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Abstract. Model checking is an effective way to design correct software.
Making behavioural models of software, formulating correctness proper-
ties using modal formulas, and verifying these using finite state analysis
techniques, is a very efficient way to obtain the required insight in the
software. We illustrate this on four common but tricky examples.

1 Introduction

Software consists of algorithms that manipulate data structures, and protocols
that describe how software components communicate. These algorithms and pro-
tocols are expected to work correctly under all the conditions they are designed
for. However, it is not easy to foresee all possible situations the software will
ever encounter. Corner cases and exceptional situations are typically difficult to
identify upfront. Such situations are also hard to cover using testing.

A solution is to prove the correctness of the software. A wide range of meth-
ods, such as invariants, Hoare logics, separation logics, and process algebras,
have been developed that allow this. Proof checkers like Coq [3] or Isabelle [22]
allow to computer check such proofs, achieving an unparalleled level of trust
in the quality of such proofs. Unfortunately constructing such proofs is still a
manual, labour intensive activity.

Model checking and equivalence checking are two efficient verification tech-
niques that strike a favourable balance between the ease of automation of testing
and the level of trust established by correctness proofs. Both techniques rely on
models made of the software under consideration, and they are particularly ef-
fective in exploring corner cases in software. In model checking a set of high-level
requirements, phrased in terms of some temporal logic, are verified against the
model. In equivalence checking, a state space is abstracted into a smaller one
reflecting the essential properties of the original and which is sufficiently small to
be inspected. In the related technique called refinement checking, a state space
of the software is generated and compared to a required state space.

There are a number of toolsets that support one of these two approaches.
For instance, the FDR [I1] toolset specialises in refinement checking, and cen-
tres around the notion of failures-divergences refinement [25J21], which facili-
tates a step-wise refinement software development methodology. Toolsets such



as SPIN [15] and nuSMV [7] rely exclusively on model checking. CADP [10] and
mCRL2 [6] are toolsets that offer both techniques.

In this paper we focus on the mCRL2 toolset and its three specification
languages: the data language, which is based on the theory of abstract data
types, the process specification language, which is an ACP-style process algebra,
and the requirement language, which is a highly expressive extension of the
modal p-calculus. This toolset has been used successfully in a large number of
case studies; see, e.g. [2BIT6IT724], and it fulfils a role in education in various
universities worldwide.

Our aim is to illustrate how to use mCRL2 to specify and analyse algorithms
and data structures for which one should no longer wish to lull oneself into the
belief that it does not warrant spending time on analysing their inner workings.
The examples we consider, available via [I], are taken from the literature, and
are presented such that they can immediately be replayed in the mCRL2 toolset.

We start by considering the well-known solution to the mutual exclusion
problem, offered by Peterson’s algorithm [23]. The interesting bit here is that—
motivated by a non-standard exposition of the algorithm, present for some time
on Wikipedia—we study the effects of different intialisations on the correctness
of the algorithm. We furthermore study Knuth’s dancing links [I8], the concur-
rent data structure known as Treiber’s stack [26] and Lamport’s queue [20]. To
facilitate a stand-alone exposition of the examples, we start with a brief primer
to the languages used in mCRL2, where we assume that the reader is already
familiar with similar-spirited languages.

With the current contribution, we hope to fill a void in the literature. As
starting point to an uninitiated, motivated toolset user, (industrial) case studies
can be discouraging due to their intrinsic complexity; on the other hand, the
typical introductory problems often available in first-encounter tutorialsﬂ focus
on language constructs and, for this reason, often lack in appeal. The aim of the
current paper, therefore, is to bridge the gap between toy examples at one end,
and complex case studies at the other end of the spectrum.

2 A short primer in mCRL2

In this section, we present a cursory overview of the most important language
constructs in mCRL2. For a more elaborate introduction to the formalism, in-
cluding a treatment of its real-time features, we refer to [12].

2.1 Data types

Most (distributed) algorithms and concurrent systems revolve around data in
some form or another. The mCRL2 data language is based on higher-order ab-
stract data types. This allows users to define their own data types, along with
operations on these. For convenience, the mCRL2 data language also includes a
large number of predefined standard data types and type constructors.

! See for instance the online mCRL2 introductory tutorial on https://mcrl2.org/


https://mcrl2.org/

User defined data types. Abstract data types provide a straightforward mecha-
nism for specifying complex data types. A user can declare new types, in this
context called sorts, along with their (constructor) functions and their defini-
tions, using a small number of primitives. Constructors are the atomic building
blocks of a data type, allowing for an inductive definition of the type. A sort is
declared using the sort keyword, whereas constructors are declared using the
cons keyword; e.g., for a given sort A, a declaration of an a-leaf tree could be:
sort Tree;
cons leaf: A -> Tree;

node: Tree # Tree —-> Tree;
Operators and functions that manipulate user-defined types can be declared us-
ing the map keyword. They are defined by a set of equations, introduced with the
keyword eqn. These equations may refer to variables, which must be declared in
a declaration block preceding the equations and announced by the keyword var.
For most purposes, equations are interpreted as rewrite rules, allowing reasoning
engines to manipulate and simplify (sub)expressions by matching the left-hand
side of a rule and replacing these (sub)expressions by the right-hand side of a
rule. For instance, assuming that Max: A # A -> A is a binary operation on
sort A, a standard way of lifting that operator to a tree over A, given by function
Max_Leaf, is as follows:

map Max_Leaf: T —-> A;
var tl1,t2: T; a: A;
eqgn Max_Leaf (leaf(a)) = a;
Max_Leaf (tl, t2) = Max (Max_Leaf(tl), Max_Leaf (t2));

Standard data types. For the convenience of the user, several standard data types
and operations on these have been pre-defined.

One such standard data type, which, as we shall see later, is essential for
the specification of conditional behaviour, is the sort Bool, representing the
Booleans, with constructors false and true. Pre-defined operations on Bool
include negation (denoted '), conjunction (denoted s&), disjunction (denoted
I'1), and implication (denoted =>). A predicate on any datatype (user-defined
or standard) can be defined as a mapping from that datatype to Bool. On
all pre-defined datatypes binary equality and inequality predicates, respectively
denoted == and !=, are defined with their standard interpretation. Furthermore,
the language has generic constructions for universal quantification forall and
existential quantification exists, which can be applied to predicates over any
datatype. Most standard binary operators can be written infix.

In addition to the Booleans, the positive numbers Pos, natural numbers
Nat, integers Int and reals Real are available, including many of the familiar
operations on these. These numbers can be written in decimal notation; e.g.,
the expression 10 represents the number ten. There is no pre-defined limitation
on the size of the elements in these data types. Whether the tools can handle
a specification involving numbers depends on the available computer memory,
and so computations involving numbers should be done with care.

