

The complexity of snake and undirected NCL variants

Citation for published version (APA):
De Biasi, M., & Ophelders, T. A. E. (2018). The complexity of snake and undirected NCL variants. Theoretical
Computer Science, 748, 55-65. https://doi.org/10.1016/j.tcs.2017.10.031

DOI:
10.1016/j.tcs.2017.10.031

Document status and date:
Published: 14/11/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1016/j.tcs.2017.10.031
https://doi.org/10.1016/j.tcs.2017.10.031
https://research.tue.nl/en/publications/110a6b03-3609-4787-a566-656d6f52f5b6

The Complexity of Snake and Undirected NCL Variants

Marzio De Biasi

No affiliation

Tim Ophelders

Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands

Abstract

Snake and Nibbler are two well-known video games in which a snake slithers
through a maze and grows as it collects food. During this process, the snake
must avoid any collision with its tail. Various goals can be associated with
these video games, such as avoiding the tail as long as possible, or collecting a
certain amount of food, or reaching some target location. Unfortunately, like
many other motion-planning problems, even very restricted variants are com-
putationally intractable. In particular, we prove the NP-hardness of collecting
all food on solid grid graphs; as well as its PSPACE-completeness on general
grid graphs. Moreover, given an initial and a target configuration of the snake,
moving from one configuration to the other is PSPACE-complete, even on grid
graphs without food, or with an initially short snake.

Our results make use of the nondeterministic constraint logic framework
by Hearn and Demaine, which has been used to analyze the computational
complexity of many games and puzzles. We extend this framework for the
analysis of puzzles whose initial state is chosen by the player.

Keywords: Games, Puzzles, Motion Planning, Nondeterministic Constraint
Logic, PSPACE

1. Introduction

Recently the study of the complexity of puzzles and video games has gained a
lot of popularity [2, 5, 13]. These puzzles are often based on motion planning
problems. We will consider puzzles that can be modeled using paths or entities
that move on planar graphs. A few such motion planning problems are the
train marshaling problem [1], the robot and multi-robot path planning problems
[7, 14], and the self-reconfiguring robot problem [8]. As a real-world example
we can consider a set of linked wagons towed by a locomotor that must reach a

Email addresses: marziodebiasi@gmail.com (Marzio De Biasi),
t.a.e.ophelders@tue.nl (Tim Ophelders)

Preprint submitted to Elsevier September 28, 2017

target configuration by moving through a narrow environment. More geometric
variants have also been studied, such as motion planning of deformable snake-
like paths [6] in the Euclidean plane with obstacles. The problems we will
consider arise from the popular games Snake and Nibbler.

Snake is a well-known video game with simple rules that dates back to 1978.
It was inspired by the 1976 game Blockade. Since its original release, many
variants of Snake have been created, implemented over a wide range of platforms.
The simplicity of Snake has led to implementations for graphing calculators and
cellphones in the late 90’s. Despite its age, the popularity of Snake has hardly
decreased, as new variants still appear to this day. A variant we focus our
analysis on in this paper is the 1982 arcade game Nibbler.

The objective of Nibbler is to collect a set of items (food), placed on vertices
of a graph, by maneuvering a simple path (a snake) through that graph. This
path grows by a constant number of vertices per collected item, and the path
can move only by extending the front of the path (the head) or removing vertices
from the end of the path (the tail). So once a vertex is part of the snake, it
is removed only after all vertices towards the tail have been removed. As a
result, such vertices may trap the head of the snake, preventing it from reaching
particular items. The challenge of Nibbler is to route the head without trapping
it before collecting all food. We define moves between states of Nibbler in
Definition 1, and the food collection problem in Definition 2. In our analysis
of this problem, the growth rate g, the initial length |P | of the snake, and the
amount of food |F | are treated as parameters.

Definition 1 (Valid moves between Nibbler states). Consider a graph G and
a growth rate g ∈ N. A snake is a sequence P of vertices forming a simple path
in G. A Nibbler state (P, F, d) is a snake P , a set F ⊆ VG of food vertices,
and an integer d ≥ |P | representing the target length of the snake, see also
Figure 1. We denote s1++s2 the concatenation of two sequences s1, s2 of vertices.
A move (P, F, d) → (P ′, F ′, d′) between Nibbler states is valid if and only if
F ′ = F \ P ′, and d′ = d + g · |F \ F ′|, and t ++ P ′ = P ++ h, with |h| = 1
and |t| = 1 unless |P | < d′, in which case |t| = 0. Here, h and t capture the
movement of the snake’s head and tail.

Definition 2 (Nibbler food collection problem (Nibbler)).

Input. A graph G, growth rate g, and Nibbler state (P, F, d) with F ∩ P = ∅
and d = |P |.

Output. Is there a sequence of valid moves that reaches a state (P ′, F ′, d′)
with |F ′| = 0?

Figure 1 illustrates valid moves (or the absence thereof) for small instances of
Nibbler. Generally, Nibbler takes place on a rectangular grid, possibly contain-
ing walls. We distinguish the variant without walls (solid grid graphs) from
the one with walls (grid graphs), and discuss them separately in Sections 2

2

(a) (b) (c)

d = 9

d = 2

d = 2

d = 4

d = 4

d = 4

d = 8

d = 8

Figure 1: (a) A valid move. (b) A snake that cannot move. (c) Collecting food with g = 2.

and 4. For the latter, we use reductions from PSPACE-complete problems intro-
duced in Section 3. These problems may be of independent interest for proving
PSPACE-hardness of puzzles in which no initial position can be enforced.
A grid graph is a finite node-induced subgraph of the infinite two-dimensional
integer grid, see Definition 3. The Hamiltonian cycle and path problems are
NP-complete even when restricted to grid graphs [9]. A solid grid graph is a
grid graph without holes. Formally, all points p ∈ Z×Z that are not vertices of
a solid grid graph lie in its outer face. The Hamiltonian cycle problem on solid
grid graphs is solvable in polynomial time [11]. In contrast, the complexity of
the Hamiltonian path problem on solid grid graphs is still open.

