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Summary

Hydraulic fracturing is a process that is used to enhance the permeability in
reservoirs by inducing fractures with the help of viscous fluids which are in-
jected at high pressures. A better understanding of the hydraulic fracture
growth phenomena will enhance the productivity in these reservoirs and also
reduce the environmental footprint as less fractures can be created in a much
more efficient way. Hence in this thesis a numerical model was developed to in-
vestigate the influence of various parameters such as rock material properties,
injection fluid, injection flow rates, in-situ stresses on the hydraulic fracture
growth.

Several existing models focus on modelling of hydraulic fracturing in near
impermeable rocks, such as shales, which have negligible leak-off from the
fracture into the formation. But hydraulic fracturing is also used in perme-
able rocks, such as sandstones and limestones, for enhanced oil recovery and
geothermal heat extraction. Hence a Modified Enhanced Local Pressure (MELP)
model was developed with an improved leak-off model which can be used for
both near impermeable as well as permeable rocks. The MELP model makes
use of Biot’s theory of poro-elasticity and Darcy’s law for modelling the solid
grain deformation and the pore pressure in the formation. An additional de-
gree of freedom is used for modelling the pressure in the fracture. The MELP
model captures the leak-off accurately with the help of a 1-D Terzaghi con-
solidation equation and also fully couples the pore pressure in the formation
with the leak-off. The model captures the high pressure gradients, in near im-
permeable rocks, without the need for a fine mesh close to the fracture while
the pressure transition is much smoother in permeable rocks, where leak-off
becomes a vital parameter. Using the MELP model, the growth of a fracture
network is demonstrated in which the leak-off from the outer fractures acts as
a shield against leak-off for a centre fracture.

Most sedimentary rock formations, particularly shales, are highly anisotropic
in nature. The anisotropy is due to the orientation of grains along a specific di-
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rection causing the properties along the grain orientation direction to be vastly
different from the properties perpendicular to the grain orientation direction.
To take this into account, we extend the model to include directional depen-
dence of all the rock properties, both elastic and flow related. A combination of
the Tsai–Hill failure criterion and Camacho–Ortiz propagation criterion is pro-
posed to determine the fracture propagation and its orientation. Anisotropy in
Young’s modulus is observed to promote fracture growth perpendicular to the
grain direction whereas ultimate tensile strength anisotropy promotes fracture
growth parallel to the grain direction. The effect of these material anisotropies
were also found to be varying with the angle between the initial fracture ori-
entation and the grain orientation direction. Anisotropy in in-situ stress causes
the fracture to propagate parallel to the maximum stress direction. Differ-
ent regimes of fracture propagation were identified by combining all these
anisotropic parameters in varying degrees.

Heterogeneities in rocks can either be of discrete nature, due to the pres-
ence of inclusions which are formed due to the precipitation of minerals at
specific locations, or of a layered nature due to the deposition of different min-
erals over different times. Inclusions softer than the surrounding rock materi-
als act as obstacles for the fracture path and the fractures are found to deflect
significantly to avoid them. While harder inclusions tend to deflect the frac-
tures towards them. The layered nature of rocks causes a significant change in
the stress state of each layer which can cause the hydraulic fractures to cross,
kink, turn or arrest when propagating from one layer to another. The frac-
ture behaviour in a layered rock depends upon the contrast in material prop-
erties between the layers (Young’s modulus, ultimate tensile strength) as well
as reservoir level properties such as layer thickness, bedding plane orientation
and in-situ stresses.

In this thesis, novel numerical techniques have been developed to further
the understanding of the hydraulic fracturing phenomenon and the factors in-
fluencing them. The developed model can be used for fracture propagation
in permeable as well as near impermeable rocks. The anisotropic and het-
erogeneous nature of rock formations have significant impact on the fracture
propagation direction.
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Chapter 1
Introduction

Ever since the advancement of industrial and technological sectors, the need
for energy is growing rapidly across the world. The global energy consumption
is projected to grow by 28% over the next 20 years, according to U.S. Energy
Information Administration (2017). In order to meet this growing demand,
every source of energy needs to be explored. The expected growth rate of
various sources of energy, as shown in Figure 1.1, predicts that close to three-
quarters of the global energy demand would still be met by the fossil fuels in
2040 under the current policy scenario (International Energy Agency, 2018b).

Figure 1.1: Total world energy demand supplied by various sources of energy. Repro-
duced from the International Energy Agency (2018b)

The U.S. Energy Information Administration (2017) in its international
energy outlook predicts that the majority of this rise in energy consumption
(around 60%), to come from countries that are not in the Organization for
Economic Cooperation and Development (OECD). These countries primarily
use coal as a source to meet their electricity demands which is the single high-
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est contributor in terms of global CO2 emissions (International Energy Agency,
2018a). Hence a shift from coal-based energy to less polluting natural gas-
based, would already have significant benefits to the environment.

With time, the extraction of oil and gas from reservoirs has become increas-
ingly difficult as most of the easily accessible reserves have already been ex-
plored. Hence there is a need for exploring new reserves of oil and gas present
in unconventional reservoirs. Reservoirs in which hydrocarbons are trapped in
rock formations with very low permeability are referred to as unconventional
reservoirs. The huge amount of shale gas and tight oil reserves trapped in these
unconventional reservoirs in the various regions around the world is shown in
Figure 1.2.

Figure 1.2: World reserves of shale oil and tight gas in unconventional reservoirs. Re-
produced from World Energy Council (2016)

To meet the industrial heat demand in a sustainable way it is necessary to
extract geothermal energy from greater depths than has been done so far. For
industrial application and the production of electricity, temperatures of 150°C
and more are essential for which we require Ultra Deep Geothermal (UDG)
reservoirs. At these depths there is no natural permeability, so the connectivity
has to be artificially created by fracturing.
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1.1 Hydraulic fracturing

Figure 1.3: A schematic of the hydraulic fracturing principle in a horizontally drilled
well. A viscous fluid at high pressure is injected into the well to create
fractures. The opened fractures are held in place by sand particles after the
release of pressure.(Department of mines, industry regulation and safety,
Government of Western Australia, 2018)

Although unconventional reservoirs contain a significant amount of oil and gas,
they have very poor production rates due to their very low permeability. They
require some form of stimulation to enable economical recovery rates. One
such stimulation technique is hydraulic fracturing. Although the process of
hydraulic fracturing has been well known since the 1950’s, it has gained trac-
tion in recent decades due to several technological advancements (King et al.,
2010) such as horizontal drilling, multi-stage fracturing, slick water fracking
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fluids. The capability to drill horizontal wells has enabled an efficient way to
recover the oil and gas trapped in a single hydrocarbon-rich layer.

The hydraulic fracturing process can be described as follows (Hubbert and
Willis, 1972). The horizontally drilled wells are surrounded by several layers
of casing as shown in Figure 1.3. These casings are perforated at specific lo-
cations. Then a viscous fluid is injected into the well at high pressures. When
the fluid pressure overcomes a critical value (dependent on the depth of the
formation and rock strength), a fracture is initiated and starts to propagate.
The fracture forms highly permeable pathway through which the oil and gas
can be extracted. After a certain time, the injection pressure is reduced to al-
low the flow of oil and gas but this also results in the closing of the previously
opened fractures. After pressure release, the fractures are kept open with the
help of proppants that are granular particles like sand which are mixed with
the injection fluid (Economides and Nolte, 2000).

The hydraulic fracturing process has also been successfully employed for
enhancing the productivity in conventional reservoirs (Rahim et al., 2012) dur-
ing tertiary treatment. The same stimulation technique can also be used for
extracting geothermal energy (Legarth et al., 2005) as shown in Figure 1.4.
Currently the production of geothermal energy majorly relies on a unique set
of conditions where there is hot rock formation which is also permeable with
the presence of large number of pre-existing fractures which need to be highly
interconnected. Hydraulic fractures would help in untapping new resources of
geothermal energy and enhancing the productivity of the current reservoirs by
creating new fractures which would increase the interconnectivity of fractures
and result in better transport of the injected cold fluid through the subsurface
where it is heated up by the hot dry rocks in Enhanced Geothermal Systems
(EGS) (Brown et al., 2012). Finally, hydraulic fracturing can also be helpful in
carbon sequestration where carbon dioxide is stored in these tight rocks with
low permeability.

1.2 Research Objectives

The major objective of this thesis is to have a better understanding of the hy-
draulic fracture growth phenomena which helps in enhancing the productivity
and also reduce the environmental footprint as less fractures can be created in
a more efficient way.

One of the major environmental concerns regarding hydraulic fracturing is
that the fractures propagate through several layers to reach the aquifer lay-
ers which would result in groundwater contamination (Taherdangkoo et al.,
2017). From an economic perspective, the concern is that the fractures tend
to abruptly stop at several bedding layer interfaces (Simonson et al., 1978;
Fisher et al., 2012). In order to address these concerns, an accurate prediction
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Figure 1.4: A schematic describing the energy extraction process in an Enhanced
geothermal reservoir.(National Renewable Energy Laboratory, U.S. Depart-
ment of Energy, 2018)

of the fracture growth in the vertical direction is important for which the pro-
posed hydraulic fracture models need to take into account the variation in rock
properties.

Figure 1.5: Sedimentary rocks showing anisotropy and heterogeneity characteristics.
(Left) Carbonate rocks from Cyprus which show the orientation along a
particular direction. The centre figure shows the layering behaviour in
rocks. While the figure on the right shows the heterogeneity present in the
granite rocks. (Geology.com, 2018)

Many existing models assume the rock formation to be isotropic and homo-
geneous in nature. But in reality most formations are not as ideal, as observed
in Figure 1.5. The sedimentary rock formations are a consequence of deposi-
tion of minerals over time which results in a layered nature of the formations
as different minerals are deposited at different times through the history. Also,
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in many cases the formations are not composed of one unique mineral, but sev-
eral inclusions are found which results in a heterogeneous nature. In several
formations, the grains are oriented along a specific direction due to weathering
, erosion which leads to the formation being anisotropic in nature. Hence a re-
alistic prediction of hydraulic fracture characteristics is only possible when the
anisotropy, heterogeneity and the layered nature of rock formations present in
the reservoir is taken into account.

It is also imperative to minimize water consumption. First to enable frac-
turing in arid regions where water is scarce, but also to reduce the amount of
waste water after a fracturing job (Burden et al., 2016).

Another major concern is potential seismic activity induced in the region
during and after the fracturing operation (Bao and Eaton, 2016). This risk
can be mitigated by better understanding of the effect of fracturing on the sur-
rounding rock formation. One important factor affecting the surrounding for-
mation is the leak-off of fluid from the fracture to the formation. If there is an
excess fluid leak-off, it would result in surrounding formation matrix damage
(Penny et al., 1985). Hence the modelling of the fluid leak-off phenomenon is
an important factor for efficient economical operation of the wells as well as to
prevent damage in the surrounding formation.

1.3 Outline of the thesis

The thesis is structured in the following manner:

• In Chapter 2, a background of the evolution of hydraulic fracture models
is provided. The influence of various parameters (rock material proper-
ties, injection fluid viscosity, flow rate) on hydraulic fracture growth is
investigated.

• Chapter 3 proposes a Modified Enhanced Local Pressure (MELP) model
which can be utilised for hydraulic fracture modelling in both perme-
able rocks, such as sandstones, and also for near-impermeable rocks like
shales. The MELP model is a two dimensional extended finite element
(XFEM) model which focuses on improving the leak-off (transport of
fluid from the fracture into the formation) model and coupling with pore-
pressure.

• In Chapter 4, the XFEM model is extended to include the anisotropy
(transverse isotropy) of the rock material properties. A parametric study
on the effect of anisotropy on the fracture propagation direction was con-
ducted by varying the degree of anisotropy in the material properties and
the in-situ stress.
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• Chapter 5, focuses on modelling the behaviour of hydraulic fractures in
the presence of layered rocks. Fracture propagation across layers was
studied for varying contrasts in material properties between the layers
and varying reservoir properties. The chapter also focusses on the prop-
agation of hydraulic fractures in the presence of inclusions, multi-stage
hydraulic fracturing in an anisotropic and heterogeneous reservoir.

In the final chapter, the main conclusions of this work are summarised.
In addition, an outlook to the future research is given.





Chapter 2

Parametric study on hydraulic
fracturing

Abstract

The aim of this chapter is to understand the sensitivity of hydraulic fractures
with the various parameters that influence them. This is a vital requirement for
the following chapters in this thesis as we choose to perturb only the sub-set of
parameters which have a greater influence. A very brief review of the numerical
models attempting to understand the hydraulic fracturing phenomenon is pre-
sented. The KGD model which provides an analytical solution for the hydraulic
fracture problem is described. The standard KGD problem is then considered
as a test example for the parametric study. A numerical model called Enhanced
Local Pressure (ELP) model which is improved upon and utilised in the fol-
lowing chapters is used as the base model for the study to identify the vital
parameters. The variation of the fracture characteristics (length, width and
pressure at the fracture mouth) with the different parameters are observed.



10 Parametric study on hydraulic fracturing

2.1 Hydraulic fracture models

Several models have been developed for understanding the hydraulic fracture
phenomenon, the earliest of which was developed by Geertsma and De Klerk
(1969) to form the KGD model, which proposed an analytical solution to the
problem by assuming plane strain conditions. Another analytical solution with
a different geometrical assumption (fracture length >> fracture height) was
given by Perkins and Kern (1961) and extended to include fluid loss by Nord-
gren (1972). Although these models have been accepted as a standard case for
hydraulic fracturing due to its simplicity, it suffers from the assumption that the
formation is assumed to be solid, the leak-off from fracture to formation is not
captured accurately. Analytical asymptotic solutions were formulated by Gara-
gash and Detournay (2000). Asymptotic solutions work by identifying small
parameters and classifying the solution space into specific regimes (Detournay,
2004; Adachi and Detournay, 2008). Later these asymptotic solutions have
been modified to take into account the leak-off, fracture toughness and fluid
viscosity (Adachi and Detournay, 2008; Kovalyshen, 2010; Dontsov, 2017).

With the increase in applications of hydraulic fracturing and the advance-
ment of numerical modelling techniques several detailed models were devel-
oped. These hydraulic fracture models made use of a variety of numerical
techniques such as the finite element method, the boundary element method
(McClure and Horne, 2014; Wu et al., 2015), the Discrete Element method
(Al-Busaidi et al., 2005; Zhao et al., 2014), phase field method (Mikelic et al.,
2015; Mikelić et al., 2015, 2019; Wilson and Landis, 2016; Heider and Markert,
2017; Van Duijn et al., 2019), and peridynamics (Ouchi et al., 2015; Oterkus
et al., 2017). Finite element method (FEM) based models as developed by
Schrefler et al. (2006); Secchi et al. (2007) used an adaptive mesh refine-
ment technique for capturing the propagating fractures while other FEM mod-
els (Boone and Ingraffea, 1990; Segura and Carol, 2008b,a; Chen et al., 2009;
Centeno Lobão et al., 2010; Carrier and Granet, 2012) captured them with
the help of interface elements. These models made use of the cohesive zone
approach as proposed by Dugdale (1960) and Barenblatt (1962) to overcome
crack tip singularity whereas Peirce and Detournay (2008) used the near tip
asymptotic solutions in combination with implicit level set algorithm (ILSA).
Several hydraulic fracturing models (Lecampion, 2009; Mohammadnejad and
Khoei, 2013; Remij et al., 2015a) were developed based on extended finite el-
ement method (XFEM) which makes use of the partition of unity property to
take into account the discontinuity in the field without the need for re-meshing
every time the fracture propagates. The XFEM model developed by Moham-
madnejad and Khoei (2013) describes the fluid pressure with the help of a
linear distance enrichment function whereas Remij et al. (2015a) uses a heavi-
side step function for the pressure in the porous media and an additional local
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degree of freedom for the pressure inside the fracture. Meschke and Leonhart
(2015) proposed a generalised finite element model in which the enrichment
function used to model the fluid pressure is based on the physical formulation
of the model.

The Enhanced Local Pressure (ELP) model proposed by Remij et al. (2015a)
has been utilised as the base model for the parametric study. The further chap-
ters in the thesis extend the aforementioned ELP model to overcome its limita-
tions for addressing the objectives of this thesis.

2.2 KGD Model

A plane strain solution for the hydraulic fracture problem was initially devel-
oped by Khristianovic and Zheltov (1955) and later extended by Geertsma and
De Klerk (1969) to formulate the KGD model. This model is applicable based
on the geometrical consideration that the fracture height is much larger than
the fracture length. The model assumes the medium surrounding the fracture
to be non-porous. This restricts the applicability of the model to only rocks with
very low permeability. This also results in the assumption that there is no fluid
flow from the fracture into the surrounding medium. The model assumes, the
fluid inside the fracture to be incompressible. With these assumptions in hand,
Geertsma and De Klerk (1969) derived the analytical solution for the fracture
propagation as given by Eqs.(2.1) - (2.3).

L = 0.68

(
GQ3

µ(1−ν)

)1/6

t 2/3 (2.1)

CMOD = 1.87

(
µ(1−ν)Q3

G

)1/6

t 1/3 (2.2)

CMP = 1.135

(
G3Qµ

(1−ν)3L2

)1/4

(2.3)

where L refers to the fracture length while CMOD, CMP refer to the width
and pressure at the fracture mouth respectively. Q refers to the rate of injection
of the fracturing fluid while µ refers to the viscosity of the fracturing fluid. G, ν
refer to the shear modulus and the Poisson’s ratio of the surrounding medium.
t refers to the time period of injection of the fracturing fluid.

2.3 Test example

The standard KGD problem as described by Figure 2.1 is considered as the test
example for the parametric study in this chapter. The solution to this example is
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obtained from KGD analytical solution as well as the Enhanced Local Pressure
(ELP) model. The aim of this example is not to compare the results of the
numerical model with the analytical solution but to identify the sensitivity of
the models to various parameters and identify the critical parameters.

60m

45m

Qin

P=0

P=0

P=0

q.n=0

q.n=0

Figure 2.1: Geometry and boundary conditions of standard KGD problem.

Table 2.1: Isotropic value of parameters

Parameter Reference Value
Young’s modulus (E) 20 GPa
Poisson’s ratio (ν) 0.2
Toughness(Gc) 120 N/m
Ultimate tensile strength (τult) 2 MPa
Ultimate shear strength (τs) 80 MPa
Permeability (κ) 10−19m2

Porosity (nf) 0.1
Viscosity (µ) 0.01 Pa s
Solid bulk modulus (Ks) 36 GPa
Fluid bulk modulus (Kf) 3 GPa
Injection rate (Qr mi n) 50 mm2/s
Injection time (t) 20 s

The initial fracture is assumed to be horizontal, while it is free to propagate
in any direction in the numerical model. The fracture is injected with a fluid
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for 20 seconds with a time step of 0.1 s. The mesh for the numerical model
consists of 50 mm × 50 mm elements. The reference values from which the
parameters are varied are shown in Table 2.1.

2.4 Control Parameters

The parameters considered in this section (namely fluid injection rate and frac-
turing fluid viscosity) can be controlled by the operator, during the operation
or planning stage of the fracturing problem. The variation in these parame-
ters are user controlled and only restricted by the physical capabilities (like the
large quantities of fluid required, fluids with the desired properties).

2.4.1 Fluid injection rates

The rate of injection of fluid (Qin) into the fractures is varied and its effect
on hydraulic fracture propagation is considered. As seen in Figure 2.2, the
fracture increases in length as well as width for an increase in the injection
rate. As more fluid volume is available in the same time, the pressure inside
the fracture increases. This happens till the pressure reaches a critical value
beyond which it causes the fracture to propagate further while also enhancing
its width. This increase in fracture dimensions causes the pressure inside the
fracture to reduce. Hence we see a more or less constant pressure, which is the
critical pressure for fracture propagation, for the different injection rates. The
different fractures profiles represent a concentric series for varying injection
rates.

The analytical KGD model predicts a similar trend to the numerical model.
The fracture length and the width at the mouth are proportional to the square
root of the injection flow rate while pressure at the mouth is independent of
the flow rate as can be seen in Figure 2.2.