A further useful construct is that of an enumerated type, called structured
sort in mCRL2. These structured sorts are a convenient way of defining sorts



with a finite set of elements, as they come with a built-in notion of equality. For
instance, a data type Colour for the colours of a traffic light could be:

sort Colour = struct red | yellow | green;

Structured sorts are, however, more versatile than that. For instance, the a-leaf
tree can alternatively be defined as follows:

sort Tree = struct leaf (A) | node(Tree, Tree);

The advantage of this definition over the one provided earlier, is that one does
not need to bother defining equality as it is built-in for structured sorts.

Function types. The mCRL2 data language also has function types. An infinite
list of natural numbers is a function from N to N; in mCRL2 the data type
representing this set of functions is the data sort Nat -> Nat. Functions can be
defined using lambda abstraction, or by a pointwise specification of the result
of applying the function to elements of its domain (function application works
as expected). There is a concise mechanism for updating a function: assuming,
for instance, that the function id: Nat -> Nat is the identity function, the
function id[3 -> 2] represents the identity function in which the value 3 is
mapped to 2. Using lambda abstraction and function updates, operations such
as removing the head of an existing list can, for instance, be modelled as follows.

map remove: (Nat —-> Nat) —-> (Nat —-> Nat);
var 1: Nat -> Nat;
eqgn remove (l) = lambda n: Nat. 1l(n+l);

An alternative definition of the remove operation is as follows:

var 1l: Nat —-> Nat; n: Nat;
eqgn remove (1) (n) = 1(n+l);

Type constructors. The mCRL2 data language has a number of useful type
constructors. Lists, sets and bags can be defined in a generic way and come
with pre-defined operations. For instance, the sort List () describes the data
type of finite lists containing elements of type A, and comes with constructor
[1: List(a) for the empty list, and (infix) |>: A # List(A)-> List(a) for
prefixing a list. List concatenation is denoted by ++, and further operators on
lists include, e.g., head, rhead, tail, rtail.

Sets can be described in a way that is close to standard notation. For in-
stance, the sort set (Nat) has all sets of all natural numbers as elements. The
expression { n:Nat | n <= 10 } describes the (finite) set of all numbers not
exceeding ten, whereas { n:Nat | n > 10 } describes its (infinite) comple-
ment. Set union, set difference, etcetera, are defined and work as expected. In a
similar fashion one can define bags: Bag (Nat) describes the type of bags (multi-
sets) over natural numbers.

Finally, sort aliasing can be used to give more meaningful names to data
sorts. An abstraction on a set of identifiers is, e.g., a natural number. However,
one may prefer introducing a new data sort that is syntactically distinguishable
from Nat to better reflect its role. This can easily be achieved as follows:



sort Id = Nat;

An aliased sort such as 1d inherits all operations of the sort that it aliases.

2.2 Processes

Arguably, the most interesting aspect of a concurrent system is its behaviour.
Behaviours can be represented by Labelled Transition Systems (LTSs); these are
essentially directed, labelled graphs, where the vertices represent a system’s state
and the directed edges connecting two vertices are labelled with the event that
causes the state change. A process algebra such as mCRL2 allows for specifying
an LTS in a compositional fashion.

Sequential processes. A sequential process is a process that describes the possi-
ble behaviours of a system by way of actions (representing real-life or otherwise
interesting events), combined sequentially, non-deterministically and using re-
cursion. The process that cannot perform any activity (i.e., is in a deadlock),
is denoted delta. Somewhat different from other process algebras, the mCRL2
process algebra allows multiple actions to happen at the same time, resulting in
a multi-action. Such a multi-action can be thought of as a multi-set of actions,
all of which are assumed to happen simultaneously. The empty multi-action is
denoted tau, whereas a multi-action of size one is often simply referred to as
an action. An action may carry zero or more data arguments; this is useful for
emiting relevant information of a process. Actions need to be declared explicitly
using the act keyword:

act read, write: Nat;

Multi-actions can be constructed by listing the actions that are part of the multi-
action; e.g., read (0) | read (0) |[write (1) denotes the multi-action consisting of
two read actions, both with the same parameter, and one write action. Note
that multi-action a|b| tau|c is equivalent to a|b|c.

Processes can be composed sequentially using a binary, associative sequen-
tial composition operator: process p.q denotes the process that first behaves
as process p and, upon termination of p, continues to behave as process q. For
instance, the process write (0) .read (0) describes a process that first writes a
value and subsequently reads a value.

Process p + g describes the process that chooses to behave as either process
p or process g. The choice between the two processes is, in such a case, resolved by
the first action that is executed: in case this action is due to process p, process
p will dictate what behaviour is left, whereas when the first action is due to
process g, process g will do so. In case one of the two processes cannot execute
actions, the choice is automatically resolved in favour of the other process; i.e.,
p + delta is behaviourally equivalent to p.

Note that in case the first action that is executed in p + g is offered both
by p and g, the choice is resolved non-deterministically; that is, there is no
guarantee which of the two processes will continue, and the choice cannot be



influenced. Such non-determinism is a powerful construct for modelling unrelia-
bilities of a (sub)system and a useful mechanism for abstracting from decisions
made internally by a (sub)system. For instance, in a process write (0) .read
(0)+ write(0).read(-1), the execution of write (0) determines whether the
same value is read as was written, or a different value; by only observing the
write action, however, one cannot predict which of the two will happen.

Data can be used to influence the flow of control in a process by making
process behaviour conditional: the ternary if-then-else construct b -> p <> g
behaves as process p, provided that Boolean condition b holds true, and process
g otherwise. For instance, the following process:

(reliable == true) -> write(0).read(0) <> write(0).read(-1)

behaves, perhaps, ‘as expected’ in case the Boolean reliable is true, and quirky
otherwise. The binary if-then construct b -> p is short for b -> p <> delta.
Binary non-deterministic choice is generalised by non-deterministic choice
quantification, which binds a ‘local’ variable. This is achieved by the construct
sum d:D. p,in which variable d of data sort D is bound in the process expression
p, and its value is chosen non-deterministically. Such a construct is useful to
model, e.g., a process that can write an arbitrary even value and then read it:

sum n: Nat. (n mod 2 == 0) -> write(n).read(n)

Note that, without further restrictions, this process yields an infinite state LTS;
explicitly generating its transition system is therefore not feasible.

Infinite behaviours can be described using (parameterised) recursive equa-
tions, which associate behaviour to recursion variables (agents). The following
process, for instance, describes the behaviour of a natural number buffer:

proc Buffer(b: Bool, n: Nat) =

sum m: Nat. b -> write(m) .Buffer(b = false, n = m) +

'b => read(n) .Buffer(b = true);
In case parameter b is false, the value n that is currently stored in the buffer can
be read through action read (n). Otherwise, an arbitrary value can be written
to the buffer. The role of parameter b in the above process is to indicate whether
the buffer is empty or not. Note that, in recursive calls, only the parameters that
change value need to be mentioned. Thus, in the first recursive call of Buffer the
parameter b is set to false and n gets the value m, and in the second recursive
call the parameter b is set to true and n remains unchanged.