Definition 3 (Grid graph). A finite undirected graph (V,E) with V ⊆ Z × Z
and (u, v) ∈ E if and only if ‖u−v‖ = 1. So all edges are of the form {(x, y), (x+
1, y)} or {(x, y), (x, y + 1)}.

An orthogonal grid embedding of a planar graph is a drawing in which each
vertex is a distinct vertex of a grid graph, and each edge is represented as a
path of edges of that grid graph. Given a planar graph whose vertices have
degree at most 4, the algorithm of Tamassia [10] computes an orthogonal grid
embedding with area O(n2) in polynomial time.

2. Nibbler without walls

In Theorem 2.1, we show that it is NP-hard to decide whether a snake with
growth rate g ≥ 1, moving on a solid grid graph can consume all food.

Theorem 2.1. Nibbler on solid grid graphs is NP-hard for any constant
growth rate g ≥ 1.

3

...... ︸ ︷︷ ︸
n︸ ︷︷ ︸

n
2 + g

G′

(c)(b)(a)

A C

v D
G G′

Figure 2: An instance of Nibbler (c) derived from a Hamiltonian cycle problem instance (a).

Proof. We reduce from the NP-complete Hamiltonian cycle problem on grid
graphs with holes [9]. Let the graph G be an instance of this problem. We
include G as a subgraph of a rectangular grid graph G′, see Figure 2 (a) and (b).

The two leftmost vertices in the topmost row of G must be part of any
Hamiltonian cycle (if there is only one vertex, then there is no Hamiltonian
cycle), so we can attach a path (that is two vertices wide) on top of these
vertices, and route it to the top left corner of G′. The resulting graph has a
Hamiltonian cycle if and only if G has one. Hence, without loss of generality, we
assume that the two topmost vertices in the leftmost column of G′ are vertices
of G and denote the topmost one by v. We may also assume that the rectangular
grid graph G′ has even width. We place food on all vertices of G′ except those
of G, and attach an extra vertex D with food to the right of the top-right corner
of G. Because D is a dead end, the snake must collect the food in D last.

Let n be the (even) number of vertices of G, and attach a path C containing
an initial snake P of length n to the left of v, such that the head of P faces v,
see Figure 2 (c). On the opposite end of path C, we attach a rectangular area A
of height 2 and width n/2 + g > 2g with two vertices with food in the leftmost
column of A.

The snake P is forced to enter G′, and it must find a way to turn around
in order to reach the food in A. If the snake consumes any food in G′ before
consuming the food in A, the snake will be trapped in A, and hence unable to
consume the food in D. The reason the snake gets trapped is that the snake
will be of length greater than n when entering A, and after eating the food
in A, the tail of P will still be be blocking the exit of A when the head reaches
the exit. Hence, the snake can reach A with length at most n if and only if
it uses a Hamiltonian cycle in G. If and only if it reaches A with length at
most n, it can consume the food in A and return to G′. It can then consume
all remaining food in G′ using a zig-zag motion (going up and down in columns
of G′ from left to right). Eventually, the head of the snake will be able to
consume the food in D after consuming all other food. An analogous argument
shows that if g ≥ 2, a snake of (odd) length n− 1 must use a Hamiltonian cycle
to exit G′ to consume all food. The case where g = 1 and the snake has odd
length is handled using 3 food vertices in A. Hence, Nibbler is NP-hard on
solid grid-graphs for g ≥ 1.

4

Although the above construction shows hardness for snakes of arbitrarily large
initial (even) length |P | = n and odd length |P | = n − 1, the construction
extends to a setting in which the initial snake is short (|P | ≥ 3). For this, the
short snake is placed at the start of path C, and we place b(n− |P |)/gc pieces
of food in front of the snake, which the snake is then forced to consume. This
grows the snake to length n or n−1, and inevitably results in the initial position
of Theorem 2.1, so Corollary 2.1 follows.

Corollary 2.1. Nibbler on solid grid graphs is NP-hard for any |P | ≥ 3 and
any constant growth rate g ≥ 1.

A rectangular grid graph is a (solid) grid graph whose vertex set is a complete
rectangle [1, . . . , w] × [1, . . . , h]. A second extension shows that consuming all
food on a rectangular solid grid graphs is NP-hard for g ≥ 2.

Theorem 2.2. It is NP-hard to decide if a snake with growth rate g ≥ 2 can
consume all food on a rectangular grid graph.

Proof. As in Theorem 2.1, let grid graph G be an instance of the Hamiltonian
cycle problem. Let G be a subgraph of a rectangular grid graph G′ of width w
and height h, with food on all vertices except those of G. We denote to the two
topmost vertices of the leftmost row of G′ as v1 and vn, and assume without
loss of generality they are vertices of G, and thus empty. Let n be the number
of vertices in G. If G has a Hamiltonian cycle, then it has a Hamiltonian cycle
that starts at v1, and vn is visited last before returning to v1.