A higher fluid injection rate is favourable for fracture propagation but the
quantity of fracturing fluid required also increases with increasing rate. While
cost of fracturing fluid is an economical issue, a greater concern is the handling
and treatment of this large quantity of fluid which is mixed with chemicals at
the end of the fracturing process.
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Figure 2.2: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying fluid injection rates

2.4.2 Fracture fluid viscosity

One of the major factors considered before deciding the fracking fluid is its
viscosity. Several fracturing fluids like slick water (0.001 - 0.01 Pa · s), linear
gels (0.01 - 0.1 Pa · s), cross linked gels (0.1 - 1 Pa · s) have been considered
to give the required properties. The analytical KGD problem predicts that the
fracture length is inversely proportional to the sixth root of viscosity, while the
pressure and the width at the fracture mouth are proportional to the sixth root.

The numerical model follows the same trend as the KGD model. The vis-
cosity of the fracturing fluid affects the hydraulic fracture process through two
phenomenons: a) Transport of fluid inside the fracture b) Transport of the
fluid from the fracture to the rock formation. The injected fluid flows from the
mouth of the fracture to the tip of the fracture. As the viscosity of the fluid
increases, there is an increased resistance for the fluid to reach the fracture
tip. This causes less fluid to reach the fracture tip and hence lesser energy to
propagate the fracture further. With the tendency of fluid to stay close to the
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mouth of the fracture this also causes an increase in the fracture width in the
region. This also results in the fracture becoming extremely narrow closer to
the fracture tip as observed in Figure 2.3. This is also the reason why we see
a divergence from the KGD model in the pressure for higher viscosities as the
KGD assumes a uniform elliptical fracture shape always.

One of the reasons why highly viscous fluids are preferred in real field sce-
narios is due to the leak-off phenomenon. But this phenomenon is not noticably
observed in this case due to the consideration of an extremely low permeability
of the rock formation (κ = 10−19m2). An increase in the viscosity of the fluid
causes a decrease in the leak-off into the rock formation, which ensures more
availability of fluid to power the fracture propagation.

A fluid with a higher viscosity results in a short, wide fracture but becomes
essential in a reservoir which has considerable permeability. A low viscosity
fluid, which results in long narrow fracture, is preferable in extreme low per-
meable rocks like shales where the leak-off is not the most significant factor.

−3 −2.5 −2 −1.5 −1 −0.5 0
1500

2000

2500

3000

3500

4000

4500

5000

5500

Log of Viscosity (in Pa. s)

F
ra

ct
ur

e 
Le

ng
th

 (
in

 m
m

)

 

 
Analytical
Numerical

−3 −2.5 −2 −1.5 −1 −0.5 0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log of Viscosity (in Pa. s)

F
ra

ct
ur

e 
M

ou
th

 O
pe

ni
ng

 (
in

 m
m

)

 

 
Analytical
Numerical

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Log of Viscosity (in Pa. s)

F
ra

ct
ur

e 
M

ou
th

 O
pe

ni
ng

 P
re

ss
ur

e 
(in

 M
P

a)

 

 
Analytical
Numerical

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fracture distance from the injection point (in mm)

F
ra

c
tu

re
 A

p
e

rt
u

re
 (

in
 m

m
)

 

 

1.000 Pa.s
0.500 Pa.s
0.100 Pa.s
0.050 Pa.s
0.010 Pa.s
0.005 Pa.s
0.001 Pa.s

Figure 2.3: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying fracturing fluid viscosity
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2.5 Material Properties

In the previous section we considered parameters whose values might be al-
tered, but there are several parameters which cannot be modified for any given
reservoir. These parameters are typically properties of the reservoir rock ma-
terial like Young’s modulus, Poisson’s ratio, ultimate tensile strength, porosity
and permeability.

2.5.1 Young’s Modulus
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Figure 2.4: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying Young’s modulus

The Young’s modulus (E) of a rock formation can vary significantly depending
on the composition and the structure of the minerals. Significant differences
are found between the different sedimentary rock types like shales, sandstones,
granite. In Figure 2.4, we observe the effect of young’s modulus on hydraulic
fracture propagation. The KGD analytical model observes that the fracture
length and the pressure at the mouth is directly proportional to the sixth root
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of Young’s Modulus while the width at the fracture mouth is inversely propor-
tional to it.

The numerical model shows a similar trend. With an increase in Young’s
modulus, the material becomes more stiffer causing the pressure required for
fracture propagation to increase while the width at the mouth of the fracture
decreases. This reduced width combined with a higher pressure results in more
energy available to drive the fracture further. Hence we observe the increase
of fracture length with the Young’s Modulus. We also observe the region closer
to the fracture tip becomes extremely narrow for increasing Young’s modulus.

A rock formation with higher Young’s modulus results in a narrow long
fracture with an increase in the pressure required for propagation.

2.5.2 Poisson’s Ratio
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Figure 2.5: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying Poisson’s ratio

In Figure 2.5, we observe the variation of a hydraulic fracture by varying the
Poisson’ ratio (ν) between 0.1 to 0.4. The analytical KGD model gives us the
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relation between (1−ν) and the fracture characteristics. We can observe from
Figure 2.5, that the variation of the fracture with Poisson’s ratio is very min-
imal. Similar to the observations by the analytical model, the numerical ELP
model predicts the fracture length to increase with increasing Poisson’s ratio.
A marginal decrease in the fracture mouth opening and a marginal increase in
the fracture mouth pressure is observed.

Variation in Poisson’s ratio does not have a significant impact on the fracture
propagation characteristics.

2.5.3 Ultimate tensile strength
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Figure 2.6: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying ultimate tensile strength

Ultimate tensile strength (τult) is the stress value in tension beyond which ma-
terial failure occurs. For a rock material, it also depends on the degree to which
the rock is ductile or brittle in nature. The ultimate tensile strength value for
rocks are not well documented as the Young’s modulus. The analytical KGD
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model does not take into account the ultimate tensile strength of the forma-
tion. Hence only the numerical model is used to study the effect on hydraulic
fracture by varying the ultimate tensile strength from 1 MPa to 10 MPa.

From Figure 2.6, it can be observed that the variation in ultimate tensile
strength has significant effect on the fracture characteristics. A rock formation
with a higher ultimate tensile strength makes it harder for the fracture to prop-
agate causing the fracture length to decrease and also the fracture pressure at
the mouth increases as more energy is required to break the material. This
higher fluid pressure inside the fracture also results in an increased fracture
width at the mouth since the stiffness of the rock remains constant.

A rock formation with higher Ultimate tensile strength results in a wider
and shorter fracture with an increase in the pressure required for fracture prop-
agation.

2.5.4 Porosity
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Figure 2.7: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying porosity of the porous medium
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A porous medium consists of a solid grains and pores. Porosity represents the
ratio of pore volume to the total volume of the porous medium. Typical porosity
values varies from 5% to 50% in most rocks. As seen in Figure 2.7, the variation
in porosity has very minimal effects on the hydraulic fracture propagation. This
is due to the fact that the porosity affects the ELP model only through the alter-
ation of the bulk modulus and compressibility modulus of the porous medium.
Although porosity has a positive correlation with permeability, with a few rela-
tions (like Kozeny–Carman equation) for defining the relationship , it has not
been taken into account in the ELP model. This is due to the empirical nature
of these relations caused by assumptions around the sphericity of the particles
and the type of flows. The KGD problem assumes the medium surrounding the
fracture to be solid hence porosity does not come into consideration.

Porosity is observed to have negligible impact on the hydraulic fracture
propagation.

2.5.5 Permeability

Permeability is the measure of the ability of fluids to flow through a porous
medium. It is dependent on interconnectivity of the pore spaces in a rock
formation. The different sedimentary rock types have differing permeabilities,
like shales and granite exhibit very low permeabilities of < 10−17m2 while sand-
stones and carbonates exhibit higher permeabilities in the order of 10−14m2 −
10−17m2. The KGD model assuming a solid medium, does not take into account
the permeability for modelling of hydraulic fracturing.

As observed in Figure 2.8, the fracture characteristics shows a step be-
haviour in response to the permeability variation. This is due to the fact that
the major effect of permeability on the fracture growth is based on the leak-off
phenomenon. The leak-off phenomenon as explained in the earlier section on
viscosity is the transport of the fracturing fluid from the fracture into the rock
formation. Rocks with higher permeability result in greater leak-off thereby
reducing the volume of fluid available for fracture propagation. This in-turn
results in lower fracture length and lower fracture width. Since the variation
in permeability considered here is in order of magnitude differences it causes
the leak-off volume to change in an exponential manner as observed in Figure
2.9. Once the leak off volume becomes a considerable portion of the total in-
jected volume, then it has a major impact on the fracture propagation. This is
the reason hydraulic fracturing is preferable in rocks with lower permeability.

An increase in permeability causes more fluid to leak-off causing the frac-
turing to reduce in length and its width.
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Figure 2.8: Variation of hydraulic fracture (length, width, profile, pressure at the
mouth) with varying permeability of the rock formation
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Figure 2.9: Variation of leak-off from the fracture with varying permeability of the rock
formation
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2.6 Summary

Sensitivity of various parameters (user controlled and rock material properties)
on hydraulic fractures were studied. The user controlled parameters of fluid
injection rate and fluid viscosity are found to have a significant impact on the
hydraulic fracture propagation. In the parameters which are dependent on the
rock properties, Young’s modulus and ultimate tensile strength were found to
have a significant effect on the fracture while Poisson’s ratio and porosity had
negligible effect. Sensitivity with permeability is dependent on the magnitude
of the actual permeability value.



Chapter 3

Modified Enhanced Local Pressure
(MELP) model

Abstract

In this chapter, we propose a fully coupled two-dimensional hydraulic fracture
model which can be used in both near impermeable (shales and granites) rocks
and also in permeable (sandstone, limestone, dolomites) rocks. We make use
of extended finite element method along with an exponential cohesive zone
model for modelling the fracture. Using Biot’s theory of poro-elasticity, we
model the mechanical behaviour of a fully saturated porous medium to obtain
the solid deformation in the grains, and fluid pressure in the pores. We con-
sider an additional degree of freedom to model the pressure inside the fracture
arising due to the injection of fluid and its leak off into the porous medium.
Leak-off from fracture to the porous medium becomes vital in permeable rocks
which have a much higher permeability compared to the near impermeable
rocks. An accurate leak-off model which is fully coupled with the fluid flow
in the porous medium is proposed based on the analytical solution for 1-D
Terzaghi consolidation equation. The effect of this improved leak-off model on
single fracture propagation and a fracture network formation is studied with
numerical examples.

Reproduced from: Valliappan, V., Remmers, J. J. C., Barnhoorn, A., & Smeulders, D. M. J.,
A fully coupled hydraulic fracturing model with accurate analysis of the leak-off phenomenon
in porous rocks. International Journal for Numerical and Analytical Methods in Geomechanics,
submitted, 2019.
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3.1 Introduction

Fluid leak-off phenomenon in hydraulic fracturing is the transport of fractur-
ing fluid from the fracture to the formation. This becomes an important phe-
nomenon in modelling of permeable (sandstone, limestone, dolomites) rocks
as they have a significant permeability which causes a significant amount of
fluid to be lost from the fracture which directly influences the fluid pressure
within the fracture and hence the fracturing process. The analytical KGD model
described in the previous chapter and several early hydraulic fracture models
assumed that there is no fluid leak-off. While these models can be expected
to give reasonable estimates of the fracture growth in near impermeable rocks,
they cannot be used for permeable rocks.

There have been several models that have focused specifically on under-
standing the leak-off phenomenon. The classical Carter’s law (Howard and
Fast, 1957) proposes that the leak-off is inversely proportional to the square
root of time. It also requires the knowledge of a leak-off co-efficient, which
is determined from laboratory experiments. Numerical models that accurately
obtain leak-off by solving the multiphase flow equations in porous media have
been proposed (Settari et al., 1985; Yi et al., 1994; Valkó et al., 1997). They
consider the fracturing fluid to form a filter cake and the filtrate passing through
it to compress the reservoir fluid. However, all these models are applicable only
for non-propagating fractures.

In models with propagating hydraulic fractures, some formulations (Adachi
and Detournay, 2008; Carrier and Granet, 2012; Bunger et al., 2005) make use
of the empirical Carter’s law while some other formulations (Mohammadnejad
and Khoei, 2013; Fan et al., 1995; Yang et al., 2016) obtain the leak-off by
using a fully coupled model. These models work well for rocks with significant
permeability, but they require a very fine mesh close to the fracture in case of
near impermeable rocks like shales due to the steep pressure gradient. The en-
hanced local pressure (ELP) model proposed by Remij et al. (2015a), captures
the steep pressure gradient accurately with the help of Terzaghi’s consolidation
equation (Terzaghi, 1925). This approach works well for shales, but it fails to
take into account the effect of leak-off on the pore pressure in the formation,
which becomes vital for rocks with significant permeability. This causes the ELP
model to have a discontinuous jump in the pressure from the fracture to the
formation even in highly permeable rocks.

In this chapter, we extend the aforementioned ELP model by Remij et al.
(2015a) by applying an improved leak-off model which couples the leak-off
phenomenon with the pore pressure in the formation, to form a modified en-
hanced local pressure model (MELP). Thereby forming a unified model which
can accurately model the leak off and fracture propagation in both near imper-
meable rocks, such as shales and granites, and also in permeable rocks, such as
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sandstones, limestone and dolomites.
The chapter is organised as follows: Section 3.2 describes the kinematic

relations in the model and also the various sub-models which describe the dif-
ferent phenomenons occurring in the hydraulic fracture problem. In section
3.3, we derive the set of equations governing the problem from the standard
mass and momentum balance equations. In section 3.4, we describe the nu-
merical discretisation required to solve the aforementioned set of equations.
Finally in section 3.5, we use numerical examples to validate and understand
the MELP model.

3.2 Mathematical Model

Consider a body Ω which contains the discontinuity Γd as shown in Figure
3.1. The degrees of freedom in the body Ω, which undergo a discontinuous
jump across Γd, can be represented by continuous fields in the domains Ω+ and
Ω−. The normal (−→n d) to the discontinuity surface Γd, is always assumed to be
pointing towards the Ω+ domain. Boundary conditions are specified along the
external surface (Γ) of the body.

−→nd

Ω+
Ω−

Γd

Γu

Γp

Γq

Γt

qp

pp

Ω

−→up

−→t p

−→s d

Figure 3.1: A body Ω containing a discontinuity Γd along with the specified boundary
conditions

3.2.1 Kinematics

For describing the state of a porous formation, we need two fields, i.e the
displacement in the solid grains and fluid pressure in the pores. In addition
for a porous formation with a fracture, we need to model the discontinuous
jump of the displacement field.
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Hence, the displacement field in the solid skeleton of the porous medium is
described as:

u = û +HΓd ũ when x ∉ Γd (3.1)

where û denotes the regular displacement field which is used to represent a
domain without a discontinuity, while ũ represents the additional displacement
field which along with a heaviside enrichment function models the discontinu-
ity. This heaviside function is represented as:

HΓd =
{

1 when x ∈Ω+

0 when x ∈Ω− (3.2)

The jump in displacement across the discontinuity can be obtained from the
additional displacement degree of freedom and the enrichment function as:

v d = (HΓd+ −HΓd− )ũ = ũ when x ∈ Γd (3.3)

pd

pphysical

pmodel

p+
f

p−
f

Ω+

Ω−

un

Figure 3.2: Representation of pressure profile across fractures

For a porous medium with a hydraulic fracture we need to model the pres-
sure inside the fracture in addition to the pressure in the pores. Computing
the fluid pressure inside the fracture is complicated due to the involvement
of various processes such as: i) injection of fluid from external sources ii) the
movement of fracture surfaces and iii) the leak-off from fracture into the adja-
cent formation. In order to take into account these complications, an additional
degree of freedom for pressure inside the fracture is used (Remij et al., 2015a).
As shown in Figure 3.2, this causes the pressure profile to be discontinuous.

Hence the fluid pressure in the pores and inside the fracture are represented
as:

p = p̂ +HΓd p̃ when x ∉ Γd (3.4)

p = pd when x ∈ Γd (3.5)
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where p̂ and p̃ are the regular and additional pressure fields describing the
pressure in the porous formation while pd is used to describe the pressure in
the discontinuity.

3.2.2 Poromechanics model

We make use of Biot’s theory of poro-elasticity to formulate a coupled porome-
chanics model. We assume the porous medium to be in isothermal conditions
and fully saturated i.e. the pores are filled with a single phase fluid.

Solid Phase In a fully saturated porous medium, the external stresses on the
porous media are partly taken by the fluid pressure in the pores and partly by
deformation of the solid grains. This can be represented mathematically as:

σ=σe −αp I (3.6)

where σ is the total stress, σe is effective stress. Tensile stresses are considered
to be positive and Biot’s co-efficient (α) is defined as:

α= 1− K

Ks
(3.7)

where K is the drained bulk modulus of the porous medium while Ks represents
the bulk modulus of the solid grains in the porous medium.

The effective elastic stresses in the solid grain is related to the elastic strains
by means of generalised Hooke’s law:

σe =Cε (3.8)

where C is the consistent tangent modulus of the solid grains and ε is the elastic
strain tensor in the solid grains. Assuming small strains, we represent the strain
in the porous medium as:

ε=∇sû +HΓd∇sũ (3.9)

where ∇s represents the symmetric part of the gradient.

Flow in the porous formation The fluid flow in the porous medium is de-
scribed using Darcy’s law as:

q =−κ
µ
∇p (3.10)

where κ is the intrinsic permeability, µ is the dynamic viscosity of the fluid. An
outward fluid flux is considered positive, hence the negative sign is required to
represent a fluid flow from high pressure to low pressure region.
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Flow inside the fracture Since the fracture length is much larger than its
width, we assume the pressure along the width of the fracture to be constant.
This causes a one-dimensional flow inside the fracture along the tangential
direction. This tangential flow inside the fracture is described as:

qtang =−κd

µ

∂pd

∂s
(3.11)

where κd is the permeability within the fracture. Witherspoon et al. (1980)
described the flow inside a fracture to be similar to flow between two parallel
plates and obtained the permeability as v2

n/12.

3.2.3 Cohesive Zone Model

Actual crack tip

Cohesive Zone

Cohesive Zone
τult

τult

Coh
esi

ve
Tra

cti
on

Lumped
crack
tip

Figure 3.3: Schematic of a Cohesive zone model

The fracture is described using a cohesive zone model, where the crack tip
is lumped on to a plane ahead of the actual crack tip as seen in Figure 3.3. The
cohesive zone, from the fictitious crack tip to the actual crack tip, has cohesive
traction acting along the fracture surfaces (Barenblatt, 1962). This is to signify
that the material is only partially damaged in the cohesive zone with some
material bondings still intact in the presence of micro cracks.

The cohesive traction (t d) is dependent upon the displacement jump across
the fracture (vd) and a history parameter. The hydraulic fracture openings
are assumed to be predominant in the normal direction. Hence we neglect the
shear tractions and assume an exponential traction-separation relation (Needle-
man, 1987) for normal tractions.

tn = τult exp(
−vnτult

Gc
) (3.12)

where τult is the ultimate tensile strength, Gc is the toughness of the rock ma-
terial.

The linear form of this traction displacement relation is written as:

4tn = T4vn where T = ∂tn

∂vn
(3.13)
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where T is the tangential stiffness matrix obtained by differentiating the bino-
mial expansion of Eq. 3.12 as:

T = τult(−
τult

Gc
+ vnτ

2
ult

G2
c

− ...) (3.14)

3.2.4 Leak-off model

For accurate modelling of hydraulic fracturing in rocks with significant per-
meability, it is very important to take into account the leak-off phenomenon.
Owing to the significant permeability, the ratio of the volume of fluid leak-off
to the the total fluid injection volume is high. The leak-off volume is dependent
upon the pressure gradient at the fracture surface. As observed in Figure 3.2,
we have a discontinuous model for the pressure. Hence we make use of 1-D
Terzaghi consolidation equation to recreate the physical pressure gradients in
the vicinity of the fracture. This gives us the advantage of using a coarse mesh
near the fractures but still capture the high pressure gradients accurately in
case of near impermeable rocks like shales.