Parallel processes. The parallel composition of processes p and q is denoted p| |
g. The action that a parallel composition p| | g can execute can come either from
process p, process q, or from processes p and g simultaneously. In the latter case,
a multi-action consisting of an action from p and g is produced. Communication
can be specified by a mapping that indicates which labels in a multi-action must
synchronise; the trace of a successful communication is then a new action. Such
a mapping is specified in a communication function through the keyword comm.
This mapping renames multi-action labels to a new action label. A successful
communication is subject to matching of the parameters of the individual actions
in a multi-action. For instance, a process modelling a shared variable whose



value can be read through an action value_s, and another process continuously
reading that value through an action value_r, may communicate to yield a new
action with label value:

act value_s, value_r, value : Nat;

proc Variable(n: Nat) = value_s(n).Variable();
Agent = sum m: Nat. value_r (m) .Agent;
Parallel = comm({ value_s|value_r -> value }, Variable(0) || Agent);

Process pParallel can execute an action value_s (0), actions value_r (0),
value_r (1), ..., and all multi-actions of the form value_s (0) |value_r (v),
where v is an arbitrary value not equal to 0. In addition, the process can execute
action value (0). One is often only interested in the result of the communication
and not in the individual actions that make up a communication. Actions can
be ‘filtered’ using the allow operator:

proc Interact = allow({value}, Parallel);

The allow operator maps the (multi-)actions not explicitly listed to delta.
There are several additional language constructs, such as bilock and hide; the
former is, in a way, dual to the allow operator, whereas the latter maps a
selected set of actions to the action tau, which is used for abstraction.

2.3 Modal formulas

The behaviour specified using the process and data languages can be analysed in
order to determine whether it satisfies certain requirements. These requirements
are specified in the first-order modal p-calculus, a fixed point language based on a
first-order extension of the modal logic called Hennessy-Milner logic (HML) [13].
The language offers the modal operators <_>_ and [_]_, next to the familiar
first-order logic constructs | |, &&, forall and exists, and predicates val (b),
where b is an arbitrary Boolean expression from the data language. For a set of
actions, represented by a formula a, the may-modality of the form <a>f holds
true in a state whenever it allows for an action from the set A and leads to a
state in which formula £ holds true. The modal formula [A]f is the dual: a state
satisfies this property when none of the actions from the set a lead to a state not
satisfying f. For instance, process Parallel given above satisfies the properties
<value (0)>true and [value (1) ] false. The sets of actions used in modalities
are also described using first-order logic, where, e.g., s& denotes intersection,
| | denotes union, and true denotes the set of all actions. This way, one can
write [value (1) || value(2)]false to claim that neither value 1, nor 2, can
be communicated. The property, [exists n: Nat. wval(n >= 1)&& value(n
) 1 false, or, equivalently, forall n: Nat. [value(n)]val(n < 1), denotes
that no value other than 0, can be communicated.

Since HML is not capable of reasoning about the behaviours of unbounded
depth, recursion is needed. This enters the language through a least fixed point
operator mu X. f and a greatest fixed point operator nu X. f. Informally, a
set of states satisfies mu X. £ when each state satisfies some finite unfolding of
x. For instance, the formula mu X. (<a>x || <b>true) indicates that there



should be some finite-depth formula <a>’<b>true that is satisfied (although the
depth i is potentially different for each state satisfying this formula). Dually,
the formula nu X. ([alX && [b]false) indicates that all possible unfoldings
of the formula should hold. Essentially, this is the case when in no a-reachable
state, a b-action is ever enabled.

Since fixed point formulas can be hard to understand, the mCRL2 require-
ment language offers regular expressions to reason about recursive processes.
Using regular expressions, one can build a language from formulas describing
sets of actions, sequential composition, choice and iteration. Such regular ex-
pressions can then be combined with the two modalities to yield expressions
that permit to reason about processes of arbitrary or infinite depth. For exam-
ple, the regular expression truex.a represents the set of sequences consisting of
zero or more arbitrary actions, followed by an action a. Consequently, formula
[true*.a] false asserts that none of these sequences are possible; i.e., no a-
action is ever possible. In a similar vein, formula <ax.b>true asserts that some
sequence of a-actions leads to a state that can execute a b-action. Such regular
formulas can be translated to standard fixed point formulas; e.g., for a regular
expression R and formula £, formula [R+] f is equivalent to nu X. ([R]X && f).

In mCRL2, fixed points can carry parameters, which can be useful to record
information about the recursions that have been taken. For instance, formula nu
X(n:Nat = 0). (val(n < Max)&& [alX(n)&& [b]lX(n+1)) only holdsin case
all a-b-runs of a system contain at most Max b-actions. This parameterisation is
an incredibly powerful construct.

3 Using the mCRL2 toolset

The mCRL2 toolset has long been a collection of stand-alone tools, building on
the philosophy that the user should be supported in using the transformations
and solvers in as liberal a way as possible. While this philosophy has not been
abandoned, the increasing popularity of the toolset has called for a more ac-
cessible way of using the toolset. For this reason, recent versions of the toolset
come with a plain IDE, called mcr12ide, which can be used to carry out basic
analyses of mCRL2 specifications, without exposing the user to the overwhelm-
ing number of tools available in the toolset. The analyses for the examples we
present in the next sections can be carried out from within this IDE. However,
it should be noted that, for simplicity and accessibility, the IDE has opted to
only implement a ‘standard’ workflow for all analyses, which may not always be
optimal. In case non-standard, more advanced algorithms are needed for suc-
cessfully carrying out an analysis, one needs to resort to the old way of working,
using the file-driven environment mcr12-gui or the command line.

4 Peterson’s mutual exclusion algorithm

Peterson’s mutual exclusion algorithm is a well-known protocol that coordinates
different processes to obtain exclusive access to a shared resource by allowing at



most one process at a time to enter a critical section [23]. We focus on a setting
with two processes, but the algorithm and our analysis generalise to any number
of processes.

The algorithm uses three shared variables. For each of the two processes there
is a shared Boolean variable flag which they set to ¢true when they wish to enter
the critical section. In addition, a variable turn is used to indicate which process
is allowed to enter the critical section. Before entering, a process grants the other
process access. If a process is granted access or the other process does not desire
to enter the critical section, the critical section can be entered. In pseudo code
the behaviour can be described as follows.

Global variables : Behaviour of process i :
flag[0]:B flag[i] := true
flag[1]:B turn := 1—1
turn:N while flag[1—i] = true A turn = 1—i do
busy wait
critical section
flagli] := false

The initial value of the Boolean flags must be false for the algorithm to work cor-
rectly. However, different initialisations have appeared in online sources, cf. [27];
in such cases the behaviour is almost correct and the problem only surfaces by
conducting a thorough analysis.

