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Summary

Experimental full-field assessment of kinematical and imaging fluctuation

patterns

For experimental studies of the mechanical performance of materials, it is essential

to quantify the spatial variation of deformations which may occur even if the loading

is more or less uniform. Often these deformation fields contain a significant amount of

information that may be correlated over large distances compared to the typical length

scale of the microstructure. Metamaterials, which are materials with a microstruc-

tural design to exhibit exotic behaviours, are an example that reveal such correlated

fields. The architectured mechanical behaviour of metamaterials is based on the local

kinematics at the scale of the microstructure exhibiting fluctuation patterns with long-

range correlations. Spatially correlated patterns are not limited to mechanically induced

fields, but can also be rooted in the experimental methodologies used for the kinematical

assessment of materials. When images of a specimen are used to obtain full-field kine-

matic measurements during in-situ mechanical tests, distortions in the images introduce

errors in the evaluated kinematics. These errors, e.g. due to image distortions, origi-

nate from the imaging systems used and may thus exhibit systematic patterns, which

are therefore correlated over long ranges as well. Experimental identification of each

of these types of spatially correlated fields, due to the measurement method or due to

the mechanics of the material, is of great importance, as it allows one to significantly

improve the accuracy of the measurement or to develop a better understanding of the

mechanics, or in fact both. In this thesis, two cases are studied: (i) identification of

Scanning Electron Microscopy (SEM) imaging distortions for full-field kinematic mea-

surements, in order to minimize the distortion-induced errors, and (ii) identification of

instability-induced patterns in cellular metamaterials, for better microstructural analy-

sis and design. To this end, Digital Image Correlation (DIC) is exploited and extended

as a full-field kinematical assessment method.

Considering the limitations of optical microscopy, high resolution imaging techniques

such as SEM are important for experimental full-field kinematical assessments at micro

and nano scales. SEM images are constructed based on a scanning process, leading to

complex imaging fluctuation patterns, so-called imaging distortions. One group of SEM

distortions is scan line shifts, which are localised shifts in the images parallel to the

scanning direction. Such imaging fluctuations are easily mistaken for kinematic fluctua-

tions, unless corrected for. An enriched DIC method, parameterizing the measurement
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with smooth step functions, is developed and it is employed to identify this particular

and challenging type of distortion and correct the SEM images. Successful identification

and correction is achieved for SEM images (real and virtually generated) even with a

rather high number of line shifts and large amplitudes (Chapter 2).

SEM images are not only affected by line shifts but also by spatial distortion and

drift distortion. In order to attain reliable high-resolution measurements of kinematical

fluctuation patterns using SEM-DIC, all three types of distortions should be identified

and corrected for. By extending the methodology introduced for line shifts, a novel

Integrated Digital Image Correlation (IDIC) scheme is developed, which integrates an

SEM imaging model with the kinematic measurements of DIC, based on a composi-

tion of mapping functions. Each mapping function describes a part of the imaging and

the mechanical deformation involved in an in-situ mechanical test in the SEM. This

IDIC scheme, accompanied by a proper measurement procedure, enables an indepen-

dent assessment of the imaging fluctuations and the kinematics, and thus to minimize

the distortion errors. Virtual experiments show that the proposed method successfully

removes the distortion-induced errors to attain the accuracy expected from DIC for the

kinematic measurements. Application to real SEM images also proves to be effective

in the proper measurement of SEM imaging fluctuation patterns, enabling accurate

characterization of kinematical fluctuation patterns (Chapter 3).

Cellular elastomeric metamaterials exhibit a patterned deformation field under a

critical compressive load, due to microstructural buckling. This pattern, which involves

large local rotations, is significantly constrained by the boundary conditions applied,

which lead to the formation of large boundary layers. A recent numerical study revealed

a significant size effect in the global response of such metamaterials due to these thick

boundary layers. To experimentally validate the size effects and their dependence on the

boundary layers, custom-made moulds are used to manufacture meso-scale specimens

(with a millimetric microstructural characteristic length), varying their overall size while

keeping the microstructural feature size constant. In-situ mechanical compression tests

under an optical microscope are combined with DIC to produce high-resolution full-

field measurement of the underlying kinematic fields. The results show the effect of the

specimen size on its global behaviour, as well as the boundary layers as predicted by

the prior numerical study (Chapter 4).

In order to identify the long-range correlated fluctuations in cellular metamaterials,

a well-defined decomposition of the displacement field into a smooth part, a correlated

fluctuation field, and an uncorrelated fluctuation field is needed. To this end, the novel

micromorphic IDIC methodology based on a kinematic ansatz proposed in a recent

study is developed. A procedure is proposed for the proper regularization of the kine-

matics such that the correlated fluctuation modes as well as their spatial distribution

are identified in a single minimization step. The methodology is tested on both virtual

and on the real in-situ experiments of the previous chapter, showing good robustness

and accuracy (Chapter 5).
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Chapter 1

Introduction

1.1 Scientific Background

For analysing the mechanical performance of materials, it is often essential to visualize

and quantify the spatial variation of deformations. In many cases, the deformation fields

contain a significant amount of information that is correlated in space, i.e. their spatial

variation is not of a random nature and correlations can be found between values in ma-

terial points at a distance from each other. The range of these correlations depends on

the macro and micro length scales of the problem, i.e. the macroscopic size of the speci-

men and the characteristic length of the microstructure of the material. Such long-rage

correlated fields have been observed in different materials, in particular those with an

architectured microstructural design exhibiting properties not found in nature, better

known as metamaterials. Through a careful design of metamaterials, the morphology of

the microstructure triggers an exotic mechanical response that can be exploited in ded-

icated applications. The architectured mechanical behaviour of metamaterials is based

on the local kinematics at the scale of the microstructure exhibiting fluctuation patterns

with long-range correlations. Another marked example of correlated fields is the cases

where deformation in a material localizes in space, typically revealing a narrow band in

which the deformation is considerably higher than in neighbouring areas. Such localized

fields exhibit fluctuations in the kinematics that are correlated over large distances as

well. Spatially correlated patterns are not limited to mechanically induced fields and

can be rooted in the experimental methodologies used for the kinematical assessment of

materials. When images of a specimen are used to obtain full-field kinematic measure-

ments during in-situ mechanical tests, distortions in the images introduce errors in the

evaluated kinematics. These errors, i.e. image distortions, originate from the imaging

systems used and thus exhibit systematic patterns, which are therefore often correlated

over long ranges as well.

Experimental identification of these spatially correlated fields is of great importance,

whereby the identified fields are exploited for different purposes depending on the nature

of the correlated patterns. Two important examples are considered in this thesis:

(i) Image distortions arising from the applied experimental methodologies, where the

1



1. Introduction 2

independent identification of the error fields is of utmost importance, so that

they can be adequately removed from the actual kinematic fields, minimizing

measurement errors;

(ii) deformation patterns arising inside materials with an intrinsic microstructure, such

as metamaterials, where the identified correlated kinematic patterns are exploited

for a proper analysis and design.

This thesis aims at developing methodologies to independently identify spatially cor-

related patterns/fluctuations from data acquired during in-situ mechanical tests, with

focus on imaging distortion patterns in Scanning Electron Microscopy (SEM) images

and instability-induced patterns in cellular metamaterials. To this end, Digital Im-

age Correlation (DIC) is exploited and extended as a full-field kinematical assessment

method.

Digital Image Correlation

Different full-field displacement measurement techniques such as the grid method [1] or

Digital Image Correlation (DIC) [2–4] exist to obtain strain fields in in-situ mechanical

tests. Among these methods, DIC has proven to be the most popular one, due to its

flexibility and relative ease of application. DIC is based on the conservation of gray

scale between images of the reference and deformed configurations of a specimen, and

is performed by minimization of the difference between the two images with respect to

the displacement.

There are two major approaches to DIC [5], each suitable for different problems based

on the objectives of the experimental study and the nature of the kinematics fields.

Local DIC divides each image into small sections, called subsets, thereby identifying

the displacement for each subset and consequently constructing the entire displacement

field. An objective assessment of the displacement field results, which imposes minimal

constraints on the unknown kinematics. However, it does not rely on any insight allowing

to decompose the kinematics or to identify separate parts of the evaluated fields. In

contrast to local methods, the DIC problem can be redefined and solved over the entire

region of interest, i.e. the complete image in which the kinematics are to be determined.

However, evaluation of the displacement vector in each pixel of a digital image results

in an ill-posed problem requiring regularization (parametrization) of the kinematics in

order to substantially reduce the number of degrees of freedom. Using prior knowledge

on the unknown fields is an effective way of regularizing the DIC problem, giving rise

to a family of DIC methods known as Integrated DIC (IDIC). This can be done by a

numerical model describing the mechanics of the investigated material or by a parametric

analytical description of the fields to be found, or a combination of both.
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SEM Image Distortions

DIC is used in combination with a wide variety of imaging techniques such as optical

microscopy [6], optical profilometry [7], scanning electron microscopy [8], scanning tun-

nelling microscopy [9], atomic force microscopy [10, 11], high-resolution transmission

electron microscopy [9, 12]. Considering the limitations of optical microscopy in terms

of spatial resolution and the relative ease of use of scanning electron microscopes, SEM

has been proven to be a good candidate for high-resolution displacement measurements.

The combination of SEM and DIC enables a high resolution for the kinematics, thanks

to the high spatial resolution of SEM images and the sub-pixel accuracy of DIC. How-

ever, the imaging process, based on the scanning of an electron beam on the specimen

surface, results in complex artifacts (distortions) in the images, which can introduce

large errors in the evaluated kinematic fields, if ignored. In the literature, the SEM

artifacts are typically categorized in three categories: (1) line shift artifacts, which are

spurious shifts in the image parallel to the scanning lines, attributed to positioning

errors in the scanning process and occurring randomly in time; (2) spatial distortion,

which are distortions attributed to the electromagnetic lenses comparable to optical dis-

tortions of lenses. These are assumed to be constant in time if the imaging parameters

are not changed; (3) drift distortion, which are distortions in the image in the form

of shear/tension/compression due to the drifting of the specimen relative to the beam

during the scanning process. All these distortions are reflected in the images in the form

of long-range spatially correlated fluctuation patterns, considering their systematic na-

tures. An example of SEM artifacts is shown in Fig. 1.1, where part a depicts an SEM

micrograph of an electro-deposited copper film revealing the natural gray scale pattern

from the microstructure of the material. This image is one of two images acquired one

after another without any mechanical deformation induced in between. Fig. 1.1b, shows

the difference between these two images after removing the rigid body translation be-

tween the two images due to drifting of the specimen. The gray scale pattern of the

SEM images reflected in Fig. 1.1b, is only due to the artifacts, which are introducing

local differences between the two images. Many line shift artifacts are visible in the

lower part of the figure (highlighted by the arrows). There are many studies in the

literature that investigate the different types of SEM artifacts and offer solutions for

the correction of drift distortion, [10, 13–24], spatial distortion [23, 25–27] and line shift

artifacts [28]. However a general framework for systematic identification of all three

types of SEM artifacts, which is essential in eliminating the artifact induced errors on

the kinematics, seems to be missing.

Cellular Metamaterials

Mechanical metamaterials are a class of materials designed to exhibit mechanical prop-

erties not found in nature. They have attracted the attention of many academic and

industrial studies in the past decade. Cellular metamaterials [29–39], exhibit a sig-

nificant change in their mechanical response beyond a critical compressive load, that
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(a) SEM micrograph (b) Influence of Artifacts

Figure 1.1: The influence of imaging distortions on SEM images, (a) SEM micrograph
of an electro-deposited copper film revealing the natural pattern of the microstructure.
Two images have been taken one after another without any mechanical deformation
applied in between. (b) The difference between the two images after removing the rigid
translation between the two images, revealing the imaging artifacts.

induces a patterned deformation due to local buckling phenomena in the microstructure.

By proper design of the microstructure, these pattern deformations can be exploited for

dedicated applications, such as soft robotics [40, 41] and tunable materials [42, 43]. The

buckling patterns in cellular metamaterials are typically correlated over long distances

inside the specimen and govern the global mechanical behaviour of the material. They

also trigger size effects, i.e. effects due to the influence of the size of the specimen with

respect to the characteristic length of the microstructure. Fig. 1.2 depicts an example

of a cellular elastomeric metamaterial under compressive load resulting in an emergent

anti-symmetric buckling pattern that is correlated over the entire area of the specimen.

Assessment of the kinematics and more specifically, the independent identification of

these correlated fluctuations, is essential for a proper analysis and consequently a better

design of cellular metamaterials.

1.2 Objectives and Outline of the Thesis

Integrated DIC offers an opportunity to develop diverse methodologies for identification

of the correlated patterns described above. The regularization of IDIC, by exploiting

prior knowledge of the nature of the phenomena of interest, can be devised such that

it incorporates the characteristics needed to identify the spatially correlated fields. The

goal of this thesis is to develop novel IDIC methodologies, based on models describing

the nature of the correlated fields for the two presented cases of SEM artifacts and

cellular metamaterials, both sharing the need to independently identify the underlying

spatially correlated fluctuation fields.

In order to achieve this goal the following research questions need to be addressed:
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5000 µm

(a) Undeformed microstructure

5000 µm

(b) Deformed microstructure

Figure 1.2: Elastomeric metamaterial specimen (a) before and (b) after the onset of
microstructural buckling, due to compression in horizontal direction, resulting in the
emergence of a long-range correlated fluctuation pattern.

(I) What is the proper model that incorporates the SEM imaging process with all its

artifacts alongside the mechanical deformations in an in-situ test?

(II) How can the characteristics of SEM imaging distortion fields be exploited to iden-

tify them independently?

(III) How to manufacture and test lab-scale cellular elastomeric metamaterial speci-

mens with a microstructure size that is small enough to be relevant for realistic

applications and enabling full-field displacement measurements?

(IV) Can the correlated fluctuation pattern induced size effects, previously observed in

idealized numerical studies on cellular elastomeric metamaterials, be quantified in

experimental tests?

(V) What is an effective approach to decompose the kinematics of cellular metama-

terials experimentally, providing a proper identification of all correlated fields?

These questions are explored in depth in this thesis in the following order. The

next two chapters investigate the identification of correlated patterns arising from SEM

imaging techniques.

Chapter 2 focuses on one family of SEM imaging artifacts, line shifts, which prove to

be challenging to detect, identify and correct for. A proper parametrization, by a smooth

step function, in combination with a composition of mapping functions in a novel IDIC

scheme, is used to identify this type of artifacts. This constitutes the first step towards

a thorough investigation of Questions (I) and (II) above. A methodological procedure is

devised to recognize the presence of line shifts and to accurately evaluate the parameters

characterising these line shift artifacts. Thorough virtual experiments demonstrate the
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performance of the method even in the presence of complex mechanical deformations.

The limitations are thereby objectively revealed. Application of the method to real

SEM images shows the effectivity of the method in identifying and correcting the line

shift artifacts in SEM images, even for a case with large amplitudes.

In Chapter 3, the artifact enriched IDIC methodology, initiated in Chapter 2, is fur-

ther developed to identify all three types of SEM artifacts, i.e. line shift artifacts, spatial

distortion and drift distortion. To achieve this, a complete model of the SEM imaging

system combined with the mechanical deformations is set up. Separate mapping func-

tions are defined, that take into account the non-linear interaction between the apparent

mechanics and the different imaging steps, including the image artifacts. Proper exper-

imental procedures are proposed to ensure accurate and independent identification of

the three artifact types as well as the kinematics. Virtual experiments in the presence of

complex mechanics show the robustness and accuracy of the method. The application

on real SEM images demonstrates an accurate identification of the artifact patterns,

thereby minimizing the resulting errors on the mechanics. By this means, this chapter

adequately addresses Questions (I) and (II) mentioned above.

Chapters 4 and 5 investigate cellular metamaterials and the identification of the

fluctuation patterns triggered by microstructural buckling.

In order to study the correlated fluctuation fields in cellular metamaterials, in Chapter

4, a systematic way is proposed to manufacture lab-scale cellular elastomeric metamate-

rial specimens and perform in-situ tests on them. Specimens are made with millimetric

microstructures in order to be relevant for realistic applications of cellular metamateri-

als. By this means, this chapter spans Question (III). Local DIC is used to attain the

displacement field, which are used to accurately assess the global and local behaviour

and investigate the size effects in cellular elastomeric metamaterials. Size effects are

studied, since these effects constrain the correlated fluctuation patterns occurring in

these materials due to buckling of their microstructure. The results are compared to

the size effects found in a recent numerical study [44], which responds to Question (IV)

above.

In Chapter 5 the novel micromorphic IDIC methodology based on a kinematic ansatz

proposed in a recent study [45], is exploited to decompose the kinematics of cellular

metamaterials into a smooth slowly varying field and long-range correlated fluctuation

patterns. A procedure is proposed for the proper regularization of the kinematics such

that the correlated fluctuation modes as well as their spatial distribution are identified

in a single minimization step. The methodology is tested on both virtual and real

in-situ experiments, showing good robustness and accuracy, which directly addresses

Question (V) mentioned above.

Finally, in Chapter 6 the overall conclusions and some recommendations for further

research are discussed.



Chapter 2

Correction of scan line shift artifacts in

scanning electron microscopy - an extended

digital image correlation framework

Reproduced from:

S. Maraghechi, J. P. M. Hoefnagels, R. H. J. Peerlings, M. G. D. Geers

Correction of scan line shift artifacts in scanning electron microscopy - an extended

digital image correlation framework, Ultramicroscopy, 187:144-163, 2018.

Abstract

High Resolution Scanning Electron Microscopy (HR-SEM) is nowadays very popular for

different applications in different fields. However, SEM images may exhibit a consider-

able amount of imaging artifacts, which induce significant errors if the images are used to

measure geometrical or kinematical fields. This error is most pronounced in case of full

field deformation measurements, for instance by Digital Image Correlation (DIC). One

family of SEM artifacts result from positioning errors of the scanning electron beam,

creating artifactual shifts in the images perpendicular to the scan lines (scan line shifts).

This leads to localized distortions in the displacement fields obtained from such images,

by DIC. This type of artifacts is corrected here using global DIC (GDIC). A novel GDIC

framework, considering the nonlinear influence of artifacts in the imaging system, is in-

troduced for this purpose. Using an enriched regularization in the global DIC scheme,

based on an error function, the scan line shift artifacts are captured and eliminated. The

proposed methodology is demonstrated in virtually generated and deformed images as

well as real SEM micrographs. The results confirm the proper detection and elimination

of this type of SEM artifacts.

2.1 Introduction

Scanning Electron Microscopy (SEM) has proven itself to be one of the most powerful

microscopy methods available. It offers a high spatial resolution (e.g. compared to

7
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light microscopy) and relative ease of use (e.g. with respect to transmission electron

microscopy). Besides qualitative studies based on SEM images of different materials,

quantitative information can be extracted from them as well. Examples of quantitative

measurements of in-plane geometrical properties may be found in different fields, such as

nanocomposites [46, 47], micro residual stress measurements [48] , biomedical engineer-

ing [49, 50] and microscopy methods [51, 52]. Comparative studies between more than

one image introduce another level of quantitative analysis on SEM images. Advanced

quantitative measurements go as far as full field displacement measurements based on

Digital Image Correlation (DIC) using SEM images in experimental micromechanics

[3, 18, 25, 28, 53, 54]. However, using SEM images for a quantitative geometrical mea-

surement becomes problematic if several complicated imaging artifacts occur [55, 56].

These artifacts result in distortions in the image, leading to errors in measurement of

the underlying geometrical or kinematical fields. In particular, such distortions induce

artifactual deformations and strains in DIC measurements, constituting significant er-

rors if ignored. Due to the sensitivity of full field displacement measurements to these

errors, caused by artifactual displacement fields, the DIC community is very concerned

with the treatment of such imaging artifacts. The same concern is justified for other

quantitative geometrical measurements based on SEM images.

SEM imaging artifacts can be categorized into three types [53]. The first type is non-

random, time-independent spatial distortion, which is similar to distortions observed in

optical systems. A number of papers propose different methods for dealing with this

type of artifact [13, 25, 26]. The second category is non-random, time-dependent distor-

tion, referred to as drift, which triggers stretch/compression and/or shear distortions in

images. This is a direct result of the scanning involved in the SEM imaging process [57].

Different methods for correcting this artifact are proposed in the literature, for SEM

images [13, 16, 19, 25], and for other microscopy methods involving a similar scanning

process [58, 59]. The third type is a random, time-dependent distortion which is due to

positioning errors of the electron beam during scanning, referred to as “scan line shifts”.

[60] reported the presence of such artifacts, in the form of local peaks parallel to the scan

lines in strain maps determined by SEM-DIC. [28] conducted an extensive study on this

artifact, which induces jumps in the displacement maps obtained by DIC. The effect

of scanning parameters in four SEMs from different manufacturers was studied in their

work. Integrating a collection of images was a solution, proposed to limit the influence

of the scan line shifts. Integration of eight images reduce the artifact to a good extent,

for scan line shifts upto one pixel. However, scan line shifts have an amplitude ranging

up to 5 pixels, for which a significant artificial strain localization band remains after av-

eraging. This paper proposes a systematic method to resolve the scan line shift artifact

for SEM images, applicable to any imaging technique involving a scanning process.

Let us consider the scan line shift artifact in more detail. Fig. 2.1 exhibits a clear

scan line shift in an SEM image. On the left, in Fig. 2.1a, an SEM image of a dual phase

steel with a field of view of 30µm is presented. On the right, a zoomed view of the same

image is compared to the zoomed view of another SEM image, scanned immediately

after the first one (showing the same region). No mechanical displacement was applied
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to the specimen between the two consecutive scans. The first image contains a scan

line shift. This scan line shift is highlighted in Fig. 2.1a by the indicators showing the

lower half of the feature moving downwards in the zoomed image on the right. Fig. 2.1b

shows the displacement in the vertical direction found by standard local DIC between

the two aforementioned SEM images. Two distinct jumps in the displacement field, one

positive and one negative, are visible, occurring at certain y values and constant for all

x values (y is the vertical coordinate, perpendicular to scanning direction, and x is the

horizontal, scanning direction).

The occurrence of scan line shifts originates from the SEM imaging process. An

SEM image is generated by scanning an electron beam point by point on the surface

of the specimen and gathering the electrons that are emitted from the surface, due to

the interaction of the electron beam and the specimen, by different sensors. Since the

positioning of the beam during the scanning cannot be controlled by a closed loop,

positioning errors are inevitable. The underlying reason for the scan line shifts is not

reported in literature. A speculative cause of the incidental mispositioning may be

a single dust particle in the electron column, which gradually charges up, but then

suddenly releases the charge through an electric discharge which causes the sudden

mispositioning of the electron beam. This error is a high frequency phenomenon if

occurring between pixels in the same row in an image, thus contributing to the noise.

However, if such a positioning error occurs between two consecutive scanning lines, a

low frequency phenomenon, it becomes detectable as a shift in the image, see e.g. in

Fig. 2.1b. The repositioning of the electron beam in the direction perpendicular to the

scanning direction is done once per scan line. Hence, an error in this direction persists

until the end of that scan line and subsequently propagates to the next line. This type

of artifact therefore reveals an artificial band of localized distortion along the scanning

direction in the image.

The aim of the current work is to develop a framework to deal with the scan line shifts

in SEM images using a systematic approach. This enables: (i) direct removal of scan line

shifts from images, (ii) integration with other methods available in the literature, for the

correction of drift and spatial distortion artifacts, (iii) future extension of the method to

a general framework dealing with all types of SEM artifacts in a unified manner. To this

end, global digital image correlation (GDIC) is used as a general framework in order to

deal with the scan line shift artifact.

In GDIC the deformation field between two images is directly determined in the

whole region of interest of the images. This is done by parameterizing the spatial

variation of the displacement field, possibly using prior knowledge on the kinematics

characterizing the deformation, i.e. regularizing the displacement field. Using a smooth

step function, e.g. error function, for each scan line shift occurring in the images, the

artifact field needed for correcting the images can be determined. Contrary to local

DIC, the GDIC framework allows for direct insertion of these step function fields in the

brightness conservation algorithm. Note that this GDIC framework can be extended in

the future to correct for drift and spatial distortion as well.
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Figure 2.1: Example of scan line shift artifact in the scanning process; (a) An SEM image
at high magnification of a dual phase steel specimen and a zoom of a microstructural
feature in two consecutive scans reveals the scan line shift in shortening the feature on
the left; (b) displacement in the vertical direction found by local DIC, exhibiting two
clear jumps.

In order to achieve the aim mentioned above, the standard GDIC formulation is mod-

ified for incorporating imaging artifacts (Section 2.2.1 to 2.2.3). The new formulation

is included in a proper procedure for accurately detecting and removing scan line shifts

(Section 2.2.4). The methodology is applied to different virtual experiments to asses

the effectiveness, accuracy and convergence behavior of the extended GDIC algorithm

(Section 2.3). Finally the method is applied to real SEM images for two cases, one with

mechanical deformation and one without (Section 2.4).
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2.2 Method

2.2.1 Brief review of conventional GDIC

The algorithm used in GDIC is based on the minimization of the gray scale residual :

r(x, a) = f(x)− g ◦ φ(x, a) = f(x)− g (φ(x, a)) with φ(x, a) = x+ u(x, a), (2.1)

which is the difference between the gray value in the reference image f , at original

position x, and the deformed image g at deformed position φ(x). The mapping function

φ implicitly defines the displacement field u(x). The notational convention of [61] is

used, where the operator ◦ indicates the composition of two functions. The mapping

function is parametrized by a set of degrees of freedom (dofs) stored in the column

matrix a = [a1, a2, . . . , an]
T . Due to noise in the images and the inaccuracy of the

regularization used in φ(x, a), the gray scale conservation leads to a non-zero residual

field. This residual field is minimized with respect to a using a least squares approach.

As explained in detail in [61], this results in a nonlinear system of equations which is

linearized to yield an iterative Newton-Raphson scheme for updating the dofs, δa, in
each iteration:

Mδa = b. (2.2)

The elements of M and b in Eq. (2.2) are defined as:

Mij =

∫

Ω

Li(x)Lj(x)dx (2.3)

bi =

∫

Ω

r(x, a)Li(x)dx, (2.4)

where i, j = 1, 2, . . . , n (with n the number of degrees of freedom) and Ω the domain

on which the problem is solved i.e. the region of interest in the images. Note that the

matrix M results from the Hessian matrix of a full-Newton method after neglecting two

higher order terms, see [61]. The function Li, in Eqs. (2.3) and (2.4) is given by:

Li(x) = ∇(g ◦ φ(x)).∂φ(x, a)
∂ai

, (2.5)

i.e. Li is the inner product of ∇(g ◦φ(x)), the gradient of the deformed image assessed

at position φ(x) with respect to the deformed coordinates, and ∂φ(x,a)
∂ai

, the sensitivity

functions for each degree of freedom. If the mapping function is linearly dependent on

the degrees of freedom, the sensitivity functions can be taken as basis functions of the

displacement field. This is often the case, though not always. Different approximations

can be made for the image gradient, affecting the resulting convergence behavior, as

discussed by [61]. It is common to choose the gradient of the reference image as an

approximation of the image gradient in case of linearly independent basis functions and
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small deformations. This implies that the Li(x) for all dofs (and thus M) is calculated

once at the start of the correlation and used for all subsequent iterations.

2.2.2 New GDIC formulation for imaging artifacts

As discussed in the introduction, if SEM images are used for DIC or any other quanti-

tative measurement, the imaging artifacts should be corrected for, to avoid significant

errors in the results. Global DIC can be used to eliminate SEM imaging artifacts in

a systematic way, by incorporating them via mapping functions akin to the function

φ(x) in Eq. (2.1) . However, note that the imaging artifacts may be present in both

the reference image f and the deformed one, g. Fig. 2.2a shows the sequential me-

chanical and artifactual mappings, where F is the reference pattern free of artifacts, G

is the true deformed pattern (also free of artifacts) and f and g are undeformed and

deformed images with artifacts, respectively. Fig. 2.2b depicts the true, artifact-free

reference pattern and the position vector of a specific material point, x. In order to

identify the corresponding gray scale value in image f , the position vector has to be

corrected through the mapping function φf (x) representing the artifacts in the reference

image. The mapping function φf (x) provides the pixel position where the gray scale

value from the material point x was registered, while scanning image f . This is illus-

trated in Fig. 2.2c. The same material point in x is mapped onto a new true position

by the deformation map φm(x) = x+ u(x). The deformed pattern G thus obtained, is

subsequently imaged, and also possibly affected by artifacts, which are characterized by

φg(x). The composition of these two mapping functions in image g incorporates both

the mechanical deformation and the correction needed for the imaging artifacts. The

extended residual in gray scale conservation now reads:

r(x) = f(φf (x, a))− g(φg(φm(x, a))) (2.6)

= f ◦ φf (x, a)− g ◦ φg ◦ φm(x, a).