The Terzaghi consolidation model (Terzaghi, 1925) is well known where
any excess loading on the soil layer is transmitted as an over pressurisation of
the saturating fluid in the transient state. Over time the excess pressure in the
fluid keeps reducing reaching the original pressure state at infinite time. Terza-
ghi derived the equations for obtaining this excess pressure in the saturating
fluid as a function of time and distance from the surface of the soil layer. In
MELP, we utilise the same equation for modelling the excess pressure that is
observed in the pore fluid due to the leak-off of fluid from the fracture into
the formation. The Terzaghi model helps us in obtaining the excess pore pres-
sure as a function of time, distance from the fracture and the amount of fluid
leak-off.

The MELP model obtains the leak-off using the solution for a one dimen-
sional semi-infinite fluid saturated poro elastic consolidation problem which
can be stated by the following equation (Terzaghi, 1925):

∂p

∂t
=Cv

∂2p

∂y2 for t > 0 and 0 < y <∞ (3.15)

where Cv is the Terzaghi consolidation co-efficient which can be given as
(Detournay and Cheng, 1993):

Cv = κM

µ

K + 4
3G

Ku + 4
3G

(3.16)

where µ is the dynamic viscosity of the fluid, M is the compressibility modu-
lus or Biot’s modulus, K and Ku are the drained and undrained bulk modulus
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and G is the shear modulus of the porous medium. The boundary conditions
associated with the problem are: constant fluid flux (Neumann type boundary
condition) at the near boundary and drained condition at the far boundaries
which are represented as:

q(0, t ) =Qflux for t > 0 (3.17)

p(∞, t ) = 0 for t > 0 (3.18)

Solving Equation 3.15 and using the boundary conditions, one can obtain the
pressure increase in the porous medium as:

4p(y, t ) = 2µQflux

κ

(√
cvt

π
exp

(−y2

4cvt

)
− y

2
erfc

(
y

2
p

cvt

))
(3.19)

At the influx point into the porous medium (y=0) which is the interface
between the fracture and the porous formation, we obtain the influx volume as
a function of the pressure differences at the interface as:

Qflux =
κ

2µ
√

Cvt
π

4p(0, t ) (3.20)

In the MELP model, we assume that the classical consolidation process oc-
curs only for the instantaneous time step. The pore pressure is modified at
every instant due to the changing stress state close to the fracture and also due
to the leak-off from previous time steps. Hence in MELP, we model the leak-
off by using the analytical solution at instantaneous time steps and update the
pore pressure after every time step. The updated pore pressure is used as the
initial pressure for the consolidation process at the next time step. This ensures
that the changes in pore pressure due to the modified stress state as well as the
previous leak-off are captured.

Hence we can relate the fluid leak-off at any instantaneous time with the
pressure differences at the interface with the help of a coupling co-efficient Ca

as:
Qflux =Ca (pd −pf) where Ca = κ

2µ
√

Cv4t
π

(3.21)

where 4t is the time step of the simulation.
The expression for leak-off in the MELP model is given by including the

leak-off from the two sides of the fracture as:

qleak = (qΓd+ −qΓd− ) ·nd =Ca(pd −p+
f )+Ca(pd −p−

f ) (3.22)

where pd is the pressure inside the fracture, p+
f and p−

f are the pore pressures
on either side of the fracture inside the porous media.
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The ELP model developed by Remij et al. (2015a) considers a similar solu-
tion to the leak-off but it assumes that there is a uniform consolidation process
from the time the discontinuity was created. Also the ELP model fails to in-
corporate the increase in pore pressure due to this leak-off, as it is inherently
taken into account in the analytical solution.

3.3 Governing Equations

In this section, we obtain the set of equations which govern the hydraulic frac-
ture problem using the mass and momentum balance equations along with the
auxiliary equations described in the previous section.

3.3.1 Momentum Balance

The linear momentum balance equation is written as:

∇·σ= 0 (3.23)

with boundary conditions prescribing either displacement (u = up on Γu) or
traction (σ ·nΓ = t p on Γt) at the boundaries.

The other boundary conditions which ensures stress continuity along the
fracture faces is given as : σ ·nΓd = t d−pdnd along Γd where t d corresponds to
the cohesive traction obtained using Eq.(3.12).

3.3.2 Mass Balance

The mass balance equation for saturated porous medium (Detournay and Cheng,
1993) is given as:

α∇· u̇ + ṗ

M
+∇·q = 0 (3.24)

where u̇ is the velocity vector of solid deformation, ṗ is the time derivative of
fluid pressure in the pores, q is the flux and M is the compressibility modulus
of the porous media. Boundary conditions associated with the mass balance
equation are either prescribed pressure along the boundaries (p = pp on Γp)
or prescribed flux across the boundaries (q · nΓ = qp on Γq).

3.3.3 Mass Balance in the fracture

This additional governing equation ensures the mass conservation inside the
fracture. Irzal et al. (2013) obtained the local mass continuity equation by
analytical integration of the mass balance equation given by Eq.(3.24) over the
width of the fracture.

qleak − vn
∂

∂s
(
κd

µ

∂pd

∂s
)+ v̇n + vn〈∂v̇s

∂s
〉+ vn

Kf
ṗd = 0 (3.25)
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where qleak is the leak off from the fracture into the formation, vn is the fracture
opening in the normal direction, vs is the shear displacement of the fracture
surface, the symbol 〈.〉 denotes average of the quantity over the fracture width,
pd is the pressure inside the fracture, Kf is the bulk modulus of the fluid, κd is
the permeability within the fracture.

The mass conservation of the fluid inside the fracture is governed by three
different mechanisms: 1) Movement of the fracture boundaries which is gov-
erned by the displacement terms (3 and 4th terms present in Eq. 3.25 obtained
by integrating the first term in Eq. 3.24). 2) Movement of fluid along and
across the fracture (first two terms in Eq. 3.25 obtained from the last term in
Eq. 3.24) 3) Change in pressure of the fluid inside the fracture represented by
the last term in Eq. 3.25.

3.3.4 Weak Form

In the previous subsection, the strong differential form of the governing equa-
tions along with their associated boundary conditions were presented. In this
subsection, we obtain the weak integral form of these governing equations by
integrating them over the two dimensional domain Ωe along with an admissi-
ble test function for each field variable. We assume three test functions η, ξ, Ψ
corresponding to the field variables u, p, pd respectively. These test functions
are assumed to be in the same form as their underlying field variables such that
η= η̂+HΓd η̃, and ξ= ξ̂+HΓd ξ̃.

Multiplying Eqs.(3.23),(3.24),(3.25) by their corresponding test functions
η, ξ, Ψ and applying Gauss’s divergence theorem, we obtain the following
integral equations:

∫
Ωe

∇(η̂+HΓd η̃) :σ dΩe =
∫
Γt

(η̂+HΓd η̃) · (σ ·nΓ) dΓt +
∫
Γu

(η̂+HΓd η̃) · (σ ·nΓ) dΓu

−
∫
Γd+

(η̂+HΓd+ η̃) · (σ ·nd) dΓd+ +
∫
Γd−

(η̂+HΓd− η̃) · (σ ·nd) dΓd−

(3.26)

α

∫
Ωe

(ξ̂+HΓd ξ̃)∇· u̇ dΩe −
∫
Ωe

∇(ξ̂+HΓd ξ̃) ·q dΩe +
∫
Ωe

(ξ̂+HΓd ξ̃)
ṗ

M
dΩe =

−
∫
Γq

(ξ̂+HΓd ξ̃)(q ·nΓ) dΓq −
∫
Γp

(ξ̂+HΓd ξ̃)(q ·nΓ) dΓp

+
∫
Γd+

(ξ̂+HΓd ξ̃)(qΓd+ ·nd) dΓd+ −
∫
Γd−

(ξ̂+HΓd ξ̃)(qΓd− ·nd) dΓd−

(3.27)
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∫
Γd

Ψ
(
(qΓd+ −qΓd− ) ·nd

)
dΓd +

∫
Γd

Ψ(
κd

µ

∂pd

∂s
) dΓd +

∫
Γd

vn
∂Ψ

∂s
(
κd

µ

∂pd

∂s
) dΓd

+
∫
Γd

Ψv̇n dΓd +
∫
Γd

Ψvn〈∂v̇s

∂s
〉 dΓd +

∫
Γd

Ψ
vn

Kf
ṗd dΓd =ψQin

(3.28)

where Qin represents the fluid influx into the fracture. Applying the bound-
ary conditions associated with the governing equations and utilising the aux-
iliary equations Eqs.(3.10), (3.22) and segregating the regular fields and the
additional fields we obtain:∫

Ωe

∇η̂ :σ dΩe =
∫
Γt

η̂ · t p dΓt (3.29)

∫
Ωe

HΓd∇η̃ :σ dΩe =
∫
Γt

HΓd η̃ · t p dΓt −
∫
Γd

hη̃ · (t d −pdnd) dΓd (3.30)

−α
∫
Ωe

ξ̂(∇· u̇) dΩe +
∫
Ωe

∇ξ̂ · (−κ
µ
∇p) dΩe −

∫
Ωe

ξ̂
ṗ

M
dΩe =+

∫
Γq

ξ̂ qp dΓq

−
∫
Γd

ξ̂ Ca(2pd −p+
f −p−

f ) dΓd

(3.31)

−α
∫
Ωe

HΓd ξ̃(∇· u̇) dΩe +
∫
Ωe

HΓd∇ξ̃ · (−κ
µ
∇p) dΩe −

∫
Ωe

HΓd ξ̃
ṗ

M
dΩe =∫

Γq

HΓd ξ̃ qp dΓq −
∫
Γd

ξ̃Ca(HΓd+ (pd −p+
f )+HΓd− (pd −p−

f )) dΓd

(3.32)

∫
Γd

Ψ Ca(2pd −p+
f −p−

f ) dΓd +
∫
Γd

Ψ
∂vn

∂s
(

v2
n

12µ

∂pd

∂s
) dΓd +

∫
Γd

∂Ψ

∂s
(

v3
n

12µ

∂pd

∂s
) dΓd

+
∫
Γd

Ψv̇n dΓd +
∫
Γd

Ψvn〈∂v̇s

∂s
〉 dΓd +

∫
Γd

Ψ
vn

Kf
ṗd dΓd =ψQin

(3.33)

The last terms in right hand side of Eqs.(3.31),(3.32) represent the effect
of fluid leak-off on the pore pressure in the porous formation, as presented in
Eqs.(3.22),(3.21). This causes the local pressure in the vicinity of the fracture
to increase and thereby making the pressure field continuous in case of highly
permeable rocks.
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3.4 Solution Methodology

3.4.1 Discretisation

In order to solve the coupled set of equations Eqs.(3.29) - (3.33), we need to
discretise the field variables in both the space and time domains. The variables
are discretised spatially, using the extended finite element method (Melenk and
Babuška, 1996) with the help of shape functions, as follows:

u = NÛ +HΓd NŨ η= N η̂+HΓd N η̃ (3.34)

p = HP̂ +HΓd HP̃ ξ= H ξ̂+HΓd H ξ̃ (3.35)

pd =V P d Ψ=VΨ (3.36)

(û1, p̂1)

(û2, p̂2)

(û4, p̂4)

(û3, p̂3)

(û1, ũ1)

(û2, ũ2)

(p̂1, p̃1)

(p̂2, p̃2)

(û4, ũ4)
(p̂4, p̃4)

(û3, ũ3)
(p̂3, p̃3)

pd2

pd1

Figure 3.4: Degrees of freedom in a finite element a) without a discontinuity b) with
a discontinuity

where N , H ,V are the shape function matrices associated with displace-
ment, pore pressure, enhanced local pressure respectively and Û ,Ũ , P̂ , P̃ are
the vectors that represent the nodal values of displacement and pressure field
variables respectively. P d is the field variable that represents the pressure inside
the fracture. As seen in Figure.3.4, an element which contains a discontinuity
has 4r+2 unknown nodal values whereas an element without a discontinuity
has 2r unknown nodal values, where r is the number of nodes in the two-
dimensional element . The admissible test functions are discretised with the
same set of shape functions as the corresponding field variables. By substi-
tuting the discretised unknowns given by Eqs.(3.34) - (3.36) into Eqs.(3.29)
- (3.33), we convert the set of differential equations into a set of algebraic
equations. The discretised algebraic equations are written as:

∫
Ωe

B T (
C (BÛ +HΓd BŨ )−αmT (HP̂ +HΓd HP̃ )

)
dΩe −

∫
Γt

N T t p dΓt = 0 (3.37)
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∫
Ωe

HΓd B T (
C (BÛ +HΓd BŨ )−αmT (HP̂ +HΓd HP̃ )

)
dΩe −

∫
Γt

HΓd N T t p dΓt

+
∫
Γd

hN T (hT dNŨ −V P dnd) dΓd = 0

(3.38)

−α
∫
Ωe

H TmT(B ˙̂U +HΓd B ˙̃U ) dΩe +
∫
Γd

H T Ca(2V P d −2HP̂ − (HΓd+ +HΓd− )HP̃ ) dΓd

−κ
µ

∫
Ωe

∇H T(∇HP̂ +HΓd∇HP̃ ) dΩe − 1

M

∫
Ωe

H T(H ˙̂P +HΓd H ˙̃P ) dΩe =
∫
Γq

H Tqp dΓq

(3.39)

−α
∫
Ωe

HΓd H TmT(B ˙̂U +HΓd B ˙̃U ) dΩe − κ

µ

∫
Ωe

HΓd∇H T((∇HP̂ +HΓd∇HP̃ ) dΩe

+
∫
Γd

HΓd H T Ca((HΓd+ +HΓd− )V P d − (HΓd+ +HΓd− )HP̂ − (H 2
Γd+

+H 2
Γd− )HP̃ ) dΓd

− 1

M

∫
Ωe

HΓd H T(H ˙̂P +HΓd H ˙̃P ) dΩe =
∫
Γq

HΓd H Tqp dΓq

(3.40)

∫
Γd

V T Ca(2V P d −2HP̂ − (HΓd+ +HΓd− )HP̃ ) dΓd +
∫
Γd

h

Kf
V TndNŨV Ṗ d dΓd

+
∫
Γd

hV TndN ˙̃U dΓd +
∫
Γd

hV TndNŨ
(
2sd

∂N

∂s
˙̂U + (HΓd+ +HΓd− )sd

∂N

∂s
˙̃U
)

dΓd

+
∫
Γd

V T(hnd
∂N

∂s
Ũ )

(hndNŨ )2

12µ

∂V

∂s
P d dΓd +

∫
Γd

∂V T

∂s

(hndNŨ )3

12µ

∂V

∂s
P d dΓd =V TQin

(3.41)

where m = [1 1 0]T is introduced to account for the fact that the pore
pressure coupling has an influence only on the normal stresses, sd represents
the tangent to the fracture and B is the strain-displacement matrix which can
be expressed as:

B =


∂N1
∂x 0 ∂N2

∂x 0 . . . ∂Nr
∂x 0

0 ∂N1
∂y 0 ∂N2

∂y . . . 0 ∂Nr
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x . . . ∂Nr

∂y
∂Nr
∂x

 (3.42)

where r is the number of nodes in the two-dimensional element and Ni is
the shape function for the corresponding nodes.
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Time Discretisation: The system of equations contain time dependent terms
hence we discretise the field variables with time and solve them in discrete time
steps. This discretisation enables the variables in the equations to be described
using their values at the current time step and the previous time step as:

(·) = θ̄(·)t+4t + (1− θ̄)(·)t (3.43)

The time derivative of the variables are obtained as:

∂(·)
∂t

= (·)t+4t − (·)t

4t
(3.44)

where (·)t+4t is the unknown solution at the current time step, (·)t is the
known solution at the previous time step, 4t represents the time interval. De-
pending on the parameter θ̄, we obtain Euler’s explicit method θ̄ = 0 or Euler’s
implicit method θ̄ = 1. In the remainder of this chapter, we use Euler’s implicit
method (θ̄ = 1).

3.4.2 Solution

In order to solve these set of equations Eqs.(3.37) - (3.41), we make use of the
Newton-Raphson iterative solver. The linearised form of the set of algebraic
equations is represented as:


K ûû K ûũ K ûp̂ K ûp̃ K ûpd

K ũû K ũũ K ũp̂ K ũp̃ K ũpd

K p̂û K p̂ũ K p̂p̂ K p̂p̃ K p̂pd

K p̃û K p̃ũ K p̃p̂ K p̃p̃ K p̃pd

K pdû K pdũ K pdp̂ K pdp̃ K pdpd




4Û
4Ũ
4P̂
4P̃
4Pd

 =


f ext

û
f ext

ũ
4t f ext

p̂

4t f ext
p̃

4t f ext
pd

 −


f int

û
f int

ũ
f int

p̂

f int
p̃

f int
pd


(3.45)

Using a monolithic solver, the unknown field variables
(

X = [
Û Ũ P̂ P̃ P̂ d

]T
)

are solved simultaneously at all the nodes for every time step by using their val-
ues at previous time step and their increment as X t+4t = X t +4X . The external
and internal force matrices are represented by f ext and f int respectively. The
definition of all the co-efficient and force matrices are described in the Ap-
pendix. For further details on the implementation of the numerical model we
refer to Remmers et al. (2003); Remmers (2006) and Wells and Sluys (2001).

3.5 Numerical Examples

In this section, we look at three different test cases to validate and demonstrate
the working of the modified enhanced local pressure model. For validation of



3.5 Numerical Examples 37

the model we consider a simple consolidation problem (Terzaghi, 1925) which
has an analytical solution for the benchmarking and a hydraulic fracture prob-
lem for near impermeable rocks which enables the comparison with the ELP
solution. To demonstrate the improvement of the model we look at the same
hydraulic fracture problem for permeable rocks and a fracture network problem
to analyse the effect of the improved leak-off model on fracture interactions.

3.5.1 Consolidation Problem

In the example shown in Figure 3.5 we consider a thin long column with di-
mensions of 20000 mm × 50 mm with no-flow boundary conditions along its
length. We consider an open fracture at the middle of the column with the frac-
ture surfaces fixed at 0.02 mm apart from each other. The fracture is injected
with a constant fluid flow of 5.0×10−6m2/s for a time period of 4 seconds from
the right edge. The fracture is assumed to be filled with fluid and no flow con-
ditions on the other edge of the fracture ensures that all of the injected fluid
leaks off into the formation. The Young’s modulus and Poisson’s ratio of the
formation are assumed to be 20 GPa and 0.2 respectively with a porosity of
0.2. The bulk modulus of the solid grains is assumed to be 36 GPa while the
fluid in the porous medium has bulk modulus and viscosity of 3 GPa and 0.01
Pa · s, respectively. The time step of the simulation is 0.02 s. The long column
is discretised with a mesh consisting of standard quadrilateral elements with a
size of 1 mm × 50 mm for both the permeable and the near impermeable rocks.

One half of the column can be assumed to be a semi-infinite consolidation
problem with a constant flux at one end. This problem can be analytically
solved by using the 1-D Terzaghi consolidation equation (Terzaghi, 1925) and
the pore pressure in the formation can be obtained from Carslaw and Jaeger
(1959) as :

p(y, t ) = 2Qfluxµ

κ

(√
cvt

π
exp

(−y2

4cvt

)
− y

2
erfc

(
y

2
p

cvt

))
(3.46)

where y indicates the distance from the discontinuity in the vertical direction
and cv is the co-efficient of consolidation. The Qflux in our problem is obtained
as 5.0× 10−5m/s by splitting the flow for one half along the fracture length.
We compare the MELP and ELP solutions against the benchmark analytical
solutions for two different permeabilities. In the first case for near impermeable
rocks with a permeability of κ = 10−19m2, we can observe that both the MELP
and ELP models can capture the pressure in the fracture (Figure 3.7) and a
steep pressure gradient in the formation, Figure 3.6(a), is represented as a
discontinuity in both the numerical models.

In the second case for permeable rocks with a permeability of 5×10−14m2,
we can clearly see that the MELP model is able to capture the pore pressure in
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the formation (Figure 3.6(b)) and also accurately obtain the pressure inside the
discontinuity (Figure 3.8). We can also observe that the pressures are contin-
uous from the fracture to the formation. This is due to the fact that the MELP
model takes into account the effect of leak off on the flow inside the fracture
and also coupled the leak off with the pressure in the formation.

