. (1996). Process systems,
passivity and the second of law of thermodynamics.
Computers and Chemical Engineering, 20, 1119–1124.

Alonso, A. and Ydstie, B. (1997). Process systems,
passivity via clausius planck inequality. Systems and
Control Letters, 30, 253–264.

Alonso, A. and Ydstie, B. (2001). Stabilization of dis-
tributed systems using irreversible thermodynamics.
Automatica, 37, 1739–1755.

Baldea, M., El-Farra, N., and Ydstie, B. (2013). Dynamics
and control of chemical process networks: Integrating
physics, communication and computation. Computers
and Chemical Engineering, 51, 42–54.

Beya, B. (1998). Modern Graph Theory. Springer.
Gilles, E.D. (1998). Network theory for chemical processes.
Chemical Engineering & Technology, 21(2), 121–132.

Hangos, K.M., Alonso, A.A., Perkins, J.D., and Ydstie,
B.E. (1999). Thermodynamic approach to the structural
stability of process plants. AIChE Journal, 45(4), 802–
816.

IFAC TFMST 2019
Louvain-la-Neuve, Belgium, July 3-5, 2019

65



44	 Leyla Özkan  et al. / IFAC PapersOnLine 52-7 (2019) 39–44

Jillson, K. and Ydstie, B. (2007). Process networks with
decentralized inventory and flow control. Journal of
Process Control, 17, 399–413.

Jillson, K. and Ydstie, B.E. (2005). Complex process
networks: Passivity and optimality. IFAC Proceedings
Volumes, 38(1), 543 – 548. 16th IFAC World Congress.

Kumar, A. and Daoutidis, P. (2002). Nonlinear dynamics
and control of process systems with recycle. Journal of
Process Control, 12(4), 475 – 484.

Liu, Y.Y., Slotine, J.J., and Barabási, A.L. (2011). Con-
trollability of complex networks. Nature, 473, 167–173.

Mikulecky, D. (2001). Network thermodynamics ann
complexity : A transiton to relational system theory.
Computers and Chemistry, 25, 369–391.

Onsager, L. (1931). Reciprocal relations in irreversible
processes. i. Phys. Rev., 37, 405–426.

Oster, G.F. and Desoer, C. (1971). Tellegen’s theorem and
thermodynamic inequalities. J. Theor. Biol.

Oster, G.F. and Perelson, A.S. (1973). Systems, circuits
and thermodynamics. Israel Journal of Chemistry, 11(2-
3), 445–478.

Oster, G.F. and Perelson, A.S. (1974). Chemical reaction
dynamics. Archive for Rational Mechanics and Analysis,
55(3), 230–274.

Oster, G.F., Perelson, A.S., and Katchalsky, A. (1973).
Network thermodynamics: dynamic modelling. Quar-
terly Review of Biophysics, 1, 1–134.

Penfield, P., Spence, R., and Duinker, S. (1970). Tellegen’s
theorem and Electric Networks. MIT Press, Cambridge,
Massuchusetts.

Peusner, L. (1981). Premetric thermodynamisc: A topo-
logical graphical model. J. Chem. Soc., Farady Trans.,
81, 1151–1161.

Wartmann, M.R. and Ydstie, B.E. (2009). Optimality of
process networks. IFAC Proceedings Volumes, 42(11),
613–618.

West, D. (1996). Introduction to Graph Theory. Prentice
Hall.

Ydstie, B.E. (2018). Gibbs’s Tangent Plane and Its
Application to the Equilibrium Flash. In preparation.

Appendix A. DEFINITIONS

Algebraic graph theory is extensively used to represent
the topology of networks. We start with the fundamental
definitions in the modern graph theory.

Definition A.1. Beya (1998) Consider the set N (G) =
{n1, · · · , nk} denoting the set of nodes and the set E(G) =
{e1, · · · , em} the set of edges. A graph G is an ordered pair
of disjoint sets (N , E) such that E is a subset of the set N
of unordered pairs of N . k and m represent the number of
nodes and the number of edges respectively.

Definition A.2. A directed (oriented) graph G is a pair
(N , E) where N is a set of nodes and E is a set of directed
edges. If (ni, nj) ∈ E , ni is known as the source and nj is
the sink of the directed edge E . An undirected graph has
undirected edges.

Definition A.3. A graph G is connected if ∀(ni, nj) of
distinct vertices, there is a path from ni to nj . Otherwise,
it is unconnected. An unconnected graph has minimum
two separate parts.

Definition A.4. The incidence matrix M(G) of a directed
graph G is a k ×m matrix with Mi,j = 1 if ni is the tail

of ej and Mi,j = −1 if ni is the head of ej . If a vertex n
belongs to e then n and e are incident.

Definition A.5. Node (vertex) cut of a graph G is a set
S ⊆ N (G) such that S has more than one component. A
disconnecting set of edges is a set F ⊆ N (G) such that
G−F has more than one component.

Definition A.6. A subgraph of a graph G is a graph H
such that N (H) ⊆ N (G) and E(H) ⊆ E(G)

Definition A.7. A loop L is a subgraph of a graph G such
that L is connected and there are two edges of L incident
with each node.

The information above now helps us to define a general
network. The definition is adjusted from West (1996)

Definition A.8. A network is a triplet (G, f) where G is a
directed graph with distinguished initial vertices (sources)
and distinguished terminal vertices (sinks), and f : E →
R+, where f can be capacity of an edge or flow associated
with an edge e depending on the problem setting.
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