Note that in the absence of imaging artifacts, i.e. φf = x and φg = x, the conventional

definition (2.1) is recovered, with only mechanical mapping φ = φm remaining. Note

also that, a represents the dofs of all the mapping functions, mechanical and imaging

related, as a column matrix. Evidently, each mapping function depends only on the de-

grees of freedom associated with it. However, to avoid confusing notations, the complete

array of dofs, i.e. a, is used everywhere.

Starting from this extended definition of the residual field, Eq. (2.6), the solution

procedure can be established, providing the same Eqs. (2.2), (2.3) and (2.4), yet with a

different definition of Li(x):

Li(x) = −Lf
i (x) + Lg

i (x) + Lm
i (x), (2.7)
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Figure 2.2: Non linear mapping functions of artifacts and mechanical deformation in
both reference and deformed images: (a) Order in which the mapping functions apply,
(b) reference (true) specimen’s pattern F, (c) mapped position for x in image f including
artifacts, and (d) mapped position for the displaced x in image g based on mechanical
deformation and artifact distortions
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The Pattern The Image

The Pattern The Image

Figure 2.3: Gradual mispositioning of scanned points (left) and its effect on the regis-
tered image (right), resulting in artifactual localized (a) tension and (b) compression.
On the pattern, the gray lines are the intended scanning lines while the dots are the
actual scanned positions. In the image, the dots define the pixels. The blue color rep-
resents no positioning error while the gradual change to brown aligns with the gradual
change of the error to it’s maximum (one pixel in this case). The curves, on the other
hand, show the gradual change of the mispositioning as reflected in the image.

where Lf
i (x), L

g
i (x) and Lm

i (x) are defined as:

Lf
i =

(
∇f ◦ φf

)
.
∂φf

∂ai
, (2.8)

Lg
i =

(
∇g ◦ φg ◦ φm

)
.

(
∂φg

∂ai
◦ φm

)
, (2.9)

Lm
i =

(
∇g ◦ φg ◦ φm

)
.
(
∇φg ◦ φm

)
.
∂φm

∂ai
. (2.10)

The present paper focuses on the scan line shift artifacts. This requires a proper

definition of the artifact mapping functions φf and φg, capturing the scan line shifts

mathematically. Note that the proposed framework has the potential to be extended in
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the future to incorporate the two other types of SEM imaging artifacts, i.e. drift and

spatial distortion, if proper sensitivity functions are included in the artifact mapping

functions, which would enable to determine the mechanical deformation field corrected

for any artifacts. By focusing on the scan line shift artifacts only, as is done here, the

influence of drift and spatial distortion is not eliminated. However, after the scan line

shifts have been detected and corrected properly, the procedure introduced in the work

by [25] can be used to correct for drift and spatial distortion.

2.2.3 The new GDIC formulation for the scan line shift artifact

In order to define a proper mapping function to describe the scan line shift artifact, the

underlying cause of the artifact and the trace it leaves in the images should be better

understood. Fig. 2.3 illustrates the mispositioning of the electron beam and the image

resulting from it. On the left side of Fig. 2.3a the horizontal lines represent the scanning

lines if no positioning error would occur. The dots represent the actual positions where

the intensities are registered. In this sketch, a gradual increase of mispositioning from

zero to one pixel occurs in four scan lines. Indeed, in real SEM images the scan line

shift typically has a width of a few scan line spacings. In the image on the right,

the measured intensity is attributed to the presumed pixel position. This results in

an artifactual localized stretching of the pattern in the image. A localized compression

results in the opposite case, in which the actual scan lines have a larger spacing than the

presumed ones, as depicted in Fig. 2.3b. The same mispositioning depicted in Fig. 2.3

can also occur in the scanning direction (x direction), leading to an artificial shear

distortion in the images.

Based on the description above, the scan line shifts are efficiently described by map-

ping functions based on the error function, as:

φf (x) = x+
1

2
(Axex + Ayey)

(
1 + erf

(
(y − y0)

w
3
√
2

))
, (2.11)

where:

erf(z) =
1√
π

∫ z

0

e−t2dt. (2.12)

The degrees of freedom are Ax, Ay, y0 and w, i.e. the amplitudes in x and y direction,

the position and the width of the scan line shift, respectively. The denominator of

the argument of the error function, in Eq. (2.11), is by definition
√
2σ, where σ is the

standard deviation associated with the error function. By setting the denominator equal

to w
3
√
2
the width of the scan line shift is chosen to be 6σ (to 99.7% approximation). In

Eq. (2.11) the subscript f indicates that the mapping function belongs to the artifacts

present in the reference image, while subscript g would refer to the mapping for artifacts

in the deformed image. Note that the artifact mapping function is not linearly dependent

on the degrees of freedom. This implies that Li(x) needs to be updated in every iteration

for these dofs. Hence, it is not numerically convenient to adopt the gradient of image
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f as an approximation of the complete form of the image gradient. Accordingly, the

complete image gradient, as described in Eqs. (2.8) to (2.10), is used instead. Fig. 2.4

shows the graphical representation of the distortion field (φf (x)−x) based on the error

function, where the color corresponds to the norm of the distortion vector and the

dashed rectangle shows the undistorted configuration.

w

Ax

Ay

y0

x

y

Figure 2.4: 2D representation of the error function as the distortion field for the scan
line shift artifact, defined by four degrees of freedom, i.e. Ax, Ay, y0 and w. The colors
correspond to the norm of the distortion vector φf (x)− x. The dashed rectangle is the
undistorted configuration.

2.2.4 Detection and correction of the scan line shifts

In order to solve the nonlinear least squares problem in global DIC, it is common to use

a Newton-Raphson scheme, whereby the robustness depends on the initial guess of the

degrees of freedom. This initial guess is particularly important for the position of the

scan line shift, y0, due to the small support of the corresponding sensitivity function.

In this section the procedure to detect the presence of scan line shifts in images and

the subsequent steps to accurately estimate the corresponding degrees of freedom are

discussed.

To detect possible scan line shifts in the images, a pre-correlation between two images

is performed. The pre-correlation is a simple conventional global DIC procedure using

only a set of linear polynomials as basis function, i.e. six dofs. The pre-correlation

obviously neglects the existence of a scan line shift, if present, which is therefore reflected

in residual field. The few degrees of freedom defining the deformation field enable the

polynomial to match the displacements on both sides of the scan line shift only in

an average sense. This results in a strong gradient in the residual in the direction

perpendicular to the scan lines. This pronounced spatial variation in the residual field

of a single correlation indicates how many scan line shifts are present in the correlated

pair of images. Moreover, it provides a good initial guess of the position of each scan

line shift, even though it cannot reveal to which image each scan line shift belongs.
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Figure 2.5: Row average of the residual fields of three pre-correlations between three
typical SEM images (1, 2 and 3) providing the initial guess for the vertical position of
the scan line shifts.

In order to be able to allocate each scan line shift to the correct image, the pre-

correlation should be performed between all three pairs of a set of three images, i.e.

three separate pre-correlations on three images of the same area of the specimen. Fig. 2.5

shows an example (case of Section 2.4.1) of the row average of the residual fields for three

pre-correlations between Images 1-2, 2-3 and 1-3, in blue, orange and green, respectively.

The horizontal axis is the y-coordinate of each row, along the direction perpendicular to

the scan lines. A high gradient in the residual field that occurs in the same position in

two pre-correlations represents a scan line shift that exists in the image that is present in

both pre-correlations. Thus, by comparing the average residual of three pre-correlations

all scan line shifts in the images can be allocated to their corresponding images. A

convenient algorithm has been devised to automatically perform the procedure described

above and allocate each scan line shift to the corresponding image for each image triple.

For more details see Appendix 2.A.

When approximate scan line shift positions have been established for each image

through the pre-correlations, the artifact mapping functions, i.e. φf and φg, can be

assigned for the final correlation between two images. The resulting initial guess for the

position is accurate to within ±10 pixels. It will be shown in the next section that this

accuracy is sufficient to guarantee convergence. Subsequently, the correlation to correct

the scan line shifts is performed in two steps. In the first step, the width of each scan line

shift is fixed to a large value (here taken as 20 pixels) and only the amplitudes in x and

y direction and the position of the scan line shifts are taken as degrees of freedom. The

second step is carried out with all four degrees of freedom for each scan line shift, using

the results of the previous step as initial guesses. Fixing a large width in the first step

causes the support of the sensitivity map related to the position degree of freedom to

be large, which relaxes the dependence on the scan line shift position’s initial guess and
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thus improves robustness. This point will be discussed in more detail in the following

section.

An overview of the whole process described above is presented in Fig. 2.6.

2.3 Validation of the method

The effectiveness and the accuracy of the method explained in the previous section is

assessed here through virtual experiments. A number of speckle pattern images are

created, on which known distortions associated with the scan line shift artifact are

applied. The resulting scan line shift artifact fields are computed from the images

using the GDIC approach presented in the previous section. The error in the correlated

distortion field is obtained by comparing the computed field with the exact field used

in the generation of the deformed/distorted images.

The generation of the images should not introduce any errors in the virtual displace-

ment field in the images, as these would be attributed to the error in the GDIC method.

One of the most common sources of error in DIC in general is the error related to the

gray scale interpolation [53]. This bias error is inevitable in the correlation process.

When generating virtual images the same interpolation errors may occur. For this rea-

son discrete interpolation is avoided in the generation process by defining the images as

continuous mathematical functions. They are based on the superposition of a number

of randomly placed circular Gaussian peaks:

F (x, y) =
∑

i

ae

(
− 1

2

(
(x−µix)2

σ2
x

+
(y−µiy)2

σ2
y

))
(2.13)

where a is the amplitude of each peak, µx and µy are the center coordinates of each

peak (chosen randomly), and σx and σy are standard deviations in x and y direction,

respectively. The standard deviations, taken equal here, define the width of each speckle

peak. The image is made with two layers of Gaussian peaks corresponding to two

different speckle sizes. The addition of the larger speckles (the second layer) improves

the robustness of the correlation in terms of initial guess. One of the virtual experiments

of section 2.3.2 is repeated with only one layer of Gaussian peaks (the finer speckles)

to evaluate the influence of the second layer. Gaussian noise with a standard deviation

of either 0.5, 1, or 2.5% of the dynamic range has been added to each image. All the

images are normalized in gray scale to have a dynamic range equal to 1. The virtual

pattern, F , represents the physical pattern on the specimen in a real experiment. Both

images f and g are generated from F and are 513 × 513 pixels in size. The deformed

image, g, is generated by mapping the pattern F based on ψ, the generation mapping

function. In order to find the generation mapping function, let us consider a general

case of virtual generation of a deformed image g(x) with deformation described by the

mapping function φ(x) = x + u(x), from the reference pattern F (x). In the absence

of noise we have F (x) = g(φ(x)) for each x. Inserting x = φ−1(x∗) in the previous

equation yields: F (φ−1(x∗)) = g(x∗). Thus, the generation mapping function is the
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Figure 2.6: An overview of the process of correcting scan line shift artifacts in SEM
images, starting with acquisition of (at least) three images, followed by three pre-
correlations, and the main correlation for image correction. The pre-correlations are
done with the regularization of φm based on 1st order polynomials. By comparing the
row average of residual fields of these pre-correlations, two jumps are allocated: in this
example, to images 1 and 2, with positions y1 and y2 as initial guess, respectively. The
results of the pre-correlations are used to perform the main correlation, resulting in
the measurement of the scan line shift artifact fields in images 1 and 2, which can be
repeated for image 3 if needed. The images are then corrected based on the artifact
fields found.
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Figure 2.7: Typical virtual image created by superposition of Gaussian functions and
the zoomed feature showing the effect of a smooth scan line shift incorporated in the
deformed image.

inverse of the mapping function that describes the deformation/distortion field that will

eventually be present in image g, i.e. ψ (x) =
(
φg ◦ φm (x)

)−1
, where φg is defined as

in Eq. (2.11).

Fig. 2.7 shows one of the resulting virtual images with the effect of a smooth scan

line shift (case of Section 2.3.1) on a feature in the pattern.

The virtual experiments are performed on three image categories: (i) one scan line

shift in an image pair, (ii) multiple scan line shifts per image in a set of three images,

to study the limitations of the method in terms of number of scan line shifts per image

and their spacings, and (iii) multiple scan line shifts per image in the presence of me-

chanical deformation fields. The images of the two later categories are also distorted by

other SEM artifacts, i.e. drift and spatial distortion. Note that the first two categories

represent the geometrical correction needed when using SEM images, whereas the last

category focuses on the measurement of mechanical deformation.

2.3.1 Virtual experiments with a single scan line shift

In the first set of virtual experiments, the robustness of the proposed method in terms

of initial guess as well as the influence of noise is evaluated. A pair of virtual images

is generated, one without any artifact and one with a single scan line shift embedded.

The scan line shift is placed at position y = 3 pixels (the origin of the coordinate system

being at the center of the image) and has a width of 4 pixels with amplitudes of 1 and

2 pixels in x and y direction, respectively. The virtual images are then correlated using

the approach proposed in section 2. In order to assess the influence of the initial guess,

a series of correlations are performed with the same set of images, but with a different

initial guess for the degrees of freedom of the scan line shift. Since the pre-correlations
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Figure 2.8: Average convergence success rate versus the amplitude of the perturbation
applied to the initial guess for different values of noise in the virtual experiments. The
1-step correlation involves all four degrees of freedom in a single correlation (direct
correlation for both amplitudes, position and width of the scan line shifts), whereas
the 2-step correlation corresponds to an initial correlation of only the position and
both amplitudes while keeping the width constant (at 20 pixels), followed by a second
correlation with all four dofs.

only serve to provide an initial guess for the position of the scan line shifts, no pre-

correlation is performed in this case. The convergence criterion is based on the mean of

the absolute value of change in the degrees of freedom, for which a tolerance of 1e−5 is

adopted.

Fig. 2.8 shows the average convergence success against random perturbations of a

certain amplitude in the initial guess with respect to the exact values. Each point in

the plot represents ten correlations for a certain perturbation in the initial guess of the

degrees of freedom. A success rate of 100% means that all the ten correlations with

that specific perturbation amplitude have converged, while 0% means that none have

converged. The only difference between the different curves shown is the noise level

added to the images. The standard deviation of the noise implemented in the virtual

images has been varied from 0 to 2.5% of the dynamic range. For one noise level, i.e.

1%, also a direct (1-step) correlation with all four dofs is shown, in contrast to the

2-step correlation procedure described in the previous section. The large sensitivity to

the initial guess of the 1-step correlation, compared to the 2-step correlation, justifies

the use of the latter. In case of 0.5% and 1% noise, the convergence success rate is 100%

upto more than 90 pixels of perturbation in the initial guess, while this value equals 80
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Figure 2.9: Iterative error evolution for virtual images containing one scan line shift
only, without noise, and with 10 pixels of perturbation in initial guess, for 2.5% noise
(iterations 1 to 10: first correlation step; iterations 11 to 15: second correlation step)

pixels for a noise level of 2.5%, which shows that the approach is very robust.

Fig. 2.9 shows the error in the degrees of freedom characterizing the scan line shift,

i.e. the difference of the dofs obtained by the correlation and the reference values used

to generate the images (amplitude in x and y direction, position and width), for each

iteration during both steps of the correlation. The error for the width is meaningful

only for the second correlation step, where it is used as a degree of freedom; therefore it

is plotted only for the iterations related to the second correlation step. The final error

is negligibly small (bellow 5e−4 pixel) for both amplitudes and relatively small for the

position (1.2e−1 pixel) and width (3.1e−1 pixel) at final convergence. The higher value

of error associated with the position and width, compared to the amplitudes, is due

to the fact that an error in the evaluation of position and width increases the residual

field only at the location of the scan line shift, whereas the same relative error in the

amplitude of the scan line shift affects a large area of the residual. This results in the

observed lower sensitivity to the width and position. In summary, the method reveals

and adequate robustness for a wide variation in the initial guess and in the presence of

noise.

2.3.2 Virtual experiments with multiple scan line shifts

SEM images may exhibit multiple scan line shifts, and may be affected by drift and

spatial distortions as well. The limitations of the proposed method in terms of the

number of scan line shifts per image and the distance between occurring scan line shifts
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Figure 2.10: The x component of scan line shift artifact fields in a virtual experiment
with two scan line shifts per image in, (a) Image 1, (b) Image 2 and, (c) Image 3,
revealing the spacing and the distribution of scan line shifts in the three images.

are investigated in this section. This is done in a more realistic case, i.e. in the presence

of drift and spatial distortion and without including an accurate description of them.

Virtual experiments with different numbers of scan line shifts per image, ranging

from two to six, are studied. For each case, three images are generated with equally

spaced scan line shifts distributed among the images. Fig. 2.10 depicts the distribution

and spacing of the scan line shifts with two scan line shifts per image, where parts a,

b, and c show the x component of scan line shifts in the first, second, and third image,

respectively. Note that the minimum distance between scan line shifts in the case of

2, 3, 4, 5 and 6 scan line shifts per image is 73, 51, 40, 32 and 27 pixels, respectively.

Each case (with a certain number of scan line shifts per image) is repeated a number of

times while keeping the spacing constant but modifying the amplitudes and the widths

randomly. The amplitudes are taken from a normal distribution with a mean value equal

to 1.5 pixels and a standard deviation of 1.75 pixels, motivated by the more frequent

observation of positive amplitudes in practice. The widths are taken from a normal

distribution with a mean value equal to 7 pixels and a standard deviation of 1.5 pixels.

The cases with two to six scan line shifts include 6, 9, 12, 15 and 18 scan line shifts in

total for each image triple, while 8, 5, 4, 3 and 3 image triples are tested, respectively.

In this way, a total of at least 45 scan line shifts are included for each case.

To each image triple, additional distortion fields, i.e. drift and spatial distortion,

are added as well, Fig. 2.11. A radial polynomial of order five (Us(ρ) = k3ρ
3 + k5ρ

5

where ρ is the radial distance from the center of the image, and k3 and k5 are the

degrees of freedom) is chosen to represent the spatial distortion, which resembles the

radial distortion of an optical lens [62]. Figs. 2.11a and b show the spatial distortion

field in x and y, respectively. Drift in SEM is a continuous phenomenon over time,

which progresses while each image is being scanned. The evolution of drift in time is

described by a third order polynomial (similar to [28]), as in Fig. 2.11c. This results in

a drift field with a form similar to shear in horizontal direction and stretch in vertical
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direction. Figs. 2.11d and e show the drift field in x and y in the third image of the

triplets, respectively.

Each image triple is used to perform the pre-correlations to identify an initial guess

for the positions of scan line shifts and allocate each one to its corresponding image,

as explained in Section 2.2.4. Fig. 2.12 shows the results of the pre-correlations, where

the success rate in allocating the scan line shifts is the percentage of the scan line shifts

allocated correctly. The criteria for assessing the allocation of a scan line shift are: (1) it

is allocated to the correct image; (2) the initial guess for its position is within ±10 pixels

of the correct position. Note that the latter tolerance is well below the limit value found

in the previous section for the acceptable error in the initial guess (i.e. 80 pixels). Each

number of scan line shifts per image corresponds to a certain minimum distance between

the scan line shifts, as indicated by the horizontal axis on top of Fig. 2.12. It is observed

that upto three scan line shifts per image with a spacing of 51 pixels, all scan line shifts

are allocated correctly. Beyond this number, the success rate drops bellow optimal, but

it remains well above 60% even for six scan line shifts per image, at a spacing of less

than 30 pixels.

The result of the pre-correlations, i.e. the allocation of the scan line shifts, is subse-

quently used to correlate the first two images in each image triple in order to measure

the scan line shift artifacts present in them. The artifact mapping functions, φf and φg,

are defined based on the scan line shifts detected in the pre-correlations. φm is regular-

ized by first order polynomials. Please note that this mapping function includes, next

to mechanical deformation, drift and spatial distortion. These are generally unknown;

to mimic this, we use a suboptimal regularization for φm, to account for these other

artifacts in an average sense, in order to get a better accuracy in scan line shift artifact

correction. Fig. 2.13a shows the mean absolute error in the measured scan line shift

mapping function, defined as ĒL = 1
AΩ

∫
Ω
|φg(x) − φg,ref (x)|, where Ω is the region of

interest, AΩ is the area of the region of interest, and φg,ref (x) is the reference scan line

shift artifact mapping function used to generate the virtual images, in this case images

g.

The blue crosses in the graph depict the errors obtained for the image pairs. For each

case where all the scan line shifts are allocated correctly (i.e. the cases with two or three

scan line shifts per image and one of the cases with four), all the scan line shift artifact

fields are measured with a high accuracy as can be expected from global DIC (below or

at 0.01 pixels). The cases including initial scan line shift allocation errors finally result

in errors in the range of 0.4 to 2.7 pixels depending on the number of wrongly allocated

scan line shifts. The brown circles in the graph represent the averaged values. Hence,

the method works reliably up to three scan line shifts per image, or 51 pixels of spacing

between scan line shifts, and looses accuracy beyond this number.

To put errors in Fig. 2.13a in perspective, we compare them against the distortions

present in the uncorrected images. Therefore, Fig. 2.13b shows the relative correction

of scan line shifts, which is the ratio of the mean absolute error in scan line shift

artifact fields and the mean absolute value of the reference scan line shift fields, used to

distort the virtual images, subtracted from one (complete correction) for each case, i.e.
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Figure 2.11: Additional artifact fields included in the virtual experiments: (a), (b)
spatial distortion in all images of each image triple, in x and y directions, respectively;
(c) evolution of drift in time for six images (only the first three are used in Section
2.3.2), where the scanning time of each image is indicated by the shaded areas; (d), (e)
drift field in the third image of an image triple, in x and y directions, respectively.
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Figure 2.12: Success rate in automatic allocation of the scan line shifts in the pre-
correlations for different numbers of scan line shifts per image.

1 − ĒL
φg,ref (x)−x

. This value represents the percentage of correction the current method

provides, relative to the required correction. In the cases with two and three scan line

shifts per image, 99.5% correction is achieved. For the cases where the method is less

accurate, i.e. with four, five and six scan line shifts per image, 85.6 %, 55.3% and 54.9%

correction is still achieved, respectively.

Finally, in order to evaluate the influence of the virtually generated speckle pattern,

two extra cases with three line shifts per image are done with two different speckle

patterns. In the first case a virtual pattern of only one layer of Gaussian peaks (the

finer speckles) is considered, whereas in the second case a pattern from a real SEM

image (Fig. 2.18a) is distorted virtually, both confirming the obtained accuracy for the

case with two layer Gaussian peak pattern.

The proposed method appears to be reliable and accurate up to three scan line shifts

per image, and in the presence of drift and spatial distortion, even though a suboptimal

approximation was used for the latter. Thus the method is robust removing scan line

shift artifacts for the purpose of geometrical image correction.

2.3.3 Virtual experiments with multiple scan line shifts in the

presence of mechanical deformation

Another set of virtual experiments is conducted to evaluate the performance and ro-

bustness of the proposed method in the presence of mechanical deformation, drift and

spatial distortion. Note that, similar to Section 2.3.2, again a suboptimal description

for drift and spatial distortion is used in this section. Fig. 2.14a depicts a typical strain
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Figure 2.13: Error in identification of scan line shift artifacts in the virtual experiments
with multiple scan line shifts: (a) mean absolute value of the artifact field error averaged
over all the scan line shift artifact fields as a function of number of scan line shifts per
image; (b) % correction applied relative to the real error in scan line shift artifacts for
each case. The blue crosses show the idividul image pairs, while brown circles indicate
the averages. The minimum spacing of scan line shifts for each case is indicated by the
horizontal axis on top of the graphs.
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field, measured using SEM images and local DIC [63], exhibiting high strain gradi-

ents and localization bands. The figure depicts the εxx field, measured from images

with a horizontal field width of 85 µm after 0.98 % of macroscopic strain on a René

88DT (a commercial polycrystalline nickel-based super-alloy) specimen. The strains

were obtained by local DIC analysis with 21 pixel (0.4 µm) subset size, a 3 pixel step

size and a strain window of 15 pixels [63]. The virtual experiments of this section are

performed with mechanical deformations generated virtually but representing the main

features of the field shown in Fig. 2.14a. i.e. parallel localization bands. These bands

are furthermore assumed to span the entire width of the image. This represents the

most challenging case for the correction of scan line shift artifacts, since the mechani-

cal deformation field then looks remarkably similar to the scan line shift artifact field

particularly at small angles between the localization bands and the scanning direction

(horizontal). The effect of orientation of the localization bands will be studied below.

Figs. 2.14b, c and d show the distribution of the three relevant strain components

(εxx, εyy, εxy) for the orientation of θ = 30o. The strain fields represent a background

tension of 0.5 % with a Poisson’s ratio of 0.5 (no volumetric strain) and shear bands

that make a 45o with the tensile axis. Note that the whole strain state is rotated for

each case, keeping the angle between the tension and the localization bands constant.

The strain amplitudes, the width (30 pixels), and the spacing (150 pixels) of the bands

are close to Fig. 2.14a. A range of θ = 90o (vertical bands) to θ = 0o (horizontal bands)

is considered, of which the latter is the most challenging case when the SEM images are

captured using horizontal scan lines.

Note that for the mechanical strain measurement with SEM images, after correcting

the scan line shift, it is necessary to correct for the drift and spatial distortion as well.

As mentioned before, the method proposed by [25] can be used for this purpose. In

order to correct for the drift artifact with this method, two images need to be acquired

at each load step. Even though the focus of the current study is not on the correction of

drift or spatial distortion, in order to consider a realistic case, the virtual experiments

of this section are conducted with the same strategy of using image pairs for each load

step.

Fig. 2.15 depicts the structure of the virtual experiments performed for each local-

ization orientation, including six images (three image pairs). The first row in the figure

shows the virtual images while the second row sketches the mechanical displacements

incorporated in each image pair. The first image pair (load step one) has no mechanics

and the next two pairs incorporate the mechanical deformation in two increments. The

third row represents the drift and spatial distortion, and the last row represents the

scan line shift artifact fields included in the virtual experiments. Three scan line shifts

per image are distributed among Images 1, 2 and 3, with equal spacing, as depicted in

the figure. The exact same scan line shifts are repeated in Images 4, 5 and 6.

In order to allocate all the 18 scan line shifts in these six images to the correct

images and attain the initial guess values for their positions, two pre-correlation steps

are performed. The first pre-correlation is done on Images 1, 2 and 3, while the second
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Figure 2.14: Reference mechanical deformation used in the virtual experiments. (a) An
example of a DIC measurement on SEM images, taken from the work by [63], exhibiting
high strain gradients and localization bands, (b), (c) and (d) εxx, εyy and εxy fields used
for the mechanical deformation in the virtual experiments, exhibiting localization bands
spanning the whole image, in this figure with an orientation of θ = 30o.

one is done on images 4, 5 and 6, as shown in Fig. 2.15. Using this procedure, the

influence of the mechanical deformation on the pre-correlations is minimized.

Once all the scan line shifts are allocated, three correlations are performed to correct

the scan line shift artifacts in image pair 1, 2 (no mechanical deformation present, load

step 1), image pair 3, 4 (in the presence of the mechanical deformation of load step

2), and image pair 5, 6 (in the presence of the mechanical deformation of load step

3). Note that these three correlations are performed on image pairs with both images

containing the same mechanical deformation field. Accordingly, each correlation can be

performed as if no mechanical deformation were present. The only difference that the

presence of mechanics is imposing, is in the pre-correlations, since there is one image

in the pre-correlations of each of the image triples that contains a different mechanical

displacement field, see Fig. 2.15.
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Figure 2.15: Strategy used for performing virtual experiments with multiple scan line
shifts per image, in the presence of mechanical strain. Six images (three image pairs) are
generated. Each image pair represents a load step, from zero to maximum deformation.
Each image incorporates spatial distortion and drift, as well as scan line shift artifacts.
Three scan line shifts per image are distributed in Images 1, 2 and 3 as indicated in the
bottom row. The exact same scan line shifts are repeated in Images 4, 5 and 6. Two
pre-correlation steps are performed to allocate scan line shifts in all the six images, and
three correlations are done to correct the scan line shift artifacts in all images. The
images for each pre-correlation and correlation case are denoted with curly brackets
in the figure, making it clear that the correlations for scan line shift correction are
independent of the mechanics.