Vermeer and Verruijt (1981) derived the stability criterion for the accu-
rate modelling of a consolidation problem using finite element methods. This
criterion gives the consolidation distance for a single time step as: 4xcons =√4t E κ/µ. By substituting the known variables, we observe that the con-
solidation distance for near impermeable rocks is 0.0632 mm while that for
permeable rocks is 44.7 mm. The height of a single element needs to be lower
than this consolidation distance for accuracy. We use a uniform mesh with a
element height of 1 mm for both the models. We can observe from Figure 3.7b,
that the MELP model obtains the pressure in the discontinuity with a relative
error of < 3% even when we violate the criteria proposed by Vermeer and Ver-
ruijt (1981). Thereby we eliminate the need for a very fine mesh in case of
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Figure 3.5: Long column with an open
fracture
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Figure 3.6: Pore Pressure distribution for
near impermeable rocks (κ=
10−19m2) (top) and perme-
able rocks (κ = 5 × 10−14m2)
(bottom) after injection for 4
seconds.
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near impermeable rocks. We also observe from Figure 3.8b, that the relative
error reduces significantly when the consolidation distance is greater than the
element height.
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Figure 3.7: Pressure in the discontinuity in near impermeable rocks (κ = 1×10−19m2)
for a 1-D consolidation problem
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Figure 3.8: Pressure in the discontinuity in permeable rocks (κ= 5×10−14m2) for a 1-D
consolidation problem
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3.5.2 Single hydraulic fracture
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Figure 3.9: Vertical KGD problem

In this example, we consider a rock formation as shown in Figure 3.9 with
an initial fracture opening at the bottom where fluid is injected at the rate of
6.0×10−4m2/s for 20 seconds with a time step of 0.1s. The Young’s modulus and
Poisson’s ratio of the rock are 20 MPa and 0.2 respectively. The ultimate tensile
and shear strength are assumed to be 6 MPa and 60 MPa respectively with a
toughness of 120 N/m. The in-situ stresses are considered to be 40 MPa both
in the vertical and the horizontal direction. The formation is assumed to have
has a porosity of 0.1 and a fluid viscosity of 0.001 Pa ·s. The mesh in the region
surrounding the fracture consists of standard quadrilateral elements with a size
of 50 mm × 50 mm for both the permeable and the near impermeable rocks.

The ELP model proposed by Remij et al. (2015a) is considered for bench-
marking, as it is accurate for near impermeable rocks. As observed in Figure
3.10, the fracture propagation characteristics are similar in both the MELP and
ELP models for near impermeable rocks, such as shales, with a permeability of
10−19m2. This is due to the fact that the fluid leak off is extremely low in these
rocks which renders leak off - pore pressure coupling effect to be negligible. In
this case the leak off is observed to be less than 5 % by both MELP and ELP
models.
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Figure 3.10: Comparison of MELP Vs ELP models for a single hydraulic fracture prop-
agation in near impermeable rocks

The same hydraulic fracture problem is considered for permeable rocks,
such as sandstones, which have a permeability of 10−15m2. As we observe in
Figure 3.11, the MELP model predicts a higher fracture length and a lower
width compared to the ELP model but the pressure inside the fracture remains
constant in both models. In order to understand the reason for this variation,
we plot the pore pressure in the formation along a plane which is perpendicular
to the fracture after 20 seconds. In Figure 3.12a, we observe that the MELP
model successfully resolves the pore pressure in the formation causing a much
more smoother transition from formation to fracture which the ELP model fails.
This pore pressure distribution has two major consequences: a) It modifies
stress state closer to the existing fracture surfaces causing more compressive
stress and as a result the fracture width is lower. b) It results in much lower
leak off in the MELP model (40% of total fluid volume injected in MELP Vs ∼
60% in ELP) as observed in Figure 3.12b. This causes more fluid to be available
for fracture propagation and hence an increase in length in the MELP model.
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Figure 3.11: Comparison of MELP Vs ELP models for a single hydraulic fracture prop-
agation in permeable rocks
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Figure 3.12: For a single hydraulic fracture problem: (a)Pore Pressure distribution in
a plane across the fracture for ELP and MELP models. The circular dots
indicate the pressure inside the fracture. (b) Cumulative Leak-off with
time for MELP and ELP models. The black line indicates the total volume
of fluid injected inside the fracture
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3.5.3 Cluster of hydraulic fractures
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Figure 3.13: Cluster of hydraulic fractures

Hydraulic fracturing in reservoirs are conducted in several stages with each
stage consisting of several fractures which are essential for forming a fracture
network. Hence in this example (Figure 3.13) we try to understand the differ-
ences between MELP and ELP models on a cluster of fractures. In this test case,
we consider a model with three initial fractures in the formation separated by
a distance of 0.5 m from each other. The boundaries are assumed to have free
drainage. The fractures are injected at the rate of 5.0×10−5m2/s for 10 seconds.
The Young’s modulus and Poisson’s ratio are 20 Gpa and 0.2 respectively while
the ultimate tensile strength and toughness of the rock formation are 4 MPa
and 120 N/m. The formation is assumed to have a porosity of 0.1 and a fluid
viscosity of 0.001 Pa · s. We consider two different permeabilities of 10−20m2

for near impermeable rocks and 10−14m2 for permeable rocks. The time step
for the simulation is assumed to be 0.1s. The mesh in the region surrounding
the fractures consists of standard quadrilateral elements with a size of 50 mm
× 50 mm for both the permeable and the near impermeable rocks.

From Figure 3.14 we can observe that the fracture network obtained from
MELP and ELP models for near impermeable rocks, such as shales, are almost
similar with small differences in the stress contours. The fractures at the ends
propagate further when compared to the fracture in the middle due to the
stress shadowing effect (Sobhaniaragh et al., 2016). Due to the propagation of
fractures at the end, a compressive stress field is created ahead of the tip of the
centre fracture thereby stunting its growth.
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Figure 3.14: Stress contour plots for a cluster of three fractures after 5 seconds (Top)
Comparison between ELP and MELP models in near impermeable rocks
(κ = 10−20m2) (Bottom) Comparison between ELP and MELP models in
permeable rocks (κ= 10−14m2). The deformed configurations are magni-
fied 200 times

For permeable rocks, the fracture patterns vary drastically between ELP and
MELP models. The ELP model predicts that the fractures hardly grow while the
MELP model shows that the centre fracture propagates much further. In Figure
3.15a, we can see the pore pressure distribution along a plane AA’ which passes
through the injection point of all the three fractures. The fractures in the ELP
model are not able to propagate inspite of pressure build-up at the middle
of the fractures due to the fact that almost 90 % of the total injected fluid
(Figure 3.15b) is lost in leak off thereby not having enough fluid pressure at the
tip. This is due to the fact that the ELP model assumes that the consolidation
process happening due to the leak-off from the three fractures are mutually
independent.
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Figure 3.15: For a cluster of hydraulic fractures problem: (a)Pore Pressure distribution
in a plane AA’ across the fractures after 10 seconds for ELP and MELP
models. The circular dots indicate the pressure inside the fractures. (b)
Cumulative Leak-off from the three fractures for MELP and ELP models.
The green line indicates the total volume of fluid injected inside each
fracture

Figure 3.16: Evolution of fracture network with time using MELP model in permeable
rocks

From Figure 3.16, we can observe the evolution of the fracture network
with time in permeable rocks for MELP model. All the fractures leak fluid from
the fracture into the formation initially. After a certain time this causes a build-
up of pore pressure in formation in the region surrounding the fractures which
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in turn yields a pore pressure plateau in the central region between the two end
fractures as observed in Figure 3.15a. This plateau causes the pressure gradient
in this region to be very low, thereby significantly lowering the leak off from the
central fracture as seen in Figure 3.15b. This leads to further propagation of
the central fractures contrary to the pattern observed in MELP model for near
impermeable rocks.

3.6 Conclusion

From the numerical examples, we can conclude that the ELP model (Remij
et al., 2015a) is less suitable for modelling the fractures and their interactions
in rocks with significant permeability while it works well for near imperme-
able rocks where the leak-off has negligible effect on the pore pressure in the
adjacent formation. The conventional fully coupled models (Mohammadnejad
and Khoei, 2013; Fan et al., 1995; Yang et al., 2016) can accurately model the
fracture and its interactions in permeable rocks and have a continuous pressure
profile from the fracture to the formation, but they would require an extremely
fine mesh (Vermeer and Verruijt, 1981) to resolve the consolidation process in
near impermeable rocks. Hence the MELP model combines the advantages of
both these approaches to form a model which tends to behave similar to the
ELP model for near impermeable rocks with a discontinuous pressure profile.
While for permeable rocks the behaviour of MELP model is similar to the con-
ventional fully coupled models with the pressure profile approaching continuity
when there are enough elements to resolve the consolidation process.



Chapter 4

Effect of anisotropy on hydraulic
fractures

Abstract

In this chapter, we present a two-dimensional numerical model for modelling
of hydraulic fracturing in anisotropic media. The numerical model is based on
eXtended Finite Element Method (XFEM). The saturated porous media is mod-
elled using Biot’s theory of poroelasticity. An enhanced local pressure (ELP)
model is used for modelling the pressure within the fracture, taking into ac-
count the external fluid injection and the leak-off. Directional dependence of
all the rock properties, both elastic and flow related, are taken into account.
A combination of the Tsai-Hill failure criterion and Camacho-Ortiz propaga-
tion criterion is proposed to determine the fracture propagation. We study
the impact on fracture propagation (in both magnitude and direction) due to
anisotropies induced by various parameters, namely ultimate tensile strength,
Young’s modulus, permeability and overburden pressure. The influence of sev-
eral combinations of all these anisotropies along with different grain orienta-
tion and initial fracture directions on the fracture propagation direction are
studied. Different regimes are identified where the fracture propagation di-
rection is controlled by the degree of material anisotropy instead of the stress
anisotropy.

Reproduced from: Valliappan, V., Remmers, J. J. C., Barnhoorn, A., & Smeulders, D. M. J.
(2019). A Numerical Study on the Effect of Anisotropy on Hydraulic Fractures. Rock Mechanics
and Rock Engineering, 52(2), pp.591-609.
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4.1 Introduction

The first numerical models for modelling hydraulic fracturing were developed
by Boone and Ingraffea (1990) using finite elements for modelling the for-
mation and using finite volume for modelling flow with cohesive zones along
element edges describing the fractures. In recent times there have been several
models developed based on different numerical techniques. A linear elastic
fracture mechanics (LEFM) based finite element model (FEM) was proposed
by Hossain and Rahman (2008). To avoid the singularity problems at the crack
tip in LEFM, FEM models with zero-thickness elements (describing the frac-
tures using cohesive zones) were developed (Carrier and Granet, 2012; Chen,
2012). The FEM approach requires re-meshing to capture the fracture propaga-
tion accurately, whereas extended finite element (XFEM) based models allows
for fracture propagation in arbitrary directions without the need for re-meshing
(Mohammadnejad and Khoei, 2013; Remij et al., 2015a; Meschke and Leon-
hart, 2015). A novel approach in which the asymptotic behaviour near the
fracture tip was resolved with extended finite element method (Gordeliy and
Peirce, 2013a,b, 2015). An alternate approach based on phase field modelling
which combines FEM with continuum damage mechanics has been developed
(Mikelic et al., 2015; Mikelić et al., 2015; ?; ?) which provides a convenient
way for modelling complex fracture interactions. But all the above hydraulic
fracture models assume the rock formation to be isotropic in nature.

Most rocks (especially shales, which is the most common rock type to be hy-
draulic fractured) are highly anisotropic in nature (Jaeger et al., 2009; Barton,
2007). Kaarsberg (1959) and Sayers (1994) observed that shales have a plane
along which the grains are oriented causing the properties along the grain di-
rection to be vastly different from the properties perpendicular to the grain
direction. This causes a special type of anisotropy, called transverse isotropy
where the material properties in any direction in the plane can be obtained by
using the material properties along any two mutually perpendicular set of di-
rections in that plane. Although there are several studies (Abousleiman et al.,
2008; Zhubayev et al., 2015) experimentally obtaining the anisotropic parame-
ters, there are few papers by Cheng (1997) analytically deriving the anisotropic
poro-elastic co-efficients. Abousleiman et al. (1996) modelled the deformation
and pressure in a transversely isotropic porous medium without any fracture.
Porous material with a stress driven fracture in an orthotropic media was mod-
elled by Remij et al. (2015b). More recently the influence of rock anisotropy
on tensile fractures was studied experimentally by Mighani et al. (2016).

In this chapter, we enhance the aforementioned XFEM model by Remij et al.
(2015a) to include the effects of anisotropy on hydraulic fracturing. Using the
model we analyse the effect of anisotropic rock properties (Young’s modulus,
ultimate tensile strength and permeability) on the fluid driven fracture propa-
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gation and also the impact when combined with loading.

Momentum 
Balance Equation

f(σ,p)=0

Constitutive 
Relations
σ=f(ε)

Strain-
Displacement   

Relations
ε=f(u)

Mass Balance 
Equation 
f(u,q,p)=0

Boundary 
Conditions

t,u

Solution 
u, p, pd

Fluid Leakage : 
Consolidation 

Equation
qleak=f(pd)

Boundary 
Conditions

q,p

Mass Balance 
Equation inside 

the crack 
f(ud,q,pd)=0

Darcy Law
q=f(p)

Discontinuity 
B.C :  td-pdnd

Figure 4.1: Solution procedure for poro-elastic fracture problem.

4.2 Mathematical formulation

In order to solve a poro-elastic problem, we need to solve for the solid defor-
mation (u) and fluid pressure (p) at all points within the porous media. Biot’s
theory of poroelasticity (Biot, 1941) is used to describe the porous media and
fluid flow is described using Darcy’s law. The porous media is assumed to be
saturated.

In addition for the hydraulic fracture problem, we make use of an enhanced
local pressure (ELP) as proposed by Remij et al. (2015a) to model the pressure
inside the fracture at all points along the fracture length. This additional degree
of freedom (pd) enables us to model the complicated phenomenon happening
within the fracture, namely the injection of external fluid, moving boundaries
of fracture surface and the leak-off. Leak-off from fracture to formation is
described using the 1-D Terzaghi consolidation equation (Terzaghi, 1925).

For solving the unknowns, a set of governing equations along with auxiliary
equations are used. The governing equations used to describe the poro-elastic
problem are of two types: solid deformation based momentum balance and
fluid flow based mass balance. We consider an additional equation to ensure
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the mass balance inside the fracture. The auxiliary equations are used for
relating these governing equations with the unknowns and also for coupling
them. A schematic flow chart of the mathematical formulation is represented
in Figure 4.1.

A schematic of a body Ω with a discontinuity Γd, which splits the body
into two domains Ω+ and Ω−, along with prescribed boundary conditions is
represented in Figure 4.2.

−→n d
Ω+

Ω−

Γd

Γu

Γp

Γq

Γt

qp

pp

Ω

−→up

−→
tp

Figure 4.2: Schematic of a domain Ω with discontinuity Γd.

4.3 Implementation

4.3.1 Discretisation

Regular Nodes

Enhanced Nodes

1-D ELP Nodes

Regular Elements

Enhanced Elements

Fracture Path

Figure 4.3: Discretisation in XFEM.

We need a numerical method in order to solve the set of coupled differential
equations and also incorporate the discontinuous jump in various parameters
due to the fracture. Hence, we make use of XFEM which models the discontinu-
ous jump due to fractures by using additional degrees of freedom. XFEM allows
for the fracture to propagate through the elements, thus ensuring accuracy in
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capturing the fracture even with a coarse mesh making it computationally very
efficient. Similar to traditional FEM, the unknowns are obtained at certain con-
trol points (nodes) by solving the differential equation and the unknowns in the
intermediate regions are obtained by interpolation using shape functions. The
discretised form of the unknown displacement and pressure in a porous media
intersected by the fracture is expressed as:

u = NÛ +HΓd NŨ when x ∉ Γd (4.1)

p = LP̂ +HΓd LP̃ when x ∉ Γd (4.2)

pd =V P̂d when x ∈ Γd (4.3)

where HΓd is the Heaviside step function, given as:

HΓd =
{

1 when x ∈Ω+

0 when x ∈Ω− (4.4)

Û and P̂ represent the regular nodal degrees of freedom for displacement and
pressure respectively while Ũ and P̃ represent the enhanced nodal degrees
of freedom representing the discontinuous jump in displacement and pressure
across the fracture. P̂d represents the pressure inside the fracture at points
where the fracture intersects the element edges. N , L are two dimensional in-
terpolation or shape functions for the displacement and pressure fields whereas
V is a one-dimensional shape function for interpolation of the pressure along
the fracture length.

4.3.2 Solution

The governing equations are combined with the auxiliary equations as shown
in Figure 4.1. Weak form of this set of equations are obtained by integrat-
ing them along with a test function. By substituting the discretised unknowns
given by Equations (4.1), (4.2) and (4.3) into the weak form, we convert the
set of differential equations into a set of algebraic equations. In order to solve
this set of equations simultaneously, we make use of the Newton-Raphson iter-
ative solver in combination with Euler’s forward scheme for obtaining the time
derivative, and Euler’s implicit scheme for time independent parameters. A
detailed description of the solution procedure is given in Remij et al. (2015a).

The unknown
(

X = [
Û Ũ P̂ P̃ P̂d

]T
)

degrees of freedom are solved at
each grid point (nodes) for every time step.

4.3.3 Propagation

A propagation criterion is needed in order to determine the propagation initi-
ation and also the magnitude and direction of propagation. Hence we make
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use of the Camacho-Ortiz criterion (Camacho and Ortiz, 1996) which can be
used for mixed mode fractures as well. This criterion states the condition for
fracture propagation as:

teq > 1 where teq =
√√√√ t 2

n

τ2
ult

+ t 2
s

S2
ult

(4.5)

where teq is the equivalent traction ratio in a specific direction, τult and Sult

represent the ultimate tensile and shear strength of the porous media, respec-
tively, tn and ts are the normal and shear tractions along that orientation which
are obtained from average stresses as:

tn =
{

nTσavn if nTσavn > 0

0 if nTσavn < 0
(4.6)

ts =
{

sTσavn if nTσavn > 0

sTσavn −Ψ(nTσavn) if nTσavn < 0
(4.7)

where Ψ is the coefficient of friction, and n and s are the unit normal and tan-
gent vector to the direction. σav is the average stress, used to obtain a better
approximation of the stress state in the vicinity of the fracture tip. The average
stresses are obtained by assigning weight functions to the Gaussian integra-
tion points within a certain distance (generally three times the characteristic
element length) from the fracture tip, as derived by Jirasek (1998). As an av-
eraged stress is used, this may lead to a slight delay in the onset of fracture
propagation.

The direction of propagation is taken to be the direction in which the equiv-
alent traction is maximum. The fracture is assumed to propagate through the
entire element length in a single time step in a straight line. Further details
on the implementation of the solution are described by Remmers (2006); Rem-
mers et al. (2003).

4.4 Anisotropic parameters

In this section, we highlight the parameters which need to be modified to in-
corporate the effect of anisotropy.

4.4.1 Constitutive relation

The effective elastic stress (σe) in the solid grain is related to the elastic strain
by means of the generalised Hooke’s law.

σe =Cε (4.8)
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where C is the constitutive relationship matrix and ε is the elastic strain in the
solid grains.

The coefficients of the constitutive matrix depend on the material type and
geometrical assumptions. The constitutive relation matrix can be obtained as
the inverse of the compliance matrix, C = S−1. We assume a plane strain case
with a transverse isotropic material for which the compliance matrix in the
grain direction is given as:

S l ocal =


(E⊥−E∥ν2

in)
E∥E⊥

−(νin+νinνout)
E⊥

0
−(νin+νinνout)

E⊥
(1−ν2

out)
E⊥

0

0 0 1
2G

 (4.9)

where E∥ and E⊥ are the Young’s moduli parallel and perpendicular to the grain
direction and νin is the in-plane Poisson’s ratio, representing compressive strain
perpendicular to the grain direction due to a tensile stress parallel to the grain
direction and νout represents the out-of-plane Poisson’s ratio.

The constitutive matrix at any arbitrary direction is obtained from the fol-
lowing expression:

C global = T −1C localT (4.10)

where T is the transformation matrix given as a function of the angle (β) be-
tween the global direction and the grain orientation direction.