We lay out the initial snake P of length 3n+ 2h in a spiral of height h and
width n + 2 next to G′, such that its head lies next to v1 and its last n + 1
vertices lie next to vn; so if the snake does not consume food during the first n
moves, the tail will lie next to vn. Finally, we place a single food in the top-left
corner of an area A of height h and width 3n + 2h that is placed to the left of
the snake, see Figure 3.

1 n+1

v1

vn. . .

. . .

. . .

A G′

Figure 3: Snake on rectangular grid graphs.

We claim that if G′ does not contain a Hamiltonian cycle, the snake cannot
exit G′. Indeed, the first opportunity for the snake to exit occurs next to vn,

5

and only after n+g ·k ≥ n+2k moves, where k is the number of items consumed.
Hence, to exit G′, the snake must occupy at least n+ 2k vertices of G′, which it
can only do if k = 0 since there will only be n+k vertices without food in G′. So
to consume the food in A, the snake head must be on vn after n moves without
consuming food. This is possible only if G′ contains a Hamiltonian cycle, which
we may assume is 〈v1, . . . , vn, v1〉. In that case, the snake can follow this cycle
up to vn; chase its tail until it can enter area A and consume the food contained
in it and finally re-enter G′ to collect the remaining food using a zig-zag motion
as in Theorem 2.1. In the opposite direction, if G has a Hamiltonian cycle, then
the snake can follow the same pattern described above to consume all food.

Corollary 2.2 follows from extending area A and placing more food in it.

Corollary 2.2. For any positive constant fraction, it is NP-hard to decide if
a snake with growth rate g ≥ 2 can consume at least that fraction of food on a
rectangular grid graph.

3. Nondeterministic Constraint Logic

Nondeterministic constraint logic (NCL) is a framework by Hearn and De-
maine [4] for proving the complexity of reconfiguration problems. An NCL graph
is a graph whose edges all have weight 1 or 2 and all vertices have an inflow con-
straint, which is either 1 or 2. When drawing an NCL graph, we color the (thin)
edges of weight 1 red, and the (fat) edges of weight 2 blue. We will use two types
of vertices with an inflow constraint of 2, namely And and Or vertices. An And
vertex has two red edges (of weight 1), and one blue edge (weight 2), whereas
an Or vertex has three blue edges, see Figure 4. An oriented NCL graph is a
directed version of an NCL graph.

The inflow of a vertex is the sum of weights of inward directed edges, and an
oriented NCL graph is valid if and only if each vertex has as inflow at least its
inflow constraint. So for And vertices, the blue edge can be directed outward
only if both red edges are directed inward. For Or vertices, at least one edge
is directed inward. We say that an NCL graph is in normal form if it uses
only And and Or vertices.

(a) And (b) Or

Figure 4: The two vertex types of NCL graphs in normal form.

A move is an operation on a valid NCL graph that reverses the direction of one
edge and a move is valid if it results in a valid NCL graph. Since reversing an
edge twice does not change the graph, any valid move can be executed twice in
succession to return to the original graph. Define the configuration graph of an

6

NCL graph to be the graph of valid oriented NCL graphs, with an edge between
two graphs if and only if a valid move between them exists; that is, if exactly
one edge direction is different.

Given an initial NCL graph, the problem of reversing the direction of a target
edge through a sequence of valid moves (see Definition 4) is PSPACE-complete as
proven by Hearn and Demaine [4] using a reduction from the quantified Boolean
formula problem (QBF); the result holds even if the NCL graph is planar (see
Theorem 3.1).

Definition 4 (NCL edge reversal problem: NclRev(G, e∗)).

Input. A valid NCL graph G with orientation o and an edge e∗ ∈ EG.

Output. Is there a sequence of valid moves, starting from o, that eventually
reverses edge e∗?

Theorem 3.1 ([4]). NclRev is PSPACE-complete, even for planar graphs in
normal form.

We generalize Theorem 3.1 to a setting where the edge directions of the initial
graph can be chosen arbitrarily. In that case, finding an initial graph from which
a given edge can be reversed is only NP-complete by reduction from the Boolean
satisfiability problem (SAT). In contrast, we prove that reversing two edges in
this setting (Definition 5) is PSPACE-complete in Theorem 3.2. We remark that
this theorem was already known to hold for the instances resulting from the
reduction from QBF [3]. In contrast, our alternative construction makes no
assumptions on the NCL graphs used, and can hence generalize to other reduc-
tions, such as NCL graphs whose bandwidth is bounded by a constant, for which
it was recently shown [12] that the NCL problem remains PSPACE-complete.
Additionally, in Theorem 3.3, we show that reversing all edges at least once
(Definition 6) is also PSPACE-complete for NCL graphs in normal form. Be-
cause any initial configuration is of polynomial size, and can hence be guessed,
this result immediately reduces to the analogous case where the initial graph is
fixed (Corollary 3.1).

Definition 5 (Free NCL edge reversal problem: FreeNclRev(G, e∗, f∗)).

Input. An NCL graph G without orientation and two edges e∗, f∗ ∈ EG.

Output. Does there exist a valid initial orientation for the edges of G for which
a sequence of valid moves reverses both e∗ and f∗ at least once? Note
that we do not require a configuration in which both edges are reversed
simultaneously.

Definition 6 (Free NCL complete reversal problem: FreeNclRevAll(G)).

Input. An NCL graph G without orientation.