Fig. 2.16 shows the results of both pre-correlations mentioned above as a function

of the localization band orientation θ. The success rate in allocating scan line shifts

is the ratio of scan line shifts allocated correctly (using the same criteria as in section

2.3.2) versus the total number of scan line shifts, which is 18 here. It is observed

that the localization bands start to cause problems in the pre-correlations only when

the orientation is almost horizontal, i.e. less than 10o. This was anticipated since

the horizontal localization bands are very similar to the scan line shifts when they

are horizontal, thereby inducing a similar trace in the residual of the pre-correlations.

Nevertheless even at θ = 0o some of the scan line shifts are allocated to the correct

image and position, and the success rate is approximately 60%.

The results of the pre-correlations are used to perform the actual correlations to

correct the scan line shifts in the image pairs at constant load. In here, only the results

of the correlations on the first image pair (no mechanics) and third image pair (maximum



2. SEM Line Shift Artifacts Identification 31

0 5 10 15 20 30 60 90

Orientation of the localization bands

50

60

70

80

90

100

S
u
ce

ss
ra

te
in

a
ll
o
ca

ti
n
g

(θo)

li
n
e 

sh
if
ts

[%
]

Figure 2.16: Success rate in automatic allocation of scan line shifts in the pre-correlations
for different orientations of the localization bands of the mechanical displacement fields
for 3 scan line shifts per image.

mechanical deformation) are discussed. The results of the second image pair are fully

consistent with the ones from the other two pairs. The artifact mapping functions,

φf and φg, are defined based on the scan line shifts detected in the pre-correlations.

The mechanical deformation has no influence on the correlations and a suboptimal

parametrization for drift and spatial distortion is used, i.e. φm is regularized with only

first order polynomials to capture the influence of drift and spatial distortion, which is

sufficient for an accurate correction of the scan line shift artifacts. Fig. 2.17 shows the

mean absolute error in the measurement of scan line shift artifact fields, ĒL, for different
localization orientations. For localization orientations down to θ = 10o the scan line

shift artifact fields are measured with the expected DIC accuracy (approximately 0.01

pixels) for all images (1, 2, 5 and 6). This means that the scan line shift artifact is

corrected more that 99% for all these cases. The error is in the same range for Images 1

and 2 in the case of θ = 5o. Similar to the results of the previous section, it is confirmed

that as long as all the scan line shifts are allocated correctly in the pre-correlations, the

correction is performed with high accuracy.

It is observed that the proposed method is robust in the presence of almost horizontal

(10o and more) localization bands spanning the width of the image, even with presence

of drift and spatial distortion, that do not need to be accurately captured.

2.4 Application to real SEM images

The method for detecting and removing scan line shift artifacts is next applied to real

SEM images. This study is divided into two parts. First, a case without mechanical

deformation is discussed, followed by a second case using SEM images taken during an

in-situ tensile test inside an SEM chamber.
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Figure 2.17: Error in the correction of the scan line shift artifact in the presence of
mechanical deformation: mean absolute error averaged for all the scan line shift artifact
fields for different orientations of the localization bands.
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Figure 2.18: SEM images of (a) a dual phase steel specimen, and (b) a bainitic steel
specimen, taken in a FEI Quanta 600F microscope in secondary electron mode. Both
types of images have a gray scale pattern which is suboptimal for DIC, thus representing
challenging test cases.
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2.4.1 SEM images with no mechanical deformation

A set of three SEM images are taken of a Dual Phase (DP) steel specimen in an FEI

Quanta 600F microscope in Secondary Electron (SE) imaging mode. The images are

taken one after another without any deformation or translation of the specimen. The

field of view of the captured images is about 30 × 30µm, see Fig. 2.18a. The natural

pattern present in the images results from etching, resulting in a surface topology that

uncovers the microstructure of the material.

A Local Digital Image Correlation (LDIC) between pairs of images is performed using

the commercial LDIC package VIC-2D™. A subset size of 41 pixels and a step size of

6 pixels is used for this correlation. Fig. 2.19a shows the vertical displacement map

obtained from the LDIC for one pair of images. Two distinct scan line shifts can be

observed, with roughly half a pixel amplitudes (in y direction), one in positive, and the

other in negative direction.

Next, the same images are corrected for the observed scan line shifts using the pro-

posed method. Firstly, a series of pre-correlations between all three images is performed,

resulting in detection of two scan line shifts, one in the first image and the other in the

second image. After the allocation of the scan line shifts, the mapping functions of

artifacts in f (the first image) and g (the second image), i.e. φf and φg respectively, are

assigned. First order polynomials define the mechanical deformation mapping function,

φm. Since there is no mechanical deformation in this case, this mapping function only

captures the difference in drift and spatial distortion artifacts possibly present in the

images, enabling a precise detection of the scan line shift artifacts (i.e. the field identi-

fied by φm is discarded afterwards). The correlation is performed and both images are

corrected for the scan line shifts, thereby effectively eliminating the scan line shifts from

the images.

To assess the effectiveness of this methodology, LDIC, with identical settings as used

for the uncorrected images, is performed on the corrected images. Local DIC is chosen

since it requires no parametrization of kinematic fields, and thus provides a non-biased

evaluation of the correction. Note that none of the steps of the proposed method uses

local DIC, i.e. all the steps from pre-correlations to the main correlation are based on

global formulation of DIC. LDIC is only used here as a method for evaluation of the

level of correction attained in real SEM images. Fig. 2.20 presents this difference in

an overview: on the left the steps for correcting scan line shift artifacts based on the

proposed method (details in Fig. 2.6); and on the right the two LDIC steps for the

evaluation of the accuracy of the proposed method. The map of the displacement in y

direction thus obtained is depicted in Fig. 2.19b. The effect of the two scan line shifts

is completely eliminated from the displacement field. Fig. 2.21 shows the average row

values of Ux and Uy as a function of the vertical position of the row for the local DIC

results before and after elimination of the scan line shifts. In Fig. 2.21b, both scan line

shifts, with amplitudes in y direction equal to 0.55 and −0.49 pixels, respectively, are

eliminated completely, i.e. there is no trace left of the sudden increase or decrease of

Uy after elimination. The x components of the scan line shifts are eliminated with the
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Figure 2.19: Vertical displacement in measured on an undeformed DP steel specimen
before and after scan line shift artifact elimination. Both displacement fields have been
determined by LDIC.

same accuracy, as evidenced in Fig. 2.21a.

2.4.2 SEM images of a in-situ tensile test

A set of three SEM images with a large scan line shift were available of a bainitic steel

specimen, taken during an in-situ tensile test in an FEI Quanta 600F microscope in SE

imaging mode. The images are from three subsequent deformed states of the specimen,

which was subjected to tension in the vertical, y direction. Note that in these prior

experiments, no image pairs were taken per loading step, increasing the complexity

of the problem. The field of view of the captured images is close to 25 × 25µm, see

Fig. 2.18b. The natural pattern in the image again results from etching, resulting in a

surface topology disclosing the microstructure of the material.

LDIC between the first two images is again performed using VIC-2D™. The same

settings used before (subset size of 41 pixels, step size of 6 pixels) are adopted for this

correlation. Fig. 2.22a shows the vertical displacement map resulting from LDIC. A

distinct jump is visible, of a magnitude close to 5 pixels. Note that this is one of the

extreme cases of a scan line shift artifact observed with this electron microscope in terms

of amplitude and width, making it a relevant test case for validation of scan line shift

artifact elimination on real SEM images in the presence of drift, spatial distortion and

mechanical deformation.

The proposed procedure is applied to the three images. The pre-correlations revealed

that the scan line shift occurs in the second image, thus the correlation for the correction

of this line shift artifact is performed with the first two images among the three. Since

there is only a single scan line shift corresponding to Image g (the second image), the

artifacts mapping function of the reference image, φf , can be ignored. One scan line
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Figure 2.20: An overview of the process of correcting scan line shift artifacts in SEM
images (left), and the evaluation of the accuracy of the correction attained by the
proposed method (right). Note that LDIC is only used for unbiased evaluation of the
accuracy of the proposed method.

shift is allocated to φg with the proper initial guess, obtained from the pre-correlations.

First order polynomials define the mechanical deformation mapping function, φm. In

this case, the mechanical mapping function represents the mechanical deformation in

addition to drift and spatial distortion artifacts affecting the images. Again, the purpose

is to secure a proper detection and correction of the scan line shift artifact, not the

correct measurement of drift, spatial distortion, and mechanical deformation.

The Image g is subsequently corrected for the scan line shift and local DIC is per-

formed on the corrected image with respect to the same reference image. The corre-

sponding vertical displacement map of this correlation is depicted in Fig. 2.22b. An

acceptable elimination of the scan line shift artifact is observed, despite the presence of

such a strong artifact and mechanical deformation. Note also that the scan line shift is

located close to the top edge of the image, which poses no problem for the methodology.

Fig. 2.23 reveals the row average of Ux and Uy for the LDIC results, before and after

elimination of the scan line shift. The scan line shift of 4.9 pixels amplitude in y direc-

tion is properly eliminated. The ratio of the amplitude of the residual of the sudden

change in the displacement after elimination to that before elimination is 0.002. The

elimination of the scan line shift in the x direction is performed with the same level of

precision, as presented in Fig. 2.23a.
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Figure 2.21: Average row values of displacement in (a) x and (b) y direction as a
function of the vertical position of the row, found by LDIC on SEM images of a DP
steel specimen, before and after elimination of scan line shift artifacts

.

Note that in this case, in contrast with the virtual experiments of Section 2.3.3, the

mechanical deformation field is not complex. The limited complexity in the mechanics

makes it possible to perform the pre-correlations and correlation successfully without

the need for image pairs for each load step.

2.5 Conclusions

Images taken by scanning electron microscopy exhibit artifacts that may result in con-

siderable errors if used for quantitative measurement of, e.g. in-plane geometrical prop-

erties or determination of mechanical deformation fields by DIC. These artifacts can be

divided into three categories: spatial distortion, drift and scan line shifts. This paper

proposes a robust method to deal with scan line shifts, using a systematic approach

that does not rely on averaging of images. The nonlinear composition of the effect of
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Figure 2.22: Vertical displacement in a Bainitic steel specimen before (a) and after (b)
elimination of the occurring scan line shift artifact (displacements assessed by LDIC).
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Figure 2.23: Row average of displacements in (a) x and (b) y direction, obtained by
LDIC on SEM images of a Bainitic steel specimen, before and after removal of a scan
line shift artifact.
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mechanical deformation and the distortions caused by the artifacts is taken into ac-

count, leading to an extended global DIC framework suitable for dealing with artifacts.

A regularization enrichment based on error functions is proposed to identify scan line

shift artifacts and to eliminate them from the affected images.

The method is assessed using a series of virtual experiments based on artificially

generated and deformed patterns. The influence of the initial guess of the scan line shift

parameters on the robustness and convergence is tested, enabling convergence even with

an initial guess error of 80 pixels for the considered virtual test cases. The resulting

amplitude of the scan line shifts present an error in the order of 5e−4 pixel in this virtual

experiment. The position and the width of the scan line shifts are evaluated with ∼ 0.1

and ∼ 0.3 pixel accuracy in all virtual experiments, respectively.

The influence of number of scan line shifts and their spacing is studied in a second

series of virtual experiments. It is shown that images exhibiting up to three scan line

shifts per image can be corrected with an accuracy expected from GDIC (order of 0.01

pixels). The success rate of the scan line shift artifact correction drops to 92%, 84% and

65% for cases of 4, 5 and 6 scan line shifts per image, respectively.

Another set of virtual experiments reveals the influence of a complex mechanical de-

formation field, exhibiting localization bands in different orientations, on the correction

of multiple scan line shift artifacts per image. The correction of three scan line shifts per

image is still successfully performed, with ∼ 0.01 pixel accuracy, when the orientation

of the localization bands is > 10o different from that of the SEM scanning lines.

The proposed methodology is applied to two sets of real SEM images, one without

mechanical deformation and the other taken from an in-situ uni-axial tensile test. The

images taken reveal scan line shift artifacts up to 5 pixels amplitude. In both cases,

all scan line shifts are eliminated accurately. The LDIC maps of the images before and

after removal of the scan line shifts emphasize the need for the proposed elimination

method and demonstrate the efficiency of the method. The proposed method relies

on minimal data acquisition for artifact detection and removal, i.e. no averaging over

multiple images is required. The adopted deterministic regularization for this type of

artifact results in a high robustness, even when applied to extreme cases of scan line

shift artifacts (high amplitude of shifts). The newly proposed extended GDIC general

framework based on nonlinear mapping functions for the artifacts in principle can be

extended to simultaneously deal with other types of artifact as well, e.g. drift and

spatial distortion, which will be discussed in future publications.

Appendices

2.A Automatic algorithm to allocate scan line shifts

to images in pre-correlations

A simple algorithm has been established to analyze the pre-correlations automatically

and to locate and allocate the scan line shift artifacts to images. Such an algorithm can
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be useful if many images are to be analyzed, and specifically when there are multiple scan

line shifts occurring in each image. The algorithm is based on the row average of residual

fields of three pre-correlations performed on three images, see Fig. 2.5. As mentioned in

Section 2.2.4, the high gradients in these curves reveal the presence of a scan line shift

artifact. The peaks in the derivative of the row average of these residuals indicate the

positions where scan line shifts are occurring. Since numerical differentiation typically

provides very noisy data, the curves are first smoothed with a moving average of a 20

pixel window, and the derivative curves are smoothed again with the same parameters.

The locations and widths of the peaks of each smoothed residual derivative curve are

automatically identified (with the Matlab findpeaks function) and the ones that occur

on two graphs within a distance equal to the peak width are paired to allocate a scan

line shift to the image which the two pairs have in common. A threshold equal to

1.4 times the average of each curve is set, in order to choose only the peaks that are

dominant. It may occur that not all the scan line shifts are captured in one step of the

pre-correlations. There are two cases in which this can happen: peaks that are selected

on only one curve, or peaks that are selected on all the three curves. If any of these two

cases occur, a second pre-correlation is performed automatically. This second set of pre-

correlations is enriched with the scan line shifts that have already been allocated, with

the position of the scan line shifts fixed to the values found in the first pre-correlation

step, and the widths fixed to a large value, i.e. 20 pixels, as described in Section 2.2.4.

The second pre-correlation is effective in revealing the scan line shifts that were not

identified in the first pre-correlation.

An example of the procedure is shown in Fig. 2.24, where part a depicts the row-

averaged residual of the first trial of the pre-correlations of one of the cases of Section

2.3.2 with three scan line shifts per image. Fig. 2.24b and c depict the smoothed

derivatives of the residuals for the first and second step of the automatic algorithm as

described above. After the first pre-correlation (Fig. 2.24b) there are two peaks at the

left and right edge that have been selected only once; therefore, no scan line shifts have

been allocated. This triggers the second pre-correlation step, where the same two peaks

now occur in two graphs, from which the scan line shifts are correctly allocated to the

corresponding images.

Note that neither the parameters chosen in the algorithm (thresholding, smoothing,

etc.) nor the algorithm itself are optimized. In spite of this, it proves to be reliable in

a good range of number and spacing of scan line shifts, as discussed in Section 2.3.2.

Obviously, further optimization might still be possible.
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Figure 2.24: Illustration of the automatic scan line shift allocation procedure: (a) row
average of residual fields of first step pre-correlations between three virtual images with
three scan line shifts per image; (b) smoothed derivative of the average of residual fields
of the first step pre-correlations with the identified peaks indicated by triangles; the
arrows and crosses indicate the allocated and unallocated scan line shifts; (c) smoothed
derivative of the second step pre-correlations, where the arrows indicate additionally
allocated scan line shifts.
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Correction of scanning electron microscope imaging artifacts in a novel digital image

correlation framework, Experimental Mechanics, 59:489-516, 2019.

Abstract

The combination of digital image correlation (DIC) and scanning electron microscopy

(SEM) enables to extract high resolution full field displacement data, based on the high

spatial resolution of SEM and the sub-pixel accuracy of DIC. However, SEM images

may exhibit a considerable amount of imaging artifacts, which may seriously compro-

mise the accuracy of the displacements and strains measured from these images. The

current study proposes a unified general framework to correct for the three dominant

types of SEM artifacts, i.e. spatial distortion, drift distortion and scan line shifts. The

artifact fields are measured alongside the mechanical deformations to minimize the ar-

tifact induced errors in the latter. To this purpose, Integrated DIC (IDIC) is extended

with a series of hierarchical mapping functions that describe the interaction of the

imaging process with the mechanics. A new IDIC formulation based on these mapping

functions is derived and the potential of the framework is tested by a number of virtual

experiments. The effect of noise in the images and different regularization options for

the artifact fields are studied. The error in the mechanical displacement fields measured

for noise levels up to 5% is within the usual DIC accuracy range for all the cases studied,

while it is more than 4 pixels if artifacts are ignored. A validation on real SEM images

at three different magnifications confirms that all three distortion fields are accurately

captured. The results of all virtual and real experiments demonstrate the accuracy of

the methodology proposed, as well as its robustness in terms of convergence.

41
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3.1 Introduction

Digital Image Correlation (DIC) is nowadays the most frequently used full-field displace-

ment measurement technique for industrial and academic purposes [3]. Apart from con-

ventional optical images (taken with one or multiple cameras), DIC may be applied to

microscopy images obtained by different methods, such as scanning electron microscopy

[8], scanning tunneling microscopy [9], atomic force microscopy [10, 11], high-resolution

transmission electron microscopy [9, 12], and optical profilometry [7]. These methods

provide a high spatial resolution which, combined with the sub-pixel accuracy of DIC

[3], enable a high resolution displacement and strain assessment. This opens a vast

perspective in experimental micromechanics. Scanning electron microscopy (SEM) has

proven itself to be one of the most powerful microscopy methods available. It combines

a high spatial resolution (e.g. with respect to light microscopy or optical profilometry)

with relative ease of use (e.g. with respect to transmission electron microscopy or atomic

force microscopy). However, using SEM images for kinematic measurements comes with

a price, due to the presence of several complicated imaging artifacts [55, 56]. These ar-

tifacts manifest themselves in the form of distortions in the image, and cause significant

artificial deformations and strains in DIC measurements if ignored [25, 28].

SEM imaging artifacts can be categorized into three classes according to Ref. [53].

(1) Random, time-dependent distortion due to positioning errors of the electron beam

during scanning, referred to as “scan line shifts”. (2) Non-random, time-independent

spatial distortion, similar to distortions observed in optical systems. (3) Non-random,

time-dependent distortion referred to as drift distortion. It triggers non-uniform artificial

deformation fields in images and directly results from the scanning involved in the SEM

imaging process [18, 57].

The effect of the above-mentioned artifacts may be reduced by optimizing the SEM

scanning parameters. For instance, faster scanning can reduce drift distortions, while

lower beam voltage and smaller spot size may reduce charging leading to less drift

distortions. However, these alterations do not eliminate the artifacts, while they increase

the image noise, which may also reduce the accuracy of the mechanical deformation field

to be identified.

In this paper, a novel framework for correcting all three categories of SEM imaging

artifacts is presented in a unified and systematic way. The method is fully integrated

in a DIC framework and thus yields, at the same time, artifact-corrected images and

accurate mechanical deformation fields.

The different types of artifacts have been studied in the literature and some solutions

have been proposed to correct them. Several methods have been proposed to correct

the drift artifact in SEM images [10, 13–24]. Most of these papers focus only on drift

distortion at high magnification, where the effect of drift distortion is more significant

than that of spatial distortion. The spatial distortion is discussed in other papers

and different solutions are also proposed for correcting it. These studies cover optical

microscopy [53, 62, 64] as well as SEM [23, 25–27]. The random, time-dependent scan

line shift artifact has been studied much less and is often neglected in the literature.
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Lagattu et al. [60] and Stinville et al. [63] report on the presence of this artifact in SEM

images and Sutton et al. [28] proposes averaging over a number of images to reduce the

detrimental effect of the line shifts. In a previous study by the authors, a more rigorous

solution was proposed, based on the enrichment of conventional Global Digital Image

Correlation (GDIC) basis functions by error functions; this method was demonstrated

to be effective in quantifying the line shifts with amplitudes ranging between 0.5−5 px,

and correcting them to less than 0.01 px error [65].

Still lacking in the literature is a systematic unified framework to simultaneously

quantify all three types of SEM imaging artifacts along with the mechanical displace-

ment field in an integrated general solution scheme. The methodology introduced by

Sutton et al. [25] can be considered ground-breaking, in the sense that, by correcting

the DIC displacements it simultaneously deals with spatial and drift distortion and de-

creases the effect of line shifts (effective for line shifts with amplitudes of up to 1 pixel),

but it requires averaging of multiple (as many as 16) scans, and involves many separate

optimization steps1 for characterizing drift and spatial distortion properly. Simultane-

ously addressing all three artifact types is indeed quite challenging, since one can easily

render the methodology ill-posed and non-unique.

The objective of the current study is therefore to fill this gap, and to develop a

systematic, stable and unified method to correct for all three types of SEM artifacts in

a generic DIC framework.

The three types of SEM artifacts discussed above show a deterministic behavior.

Based on this fact, in the current study, Integrated Digital Image Correlation (IDIC)

is used to measure these artifact fields alongside the mechanical displacements in a

separate manner. Such a measurement will ensure that the artifacts induce minimum

errors in the strain measurements. To this end, the imaging process in the SEM as well

as the mechanical deformation in the specimen are modeled as a hierarchy of mathe-

matical mapping functions to replace the conventional mapping functions used in IDIC

and GDIC. Such a composition of mapping functions enables to uniquely capture the

mechanics and artifacts independently. The general framework is not restricted to SEM

images and can be equally applied for correcting imaging artifacts for other microscopy

methods, whereby the hierarchy of mapping functions needs to be adapted to the spe-

cific microscopy technique. Here we focus on SEM imaging and develop the method for

it accordingly.

In this study, proper regularization functions are chosen to describe spatial distor-

tion, drift distortion and scan line shifts in SEM images. (1) Line shifts are randomly

1Sutton et al.’s method [25] consists of the following steps. Local DIC is performed on image pairs to
get drift distortion disparity maps. B-spline surfaces are fitted to these maps. For each pixel separately,
the drift velocity in time is found at certain points in time. The drift velocity is fitted with a B-spline
function in time. The fitted drift velocity is integrated to identify drift distortion in time. For all
pixels, a B-spline surface is fitted to provide a functional for the drift distortion field for one image of
each pair. These disparity maps are corrected for drift distortion. A B-spline surface is fitted to these
disparity maps resulting in a functional for spatial distortion. The (drift-corrected) disparity maps are
corrected for spatial distortion. The whole process is repeated until both drift and spatial distortion
are corrected.
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occurring and hence are to be extracted from an image when and where they occur

(as reported in our previous study [65]). (2) Spatial distortion is independent of time,

i.e. equal for all the images. Hence, it can be captured by a calibration phase prior to

the mechanical test based on a simple known mechanical field, i.e. rigid body motion

[13]. (3) The drift distortion on the other hand is a time dependent phenomenon that

is smooth in time [25]. Thus it is defined and regularized in time as a smooth function

covering the scanning time of all the images in a mechanical test. The drift distortion

as a function of time is projected on the images by the mathematical definition of the

scanning process in time [25].

The DIC problem is then solved in a time-integrated manner, correlating all deforma-

tion and distortion fields of all images at once [66]. Finally, since all images (including

the first one) contain distortions, the existence of an undeformed reference image must

be abandoned; therefore, a more general definition of the reference image is introduced,

based on the average of all back-deformed images.

The paper presents the methodology in detail, followed by a proof of principle by

means of a series of virtual experiments. It will be demonstrated that this framework

has several characteristic advantages, justifying the originality of the work:

(i) all artifacts are dealt with in a single unified framework,

(ii) only two correlation phases (spatial distortion calibration and mechanical test

phase) suffice to assure that all artifact distortion fields are captured accurately

along with the mechanical deformation field,

(iii) the information in all images is optimally used by avoiding any kind of image

integration,

(iv) drift distortion is directly measured and corrected in every image, including the

first (reference) image, without any extrapolation of data and,

(v) there is no need to correct the images and perform another correlation on the cor-

rected images again; i.e. no pre- or post- processing of images or DIC displacement

data is needed.

Table 3.1: Notational conventions

scalar: a column: a
vector: a, A matrix: A

inner product of vectors: a.b ∇x = ∂
∂x
ex +

∂
∂y
ey

composition of functions : f ◦ g(x) = f (g (x))

3.2 SEM imaging artifacts

SEM images are generated by the interaction of an electron beam focused on the spec-

imen surface and registering the out-coming electrons, point by point in a scanning

process. The electron beam, after being generated and concentrated by a series of

lenses (electromagnetic or electrostatic), follows along the optical axis up to the point

where it passes through the scanning coils. Here the electron beam is deflected from the
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optical axis in intervals to perform the scanning of the specimen surface. A final electro-

magnetic lens following the scanning coils focuses the beam onto the specimen surface.

The schematic representation in Fig. 3.1a depicts these successive imaging steps.

An error in the deflection of the electron beam in the scanning coils from one scan

line to the other is considered to be the main source of scan line shifts [65]. The origin of

such errors is not discussed in the literature. A speculative explanation is that, line shifts

may be caused by the (sudden) discharge of spurious contamination particles on the wall

of the electron column, which gradually charge up over time. Line shift artifacts occur

in a random manner, however, they reveal a deterministic flaw in the image. Fig. 3.1b

shows how such a mis-positioning of the electron beam is reflected as a local distortion

in the image.

The electron beam, which is deflected by the scanning coils to a certain pixel position

possibly entailing a scan line shift, now passes through the (final) objective electromag-

netic lens. The electromagnetic field of the objective lens is always spatially nonuniform

to a certain extent. Thus the beam is further distorted depending on where it passes

through the objective lens. In the scanning process, the further the beam passes from the

center of the electromagnetic lens, the higher the deviation from the desired magnetic

field that acts on the beam, i.e. the higher the erroneous (radial) deflection of the beam.

This can be observed in the fact that images with lower magnification generally exhibit

more spatial distortion, see Fig. 3.1a. This distortion in the electron beam is assumed

to be the source of the spatial distortion artifact, Fig. 3.1c. These distortion fields are

well studied in the literature for aberration-corrected electron microscopes [67, 68]. The

spatial distortion is assumed to be a time-independent field. This means that as long

as the electron beam parameters are not altered, the distortion field is equally affecting

all of the images in a series [25].

The drift distortion artifact is a consequence of undesired motion of the specimen

relative to the electron beam while the scanning process is going on, see Fig. 3.1d. This

smooth time-dependent motion can be caused, for instance, by the motion of the stage

or different components of the SEM column (e.g. due to temperature changes), or by

global repulsion of the beam due to charging of the specimen that increases in time [69].

Although new microscopes give vast possibilities for scanning procedures, it is com-

mon that the scanning is performed row by row, typically from top to bottom of the

image, or sometimes column by column. Such a scanning scheme results in distortions

which induce apparent tension/compression and shear. The drift distortion field is thus

non-uniform in each image, and varies from image to image [25].
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A triangular feature 
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(b) Scan line shifts
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(c) Spatial distortion
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Figure 3.1: Schematic representation of the origin of SEM imaging artifacts: (a) SEM
imaging process and the effect of the inhomogeneous electromagnetic field of the final
electromagnetic lens in different magnifications; (b) line shifts: errors occurring in the
positioning of the electron beam on the surface of the specimen are reflected as a localized
shift in the image (schematic of a zoomed view of a feature on the specimen); (c) spatial
distortion: the scanning occurs on the colored dots instead of the correct positions (gray
dots) which is reflected in the image as the spatial distortion (schematic of the whole
field of view); (d) drift distortion: undesired relative motion of the specimen with respect
to the electron beam during scanning results in shear/tension like distortions in SEM
images (schematic of the whole field of view). The gray horizontal lines in (b), (c) and
(d) indicate the scan lines, i.e. where the scanning should have happened in case of no
beam positioning error, thus the pixel positions.