T =
 cos2β sin2β 2sinβcosβ

sin2β cos2β −2sinβcosβ
−sinβcosβ sinβcosβ cos2β− sin2β

 (4.11)

4.4.2 Ultimate tensile strength

The ultimate tensile strength (τult) is an important parameter which deter-
mines the fracture propagation. The ultimate tensile strength is maximum in
the grain orientation direction and minimum perpendicular to it. Some previ-
ous studies (Remij et al., 2015b; Yu et al., 2002; Lee and Pietruszczak, 2015)
have assumed cosine functions to interpolate the ultimate tensile strength at
arbitrary directions from the values along the grain direction and the perpen-
dicular direction. Here we make use of the Tsai-Hill failure criterion (Jones,
1998) to model the directional dependence of the ultimate tensile strength.
The Tsai-Hill failure criterion for a 2-D transverse isotropic material is given as:

(
σ||

τult∥
)2 + (

σ⊥
τult⊥

)2 − σ||σ⊥
τ2

ult∥

+ (
σs

Sult
)2 = 1 (4.12)

where σ|| ,τult|| and σ⊥,τult⊥ are the stresses, ultimate tensile strengths parallel
and perpendicular to the grain direction respectively, and σs and Sult indicate
the shear stress and ultimate shear strength in the plane.



54 Effect of anisotropy on hydraulic fractures

X
φ

θ

Y

∥

⊥ t

n

Global Co-ordinates

Grain Orientation

Fracture
Propagation

Fracture Tip
γ

Figure 4.4: Schematic for rotation of parameters.

Assuming a fracture propagating at an angle φ with respect to the x-axis,
the ultimate tensile strength perpendicular to the fracture propagation direc-
tion τfrac is given as the normal stress perpendicular to fracture propagation
direction which can satisfy the Tsai-Hill failure criterion. To obtain τ f r ac , this

stress state (σfrac =
[
0 τfrac 0

]T ) is rotated to the grain orientation direction
by using the stress transformation relations and then substituted into Equation
(4.12).

σgrain = Tσfrac σgrain = τfrac

 sin2θ

cos2θ

sinθcosθ

 (4.13)

where θ = γ−φ, γ is the grain orientation angle with respect to the x-axis and
φ is the fracture propagation angle with respect to the x-axis.

Hence for a randomly oriented fracture, we obtain the ultimate tensile
strength in the direction perpendicular to the fracture propagation direction
(φ+90o) as:

1

τfrac
=

√√√√sin4θ

τ2
ult∥

+ cos4θ

τ2
ult⊥

− sin2θcos2θ

τ2
ult∥

+ sin2θcos2θ

S2
ult

(4.14)

In order to validate the proposed Tsai-Hill based theory, we make a com-
parison with experimental results. Mighani et al. (2016) conducted tensile
fracture experiments on Lyon’s sandstone and pyrophyllite rocks and observed
the ultimate tensile strength variation with θ which is the angle between the
grain orientation direction and the fracture propagation direction. We make
use of the experimental values for maximum and minimum ultimate tensile
strengths and interpolate for various angles. As one can observe in Figure 4.5,
Tsai-Hill failure criteria provides a much better fit for the experimental val-
ues when compared to the previously assumed cosine functions (Remij et al.,
2015b; Lee and Pietruszczak, 2015).
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Figure 4.5: Comparison of analytical and experimental values of ultimate tensile
strength at various angles with respect to grain orientation direction.

4.4.3 Poro-elastic coefficients

Cheng (1997) derived the analytical expressions for the transverse isotropic
poro-elastic coefficients based on the constitutive relationship matrix.

In a fully saturated porous medium, the external stresses on the porous me-
dia are partly taken by the fluid pressure in the pores and partly by deformation
of the solid grains. This can be represented mathematically as:

σ=σe −αp (4.15)

where σ is the total stress, σe is effective stress and α is Biot’s co-efficient
matrix.

The anisotropic Biot’s co-efficient matrix reduced to the 2-D form is given
by the expression:

α=
α∥ 0 0

0 α⊥ 0
0 0 0

 α∥ = 1− (C11 +2C12)

3Ks

α⊥ = 1− (C12 +C22 +C23)

3Ks

The other poro-elastic constants such as bulk modulus and compressibility
modulus are given as:

Kbulk =
C11 +2C22 +4C12 +2C23

9
(4.16)

M = Ks

(1− Kbulk
Ks

)−nf(1− Ks
Kf

)
(4.17)
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where nf is the porosity of the porous media, and Ks and Kf are the bulk mod-
ulus of the solid and fluid respectively.

4.4.4 Permeability

Permeability enters into the formulation through Darcy’s law which describes
the fluid flow in the porous medium as:

q =−κ
µ

.∇p (4.18)

where κ is the intrinsic permeability tensor, µ is the dynamic viscosity of the
pore fluid, q is the flux and p refers to the pressure in the porous media.

Permeability tensor for an anisotropic rock in the principal grain directions
is given as

κgrain =
[
κ∥ 0
0 κ⊥

]
(4.19)

where permeability in the grain direction κ∥ is larger than the permeability
perpendicular to the grain direction κ⊥. For permeability in any arbitrary ori-
entation we make use of the transformation matrix:

κfrac =ΦT .κgrain.Φ where Φ=
[

cosθ −sinθ
sinθ cosθ

]
(4.20)

4.5 Results

4.5.1 Validation

Since there are no studies which exactly deal with hydraulic fracturing in
anisotropic media, we divide the validation into two parts: 1) Mandel’s prob-
lem which compares the numerical results with an analytical solution for a
transverse isotropic porous medium without fractures 2) The standard KGD
problem which compares the numerical results with the ELP model (Remij
et al., 2015a) for a hydraulic fracture problem in an isotropic medium.

Mandel’s problem

Abousleiman et al. (1996) provided an analytical solution for Mandel’s prob-
lem in a transversely isotropic porous medium. Mandel’s problem (Figure 4.6)
consists of an infinitely long rectangular block with the left and right ends free
from stresses and the fluid is free to flow whereas an external force is applied
on the top and bottom boundaries. The external force is taken as 10.5 MPa.
The Young’s moduli along horizontal and vertical directions are 20 GPa and 10
GPa respectively. In-plane Poisson’s ratio is assumed to be 0.30 whereas the out
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Figure 4.6: Geometry and boundary conditions of Mandel’s Problem.

of plane is taken as 0.20. Similarly permeability values are taken to be 10−19m2

and 10−17m2 along horizontal and vertical directions. The bulk moduli of the
solid grains and the pore fluid are assumed to be 36 GPa and 3 GPa. A time
step of 500 seconds is used.

−500 0 500
0

2

4

6

8

10

12

Distance along the centre (y=0)(in mm)

P
or

e 
P

re
ss

ur
e 

al
on

g 
ce

nt
re

 li
ne

 (
in

 M
P

a)

 

 

15
00

s

75
00

0s

37
50

0s

Numerical
Analytical

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

1

2

3

4

5

6

Distance along the centre (y=0)(in mm)

R
e

la
tiv

e
 e

rr
o

r(
%

) 
in

 p
o

re
 p

re
ss

u
re

 

 
1500s
37500s
75000s

−500 0 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Distance along the centre (y=0)(in mm)

D
is

pl
ac

em
en

t (
u x)(

in
 m

m
)

 

 

Numerical
Analytical

Figure 4.7: a) Pore pressure variation along the centre line at different times b) Rela-
tive error (%) in pore pressure when compared to the analytical solution
c) Displacement in the x-direction along the centre line at time t=75000s



58 Effect of anisotropy on hydraulic fractures

We compare the pore pressure solution from the numerical model with the
analytical solution at different time periods in Figure 4.7. The numerical pore
pressure decay from the centre of the specimen to the free edges is found to
be consistent with the analytical solution with relative errors (<5%). The dis-
placement in the x-direction along the centre line of the specimen is plotted
and compared with the analytical solution.

KGD

In this validation case we consider a KGD problem (Figure 4.8) which is a
standard test case for hydraulic fracture problems. When the rock is assumed to
be isotropic, there exists a theoretical solution given by Geertsma and De Klerk
(1969). The Young’s modulus and Poisson’s ratio are taken as 20 MPa and 0.2.
The ultimate tensile strength is assumed to be 2 MPa while the toughness is
120 N/m. The permeability and viscosity are given as 10−19m2 and 0.1 Pa s. The
initial fracture at the boundary is injected at the rate of 25 mm2/s for a time
period of 100 seconds with a time step of 0.1 s. The KGD problem considered
here lies in the viscosity-storage propagation regime.

60m

45m

Qin

P=0

P=0

P=0

q.n=0

q.n=0

Figure 4.8: Geometry and boundary conditions of standard KGD problem.
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Figure 4.9: a) Comparison of fracture profile variation at different times
(t=12.5s,25s,50s,100s) b)Fracture mouth opening pressure variation
with time.

The fracture propagates on a non-predefined path. In Figure 4.9, we com-
pare the fracture profiles at various time steps from the current numerical
model and the ELP model (Remij et al., 2015a). As observed the current model
accurately reduces to the ELP solution for isotropic values of the parameters.
The fracture mouth opening pressure variation with time is also plotted and
compared. A mesh of 50 ×50 mm2 is used for the purpose.

4.5.2 Vertical hydraulic fracture problem

γ

σo

60m

60m
Qin

P=0

P=
0

q.n=
0

q.n=0

σo

Figure 4.10: Geometry and boundary conditions of the hydraulic fracture problem.

The test case (Figure 4.10) that is used here is very similar to the previous
KGD problem, but an initial crack is placed at the bottom of the model, to
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model the vertical fracture growth representative of the hydraulic fractures.
The model is simulated for 10.5 s with a time step of 0.1 s. Also the model is
subjected to external stresses of 40 MPa, due to the overburden pressures or
in-situ stresses existing at depths of around 1.5 km. The fluid is free to flow
from the top and the right boundaries whereas no flow conditions exist at the
left and bottom boundaries. The isotropic values of the parameters used in
the model are specified below in Table 4.1. All angles are with respect to the
horizontal axis. For cases of anisotropy, these isotropic values are perturbed
depending on the degree of anisotropy. The degree of anisotropy is defined as:

Degree of Anisotropy (DOA) = (.)max − (.)min

(.)max
(4.21)

Table 4.1: Isotropic value of parameters

Parameter Isotropic Value
Young’s modulus 20 GPa
Poisson’s ratio 0.2
Toughness(Gc) 120 N/m
Ultimate tensile strength 6 MPa
Ultimate shear strength 60 MPa
Permeability 10−19m2

Porosity 0.1
Viscosity 10−2 Pa s
Solid bulk modulus 36 GPa
Fluid bulk modulus 3 GPa
Injection rate 0.0006 m2/s
Overburden pressure 40 MPa

By using the parameters in the Table 4.1 to obtain the non-dimensional
parameter(Mk) described in Bunger et al. (2005), we observe that the hy-
draulic fracture problem described here lies in the viscosity dominated regime
and closer to the storage edge. In the following subsections 4.5.3 and 4.5.6 we
try to understand the influence of anisotropy in each individual parameter by
keeping all other parameters isotropic. We also look at the possible combina-
tion of anisotropy in these parameters in subsections 4.5.4 and 4.5.6 .

4.5.3 Parametric anisotropy

In this subsection, we vary one parameter at a time to find out the fracture
propagation variation with anisotropy in each individual parameter. In all the
considered test cases we assume that the grains are oriented along the hori-
zontal direction (0o) and the initial fracture is oriented in the vertical direction
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(90o).

Anisotropy due to Young’s modulus

We consider three possible scenarios for varying Young’s modulus: i) E-Parallel:
Anisotropy caused by increasing the Young’s modulus (E∥) parallel to the grain
direction alone. ii) E-Perpendicular: Anisotropy caused by decreasing the
Young’s modulus (E⊥) perpendicular to the grain direction alone. iii) E-Combined:
Anisotropy caused by varying both parallel and perpendicular values from the
isotropic values given by following equation:

(.)∥ =
(.)isotropic

1− (DOA/2)
(.)⊥ = (1−DOA)(.)‖ (4.22)

Both in-plane and out-of-plane Poisson’s ratios are assumed to have a constant
value of 0.2.
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Figure 4.11: Fracture variation with Young’s modulus anisotropy.

From the fracture length plot in Figure 4.11, we can observe that E∥ has a
much greater effect on fracture propagation than E⊥. This is due to the fact
that the propagation of the initial vertical fracture is dependent on the stresses
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which are perpendicular to it. Hence an increase in E∥ results in higher stresses
perpendicular to the initial fracture, which promotes fracture growth signif-
icantly whereas a decrease in E⊥ only has a smaller Poisson’s effect on the
stress. Since E∥ > E⊥ always, the fracture prefers to orient itself perpendicu-
lar to the grain orientation which is observed in all the three scenarios in the
fracture orientation plot.

Also we plot the pressure at the mouth of the fracture, which is a much more
easily measurable quantity in the field. Since all the three scenarios favour frac-
ture propagation in the same initial fracture direction, there is little variation
(< 5%) in the pressure required to open the fracture.

Anisotropy due to ultimate tensile strength
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Figure 4.12: Fracture variation with ultimate tensile strength anisotropy.

Similar to the Young’s modulus variation, we consider the same three scenarios
for understanding ultimate tensile strength induced anisotropy. Fracture prop-
agation is resisted by the ultimate tensile strength perpendicular to the fracture
orientation. Hence the fracture tends to propagates along the direction perpen-
dicular to the minimum ultimate tensile strength. Since τult⊥ is always lower
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than τult‖ , the fracture tends to propagate parallel to the grain orientation. But
since the initial fracture is oriented in an unfavourable direction (perpendicular
to the grain direction), the fracture continues to propagate in its initial direc-
tion until a threshold level where the effect of anisotropy becomes significant
to rotate the fracture as observed from the fracture orientation plot in Figure
4.12.

Also looking at the fracture length variation we observe that there is a signif-
icant increase in the fracture length when the fracture re-orients itself from its
initial direction to the favourable direction. Since the fluid inside the fracture
has to go through steep rotation (∼ 80o), much higher pressures are required
in order to drive the fracture.

Anisotropy due to permeability

Anisotropy in the permeability of the rocks was considered in the formulation.
As indicated in Table 4.1, the isotropic permeability of shales was assumed to
be 10−19m2 (100nd). It was varied within two orders of magnitude i.e. 10−18m2

to 10−20m2 (1000nd to 10nd). However its impact on the fracture growth was
found to be very negligible since shales already have very low permeability
values (almost impermeable).

4.5.4 Degree of material anisotropy
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Figure 4.13: Different fracture influence regimes in material anisotropy.

In the following subsections, we focus only on the fracture propagation di-
rection. This is because variation in fracture length or width due to various
anisotropies and combinations can be overcome by varying the fluid injection
time but the fracture orientation direction cannot be modified by means of any
external influence as it is solely dependent on the field conditions. Hereafter
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all the anisotropies considered are by varying both the values parallel and per-
pendicular to the grain direction as given by Equation (4.22).

In this set of cases, we study the interplay between anisotropy due to
Young’s modulus and the anisotropy due to ultimate tensile strength by varying
them from 0% to 75% individually. As seen from the previous Section 4.5.3,
both these anisotropies have contrasting effect on the fracture propagation di-
rection. Therefore it is important to identify the regions where one parameter
has a higher degree of influence than the other.
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Figure 4.14: Final fracture orientation angle (φ, with respect to global horizontal axis)
variation with material anisotropy at different grain orientation angles
a)0o b)30o c)60o d)90o . The blue colour indicates final fracture gets ori-
ented perpendicular to the grain orientation whereas the red colour indi-
cates parallel to grain orientation. The transition between the blue and
red colours (indicated by white colour), would be a very sudden transi-
tion if smaller anisotropic step sizes are used.

Figure 4.13 represents a schematic of the material anisotropy contour plots
in Figure 4.14. As can be seen there are two distinct regimes: i) Regime A,
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influenced by anisotropy in ultimate tensile strength causing the fractures to
propagate parallel to the grain direction ii) Regime B, influenced by anisotropy
in Young’s modulus resulting in fractures finally getting oriented perpendicular
to the grain direction. There is a sudden transition from one regime to another
once a threshold value is crossed.

In Figure 4.14, we observe that contour plots are represented for four differ-
ent grain orientation (γ) directions. γ refers to a grain orientation with respect
to the global horizontal direction (x-axis). The non-smooth variations in the
threshold values for transition between regimes in the contour plots are due
to the variation of anisotropies in step sizes of 5%. Looking at the different
contour plots we can see that the size and shape of the different regimes vary
with varying grain orientation angles.

From the γ= 0o plot, we observe that beyond a threshold value of 50% DOA
in τult the fracture moves from regime B to regime A (red regions representing
φ < 20o). Looking at the plot for γ = 30o , we observe that the fracture tries to
align itself perpendicular to the grain direction (blue regions representing φ>
100o) even for relatively low values of E anisotropy but requires much higher
(> 40%) DOA in Young’s modulus along with low (< 10%) DOA in ultimate
tensile strength when γ = 60o . Young’s modulus anisotropy cannot influence
the fracture at all when the fracture needs to be completely rotated by 90o .

Looking at all the contour plots we can observe that the area of regime A
increases with grain orientation angle. The influence of τult anisotropy is much
higher as the grain orientation angle increases due to the fact that the fracture
needs to be rotated by a smaller angle from its initial vertical orientation to
align itself with the grain orientation direction. The converse is true for the
influence of Young’s modulus anisotropy.

4.5.5 Angle of orientation

In this set of cases, we vary the degree of anisotropy of the material parameters
(namely both Young’s modulus and ultimate tensile strength simultaneously)
between 0% and 75% as well as the grain orientation direction from 0o to 90o .
The results of these cross-sets of cases are represented in the form of a contour
plot as given in Figure 4.15.

Grain orientation direction

We observe that along the vertical axis (for a particular grain orientation di-
rection), after a certain degree of combined material anisotropy the crack al-
ways tends to align with the grain direction. This is due to the fact that τult

anisotropy has a greater impact than the E anisotropy at larger values of DOA
(> 30%) whereas E anisotropy has a much larger impact when the DOA is lower
(< 30%) . Along the horizontal axis (for a particular combined material DOA),
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we observe that the fracture tends to re-orient itself with relative ease as the an-
gle (θ = γ−φ) between the initial fracture orientation and the grain orientation
reduces.

In Figure 4.16, the fracture propagation at a constant combined material
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Figure 4.15: Final fracture orientation angle (φ) variation with different degrees of
combined material anisotropy and grain orientation angles with respect
to horizontal axis. The transition between the blue and red colours along
the vertical in the left corner, would be a very sudden transition if smaller
anisotropic step sizes are used.

0 degree 

•

50 degrees

•

60 degrees

10 degrees

•

40 degrees

•

70 degrees

•

20 degrees

•

30 degrees

•

90 degrees

Figure 4.16: Propagation of an initial vertical fracture with different grain orientation
angle for a material anisotropy of 55%.
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degree of anisotropy of 55% for various grain orientation angles from 0o to 90o

is plotted.

Initial fracture orientation

In all the previous and later cases, the initial fracture is assumed to be along
the vertical direction (90o). In this subsection, three initial fractures at varying
initial orientation angles of 90o , 60o , and 0o are included simultaneously. The
grain orientation angle is assumed to be 60o with a combined material DOA of
15%.

From Figure 4.15 for a material DOA of 15%, we observe that the fracture
aligns along the grain orientation direction when θ < 50o and aligns perpen-
dicular to the grain direction when θ > 50o . For the initial fractures 90o ,60o ,
and 0o corresponding theta values are 30o ,0o , and 60o respectively. Hence the
first two initial fractures (90o and 60o) are expected to be aligned along the
grain orientation direction (60o), while the 0o initial fracture is expected to be
aligned perpendicular to the grain orientation direction (150o) which is exactly
replicated by the results shown in Figure 4.17.

Figure 4.17: Influence of initial fracture orientation on fracture propagation.