The mCRL2 model. To reason about the correctness of the algorithm in mCRL2,
we introduce parameterised actions wish, enter and leave to model the inter-
esting state changes of both processes. We remark that these actions are not
needed for the correct functioning of the algorithm but they help in its analysis.
Action wish signals a process’ desire to enter the critical section. The action
enter marks the moment a process enters the critical section and leave sig-
nals the process leaving the critical section. The assignments in the algorithm
itself are modelled using actions get_flag, set_flag, get_turn and set_turn
through which the shared variables can be read and set. The shared variables
are, as remarked in Section [2| typically modelled as processes, and assignment
to, and checks on these variables are modelled by the communications with these
proceses. Peterson’s algorithm, and our model by extension, uses only standard
data structures. In our model, we identify each of the two processes by a number,
and we use a custom mapping other to obtain the identity of the other process.
act wish, enter, leave: Nat;
get_flag_r, get_flag_s, get_flag,
set_flag_r, set_flag_s, set_flag: Nat # Bool;

get_turn_r, get_turn_s, get_turn,
set_turn_r,set_turn_s,set_turn: Nat;

map other: Nat —-> Nat;
eqgn other (0) = 1;
other (1) = 0;



The processes Flag (0, true),Flag (1, true) and Turn (0) depicted below model
the three shared variables. The additional argument for these processes sets the
relevant initial values.

proc
Flag(id: Nat, b: Bool)=
sum b: Bool. set_flag_r(id, b).Flag(id, b) +
get_flag_s(id, b).Flag(id, b);

Turn (n:Nat) =
sum n’: Nat. set_turn_r(n’).Turn(n’) + get_turn_s(n).Turn(n);

A single thread of the algorithm is represented by Process. Modelling action
wish and the true-assignment to the flag variable are specified to occur simul-
taneously, because the latter marks the wish of the process to enter the critical
section. This highlights a typical use-case for multi-actions. Our model abstracts
from the busy waiting loop in the algorithm by modelling the loop by a single
communication. Using that actions synchronise on values, it is only necessary to
check whether one of the shared variables attains a value that allows to enter
the critical section.

Process (id: Nat) =
wish (id) |set_flag_s(id, true).set_turn_s (other(id)).
(get_flag_r (other(id), false) + get_turn_r(id)) .enter (id).
leave (id) .set_flag_s(id, false) .Process(id);

The initialisation of the process is shown below. Note that we explicitly hide
the communications with the shared variables; this allows for focussing on the
interesting state changes of both processes. As a result, the only actions, apart
from tau, that remain in the state space of the algorithm are the enter, leave
and wish actions (the latter results from the underlying theory, stating that
wish (0) | tau is the (multi-)action wish (0)).
init

hide({ get_flag, set_flag, get_turn, set_turn },

allow({ wish|set_flag, enter, leave,
get_flag, set_flag, get_turn, set_turn},
comm({ get_flag_r | get_flag_s -> get_flag,

set_flag_r | set_flag_s —> set_flag,
get_turn_r | get_turn_s -> get_turn,

set_turn_r | set_turn_s -> set_turn },
Process (0) || Process (1) ||
Flag (0, false) || Flag(l,false) || Turn(0))));

The analysis. There are three fundamental requirements a mutual exclusion
algorithm must meet. The first one asserts mutual exclusion: at no time is it
possible to be able to do two enter actions without a 1eave action in between.

[true*. (exists idl: Nat. enter(idl)) . (!exists id2 :Nat. leave (id2)) *.

(exists 1id3: Nat. enter (id3)) ] false
The second property says that whenever a process wishes to enter, it is allowed
access within a finite number of steps. A simple formulation is the following:
whenever an action wish (id) happens, an action enter (id) is guaranteed to
follow within a finite number of steps. The latter requires a least fixed point.

[true*] forall id: Nat. [wish(id)]( mu Y. [!enter(id)]Y && <true>true )

10



The third property is called bounded overtaking: whenever one process indicates
the wish to enter the critical section, the other process can at most enter the
critical section twice. This is formalised by asserting that after a wish(id),
at most two enter (other (id)) actions can happen without an enter (id)
somewhere in between. Counting of the number of occurrences of enter (other
(id)) actions is taken care of by the parameter n in the formula; each time such
an action is encountered, n is increased, but in all cases, the formula asserts that
it never invalidates condition val (n<=2).

[true*x] forall id: Nat. [wish(id)]

( nu Y(n: Nat = 0). val(n<=2) && [!enter(id)]Y¥(n) && [enter (other (id))]Y(n+1l) )
The stronger property that if a process wishes to enter the critical section, the
other process can enter the critical section only once is invalid.

The three properties above hold true for Peterson’s algorithm. One may won-
der whether an out-of-order execution, which is common in modern processors,
affects the correctness of the algorithm. Out-of-order execution means that if
a sequential process writes to unrelated memory addresses, writing can take
place in any order. As the shared variables flag and turn are stored at different
addresses, there is no guarantee that assignments are executed in the order as
listed. It is easy to change the model and prove that it violates the mutual exclu-
sion property, whereas the other two properties remain valid. This means that, to
guarantee correctness on contemporary hardware, this algorithm requires special
measures that prevent swapping certain instruction.

Remarkably, the validity of the three properties is independent of the initiali-
sation of the algorithm. To gain some further understanding, we hide all actions,
except enter and leave and apply weak trace minimisation. The corresponding
labelled transition systems are depicted in Figure

enter(1) i enter(0)
O

(1)2a02]

leave(0)

leave(0) enter(l)

o> 0 o)

enter(0) | leave(1) enter(0) leave(1) T enter(0) leave(l)

leave(0) enter(l)

leave(0) enter(l)

(0)+23u2

(false, false) (false, true) (true, true)

Fig. 1. The weak trace reduced behaviour of Peterson’s algorithm with different ini-
tialisations.

At the left the graph with the correct initialisation (false, false) of the flags is
depicted. In the middle the initialisation (false, true) and at the right (true, true)

11



can be found. The initial states have a small incoming arrow. When the initial-
isation is not correct, process 0, after it has entered the critical section once, is
forced to wait until process 1 entered its critical section for the first time. For
the transition system at the right, the reverse is also true.

The transition systems suggest that the second formula, expressing that a
process that wishes to enter the critical section will be granted access after a
finite number of steps, is insufficient, since it does not take into account that
one process’ capability of entering the critical section should not dependent
on the other process’ desire to do so. To take this into account, we phrase the
following requirement: whenever a process expresses the wish to enter the critical
section, it can enter the critical section on its own accord, unless the other process
already expressed a wish to enter the critical section, enters the critical section
or expresses the wish to enter the critical section. We again use a counter n to
record the number of processes that have expressed the wish to enter the critical
section and have not yet left the critical section. In case n==0, we use a least
fixed point to check that for process id wishing to enter the critical section, along
all paths not involving wish or enter actions of process other (id), process id
inevitably enters the critical section.

nu X(n: Nat = 0).