3.3 Methodology

3.3.1 Novel IDIC formulation based on hierarchical mapping

functions for SEM artifacts

Images are considered as mathematical projections of a reference pattern. This reference

pattern, F , is an ideal, instantaneous (thus not real) image of the specimen, free of

any artifacts, at the very first instance t = 0 when the scanning of the first image

starts. Consider a material point X, on a specimen at this instance, Fig. 3.2a. Due to

mechanical deformation and drift (the rigid body motion of the specimen with respect

to the electron beam during scanning), this material point will be located in another
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position x at the moment it is scanned in a certain image. The mapping between X

and x is defined as:

x = φM(X), (3.1)

where subscript M refers to “Motion” in the plane of the specimen. This mapping

function incorporates mechanical deformation and drift artifact. On the other hand,

the imaging process introduces errors as well. The electron beam landed in position x

while it was supposed to scan another position, ξ. This mispositioning is described by

a second mapping function that incorporates the imaging artifacts,

x = ψI(ξ), (3.2)

where the subscript I refers to “Imaging”. The position vector ξ indicates the posi-

tion in the image plane where the gray scale data of the position x in the specimen is

recorded, i.e. ξ is the pixel position, Fig. 3.2a. Note that the mathematical formula-

tions in this section are all in continuous form, however, the final calculations are done

in discrete manner since the digital images are constructed of discrete data based on

pixels. For the correlation, the pixel position ξ corresponding to each material point X

is needed. To this end, the mapping function in Eq. (3.2) needs to be inverted:

ξ = ψI
−1(x) = φI(x). (3.3)

By combining Eqs. (3.1) and (3.3) the total mapping from each material point to the

correct pixel position is attained as:

ξ = φI (φM(X)) , or ξ = φI ◦ φM(X), (3.4)

where the symbol “◦” denotes the classical function composition. This hierarchical

mapping for a certain image g is depicted in Fig. 3.2b. Note that the pixel position,

ξ, is not necessarily an integer value, thus requiring interpolation in between pixels to

recover the desired gray scale value.

Mapping function for imaging

Let us elaborate on ψI(ξ) resulting from the SEM imaging process. Based on the order

discussed in the previous section, ψI is a sequential composition of two mapping func-

tions, the line shift mapping function, ψL, and the spatial distortion mapping function,

ψS, which for image i results in:

ψI i(ξi) = ψS ◦ψLi(ξi). (3.5)

Note that ψS is constant between images. As in Eq. (3.3), the inverse of the imaging

mapping function for image i is:

ξi = φI i(xi) = ψI
−1
i (xi) = φLi ◦ φS(xi). (3.6)
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(a) (b)

Figure 3.2: The process of imaging in the SEM and the corresponding mapping func-
tions: (a) a material point X before starting the first image of a mechanical test ends in
position x at the moment it is scanned due to mechanical deformation and drift (rigid
body motion of the specimen with respect to the electron beam), and the electron beam
lands in position x instead of ξ due to imaging artifacts. (b) Projection of the mapping
functions on a certain image g showing the hierarchical mapping of material point X to
the corresponding pixel position ξ in this image.

Note that the spatial distortion field is independent of the image, since it is assumed to

be time-independent.

Mapping function for motion in the specimen plane

On the other hand the motion mapping function, φM , is defined for image i as:

φMi(X, ξ) = X+Ui(X) +D(t(ξ)) (3.7)

where U(X) is the mechanical displacement field and D(t) is the drift, which is the

relative motion of the specimen with respect to the electron beam in time. Note that

Ui(X), which is applied in discrete load increments, may contain a physical rigid body

motion of the specimen as well, but this applied discrete rigid body motion does not

induce artificial strains, in contrast to the smooth, time-continuous rigid body motion

during scanning that is caused by drift. The two fields are separated by constraining

the mechanics to be equal for every pair of images (taking two images per load step)

while drift distortion is a smooth function in time. This strategy is explained in more

detail in Section 3.3.3. Since relative beam-specimen motion triggering drift distortion

goes on during the scanning process (and during the time between the images), its value

differs from pixel to pixel. Following Ref. [13], these scan times can be projected on the

image plane (the pixel positions ξ) based on a mathematical definition of the scanning

process:

t(ξ) = ti + (tdex + trey) · ξ ; tr = Wtd + tj, (3.8)

where td is the dwell time describing the amount of time spent on the scanning of each

single point resulting in a single pixel; tr is the time required to scan one line while tj is
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the time required to re-position the beam from the end of one scan line to the beginning

of the next one; ti is the elapsed time until the beginning of scanning of image i; W is the

width of the image (length of each scan line) in pixels, and ex and ey are base vectors in

x and y direction, respectively. These base vectors are aligned with the horizontal and

vertical scanning directions of the SEM. Note that even though Eq. (3.8) is continuous in

time, it is probed only at a set of discrete values of time (the scan times) corresponding

to the scanning of pixels. This means that even though drift D(t), is smooth in time,

drift distortion for each scan time D(t(ξ)) is by definition never smooth nor continuous

(C−1), due to the scanning process that is discontinuous in space. This discontinuity in

space is observed in the pronounced change in the drift distortion from the last pixel of

one row to the first pixel of the next one.

At the beginning of the first image, corresponding to t = 0, the drift is equal to zero.

Considering that the first image holds no (imposed) mechanical deformation, it can be

concluded that the motion mapping function is equal to unity (position X) at t = 0:

U1(X) = 0 ; D(t = 0) = 0 ⇒ φM 1(0) = X. (3.9)

Note that, by considering Eq. (3.7), Eq. (3.4) is nonlinear in ξ, i.e. an iterative solution

is required for each material point X to find the corresponding ξ. To this end, the

Picard method can be utilized as a fast iterative solution method:

ξP+1 = φI i ◦ φMi(X, ξP ), (3.10)

where P refers to an iteration of the Picard solution procedure with an initial guess

taken from the previous iteration of the main correlation.

System of equations

Based on the mapping functions defined above (in Eq. (3.4)), the pixel position for each

material point can be probed in each image, which results in what is often referred to

as the “back-deformed image” denoted by:

g̃i(X, a) = gi ◦ φLi(a) ◦ φS(a) ◦ φMi(X, a), (3.11)

where gi is image i and a is the column of all the degrees of freedom (dof) parameterizing

all the mapping functions. Note that only a part of column a is associated with each of

the mapping functions, but to avoid notational confusion the full column a is mentioned

wherever any dof is present. In absence of noise and if all the mapping functions are

known, the difference between the back-deformed images is zero. However, in reality this

difference, i.e. the gray scale residual, is minimized for the correct mapping functions.

The gray scale residual for each image i is defined as:

ri(X, a) = g1 ◦ φL1 ◦ φS ◦ φM 1(X)− gi ◦ φLi ◦ φS ◦ φMi(X). (3.12)
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As in Eq. (3.11), all the mapping functions and consequently the residual are functions

of all the dofs. For the sake of compactness, however, from here on the column of

degrees of freedom a is dropped in the notation of mapping functions. Minimization

of the residual would lead to an ill-posed problem unless the number of unknowns is

sufficiently reduced by means of regularization to the set of degrees of freedom in a, as
in Eqs. (3.11) and (3.12). Note that the reference image, here chosen to be the first

back-deformed image g̃1, also incorporates artifacts, and hence it should be probed in

correct positions by the corresponding artifact mapping functions.

In order to identify the unknown deformation and distortion fields, residual of all

images are stacked to create a column of residual fields, and the sum of squares of this

residual column r is minimized with respect to the degrees of freedom a:

r(X, a) =




r1(X, a)
...

ri(X, a)
...




; aopt =




a1
...

ak
...



= argmin

a

(
1

2

∫
rT (X, a) r (X, a) dX

)
, (3.13)

where aopt is the set of optimal degrees of freedom minimizing the residual.

The minimization of the sum of squares of r implies its derivatives with respect to

each degree of freedom to vanish:

bk =
∂

∂ak

(
1

2

∫
rT (X, a) r (X, a) dX

)
= 0. (3.14)

This is a set of nonlinear equations which is linearized using a Newton-Raphson solution

scheme [61]:

bit+1 ' bit +Mδa = 0 ⇒ Mδa = −b ; ait+1 = ait + δa, (3.15)

where M is the Hessian, defined as:

Mkl =
∂bk
∂al

. (3.16)

The derivative of the objective function with respect to each dof, bk, is calculated as:

bk =

∫
∂rT(X, a)

∂ak
r(X, a)dX =

∫
LT
k (X, a)r(X, a)dX, (3.17)
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where L for image i and dof k is:

Li,k(X, a) =
∂ri(X, a)

∂ak
(3.18)

=
∂

∂ak
(g1 ◦ φL1 ◦ φS ◦ φM 1(X)− gi ◦ φLi ◦ φS ◦ φMi(X)) (3.19)

= LL1
k (X, a) + LS1

k (X, a) + LM1
k (X, a)− LLi

k (X, a)− LSi
k (X, a)− LMi

k (X, a)
(3.20)

and LLi
k , LSi

k and LMi
k are the derivatives of the residual for image i with respect to

the particular dof k associated to φLi, φS and φMi. Each derivative is determined by

applying the chain rule:

LLi
k (X, a) = [∇ξ (gi ◦ φLi ◦ φS ◦ φMi(X))] ·

(
∂φLi

(X, a)

∂ak
◦ φS ◦ φMi(X)

)
(3.21)

LSi
k (X, a) = [∇ξ (gi ◦ φLi ◦ φS ◦ φMi(X))] ·

[∇ζ (φLi ◦ φS ◦ φMi(X))] ·
(
∂φS (X, a)

∂ak
◦ φMi(X)

)
(3.22)

LMi
k (X, a) = [∇ξ (gi ◦ φLi ◦ φS ◦ φMi(X))] ·

[∇ζ (φLi ◦ φS ◦ φMi(X))] ·
[∇x (φS ◦ φMi(X))] ·
(
∂φMi (X, a)

∂ak

)
, (3.23)

where the gradients are with respect to the corresponding subscripts indicated in each

case, i.e. ξ = φLi ◦ φS ◦ φMi(X), ζ = φS ◦ φMi(X), and x = φMi(X). For convenience

of implementation, further rearrangements of Eqs. (3.21) to (3.23) are possible, see ap-

pendix 3.A. In conventional GDIC, the derivatives of the displacement field with respect

to degrees of freedom (ϕk =
∂U
∂ak

) are referred to as basis (or sensitivity) functions. Here,

in Eqs. (3.21) to (3.23), the expressions within round brackets are the sensitivity func-

tions, which are the derivatives of the corresponding mapping functions with respect to

the degrees of freedom. The L matrix is finally assembled as:

L(X, a) = [L1(X, a) . . . Lk(X, a) . . . ] =




L1,1(X, a) . . . L1,k(X, a) . . .

...
...

Li,1(X, a) . . . Li,k(X, a) . . .

...
...



. (3.24)
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From Eqs. (3.16) and (3.17) the elements of the Hessian matrix, M , can be found as:

Mkl =
∂

∂al

(∫
LT
k (X, a)r(X, a)dX

)
(3.25)

=

∫
∂LT

k (X, a)
∂al

r(X, a)dX+

∫
LT
k (X, a)

∂r(X, a)
∂al

dX (3.26)

=

∫
∂LT

k (X, a)
∂al

r(X, a)dX+

∫
LT
k (X, a)Ll(X, a)dX. (3.27)

The first term in Eq. (3.27) is neglected since it contains the residual, which is small

close to convergence [61], resulting in:

Mkl '
∫

LT
k (X, a)Ll(X, a)dX. (3.28)

Note that correlation using hierarchical mapping functions takes the same amount of

time as a conventional GDIC problem of the same size (in terms of number of images

and dofs) if the same assumptions on the image gradient and Hessian approximation

are made.

Reference image

Up to this point the first image, g1, was used as the reference in constructing the residual.

This image may be prone to artifacts as well, and it is not more significant than any

other image. Hence, a new definition of the reference image is needed, which does not

introduce any bias with respect to one of the images. A weighted average of all the

back-deformed images is taken to this purpose:

f(X, a) :=
1

W

N∑

j

wj

(
gj ◦ φLj ◦ φS ◦ φMj(X)

)
, (3.29)

where wj is the assigned weight to image j and W =
∑N

j wj. Using this new reference

image f(X, a), the residual reads:

ri(X, a) = f(X, a)− gi ◦ φLi ◦ φS ◦ φMi(X). (3.30)

By choosing all the weights equal to one, a uniform average of all back-deformed im-

ages constitutes the reference image. This is important, specifically in the presence

of artifacts where the first image contains distortions and needs to be back-deformed.

Note that this definition does not involve an extra computational cost, since all the

back-deformed images are needed to construct the residual, regardless of the definition

chosen for the reference image. A more elaborate weighing scheme can be considered

as well, e.g. weighing based on the inverse of the residuals. Such a scheme emphasizes

images that are correlated more accurately, to construct the reference image in each
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iteration. The updated reference image implies only a minor change in the definition

and assembly of the L matrix:

LLi
k (X, a) =

1

W

N∑

j

wj

(
L
Lj

k (X, a) + L
Sj

k (X, a) + L
Mj

k (X, a)
)

− LLi
k (X, a)− LSi

k (X, a)− LMi
k (X, a), (3.31)

which is based on the same definitions of LLi
k , LSi

k and LMi
k as given in Eqs. (3.21) to

(3.23).

Note that using the average of all back-deformed images as the reference image is

essential in the presence of artifacts that affect all images, including the first one. In the

absence of artifacts, it does not introduce any error compared to using the first image

as reference. This is demonstrated on sample 11b of the so-called “DIC challenge”

[70] by considering a mesh of 20 × 10 knots (in x and y direction) of 2nd order B-

splines. Obtained results for the two definitions of the reference image differ in terms

of displacements less than 3e−4 px, which is well below the DIC accuracy.

3.3.2 Regularization of the artifact mapping functions

The distortion and deformation fields in the mapping functions, Eqs. (3.6) and (3.7),

are regularized by restricting this parametrization to a limited set of degrees of freedom.

Depending on the expected mechanical deformation, the regularization of the mechan-

ical deformation field may range from a low-order polynomial to a finite element-type

discretization of the domain. The regularization for the distinct artifact fields, however,

is determined by their nature, as discussed next.

Line shift artifact

In order to specify the line shift artifact field, based on the description given in the

previous section and Fig. 3.1b, an error function is used with four degrees of freedom

for each line shift. Thus φL in Eq. (3.6) can be written for one line shift as [65]:

φL(x) = x+
1

2
(Axex + Ayey)

(
1 + erf

(
(y − y0)

w
3
√
2

))
, (3.32)

where:

erf(z) =
2√
π

∫ z

0

e−t2dt, (3.33)

and x = xex + yey. The degrees of freedom are the amplitudes in x and y direction, Ax

and Ay, the position y0 (the row of pixels where the shift occurs) and the width of the

line shift w. The width of the smooth line shift is included as a dof since it has been

observed that such line shifts may easily span several scan lines [65].
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Spatial distortion

In order to measure spatial distortion with minimal presumptions, a series of locally

supported basis functions, such as B-splines, are chosen for regularizing the spatial

distortion field. A smooth field of B-splines of order n discretized with mx and my

knots in x and y direction is considered:

φS(x) = x+
k∑

i=1

l∑

j=1

Pi,jRi,j(x), (3.34)

where k = mx − n − 1, l = my − n − 1, P contains the components of a control point

(i.e. two degrees of freedom) and

Ri,j(x) =
Bi,n(x)Bj,n(y)∑k

p=1

∑l
q=1 (Bp,n(x)Bq,n(y))

. (3.35)

Function Bi,k(z) is given by:

Bi,0(z) =

{
1 if zi ≤ z < zi+1

0 otherwise

Bi,k(z) =
z − zi

zi+k − zi
Bi,k−1(z) +

zi+k+1 − z

zi+k+1 − zi+1

Bi+1,k−1(z). (3.36)

In the case of a point symmetric spatial distortion field, as in spherical aberrations

in aberration corrected transmission electron microscopes [67, 68], globally supported

basis functions, such as radial or cylindrical [26] polynomials, are chosen to describe this

artifact field. The spatial distortion mapping function regularized by a radial polynomial

of order n and a cylindrical polynomial of order nc with fixed orientation θ reads:

φS(x) = x+
n∑

k=2

ar,k
(
| x |k−1 x

)
+

nc∑

kc=2

ac,kc

(
(x · e′x)kc e′x

)
, (3.37)

where | x | is the Euclidean norm, and e′x is the rotated base vector defined as:

e′x = cos(θ)ex − sin(θ)ey. (3.38)

The origin of the coordinate system is in the center of the image.

Drift distortion

Since drift distortion is defined as a rigid body motion in time projected on images

through the scanning process, recall Eqs. (3.7) and (3.8), the regularization of the drift

distortion is done in time and not space. Taking into account that drift distortion is a

smooth function of time, different choices can be made for its regularization, ranging

from polynomials in time with globally supported sensitivity functions with few degrees
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of freedom, up to a B-spline discretization of the time domain with locally supported

sensitivity functions and typically with more degrees of freedom. The drift distortion

field regularized by an nth order polynomial in time is:

D(t) =
n∑

k=1

(a2k−1ex + a2key) t
k, (3.39)

where t is defined in Eq. (3.8), whereas regularization by a B-spline of order n, that is

discretized with the knots {t0, t1, . . . , tm} ∈ [0, ttotal], yields:

D(t) =
k∑

i=0

(a2i+1ex + a2i+2ey)Bi,n(t), (3.40)

where Bi,n(t) are given in Eq. (3.36).

3.3.3 Correlation procedure

To properly and uniquely identify the artifact fields, the following systematic procedure

is proposed. Because the spatial distortion field is assumed to be time-independent and

identical for all images a calibration phase is performed prior to the actual mechanical

test in the so-called “spatial distortion calibration phase”. In the subsequent “mechan-

ical test phase”, the previously measured spatial distortion field φS is kept fixed, and

used to directly correct the measurement of the mechanical test itself. Let us first de-

scribe the measurement of drift distortion and the scan line shift, as both artifacts need

to be identified during these two phases.

Based on the similarity of the drift artifact to tension/compression/shear, for typical

SEM scanning schemes, drift distortion needs to be properly distinguished from the

mechanical deformations. To this purpose, following [25], two images are taken at each

load step. Fig. 3.3a depicts this scheme, where the horizontal axis represents the time,

spanning the complete test time, and the vertical axis represents one of the components

of the displacement and drift distortion. The shaded areas show the time taken for

scanning each image. Considering that drift distortion is smooth and continuous in

time, the only difference between the two images in each pair is due to drift distortion,

while the deformation shared by the two must be due to the mechanical deformation. So,

by constraining the mechanics of each image pair to be exactly identical and defining

drift distortion as a smooth and continuous function in time, it is ensured that the

mechanical deformation and drift distortion fields can be uniquely identified. This will

be also demonstrated in the virtual experiments of Sections 3.4 and 3.5. The only

constraint needed for drift is that at t = 0 it equals zero as mentioned before in Eq. (3.9).

In this artifact corrected IDIC scheme the drift distortion in all images (including the

first image) is directly measured and hence, there is no need for any extrapolation of

the data, making the results more accurate. Note that both for the “spatial distortion

calibration phase” and the “mechanical test phase” it is necessary to capture two images
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for each displacement/load step to be able to measure the drift distortion. Additionally,

line shift artifacts need to be simultaneously measured, both during the spatial distortion

calibration and mechanical test phase. To do so, the line shift mapping function, φLi,

is defined for each image containing any line shift artifacts (i = 1, 2, . . . n). Since the

line shift artifact, cf. Eq. (3.32), yields the same result for all positive widths smaller

than one (rendering effectively the resulting system ill-posed, recall Eq. (3.32)), the

corresponding dofs need to be constrained to be equal to or greater than one pixel. This

is in practice achieved by means of a constrained optimization algorithm [71].

The spatial distortion calibration proceeds similar to Ref. [25]: a series of rigid body

motions, in both x and y direction, is performed on the specimen, using the SEM stage.

The consequence of a rigid body motion is that each area on the specimen experiences

a different amount of spatial distortion before and after the motion. This is reflected as

a field of artificial deformations which now can be measured based on the composition

of the rigid body motion, described by the motion mapping function φM , and the

spatial distortion, described by φS. Since the mechanical interaction is limited to rigid

body motion without deformation, any measured deformation results from the spatial

distortion only (when the drift distortion and possible line shifts in the calibration

phase are measured as well as described above). The rigid body motions in the spatial

distortion calibration phase are applied as follows. As depicted in Fig. 3.3b, three steps

of rigid body motion are applied consisting of a forward motion in x, a forward motion in

y and finally a backward motion in x direction. The maximum applied rigid body motion

in each direction is approximately 5% of the field of view (FOV). This is visualized in

Fig. 3.3c, where the FOV of the acquired image pairs is shown. Here, a part of the

pattern is common to all four image pairs (regions of interest), which is positioned at

different locations in individual image pairs (based on the applied rigid body motion).

Each one of the colored frames in Fig. 3.3c shows where the region of interest (ROI) is

located with respect to the FOV in each image pair. Note that the spatial distortion

(as well as the other artifact fields) is defined in the entire FOV (not in the ROI). In

order to correlate all the degrees of freedom describing the spatial distortion, all the

basis functions need to have their supports in the region of interest of at least one of the

considered image pairs. The shaded area in Fig. 3.3c represents an example of a locally

supported basis function that satisfies this condition. To guarantee the above condition,

the applied rigid body motions need to cover all four corners of the FOV, and hence the

spatial distortion field. Area number 1 in this figure is probed four times, whereas areas

number 2 (repeated at the four sides of the FOV) and number 3 (repeated at the four

corners of the FOV) are probed only twice and once, respectively. The accuracy of the

evaluation of the spatial distortion field is therefore much higher in the center (area 1).

In order to maximize this area, only a limited rigid body motion should be applied (5

% of the FOV in our case). Based on this fact and since the accuracy of IDIC decreases

near the edges (see e.g. Figure 6 in reference [7]), the best practice is to perform the

calibration phase at about 10 % larger FOV and evaluate the spatial distortion in the

central area (area 1) only. This reduced region then corresponds to the field of view of

the images of the mechanical test. Note that since a change of magnification in SEM
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Figure 3.3: Identification of drift distortion: (a) schematic representation of the time
evolution of the rigid body motion of the specimen relative to the beam, resulting in
drift distortion and the load step strategy to separate the mechanical deformation from
the drift artifact. Identification of spatial distortion: (b) an example of four image pairs
with rigid body motions covering four corners of the field of view (FOV) for B-spline
regularization of the spatial distortion. (c) Field of view of image pairs and relative
positions of region of interest (ROI) in each image pair; in the center (area 1), the
spatial distortion is probed by four image pairs, while close to the edges (area 2), and
in the corners (area 3) it is probed, respectively, in only two and one image pairs. The
shaded corner (bottom left) represents the support of a local B-spline basis function;
this support should be contained in the region of interest of at least one of the image
pairs to correlate its amplitude in the spatial distortion field.

is performed by scanning over a larger or smaller field of view, as long as the beam

parameters are not changed, the spatial distortion can be assumed to be constant in

time. In case of globally supported basis functions for the spatial distortion (e.g. radial

and/or cylindrical polynomials), it suffices to apply the rigid body motion only in the

diagonal direction with a step size of almost 25% of field of view. In order to increase

the accuracy of the measurement, the total diagonal rigid body motion is applied in two

steps, resulting in three image pairs in total.

Note that the applied rigid body motions need to be controlled with high accuracy (of

the order of 0.01 px) to accurately measure the spatial distortion in the calibration phase.

Because translational control to such a high accuracy is experimentally unfeasible even

with high accuracy positioning systems, rigid body motions are introduced as degrees of

freedom in the motion mapping function φM to measure the applied rigid body motions

with high accuracy. This has consequences for the measurement of the spatial distortion

field. Although zeroth order terms in spatial distortion induce a constant shift in all

image pairs, this has no effect on the mechanics (measured through differences between

individual image pairs). The first order terms in the spatial distortion induce a constant

stretch throughout all images, which results in a zeroth order effect on the mechanics

(i.e. an extra artificial rigid body motion). If the applied rigid body motions were known

accurately, the first order term of the spatial distortion could be measured, but since
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the rigid body motion must be measured as well, the influence of the linear part of the

spatial distortion is captured by the motion mapping function φM . Therefore, in order

to prevent non-uniqueness and hence convergence issues, the spatial distortion mapping

function φS is constrained to be orthogonal to constant and linear functions. These

constraints are applied on the spatial distortion field by means of Lagrange multipliers.

The separation of the artifact fields from the mechanical deformation field is therefore

achievable based on the considerations mentioned above and summarized below:

(i) spatial distortion is a constant field in time (as long as beam parameters are

not changed); it is identified during an independent calibration step in which

no mechanical deformation occurs (only discrete steps of rigid body motion are

applied);

(ii) drift distortion is a continuously evolving, smooth function in time, also during

scanning of each image; it is distinguished from mechanical deformation which is

applied in a step-wise manner between the acquisition of every two images i.e.

mechanical deformation is constant in each image pair;

(iii) scan line shift artifact fields are random localized distortions with a direction

dictated by the underlying scanning process; they occur discretely in time, and

are distinguished from the mechanical deformation through image pairs similar to

drift;

(iv) mechanical deformation is considered as an arbitrary complementary field, con-

stant within a given loading step (i.e. constant for each image pair); i.e. no

constraint is enforced on mechanical deformation.

The complete IDIC problem is solved using a Newton-Raphson scheme. The conver-

gence of this minimization method is sensitive to the initial guess. Thus, a procedure

is proposed in Appendix 3.B to determine a set of initial guess values that guarantees

convergence, starting from a zero initial guess, rendering the methodology robust. The

initial guess for two sets of dofs is trivial. Considering the large values of the rigid body

motions, the dofs corresponding to these motions need an initial guess that is accurate

to within ±20 px. These values are trivially known, since the rigid body motions are

always manually applied in the calibration phase. Line shift amplitudes are always set

to 1 px initially, since a zero value for these dofs would result in zero support for the

sensitivity functions of the line shift width and position [65].

3.4 Validation by virtual experiments: simple de-

formation and distortion fields

In order to validate the methodology introduced above, a series of virtual experiments

is performed. These have the advantage over real experiments that the exact fields are

known and thus the accuracy of the “measured” fields can be assessed rigorously and

quantitatively. A validation based on real experimental images is presented in Section

3.7. An artificially generated pattern is deformed to generate virtual images of the

“spatial distortion calibration” and “mechanical test” phases. The pattern consists of
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Figure 3.4: Virtual experiment input. (a) Applied virtual mechanical field: amplitude
of displacement fields and corresponding deformation field in image 5 and 6, i.e. the
last image pair in the series of images for the mechanical test phase. The four quarters
indicate areas of constant deformation gradient. (b) Degrees of freedom for the input
virtual artifact fields.

three layers of randomly distributed circular Gaussian peaks. Each layer is defined as:

F (x, y) =
∑

i

ae

(
− 1

2

(
(x−µi

x)2

σ2
x

+
(y−µiy)2

σ2
y

))
, (3.41)

where a is the amplitude of each peak, µx and µy are peak center coordinates (chosen

randomly), and σx and σy are standard deviations in x and y direction. The three

layers have amplitudes of 0.3, 0.4 and 0.2 (in a gray scale ranging from 0 to 1), standard

deviations of 35, 10 and 1.5 px, and spacings of 70, 15 and 1.5 px, cf. Fig. 3.7.

The calibration phase uses 6 images (3 image pairs). The second and third image

pairs have been obtained by applying diagonal rigid body motions of 70 and 140 pixels

(corresponding to 27% of the field of view), respectively. Similarly, the mechanical test

phase uses 3 image pairs. The first image pair is free of any mechanical deformation,

serving as the mechanics reference. The last pair incorporates the mechanical displace-

ment field, the vector amplitude of which is depicted in Fig. 3.4a, and the second pair

bears exactly half of that displacement field. The applied deformation corresponds to

a piecewise constant strain field, with deformation gradients in the four areas given

in Fig. 3.4a. The deformed shape is shown as well. Even though this deformation is

rather simple, it looks similar to a typical drift distortion (tension in y direction and

shear), thus constituting a challenging case for distinguishing the drift artifact from the

mechanics.