4.5.6 Lithostatic stresses

Anisotropy due to lithostatic stress

Similar to other parametric variations, we consider the three possibilities of
stress induced anisotropy due to i) increase of vertical stresses ii) decrease of
horizontal stress iii) a combination of both. Note that in real hydraulic fracture
scenarios in the field, the vertical overburden pressure is assumed to be slightly
larger than the horizontal pressure. The fracture orients itself preferably in the
direction parallel to the maximum compressive stress, which is same as the
initial fracture direction (90o) in all the three scenarios. The decrease of hori-
zontal stresses results in much lower compressive stresses perpendicular to the
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fracture, thereby promoting fracture growth and also requiring less pressure to
open the fracture as seen from Figure 4.18. Similarly the increase of vertical
stresses only causes a mild increase in the tensile stresses acting perpendicular
to the fracture due to Poisson’s effect.
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Figure 4.18: Fracture variation with stress anisotropy.

Combined anisotropy

In this final scenario we look at combining all the above discussed anisotropy
scenarios. The material anisotropy refers to varying both Young’s modulus and
ultimate tensile strength simultaneously from 0% to 75% by using Equation
(4.22). The stress anisotropy refers to variation of the overburden pressures
from 0% to 50% given by Equation (4.22). The contour plots are obtained for
four different grain orientation angles (γ) namely 0o , 30o , 60o and 90o .

In looking at the schematic (Figure 4.19) for the combined anisotropy con-
tour plots given in Figure 4.20, we observe that apart with regimes A and B,
there is an additional regime C in which the in-situ stresses play a major role in
determining the final fracture orientation. The fractures get oriented parallel
to the maximum compressive stress direction in this regime. Looking at the
plot for γ = 0o , as already seen in Figure 4.14 the fracture tends to re-orient
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itself parallel to grain direction after a combined material DOA of 50%. But
this re-orientation is possible only when the stress anisotropy is less than 20%,
beyond which the fracture transitions into regime C. Regime B and regime C
coincide in this case as perpendicular to the grain direction and the maximum
compressive stress are both in the vertical direction.
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Figure 4.19: Different fracture influence regimes in combined stress and material
anisotropy.

The plot for γ= 30o is the most complete plot with all the regimes which are
influenced by the various anisotropy parameters. The dark blue regions repre-
senting fracture orientations (φ) larger than 110 are indicative of regime B at
low material DOA (< 25%) and low stress DOA (< 25%). The high material DOA
(> 25%) and low stress DOA (< 30%) regions represented by varying intensities
of red colour (Regime A), are indicative of the ultimate tensile strength influ-
ence. For high stress DOA (> 30%) (Regime C), the fractures are more influ-
enced by the stress induced anisotropy. But the fracture orientation angles (φ)
are not exactly 90o which it is supposed to be as the vertical overburden pres-
sures are maximum. This is because of the fact that although external stresses
are maximum in one direction the local stress state has maximum values in a
different direction as a result of the Young’s modulus anisotropy. Therefore the
fracture ends up oriented at angles (∼ 100o) in between perpendicular to the
grain orientation (120o) and the vertical direction (90o).

When γ= 60o , the ultimate tensile strength has great influence over most of
the regions except the regions with high stress DOA (> 30%) and high material
DOA(> 40%) where both the stress and Young’s modulus anisotropy combine.
When γ= 90o , both the combined material DOA and the stress anisotropy pre-
fer the fracture to propagate along its initial vertical direction causing all the
regimes to coincide.
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Looking at all the four contour plots together one can observe the reduction
in the influence of stress induced anisotropy as the grain orientation direction
increases or in other words when the angle (θ = γ−φ) between the initial frac-
ture orientation and the grain direction decreases while the converse is true for
material based anisotropy.
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Figure 4.20: Final fracture orientation angle (φ, with respect to global horizontal axis)
variation with material anisotropy and stress anisotropy at different grain
orientation angles a)0o b)30o c)60o d)90o . The blue colour indicates final
fracture gets oriented perpendicular to the grain orientation whereas the
red colour indicates parallel to grain orientation. The transition between
the blue and red colours (indicated by white colour), would be a very
sudden transition if smaller anisotropic step sizes are used.

4.6 Conclusion

From all the above simulations, we observe that the hydraulic fractures are
greatly influenced by the anisotropy arising due to various parameters. Some
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of the important observations are:
a) Young’s modulus anisotropy promotes fracture growth perpendicular to

the grain direction.
b) Ultimate tensile strength anisotropy promotes fracture growth parallel

to the grain direction.
c) Stress induced anisotropy promotes fracture growth parallel to the max-

imum overburden pressure.
d) At high degrees of material anisotropy, ultimate tensile strength has a

greater influence than the Young’s modulus while the converse is true for low
degrees of anisotropy.

e) Most important angle influencing fracture orientation is the angle be-
tween grain orientation and the initial orientation. When this angle decreases,
the influence of ultimate tensile strength anisotropy increases while the influ-
ence of Young’s modulus anisotropy and stress based anisotropy decreases.

Combination of stress anisotropy, material anisotropy and the initial frac-
ture orientation with respect to the grain orientation is observed to determine
the final fracture propagation direction.





Chapter 5
Hydraulic fracture propagation in
heterogeneous reservoirs

Abstract

In this chapter, we investigate the behaviour of hydraulic fractures in a hetero-
geneous reservoir. The heterogeneity in the reservoir can either be of discrete
nature, due to the presence of inclusions which are formed due to the pre-
cipitation of minerals at specific locations, or of a layered nature due to the
deposition of different minerals over different times. We extend the Modi-
fied Enhanced Local Pressure (MELP) model as presented in Chapter 3, that
is based on a two-dimensional extended finite element method. The fracture
propagation direction is not prescribed and is dependent on the Camacho-Ortiz
propagation criterion. The fracture behaviour due to layering is found to be de-
pendent on the contrast in the material properties (Young’s modulus, ultimate
tensile strength) between the different layers as well as the reservoir level prop-
erties such as layer thickness, in-situ stresses, bedding plane orientation. The
fracture propagation mechanism is also observed to change based on the layer
in which the fracture initiates and propagates further (i.e. from a soft to hard
layer or vice versa). We also investigate the effect of a finely layered reservoir.
The behaviour of fractures in the presence of inclusions are found to be depen-
dent on the contrast between the material properties of the inclusions and the
host rock.

Reproduced from: Valliappan, V., Remmers, J. J. C., Barnhoorn, A., & Smeulders, D. M. J.,
Hydraulic fracture propagation in heterogeneous reservoirs. Journal of Petroleum Science and
Engineering, in preparation.
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5.1 Introduction

Fluid pressure driven, hydraulic fractures have made the extraction of oil and
gas from unconventional reservoirs economically feasible (Economides and
Nolte, 2000). Hydraulic fracture height has been the focus of several works
primarily due to concerns around contamination of groundwater aquifers with
the fracturing fluid (Rozell and Reaven, 2012; Warner et al., 2012; Brantley
et al., 2014) while other experimental (Fisher et al., 2011) and analytical mod-
els (Flewelling et al., 2013) have shown that these concerns might be unre-
alistic due to a fracture height containment phenomenon. These contrasting
results make it vital to accurately model the fracture propagation in the verti-
cal direction. Hydraulic fracture propagation analysis are often focused on the
vertical fracture height that is obtained due to injection pressures, propagation
velocity, lithostatic stresses.

One of the most common factors affecting the fracture growth in the vertical
direction is the layered nature of the sedimentary rocks (Nolte et al., 1979;
Warpinski et al., 1982; Teufel and Warpinski, 1983). These distinct layers are
formed due to the sedimentation of different minerals and organic particles
over time (Blatt et al., 1972). Due to the different mineralogy, these layers
exhibit stark contrasts in the rock material properties such as Young’s modulus,
ultimate tensile strength, porosity and permeability. Hence even if we consider
a single layer to be homogeneous, the rock structure on a macroscopic scale
would be heterogeneous.

Some of the earliest works on the effect of this layered heterogeneity on the
hydraulic fractures were developed by Daneshy et al. (1978). He observed the
fracture propagation across layers to be strongly dependent on the interfacial
strength between the two layers, while Simonson et al. (1978) obtained an
analytical expression for fracture height which depends on the in-situ stresses
in both the formation and the barrier zones along with fracture toughness of
the materials and borehole pressure. Later, these two different phenomenon
have been studied by various other researchers as a cause for fracture height
containment in reservoirs.

Warpinski et al. (1981, 1982) conducted a series of laboratory and field-
scale mineback experiments. They observed the fracture height containment
in a layered rock formation to be strongly dependent on the in-situ stress state
in the layers and reported only a small influence of the interfacial properties.
In the presence of layered formations, the fractures exhibited a complex be-
haviour with multiple strands instead of a simple planar fracture.

The presence of weak interfaces in the rock formation act as shear slip
planes along which the fractures orient themselves to form T-shaped fractures
or have an offset along the interface. Experimental observations of such frac-
ture slippage along interfaces were observed by Xing et al. (2016) . Numerical
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models to study the fracture behaviour along the interface under various field
conditions were developed by several authors (Garcia et al., 2013; Chuprakov
et al., 2015; Ouchi et al., 2017). These interfacial models are strongly depen-
dent on the interfacial shear strength (τshear) which in-turn is related to the
cohesion (τo) between the two layers and friction between the two layers.

τshear = τo +µfσn (5.1)

From Eq.(5.1), we can observe that the interfaces can be weak only in shallow
reservoirs due to the lower normal lithostatic stresses (σn).

Some models that explain the fracture height containment phenomenon in
the absence of weak interfaces were developed. The impact of Young’s modu-
lus contrast on the fracture propagation was studied by Gu et al. (2006). While
Smith et al. (2001) observed the impact on the fracture width and how it af-
fects the proppant placement process. Miskimins et al. (2003) focussed on the
modelling of thinly layered formations. These models assumed a very strong
interface and the resultig fracture behaviour was purely the result of variation
in rock material properties. All these models assume the fracture propagation
along a prescribed direction.

In this chapter we investigate the propagation of hydraulic fractures in lay-
ered reservoirs by extending the Modified Enhanced Local Pressure (MELP)
model proposed by in Chapter 3. We focus on hydraulic fracturing in deep
reservoirs where the friction between the layers is strong enough to prevent
fracture slippage along the interfaces. Hence in the presence of strong inter-
faces, an interface that cannot fail, the fractures always propagate into the
second layer or get trapped within the layer in extreme cases. The contrast
in rock material properties determines the in-situ stresses in each layer which
inturn decides the fracture propagation direction. Thereby we can model the
fracture behaviour across the layers with strong interfaces.

5.2 MELP Model

5.2.1 Physical model

A hydraulic fracture problem can be defined as a combination of a poro-mechanics
problem and a fracture problem. In order to model the poro-mechanics prob-
lem, we make use of Biot’s theory of poro-elasticity (Biot, 1941). The un-
knowns associated with the poro-mechanics problem are the deformation in
the solid grains (u) and the fluid pressure in the pores (p) . The fluid flow in
the porous medium is governed by Darcy’s law. These unknowns are solved
using the mass and momentum balance equations and its associated boundary
conditions. The stress in the solid grains is coupled with the pressure in the
pores by means of effective stress.
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The introduction of a fracture causes a discontinuous jump in the displace-
ment field across the fracture. We make use of a cohesive zone model (Baren-
blatt, 1962) to avoid the singularity at the fracture tip by lumping the fracture
tip to a plane. This also introduces a cohesive traction, which is dependent on
the displacement jump, along the normal to the fracture.

The injection of fluid into the fracture in a hydraulic fracture problem
causes a fluid flow inside the fracture as well as leak-off of fluid from the frac-
ture to the adjacent formation. We introduce an additional field variable to
model the pressure inside the fracture (pd) as prescribed in the ELP model pro-
posed by Remij et al. (2015a). The leak-off phenomenon is modelled using the
analytical 1-D Terzaghi consolidation equation (Terzaghi, 1925). In order to
solve for this additional unknown we make use of the mass balance equation
inside the fracture as derived by Irzal et al. (2013).

5.2.2 Numerical model

We need to make use of a numerical method, in order to solve for all the the
unknown field variables from the various governing equations as described
above. While several numerical methods can be employed for the problem, the
introduction of a discontinuity in the model makes the use of an extended finite
element method (XFEM) desirable. The XFEM model makes use of partition of
unity property of the finite element shape functions to include a discontinuity
in a continuous field (Melenk and Babuška, 1996). Hence using XFEM we can
spatially discretise the field variables in the porous formation as :

u = NÛ +HΓd NŨ (5.2)

p = HP̂ +HΓd HP̃ (5.3)

while the discretisation of the fluid pressure inside the fracture is written as:

pd =V P d (5.4)

N , H ,V are the shape functions associated with displacement, pore pressure
and pressure inside the fracture respectively. Û ,Ũ represents the regular and
additional nodal values for the displacement field, while P̂ , P̃ represents the
regular and additional nodal values for the pressure field. P d represents the
nodal values of the enhanced local pressure.

Using this discretisation, we convert the set of governing differential equa-
tions into a set of algebraic equations. Details of the derivation of the discrete
balance equations are given in Section 3.4. We make use of Newton-Raphson
method and a monolithic solver to obtain the solution for the field variables at
all the nodes for every time step.
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5.2.3 Propagation

Using the solution for the field variables, we compute the effective stresses at
all the integration points based on the generalised Hooke’s law. But to obtain
the stresses in the vicinity of the crack tip, we make use of a weighted average
method as proposed by Jirasek (1998).

σav =
(nint)m∑

i=1

wi

wtot
σe,i wtot =

(nint)m∑
j=1

wj (5.5)

where σe,i is the effective stress at the integration point i, (nint)m is the number
of integration points in the material m, in which the fracture tip is present. wi

is the weight assigned for the integration point, which is based on its distance
from the crack tip given as:

wi = (2π)−3/2

l 3
a

exp
−r 2

i
2l 2

a (5.6)

where ri is the distance of the integration point from the crack tip, la is the
characteristic length which sets the decay of the weight function with distance
from crack tip. This averaging procedure for a model with a single material
and multiple materials is shown in Figure 5.1.

Note that in this model the material interfaces are aligned with the element
interfaces. Based on the assumption that the material interfaces are perfectly
bonded, it is assumed that there are no interfacial fractures.

l a l a

Material 1

Material 2

Figure 5.1: Stress averaging close to the fracture tip in a) Single material b) Multiple
materials. The intensity of the shade within the characteristic zone indi-
cates the weight functions associated with integration points

Using these averaged stresses in combination with the Camacho-Ortiz prop-
agation criteria (Camacho and Ortiz, 1996), we determine the fracture propa-
gation. The averaged stresses leads to slight delay in the fracture propagation.
The fracture is assumed to propagate through an entire element for each propa-
gation step. The elements that are crossed by fractures make use of an adopted
integration scheme as proposed by Wells and Sluys (2001). For further de-
tails on the implementation of the numerical model we refer to Remmers et al.
(2003) and Remmers (2006).
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5.3 Numerical Example

We model this layered heterogeneity with the help of a rock structure contain-
ing five different layers as shown in Figure 5.2. Each rock layer is assumed
to be homogeneous with a thickness of 1 m. The rock structure has free flow
conditions at all the boundaries and is subjected to a uniform lithostatic stress
of 20 MPa in both the horizontal and vertical directions. The porosity (nf) and
the permeability (κ) of the rock structure are assumed to be 0.1 and 10−19m2

respectively. A small initial fracture with a length of 0.2 m is initiated at the
middle layer. Fracturing fluid with a viscosity of 0.01 Pa · s is injected into the
middle of the fracture at the rate of 10−6m2/s for 40 seconds. The base values
of the rock material properties are always present in the softer layers. The base
Young’s modulus is 10 GPa while the Poisson’s ratio is 0.2. The base ultimate
tensile strength is assumed to be 4 MPa.

σv

1m

5 m

Qin
σh

σh

σv

1m

1m

1m

1m

E1,τ1,ν1

E2,τ2,ν2

Figure 5.2: A layered rock with a fracture at the middle. The rock contains two al-
ternating layers with distinct properties. The middle layer has properties
E1,τult1 ,ν1 while the layers surrounding the middle layer has properties
E2,τult2 ,ν2

We try to understand the fracture behaviour in such a layered rock and their
variation in behaviour with contrast in material properties between the layers
as well as the influence of other reservoir level properties. We have identified
Young’s modulus and ultimate tensile strength as two important variables in
the model which have a major impact on hydraulic fracture propagation (Val-
liappan et al., 2017). Hence we have varied these two parameters over a wide
range. The Young’s modulus contrast (CE = E2/E1) between the layers is var-
ied from 1 to 12, i.e. the Young’s modulus values of the stiffer layers (E2) are
varied from 10 GPa to 120 GPa while maintaining the Young’s modulus of the
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softer layer (E1) to be 10 GPa. The ultimate tensile strength (Cτ = τult2 /τult1)
contrast ratio is varied from 1 to 5. This set of tests are repeated for varying
lithostatic stresses, layer thickness, bedding plane orientation.

In the reference case, we consider the fracture to originate in a soft layer
(lower Young’s modulus) and is bounded by stiffer layers (higher Young’s mod-
ulus). The fracture behaviour for a set of varying Young’s modulus and ul-
timate tensile strength is presented in Table 5.1. The different fracture be-
haviour patterns exhibited for the current case are: Crossing ( denoted by C
with white colour), Kinking (K with yellow colour), Deflection (D with green
colour). These different phenomenon has been shown in Figure 5.3.

Table 5.1: Fracture behaviour in a layered rock when propagating from a soft (E1 =
10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer with varying Young’s modulus
and ultimate tensile strength contrast. (C-crossing, D-Deflection, K-Kinking,
A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C C K D D D D D D D D D D
2 C C C K K K D D D D D D D D
3 C C C C K K K K D D D D D D
4 C C C C K K K K D D D D D D
5 C C C C C K K K K D D D D D

Figure 5.3: Different fracture behaviours when propagating from a softer layer to a
stiffer layer. The fracture initiates from the middle layer which is softer
(E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) and propagates to the surrounding
stiffer layers.

We can clearly observe from Figure 5.3, that the fracture width becomes sig-
nificantly narrower in the layer with a higher modulus and this also causes the
fracture to propagate longer. These observations are in-line with the analytical
models developed by Simonson et al. (1978) and numerical model developed
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by Gu et al. (2006). We can see that the fracture always propagates from the
softer into the stiffer layer but exhibits different behaviour in the stiffer layer
depending on to the in-situ stress state.

5.3.1 Influence of material properties

In this sub-section we investigate the contrast in the various material properties
and their influence on the fracture behaviour.

Young’s modulus variation

The contrast in Young’s modulus (CE) between the layers has the most promi-
nent effect on fracture behaviour in layered rocks as observed by Gu et al.
(2006) and Smith et al. (2001). The common range of values for Young’s mod-
ulus for rocks is 1 - 100 GPa (Hatheway and Kiersch, 1989; Afrouz, 1992). We
vary the Young’s modulus in the stiffer layer from 10 GPa to 120 GPa while
keeping a constant Young’s modulus of 10 GPa in the softer layer.

Figure 5.4: Effect of Young’s modulus contrast on the fracture behaviour in a layered
rock. The fracture initiates from the middle layer which is softer (E1 =
10MPa,τult1 = 4MPa,ν1 = 0.2). The layer surrounding the mid layers are
stiffer with varying Young’s modulus as indicated on the figures.

From the reference case set presented in Table 5.1, for an ultimate tensile
strength contrast (Cτ) of 3, we observe the variation in fracture propagation
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with varying Young’s modulus contrast in Figure 5.4. We observe that the frac-
ture exhibits simple crossing across the layers for smaller contrast of Young’s
modulus and progresses to kink and deflect or turn for increasing contrasts. An-
other observation is that the fracture turning angle increases with the increase
in the contrast.

In order to understand the reason for this behaviour we need to look at the
in-situ stress state in each layer with varying contrast in Young’s modulus. The
stresses in the horizontal and the vertical directions at the centre of the layers
are listed in Table 5.2.