([exists id: Nat. wish(id) X (n+l) && [exists id: Nat. leave (id)]X(max(0,n-1))) &&
[lexists id: Nat. wish(id) || leave(id)]X(n) &&
(val (n==0) => forall id:Nat. [wish (id)]
(mu Y. (['enter(id) && ! (wish(other(id)) || enter (other (id)))]Y &&
<! (wish(other(id)) || enter (other(id)))> true))

It turns out that this formula distinguishes between Peterson’s mutual exclusion
algorithm with and without proper initialisation.

5 Knuth’s Dancing Links

Dancing links [T4[T8] is a technique to efficiently perform removal and inser-
tion operations on a circular doubly linked list. It is intended to be used when
elements temporarily need to be removed from the list in the course of a compu-
tation, and have to be re-inserted at the same position at a later stage. Knuth
used the technique in his Algorithm X, which solves the exact cover problem.
The correctness claim for the operations is that whenever a sequence of removals
of elements zg, .. ., z, is applied, followed by a sequence of insertions of elements
Zn,--.,To, then the result is again the original list. A verification of this prop-
erty was a challenge of the VerifyThis [9] competition in 2015. We include a
verification of the dancing links technique to illustrate how mCRL2 can be used
to verify the correctness of operations on data structures.

Let = be an element of a circular doubly linked list, and suppose that L(x)
refers to its predecessor and R(z) to its successor. The operations remove(x)
and insert(x) are defined by

remove(z) : L(R(z)) := L(z); R(L(zx)) := R(z), and
insert(x) : L(R(z)) :=z; R(L(x)) :=x.
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The idea is that, after removal, the element x is not garbage-collected, waiting
to be inserted again at its original position (e.g., when the algorithm that uses
the list backtracks). Also the pointers L(z) and R(z) remain available. The
implementation should guarantee that if a sequence of removals and insertions
is performed in a last-out-first-in order, then the linear ordering induced on the
elements by the list is preserved.

The mCRL2 model. The list data structure is described by a pair of functions

L and R that for each element gives its left and right neighbours. For simplicity,

the elements of the data structure are taken to be natural numbers from 0 up

till and including some natural number MAX, set to 4 in the specification below.
The functions remove and insert are described using function updates, and

they strictly follow the definition above.

sort D = struct pair(L: Nat -> Nat, R: Nat —-> Nat);

map MAX: Nat;
eqgn MAX = 4;

map remove,insert: Nat # D -> D;
var x: Nat; p: D;
eqn remove(x, p) = pair(L(p) [R(p) (x) —> L(p) (x)], R(p) [L(p) (x) —> R(p) (x)]);

insert (x, p) = pair(L(p) [R(p) (x) -> x], R(p) [L(p) (x) —-> x]);
For the formulation in the parameterised modal p-calculus of the correctness
claim mentioned above, we define a process UselList (d, stack), which has a
doubly linked list d and a stack as parameters; the stack stores the removed
elements and allows them to be reinserted in a last-out-first-in order. Initially,
the list is full and the stack is empty:

map d_full: D;
eqn d_full = pair(lambda n:Nat.if(n == 0, MAX, max(0, n - 1)),
lambda n:Nat.if(n == MAX, 0, n + 1));

init Uselist (d_full, []);

The process UseList (d, stack) executes actions do_remove and do_insert,
representing the activities of removing and inserting an element in the linked
list, respectively. An element can only be removed from the list if it is in the list.
Since, in our model, the full list contains the numbers 0 to MAX, whether some
element x is in the list can be determined by checking whether x is between 0
and MAX and not an element of the stack. Only the top of a non-empty stack,
represented by head (stack), can be re-inserted in the list. The current list
structure is exposed by the actions left (x,L(d) (x)) and right (x,R(d) (x));
e.g., if, for some element x of the list, the action left (x, x’) is enabled in some
state, then this means that x’ is L (x).

act do_remove, do_insert: Nat;

left, right: Nat # Nat;

proc Uselist (d: D, stack: List(Nat))=
sum x: Nat. (x > 0 && x <= MAX && !(x in stack)) ->
do_remove (x) .UseList (remove (x, d), x |> stack) +

(stack !'= []) —>

do_insert (head(stack)) .UselList (insert (head(stack), d), tail(stack)) +
sum x: Nat. (x <= MAX && !(x In stack)) ->

(left (x, L(d) (x)) + right(x, R(d) (x))) .UselList (d, stack);
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The analysis. It needs to be verified that, at all times, the operations of removing
and inserting an element indeed have the intended removal and insertion effects
and that, moreover, the linear ordering induced by the list structure on the
elements currently in the list is still consistent with the ordering induced by
the list structure on the initial full list. Note that, by our definition of d_full,
the ordering induced by the list structure on the initial full list is the standard
ordering on the natural numbers between 0 and MAX, so in the formula below we
can refer to the ordering induced by the list structure on the initial full list by
simply referring to the standard ordering on the natural numbers.

nu X(s: Set(Nat) = {n: Nat | n <= MAX}).
(forall x: Nat. [do_insert(x)](val(!(x in s)) && X(s + {x})) &&
[do_remove (x) ] (val(x in s) && X(s - {x}))) &&
(forall x,x': Nat. val(x in s) =>
[right (x,x")]( X(s) && val(x’ in s) &&
forall x'’: Nat. (
val(x < x'’ && x'' < x")
|| val(x’ <= x && x < x'' && x'' <= MAX)
|| val(x’ <= x && 0 <= x'' §&& x'' < x")
) => wval(!(x’" in s)) )
) &&
(forall x,x": Nat. val(x in s) =>
[left (x,x")]( X(s) && val(x’ in s) &&
forall x'': Nat. (
val (x’ < x'’ && x'' < x)
| val(x <= x’ && x' < x'’ && x'' <= MAX)
| val(x <= x’ && 0 < X'’ && x'' < Xx)
a

|
|
) => wval(!(x"" in s)) )

The formula needs to express an invariant that holds for all reachable states, so
we use a greatest fixed point. The parameter of the formula is a set s, which
contains the natural numbers currently in the list. The subformula under the
greatest fixed point operator expresses that

— the actions do_remove (x) and do_insert (x) can only take place when the
element x can be removed or inserted, respectively, and that their execution
results in behaviour that is in accordance with a list structure from which x
has been removed or to which x has been added, respectively;

— whenever an action right (x,x’) is enabled, then x’ is indeed the next
element in the list: it is either the least natural number larger than x in the
list, or it is less or equal to x and natural numbers larger than x or smaller
than x’ are not in the list; an analogous property should hold when an action
left (x,x’) is enabled,

The formula can be verified for reasonably large numbers of MAX. It can be inves-
tigated whether the last-out-first-in order of removals and insertions is essential
by replacing the stack parameter of the UseList process by a set. Doing so, we
find that for values of MAx greater than 1 the correctness requirement fails.
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6 Concurrent Data Structures

6.1 Treiber’s stack

In programming it is often necessary to keep track of shared resource elements,
such as chunks of memory, that are free to use. Linked lists are often used to
keep track of available resources, either using a first-in-first-out or a last-in-first-
out strategy. When processes are using such a list concurrently, the standard
sequential release and retrieve operations do not suffice any more. It is tempting
to use compare-and-swap operations for insertion and deletion of list elements in
that case. However, R. Kent Treiber showed in [26] that this does not work either.
When using compare-and-swap the so-called ABA problem causes a problem,
cf. [§]. Treiber showed that a double compare-and-swap operation is required.
The ensuing data structure is a last-in-first-out linked-list that is commonly
referred to as Treiber’s stack.