All virtual images in the calibration and mechanical test case are also distorted

by typical artifact fields. The spatial distortion is equal in both the calibration and
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mechanical deformation phase. The drift distortion and line shift artifact fields are

identified independently in both phases without mutual influence. Hence, the same

artifact fields are implemented in both phases for the sake of simplicity. The virtual

artifact fields are applied through the hierarchical mapping functions, replicating the

imaging process in an SEM. A third order polynomial in time describes the input virtual

drift distortion field. The spatial distortion field, which is applied equally to all the

images, is a radial polynomial of order 5. Two scan line shifts are applied, respectively,

to image 1 and 4. Note that the existence of a line shift in the first image makes it

even more challenging to accurately measure drift distortion in this image. Each line

shift is described by a smooth error function with amplitudes up to ±2 pixels (px) in

x and y direction and a width of six pixels. The degrees of freedom corresponding to

each of the artifact fields are listed in table of Fig. 3.4b. Finally, Gaussian noise with

a standard deviation of 0.1%, 1%, 2%, 5% and 10% is added to all the images, yielding

five image series (each with 12 images) with the same deformation and distortion fields,

but different noise levels.

In the next subsections, first a correlation case is discussed where the exact same

regularization functions as the input distortion and deformation fields are chosen, fol-

lowed by three studies on the effect of noise, regularization of spatial distortion field and

regularization of drift distortion in time.

3.4.1 Correlations with nearly optimal regularizations

The identification of the fields (calibration and mechanical phase) is done on the virtual

images with 1% noise using the same regularization of mapping functions that were used

to generate the virtual images. This is the optimal choice of regularization since there are

the exact number of dofs needed to identify the virtual distortion and deformation fields

in the virtual images. To incorporate the rigid body motion in the spatial distortion

calibration phase, the mechanical displacement field, U, in the motion mapping function

φM is chosen to be constant. For the mechanical test phase, this field is regularized

by 4 × 4 elements of first order B-splines. In both the calibration and test phase, the

correlations are initiated with a straightforward initial guess and performed following

the steps discussed in Appendix 3.B.

The correlation of the spatial distortion calibration phase is performed with a (triv-

ial) zero initial guess. The convergence is robust and monotonic. In the calibration

phase, the spatial distortion field is measured alongside the drift distortion and the line

shift artifacts to guarantee the accuracy of the measurement. Figs. 3.5a, b and c depict

the amplitude of the measurement error of the artifact fields in the calibration phase.

Notations used for the mean absolute value of the vector amplitude of the errors in the

measured displacement and artifact fields are: ĒU , ĒD, ĒS, ĒL for mechanical displace-

ment (in this phase applied rigid body motion), drift artifact, spatial distortion and

line shift artifact fields, respectively. Fig. 3.5a shows the error for the identified drift

distortion in the first image. The mean error (ĒD = 0.0005 px) and the maximum value

(0.0009 px) are both well below the accuracy of DIC, which is in the order of 0.01 px,
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depending on the continuity of the regularization and the spatial resolution [72]. These

very low errors in the first image are explained by the fact that the drift distortion is

constrained to zero for the first pixel (top right) of the first image, yielding zero error

in this pixel. Note that the measurement of drift distortion in the first image with

this accuracy is only possible with the adopted time regularization for drift distortion,

Eq. (3.7), and the coupled framework employed in the current study. The error of the

spatial distortion is shown in Fig. 3.5b with mean absolute and maximum values of

0.0045 and 0.008 px, respectively. Fig. 3.5c shows the error of the line shift artifact of

image 4. The mean error for this field is ĒL = 0.0015 px. Note that the maximum value

of the error in the line shift artifact field is restricted to the width of the line shift. This

is due to the slightly lower sensitivity to dofs related to the position and width of line

shifts, since the supports of the sensitivity functions related to these dofs are as small as

the width of the line shift (a few pixels). The error fields in Fig. 3.5 need to be compared

with their corresponding artifact fields. The maximum value of the input artifact fields

corresponding to drift distortion in image 1, spatial distortion, and line shift in image

4 are 0.68, 9.9 and 2.23 px, respectively, while the inaccuracy with which these fields

have been identified is roughly three orders of magnitude lower. This emphasizes the

difference in the scale of the artifacts and the error in evaluating them.

The spatial distortion field measured in the calibration phase (with mean error of

ĒS = 0.004 px) is subsequently used to correlate the images of the mechanical test phase.

In this correlation the spatial distortion mapping function is activated, so that the images

are directly “corrected” for the spatial distortion effect (with fixed dofs) while the drift

distortion and line shift artifacts are measured alongside the mechanics. This step is

again initiated with a zero initial guess, entailing robust and monotonic convergence.

Fig. 3.6a illustrates the residual field of image 6 (normalized with respect to the dynamic

range of the image) in the correlation while Fig. 3.6b shows the same residual if all

artifacts are neglected (using conventional GDIC). The mechanical displacement field

is measured with high accuracy, see Fig. 3.6c, which shows the amplitude of the error

of the mechanical displacement field. The mean absolute value of this error field is

ĒU = 0.005 px. To assess the accuracy of the results, Fig. 3.6d shows the amplitude

of the error in the mechanical displacement field, if all artifacts are neglected (using

conventional GDIC with the same regularization for the mechanical deformation field).

Note that both the mean absolute value of the error and the range of the color bar are

more than two orders of magnitude smaller when the artifact corrections are included.

Fig. 3.6e and f show the amplitude of error in the drift distortion in the first image

(mean error of ĒD = 0.0006 px) and the line shift artifact in the fourth image (mean

error of ĒL = 0.001 px), respectively. Note again the difference in the mean absolute

value and the color bar range of these fields and the case of Fig. 3.6d.

3.4.2 Noise robustness

The same procedure and parameters as described in Section 3.4.1 are used to analyze

the image series with different noise levels. For each noise level, first the calibration
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Figure 3.5: Error fields in the calibration phase: (a) error amplitude of drift mea-
surement in image 1, (b) error amplitude of spatial distortion measurement (c) error
amplitude of line shift artifact measurement in image 4.

images are correlated to identify the spatial distortion (with an error that increases with

increasing noise level), which is then used to correlate the images of the mechanical

test phase. Fig. 3.7 shows the mean absolute value of the error in the mechanical

displacement fields of the main test, as a function of the noise level. The proposed

methodology remains robust in the presence of noise, which is vital in analyzing SEM

images, where the noise levels are typically (much) higher than in optical images. A noise

level of 2% results in a mean error in the mechanical displacement equal to ĒU = 0.007

px, which is remarkably good considering the typical DIC accuracy limits.
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Figure 3.6: Mechanical test phase results: residual field in image 6 (normalized with
respect to the dynamic range of the image) (a) with and (b) without artifact correction.
Error amplitude of the mechanical displacement field in image 6 (c) with and, (d)
without artifact correction, (e) error amplitude of drift distortion in image 1, and (f)
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Figure 3.7: Mean absolute value of the amplitude of error in the measured mechanical
displacement field as a function of the noise in the images of both the calibration and
main test phase, where the noise is defined by its standard deviation as a percentage of
the dynamic range of images. The images refer to the virtual patterns for 1%, 5% and
10% of noise.

3.4.3 Spatial distortion regularization study

Using the images with 1% noise, different regularizations of the mapping function for

spatial distortion are used to repeat the correlation in the calibration phase. This

demonstrates that more general regularization choices for the spatial distortion still

lead to high accuracy. The drift distortion and line shift artifact fields are regularized

in the same way as in the previous section. Fig. 3.8a depicts the different regulariza-

tion cases and the mean absolute value of the error amplitude of the measured spatial

distortion field for each. In the first three cases, spatial distortion is regularized by

radial polynomials. In the last four cases a series of cylindrical functions in both x and

y direction are added, e.g. case five includes radial polynomial of order 9, as well as

cylindrical functions in x direction of order 3 and cylindrical functions in y direction

of order 3, i.e. eight dofs in total. First order terms are not included in the radial nor

cylindrical polynomials because of the discontinuity of the gradient fields at the origin,

which would trigger convergence problems. Note that both the x and y components

of each term of the radial polynomials are anti-symmetric with respect to the y and x

axis, respectively. This is opposite to the normal polynomials, where the even order

terms are symmetric and the odd order terms are anti-symmetric. Based on this fact,

radial monomials of consecutive order have quite similar shapes, which if included all,

make the system ill-conditioned or even ill-posed. Accordingly, only odd number order

terms of radial polynomials are included in the regularization of the spatial distortion.

It is observed, in Fig. 3.8a, that the error in measurement of the spatial distortion field

remains in an acceptable range (less than ĒS = 0.018 px) in the presence of extra radial
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Figure 3.8: Spatial distortion studies: (a) Mean absolute value of the amplitude of the
error vector in the measured spatial distortion field as a function of number of degrees
of freedom used to regularize the spatial distortion field in the calibration phase. The
regularization functions used in each case are described in the legend. (b) Mean absolute
value of the amplitude of the error vector in the measured spatial distortion field as a
function of strategy used for calibration phase in terms of rigid body motion (RBM)
steps conducted. All four cases are correlated with a B-spline regularization of spatial
distortion field.

functions in the regularization of the spatial distortion mapping function. Moreover,

adding cylindrical functions to the regularization has a negligible effect.

Four additional virtual experiments are performed to study the influence of the num-

ber and the magnitude of the rigid body motion steps in the calibration phase, on the

evaluation of spatial distortion. In all the cases the images contain only rigid body

motions and radial spatial distortions, and the correlations are done using a 10 × 10

mesh of second order B-splines for spatial distortion and zeroth order polynomials for

mechanics. All cases follow the strategy of Fig. 3.3b with rigid body motions given by:

(i) one 25 px step in each direction, (ii) five 5 px steps in each direction, (iii) one 100

px step in each direction, and (iv) five 20 px steps in each direction. The error in the

evaluation of the spatial distortion in all four cases is equal and in line with the accuracy

expected for DIC, see Fig. 3.8b.

3.4.4 Drift distortion regularization study

The images with 1% noise are used to perform a series of correlations (of the mechan-

ical test phase) changing the regularization of drift distortion in time, while using the

regularization functions for mechanics, line shifts, and spatial distortion field used in

Section 3.4.1. This analysis reveals the accuracy of the mechanical deformation mea-

surements despite the more general (more dofs) regularization of drift artifact. Three

cases of polynomials in time (third, fourth and fifth order) and four cases of second
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Figure 3.9: Mean absolute value of the amplitude of the error vector in the measured
mechanical displacement field as a function of number of degrees of freedom used to reg-
ularize the drift artifact field in the mechanical test phase. The regularization functions
used in each case are described in the legend.

order B-spline functions in time are used for drift distortion regularization functions,

all reported in Fig. 3.9. The B-spline cases consist of different cases of discretization of

time with five to nine knots, evenly distributed over time.

The cases of drift distortion regularized with up to 14 dofs (second order B-splines

with six knots) result in less than 0.007 px of absolute mean value of error in the

measured mechanical displacement field. The error for the higher-order regularization

cases is higher but remains around 0.02 px.

3.4.5 Combination of higher order regularizations

A final case is examined, combining the effects of noise and higher order regularization of

spatial distortion and drift distortion. Images with 2% noise are used for both calibration

and mechanical test phases. The spatial distortion is regularized with the Case 3 of

Section 3.4.3 (radial polynomials of order 3, 5, 7 and 9). The spatial distortion found

is used for the main mechanical test correlation in which drift distortion is regularized

with Case 5 of Section 3.4.4 (second order B-splines in time with six knots). A mean

absolute value of the amplitude of error of the mechanical displacement field of 0.019

px results, which is still a good value when compared to the typical accuracy associated

with DIC.
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3.5 Validation by virtual experiments: complex de-

formation and distortion fields

The second set of virtual experiments considers a more realistic spatial distortion field,

mechanical deformation field, and drift distortion that are all correlated with a generic

B-spline regularization, a scan line shift in each image, and more realistic patterns for

SEM-DIC.

Fig. 3.10a shows a strain field measured using SEM-DIC by Stinville et al. [63],

exhibiting high strain gradients and localizations. The figure reports εxx measured in

a field of view 85µm of a René 88DT (a commercial polycrystalline nickel-based super-

alloy) under 0.98% of global strain, which is obtained by stitching several measurements

of separate scans. Local DIC with 21 pixel (0.4µm) subset size, step size of 3 and strain

window of 15 pixels was used to make this measurement. The slip band pattern observed

in the diagram has inspired the complex mechanical deformation field for the virtual

experiments of this section. It features parallel localization bands with an orientation of

45o that span the entire width of the image, which is a challenging case for the accurate

measurement of scan line shifts [65]. Figs. 3.10b, c and d depict a zoomed area of

Fig. 3.10a inside which the individual strain components εxx, εyy and εxy are shown,

corresponding to a background stretch of 0.5% in x and compression of −0.25% in y

direction in addition to the 45o shear bands. The strain amplitudes, the width (60 px)

and the spacing (200 px) of the shear bands are closely matching those of Fig. 3.10a.

Note that the size of zoomed area as in Figs. 3.10b, c and d is comparable to each

scan/DIC measurement used by Stinville et al. [63].

Fig. 3.11a and b show spatial distortion fields that were experimentally measured,

from images at 200× magnification, in the work of Sutton et al. [25]. Fig. 3.11c and d

show the spatial distortion fields used for the virtual experiments of this section, closely

matching those of Fig. 3.11a and b.

A third order polynomial in time (similar to Sutton et al. [25]) is used to describe

the drift distortion, cf. Fig. 3.11e, and one scan line shift is present in each image. The

line shifts are equally spaced and distributed among the images. Their amplitudes in

both x and y direction are randomly chosen from a normal distribution with a mean

of 1.5 px and a standard deviation of 1.75 px. The widths are taken from a normal

distribution with a mean of 7 px and a standard deviation of 1.5 px. The parameters

used for generating the scan line shifts are listed in Fig. 3.11f.

The images for the spatial distortion calibration phase are generated as described in

Section 3.3.3 with rigid body translations of 25 px (corresponding to more than 4.2%

of the field of view). The subsequent mechanical test phase consists of three image

pairs. The last image pair carries the full mechanical deformation (as depicted in Fig.

3.11), the second image pair contains half of this deformation, whereas the first pair is

undeformed.

In order to measure complex mechanical fields with high strain gradients, a fine

discretization of the 2nd order B-spline mesh is required. This makes the problem more
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Figure 3.10: Reference mechanical deformation, taken from [63], used in the “complex”
virtual experiments. (a) An example of a DIC measurement on SEM images, taken
from [63], exhibiting high strain gradients and localization bands. The yellow frame
depicts the zoomed area used as the reference mechanical deformation in the “complex”
virtual experiments. (b), (c) and (d) The εxx, εyy and εxy fields used for the mechanical
deformation in the virtual experiments of this section, exhibiting localization bands
spanning the whole image with an orientation of 45o, in addition to a background
stretch of 0.5% in x and compression of −0.25% in y direction. (e) Virtually generated
pattern used in Section 3.5, and the zoomed view.

sensitive to the virtual pattern used in the images, which is generated as follows. The

first two layers consist of randomly distributed circular Gaussian peaks with amplitudes

of 0.2 and 0.1, standard deviation of 35 and 10 px, and spacings of 70 and 20 px,

respectively. The last layer is generated by a randomly perturbed regular grid of isotropic

Gaussian peaks of 0.7 amplitude and a standard deviation of 1.5 px. The considered

grid has a spacing of 8 px, whereas the position of each speckle is perturbed by a random

value between -2 and 2 px, cf. Fig. 3.10e. The higher contrast and the more unified

distribution of the finest speckles makes this pattern more suitable for the evaluation

of the proposed method with complex deformation and distortion fields. Moreover, this

pattern is more realistic for SEM-DIC, where micro or nano particles are used [8], while

there are always some long-range brightness variations due to e.g. different crystals in a

poly-crystalline material. Images of 583× 583 and 513× 513 px with 1% noise level are
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Figure 3.11: Input spatial distortion used in the “complex” virtual experiments: (a) and
(b) the SEM spatial distortion fields in x and y direction experimentally measured by
Sutton et al. [25]; (c) and (d) the spatial distortion fields used for the complex virtual
experiments in x and y direction, respectively, matching the fields of (a) and (b). (e)
Evolution of drift distortion in time and, (f) list of parameters characterizing the line
shift artifacts, used for the generation of all the virtual images in the calibration (four
image pairs) and mechanical test phases (three image pairs).

generated for the calibration and mechanical test phases, respectively — recall Fig. 3.3c

and the discussion therein.

The spatial distortion field is regularized by a 10×10 mesh of second order B-splines.

The edge and corner elements are chosen to be twice as large as the remaining ones to

reduce the higher sensitivity to the edges. A 30× 30 mesh of second order B-splines is

used to parametrize the mechanical displacement field, where a ratio of 1.5 is used to

scale the edge elements. Drift is regularized in time by 6 knots of second order B-splines

(case 5 in Fig. 3.9), in both the calibration as well as the mechanical test phase. Scan

line shifts are all identified and assigned to the corresponding images in a pre-correlation

step for both the spatial distortion calibration and the mechanical test, see Appendix

3.B. The error function of Eq. (3.32) is used to define the line shift mapping function for

each image. In both the calibration and test phase, the correlations are initiated with

straightforward initial guesses and performed following the steps discussed in Appendix

3.B.
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Fig. 3.12a and b show the error in the determination of the spatial distortion field

in the calibration phase, in x and y direction. The mean absolute value of these errors

over the central area of the field of view (area 1 in Fig. 3.3c, which is the measured area

for the mechanical test phase) are ĒSx = 0.012 px and ĒSy = 0.024 px for the x and y

direction respectively.

The error in the resulting mechanical displacement field, obtained from the mechan-

ical test phase, is reported in Fig. 3.12c and d. The mean values of these error fields are

ĒUx = 0.012 px and ĒUy = 0.009 px, which is approximately equal to the general DIC

accuracy, indicating that all artifacts have been captured with high accuracy. For com-

parison, the errors in the mechanical displacement field for the case where the artifacts

are ignored are shown in Fig. 3.12e and f. The mean absolute values are, ĒUx = 0.897 px

and ĒUy = 0.415 px, i.e. a factor of 75 and 46 higher, thereby underlining the importance

of proper artifact correction.

Figs. 3.13a, b and c depict the error in the measurement of the εxx, εyy and εxy strain

components by the proposed artifact corrected framework. The mean values of these

errors are Ēεxx = 0.06%, Ēεyy = 0.05% and Ēεxy = 0.03%, respectively. Figs. 3.13d, e

and f depict the same strain components for the case with ignored artifacts, with mean

values of Ēεxx = 0.16%, Ēεyy = 0.85% and Ēεxy = 0.87%. The considered line shift

artifacts typically affect the εyy and εxy components and have a negligible effect on εxx.

Note the large localized errors in εyy and εxy if artifacts are not corrected for, while no

trace of such large errors are found in the corrected case.

3.6 Validation by virtual experiments: application

to real SEM patterns

In this section the proposed methodology is validated using virtual experiments in com-

bination with speckle patterns from real SEM images. To this end, the virtual experi-

ments of the previous section (with complex spatial distortion and mechanics obtained

from experiments of [63] and [25], respectively) is repeated using the patterns from Fig.

3.14. The same virtual deformation and distortion fields are used to virtually deform

the SEM patterns mentioned above, and the mechanical deformation field as well as the

artifact fields are measured in the same way. Fig. 3.14a provides a regular SEM-DIC

pattern, which is obtained by sputter coating of a silicon substrate by an Indium-Tin

target and then heat treated to the melting point of the alloy (98oC) to create a pat-

tern consisting of spheres [73]. Note that this is only a suitable pattern if used at a

high magnification. For the experimental validation in Section 3.7, we also need speckle

patterns that are suited for simultaneous analysis at multiple scales. Therefore, a mul-

tiscale pattern, based on the fractal growth of copper during electro-deposition, is used

as well. Figs. 3.14b, c and d depict this multiscale pattern imaged at three different

magnifications corresponding to 10, 50 and 600 µm horizontal fields of view (HFV). The

result is an acceptable, though not optimal, DIC pattern at multiple scales.
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Figure 3.12: Error in virtual experiments with complex deformation and distortion
fields (input fields taken from [63] and [25]). (a) and (b) spatial distortion, (c) and
(d) mechanical displacement with artifact correction, (e) and (f), the error in mechan-
ical displacement without artifact correction (using conventional GDIC with the same
discretization for the mechanical deformation field).
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Figure 3.13: Error in strain components in virtual experiments with complex deforma-
tion and distortion fields (input fields taken from [63] and [25]). Error in (a) εxx, (b) εyy
and (f) εxy with artifact correction. Error in (a) εxx, (e) εyy and (f) εxy without artifact
correction (using conventional GDIC with the same discretization for the mechanical
deformation field).
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(a) Sputter coated In-Sn - 5 µm (b) Electro-deposited Cu - 10 µm

(c) Electro-deposited Cu - 50 µm (d) Electro-deposited Cu - 600 µm

Figure 3.14: Four realistic SEM patterns used in virtual experiments with complex
deformation and distortion fields. (a) regular small scale SEM-DIC pattern obtained
by Indium Tin sputter coating on a silicon substrate imaged in HFV of 5 µm. Electro-
deposited copper imaged with an FEI Quanta 600 SEM, in secondary electron contrast
mode, visualized in three different magnifications corresponding to (b) 10, (c) 50, and
(d) 600 µm horizontal field of view (HFV). The fractal growth, resulting from the
electrodeposition of copper, provides a natural DIC pattern at different scales.

All images are taken in a FEI Quanta 600 SEM, in secondary electron contrast mode,

with 1024×884 pixels. The Indium-Tin sputter coated image is taken at 15mm working

distance, with 20kV beam voltage and 100µs dwell time. The electro-deposited copper

images are taken with 10 mm working distance while the ones with 10 and 50 µm

horizontal field of view are acquired with 5kV beam voltage and 100µs dwell time, and

the images with 600µm HFV with 10kV and 30µs.

The obtained results for the spatial distortion calibration phase and the mechanical

test phase are summarized in Fig. 3.15 for the four real SEM patterns of Fig. 3.14 as

well as for the virtual pattern of Fig. 3.10e. In particular, Fig. 3.15a shows the errors in

the spatial distortion field ĒS (corresponding to the spatial distortion calibration phase),

whereas Figs. 3.15b and c show the error in the mechanical displacement ĒU and strain

field Ēε (corresponding to the mechanical test phase). In all the three graphs, the vertical

axis represents the mean absolute error values, whereas error bars reflect their maxima
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Figure 3.15: Influence of the SEM patterns (Fig. 3.14) on the error in (a) spatial distor-
tion, (b) displacement and (c) mechanical strain measurements corresponding to virtual
experiments with complex deformation and distortion fields taken from [63] and [25].
The horizontal axis refers to the patterns of Figs. d, (c), (b), (a) and e respectively.
The vertical axis represents the mean absolute value of the error, whereas the error bars
reflect the minimum and maximum values.
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and minima. Clearly, the regular SEM-DIC pattern (in Fig. 3.14a) achieves the same

high accuracy as that of the virtual pattern of Fig. 3.10e, showing that the method is not

very sensitive to the precise pattern. Indeed, even the suboptimal multiscale pattern (of

Figs. 3.14d – b) reveals only a somewhat lower accuracy and higher scatter. Still, the

obtained accuracy is adequate for practical purposes. The reduced accuracy with the

electro-deposited copper pattern is explained by the fact that these patterns show low

local spatial contrast in certain areas. Such local lack of contrast leads to higher error

in corresponding elements in the B-spline regularization of both spatial distortion and

mechanical deformation fields. Due to the finer discretization of the mechanical field

these local errors are observed more in the mechanical deformation error, explaining the

larger maximum and minimum values. This comparison suggests that higher errors are

to be expected for the patterns based on the electro-deposited copper film or patterns

with poor contrast in general. On the other hand, such a suboptimal pattern provides

the possibility to measure at different scales. Note that the error in spatial distortion is

higher at lower magnification, where the spatial distortion is larger.

3.7 Validation on real SEM images

Finally, the proposed methodology is used to assess the accuracy with which the ar-

tifacts can be measured in a series of real SEM images. In a real mechanical test, it

is unfeasible to apply a higher-order mechanical deformation field which is known a

priori with sufficiently high accuracy in order to validate the measurement accuracy.

Therefore, instead, the experimental validation is performed by evaluating in detail the

measured distortion (scan line shifts, spatial distortion, drift distortion) fields, as well

as the improvement in the image residuals obtained by applying the artifact corrections.

To this end, a simple rigid body motion, in which the mechanical deformation is known

to be zero everywhere, is applied to the specimen, as done in the spatial distortion

calibration phase. The calibration phase is performed, as described in Fig. 3.3b. Three

magnifications are considered, corresponding to 10, 50 and 600 µm HFV as depicted in

Figs. 3.14b, c and d. Two series of images are taken at each magnification, to assess the

reproducibility.

In all correlations performed, the spatial distortion field is regularized by a 10 × 10

mesh of second order B-splines. Drift distortion is regularized by 10 knots of second

order B-splines in time. An error function is assigned to each detected line shift (see

Appendix 3.B), and zeroth order polynomials are used for the mechanics to capture the

applied rigid body motion between each image pair.

Figs. 3.16a – d depict the measured spatial distortion fields determined from the two

measurements at the lowest magnification (600µm HFV). The two measurements (taken

on the same day) match well. This reproducibility supports the assumption that the

spatial distortion is time-independent, as long as the electron beam parameters are not

changed. The difference of these two measurements is shown in Fig. 3.16e and f. The

mean absolute value of these error fields amounts to 0.015 px in x and, 0.010 px in y
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direction, showing high reproducibility of the spatial distortion measurements. Such low

reproducibility error values alongside the low residual fields of the correlations (discussed

below) indicate the high accuracy of the measurements. For more quantitative analysis,

the diagonal of the spatial distortion fields in the x direction measured in all six tests

at three magnifications are plotted on the same physical scale in Fig. 3.17. Note that

because the mean of the spatial distortion fields is by definition zero, as explained in

Section 3.3.2, all curves in Fig. 3.17 are vertically shifted to zero in the center. As

expected, the spatial distortion is smaller for higher magnifications. The measurements

at 50µm HFV slightly differ from the ones at 600µm, which may be caused by the

fact that the 50 and 10 µm HFV tests were done on a different day than the 600

µm HFV tests (different electron beam parameters). The spatial distortion at 10µm

field of view is slightly below the noise level in the measurements, and thus may be

neglected for measurements at this length scale. Nevertheless, at each magnification,

the reproducibility of the spatial distortion is within the expected accuracy.

The obtained results for the drift distortion measurements are shown in Fig. 3.18,

where Fig. 3.18a and b show the results in pixels while Fig. 3.18c and d depict the same

results in micrometers. Each curve represents the evolution of drift in time for all eight

images in a series. The gaps between segments in each curve represent the dead time

between scanning of any two images. Note that although drift distortion is treated as a

smooth function in time, also in between the scans, it is plotted only for the scanning

duration of each image where actual measurement data exists. It is observed that the

drift in pixels is much more pronounced at higher magnifications. The drift measured

in the tests at 600µm HFV is as small as the accuracy of DIC, i.e. 0.01 px, which is

why these noisy measurements are omitted in Fig. 3.18c and d. Note that Fig. 3.18c

and d, show that the effect of drift distortion on a physical scale, i.e. expressed in µm,

is independent of the magnification and comparable in rate and direction. This shows

that in this particular case, drift distortion is dominated by a physical motion (e.g. due

to a motion of the stage with respect to the column). This can be understood from the

fact that all the four tests at 50 and 10µm field of view were performed in one session,

in which the drift distortion apparently occurred mainly in y direction having a more

or less similar rate.