Table 5.2: Stress state in each layer for varying contrast in Young’s modulus

Young’s modulus
contrast (CE)

Stress in Hard
layer (in MPa)

Stress in Soft
layer (in MPa)

σx σy σx σy

1.0 -20.0 -20.0 -20.0 -20.0
2.0 -25.9 -21.3 -18.6 -20.8
3.0 -29.4 -21.9 -17.5 -21.1
4.0 -31.7 -22.2 -16.7 -21.2
5.0 -33.3 -22.4 -16.2 -21.3
6.0 -34.6 -22.6 -15.7 -21.3
7.0 -35.6 -22.7 -15.4 -21.3
8.0 -36.4 -22.8 -15.1 -21.4
9.0 -37.1 -22.9 -14.8 -21.4
10.0 -37.6 -22.9 -14.6 -21.4
12.0 -38.5 -23.0 -14.3 -21.4

The analogy for the layered rock formation can be a set of springs connected
in parallel so that they have the same deflection but varying loads depending o
the stiffness of each spring. When the layered rock formation is subjected to a
compressive load in the horizontal direction, the softer layer compresses more
compared to the stiffer layer. In-order to maintain continuity of strain across
the layers, the softer layer develops an induced tensile stress while the stiffer
layer develops an induced compressive stress. As the Young’s modulus contrast
increases, these induced stresses become more dominant. On the other hand,
the loading in the vertical direction has very little effect on the in-situ stresses
as it can be assumed to be set of springs connected in series. We can observe
from Table 5.2, that the in-situ stress state developed due to a high Young’s
modulus contrast between layers, prefers the fractures in the hard layer to be
oriented in the horizontal direction while those in the softer layer propagate
along the vertical direction.
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Ultimate tensile strength variation

The ultimate tensile strength in the stiffer layer(τult2) is varied from 4.0 MPa to
20.0 MPa causing a variation in the contrast from 1 to 5. Figure 5.5 represents
the variation in fracture behaviour with varying ultimate tensile strength con-
trast (Cτ) while having a uniform Young’s modulus contrast of 4. The variation
of the ultimate tensile strength has no bearing on the stress state in the layers
but simply delays the fracture turning process in the hard layer. This is due
to the fact that in stiffer layers with a higher ultimate tensile strength, more
stress difference is required to overcome the increased resistance and turn the
fracture from its initial inertial direction.

Figure 5.5: Effect of ultimate tensile strength modulus contrast on the fracture be-
haviour in a layered rock. The fracture initiates from the middle layer
which is softer (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2). The layer surrounding
the mid layers are stiffer with varying ultimate tensile strength as indicated
on the figures.

Poisson’s ratio variation

Table 5.3: Fracture behaviour in a layered rock (with a Poisson’s ratio of 0.1) propagat-
ing from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer with vary-
ing Young’s modulus and ultimate tensile strength contrast. (C-crossing,
D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C K K D D D D D D D D D D
2 C C C K K K D D D D D D D D
3 C C C C K K K K K D D D D D
4 C C C C K K K K K D D D D D
5 C C C C C K K K K D D D D D
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Table 5.4: Fracture behaviour in a layered rock (with a Poisson’s ratio of 0.3) propagat-
ing from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer with vary-
ing Young’s modulus and ultimate tensile strength contrast. (C-crossing,
D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C K D D D D D D D D D D D
2 C C K K K D D D D D D D D D
3 C C C K K K D D D D D D D D
4 C C C C K K K D D D D D D D
5 C C C C K K K K D D D D D D

The range of Poisson’s ratio in sedimentary rocks is limited from 0.2 to 0.35
(Jumikis, 1979; Jaeger et al., 2009). To understand the effect of Poisson’s ratio
variation across layers on the fractures in a layered rock formation, we consider
two cases with a Poisson’s ratio of 0.1 and 0.3. From the results in Tables 5.3
and 5.4, we can observe that the Poisson’s ratio variation has a very minor
effect on the fracture behaviour. An increase in Poisson’s ratio in the stiffer
layer causes a decrease in the compressive strain in the horizontal direction in
the stiffer layer. This in turn results in more induced horizontal stresses and
prefers the fractures to orient much more in the horizontal direction, while the
inverse is true for a reduced Poisson’s ratio.

5.3.2 Influence of reservoir properties

Next we look at the influence of reservoir level properties (non-material prop-
erties) on the fracture orientation in layered reservoirs.

Layer thickness

Table 5.5: Fracture behaviour in a layered rock (Effect of a Thicker layer) propagating
from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer with varying
Young’s modulus and ultimate tensile strength contrast. (C-crossing, D-
Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C C C C K K D D D D D D D
2 C C C C C C C K K D D D D D
3 C C C C C C C C K K D D D D
4 C C C C C C C C C K K D D D
5 C C C C C C C C C K K K K K
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Table 5.6: Fracture behaviour in a layered rock (Effect of a Thin layer) propagating
from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer with varying
Young’s modulus and ultimate tensile strength contrast. (C-crossing, D-
Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C D D D A A A A A A A A A
2 C C D D D D D D A A A A A A
3 C C K D D D D D D D D A A A
4 C C C K D D D D D D D D A A
5 C C C K D D D D D D D D D A

In all the previous cases, the rock formation had five layers with equal thick-
ness. However in real fields, the thickness of the layers vary drastically depend-
ing on the mineral deposition timeline. We consider two different cases a) the
softer layer with a thickness of 1 m is surrounded by stiffer layers of thickness
of 2 m each b) the softer layer has two adjoining stiffer layers with a thickness
of 0.4 m.

We can observe stark contrasts in the fracture behaviour with varying layer
thickness (Tables 5.1, 5.5 and 5.6). In the first case with thicker stiffer layers,
the overall stiffness of the layered rock formation is increased as a result, the
combined compressive strain of the rock formation is closer to the strain in the
stiffer layer. This results in a lowering of the induced compressive stresses in
the stiffer layer while increasing the induced tensile stresses in the softer layer
compared to the reference case. Hence the tendency of the fractures to turn in
the stiffer layers is reduced.

Figure 5.6: Effect of layer thickness on the fracture behaviour in a layered rock. Frac-
ture initiates from the middle layer which is softer (E1 = 10MPa,τult1 =
4MPa,ν1 = 0.2). The layer surrounding the mid layers are stiffer with a
Young’s modulus contrast of 6 and a ultimate tensile strength contrast of
2.
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For a test case with thin stiff layers, the induced compressive stresses in
the stiffer layers are much larger as the strain of the overall formation is closer
to the strain of the softer layer. Hence the fracture completely turns and gets
arrested in the thin stiff layers. This behaviour of fracture is depicted in Figure
5.6, which corresponds to a Young’s modulus contrast (CE) of 6 and a ultimate
tensile strength contrast (Cτ) of 2.

Lithostatic stress

There are two different scenarios for analysing the effect of lithostatic stress on
the fracture behaviour in layered rocks: a) Depth Effect: Variation of lithostatic
stresses in both directions b) Anisotropy effect: Variation of lithostatic stress
relative to one direction.

Table 5.7: Fracture behaviour in a layered rock (with a Lithostatic stress of 10 MPa)
propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer
with varying Young’s modulus and ultimate tensile strength contrast. (C-
crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C C K K D D D D D D D D D
2 C C C C K K K K D D D D D D
3 C C C C C C K K K D D D D D
4 C C C C C C K K K K D D D D
5 C C C C C C C C K K K K D D

Table 5.8: Fracture behaviour in a layered rock (with a Lithostatic stress of 30 MPa)
propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard layer
with varying Young’s modulus and ultimate tensile strength contrast. (C-
crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C K K D D D D D D D D D D
2 C C K K K D D D D D D D D D
3 C C C C K K K D D D D D D D
4 C C C C K K K D D D D D D D
5 C C C C C C K K D D D D D D

Depth effect To analyse the fracture behaviour with depth effect we consider
two test cases with a uniform lithostatic stress of 10 MPa and 30 MPa in both
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the directions which corresponds to depths of 400 m and 1200 m respectively.
From Tables 5.7 and 5.8, we can observe that the fracture turning behaviour is
predominant in deeper reservoirs. This is due to the fact that in shallow reser-
voirs the overburden stresses are lower, resulting in differences in the strain
between the layers and hence lower induced stresses. This results in fractures
remaining in its vertical plane until a much higher Young’s modulus contrast
between the layers.

Table 5.9: Fracture behaviour in a layered rock (with a Lithostatic stress contrast of
20%) propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard
layer with varying Young’s modulus and ultimate tensile strength contrast.
(C-crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C C C C K K D D D D D D D
2 C C C C C K K K K D D D D D
3 C C C C C C C C K K D D D D
4 C C C C C C C C K K K D D D
5 C C C C C C C C C C K K D D

Table 5.10: Fracture behaviour in a layered rock (with a Lithostatic stress contrast of
50%) propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard
layer with varying Young’s modulus and ultimate tensile strength contrast.
(C-crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C C C C C C C C C C C C C
2 C C C C C C C C C C C C C C
3 C C C C C C C C C C C C C C
4 C C C C C C C C C C C C C C
5 C C C C C C C C C C C C C C

Anisotropy effect The lithostatic stresses can also vary significantly in hori-
zontal and vertical direction. In general the vertical overburden stress is slightly
higher than the horizontal stresses. In this case, where the maximum compres-
sive stress is along the vertical direction, the fracture has a greater tendency to
align itself along the vertical direction. This phenomenon is shown in Tables
5.9 and 5.10. For significant anisotropies (>30%), i.e. when the differences
in the lithostatic stresses between the directions is much greater than the in-
duced stresses on the layers, the fractures always aligns in the vertical direction
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irrespective of the layering effect and the contrast in mechanical properties.

Bedding plane orientation

Figure 5.7: Effect of bedding plane orientation on the fracture behaviour in a lay-
ered rock.The fracture initiates from the middle layer which is softer
(E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2).

In this subsection, we look at the effect of bedding plane orientation on the
fracture behaviour. The bedding planes are oriented at 15o, 30o, 60o with re-
spect to the horizontal direction. When a uniform lithostatic stress is applied
in both the directions, the maximum compressive stress direction in the stiffer
layer is along the bedding plane orientation. As the bedding plane angle in-
creases, the fracture needs to turn by much smaller angles to align itself along
the maximum compressive stress direction. Hence for layers with steep bed-
ding plane orientation, the fractures are contained within the stiffer layer even
for small contrast in the rock material properties as seen in Tables 5.11, 5.12
and 5.13.

5.3.3 Effect of fracture initiation location

We invert the reference case to understand the fracture behaviour with the
change in the fracture initiation layer. In this test case, the fracture originates
in a stiffer layer and is surrounded by softer layers. The different fracture
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Table 5.11: Fracture behaviour in a layered rock (with a bedding plane orientation of
15o) propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard
layer with varying Young’s modulus and ultimate tensile strength contrast.
(C-crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C D D D D D D A A A A A A A
2 C D D D D D D D D A A A A A
3 C C D D D D D D D D A A A A
4 C C D D D D D D D D A A A A
5 C C D D D D D D D D D D A A

Table 5.12: Fracture behaviour in a layered rock (with a bedding plane orientation of
30o) propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard
layer with varying Young’s modulus and ultimate tensile strength contrast.
(C-crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C D D D D A A A A A A A A A
2 C D D D D D D D A A A A A A
3 C C D D D D D D D A A A A A
4 C C D D D D D D D D A A A A
5 C C D D D D D D D D D A A A

Table 5.13: Fracture behaviour in a layered rock (with a bedding plane orientation of
60o) propagating from a soft (E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2) to a hard
layer with varying Young’s modulus and ultimate tensile strength contrast.
(C-crossing, D-Deflection, K-Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C D D D A A A A A A A A A A
2 C D D D D D D A A A A A A A
3 C D D D D D D D A A A A A A
4 C D D D D D D D D D A A A A
5 C D D D D D D D D D D A A A

behaviours associated with this test case are: Crossing ( denoted by C with
white colour), Kinking (K with yellow colour), Arrest (A with red colour). This
is represented in Table 5.14 and Figure 5.8.
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Figure 5.8: Different fracture behaviours when propagating from a harder layer to a
softer layer. The fracture initiates from the middle layer which is stiffer and
propagates to the surrounding softer layers (E1 = 10MPa,τult1 = 4MPa,ν1 =
0.2).

Similar to the observations by Gu et al.(Gu et al., 2006), we can see from
Table.5.14 that the fracture height containment in the harder layer when it
is surrounded by the softer layers. This is because the induced stresses vary
within each layer. There is a higher induced compressive stress in the hori-
zontal direction closer to the interface on the side of the harder layer. Hence
fracture propagation is much more favourable in the horizontal direction.

Table 5.14: Fracture behaviour in a layered rock when propagating from a hard layer
with varying Young’s modulus and ultimate tensile strength contrast to a
soft layer(E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2).(C-crossing, D-Deflection, K-
Kinking, A-Arrest)

Young’s modulus contrast (CE)
1 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 12

τ
u

lt
co

nt
ra

st

1 C C C C C C C C C D D D A A
2 C C C C C C C C C C C D D A
3 C C C C C C C C C C C C C D
4 C C C C C C C C C C C C C C
5 C C C C C C C C C C C C C C

5.3.4 Effect of a thin layered formation

In all of the above considered cases the layered heterogeneity is considered at
a metre scale level. However experimental observations show layering effect
even at centimetre and millimetre scale (Passey et al., 2010; Mokhtari et al.,
2014). Hence in this example we consider fracture propagation in a reservoir
with multiple layers with each layer having a thickness of 20 cm.

The strain across this thin layered formation is more continuous than the
thick layered formation. This causes the strain differences and the induced
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stresses between the layers appear to be significantly lower. As a result, the
fracture turning process is delayed. But the continuous change from small
deflection in the stiffer layer and crossing behaviour in the softer layer causes
the fracture to have a deflection with several kinks. This becomes a critical
issue for the transport of the proppants. Proppants need enough aperture for
them to access the fracture tip from the point of injection. This is severely
affected due to the presence of such large number of kinks.

Figure 5.9: Fracture behaviours in a thin layered formation with each layer having
a thickness of 20cm. The softer layers are with the following material
properties E1 = 10MPa,τult1 = 4MPa,ν1 = 0.2. While the stiffer layers have
varying Young’s modulus as indicated in the figures.

5.4 Comparison with experiments and field observa-
tions

It is difficult to validate these numerical models by comparing them to the
field observations by any quantitative measure i.e. fracture length, fracture
width. The real fields are formed through thousands of years which subject
them to a variety of environmental conditions, resulting in different residual
stresses, pre-existing fracture network all of which cannot be accounted for in
a numerical model and predict an accurate quantitative measure. However
it is possible to have a qualitative comparison of the numerical models with
the experiments and the field observations. In the following example Brenner
and Gudmundsson (2004) observed an outcrop from Kilve, UK with alternating
layers of shale and limestone. The fracture network as interpreted by Boersma
et al. (2019) shows that there are several fractures which originate inside the
stiffer limestone layer do not propagate into the softer shale layers and tend to
be arrested at the interface. The numerical models observe similar trends from
Figure 5.8 and also from the Table 5.14. Although Table 5.14 predicts that
the arrest occurs only at high mechanical contrasts between layers, it would
be possible to have arrest at lower contrasts as well when the thickness of the
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softer layer is much higher than the stiffer layer as is the case with this field
observation.

Figure 5.10: Interpreted fracture network on an outcrop in Kilve, UK consisting of
alternating layers of stiff limestone and soft shales. Most of the fractures
are found to be arrested in the boundary between the stiff and the soft
layer.

Figure 5.11: Comparison of numerical and experimental results of hydraulic fracture
propagation in layered rocks from a stiffer layer into a softer layer. Prop-
agation of hydraulic fracture from a) stiffer low porosity Fontaine Bleau
(LFB) into softer high porosity Fontaine Bleau (HFB) b) stiffer HFB into
softer Bentheimer Sandstone c) stiffer to softer layer in the MELP numer-
ical model.

van Oosterhout (2019) has conducted hydraulic fracture experiments on
artificially layered rocks with different mechanical contrasts. The hydraulic
fractures are initiated at an indent on the top layer and propagated via water
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injection in a triaxial cell. In Figure 5.11a, we observe a rock with alternating
layers of stiffer low porosity Fontaine Bleau (LFB) and softer high porosity
Fontaine Bleau (HFB) where the fractures initiate in the top LFB layer. The
fractures are observed to deflect in the stiffer layer and become vertical in the
softer layer. A similar behaviour of fracture is also observed in Figure 5.11b
with alternating layers of stiffer high porosity Fontaine Bleau (HFB) and softer
Bentheimer Sandstone. The numerical model shows a similar trend in Figure
5.11c, where the fracture initiated in the stiffer layer is deflected from the
vertical direction in the stiffer layer but propagates in the vertical direction
when they cross the interface into the softer layer.

5.5 Effect of Inclusions

Figure 5.12: (left) Inclusions in sandstone rocks from the upper part of of the Birket
Qarun Formation at Gabal El-Lahun, Egypt. (Courtesy: Wanas Wanas
(2008)). (right) Nodules developed in siltstone rocks of Talchir Formation
in Dudhi Nala section, India. (Courtesy: Bhattacharya et al. Bhattacharya
et al. (2002))

Inclusions are localised concentrations of authigenic mineral species (carbon-
ate, silica, etc..) in a host rock Selles-Martinez (1996). These are commonly
seen in the field observation of rocks as seen in Fig.5.12. Depending on the
size, shape and composition of the inclusion bodies, they are classified as ce-
mentations, nodules, veins, inclusions. Due to the precipitation of minerals
at specific locations in the rocks, they have a different composition and hence
different material properties when compared to the surrounding rock material.

In this section, we try to model the behaviour of a hydraulic fracture in a
rock with inclusions. We make use of a KGD like problem for this study as
shown in Fig. 5.13. The host rock is assumed to have a Young’s modulus of 40
GPa and a Poisson’s ratio of 0.2. The ultimate tensile strength and toughness
of the rock is 4 MPa and 120 N/m respectively. The porous rock is assumed
to have a porosity of 0.1 and a permeability of 10−19m2. To represent the
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inclusions we have varied the Young’s modulus for certain patches in the rock
as seen in Fig. 5.14. The formation is injected with a fluid having a viscosity of
0.01 Pa.s for 20 seconds.

60
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Figure 5.13: Hydraulic fracture problem with inclusions

Fig.5.14 a) illustrates the fracture propagation in an isotropic rock forma-
tion without any inclusions resulting in a fracture that propagates in the hori-
zontal direction without any deflection. Fig.5.14 b) and c) shows the fracture
propagation in the presence of inclusions which are harder than the rock for-
mation. It can be seen that the fracture tends to move towards the inclusions
and this tendency increases with the increase in the ratio of the Young’s mod-
ulus. On the contrary Fig.5.14 d), e) and f) shows the fracture to move away
from the the inclusions which are softer.

The reason for this nature in the behaviour of the fracture is due to the in-
duced stresses developed in the two material system with contrasting Young’s
modulus. When the system with hard rock and a soft inclusion is subject to
a compressive loading, the softer inclusions tend to compress much more rel-
ative to the rock due to its lower Young’s modulus. But since the inclusions
and the rock are interconnected, the rocks have to compress more than they
compress in an isotropic scenario and the vice versa for inclusions. This causes
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Figure 5.14: Behaviour of hydraulic fractures in the presence of inclusions.

an induced compressive stress in the rock in the region surrounding the inclu-
sions. This additional induced compressive stress in the rock in the vicinity of
a inclusion rock boundary creates a stress state that favours the fracture to go
around the inclusions instead of propagating through them.

The presence of several inclusions in the rocks causes the fractures to have
a torturous pathway which may result in difficulty in transport of proppants.

5.6 Multi-stage Hydraulic fracturing

The purpose of hydraulic fractures to enhance the permeability of unconven-
tional reservoirs cannot be served with the help of a single fracture. In the
engineering practice, the formation is drilled horizontally and with the help
of plugs and perforatators tens to hundreds of fractures are created, clustered
in several stages, to form a network of fractures which provide an alternate
pathway for the flow of fluid. Each stage consists of a group of fractures which
are spaced at regular intervals, where the growth of one fracture has an influ-
ence on the other due to stress redistributions. Hence it is vital to model this
fracture network effect to understand the real implications of the presence of
anisotropy and heterogeneity in the rocks.