The erroneous compare-and-swap implementation is interesting because it is
very hard to find out by means of testing that the implementation is incorrect,
especially when the number of elements in the list grows. Even with a dedicated
testing scheme, it may take hundreds of millions of insertions and deletions in
the list before the erroneous situation is encountered. However, when the error
occurs, the list structure is in total disarray, leading to elements in the list
becoming inaccessible and lost for use. Probably even worse, it allows elements
to be simultaneously used by different processes. In practice this means that
software using the faulty implementation can run well for years, but suddenly
exhibit erroneous behaviour due to inexplicably messed up data structures.

The Treiber stack is described using a shared linked-list data structure that
contains available shared resources v. Each node in the list contains a pointer
v.next to the next element in the list. The head of the list is contained in shared
variable hd. A shared resource v can be released to the stack using release(v). Re-
sources can be obtained from the stack using retrieve. A pseudocode description
of releasing and retrieving an element is the following.

release v : retrieve:
repeat repeat
v.next := hd; v := hd,
b := comp_and_swap(hd,v,v.next); if v~ 0 return nothing;
until b; b := comp_and_swap(hd,v,v.next);
until b;
return v;

The mCRL2 model. We model a situation where two processes pl and p2 share
a Treiber stack. The shared linked-list representing the stack is described as
follows. The stack consists of N elements, that are modelled by natural numbers.
One number hd represents the head of the list. Function next: Nat -> Nat
is such that for list element v, next (v) is the next element in the list. As the
data structure is global, it is modelled using a separate process treibers_stack
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that maintains hd and next. The operations on the data structure are getting
and setting a next value in next using actions set_next and get_next, as
well as getting the value of hd and setting it using a compare-and-swap action
cmp_swp_hd (id, vl,v2,b). When this action takes place, the variable hd is set
to v2 provided hd was equal to v1. The boolean b is true when the value was
changed. Otherwise, it is false. Note that id is the identity of the process that
performs the compare-and-swap.

sort ID = struct pl | p2;
map N: Nat;
egn N = 2;

act set_next_r, set_next_s, set_next,
get_next_r, get_next_s, get_next: ID # Nat # Nat;
cmpswp_hd_r, cmpswp_hd_s, cmpswp_hd: ID # Nat # Nat # Bool;
get_head_r, get_head_s, get_head: ID # Nat;
nothing: ID;
retrieve, release: ID # Nat;

proc
treibers_stack (hd: Nat, next: Nat -> Nat) =
sum id: ID, a,v: Nat. set_next_r(id, a, vVv).treibers_stack (hd, nextl[a -> v]) +
sum id: ID, a: Nat. get_next_s(id, a, next(a)).treibers_stack (hd, next) +
sum id: ID. get_head_s(id, hd).treibers_stack (hd, next) +
sum id: ID, vl,v2: Nat. cmpswp_hd_r(id, vl, v2, hd==vl).
treibers_stack (if(hd==v1l, v2, hd), next);

Process P (id, owns) with identifier id retrieves resources from the stack and
releases resources to it. The resources it currently owns are stored in owns. The
process can either retrieve an element, which is then added to owns, except if
the list is empty in which case no element is obtained, or it can release one
of the elements it owns. These procedures have been encoded in the processes
release_elmt and retrieve_elmt. Note that there are two actions release
(id, v) and retrieve(id, v) that are used to signal that an element v is
released to or retrieved from the list. Action nothing (id) indicates that process
id tried to retrieve an element from the empty stack.
proc
release_elmnt (id: ID, v: Nat, owns: Set(Nat)) =

sum hd: Nat. get_head_r(id, hd).

set_next_s(id, v, hd).

sum b: Bool. cmpswp_hd_s(id, hd, v, b).

(b -> P(id, owns—-{v})
<> release_elmnnt (id, v, owns));

retrieve_elmnt (id: ID, owns: Set(Nat)) =
sum v: Nat. get_head_r(id, v).
((v==0) -> nothing(id) .P(id, owns)
<> (sum v_next: Nat. get_next_r(id, v, v_next).
sum b: Bool. cmpswp_hd_s(id, v, v_next, b).
(b -> retrieve(id,v) .P(id, owns+{v})
<> retrieve_elmnt (id, owns))));

P(id: ID, owns: Set(Nat)) =
retrieve_elmnt (id, owns) +
sum v: Nat. (v in owns) -> release(id, vVv).release_elmnnt (id, v, owns);

The data structure is initialised in the init section by setting hd to N, and linking
each element 1 to 1-1. The number 0 is used as a null-pointer, i.e., an indication
for the empty list.
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init allow({ set_next, get_next, cmpswp_hd, get_head,
nothing, retrieve, release },
comm({ set_next_r|set_next_s —-> set_next,

get_next_r|get_next_s —-> get_next,
cmpswp_hd_r|cmpswp_hd_s —-> cmpswp_hd,
get_head_r|get_head_s —-> get_head 1},

treibers_stack (N, lambda 1l: Nat. max(0, 1-1)) ||

P(pl, {}) Il P(p2, {})));

The analysis. There are two major properties of Treiber’s stack that we want to
hold. The first property essentially is the following. Provided that only elements
are released that are not in the list, processes can only retrieve elements that
are supposed to be in the list. This is expressed in the following formula, that
is structurally similar to the last property for Peterson’s algorithm. Parameter
free represents the set of elements supposed to be in the list, and after retrieve
and release actions, it is updated accordingly. The assumption on release is
characterised using the implication in val (! (n in free))=> X(free + {n}).

nu X(free: Set(Nat) = { n:Nat | 0 < n && n <= N }).
(forall id: ID, n: Nat.
[release(id, n)] (val(!(n in free)) => X(free + {n})) &&
[retrieve (id, n)] (val(n in free) && X(free - {n}))) &&
[!exists id: ID, n: Nat. (release(id, n) || retrieve(id, n))1X(free)

The second property states that at any moment when there are at least two
elements in the list, it is always possible to retrieve an element from the list
within a finite number of actions while no elements can be released. The reason
that there must be at least two elements in the list is that the other process
can already have put a claim on an element in the list, without actually having
retrieved it. The first five lines of the property follow a structure similar to
properties we have seen before. The condition val (exists n: Nat. (n in
free && free - {n} '= {}) encodes that free contains at least two elements
(it contains n, and after removing it, the set is non-empty). As sets can contain
infinitely many elements, there is no function in mCRL2 that yields the size of
a set. The last two lines say that along all paths not involving release actions,
a retrieve action must inevitably happen.

nu X(free: Set(Nat) = { n:Nat | 0 < n & n <= N }).