Output. Does there exist a valid initial orientation for the edges of G for which
a sequence of valid moves reverses all edges of G at least once?

7

Theorem 3.2. FreeNclRev is PSPACE-complete, even for planar graphs in
normal form.

Theorem 3.3. FreeNclRevAll is PSPACE-complete, even for planar graphs
in normal form.

Corollary 3.1. FreeNclRevAll is PSPACE-complete, even for planar graphs
in normal form whose initial orientation is fixed.

Before we prove Theorem 3.2, we construct gadgets that enforce the direc-
tions of a subset of edges in an NCL graph if a given edge is directed outward
with respect to such gadget. We use these gadgets to enforce the initial edge
directions of NclRev whenever a specific edge f∗ is directed outward. Be-
cause the configuration graph has strongly connected components only, it is
then PSPACE-complete to reverse both f∗ and e∗.

3.1. Enforcing edge directions

Given an instance (G, e∗) of NclRev with NCL graph G in normal form with
orientation o, we derive an instance (H, e∗, f∗) of FreeNclRev that has a
solution if and only if the instance to NclRev has a solution. For any edge e
of G, we create a copy φ(e) of that edge in H using the transformation of
Figure 5. If e ∈ E′ is red (a), we first transform it into a blue edge (b), after
which we transform that blue edge (c) into φ(e) (d). In the resulting graph, we
have an edge fe for each edge e of the original graph. If fe is directed outward,
then the direction of φ(e) must correspond to the direction of e in orientation o
of G. If on the other hand fe is directed inward, then φ(e) behaves exactly
as e does in G. We connect all fe to a single edge f∗ using |E′| − 1 Branch
gadgets (see Figure 6), such that if f∗ is directed outward (to the right in the
figure), all fe are directed outward; and if f∗ is directed inward (to the left in
the figure), then all fe can be directed inward as well.

fe

(a) (b) (c) (d)

HG

e

φ(e)

Figure 5: An edge e of weight 1 (a) or weight 2 (c) is
transformed into edge φ(e) whose direction is fixed if
edge fe is directed outward (d). Light edges ensure
that H is in normal form.

f∗
fe

Figure 6: Three Branch gadgets can
be used to connect four edges to f∗.

We ensure that the left endpoint of f∗ can always be directed inward by con-
necting it to a so-called free edge terminator gadget. Planarity is ensured using

8

crossover gadgets. Both the crossover and the free edge terminator gadgets
were introduced by Hearn and Demaine [4]. These gadgets ensure that H is
planar and uses only And and Or vertices, without changing the behavior of
the NCL graph, or the edges representing φ(e∗) or f∗. The behavior of these
gadgets is independent of their initial configurations.

Proof of Theorem 3.2. We use a reduction from the PSPACE-complete NclRev
to prove that reversing two edges is PSPACE-complete if the initial orientation
of an NCL graph can be chosen arbitrarily. Consider an NCL graph G with
initial orientation o and edge e∗ given by an instance of NclRev. Construct
the graph H as described above with edge f∗ forcing for each e of G the direction
of φ(e) of H to be that of e as given by o. We show that it is PSPACE-hard to
reverse both f∗ and φ(e∗) from an arbitrary initial orientation ofH. Indeed, if f∗

is reversed at some point, then the orientation of H at some point corresponds
to the orientation of o for G. The sequence of moves connecting this orientation
in H and the reversal of φ(e∗) corresponds to a sequence of valid moves in G
that reverse e∗ in G and vice-versa. Hence, deciding whether two edges can
be reversed from an arbitrary initial orientation is PSPACE-hard. The problem
is clearly in NPSPACE, and since PSPACE = NPSPACE by Savitch’s theorem,
FreeNclRev is PSPACE-complete.

Remark 1. The problem FreeNclRev is related to the PSPACE-complete
Edge-To-Edge (E2E) problem defined in [3]: “Given two edges eA and eB
of an NCL machine, and orientations for each, are there configurations A and
B such that eA has its desired orientation in A, eB has its desired orientation in
B, and there is a sequence of moves from A to B?”. These problems are related
in the sense that any sequence of moves that reverses both eA and eB must
pass through a configuration in which eA has the desired orientation, and one
where eB has the desired orientation. A subtle difference between these problems
is that there could exist a configuration where eA and eB simultaneously have
the desired orientations, but those edges can never be reversed. However, the re-
duction of [3] can be adapted to show that FreeNclRev is PSPACE-complete,
since the reduction prevents eA and eB from having the desired orientations si-
multaneously. In contrast, using our reduction we can show that FreeNclRev
remains PSPACE-complete for graphs of bounded bandwidth.

3.2. Relaxing edge directions

From now on, we base our constructions on the graph H constructed above,
and refer to φ(e∗) simply as e∗. We use a second construction to allow arbitrary
orientations for certain subsets of edges if a given edge is directed inward, and
use this to prove Theorem 3.3.

The main tool used in the construction is the Relax gadget. The Relax
gadget comes in two types, red and blue, shown in Figure 7 (a) and (b), re-
spectively. Each Relax gadget has an input and an output edge, and these are
said to be disabled if they are directed as in Figure 7 (a) or (b), and enabled if

9

v

u
(a)

(e)

fe∗

f∗

e∗

· · ·

in out

v

u
(c)

in out T

P

v

u
(d)

in out

v

u
(b)

in out

Figure 7: A (a) red and (b) blue Relax gadget with its input and output disabled (a) and (b)
or enabled (c) and (d). (e) Connecting f∗ to a tree of Relax gadgets using And vertices to
connect outputs to inputs of children.

they are directed as in Figure 7 (c) or (d). Any edge between u and v can be
replaced by a Relax gadget (of matching color) between u and v.