In this example, we model a three stage hydraulic fracturing in a rock for-
mation of 100 m × 100 m with a horizontal wellbore of diameter 1 m along
the centre of the formation as seen in Fig.5.15 . Each stage consists of three
fractures spaced 1 m apart from each other and the stages are separated by 5
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m. Each fracture is injected with a fracturing fluid with a viscosity of 0.01 Pa.s
for 20 seconds with a time step of 0.2 seconds. A compressive field of 20 MPa is
applied in both the horizontal and the vertical directions. The formation has a
Young’s Modulus of 20 GPa and a Poisson’s ration of 0.2, with a ultimate tensile
strength of 6 MPa and a toughness of 120 N/m. The rock is assumed to have a
porosity of 0.1 and a permeability of 10−19m2.

Figure 5.15: Three stage hydraulic fracture model with a well bore at the centre. On
the right is a zoomed image of the region of interest showing the propa-
gation of hydraulic fractures in isotropic, anisotropic and heterogeneous
reservoir conditions

Under isotropic conditions, we observe a stress shadowing effect where the
central fracture grows much longer compared to the outer fractures in every
stage as seen in Fig.5.15. All three fractures in a single stage tend to grow
simultaneously initially, after some time the expansion in the width of the two
outer fractures causes the width of the central fracture to reduce. This thin
width at the fracture mouth causes the fluid pressure, under constant injection
rate, to raise which in turn helps the vertical growth of the central fracture.
The effect of one stage on the other appears to be minimal since they are far
apart from each other.

These isotropic conditions are perturbed to create an anisotropic field as de-
scribed in Chapter 4. An anisotropy of 40% refers to condition when the value
perpendicular to the grain orientation direction is 60% of the value parallel
to the grain orientation direction. Similarly the current anisotropic problem is
assumed to have an ultimate tensile strength anisotropy of 50% and a Young’s
modulus anisotropy of 50%. The grain orientation direction is assumed to be
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40◦ to the horizontal. The anisotropy in the lithostatic stress field (vertical to
horizontal) is assumed to be 20%. In Fig.5.15, we observe the behaviour of
the multi-stage hydraulic fracture problem under these conditions. All the frac-
tures tend to rotate and align themselves along the grain orientation direction,
which inturn also diminishes the previously observed stress shadowing effect.
Compared to an isotropic fracture network subject to same injection rates, we
observe that the fractures achieve similar vertical heights but with increased
length due to their orientation. But the turning nature of the fracture also
leads to sharp kinks which would act as bottlenecks for fluid and proppant
transport through the fracture.

The heterogeneity case is modelled with a stiff layer of 0.5 m thick and
has a Young’s modulus of 100 GPa and an ultimate tensile strength of 12 MPa.
Although both the layers are homogeneous individually, this causes a heteroge-
neous reservoir condition. When the fracture network propagates in such het-
erogeneous conditions, all the fractures get arrested along the stiffer layer. This
causes a hydraulic fracture height containment which cannot be understood by
a model assuming isotropy. This arresting of fracture makes it impossible to ex-
tract oil and gas from the entire reservoir as all the fractures are concentrated
in one single layer.

The objective of this example is to understand the behaviour of fracture
networks and the effect of anisotropy and heterogeneity in the rocks. The
real field scale scenario would have a much higher fracture spacing and stage
spacing with a longer injection time making the fractures grow much longer.
The scaled down version has been used since the cohesive-zone model is con-
strained by the fact that there needs to be at least 2-3 elements in the cohesive
zone (~157 mm) for its proper functioning. To be able to up-scale the simula-
tion to the real field scale with the constraint on the mesh size, the code needs
to be parallelised.

5.7 Conclusion

In this chapter, propagation of a hydraulic fracture in a reservoir with discrete
and layered heterogeneity is studied. Fractures are observed to cross, kink,
deflect or get arrested in a reservoir with strong layer interfaces. The Young’s
modulus contrast between the layers is the most important parameter in a lay-
ered reservoir with higher contrast causing the fracture to deviate from its ini-
tial path. This phenomenon is observed in an enhanced manner in deeper
reservoirs with less stress anisotropy. Thin layers of stiff rock were observed
to act as barriers for fracture propagation across layers. These barriers tend
to become stronger with an increase in the bedding plane orientation. The
inclusions which are stronger than the surrounding host rock tend to attract
the fractures towards them whereas the softer inclusions were found to deflect
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the fractures away from them. In the final example, a multi-stage hydraulic
fracture network problem is investigated in an isotropic, anisotropic and het-
erogeneous layered reservoir.





Chapter 6
Conclusions

The objective of this thesis is to have a better understanding of hydraulic frac-
ture propagation to create fractures in an efficient way which enhances the
productivity of the reservoir and reduces the environmental impacts. To this
extent, we have developed a numerical model which can simulate hydraulic
fracturing in rocks which are anisotropic and heterogeneous in nature. The
newly formulated model is based on the Enhanced Local Pressure (ELP) pro-
posed by Remij et al. (2015a) but takes into account the reservoir pore pressure
increase due to fracture leak-off. In this way a more realistic fracture model is
obtained, especially for more permeable formations. The two-dimensional nu-
merical model is based on extended finite element (XFEM) method and makes
use of the Biot theory of poro-elasticity and Darcy’s law for fluid flow through
porous media.

6.1 Conclusions

In Chapter 2, a parametric study on the standard Khristianovich-Geertsma-de
klerk (KGD) problem is conducted with the help of the ELP model. As expected
the controllable parameters such as fracture fluid viscosity and the injection
flow rate had a large influence on the fracture propagation. The parametric
study was also conducted with several uncontrollable parameters which are
based on the material properties of the rocks. Among them, Young’s mod-
ulus and ultimate tensile strength were found out to be the most important
parameters affecting fracture propagation. This study identified the dominant
parameters which can be perturbed in the further chapters to understand the
anisotropy and heterogeneity effects.

In Chapter 3, we propose a modified enhanced local pressure (MELP) model
that can be used for the accurate modelling of the hydraulic fracturing process
in permeable rocks, such as sandstones, while still retaining the advantages
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proposed in the ELP model for modelling of near impermeable rocks, such as
shales. The pressure gradient near the fracture surface is obtained analytically
using Terzaghi’s consolidation equation thereby eliminating the need of a fine
mesh in the region. The MELP model accurately resolves the pore pressure dis-
tribution in the rock formation surrounding the fractures. This is demonstrated
by comparing the MELP solution for a 1-D consolidation problem with the ana-
lytical approximation. The MELP model also significantly improves the leak-off
prediction by coupling the fluid leak-off with the pressure in the formation.
The effect of this improved leak-off model on a single fracture and a cluster of
hydraulic fractures is demonstrated with the help of numerical examples. The
MELP model is particularly advantageous for heterogeneous rocks with highly
varying permeability layers and modelling of thief zones (i.e. thin layers of
relatively high permeability) within the reservoir. In these scenarios, the MELP
model can be used with a uniform mesh across the layers irrespective of the
permeability differences.

Chapter 4 discusses the effect of anisotropy on hydraulic fractures. A new
criterion for fracture propagation in anisotropic porous media is proposed by
combining the Tsai-Hill failure criterion with the Camacho-Ortiz propagation
criterion. The orientation of the grains along a plane caused by weathering,
erosion was considered to be the source of anisotropy in the material proper-
ties. Introducing an anisotropic Young’s modulus results in fractures orienting
perpendicular to the grain orientation direction, while anisotropic ultimate ten-
sile strength tends to orient the fractures along the grain orientation direction.
The anisotropy in the in-situ stresses causes the fractures to propagate parallel
to the maximum stress direction. The final orientation of the fracture is depen-
dent on the different degree of anisotropies in all these parameters and also
on the angle between the grain orientation direction and the initial fracture
orientation. By varying the degree of anisotropy in each of these parameters
along with the grain orientation direction, different regimes were identified in
which the anisotropy in the material properties influence the fracture orienta-
tion more than the in-situ stress anisotropy.

In Chapter 5, we model the propagation of hydraulic fractures in layered
heterogeneous reservoirs. The model assumes that the bonds between the dif-
ferent layers are strong enough to ensure that interfacial fractures are not ini-
tiated. The layered nature of the reservoir causes the fracture either to cross,
kink, deflect or arrest when it encounters an interface. Out of these four phe-
nomena, the specific behaviour of a fracture is dependent on the differences
in the material properties (Young’s modulus and ultimate tensile strength) be-
tween the layers and also on the reservoir properties (layer thickness, in-situ
stresses and bedding plane orientation). An increase in the contrast in Young’s
modulus causes the fractures to increasingly deflect or get arrested in the stiffer
layers. This phenomenon is enhanced when the relatively stiffer layers are thin-
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ner and present in deeper reservoirs (higher in-situ stresses). The fracture path
is modelled in the presence of inclusions which are local concentrations of min-
erals. The fractures were observed to move towards these inclusions when they
are harder than the rock formation and move away from the inclusions which
were softer. These localised effects are observed only when the fracture tip is in
the vicinity of an inclusion. We also simulate a multi-stage hydraulic fracture
scenario in isotropic, anisotropic and heterogeneous reservoir conditions to ex-
hibit the versatility of the model. We observe that both the individual fracture
propagation as well as the fracture network formation is significantly affected
by the presence of anisotropy and heterogeneity.

6.2 Outlook

While the current work makes progress towards simulating hydraulic fractur-
ing in realistic reservoir-like conditions, there are still several significant chal-
lenges. The first and foremost being extending the current two-dimensional
model to a three dimensional framework. Complications arise in tracking of
the fracture surfaces and the fracture propagation front when extending an
extended finite element model to a 3-D framework. Several works (Sethian,
1996; Moës et al., 2002; Sukumar et al., 2003) make use of level sets to over-
come this problem. 3D hydraulic fracture models with various constraints were
proposed by Gupta and Duarte (2016), Remij (2017) and Dontsov and Peirce
(2017). Modelling of the flow within the 3-D volume of the fracture with mov-
ing boundaries has been challenging due to the presence of kinks which needed
to be smoothened (Gupta and Duarte, 2016). Constraints on the mesh size are
imposed by the cohesive zone model which requires at least two to three el-
ements in the cohesive zone region (Barenblatt, 1962). In order to overcome
this constraint and up-scale the model, we need to parallelize the code to ob-
tain the simulations results in a reasonable computational time.

The effects of anisotropy and heterogeneity on hydraulic fractures were
studied in Chapter 4 and 5 respectively. The current study was conducted
on a parametric space by perturbing the isotropic values observed in whitby
mudstone. It would be helpful to extend the study for other reservoirs like
Marcellus, Bakken, Barnett shale (Vermylen, 2011; Druyff, 1990; Sone and
Zoback, 2013). In the future work, the model can be used in combination with
experimental data of the rock material properties which are anisotropic and
heterogeneous instead of perturbing isotropic values. The challenge lies in the
fact all the required experimental data for the simulation cannot be obtained
from one single study. We have to collate the data for a specific rock type from
various literatures.

Observing the hydraulic fracture patterns in a layered reservoir in Chap-
ter 5 leads to interesting observations. While we can explain the phenomena
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of crossing, deflection and arrest, the reason for the kinking patterns remain
unexplained. It is always observed in the transition from fracture crossing to
fracture deflection. One explanation could be that the stress field is simply
not strong enough to deflect the fracture and determine its direction, so that a
wavy pattern occurs. The study could be extended to weakly bonded layers by
adding another possible fracture propagation path along the interfaces of the
layers. It is also extremely important to validate these observations from the
numerical models by comparing them with experimental work.

A better fluid flow model in the fracture tip vicinity along with investigation
on the presence of a fluid lag near the tip is vital to get an accurate hydraulic
fracture model. The current model makes use of a cubic law to describe the
flow in the fracture. This does not hold well in the cohesive zone region near
the fracture tip. The current model assumes single fluid flow, but multi fluid
(fracking fluid, pore fluid) flow could be included in future work.



Appendix A
Expression for matrices in the
MELP solution

In this appendix we present computation of the matrices used in the final solu-
tion (Eq. 3.45)

J ûû =
∫
Ωe

B TC B dΩe J ûũ =
∫
Ωe

HΓd B TC B dΩe

J ûp̂ =−
∫
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∫
Γd

hN TndV dΓd

J p̂û =−
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J p̂pd = 2Ca

∫
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∫
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∫
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f ext
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ũ =J ũû(θût+4t

j−1 + (1−θ)ût) + J ũũ(θũt+4t
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pdũ)4t + J (7)
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pdũ)(θũt+4t
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Appendix B
Final fracture orientation angles
for varying anisotropy ratios

In this appendix we provide the final fracture orientation angle with respect
to the horizontal (x-axis) due to various anisotropies, which was used in the
contour plots.
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Table B.1: Degree of material anisotropy Vs Degree of stress anisotropy (for Grain orientation:0o).

Material DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

St
re

ss
D

O
A

(i
n

%
)

0 90 90 90 90 90 90 90 90 90 90 11 13 13 11 10 10
5 90 90 90 90 90 90 90 90 90 90 17 18 17 17 17 13
10 90 90 90 90 90 90 90 90 90 90 90 26 26 22 21 21
15 90 90 90 90 90 90 90 90 90 90 90 90 31 31 32 31
20 90 90 90 90 90 90 90 90 90 90 90 90 88 88 88 88
25 90 90 90 90 90 90 90 90 90 90 90 90 90 89 88 87
30 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89
35 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
40 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
45 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
50 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89
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Table B.2: Degree of material anisotropy Vs Degree of stress anisotropy (for Grain orientation:30o).

Material DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

St
re

ss
D

O
A

(i
n

%
)

0 90 115 115 37 37 36 36 35 34 33 33 33 32 32 31 32
5 90 114 115 115 40 40 40 39 40 39 38 38 37 36 36 34

10 90 113 113 113 45 45 45 45 45 45 44 45 43 43 42 44
15 90 111 112 112 112 48 49 49 49 49 51 52 51 51 52 50
20 90 111 111 111 111 111 54 54 56 55 56 56 57 58 58 62
25 90 109 110 110 110 110 110 109 109 109 109 57 62 63 63 64
30 90 109 109 109 109 109 109 109 109 109 109 109 60 64 65 66
35 90 108 108 108 108 108 109 109 109 109 108 108 108 66 68 68
40 90 108 108 108 108 108 108 108 108 108 108 108 108 80 88 88
45 90 107 107 107 107 107 97 97 97 97 107 107 107 101 84 83
50 90 107 106 107 97 97 97 97 97 97 107 107 99 99 82 83
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Table B.3: Degree of material anisotropy Vs Degree of stress anisotropy (for Grain orientation:60o).

Material DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

St
re

ss
D

O
A

(i
n

%
)

0 90 65 65 65 65 65 65 66 66 66 66 67 67 67 67 69
5 90 66 66 67 66 67 67 67 67 67 68 68 68 68 69 69
10 90 67 68 68 68 68 68 68 68 69 69 69 69 70 72 72
15 90 70 69 69 69 69 69 69 70 70 70 70 70 72 72 77
20 90 69 69 70 70 70 71 71 71 72 71 72 74 74 74 74
25 90 70 71 71 72 71 71 72 72 72 73 74 74 74 77 75
30 90 71 71 72 72 72 72 73 73 74 74 74 74 74 75 76
35 90 72 72 72 72 73 74 74 74 74 72 72 75 75 76 77
40 90 72 73 73 73 74 74 74 74 75 75 75 76 76 76 77
45 90 73 73 73 74 74 74 75 75 75 76 76 76 77 77 77
50 90 73 74 74 74 74 74 74 75 76 76 76 77 77 77 77
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Table B.4: Degree of Young’s modulus anisotropy Vs Degree of ultimate tensile strength anisotropy (for Grain orientation:0o).

Young’s modulus DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

U
lt

im
at

e
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th

D
O

A
(i

n
%

)

0 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
5 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
10 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
15 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
20 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
25 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89 89
30 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89
35 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
40 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
45 90 90 90 90 90 90 90 90 90 90 90 90 11 11 11 89
50 16 12 12 12 15 15 15 15 15 11 11 11 11 11 11 11
55 15 12 15 15 15 15 15 15 12 12 12 13 11 11 13 13
60 13 12 12 12 12 12 12 12 12 12 12 12 13 12 11 12
65 13 12 12 12 12 12 13 12 12 12 11 11 11 11 12 12
70 13 11 12 12 12 12 13 12 12 11 11 11 11 12 10 10
75 12 12 12 12 12 12 12 12 12 12 12 13 10 11 11 10
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Table B.5: Degree of Young’s modulus anisotropy Vs Degree of ultimate tensile strength anisotropy (for Grain orientation:30o).

Young’s Modulus DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

U
lt

im
at

e
te
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ile

st
re

ng
th

D
O

A
(i

n
%

)
0 90 115 115 116 118 118 119 119 120 120 121 122 123 123 126 127
5 90 115 115 116 118 118 119 119 120 120 121 122 123 123 126 127

10 90 115 115 116 116 118 119 119 120 120 121 122 123 123 125 127
15 38 37 37 37 36 36 118 119 120 120 121 122 122 123 125 127
20 38 37 37 37 37 36 35 34 34 120 37 121 122 123 125 127
25 38 37 37 37 37 36 35 34 34 33 33 33 122 123 125 127
30 38 38 37 37 37 36 36 35 34 33 33 33 122 123 125 126
35 39 38 37 37 37 36 36 35 34 34 33 33 33 123 124 125
40 39 38 37 37 37 36 36 35 34 33 33 33 33 33 123 125
45 39 38 37 36 37 36 36 35 34 33 33 33 33 33 123 124
50 39 38 37 37 37 36 36 35 34 34 33 33 33 33 122 123
55 39 38 37 37 37 36 36 34 34 34 33 33 33 32 32 31
60 39 38 37 37 37 36 36 35 35 34 33 33 32 32 31 31
65 39 38 37 37 37 36 35 36 34 34 33 33 33 32 32 31
70 39 39 38 37 37 36 35 36 35 34 34 33 32 33 31 31
75 38 38 37 37 36 36 36 35 35 34 34 33 33 33 31 32
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Table B.6: Degree of Young’s modulus anisotropy Vs Degree of ultimate tensile strength anisotropy (for Grain orientation:60o).

Young’s Modulus DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

U
lt

im
at

e
te
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re

ng
th

D
O

A
(i

n
%

)
0 90 90 90 90 90 90 90 90 90 90 147 147 149 149 149 149
5 65 65 65 65 65 65 65 65 65 65 66 66 149 149 150 150

10 65 65 65 65 65 65 65 65 65 65 66 66 66 68 68 68
15 65 65 65 65 65 65 65 65 65 66 66 67 67 68 68 68
20 65 65 65 65 65 65 65 65 66 66 66 67 67 67 68 68
25 65 66 65 65 65 65 65 65 66 65 66 67 68 68 68 73
30 66 66 66 66 65 65 65 66 65 65 65 66 66 67 68 76
35 66 65 65 65 65 65 65 66 66 65 66 66 66 67 71 71
40 66 66 66 65 65 65 65 66 66 66 65 67 66 67 68 68
45 66 66 66 66 66 66 66 66 66 66 65 66 66 67 68 69
50 65 65 66 66 66 65 66 66 65 65 66 67 66 67 68 69
55 65 66 66 66 66 66 65 66 66 66 67 67 66 67 68 69
60 66 66 66 66 65 66 65 65 66 66 67 66 67 66 68 69
65 66 66 66 66 66 65 66 66 66 66 68 66 68 67 67 69
70 66 66 66 66 66 65 66 66 67 68 67 67 68 71 67 69
75 67 66 67 66 66 66 67 66 68 67 66 67 67 73 73 69
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Table B.7: Degree of material anisotropy Vs Grain orientation.

Material DOA (in %)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

G
ra

in
or
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nt

at
io

n

0 90 90 90 90 90 90 90 90 90 90 11 13 13 11 10 10
10 90 99 99 99 99 99 99 20 20 20 20 16 17 18 17 17
20 90 107 107 107 23 26 26 26 26 26 26 26 26 25 25 23
30 90 115 115 37 37 36 36 35 34 33 33 33 32 32 31 32
40 90 46 46 45 45 45 44 44 43 44 43 42 42 42 42 45
50 90 55 55 55 56 56 55 55 54 54 55 56 56 56 56 58
60 90 65 65 65 65 65 65 66 66 66 66 67 67 67 67 69
70 90 74 73 73 73 74 74 74 74 74 74 75 77 77 77 81
80 90 82 82 82 82 83 83 83 83 83 84 84 84 85 85 86
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
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