(forall id: ID, n: Nat.
[release(id, n)]X(free + {n}) &&

[retrieve (id, n)]X(free - {n})) &&
[!exists id: ID, n: Nat. (release(id, n) || retrieve(id, n))]X(free) &&
(val (exists n: Nat. (n in free && free - {n} != {})) =>
&&

mu Y. ([(!exists id: ID, n: Nat. retrieve(id, n)
(!exists id: ID, n: Nat. release(id, n))
<l!exists id: ID, n: Nat. release(id, n)>true)

)
1Y &&
)
It turns out that both formulas are not valid for Treiber’s stack when imple-
mented using compare-and-swap, even not so if there are initially two elements
only. In Figure 2] we depict two counter examples by drawing the working of the
operations on the list. These are the shortest counterexamples that exist, as we
used the modal formula prover in breadth first search mode.

The sequence of pictures at the left of the figure shows that it is possible
that element 1 is retrieved twice from the data structure without being returned
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2 P hd 0 2 P 1P hd 0

Fig. 2. Counter examples showing that Treiber’s stack is incorrect

in between. Initially, process p2 attempts to retrieve the first data element, but
it stops before doing the compare-and-swap. So, v = 2 and v_next = 1. Then
process pl obtains both element 2 and 1 in a proper fashion. This brings us to
the third diagram where hd is 0; the list is empty. Process p1 returns element 2
in the fourth picture. Now, process p2 carries out its compare-and-swap, setting
hd to 1. The next element that will be released by the stack is 1 despite the fact
that is currently owned by process p1.

The pictures at the right show how the second property is violated. Pro-
cess pl first obtains element 2. Subsequently, process p2 attempts to get ele-
ment 1 setting v = 1 and v_next = 0, but again the compare-and-swap is not
carried out. Process pl obtains element 1 and returns subsequently element 2
and then 1. This yields the fifth picture from above. Process p2 carries out its
compare-and-swap. As hd = 1 this is successful obtaining the situation at the
list at the bottom right. If process p2 starts to release element 1, indicated by
release (p2, 1), but has not yet carried out the compare-and-swap, the variable
free in the modal formula equals {1, 2}, so the free list contains at least two
elements. However, hd = 0, so, process pl will repeatedly fail to get an element
from the list. Note that these failures can persist indefinitely, as long as p1 never
completes the compare-and-swap.

Treiber’s stack is correct when the compare-and-swap operation in the pro-
cess retrieve_elt is replaced by a double compare-and-swap that checks both hd
and hd.next have the expected value before updating them. Concretely,

sum b: Bool. cmpswp_hd_s(id, v, v_next, b).

is replaced with

sum b: Bool. double_cmpswp_s (id, v, v_next, v, v_next, b).
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To support the double compare-and-swap operation, the treibers_stack pro-
cess must be extended with the following:

sum id: ID, hd_old, hd_new, a, v_old: Nat.

double_cmpswp_r (id, hd_old, hd_new, a, v_old, hd==hd_old && next(a) == v_old).
treibers_stack (if(hd==hd_old && next (a)==v_old, hd_new, hd), next);
With this change Treiber’s stack satisfies both correctness properties, which we
could also check for slightly larger stacks.

When verifying the incorrect and correct versions of Treiber’s stack one may
observe that the state space of the incorrect version is much larger (approxi-
mately 300M states for N=4) than the correct version. This is a pattern that is
more commonly observed in practice, and suggests that, when model checking,
one should always start by analysing the smallest conceivable instance of a prob-
lems, and only increase instance sizes when these smallest instances satisfy all
desired properties.

6.2 Lamport’s queue

Bounded single-producer/single-consumer queues have been studied extensively.
A classical, and simple description of such a queue is given by Lamport [20]: a
queue is represented by an array @ of size N, and is indexed 0... N — 1. The
queue is stored in a circular way, using indices head and tail to represent the
pointers to the head and tail of the queue. Accesses to these pointers are assumed
to be atomic. Reading and writing of array elements are non-atomic.

The queue supports two operations, push and pop, that are assumed to be
executed from different threads. The producer repeatedly pushes elements to the
queue, and the consumer repeatedly pops elements from the queue. When the
queue is full, the operation push blocks until an element is removed from the
queue. Likewise, when the queue is empty, the operation pop blocks until an
element is added to the queue. The algorithm can be described in pseudocode
as follows. Note that the algorithm is wait-free.

Global variables: Behaviour push(v) : Behaviour pop :
Q[0...N): Value do do
head: N t = tail t = tail
tail: N h := head h := head
while (t+1)mod N =h  whilet="nh
Qlt] =0 v = Q|h]
tail := (t + 1) mod N head := (h+ 1) mod N

Variables ¢ and h in both procedures are local. For correctness, the algorithm
assumes so-called sequential consistency [19], i.e., the operations in each of the
procedures are executed in the order in which they appear in the program.

The mCRL2 model. The indices in the array are modelled as natural numbers.
Values in the queue are represented using finite sort value; the special value
garbage represents values in the array for which no concrete value is known (ei-
ther the location is uninitialised, or there is an incomplete write to the location).
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sort Value = struct garbage | dO | dil;

The head pointer is modelled using the process Head (i) . Parameter i stores the
index to which Head points. The parameter can be set to an arbitrary index i,
and the process continues recursively with this new index as its parameter. Al-
ternatively, Head can return the current index it points to; the value of the
parameter is not changed in this case. The tail pointer is modelled analogously.
The mCRL2 code is as follows:

proc
Head (i: Nat) = sum i’: Nat. set_head_r(i’).Head(i’) + get_head_s (i) .Head();
Tail(i: Nat) = sum i’: Nat. set_tail_r(i’).Tail(i’) + get_tail_s (i) .Tail()

The queue of size N is modelled using N individual instances of the process
Queue (i, v). Each of the instances represents a single position in the array,
with index i, and value v that is currently stored at that position. Reads
and writes are considered to be non-atomic. Therefore, writes are modelled
using start_write_queue and end_write_gqueue. Reads are modelled using
start_read_queue and end_write_queue. To accurately model non-atomicity
of these operations, we keep track of threads currently reading from the posi-
tion, writing to it (we store the value being written), or both. When a thread is
writing, we store the value garbage in v. This enables us to verify that no value
is ever read while another thread is writing.