If the input of a Relax gadget is disabled, edges of the gadget cannot
direct towards u and v simultaneously, and its output is also disabled. So the
Relax gadget acts like a normal edge with respect to u and v if its input
is disabled. On the other hand, if it is enabled, the output can be enabled
and edges of the Relax gadget can direct into both u and v simultaneously.
Multiple Relax gadgets can be connected to form a tree, illustrated in purple
in Figure 7 (e). Inputs of gadgets in the tree can all be enabled if (and only if)
the first is enabled. We connect the outputs of leaves of this tree to free edge
terminators (highlighted in orange), such that these outputs can always be put
in a disabled state.

Consider the graph H obtained from G in the construction for Theorem 3.2.
We may assume that e∗ and f∗ lie on the outer face of the planar graph, and
that e∗ is connected to the Branch gadget closest to f∗, as illustrated in
Figure 7 (e). We construct a graph H ′ by replacing the free edge terminator
gadget connected to f∗ in H by a tree T of Relax gadgets, such that only if f∗

is directed into T , inputs of Relax gadgets in T can be enabled. Let T denote
the tree of Relax gadgets including the free edge terminators at its leaves.
Let P be the path on Branch gadgets from f∗ to e∗ (highlighted in green). We
will replace each edge of H ′, except those of P and T , by three Relax gadgets
of T (see Figure 8 (b)). We route the tree T such that planarity is preserved. To
do this, we construct an ordinary tree T that acts as a backbone of the tree T
of Relax gadgets. Take any spanning subtree T of the dual graph of a planar
drawing of H ′ \ T , such that T does not use any (dual) edges of P . Observe
that such a tree exists since P is a strict subpath of the boundary of one face.

10

u

v

R1

R2

R3

in out

u

v

R1

R2

R3

in out

(b) (c)(a) e∗

fe∗

f∗

T

Figure 8: Schematically, tree T in black (a). A black arrow of (a) that crosses an edge (u, v)
represents three Relax gadgets of T , shown in detail (for the case of red Relax gadgets) in (b)
and (c). The case of blue Relax gadgets is implemented analogously, but is not illustrated.

For each edge of H ′ \ (P ∪ T) that is not yet crossed by T , add an edge from
either of the two incident vertices (of the dual graph) to a new leaf to T , so that
the tree T is planar and crosses exactly the edges of H ′ \ (P ∪ T). Let the root
of T be in the (primal) face adjacent to (both sides of) f∗, such that f∗ can be
connected to the root of T ; see Figure 8 (a). To obtain T from T , consider an
edge t of T that crosses an edge (u, v) of H ′. Replace the edge (u, v) by three
Relax gadgets, and combine their inputs into one using mirrored Branch
gadgets, see Figure 8 (c). The output of the middle Relax gadget along (u, v)
is used to reach descendants of edge t of T (using And vertices if the target of t
has multiple children). The other two Relax gadgets (and also the middle one
if t ends in a leaf) are leaves of T , so their outputs are connected to free edge
terminators. Call the resulting graph H ′′.

Proof of Theorem 3.3. We claim that all edges of H ′′ can be reversed if and
only if e∗ and f∗ can be reversed in H. If not both e∗ and f∗ can be reversed
in H, then e∗ and f∗ in H ′′ can also not both be reversed in H ′′ because they
are directly connected through P in H ′′, and no edge of P was replaced by
a Relax gadget. To prove FreeNclRevAll is PSPACE-complete, we show
that if both e∗ and f∗ can be reversed, so can all edges of H ′′.

Consider a sequence of moves in H that reverses both e∗ and f∗, and apply
the equivalent sequence to H ′′. This reverses e∗ and f∗ and therefore all edges
of P in H ′′. Because all edges of H ′′ except those of P lie on T , it suffices to
show that all edges of T can be reversed. Because f∗ was reversed, the first
input of T can be reversed and hence enabled.

We show how the first edges of T can be reversed, and how they allow
descendants to be reversed. For this, consider Figure 8 (b) and (c), which
show in detail how an edge (u, v) was replaced in (a). Assume without loss of
generality that the edges are directed as in (b), and that the leftmost edge can
be reversed. In that case, we can reverse all edges but the three highlighted ones,
and then direct the edges as in (c), such that the output of Relax gadget R2

11

is enabled, and the descendants in T can be reversed in a similar way1.
Doing so, we have for all of the edges (u, v) of H that were replaced in H ′′,

that all but the highlighted edges near the target vertex (without loss of gen-
erality, v) have reversed in H ′′. If v does not lie on P , then it is incident to
only Relax gadgets, that are now all directed into v, so v has sufficient inflow
to reverse the highlighted edges in incident Relax gadgets and return them to
state (c). If on the other hand, v lies on P , then the blue edge incident to v has
reversed at some point, so the highlighted edges could also be reversed.

Remark 2. Theorems 3.2 and 3.3 remain true for graphs with bandwidth bounded
by a constant. To see this, observe that each edge of G is locally replaced by
gadgets (transformed edges and crossovers) of constant size in H. Additionally,
each Branch gadget can be placed near a distinct such transformed edge, and
Branch gadgets can be connected in a linear fashion, so that the bandwidth
of H grows by at most a constant factor with respect to that of G.