The third type of considered artifact, i.e. line shifts, are the most pronounced and

hardest to deal with for the images with 10µm field of view. In the second 10µm HFV

test, the first image is interesting as it contains one line shift. LDIC is used between

this first (reference) and the second image in the series, which also contains a scan line

shift. Note that LDIC is only used for evaluating the impact of the line shift artifact

corrections. For this case, where the mechanical displacement is constant in space (rigid

body motion), it is possible to use LDIC as a reference, which means that any variation

in the displacement field, found by LDIC, is due to the SEM artifacts. LDIC is performed

with 53 px subset and 1 px step size, using VIC-2D™. As the amplitudes of the scan

line shifts in x and y direction are comparable, Fig. 3.19a only shows the displacement

field in x direction, obtained from LDIC on the second image in the second series of

10µm HFV, where two line shifts are visible, both exhibiting negative amplitudes. The
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Figure 3.16: Spatial distortion field measured on 600µm field of view for measurement 1
in (a), (b), measurement 2 in (c), (d). The difference between the two measurements is
shown in (e), (f)).
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Figure 3.17: Comparison of spatial distortion measurements at different magnifications,
where the x component is plotted as a function of the diagonal (bottom left to top right)
of the images, while the bottom graph provides a zoom of the higher magnification
measurements.
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Figure 3.18: Evolution of drift as a function of time for each image series, plotted in
(a), (b) pixels and (c), (d) micrometers. Drift distortion is a smooth function in time;
however, it is plotted only for the duration of each image.
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line shifts measured with the proposed artifact correction method are depicted for x

direction in Fig. 3.19b, where the left and right sides show the line shift in Image 1 and

2. Note that the line shift in Image 1 has a positive amplitude while LDIC shows a

negative amplitude since it cannot distinguish between the artifacts of the two images.

One of the images in the first 10µm HFV test contains multiple line shifts which is

therefore also analyzed by comparison to LDIC. As the amplitudes of the scan line shifts

in x and y direction are comparable, Fig. 3.19c only shows the displacement field in x

direction from LDIC. Five line shifts are visible in this image, which is beyond the ex-

pected limitations of the proposed method [65]. Yet, all five line shifts are successfully

identified, see Fig. 3.19d. The line shift amplitudes moreover match well with those

from LDIC. However, the line shift locations reveal a minor deviation, which is caused

by the other distortion fields displacing the line shifts. The LDIC results should, there-

fore, be compared with the proposed method including all artifact corrections. This is

depicted on the right side of Fig. 3.19d, which restores the expected match with the line

shift locations revealed by the LDIC results. Note the noisy results of LDIC (due to

the suboptimal DIC pattern) in comparison with the low level of noise in the artifact

measurement by the proposed method.

Fig. 3.20 finally compares the residual fields with and without artifact correction.

Fig. 3.20a shows the residual field of one of the images with HFV 10µm from a con-

ventional GDIC ignoring all artifacts, where the mechanical mapping function has been

parametrized with zeroth order polynomials. Fig. 3.20b depicts the residual field of

the same image from the correlation including the artifact corrections. The difference

between the two emphasizes the quality of the measurement of the artifacts and the

correction for them. Such an accurate measurement of the different artifact fields is a

necessary condition for eliminating the artifact-induced errors in the mechanical defor-

mation measurements from in-situ SEM tests. Fig. 3.20c and d show the same com-

parison for the 50µm field of view, where a zoomed view is included for clarity. Similar

results are also obtained for the lowest magnification tests.

3.8 Conclusions

Using high resolution scanning electron microscopy images should enable high displace-

ment resolutions in DIC. However, SEM images contain artifacts which introduce con-

siderable errors in displacement measurements if ignored. SEM artifacts are categorized

in three types: spatial distortion, drift distortion and scan line shifts.

The current study proposes a generic unified framework based on IDIC to measure

all three types of artifact fields alongside the mechanical deformations, in an integrated

manner, to minimize the artifact induced errors in the displacement measurements. To

this purpose, the imaging process of SEM is captured through the hierarchical map-

ping functions that have been inserted in the proposed IDIC framework. Based on

these hierarchical mapping functions, the IDIC problem is reformulated. Using the pro-

posed IDIC framework and following the proper imaging and correlation procedures,
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Figure 3.19: Measurement of line shift artifacts and comparison with local DIC results.
(a) Displacement in x direction of LDIC on the second image of test 2 with 10µm field of
view compared to (b) line shift artifacts measured with the proposed method in image
1 (left) and 2 (right). (c) Displacement in x direction of LDIC on the third image of
test 1 with 10µm field of view compared to (d) line shift artifacts (left) and the total
artifact field (right) measured with the proposed method in the same image. In all the
cases here the amplitudes of the scan line shifts in y direction are comparable to the
amplitudes in x direction.

the artifact fields can be measured separately from the mechanical displacement fields

in a simple optimization step. This separation is made possible through the physical

characteristics of the individual fields:

(i) spatial distortion is inherently a constant field in time; it is identified during an

independent calibration step in which no mechanical deformation occurs (only

discrete steps of rigid body motion are applied);

(ii) drift is a continuously evolving, smooth function in time, also during scanning

of each image; its image distortion is distinguished from mechanical deformation

which is applied in a step-wise manner between the acquisition of every two images,

making it constant in each image pair;
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Figure 3.20: Examples of residual fields of images with 10µm horizontal field of view
(a) without and (b) with artifact correction, and of images with 50µm horizontal field
of view (c) without and (d) with artifact correction (zoomed view included for clarity).

(iii) scan line shift artifact fields are random localized distortions with a direction

dictated by the underlying scanning process; they occur discretely in time, and

are distinguished from the mechanical deformation through image pairs, similar

to drift;

(iv) mechanical deformation is considered as an arbitrary complementary field, con-

stant within a given loading step (i.e. constant for each image pair); hence no

constraint is enforced on mechanical deformation.

This methodology has been validated with a series of virtual experiments. First,

artificially generated images have been deformed both by an evolving mechanical de-

formation field and by SEM imaging artifact fields. The mechanics and the artifacts of

each of these sets of images have been then measured using the framework introduced in

this article. First, a less complex case of mechanical deformation and spatial distortion
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has been studied in a virtual experiment, and analyses on noise levels and the regular-

ization of the artifact fields have been conducted. It has been shown that the error in

the mechanical displacement measurement remains acceptable up to a noise level of 5%

of the image dynamic range. Different regularizations of spatial distortion with global

basis functions and drift distortion with both globally and locally supported basis func-

tions, resulted in acceptable error levels (< 0.02 px) in the mechanical displacement

measurements, confirming the robustness of the framework in convergence.

Second, a more complex virtual experiment has been carried out by deforming an-

other set of virtually generated images reflecting a challenging localized mechanical

deformation and asymmetric spatial distortion field (taken from SEM-DIC measure-

ments in the literature). The artifact and deformation fields have been measured using

the current method, which resulted in errors well within the DIC accuracy range.

Third, the same challenging virtual experiments have been repeated using real SEM

patterns to study the performance of the proposed methodology under realistic condi-

tions. A regular SEM-DIC pattern provides the same accuracy as a virtual pattern.

A sub-optimal multiscale pattern (based on an electro-deposited copper film) reveals

somewhat higher errors in the evaluation of the mechanical and distortion fields.

And finally, the proposed method has been validated on different sets of real SEM

images at three different magnifications, based on the sub-optimal multiscale pattern, to

assess the accuracy with which the artifacts can be measured. The reproducibility of the

results of spatial distortion and drift distortion, the overlap with measurements at dif-

ferent magnifications, and low image residuals show the accuracy of the measurements.

The comparison of the line shift artifact measurements with LDIC results reveals the

accuracy of the line shift artifact measurements even when five line shifts occur in one

image, which is beyond the expected limitation of the proposed method. Finally, the sig-

nificant improvement of the residual fields by including the artifact corrections confirms

the high accuracy of the artifact corrections performed using the current method.

The proposed method is unique in the following:

(i) it deals with all three types of SEM artifacts (line shits, drift and spatial distortion)

in a unified and systematic way,

(ii) the SEM imaging process is taken into account through a set of hierarchical map-

ping functions (the general framework can be easily extended to any imaging

system),

(iii) all artifact and mechanical deformation fields are captured properly in only two

correlation steps (spatial distortion calibration and mechanical test phase),

(iv) the acquired data (SEM images) are used most efficiently by avoiding any inte-

gration of images,

(v) the drift distortion is measured/corrected directly for all the duration of the test

including the reference image, without any extrapolation of data.
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Appendices

3.A Alternative image gradient arrangement

It can be easily shown that by rearranging the image gradient, as found in Ref. [61] for

the case of conventional GDIC, Eqs. (3.21) to (3.23) can be rewritten as:

LLi
k (X, a) = [∇Xg̃i(X)] · [∇X (φLi ◦ φS ◦ φMi(X))]−1

(
∂φLi

(X, a)

∂ak
◦ φS ◦ φMi(X, a)

)
(3.42)

LSi
k (X, a) = [∇Xg̃i(X)] · [∇X (φS ◦ φMi(X))]−1

(
∂φS (X, a)

∂ak
◦ φMi(X, a)

)
(3.43)

LMi
k (X, a) = [∇Xg̃i(X)] · [∇X (φMi(X))]−1

(
∂φMi (X, a)

∂ak

)
. (3.44)

This arrangement is more convenient for implementation, mainly because there is no

need for interpolation in the image gradient calculation.

3.B Initial guess for correlations

In order to establish convergence of the correlations, a systematic procedure is adopted.

It is proposed to follow these few steps of correlations by gradually adding some of the

dofs and removing blurring from images. Each step improves the initial guess for the

next one, so that starting with the most trivial initial guess (zero), the correlations

converge robustly and monotonically.

The randomly occurring line shifts need to be detected and an adequate initial guess

of their positions is needed. Following [65], a pre-correlation step is performed in which

the approximate location of the line shifts is identified. This is done by performing

a conventional GDIC analysis between image pairs, ignoring the existence of any line

shifts and using merely first order polynomials for basis functions. This pre-correlation

is the most simple GDIC correlation. The residual fields of the pre-correlations reflect

the line shifts. Plotting the row mean of the residual fields as a function of the row

number of the images reveals existing line shifts, which gives a good initial guess for

their positions, cf. Fig. 3.21. Comparing these positions for three correlations among

three images indicates which line shift belongs to which image. Fig. 3.21 depicts an

example of 6 pre-correlations, of a set of six SEM images of the calibration phase of

the virtual experiment. Fig. 3.21a shows the pre-correlations between images 1, 2 and

3. There is a high gradient in the curves related to the pre-correlations involving image

one at approximately y = −50 px reflecting a line shift artifact in image 1 and in this
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Figure 3.21: Row mean of the residuals of pre-correlations as a function of the row
number for the virtual images of the calibration phase. Triplets of (a) 1, 2 and 3
revealing a line shift in image 1, approximately at y = −50 px and (b) 4, 5 and 6
revealing a line shift in image 4, approximately at y = 50 px. Note that the residual
fields are available only in the region of interest.

position. Likewise, Fig. 3.21b reveals a line shift at approximately y = 50 px in image

four. It is also helpful to use smoothed derivatives of these curves in which dominant

peaks indicate line shifts in the images. By this means the procedure is even automated.

Note that in cases in which recognition of line shifts becomes more difficult, e.g. due to a

local lack of DIC pattern or the presence of several line shifts close to one another, LDIC

can provide a useful indicator. The width of each line shift is initially constrained to a

large value, e.g. 20 px, to first correlate the position as well as the line shift amplitudes

along with all the other deformation and distortion fields, after which a final correlation

step including also the dofs for the line shift width is performed. Once proper initial

guesses for line shift artifact positions are attained, the very first correlation step is

performed on images that are blurred by a Gaussian filter with standard deviation of 10

px and a window size of 41 px. After obtaining proper initial guesses for the displacement

and artifact fields, the second correlation step is performed on the original images (not

blurred). In the first two correlation steps, the dofs characterizing the width of the line

shifts are deactivated, as mentioned above. The next step is basically a repetition of the

previous step including the dofs of the width of all the line shifts. Up to this point the

reference image is chosen to be the first back-deformed image (g̃1), as in Eq. (3.12). The

final (principal) step is correlating the original (not blurred) images with all the dofs

of mechanics and artifacts, and the reference image defined as the average of all back-

deformed images, as in Eq. (3.29). Since the correlation with the general definition
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of the reference image typically requires more iterations, the extended definition for

the reference image is introduced only when the solution is almost approached. This

optimizes the total number of iterations. The steps to be taken can be summarized as:

• perform pre-correlation on image pairs with first order polynomials,

• plot the row mean of the residual field of each three pre-correlations and obtain

the initial guess for the position of line shifts,

• perform a correlation step on blurred images to obtain a good initial guess for all

dofs,

• perform the second correlation step on the original (not blurred) images,

• repeat the final step with the reference image defined as the average of all back-

deformed images.





Chapter 4

Experimental full-scale analysis of size

effects in cellular elastomeric metamaterials
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Experimental full-scale analysis of size effects in cellular elastomeric metamaterials,

2019, Submitted.

Abstract

Cellular elastomeric metamaterials may exhibit multiple microstructural pattern trans-

formations beyond the point of buckling, each with a characteristic mechanical response.

This makes them interesting for various applications, for instance in soft robotics. Nu-

merical studies in the literature revealed significant size effects in the mechanical re-

sponse such materials due to large boundary layer formations. The goal of this paper

is to analyse these findings experimentally on small scale specimens that are relevant

for real applications. Cellular metamaterial specimens are manufactured with different

scale ratios, i.e. ratio of specimen size to unit cell size, while in-situ micro-compression

tests combined with digital image correlation are applied to enable full field kinematic

measurements. In order to objectively compare the results, complementary numerical

simulations are performed. The global behaviour of the specimens in the experiments

aligns well with the numerical predictions, in terms of the pre-buckling stiffness, the

buckling strain and the post buckling stress. the local behaviour of the specimens, i.e.

pattern transformation and formation of boundary layers, is consistent between experi-

ments and numerical simulations. Comparison of the results of the current study with

idealized numerical studies available in the literature, reveals the influence of the con-

ditions in real applications of cellular metamaterials, e.g. lateral confinement, on their

mechanical response such as the size and formation of boundary layers.

87
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4.1 Introduction

Cellular soft materials have proven to be useful in a variety of applications, and thus have

attracted many studies in the past decade [74]. The behaviour of such materials signifi-

cantly depends on their microstructural geometry, where buckling of the microstructure

entails a non-local effective behaviour, with one or multiple emerging patterns, e.g. the

pattern shown in Fig. 4.1b. Since these materials typically reveal a distinctly different

mechanical behaviour beyond their buckling point compared to before, e.g. a transition

from non-auxetic to auxetic behaviour [30], they are commonly categorized as metama-

terials.

Different applications such as strain tunable photonic crystals [42] or soft robotics

[40, 41] have been investigated in the literature. Other examples include programmable

mechanical metamaterials [43], for which the axial compressive behaviour is adjustable

by lateral confinement, and functionally graded metamaterials, hereby enabling en-

hanced global stability and dynamic compression resistance [75]. [76] used 3D printing

techniques to manufacture and study multi-material mechanical metamaterials. The de-

sign of cellular metamaterials is not limited to planar structures and interesting studies

have been conducted on 3D cellular structures [36, 39]. Yet the literature mainly focused

on planar cellular elastomeric metamaterials. For instance, the effect of hole geometry

and stacking on the behaviour of cellular elastomers was studied in detail in [29, 31–33].

[77] analysed different patterns induced by swelling in cellular hydrogel membranes. [78]

investigated the effect of friction on buckling pattern formation in cellular structures.

In cellular elastomeric metamaterials, the pattern transformation is strongly affected

by the boundary conditions that may locally confine these patterns. Kinematic restric-

tions lead to the formation of boundary layers resulting in a significant dependence of

the effective mechanical response on the ratio of the specimen size to hole size, i.e. the

so-called “size effect”. In a recent study, Ameen et al. [44] numerically investigated the

size effect in cellular elastomers. They showed a considerable influence of size on the

global behaviour of such materials and a characteristic boundary layer size in specimens

with scale ratios of 4 to 128, where scale ratio is the ratio of the specimen length to the

length of a unit cell of the microstructure. They reported an increasing trend in the

boundary layer thickness with a an asymptote of approximately three unit cells and an

asymptotic trend of global stress with more than 40% decrease over the range of scale

ratios.

The goal of the current study is to assess these findings experimentally for microstruc-

tures of a realistic size. In order to be more relevant to engineering purposes, experi-

mental studies are therefore conducted on small scale specimens. To this end, different

specimens with millimetre sized holes and various number of unit cells in loading direc-

tion were processed using custom-made moulds. In-situ micro compression tests with

optical microscopy in combination with Digital Image Correlation (DIC) are employed

to measure high resolution full-field displacement maps of the specimens with differ-

ent scale ratios. Such a detailed kinematic assessment is essential in identifying the
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5000 µm

(a) Undeformed microstruc-
ture

5000 µm

(b) Deformed microstructure

Figure 4.1: A cellular elastomeric metamaterial (a) before, and (b) after the onset of
buckling in the microstructure due to compression in horizontal direction, leading to
the emergence of an anti-symmetric pattern.

local boundary layers, and to enable accurate validation of the size effects in the global

behaviour of such metamaterials.

There are two major differences between the current experimental study and the

numerical investigation of Ameen et al. [44]. The numerical specimens were infinite in

the transverse direction due to the use of periodic boundary conditions, whereby the

boundary layer analysis was done on a homogenized solution obtained by ensemble aver-

aging of many realizations of the microstructure inside the specimen. These conditions

are not feasible experimentally. Thus new Finite Element (FE) simulations, replicat-

ing the experiments, are conducted to objectively compare the experimental findings.

To this end, bulk material parameters are identified by fitting a hyper-elastic Ogden

model to tensile tests done on the bulk sample of the base material. A good match

is observed between the experimental and numerical results in both global and local

behaviour of the cellular elastomeric metamaterial specimens. The trend in the global

stress is of the same order of magnitude of the one reported by [44]. It is shown that

the size and emergence of boundary layers strongly depend on the lateral confinement

of the metamaterial, which has direct consequences for their optimal design. These

findings indicate the influence of the boundary conditions relevant to real applications

of cellular elastomeric metamaterials on their mechanical response beyond the pattern

transformation, which was not addressed in idealized numerical studies in the literature.

4.2 Methodology

4.2.1 Specimen preparation

Thick cellular elastomeric metamaterial specimens with millimetric circular holes have

been processed with customised moulds with a rectangular stacking and micrometric

spacings. It is important to make thick specimens, and small spacings with respect
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to the hole diameter to induce local buckling, rather than global buckling, during the

in-situ micro-compression tests. Note that no out-of-plane constraints can be applied

to the surface of the specimens due to the DIC speckle pattern applied on the specimen

surface. All specimens have 1.5 mm hole diameter, 1.9 mm center to centre spacing

and are 22.5 mm thick, cf. Fig. 4.2a. Bulk edges of 1.9 mm and 0.9 mm are present in

the axial and transverse directions, respectively. The size of each unit cell is denoted

l, whereas the length of the specimen (excluding the bulk edges) is denoted L, see

Fig. 4.2a. The scale ratio of each specimen, L/l, is equal to the number of holes in the

loading direction. Specimens with scale ratios of 4, 6, 8, 10 and 12, all with 10 holes in

the transverse direction, have been manufactured. Two specimens for the scale ratios

8, 10 and 12, and a single specimen for the scale ratios 4 and 6 were made. Based on

the study of Ameen et al. [44], the scale ratio of 12 should be sufficient to allow for a

completely developed boundary layer. Aluminium cubic moulds with perforated bottom

surface, removable steel pins, and perforated brass cover plates are utilized, cf. Fig. 4.2b.

Sylgard 184 with 1:10 mixing ratio was degassed for 30 minutes, then slowly poured into

the moulds with inserted pins and degassed for 2 hours. Finally, the perforated cover

plates are placed to close the mould from the top and the specimens are cured for 15

hours at 70℃. Degassing of the filled moulds should be very slow due to the small

area between the pins and the high surface tension of the PDMS mixture. Thus the

bulk material edges are included in the specimen design to provide an outlet for the air

bubbles and achieve complete degassing before the mixture viscosity increases too much

during the curing process. Note that the long curing time at an elevated temperature is

necessary for thick specimens to ensure proper and homogeneous curing. Each specimen

is finalized by removing all pins, and then the cover plate.

A speckle pattern was applied on the specimens to generate a contrast as required for

DIC. Since Sylgard 184 is translucent and light reflecting, the speckle pattern consists of

two layers; first a white powder (HELLING Standard-Check developer Medium Nr. 3)

was sprayed to make a fine-grained background, then black India ink was sprayed using

an air brush. Spraying at an inclined angle through a short tube, to create a spiral

flow, filters out the big particles, resulting in speckles measuring roughly 30 to 80 µm,

corresponding to 3 to 8 pixels as shown in Fig. 4.2c.

4.2.2 In-situ micro-compression tests

Micro-compression tests are conducted on the patterned specimens using a Kammrath &

Weiss micro tensile/compression stage with a 50 N load cell. Two aluminium T-shaped

clamps are used to apply the compression uniformly in the axial direction, cf. Fig. 4.2d.

A Zeiss Discovery.V20 stereo microscope with a PlanApo S 0.63× objective and an

Axiocam 506 mono camera with 2751×2207 pixels resolution are used to acquire images

during the tests. A 7.6× magnification is used to cover the whole area of the largest

specimen. The test is interrupted to record images at displacements corresponding to

1.4% global strain increments up to 7% strain, followed by 0.2% global strain increments

up to 12% strain for all specimens. The global strain for defining the load increments is
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Figure 4.2: Experimental set-up for in-situ testing. (a) Schematic of a 10 × 10 holes
specimen (scale ratio of 10) indicating the total length of the specimen excluding the
bulk side edges (L: the large dashed square), the size of the unit cells (l = 1.9 mm:
small dashed square), the diameter of the holes (1.5 mm), the size of the bulk edges
and the loading direction. The red squares of 20 × 20 pixels depict the position where
the local rotation of the islands (cross-shaped parts in the center of each four holes) are
probed for quantifying the boundary layer size. (b) The aluminium mould, with inserted
pins, used for making the 10× 8 holes specimens, along with the brass perforated cover
plate. (c) Zoomed view of the speckle pattern applied on the specimens for DIC. (d)
Test setup showing the micro compression stage, with 50 N load cell, underneath the
microscope’s objective with LED ring light mounted.

calculated as the displacement readings of the Linear variable differential transformer

(LVDT) of the compression stage, divided by the initial length of each specimen. The

test on each specimen is repeated four times. During the first and last test, images are

acquired at 8.8× 10−5s−1 global strain rate. The other two tests are uninterrupted and

performed at 3.3 × 10−4s−1 global strain rate. Unloading during all tests is done with

3.3× 10−4s−1 global strain rate.

4.2.3 Full-field displacement measurement

The images taken during the in-situ tests are used for local DIC to extract the kine-

matic fields. Images are typically affected by optical distortions of the objective lens.
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These spatial distortions are measured using the method proposed by [65, 79]. The

measured distortion field is used to correct the images taken during the in-situ tests,

which is necessary because the magnitude of the distortions is roughly 10% of the actual

displacements in the metamaterial specimens. The kinematic fields are then determined

using the VIC-2D local DIC package with 19 pixel subset and 1 pixel step size. The

displacement fields are used to evaluate local rotation fields using the module available

in VIC-2D and a smoothing filter size of 51 pixels.

4.2.4 Numerical Methodology

A plane strain finite element model, using quadratic isoparametric triangular elements

with three-point Gauss integration rule, is made for each specimen size. Dirichlet bound-

ary conditions are applied on the two vertical edges perpendicular to the loading direc-

tion, whereas the two remaining edges are free. PDMS is modelled with a hyper-elastic

Ogden material model. Considering the range of different material properties reported

in the literature [80–83], tensile tests are performed to characterize the bulk mechanical

properties of the PDMS used. The Ogden model material parameters are identified from

these tensile tests: c1 = 0.0892 MPa, c2 = 1.2537 MPa, m1 = 10.0959, m2 = 0.0036

and κ = 29.6716 MPa, where ck and mk are the material parameters and κ is the bulk

modulus. More details on the material characterization are given in 4.A. Buckling of

the numerical model is guaranteed by checking the signs of the diagonal matrix D in

the LDLT decomposition of the iterative finite element stiffness matrix, cf. e.g. [Sec-

tion 7.1.2 84]. When a negative entry is encountered, the eigenvector corresponding

to the lowest eigenvalue is computed and used as a perturbation of the Newton solver.

The magnitude of the perturbation is increased from initially a very small value until

a stable configuration is reached. The algorithm then proceeds with a buckled stable

configuration if the perturbation was successful, otherwise the load increment is halved

and the entire procedure repeats.

4.3 Results and Discussion

Local rotation fields are obtained from displacement fields obtained by local DIC, as

described in Section 4.2.3, and are shown in Fig. 4.3 in the deformed configuration for

one specimen of each scale ratio at 1.3% global strain after buckling.

4.3.1 Global Response

In order to accurately measure the applied displacement on the specimens, and thus the

nominal strains, the DIC data are used. In order to properly quantify the displacement

to achieve the same global strain for specimens of different scale ratios, the exact ge-

ometry of the specimens has to be accounted for. To this end, the global displacement

is determined at the outside of the first and the last unit cells (i.e. excluding the bulk

edges), where the applied displacement on each side is averaged over the width of the
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(a) 4× 10 (b) 6× 10 (c) 8× 10

(d) 10× 10 (e) 12× 10

Figure 4.3: Local rotation fields inside a specimen for each scale ratio, at 13% global
strain after local buckling, plotted on the deformed configuration. The displacement
fields used for calculating the deformations and the local rotations are obtained by local
digital image correlation.

specimen. The global nominal strain is then calculated as the ratio of the relative dis-

placement between the two sides and the initial distance, L. The global nominal stress is

computed as the ratio of the global compressive force and the initial cross sectional area

of each specimen. This approach is used for both experimental and numerical analyses.

Fig. 4.4a depicts the global stress-strain curves of different specimens for both the

experiments and the numerical simulations. The results of all tests for each scale ratio

are depicted in the same color for the sake of readability. Optical inspection of the spec-

imens under the microscope showed variations of approximately 3 % in hole diameter.

Therefore extra simulations were conducted considering ±3 % variation in the diame-

ter of the holes. The error bars at three different strain levels in Fig. 4.4a depict the

range of stresses observed in these simulations. Note that the somewhat higher stiffness
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Figure 4.4: Global response of specimens of different scale ratios, comparing experi-
mental and numerical results. (a) Global nominal stress–strain curve. Results of all
tests for each scale ratio are depicted in the same color. (b) Buckling strains, calculated
as the strain at which the maximum curvature occurs in the stress–strain curves. (c)
Post-buckling stresses determined at a global strain of 10.7% (maximum strain before
global buckling of the largest specimen). The error bars on the experimental data in (b)
and (c) reflect the variability in all tests done, while the error bars on all numerical data
reflect the uncertainties in the simulations, resulting from the geometrical variations .
The small blue dots in (b) and (c) represent the results of each individual test, while
the blue stars the average for each scale ratio.
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observed in the experiments is in line with the optical inspection of the specimens point-

ing to smaller holes than the design value. The pre-buckling stiffness values of different

specimens agree well, as expected for cellular metamaterials, for which the pre-buckling

stiffness should be independent of the scale ratio. There is, however, a small systematic

variation in the initial stiffness due to the bulk edges on the transverse sides, which was

confirmed in numerical simulations with and without these side bulk edges.

Fig. 4.4b shows the global strain at which the local buckling, resulting in the pattern

transformation, occurs in each specimen, which is denoted by εb. The average buckling

strain for all tested specimens of a certain scale ratio are depicted in this curve, and the

error bars are attained as follows. The differences between the buckling strains for all

16 tests and the average of the corresponding scale ratio are calculated. The standard

deviation of these disparities gives a global measure of the uncertainty in the buckling

strain measurements, and is therefore used as the error bar. Based on the observed

geometrical variations, the error bars on the numerical results are based on two sets

of simulations considering ±3 % variation of the hole diameters. The buckling strains

match well between the experimental and numerical results (Fig. 4.4b). Note that a

small variation in the geometry of the specimens results in a large shift in buckling

strains. The asymptotically decreasing trend, however, remains uninfluenced.