map N:Pos;
eqn N=2;
proc
Queue (i: Nat, v: Value) =
sum v’ : Value. start_write_queue_r (i, v’).QueueW(v = garbage, w = v’) +
start_read_queue_s (i) .QueueR() ;
QueueW (i: Nat, v: Value, w: Value)
end_write_queue_r (i) .Queue(v = w) +
start_read_queue_s (i) .QueueRW() ;
QueueR (i: Nat, v: Value) =
sum v’ : Value. start_write_queue_r (i, v’).QueueRW(v = garbage, w = v’) +
end_read_queue_s (i, V) .Queue();
QueueRW (i: Nat, v: Value, w: Value) =
end_write_queue_r (i) .QueueR(v = w) +
end_read_queue_s (i, v).QueueW();

The Producer repeatedly Push-es an arbitrary (non-garbage) value to the queue.
The Push process first gets the values of the tail and head pointer from the
respective variables and keeps track of them locally in t and h. If the queue is
full, the process blocks: it will loop and get the head and tail pointers again
until space becomes available. Note that this is a less abstract way of modelling
busy-waiting than that which was chosen in Peterson’s algorithm. If the queue
is not full, it will non-atomically store value v to the tail position t that was
just obtained, and (atomically) update the tail pointer to (t+1)mod n. The Pop
process is modelled in a similar way.

proc
Producer = sum v: Value. (v != garbage) -> call_push(v).Push(v).Producer;
Push (v:Value) =
sum t: Nat. get_tail_r(t).sum h: Nat. get_head_r (h).
(((t+1l) mod N == h) -> Push{()
<> ( start_write_queue_s(t, vVv).end_write_queue_s(t).
set_tail_ s ((t+1l) mod N).
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ret_push ));

Consumer = call_pop.Pop.Consumer;
Pop =
sum t: Nat. get_tail_r(t).sum h: Nat. get_head_r(h).
((t == h) —-> Pop
<> ( start_read_queue_r (h).
sum v: Value. end_read_qgqueue_r (h, v).
set_head_s ((h+1) mod N).
ret_pop(v) ));

The process is initialised as follows:

init
allow({ start_read_qgueue, end_read_qgueue, start_write_queue,
end_write_queue, get_head, set_head, get_tail, set_tail,
call_push, ret_push, call_pop, ret_pop },

comm({ start_read_queue_s | start_read_queue_r —-> start_read_queue,
end_read_qgqueue_s | end_read_queue_r —-> end_read_queue,
start_write_queue_r | start_write_queue_s -> start_write_queue,

end_write_queue_r | end_write_queue_s -> end_write_queue,
get_head_s | get_head_r -> get_head,
set_head_r | set_head_s -> set_head,
get_tail_s | get_tail_r -> get_tail,
set_tail_r | set_tail_s -> set_tail },
Queue (0, garbage) || Queue(l,garbage) || Head(0) || Tail(0) ||
Producer || Consumer));

The analysis. The main property we want to verify for Lamport’s queue is that
it actually behaves as a queue. The queue is first-in-first-out, and the capacity is
never exceeded. Together, this is expressed in the following p-calculus formula.

nu X(g: List(Value) = []).
[ret_push] (val (#g <= N)) &&
forall v: Value.

[call_push(v)] (val(v != garbage) && X(v |> q)) &&
[ret_pop(v)](val(g !'= [] && v == rhead(qg)) && X(rtail(qg))) &&
[! (exists v': Value. call_push(v’) || ret_pop(v'))] X(q)

This first order p-calculus formula, similar to what we have seen before, keeps
track of the contents of the queue in parameter g, which is a list of values. After
every completion of a push operation it checks the current size of the queue is
at most N. For every call to push with value v, it is verified that the value that
is pushed is not garbage, and it recursively verifies the property for the queue
extended with value v. Likewise, for every value that is returned by pop, it is
verified that the queue was not empty, and the value that is returned corresponds
to the oldest value in the queue. For all other values, g is checked recursively
again. Since we use the greatest fixed point, we verify an invariant.

We can also verify other properties for the queue. For instance, every call to
push is guaranteed to terminate. This is expressed as follows.

[truex.exists v: Value. call_push(v)]( mu X.[!ret_push]X && <true>true

This property does not hold for the queue. A counterexample is the infinite
sequence in which subsequence get_tail (0) .get_head (0) is repeated indefi-
nitely. In this case, the consumer always checks whether an element is available
in the queue, but the producer never produces any value. Instead, the following
property holds. It expresses that after call_push, it remains possible to do a
ret_push as long as it has not been done yet.
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[truex.exists v: Value. call_push(v).!ret_pushx]<!ret_push* . ret_push>true

We next verify some properties for the head pointer; similar properties hold
for tail. First, whenever the pointer to head is set, subsequent reads are guar-
anteed to return the same value, until the pointer is set again.

[truex] forall i: Nat. [set_head(i). (!exists j: Nat.set_head(]j)) ~]
forall i’ : Nat.[get_head(i’)] val(i==i’)

Next, the pointer is never set out of bounds.

[truex] forall i :Nat. [set_head(i)] wal (i<N)

Finally, we verify that the push function never tries to write out of bounds.
Due to the way synchronisation works, the calls start_set_queue (i,v) and
start_get_queue (i) with ¢ > N will not be visible in the process as we mod-
elled it so far. So, attempts to access these positions will silently fail. This can
be circumvented by adding a process Invalid into the parallel composition with
the following specification.

Invalid =
sum i: Nat, v: Value. (i>=N) -> start_write_queue_r(i,v).Invalid +
sum i: Nat. (i>=N) -> start_read_queue_s(i).Invalid;

If we incorporate this process, we can verify the absence of out of bounds writes
using the following invariant.

[truex.exists i: Nat, v: Value. val(i>=N) && start_set_queue(i, v)] false

ll_push(d, t_tail(0 t_tail(1
*»Oca pu\s(o)m O get_tail(0) O O set_tail(1)
call_pop get_head(0)
get_tail(1)

set_head(1) start_get_queue(0)
O ) ) ) )
N> N\ N\ N>

ret_pop(garbage) finish_get_queue(0, garbage) get_head(0)

Fig. 3. Counterexample for Lamport’s queue with no sequential consistency

As mentioned before, Lamport’s queue assumes sequential consistency. If we
drop this requirement, since there is no dependency between the assignment
to Qt] and the assignment to tail in the push routine, the compiler may reorder
these statements. If we change the mCRL2 model accordingly, and we verify
whether the process behaves as a queue according to the first property stated
above, the tool will observe the property does not hold. The counterexample
that it generates is shown in Figure[3] From this example we clearly see that the
consumer reads invalid values from the queue. The underlying reason for this is
that variable head is used for synchronisation between the producer and con-
sumer; incrementing this variable signals to the consumer that a new value has
been added to the queue. However, when allowing for reordering of operations,
this is now signalled before the write has completed.
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