4. Nibbler with walls

On (non-solid) grid graphs, we prove that several variants of Nibbler are
PSPACE-hard using reductions from the problems of Section 3. Let GNCL be a
planar NCL graph (of n vertices) that we reduce from, and consider an orthogo-
nal grid embedding G′NCL of GNCL, so that each edge of GNCL is represented by
a path of edges in G′NCL. We may assume that this embedding uses only O(n2)
edges [10]. Moreover, after a constant factor of scaling, we ensure that the two
red edges incident to any And vertex in GNCL meet at 180 degrees.

Scaling the embedding further by some factor w, all faces in the result-
ing embedding contain Ω(w2) grid points, and the resulting embedding uses
only O(wn2) edges. If we take w to be sufficiently large, say w = Ω(n4), then
we can ensure that all paths (representing edges of GNCL) between adjacent
And and Or vertices of GNCL differ in length by at most a constant by intro-
ducing detours on short paths. The resulting embedding uses O(wn3) edges,
and the number of grid points in each face remains Ω(w2).

We will use this embedding of GNCL to obtain an instance G of Nibbler
as follows. First, we scale G′NCL by a constant factor and replace all paths
(edges of GNCL) by edge gadgets, see Figure 9 (a). Each edge gadget consists
of two half-edges (separated by a dashed line, about halfway along the length
of the edge). Each half-edge contains two bundles of two or three (blue) paths.
Separating the two bundles of a half-edge, there is a connector port pair (orange).
The bundles of blue paths are routed along the paths given by the embedding
(b), in such a way that the blue paths in the resulting instance differs in length
by at most a constant.

1Note that if we had only replaced edges by a single Relax gadget instead of three,

12

(a) (b)

Figure 9: (a) Two half-edges of an edge gadget. (b) Routing blue paths around corners.

(a) (b)

Figure 10: And (a) and Or (b) gadgets in Nibbler, separated by dashed lines.

Figure 10 shows And and Or gadgets of G, corresponding to vertices of GNCL,
and illustrates how these gadgets connect half-edges in G at these vertices. The
figure also shows green paths spanning the connector port pair of each half-edge.

We denote the graph of half-edges and And and Or gadgets as G. In addition
to G, the graph G contains so-called connector paths (which we place in the faces
of G′NCL). These connector paths are long compared to the size of G, and each of
them connects two (orange) connector ports. In our constructions, the key idea
is to lay out the snake P (green) to form a long cycle alternating between all
the half-edges and connector paths of G, forcing the head of the snake to chase
its tail in order to not get stuck. The snake’s head may reroute the segments of
the cycle inside the two half-edges of an edge gadget to reverse edges.

descendants would not always be able to reverse since we may need the edges of u and v to be

reversible for descendants. Using three Relax gadgets allows the outputs of the R1 and R3

to be disabled during this propagation.

13

Figure 11: Black con-
nector paths.

We place the connector paths in such a way that they,
together with the segments of P inside the half-edges,
form a simple closed path. By Lemma 4.1, a simple closed
path in the plane exists that crosses each path of G′NCL

twice. This path can be drawn on the grid such that
each crossing coincides with the connector port pair of a
half-edge of G, and the connector paths are routed along
segments between two such crossings, see Figure 11. We
introduce detours on connector paths, so that they all

have length Ω(w2

wn3) = Ω(w
n3), where w is the scaling fac-

tor of G′NCL. We take w = Θ(n4), so that all connector
paths can be made significantly longer than the size of G.

Lemma 4.1. For a planar embedding of a graph G, and a subset E′ of its edges
that are connected in its dual graph, there exists a simple closed path in the plane
that intersects the edges of E′ exactly twice, and no other edges.

Proof. By induction on |E′|. The case where E′ has at most one edge is trivial.
In the case where |E′| > 1, there is an edge e ∈ E′ for which E′\{e} is connected
in the dual graph. So by hypothesis, a simple closed curve intersects all edges
of E′ except e twice. This curve has a segment in a face adjacent to e, so we
can deform the curve to also cross e twice.

We are now ready to consider the problem of collecting two items (|F | = 2)
with an initially long snake. Assume the growth rate g is any constant. Let SP

be the set of segments of P in G. Call a path P stable if its head and tail
lie outside G, so all segments of SP connect two connector ports. If the head
and tail of a stable path P lie on the same connector path C, and |SP | ≥ 1,
define the head-tail distance of P as the number of vertices in C \ P . Let h be
the number of half-edges in G. We call a stable path P valid if SP contains h
segments, each of which connects two connector ports of a single half-edge and
each of which contains exactly two blue paths.

Recall that all blue paths differ in length by at most a constant, and denote
by W the length of the shortest blue path, and let the longest blue path have
length W+c for some constant c. We derive a valid initial path P from the NCL
instance, and ensure that the head-tail distance is D = g · |F | + b · c, where b
is the number of blue paths in G. The head-tail distance for any valid path
reachable from P will then be between 0 and D + b · c ≤ 2D.

Observe that for some segment s ∈ SP of a valid path P , any connected
component of (G \ SP) ∪ s consists of at most R = 11(W + c) + 25 vertices.
We will ensure that connector paths are all longer than R + 2D vertices, so if
the head of P moves into a half-edge (through a connector port), then P can
be reconfigured into stable a path only by reaching the other connector port of
the same half-edge. If it does so by moving through fewer than two blue paths,
then it cannot use any blue paths, so the head-tail distance will have decreased
by at least 2W when the head reaches the other connector port.