Fig. 4.4c depicts the post-buckling stress against the scale ratio, taken from both the

experimental and numerical results. The stress is determined at 10.7% global strain,

which is the maximum strain prior to global buckling in the largest specimen. The

error bars are obtained as in Fig. 4.4b. A nearly constant trend is observed in the upper

bound of the error bars due to the fact that the simulation of the two smallest specimens

with a 3% smaller hole diameter did not yet reveal local buckling at the imposed 10.7%

global strain. Taking this into account, the numerical and experimental results show a

similar asymptotically decreasing trend. The larger size effect in the experiments is due

to the fact that the onset of global buckling in the larger specimens is more gradual,

influencing the stresses at the considered strain.

The global post buckling stress in the current study shows a 19% decrease from

scale ratio 4 to 12. This value is 29% in the idealized numerical study of [44]. The

difference is due to the relative size of the holes with respect to the unit cell as well

as different boundary conditions i.e. no free boundaries nor bulk edges in the infinitely

wide specimens considered in simulations of [44].

4.3.2 Local Behaviour

The boundary conditions applied to the cellular elastomeric metamaterial specimens

obviously influence the buckling-induced pattern close to the edges, which in turn result

in the size effects discussed above. Ameen et al. [44] studied this effect by numerically

identifying the boundary layer in which the normal strain in the loading direction is

affected by the edge, using a homogenized solution. This homogenized solution was

calculated from an ensemble average of many realizations of the same periodic mi-

crostructure, where the microstructure was shifted relative to the specimen geometry.



4. Metamaterials, Size Effects 96

Since it is impossible to use the same procedure for experimental results (for which

only one realization is measured), a different approach for characterising the boundary

layer thickness is proposed here. The local buckling of the ligaments between the holes

results in rotation of the islands, leading to the patterns shown in Fig. 4.3. When the

specimen is loaded beyond the buckling point, a significant increase in the rotation of

the islands results in a pronounced pattern. This also applies to the spatial variation

of the pattern at each global strain state, i.e. the rotation of the islands is larger in the

specimen center, where the pattern is more developed.

Therefore, in order to quantify the size of the boundary layer, the rotation of the

islands is exploited as the quantity of interest. To avoid the influence of the free side

edges, only the two central unit cell rows are taken into consideration, see Fig. 4.2a. A

unique rotation angle is determined for each island by averaging the local rotations in

a window of 20 × 20 pixels in the center of each island. The little red squares in Fig.

4.2a indicate the positions where the local rotations are probed. The absolute values of

the rotation angles of the islands are averaged over each column (i.e. in the transverse

direction) and plotted against the row number (i.e. normalized axial coordinate) in

Fig. 4.5a for the experimental and Fig. 4.5b for the numerical data. Each curve is

evaluated at a relative global strain increment of 0.013 after the onset of local buckling

at the corresponding scale ratio (εb + 0.013). The curves in Fig. 4.5a and b are plotted

by mirroring the rotation angles with respect to the central island and averaging the

values on both sides. By this means the small variations in the rotation angles, due

to the antisymmetry of the buckling pattern, are averaged out and smooth symmetric

curves are attained. Values corresponding to non-integer number of holes/scale ratios are

based on linear interpolation of the local rotation of islands to give a quasi-continuous

measure for quantifying the boundary layer thickness. Each curve in Figs. 4.5a and

4.5b is probed at 70% of its dynamic range and the x coordinate of each intersection

defines the size of the boundary layer. This threshold is chosen to ensure that the

results of the current study, in case of infinitely wide specimens, match those of [44]

for large scale ratios. The resulting boundary layer size is plotted against the scale

ratio in Fig. 4.5c. The experimental and numerical results match adequately, although

the trend is not yet converged for the specimens with scale ratio 12. Note that it

is experimentally challenging to perform the tests on specimens with larger scale ratio,

due to the necessity of thicker specimens to prevent global buckling making the specimen

processing infeasible. And also due to the difficulty of attaining high spatial resolution of

the displacement and thus rotation fields inside the islands, while capturing the complete

surface of the specimens within the field of view.

Three more numerical simulations are conducted to analyse larger specimens. At a

scale ratio of 18, the boundary layer size almost levels out, showing an asymptotic trend

corresponding to a boundary layer size of roughly 4 unit cells. Extending the simulations

to bigger scale ratios is infeasible since global buckling occurs almost immediately after

local buckling, preventing analysis of the rotation fields before global buckling. Note

that the presented results are all determined at ε + 0.013, which guarantees that all

specimens up to scale ratio 18 are not globally buckled.
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Figure 4.5: Local behaviour of specimens of different scale ratios based on experimental
and numerical results. Rotation angles averaged over the two central unit cells against
the horizontal coordinate for (a) experimental, where results of all the tests for each
scale ratio are depicted in the same color and, (b) numerical results, at a relative global
strain of εb + 0.013. The stars are depicting 70% of the dynamic range of each curve
for quantification of the boundary layer size. Graphs in (a) and (b) are plotted on loga-
rithmic vertical scales to better visualize the boundary layers. (c) Size of the boundary
layer, in terms of the number of unit cells, determined from the rotation of the islands,
for the experimental and numerical data as well as for the simulations by [44]. The sim-
ulations are extended to a scale ratio of 18 to reveal the converged size of the boundary
layer.
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Results of two additional sets of numerical simulations with different lateral con-

straints are included in Fig. 4.5c as well. In both cases the bulk side edges in the

loading direction and 10 unit cells over the specimen width are employed. First, speci-

mens with different scale ratios but no bulk side edges are analysed, which imposes no

lateral constraint on the metamaterial. Second, infinitely wide specimens are computed

by means of periodic boundary conditions, which applies a high level of lateral con-

straint on the metamaterial. As mentioned above, the 70% threshold is chosen to have

the boundary layer thickness of this case to match those of [44], for large scale ratios.

They used a different measure, i.e. maximum curvature of the axial component of de-

formation gradient tensor, to assess the boundary layer size with respect to this study,

but the asymptotic boundary layer thickness should be independent of the method used

to quantify it. The boundary layer size in their study is evaluated from a homogenized

solution based on many shifted realizations of the microstructure, in many of which the

holes cut through the edges. For small scale ratios, this results in a different bound-

ary layer thickness evaluated based on one single realization (no microstructural shift)

and the thickness assessed from the homogenized solution, which explains the difference

between the simulations of the current study with periodic boundary conditions and

results of [44].

It is observed that the different levels of lateral confinement directly influence the

scale ratio at which the boundary layer size converges, see Fig. 4.5c. The experimental

specimens of the current study are in between these two limit cases of lateral con-

finement, which explains why the boundary layer size was not fully converged in the

experimental data.

The presented results demonstrate that relatively large boundary layers emerge in

cellular elastomeric metamaterials, which result in considerable size effects in specimens

of finite size. These effects are tunable to a certain degree by changing the constraints

put on the specimens in the transverse direction, which can be exploited for customized

designs of these metamaterials in various engineering applications.

4.4 Summary and Conclusions

Cellular elastomeric materials exhibit pattern transformations beyond a critical load,

entailing internal buckling of their microstructure, which may dramatically change in-

fluences their global mechanical response. To experimentally analyse the size effects

in such materials, as previously observed in a numerical study of [44], a systematic

study has been conducted. To remain consistent with potential applications of cellu-

lar elastomers, specimens with millimetre sized holes have been manufactured using

custom-made moulds. The size of the specimen with respect to hole size, i.e. “scale

ratio”, was varied while keeping the hole size fixed. In-situ micro compression tests in

conjunction with optical microscopy and digital image correlation have been conducted

to attain full-field kinematic measurements. Such measurements are essential to accu-

rately assess the global stress–strain behaviour of the specimens and to evaluate the
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local kinematics during pattern transformation, which allows to extract the boundary

layer thickness. Unlike done in the numerical study mentioned above, real specimens are

by definition finite in size and ensemble-average homogenized solutions are not applica-

ble, making a direct comparison challenging. To overcome this difficulty, finite element

simulations of finite sized specimens have been conducted here and analysed in parallel

to the experiments. Tensile tests have been performed to characterize the bulk material,

allowing to identify the Ogden hyper-elastic material parameters. The experimentally

observed geometrical variations within the specimens have been incorporated to assess

the uncertainties characterising the real specimens.

The global stress–strain behaviour, local buckling strain and post-buckling stress for

different scale ratios adequately agree between numerical and experimental results, tak-

ing into account the specimen variations and uncertainties. The global stress shows a

trend of the same order of magnitude as the one reported by [44], while the difference

is mainly due to the very different boundary conditions in the two studies. In order to

determine the size of the boundary layer, the spatial variation of the rotation angle of

cross-islands inside each specimen was studied. The numerical and experimental results

agree well, although the boundary layer size did not yet converge to an asymptotic value

for the maximum scale ratio used in the experiments. The numerical results indicate

convergence of the boundary layer size towards approximately 4 unit cells. Additional

numerical investigations, where the lateral constraint acting on the specimens was var-

ied, reveal that the level of lateral confinement of the cellular elastomeric metamaterials

strongly influences the boundary layer and its convergence to a saturated value. Relax-

ation of the lateral constraints results in larger boundary layers and larger scales ratios

for which the boundary layer size has converged. These novel insights are instrumen-

tal for controlling the boundary layer size and size effects in designs based on cellular

metamaterials.

Appendices

4.A Material Characterization

Dog-bone specimens, with a gauge length of 12 mm and a width of 2.2 mm, are punched

out of PDMS slabs, which are processed along with the manufacturing of the metamate-

rial specimens. The thickness of these dog-bone specimens varies between 1.0 to 1.5 mm

for different batches. A similar speckle pattern as described in Section 4.2.3 is applied

on the dog-bone samples, and in-situ tensile tests are performed. Loads are measured

with a 50 N load cell. Global DIC, in which the displacement field is parametrized

with linear polynomials, is used to measure the strains inside the specimens. Adopting

hyper-elastic Ogden material model, the material parameters are identified by minimiz-

ing the difference between the reaction force of a finite element model of a material

point under uniaxial tension and the experimentally measured forces. The strain energy
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density function is given by:

W =
1

2
κ (J − 1)2 +

N∑

k=1

ck
m2

k

(λmk
1 + λmk

2 + λmk
3 − 3−mk ln J) , (4.1)

where λi are the principal stretches, J = det(F) is the volume change ratio, F the

deformation gradient tensor, κ is the bulk modulus, and ck and mk are the material

parameters, with N taken equal to 2 in this study [85]. The principal stresses, σi, are

given as:

σi = κ (J − 1) +
N∑

k=1

1

J

ck
mk

(λmk
i − 1) , (4.2)

The initial values for ck and λk as well as the bulk modulus are chosen from Ref. [82],

due to the similar PDMS processing utilized in that study. Considering the variety of

values reported for the bulk modulus of Sylgard 184 in literature, varying from 20 to

1200 MPa [81, 82, 85], it was decided to perform confined compression tests on circular

samples of 5 mm diameter punched from PDMS slabs to evaluate the bulk modulus. An

average of 415 MPa and standard deviation of 125 MPa was found for bulk modulus

over ten tests. The low average is due to air bubbles observed under optical microscope,

while the large standard deviation is due to the non-uniform distribution of the air bub-

bles. It is realized, however, that the degassing process in the metamaterial specimens

is less effective, considering their thickness and complicated design, which will for sure

leave more bubbles in these metamaterial specimens than for the flat compression spec-

imens and thus results in a lower bulk modulus. Therefore, the low initial guess for the

bulk modulus obtained from Ref. [82], i.e. 29.15 MPa, seems to be a reasonable value

to use as initial guess.

A staggered approach is used to identify all five material parameters. First, ck are

optimized for strains up to 2%, then ck and mk are optimized for the entire strain range,

i.e. up to 60%. The bulk modulus is finally found for the whole strain range while

keeping the optimized values of ck and mk constant. This approach results in optimized

values of κ = 29.6716 MPa, c1 = 0.0892 MPa, c2 = 1.2537 MPa, m1 = 10.0959 and

m2 = 0.0036. Note that a separate numerical investigation revealed only 2% change

in initial mechanical response of metamaterial specimens for a change of bulk modulus

from 30 to 1000 MPa, thus revealing a very small sensitivity to this material parameter.
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Abstract

Cellular elastomeric metamaterials generally exhibit local buckling patterns that emerge

at a critical level of compressive load. For the analysis and design of metamaterials with

dedicated functionalities it is useful to distinguish the displacement pattern due to lo-

cal buckling from the overall deformation. A recent study proposed a micromorphic

computational homogenization scheme, suitable for cellular metamaterials, based on

a kinematical ansatz consisting of three parts: (i) a smooth mean displacement field,

corresponding to the slowly varying deformation at the macro-scale, (ii) a long-range cor-

related fluctuation field, related to the buckling pattern at the meso-scale and, (iii) the

remaining uncorrelated local microfluctuations at the micro-scale. The current study

aims at experimentally identifying the decomposed kinematics of cellular metamateri-

als based on this ansatz. To this end, a novel micromorphic Integrated Digital Image

Correlation (IDIC) method is developed. The methodology is applied to cellular elas-

tomeric metamaterials in both virtually generated images and images attained during

in-situ compression of specimens with millimetre sized microstructure using optical mi-

croscopy. The novel micromorphic IDIC method effectively decomposes the different

kinematic fields, both before and after the emergence of the long-range correlated fluc-

tuations. The methodology is easily extended to account for cellular metamaterials with

different microstructural designs.

101
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5.1 Introduction

Mechanical metamaterials exhibit exotic behaviour that is of great interest for dedicated

applications such as soft robotics or tunable materials [74]. The focus of this paper is

on cellular elastomeric metamaterials which reveal a pattern transformation at a critical

level of compressive load, resulting in a significant change in their mechanical response.

Fig. 5.1 shows an example of a cellular elastomeric metamaterial with a regular grid

of circular holes, where the local buckling of the microstructure results in a patterned

fluctuation field that is correlated over long distances.

Different applications of cellular elastomeric metamaterials, such as strain tunable

photonic crystals [42], soft robotics [40, 41], programmable mechanical metamaterials

[43], functionally graded metamaterials [75], are being studied in the literature. Various

aspects of such metamaterials with 2D [29] and 3D [36, 39] microstructures have been

studied. A number of studies focus on the effect of the hole geometry and stacking

[30–33]. [86] made a qualitative comparison between numerically and experimentally

assessed stresses in cellular elastomers; [76] used 3D printing to manufacture and study

multi-material mechanical metamaterials; [77] investigated different pattern transforma-

tions as a result of swelling in cellular hydrogel membranes, [78] investigated the effect

of friction on buckling pattern formation in cellular structures; and [44] conducted a

computational study on the size effects in cellular metamaterials.

Few studies in the literature made use of full-field displacement measurement tech-

niques to investigate cellular metamaterials. [35] used local Digital Image Correlation

(DIC) to validate their numerical study on auxetic metamaterials; [37] used DIC in the

design of thermally expanding tunable 3D metamaterials; [38] studied different designs

of auxetic dome-shaped structures using stereo DIC; and [34] compared DIC and finite

element analysis results on highly stretchable and reconfigurable metamaterials. Such

full-field kinematic assessments, based on local DIC, all provide complex displacement

fields consisting of a smooth part and complicated fluctuations depending on the mi-

crostructural design. Decomposition of these complex kinematics proves to be useful

in different applications, such as metamaterials for which the tunable phononic prop-

erties depend on the local distribution of patterned fluctuations [87–89]. Therefore,

it is important to be able to identify this distribution, independently from the global

deformation, for a proper assessment of and design for certain effective phononic prop-

erties. There are many other applications, such as auxetic metamaterials [90, 91] and

biomedical prosthetics [92, 93], for which tuning the complex fluctuations at the scale

of the microstructure also guides the desired architectured global behaviour. Therefore,

measurement of the global macroscopic deformation field separately from the meso-scale

fluctuation field is of clear interest.
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In a recent numerical study [45], a micromorphic homogenization scheme was intro-

duced, suitable for cellular elastomeric metamaterials, which is based on the decompo-

sition of the displacement field according to the following ansatz,

u (x) = v0 (x) +
n∑

i=1

vi (x)ϕi (x) +w (x) . (5.1)

The total displacement field u(x) is divided into three parts: (i) the mean smooth

displacement field, v0(x), corresponding to the slow variations at the macro-scale;

(ii) long-range correlated fluctuations at the meso-scale represented by the vector fields

ϕi(x), with i = 1, . . . , n, scaled by their magnitudes in space vi(x); and (iii) a remaining

microfluctuation field, w(x), which represents the non-correlated fluctuations at the mi-

cro-scale. In here, x is the position of material points in the undeformed configuration.

The same decomposition is used here to develop an experimental method to qualify

and quantify the decomposed kinematic fields of cellular elastomeric metamaterials,

using images captured at different stages of deformation during an experimental test. To

this end, a novel micromorphic Integrated Digital Image Correlation (IDIC) is developed,

in which the total displacement field is described by only (i) the smooth mean part

and (ii) the long-range correlated fluctuation field. IDIC is a full-field displacement

measurement technique based on regularization of the kinematics according to specific

knowledge about the problem at hand. Typically this prior knowledge is applied in the

form of a numerical model describing the mechanics with the material parameters as

the degrees of freedom. It can then be used to directly find the material properties

from in-situ tests. However, such a knowledge of the nature of the problem at hand

can be integrated with DIC scheme in form of a parametric analytical description,

which is useful when the kinematic fields are of interest. The total displacement field is

regularized based on the above-mentioned ansatz by parametrization of the smooth mean

field, v0, the long-range correlated fluctuation modes carried by the microstructure, ϕi,

as well as their spatial distribution functionals, vi(x). The proposed methodology is

applicable for a general class of cellular metamaterials.

The methodology is tested on virtually generated and deformed images, as well as

optical microscopy images taken during an in-situ compression test on a cellular elas-

tomeric metamaterial with rectangular stacking of circular holes, cf. Fig. 5.1. A spectral

density analysis is shown to be effective for fine tuning the parametrization and initial-

ization of the fluctuation mode for a specific metamaterial. It is demonstrated that

the micromorphic IDIC scheme leads to a proper decomposition of the kinematic fields

into their smooth mean field, the fluctuation mode and its spatial distribution over the

specimen, both before and after the emergence of the fluctuation pattern.
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5000 µm

(a) Undeformed microstruc-
ture

5000 µm

(b) Deformed microstructure

Figure 5.1: Elastomeric metamaterial specimen (a) before and (b) after the onset of
microstructural buckling, due to compression in horizontal direction, resulting in the
emergence of an anti-symmetric pattern.

5.2 Micromorphic Integrated Digital Image Corre-

lation

5.2.1 Integrated Digital Image Correlation

Integrated image correlation is a full-field displacement measurement method based on

the minimization of the residual field, which is the difference of the reference image,

f , and the deformed image, g, probed at, respectively, reference coordinates and the

deformed positions corresponding to those coordinates based on the displacement field.

The problem is solved over the whole region of interest, where the residual field is defined

as

r(x, a) = f (x)− g (φM(x, a)) . (5.2)

φM(x, a) = x + u (x, a) is the mapping function corresponding to the mechanical dis-

placement field, u. The displacement field, in turn, is based on the regularization ac-

cording to a model with specific knowledge of the kinematics at hand, thereby reducing

the number of degrees of freedom (dof) contained in a, and improving the robustness

of the solution [94]. This model can be a numerical model in which the dofs would be

the material parameters or an analytical model describing the deformation field. The

optimal values of the degrees of freedom, aopt, are found as:

aopt = argmin
a

(
1

2

∫
r2 (x, a) dx

)
(5.3)

This minimization problem is then solved by an iterative scheme such as Gauss-Newton

[61].
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5.2.2 Regularization of the Kinematics based on the Micro-

morphic Kinematical Ansatz

The kinematical ansatz introduced in Eq. (5.1) is used to experimentally obtain the

decomposed kinematic fields of cellular metamaterials. The local microfluctuations are

the non-correlated part of the kinematics and by definition unknown, therefore w(x)

is not included in the micromorphic IDIC parametrization for cellular metamaterials.

Accordingly, the displacement field for the IDIC problem is defined as:

u (x, a) = v0

(
x, av0

)
+

n∑

i=1

vi
(
x, avi

)
ϕi

(
x, aϕi

)
, (5.4)

where a =
[
av0 avi aϕi

]T
is the column of degrees of freedom, with av0 , avi and aϕi

the

sets of dofs for v0, vi and ϕi respectively. Since each mode ϕi is periodic within an

integer multiple of the unit cell size [45], a truncated 2D Fourier series is a natural

choice for its parametrization. As will be shown below, the selection of relevant sine

waves can be easily done by means of a simple spectral density analysis of one example

for any family of cellular metamaterials and loading conditions. Note that the number

of modes that are activated by different loading conditions in cellular metamaterials is

often only one, e.g. Fig. 5.1, or just a few [95]. Each long-range correlated fluctuation

mode ϕi is defined such that it is non-zero only where the cellular microstructure exists.

In order to avoid discontinuities, its smoothly goes to zero in bulk edges of the specimen,

if present. This is accounted for, such that the periodic field of each mode is extended in

the bulk material while its value linearly decays to zero inside a region of bulk material

with a width of half the unit cell size. Because v0 and vi are slow macroscopic fields,

smooth functions such as globally-supported polynomials are the best choice for their

parametrization.

In an in-situ test, in addition to the mechanical displacement field, the images are

affected by optical distortions of the optical lenses. Such distortions may introduce large

errors if neglected. Therefore, the residual field of Eq. (5.2) is rewritten as:

r(x, a) = f (φS (x))− g (φS (φM(x, a))) , (5.5)

where φS(x) = x+ S(x) is the mapping function describing the spatial distortion. The

spatial distortion field, S(x), is determined a priori in a calibration step by the method

introduced in Chapter 3 [65, 79]. Hence there are no degrees of freedom related to spatial

distortion to be identified anymore in the micromorphic IDIC problem, of Eq. (5.3).

5.3 Results and Discussion

The methodology is applied to both virtual and real in-situ micro-compression exper-

iments on cellular elastomeric metamaterial specimens with a design as depicted in

Fig. 5.2. The specimen has 1.5 mm hole diameters and 1.9 mm center to center pitch
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Figure 5.2: Analysed cellular elastomeric metamaterial specimen, depicting the total
length of specimen excluding the bulk side edges (L: the large dashed square), the size
of the unit cells (l = 1.9 mm: small dashed square), hole diameter (1.5 mm), the size
of the bulk side edges and the loading direction.

(unit cell size l) with edges of 1.9 mm and 0.9 mm bulk material in loading and trans-

verse directions. The length of the specimen, excluding the bulk edges, is denoted L.

The scale ratio of the specimen, L/l, is equal to the number of holes in the loading

direction. More details on the specimen geometry are found in Chapter 4.

5.3.1 Virtual Experiments

The micromorphic IDIC scheme will be first tested on virtually generated and deformed

speckle images. By this means the method is tested in a case where there is no influ-

ence of image distortions and noise in the images, and there are no imperfections in the

specimen and the loading, etc. To this end, a plane strain finite element simulation,

using quadratic isoparametric triangular elements with three-point Gauss integration

rule, is performed for the compression of a cellular elastomeric metamaterial specimen

with scale ratio of 6, i.e. 6 and 10 holes in loading and transverse directions, respectively.

Dirichlet boundary conditions are applied on the two vertical edges perpendicular to the

loading direction to apply compression, while the two remaining edges are free. The ma-

terial, i.e. PDMS, is modelled by a hyper-elastic Ogden material model. More details on

the numerical simulation are presented in Chapter 4. The displacement fields obtained

from this simulation are used to deform a speckle pattern for two different time steps,

one before microstructural buckling and the other after the emergence of the patterned

fluctuation field, corresponding to 7.8% and 12.8% applied nominal strain. Fig. 5.3a

depicts the deformed configuration of the virtual speckle pattern after the buckling-

induced pattern emerged, which exhibits the pattern transformation more pronounced

in the center and restricted at the edges, specifically the vertical edges. The employed

speckle pattern is obtained as a thresholded two-dimensional scalar and stationary ran-

dom Gaussian field, generated according to [Section 5.3.1.2 96]. The spectral density

is chosen as a radially-symmetric normal probability density function with the mean

zero and standard deviation 1/20. No additive image white noise has been added to



5. Metamaterials, Micromorphic IDIC 107

(a) Deformed virtual im-
age

(b) Sxx [mm6] (c) Syy [mm6]

Figure 5.3: (a) Virtually generated and deformed speckle pattern, corresponding to
compression in horizontal direction after the onset of pattern transformation in a cellular
elastomeric metamaterial, revealing the presence of one fluctuation mode inside the
specimen. Energy spectral density functions of the corresponding displacement field
in (b) x and (c) y direction, revealing the principal frequencies related the long-range
correlated fluctuation mode (four peaks approximately on the diagonals). The range of
the colorbars is reduced to highlight the frequencies related to the long-range correlated
fluctuation mode.

such generated images. The pattern is blurred using Gaussian filter with the standard

deviation of 3 pixels.

No imaging spatial distortions are present in the virtual images, and thus φS(x) = x

is set for the virtual experiments. Chebyshev polynomials of 5th and 6th order are

used to parametrize v0 and v1, respectively. In order to attain a proper initial guess

for ϕi(x, aϕi
), it is first observed, cf. Fig. 5.3a, that only one long-range correlated

fluctuation mode is triggered in the specimen, thus n = 1 is set in Eq. (5.1) with

only ϕ1 considered. It is also obvious that the triggered mode is periodic wth a pe-

riodicity of two unit cells. Moreover, a spectral density analysis is performed on the

reference displacement field, available from the simulation. Figs. 5.3b and c depict the

energy spectral densities of the displacement components in horizontal and vertical di-

rections, Sxx = ûx(ξ)û
∗
x(ξ) and Syy = ûy(ξ)û

∗
y(ξ), respectively, where ux and uy are the

x- and y- components of u(x), the hat indicates the Fourier transformation and * com-

plex conjugate. Inspection of these two graphs allows to make a specific choice on the

parametrization and initialization of the long-range correlated fluctuation mode. The

horizontal and vertical lines in Figs. 5.3b and c, respectively, correspond to the disconti-

nuities in the mean deformation due to the edges of the specimen, while the four peaks

correspond to the correlated fluctuation mode, revealing two sine functions roughly in

diagonal directions of the Cartesian coordinate system, for the x and y components of

ϕ1. In the spectral densities there are a multitude of secondary peaks, corresponding

to the microfluctuations w, which are not visible due to their small amplitudes. The

purpose of the spectral density analysis is the identification of the long-range correlated



5. Metamaterials, Micromorphic IDIC 108

fluctuation modes, so only the corresponding four peaks are considered here. Inspection

of ûx(ξ) and ûy(ξ), at the frequencies corresponding to the four peaks of Sxx and Syy,

suggests that the two sine waves are of the same sign in the x component, and of the

opposite sign in the y component of the displacement field. This inspection also suggests

that the two sine waves are of the same amplitude, for both x and y components of the

displacement. Based on these observations, ϕ1 is parametrized as the sum of two sine

functions for each component, as:

ϕ1(x, aϕ1
) = a1

[
sin

π

l
(a2x+ a3y + a6)− sin

π

l
(a4x+ a5y + a7)

]
ex

+
[
sin

π

l
(a2x− a3y + a6)− sin

π

l
(a4x+ a5y + a7)

]
ey, (5.6)

where aϕ1
= [a1, a2, a3, a4, a5, a6, a7]

T is the column of degrees of freedom describing the

mode. Note that the direction of both sine waves and their wavelengths are free and

independent, which compensates for inaccuracies in the measurement of the unit cell

size, due to processing uncertainties. This allows for an accurate assessment of the shape

of the fluctuation mode, whereas the spectral density analysis is only used for a proper

parametrisation of the fluctuation mode and for the initial guess of all these parameters.

Note also that it is sufficient to perform the spectral density analysis only once for a

family of cellular metamaterials triggering the same pattern. In cases where more than

one mode is activated, the spectral analysis should be done separately on each of the

regions containing the individual modes.