14

We will ensure that 2W > 2D, so the snake cannot reach a stable path
before using at least two blue paths, since the head-tail distance cannot be
negative. Observe that there are no simple paths (connecting the two connector
ports at the ends of s ∈ S) that use more than two blue paths in (G \ SP) ∪ s.
Hence, for any stable path P ′ reachable from a valid path P , the segments
of SP ′ all use exactly two blue paths. So we conclude that all such P ′ are valid
based on the following assumptions, both of which can be satisfied by our choice
of w = Θ(n4), which scales G′NCL sufficiently.

• The initial valid path P has a head-tail distance of D = g ·F + b · c < W .

• Each connector path is longer than R + 2D = 11(W + c) + 25 + 2D <
13W + 11c+ 25.

We refer back to Figure 10 and argue that all moves leading from one valid path
to another correspond to valid edge reversals of the NCL graph. The direction of
an edge of the NCL graph is encoded in P by the routes taken by the segments
of SP in the corresponding half-edges. This encoding is as follows: whenever
an edge of the NCL graph is directed into a vertex, the corresponding segment
is routed away from the corresponding vertex in G, and vice-versa. It suffices
to observe that for an Or gadget of G, the only constraint is that the segment
of one of the incident half-edges is always routed away from the gadget. For an
And gadget, the segments of both red half-edges must be routed away from the
gadget whenever the blue half-edge is not routed away from it (as in Figure 10).
Lemma 4.2 follows.

Lemma 4.2. It is PSPACE-complete to reach a valid path in which the segment
of a half-edge (of the target edge of the NCL graph) is rerouted from a valid
initial path in Nibbler.

Corollary 4.1. Reaching a path P ′ from P is PSPACE-hard on grid graphs,
even if |F | = 0.

Using this lemma, we show that collecting two items is PSPACE-complete. Place
one item in a blue path of the target half-edge, such that this item is collected
when the segment of the half-edge changes its route. We use the second item to
verify that a valid position was reached after collecting the first item. To do so,
we place it in a dead end branching from a connector path, so that the second
item must be collected last. Then both items can be collected if and only if a
valid position is reached after reversing the target edge. Theorem 4.1 follows,
but requires the initial snake to be long.

Theorem 4.1. Nibbler is PSPACE-complete for any constant growth rate g ≥
0 if |F | = 2.

We wish to extend this theorem to a setting in which the initial snake is short,
say |P | = 1, and the growth rate is positive. The idea is to use a lot of food
(items) to grow the snake, and force it into a valid position, from which it must

15

collect remaining food. As before, an item in a dead end branching from a
connector path must be the final item consumed in any solution to Nibbler.

Let C and C + c′ (for some constant c′) be the lengths of the shortest and
longest connector paths, respectively, and assume without loss of generality
that C is greater than 4|G|. We place the initial snake in a long path (with one
dead end) that leads to the middle of a connector path, and fill this long path
with (h− 1

4)(C + c′)/g food items (where h is the number of connector paths).
When the tail of the snake leaves this path, the snake P ′ has length (h− 1

4)(C+
c′). The snake must use part of each connector path, since otherwise more
than |G| vertices of P ′ would not lie in a connector path, which is impossible.
Moreover, the head and tail of P ′ lie in the same connector path.

During the first traversal, whenever its head leaves a connector path Ci, the
snake is forced to choose a bridge path between the exit endpoint pi of Ci and
another endpoint pi+1 of the connector path Ci+1 that it will traverse next.
But the distance between the head and the tail will never be greater than C;
so after the first tour the snake will not be able to change the endpoints of
the bridge-paths, indeed when the heads leaves corridor Ci, its tail will stay in
corridor Ci+1 for more than |G| steps, so all endpoints, except the previously
choosen one pi+1, will remain blocked. In other words it will be able to modify
the bridge path, but the sequence of the traversed corridor paths will remain
fixed.

(b) (c) (d)

p p′

q q′

(a)

Figure 12: (a) Placing food in half-edges. (b-c) Invalid connections. (d) Valid connections.

For each edge we place a food item in the middle corridor and in the four blue
corridors surrounding it, as illustrated in Figure 12 (a). The snake must use
an average of at least two blue corridors per bridge path (otherwise it has not
enough space and collides with itself). If some bridge path uses more than two
blue corridors, then this would block a connector port, so all bridge paths use
exactly two blue corridors.

We argue that if a bridge path connects connector ports of different edges,
then some food cannot be consumed. Indeed, if food in the blue corridors
adjacent to those connector ports is consumed, the bridge path that collects

16

the food must use at least three blue corridors in order to connect its connector
ports. Hence, each bridge path connects connector ports of the same edge.

Moreover, we show that for each edge, a bridge path must connect the end-
points of the connector paths of the same half edge. For instance, in Figure 12,
this would mean that a bridge path connects p and p′, and a bridge path con-
nects q and q′. We distinguish two cases and reason that it would be impossible
to collect the food in the inner part of the half edges otherwise. Suppose p
connects to q, as in Figure 12 (b). Then the food on the dashed line cannot be
consumed without getting stuck. If instead p connects to q′, as in Figure 12 (c),
then q must connect to p′, and (by planarity) one of the connections must use
the dashed line. Now, to consume the remaining food, this connection must re-
connect in such a way that the dashed line is not used, which would require the
two connections to cross. Hence, for each edge, p must be connected to p′, and
q to q′, meaning we have only valid connections, see for instance Figure 12 (d).

Now it is clear that, since the two bridge paths between p and p′ and between
q and q′ cannot occupy the central (dashed) corridor at the same time, collecting
all food in some edge gadget requires it to be reversed. In fact, if all edges are
reversed, all food is automatically consumed. So all food can be consumed only
if P ′ is a valid path and if and only if there is a solution to FreeNclRevAll.

Theorem 4.2. Nibbler is PSPACE-complete for any growth rate g ≥ 1, even
if |P | = 1.

5. Snake with walls

Snake is a variant of Nibbler in which not all food is initially on the board.
We consider a variant where there is at most one item on the board at any
given time. Initially one item is on the board, and the next item spawns only
whenever the previous item was consumed. Here, a degeneracy occurs when a
new item spawns on a location currently occupied by the snake. For simplicity,
we will assume this item is consumed immediately in such case.

To model Snake, we pair the food vertices F with a permutation, represent-
ing the order in which items spawn. In the presence of walls, it turns out that
Snake remains PSPACE-complete. We show this using minor modifications to
the construction of Theorem 4.2.

Theorem 5.1. Snake is PSPACE-complete for any growth rate g ≥ 1, even
if |P | = 1.

Proof. We reuse the instance of Theorem 4.2, and set the permutation of items
in the following way. As long as the snake is in the initial corridor, the food
spawns just ahead of the snake, so that when the snake reaches the end of the
initial corridor, its target length is as before. The item that appears last is the
one in the dead end. Other items (those in G) can be ordered arbitrarily.

We claim that all items can be consumed if and only if all items could be
consumed in the Nibbler instance. We first argue that if all items can be
consumed in the Snake instance, they can also be consumed in the Nibbler

17

instance. For this, the Nibbler instance can be solved using the same sequence
of edge-flips as the Snake solution, and all food is consumed this way.

Conversely, to obtain a solution for Snake from Nibbler, recall that any
sequence of edge reversals in NCL can be undone, and hence replayed as often
as necessary, allowing all food to be consumed.

6. Conclusion

In this paper we analyzed the computational complexity of deciding whether in
arbitrarily sized levels of the games Snake and Nibbler, there is a way to collect
a certain number of items. It turns out that both games are PSPACE-complete,
and even some restricted versions in which there are no walls are NP-hard.

In order to prove our results, we used the Nondeterministic Constraint Logic
(NCL) framework by Hearn and Demaine, which has been used to analyze the
computational complexity of many (video)games and puzzles; and we extended
it to the case in which the initial configuration is not given but it is chosen
arbitrarily by the player. Given a configuration and an edge, the problem of de-
ciding whether that edge of the NCL graph can be reversed is PSPACE-complete.
Moreover, if we require that two edges must be reversed then the problem re-
mains PSPACE-complete even if the player can choose the initial configuration.
These variants of NCL remain PSPACE-complete even for NCL graphs in normal
form that have bounded bandwidth.

An open question is whether Snake and Nibbler remain hard for instances
of bounded bandwidth. This is not immediate in our reduction, as the trans-
formation of an NCL instance to a Nibbler or Snake instance does not preserve
bounded bandwidth. For instance, the length of connector paths is polynomial
in the number of vertices of the NCL graph.

For rectangular grid graphs, it seems that Snake is significantly easier than
Nibbler. This leads to the open question whether Nibbler is polynomial time
solvable on rectangular grid graphs if the snake is initially short.

Acknowledgments. Tim Ophelders is supported by the Netherlands Organi-
zation for Scientific Research (NWO) under project no. 639.023.208.

References

[1] Elias Dahlhaus, Peter Horák, Mirka Miller, and Joseph F. Ryan. The train
marshalling problem. Discrete Applied Mathematics, 103(1–3):41–54, 2000.

[2] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms:
Algorithmic combinatorial game theory. In Games of No Chance 3, vol-
ume 56 of Mathematical Sciences Research Institute Publications, pages
3–56. Cambridge University Press, 2009.

[3] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-
block puzzles and other problems through the nondeterministic constraint

18

logic model of computation. Theoretical Computer Science, 343(1):72–96,
2005.

[4] Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation.
A K Peters, 2009.

[5] Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of
NP-complete puzzles. ICGA Journal, 31(1):13–34, 2008.

[6] Irina Kostitsyna and Valentin Polishchuk. Simple wriggling is hard unless
you are a fat hippo. Theory of Computing Systems, 50(1):93–110, 2012.

[7] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[8] Amit Pamecha, Imme Ebert-Uphoff, and Gregory S. Chirikjian. Useful
metrics for modular robot motion planning. IEEE Transactions on Robotics
and Automation, 13(4):531–545, 1997.

[9] Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric
problems related to the traveling salesman problem. Journal of Algorithms,
5(2):231–246, 1984.

[10] Roberto Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

[11] Christopher Umans and William Lenhart. Hamiltonian cycles in solid grid
graphs. In FOCS, pages 496–505, 1997.

[12] Tom C. van der Zanden. Parameterized Complexity of Graph Constraint
Logic. In IPEC, pages 282–293, 2015.

[13] Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory
of Computing Systems, 54(4):595–621, 2014.

[14] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis
of multi-robot coordination. International Journal of Advanced Robotic
Systems, 10:399, 2013.

19

	Introduction
	Nibbler without walls
	Nondeterministic Constraint Logic
	Enforcing edge directions
	Relaxing edge directions

	Nibbler with walls
	Snake with walls
	Conclusion