The dofs describing ϕ1 are initialized as: aϕ1
= [1, 1, 1, 1, 1, 0, 0]T. The initial values

for a2 to a5 are set to a wavelength of 2 unit cells and their signs and ratios are set such

that the initial orientation of the two sine waves is aligned with the two diagonals of the

coordinate system. Note that a1 is only defining the ratio of the amplitude of the mode

in x and y direction, while v1(x) defines its absolute amplitude according to Eq. (5.4).

In order to assure a proper scaling of the minimization problem, ϕ1(x) is scaled such

that the initial maximum value of the mode is 0.04. Since the sensitivity functions of

the mode ϕ1 used in the Gauss-Newton optimization algorithm [61] are a function of

v1(x), the initial guess for the latter needs to be non-zero to avoid an ill posed problem

in the first iteration. To this end, v1(x) is initiated with a small constant value in space.

The applied compressive global strain results in large displacement on the edges of the

specimen requiring an approximate initial guess in order to ensure convergence. Thus,

the smooth mean field v0(x) is initialized such that the first order term in x direction

approximately accounts for the applied global strain.

The micromorphic IDIC results in a proper identification of the v0(x), v1(x) and

ϕ1(x), considering the residual fields that are small everywhere both before and after

buckling occurs, see Figs. 5.4g and o. The convergence is consistent and the methodology

is robust with respect to the initial values. Fig. 5.4 shows the results of the virtual

experiments before (left) and after (right) the emergence of the buckling pattern. For

each case, the mean smooth displacement field, v0(x), in x and y directions, and v1(x)

are depicted in the first two rows, i.e. Figs. 5.4a–c before and Figs. 5.4i–k after buckling
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Before microstructural buckling

(a) v0.ex [µm] (b) v0.ey [µm]

(c) v1 [µm] (d) ϕ1 [−]

(e) v1ϕ1.ex [µm] (f) v1ϕ1.ey [µm]

(g) residual [–] (h) ||w|| [µm]

After microstructural buckling

(i) v0.ex [µm] (j) v0.ey [µm]

(k) v1 [µm] (l) ϕ1 [−]

(m) v1ϕ1.ex [µm] (n) v1ϕ1.ey [µm]

(o) residual [–] (p) ||w|| [µm]

Figure 5.4: Results of the virtual experiments before (left) and after (right) the onset
of microstructural buckling: (a, b, i, j) the smooth mean displacement fields, v0(x), in
(a, i) x and (b, j) y directions; (c, k) the pattern amplitudes, v1(x), (d, l) the deformed
configuration of identified patterns/modes, ϕ1(x), scaled to assure the visibility of the
deformed shape, and (e, f, m, n) the resulting fields, (e, m) in x and (f, n) y directions,
corresponding to the long-range correlated fluctuations. In (d, l) ϕ1(x) are scaled to
assure the visibility of the deformed shape of the modes. The long-range correlated
fluctuation fields, v1(x)ϕ1(x), are plotted in the deformed configuration corresponding
to their contribution only. (g, o) are the residual fields in normalized gray scales; and
(h, p) the Euclidean norm of the microfluctuation field, w(x), plotted in deformed
configuration based on the total displacement.
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occurs. The v0 fields show compression in x direction both before and after buckling (a

linear profile). Before pattern transformation, lateral expansion is visible in y direction,

while afterwards the auxetic effect, i.e. lateral contraction, is clearly visible near the

specimen’s center. As expected, the v1 field is close to zero before buckling occurs,

although its absolute value increases slightly in the corners of the region with cellular

microstructure (the area of the specimen excluding the bulk edges), which is due to

the fact that the fluctuation mode, ϕ1, partially captures the deformation that occurs

in the corner holes where the edge effect is considerable. After the buckling occurs,

the v1 field is close to zero on the edges and increases towards the center, as expected.

Again, v1 is not exactly zero at the edges and the corners of the metamaterial, since

the fluctuation mode partially describes the deformation in the corners where the edge

effect is considerable. Note that the large values in v1(x) are due to the scaling of the

corresponding mode ϕ1 (maximum value of 0.04).

The identified long-range correlated mode, ϕ1(x), is depicted in Figs. 5.4d and l for

before and after buckling, respectively, where their amplitudes are scaled to assure the

visibility of the deformed shape of the modes. The small v1 prior to buckling entails a

low sensitivity of the mode parameters. As a result, ϕ1 is significantly perturbed with

respect to the initial guess, see Fig. 5.4d where the periodicity does not match twice

the unit cell size anymore. After buckling, however, the mode becomes representative

and it resembles the initial guess more closely and matches the mode observed in the

simulations (Fig. 5.4l). The long-range correlated fluctuation fields, v1ϕ1(x) in x and y

directions, are depicted in their deformed configurations prior to buckling, in Figs. 5.4e

and f and beyond buckling in Figs. 5.4m and n. Prior to buckling, v1ϕ1(x) is close

to zero everywhere apart from the four corners, where the identified mode, although

significantly perturbed with respect to the initial guess, partially captures the edge

effect, as described above. Post buckling, ϕ1 is identified properly, resulting in small

modifications to the wavelengths and orientations of the sine waves compared to the

initial guess based on spectral density analysis.

The residual fields in normalized gray scales before and after buckling are shown

in Figs. 5.4g and o, in the deformed configuration based on the total evaluated dis-

placement u(x). The residual fields are consistently small everywhere over the region

of interest. However, the microfluctuation fields, discarded in the micromorphic IDIC

scheme seeking to extract correlated fields only, are by definition reflected in the resid-

ual fields. In order to evaluate the performance of the method, the microfluctuation

field w(x) is recovered as the difference of the reference displacement field (here avail-

able from the simulation) and the displacement field u(x) according to Eq. (5.4). The

Euclidean norm of the microfluctuation field, ||w||, is depicted in Figs. 5.4h and p be-

fore and after the buckling, respectively. Note that the micromorphic IDIC scheme is

constrained to identify displacement fluctuations with spatial frequencies bound to the

highest spatial frequencies in the long-range correlated fluctuation modes, ϕi. Thus, the

microfluctuation field, w, contains all parts of the signal with spatial frequencies higher

than the characteristic frequency of ϕ1, as well visible far from the edges of the specimen

in the post buckling case, see Fig. 5.4p. As expected, the microfluctuation field, w, is of
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a significantly smaller amplitude than the correlated fluctuation field beyond buckling

(compare Fig. 5.4p with Figs. 5.4m and n). The opposite is true prior to buckling, due

to the almost negligible contribution of the long-range correlated fluctuation field (com-

pare Fig. 5.4h with Figs. 5.4e and f). Note the difference in scale bars for the figures of

the pre- and post-bifurcation state.

In order to assess the robustness of the method, the correlations of the virtual ex-

periments, after the onset of buckling, are repeated with different initial guess values

for the fluctuation mode. The values of aϕi
are perturbed by a random value up to

10% of the nominal value stated above, resulting in random changes in the wavelengths

and orientations of the sine waves as well as the ratio of the the x and y components

of ϕ1. The perturbed correlations are repeated 100 times, and the error in each case is

evaluated as: ε = 100 × ||u||−||upert||
||u|| , where u is the total displacement field evaluated

with no perturbation of initial guess, and upert is the perturbed total displacement field.

The error averaged over all the repetitions is 0.86%, entailing only two cases with an

erroneous assessment of the total displacement field, i.e. ε > 1.5%, confirming the 98%

robustness of the method to initial guess. The average error ε, ignoring the two outlier

cases, is 0.45%, confirming the high accuracy of the methodology.

5.3.2 Real Experiments

The results of an in-situ compression test on a cellular elastomeric metamaterial speci-

men, manufactured using a customised mould as explained in Chapter 4, are analysed

with the micromorphic IDIC method. The real experiment includes some complexities

with respect to the virtual experiment, such as the image distortions and noise as well

as the imperfections in the specimens and loading conditions of the test. The spec-

imen is 22.5mm thick and has 12 and 10 holes in loading and transverse directions,

respectively, corresponding to a scale ratio 12. The specimen is made of Sylgard 184,

with a 10:1 mixing ratio. A two-layer speckle pattern is deposited on the top surface

(white powder sprayed to make a fine grained background and India ink sprayed using

an air brush, see Fig. 5.5a), resulting in a speckle size between 30 and 80µm (3 to 8

pixels). An in-situ compression test is performed with a Kammrath & Weiss micro

tensile/compression stage with a 50 N load cell, while a Zeiss V20 stereo microscope is

used to acquire images at each load step at 7.6× magnification and 2751× 2207 pixels.

More details on the specimen processing and the in-situ test is given in Chapter 4. Two

images obtained during the in-situ test, before and after the emergence of the buckling

pattern, corresponding to 8.2% and 12.7% applied nominal strain on the metamaterial,

are correlated to the undeformed reference configuration. The deformed configuration

after emergence of the buckling pattern is shown in Fig. 5.5a.

A spatial distortion calibration step, explained in Chapter 3 [65, 79], is performed to

measure the spatial distortions of the imaging system at the desired magnification. The

resulting distortion field, which is as large as 10% of the actual displacements, is used

to construct the distortion mapping function S(x).
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(a) Deformed Image (b) Sxx [mm6] (c) Syy [mm6]

Figure 5.5: (a) Image of the deformed configuration of a cellular elastomeric metama-
terial with millimetre-sized circular holes in a rectangular stacking, corresponding to
a compressive load step after the onset of pattern transformation, acquired during an
in-situ compression test. Energy spectral density functions of the displacement field,
assessed by local DIC, in (b) x and (c) y direction, revealing the principal frequencies
related to the long-range correlated fluctuation mode (four peaks approximately on the
diagonals). The range of the colorbars is reduced to highlight the frequencies related to
the long-range correlated fluctuation mode.

Chebyshev polynomials of 5th and 6th order are used to parametrize v0 and v1, re-

spectively. The same procedure as in the case of virtual experiments is performed for

estimating the reduced regularization of ϕ1(x) and the initialization of the associated

parameters. To this end, first, the post buckling kinematics is determined using local

DIC, in order to attain Sxx and Syy, shown in Figs. 5.5b and c. Similar to the virtual

experiments, vertical and horizontal lines relate to discontinuities in the smooth mean

deformations due to the specimen’s edges, while the two sine waves in approximately

diagonal directions for each displacement component correspond to a single long-range

fluctuation mode. Based on these observations, the fluctuation mode is assigned as

done for the virtual experiments, i.e. Eq. (5.6) with aϕ1
= [1, 1, 1, 1, 1, 0, 0]T as initial

guess. Note that this procedure is required only once for a metamaterial of a certain mi-

crostructural geometry, e.g. a cellular metamaterial with rectangular stacking of circular

holes, and the same initialization of the mode can be used on any specimen with such

microstructure. In order to assure a proper scaling of the minimization problem, ϕ1(x)

is scaled such that the initial maximum value of the mode is 0.04. In order to avoid

an ill-posed problem in the first iteration, v1(x) is again initiated with a small constant

value in space. The applied compressive global strain results in large displacement on

the edges of the specimen, which requires an approximate initial guess in order to ensure

convergence. Thus, the smooth mean field v0(x) is initialized such that the first order

term in x direction approximately accounts for the applied global strain.

The micromorphic IDIC results in a proper identification of v0(x), v1(x) and ϕ1(x),

whereby the residual fields are small everywhere both before and after buckling, see

Figs. 5.6g and o. Convergence is consistent. Fig. 5.6 shows the results of applying

micromorphic IDIC on real experiments before (left) and after (right) the emergence
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Before microstructural buckling

(a) v0.ex [µm] (b) v0.ey [µm]

(c) v1 [µm] (d) ϕ1 [−]

(e) v1ϕ1.ex [µm] (f) v1ϕ1.ey [µm]

(g) residual [–] (h) ||w|| [µm]

After microstructural buckling

(i) v0.ex [µm] (j) v0.ey [µm]

(k) v1 [µm] (l) ϕ1 [−]

(m) v1ϕ1.ex [µm] (n) v1ϕ1.ey [µm]

(o) residual [–] (p) ||w|| [µm]

Figure 5.6: Results of the real experiments, before (left) and after (right) the onset of
microstructural buckling:(a, b, i, j) the smooth mean displacement fields, v0(x), in (a, i)
x and (b, j) y directions; (c, k) the amplitudes, v1(x), (d, l) the deformed configuration
of identified modes, ϕ1(x), scaled to assure the visibility of the deformed shape, and (e,
f, m, n) the resulting fields, (e, m) in x and (f, n) y directions, corresponding to the long-
range correlated fluctuations. The long-range correlated fluctuation fields, v1(x)ϕ1(x),
are plotted in their corresponding deformed configurations. (g, o) are the residual fields
in normalized gray scales; and (h, p) the Euclidean norm of the microfluctuation field,
w(x), plotted in deformed configuration based on the evaluated displacement, u(x).

of the buckling pattern. For each case, the mean smooth displacement field, v0(x),

in x and y directions and, v1(x) are depicted in the first two rows, i.e. Fig. 5.6a–c

before and Fig. 5.6i–k after the onset of buckling. The v0 field shows compression in x

direction both before and after buckling. Similar results as in the virtual experiments

are observed in v0 and v1. Note that the large values in v1(x) are due to the scaling

of the corresponding mode ϕ1 (maximum value of 0.04). The auxetic effect is more

pronounced in the real experiments (Figs. 5.6j,o) compared to the virtual experiments

(Figs. 5.4j,o), due to the larger specimen size, i.e. the larger scale ratio. In a specimen

with a larger scale ratio the buckling pattern in the center is less affected by the two
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stiffening lateral edges, and thus it is more pronounced and results in larger auxetic

effect.

The long-range correlated mode, ϕ1(x), as well as the long-range correlated fluctua-

tion fields, v1ϕ1(x), in x and y directions, are depicted in their deformed configurations

in Fig. 5.6d–f and Fig. 5.6l–n, before and after buckling, respectively. In Figs. 5.6d

and l, ϕ1(x) is scaled to assure the visibility of the deformed shape of the modes. As

expected, small values for v1 prior to buckling entail a low sensitivity to the fluctuation

mode, i.e. a slightly different mode is identified at this stage. Indeed, the long-range

correlated fluctuation mode is as good as absent before the emergence of the buckling

pattern, where it is not yet representative. The edge effect prior to buckling, which is

most pronounced at the corner unit cells, is partially captured by the identified mode.

This explains the non-zero values of v1 and thus v1(x)ϕ1(x) in these areas.

The residual fields in normalized gray scales are shown in Fig. 5.6g and o, in the de-

formed configuration based on the evaluated displacement u(x) from Eq. (5.4), before

and after buckling, respectively. In order to extract the microfluctuation field w(x), the

displacement fields obtained by local DIC on the same images are used as the reference.

Note that the local DIC procedure is not a part of the methodology introduced here,

and is used only for performance evaluation purposes. Local DIC gives the displace-

ment field with minimum kinematical constraints (yet with non-negligible statistical and

systematic errors). Therefore, it is used here to assess the microfluctuation field (with

errors from local DIC) in order to evaluate the performance of the method. Figs. 5.6h

and p show the Euclidean norm of the microfluctuation field, ||w||, before and after

buckling. The microfluctuation field w, is of a higher spatial frequency than the char-

acteristic frequency of ϕ1, which is more pronounced far from edges of the specimen in

the post-buckling regime (Fig. 5.6p). Yet, it can be observed prior to buckling as well

(Fig. 5.6h). Beyond buckling, the microfluctuation field w has a significantly smaller

amplitude than the correlated fluctuation field. This is not the case prior to buckling,

considering the almost zero contribution of the long-range correlated fluctuation field.

The residual field is larger in certain areas which corresponds directly to higher values

in the microfluctuation field, both before and after buckling.

All the identified fields, i.e. v0(x), v1(x) and ϕ1(x), satisfy the expected mechanical

behaviour, and the correlation residual, reflected also in the evaluated microfluctuation

field w(x), confirms the good performance of the micromorphic IDIC method.

5.4 Summary and Conclusions

Cellular elastomeric metamaterials generally exhibit a pattern transformation based on

microstructural buckling at a critical level of compressive load. These pattern trans-

formations are correlated over long ranges in the specimen and result in a considerable

change in mechanical response after their emergence. A micromorphic Integrated Digital

Image Correlation (micromorphic IDIC) method, was here developed to experimentally
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identify and quantify the decomposed kinematics for cellular metamaterials. The decom-

position follows a recently introduced homogenization scheme based on a micromorphic

kinematical ansatz, which consists of three parts: (i) mean smooth displacements, cor-

responding to the slow-scale material level; (ii) long-range correlated fluctuation fields,

representing the buckling patterns; and (iii) a microfluctuation field, which captures the

remaining non-correlated part of the fluctuations. This kinematical ansatz was inte-

grated within the digital image correlation scheme, enabling a direct identification of

the smooth displacement and the long-range correlated fluctuation pattern and its spa-

tial distribution field. A proper parametrization of the problem was performed, which

includes a 2D Fourier series to capture the long-range fluctuation mode.

The methodology is validated on both virtual and real experiments for a specific

case of elastomeric metamaterials with rectangular stacking of millimetre-sized circular

holes. A standard spectral density analysis is used3 to attain a regularization with a

reduced number of degrees of freedom and to initialize the associated parameters of

the long-range fluctuation mode for the considered metamaterial. The method success-

fully decomposes the displacement field of cellular elastomers under compressive load,

both before and after local microstructural buckling leading to long-range correlated

pattern transformations. The performance of the method is assessed by identifying the

microfluctuation fields through a comparison with local DIC data. In all cases, the mi-

crofluctuation field is of higher spatial frequency than the long-range fluctuations and

of smaller amplitude after the emergence of the buckling pattern, thereby validating the

kinematical ansatz as well as the micromorphic IDIC identification routine. An initial

guess robustness study, performed by random perturbations upto 10% in fluctuation

mode parameters, resulted in 98% robustness of the correlations and negligible errors

(0.45% on average) in the results, confirming the robustness and the accuracy of the

proposed method.

The micromorphic IDIC methodology is unique in the following aspects:

(i) The methodology aims at, and succeeds in identifying long-range correlated fluc-

tuation fields, which is not existing yet in commercial DIC packages.

(ii) The decomposition of the displacement field is performed in a single minimiza-

tion step, identifying the long-range correlated fluctuation mode, its amplitude in

space, and the mean smooth displacement field;

(iii) The methodology can be readily extended to any cellular metamaterial by making

proper initialization choices of the fluctuation modes;

(iv) It is easy to implement based on minimal modifications to conventional global

DIC formulations.





Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The goal of this thesis was to develop novel methodologies to extract and identify corre-

lated fluctuations in the fields obtained from full-field displacement measurement tech-

niques. Integrated Digital Image Correlation (IDIC), exploiting prior knowledge of the

desired fields within the DIC scheme, was used for two different cases in which the

identification of correlated fields is essential. First, the distortions in Scanning Electron

Microscopy (SEM) images were considered, for which the correlated patterns introduce

large errors if ignored in displacement measurements. Second, the correlated fluctua-

tion patterns occurring in cellular metamaterials were studied. For both cases, novel

IDIC methodologies were developed to identify and quantify the correlated parts of the

measured kinematics.

SEM image artifacts

The findings in this thesis on the treatment of SEM imaging artifacts, in Chapters 2

and 3, may be summarized as follows:

• It is essential to study the imaging process in SEM in order to recognize the differ-

ent types of imaging artifacts and the characteristics needed for their identification.

Three different types were addressed: spatial distortion, drift distortion and line

shift artifacts. In order to identify the artifacts concurrently with the mechanical

deformations in the specimen, the non-linearity in the imaging process needs to

be taken into account, which is done through a sequential composition of a series

of mapping functions, each representing an imaging step during deformation of an

in-situ experiment. These mapping functions, in order of interference during the

imaging process, are related to scan line shifts, spatial distortion, and the drift dis-

tortion along with the mechanical deformations. Together, they represent a model

of the SEM imaging system in an in-situ mechanical test, addressing Question (I)

in the Introduction.

• Line shift artifacts are occurring randomly in time during the scanning of an

SEM image. However, they exhibit a systematic form through localized shifts in
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the image parallel to the scan direction. By parametrizing the distortion fields

related to line shifts using smooth step functions, all the characteristics of the

individual line shifts, i.e. the position of their occurrence, their amplitudes in

x and y directions, and the width over which they spread, are identified. This

directly addresses Question (II) in the Introduction. Obtaining a proper initial

guess for the position of the line shifts and assigning them to their corresponding

image turned out to be challenging. However, it this has been achieved by a simple

precorrelation step.

• Spatial distortion is rooted in the electromagnetic objective lens. Thus it is safe to

assume that it is a constant field in time, if the imaging parameters are not altered.

This characteristic is exploited to measure the spatial distortion field prior to the

in-situ test, in a calibration step with only discrete steps of rigid body motion,

i.e. without any mechanical deformation. This directly addressed Question (II) in

the Introduction.

• Drift distortion is rooted in the fact that during the scanning process in the SEM,

there can be relative motion of the electron beam with respect to the specimen.

This means that drift is a continuously evolving, smooth function in time, while

the mechanical deformations are applied step wise. Considering the manner in

which these two fields are affecting the images, it suffices to take two images at

each load step to distinguish the drift distortion from the mechanical deformations.

This complemented Question (II) in the Introduction.

• A model of the SEM imaging process was integrated with a DIC scheme, resulting

in a generalized methodology for the identification and correction of SEM imaging

artifacts. The artifact enriched integrated DIC was shown to be successful in the

effective identification of all three types of SEM artifacts.

• A simplified version of the methodology developed here for correcting intrinsic

SEM imaging artifacts can be used for simpler imaging systems such as optical

microscopy. In optical imaging systems, images are captured instantaneously since

no scanning process is involved, thus line shifts artifacts are irrelevant and drifting

of the specimen with respect to the imaging system result in rigid body translations

in the images and no distortions. However, the optical lenses exhibit distortions

which are stationary in time, and are comparable to the spatial distortions in SEM

images, yet with a simpler morphology. The artifact enriched IDIC methodology

can be used for the correction of the images taken from optical microscopy in-

situ tests, by considering only the spatial distortions and the mechanics mapping

functions.

Cellular Metamaterials

As far as the characterization of correlated fluctuations in cellular metamaterials is

concerned, the following observations resulted from Chapters 4 and 5.
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• Small scale cellular elastomeric metamaterial specimens are manufactured using

custom-made moulds. In-situ experiments are performed, which addresses Ques-

tion (III) in the Introduction. Cellular elastomeric metamaterials, at a critical

compressive load, exhibit a correlated fluctuation pattern triggered by the local

buckling of the microstructure, leading to large local rotations in the material.

The imposed boundary conditions on a cellular metamaterial specimen, typically,

constrain these rotations, leading to a restriction of the correlated fluctuation pat-

tern in boundary layers close to the edges. These boundary layers result in a

considerable size effect, i.e. a change of the mechanical response depending on

the ratio of the relative size of the specimen and the characteristic length of the

microstructure. This size effect is particularly large for small scale ratios, where

the size of the boundary layer almost spans the entire length of the specimen.

The experiments revealed a 19% increase of the global stress in specimens with

scale ratio 4 relative to specimens with scale ratio 12. An experimental study

of the local rotation fields, obtained using local DIC, was conducted, allowing to

determine the boundary layer size for specimens of different size. Comparison of

the results with numerical simulations and the results form a recent idealized nu-

merical study [44] on size effects in cellular metamaterials, revealed the influence

of the lateral constraints on the specimen on the emergence and thickness of the

boundary layers. This directly addresses Question (IV) in the Introduction.

• The micromorphic kinematical ansatz, introduced in an homogenization scheme

for cellular metamaterials in the literature [45], was integrated with a DIC scheme.

The resulting micromorphic integrated DIC decomposes the kinematics of cellu-

lar metamaterials into a smooth mean field and long-range correlated fluctuation

fields, leaving out all the non-correlated microfluctuations. The correlated fluc-

tuation fields were characterised by identifying the pattern modes along with the

spatial distributions of their corresponding amplitudes. The micromorphic IDIC

scheme was tested on an in-situ test on a cellular elastomeric metamaterial. It

has been demonstrated that it successfully identifies the smooth field, the fluc-

tuation modes and the spatial distribution of the modal amplitudes, addressing

Question (V) in the Introduction.

• The methodology developed in Chapter 3, was exploited for the correction of

spatial distortions of the optical microscope used in the experimental study on

metamaterials in Chapters 4 and 5. A calibration step was performed prior to

the in-situ tests to measure the spatial distortions. The spatial distortions were

used to correct the images before local DIC was applied in Chapter 4. In Chapter

5, the spatial distortion correction has been integrated in the micromorphic IDIC

methodology.
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6.2 Recommendations for further research

Although the key objectives of this thesis have been reached, further developments of

the proposed methodologies are possible to extend their applicability and deepen the

understanding they offer. A few recommendations for such further developments are

discussed:

• One of the most challenging aspects of the identification of SEM imaging distor-

tions is the detection of the presence of line shifts in each image and obtaining a

good initial guess for their positions in the corresponding image. The methodology

introduced here, based on an analysis of the residual fields of precorrelations with

minimal kinematic regularizations (first-order polynomials) works well, but is still

limited to a few line shifts in each image. Further investigation of methods based

on image processing techniques or even exploitation of local DIC data may result

in a scheme addressing more line shifts, pushing the limits of the current method

even further.

• The IDIC based methodology for artifact correction has been conceived for the

specific case of SEM images, and further simplified for relatively less complicated

case of optical distortions as well. However, the methodology itself is generic and

is expandable to other imaging systems as well, such as Atomic Force Microscopy

(AFM), with little effort. This can be achieved by careful consideration of the

imaging process, translating it into a proper combination of mapping functions

and a corresponding procedure to perform the measurements.

• Most of the experimental studies in the literature on cellular metamaterials are

performed on large specimens which more resemble structures than materials. The

cellular metamaterial specimens considered in this thesis are close to the dimen-

sions relevant for engineering applications of these metamaterials. However, in

many applications an even smaller microstructural length may be required. The

lab-scale specimens (microstructure of millimetric characteristic length) used in

this thesis were already challenging to manufacture with a quality allowing in-

situ mechanical tests with full-field kinematical measurement. This is due to the

presence of the very thin ligaments between the holes, in relation to the larger

specimen thickness that ensures the occurrence of local buckling before global

buckling. Further miniaturization of the specimens introduces more challenges

that need to be addressed to enable in depth analysis of micro-scale cellular meta-

materials (microstructure of micrometric characteristic length).

• Once the miniaturization of cellular elastomeric metamaterials is achieved, smaller

specimens can be made with larger scale ratios, as long as the width and thick-

ness of the specimens is large enough to prevent global buckling. Doing so, the

investigation of size effects can be extended to shed more light on the emergence

and development of boundary layers for more realistic boundary conditions. How-

ever, in order to acquire images from the entire surface of the specimens with

high spatial resolution, necessary for an accurate kinematic assessment, the opti-

cal imaging needs to be substituted by a high-resolution imaging technique such
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as SEM. This calls for the integration of all the chapters presented in this thesis

to identify the long-range correlated fluctuation fields of cellular metamaterials as

well as the SEM correlated distortion patterns to minimize the measurement er-

rors. This can be achieved by adopting the regularization choices of micromorphic

IDIC in the mechanical displacement regularizations used in the artifact enriched

IDIC scheme.

• In more complex geometries, cellular metamaterials exhibit multiple long-range

correlated fluctuation modes at the same time in different regions of a single speci-

men. In order to induce such combinations of modes, apart from the morphology of

the microstructure, the loading conditions are important, e.g. cellular elastomeric

metamaterials with hexagonal stacking of circular holes under biaxial compression

[95]. Such loading conditions occur in realistic applications but are challenging

to replicate in a controlled experimental environment. The micromorphic IDIC

introduced in this thesis is capable of identifying more than one correlated mode

in cellular metamaterials. An interesting continuation of the work done in this

thesis, is to perform experimental tests that induce multiple long-range correlated

fluctuation modes in a specimen, to be analysed with the proposed micromorphic

IDIC scheme.

• The micromorphic IDIC methodology can be developed for any case where me-

chanical loading results in spatially correlated fluctuations, i.e. also localization of

deformations. A proper study of the mechanical fluctuation fields can lead to a

proper regularization of the displacement fields, that can be exploited to identify

these correlated fluctuation fields. Such an extended IDIC scheme can then be

integrated with an artifact enriched IDIC scheme for any imaging system such as,

optical microscopy, SEM, AFM, etc.
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