
 

Supervisory control synthesis for large-scale infrastructural
systems
Citation for published version (APA):
Goorden, M. A. (2019). Supervisory control synthesis for large-scale infrastructural systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 22/11/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/eac465c6-ea44-4a1b-af15-cf4857a21b3e


Supervisory control synthesis for large-scale
infrastructural systems

Martijn Goorden

Department of Mechanical Engineering
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Eindhoven, The Netherlands, 2019



The work described in this thesis was carried out at the Eindhoven University of
Technology and has been financially supported by Rijkswaterstaat.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4883-5

Typeset using LATEX
Reproduction: Gildeprint
Cover photo: Lock Terneuzen, https://beeldbank.rws.nl, Rijkswaterstaat
Copyright c© 2019 by Martijn Goorden. All Rights Reserved.



Supervisory control synthesis for large-scale
infrastructural systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus
prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen

door het College voor Promoties, in het openbaar te
verdedigen op

vrijdag 22 november 2019 om 13:30 uur

door

Martijn Angelo Goorden

geboren te Roosendaal en Nispen



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. L.P.H. de Goey
1e promotor: prof.dr. W.J. Fokkink
copromotoren: dr.ir. J.M. van de Mortel-Fronczak

dr.ir. M.A. Reniers
externe leden: prof.dr.ir. T. Basten

dr. K. Cai (Osaka City University)
prof.dr.ir. T. Moor (Friedrich-Alexander-Universität Erlangen-
Nürnberg)

overige leden: prof.dr. M. Fabian (Chalmers University of Technology)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming
met de TU/e Gedragscode Wetenschapsbeoefening.



Abstract
In the coming decades, numerous locks and bridges in the Netherlands have to be
renovated or replaced, as they reach their end of life cycle or have capacity problems.
In the past, these infrastructural systems have been engineered, built, and maintained
on a project basis, resulting in a large variety of solutions to the same engineering
problem. Furthermore, more and more functionality of these infrastructural systems
is being automated. Therefore, Rijkswaterstaat, part of the Dutch Ministry of
Infrastructure and Water Management, is seeking methods for modularization and
standardization to increase quality, increase evolvability, and decrease life-cycle costs
of future infrastructural systems. The control system of these infrastructural objects
is identified as one of the subsystems having a significant impact on the availability
and reliability of the object.

The aim of this thesis is to show that Supervisory Control Theory (SCT) as
initiated by Ramadge-Wonham is very suitable for designing control systems for these
large infrastructural systems. SCT is a research area focused on developing model-
based techniques for systems for which the uncontrolled behavior of the components
is given and the task of the engineer is to restrict this behavior such that the system
only exhibits desired behavior. SCT allows the engineer to specify what the system
should do, not how the system should achieve this. Therefore, this synthesis-based
engineering method may contribute to the aim of Rijkswaterstaat of increasing the
quality and evolvability of control systems.

In the past, applying supervisory control synthesis to industrial-size systems was
often limited by the computational power, both in time and in memory. Recent
developments from the literature as well as the characteristics of infrastructural
systems are utilized in this thesis to synthesize supervisors for these systems. The
thesis has the following four main contributions.

First, monolithic synthesis of a basic lock, namely Lock III located at Tilburg,
the Netherlands, showed not only that supervisory control synthesis is possible for
these systems, but also that the synthesized supervisor does not impose any additional
restrictions on the system besides the formulated requirements, i.e., the requirements
together with the plant models form a maximally permissive, controllable, and non-
blocking supervisor. Sufficient model properties are proposed to verify whether a given
set of plant and requirement models can already act as a supervisor. If so, synthesis
can be skipped, saving computational resources.

Second, in case synthesis still needs to be performed, several divide-and-conquer
synthesis techniques exist, such as modular, decentralized, and multilevel synthesis.
The latter one closely resembles decomposition of a system, what is often done by
engineers to cope with the size of the system. This thesis proposes a method to
transform a given set of plant and requirement models into a multilevel system needed
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as input for multilevel synthesis. The method uses Dependency Structure Matrices
and clustering algorithms to identify such a multilevel structure. This allows for easy
application of multilevel synthesis to infrastructural systems, and therefore opens the
possibility to synthesize supervisors for large infrastructural systems.

Third, several divide-and-conquer methods like multilevel synthesis ease the com-
putation of local supervisors, but no longer guarantee that the complete system is
nonblocking. A coordinator needs to be synthesized to resolve any conflict between
supervisors. A compositional coordinator synthesis method is developed to synthe-
size such a coordinator efficiently. The method deploys known abstractions, like for
example bisimulation semantics, synthesis equivalence, and variable unfolding, to
simplify the models until a single one is obtained. Based on this abstracted model,
a coordinator is synthesized with monolithic synthesis. Finally, this coordinator is
refined back to the original model to resolve the conflicts between the synthesized
supervisors.

Fourth, several case studies with infrastructural systems have shown that the
formulation of models has impact on the applicability and computational gain of
the previously mentioned contributions. As modeling is an art, obtaining the ‘right’
model formulation of the system together with its requirements is nontrivial. Several
modeling guidelines are proposed in this thesis, based on experience. Proposing these
guidelines contributes to bridging the gap between theoretical research and industrial
application of supervisory control synthesis.

In 2017, 30 years of supervisory control theory of Ramadge-Wonham have been
celebrated. Research presented in this thesis shows that the maturity level of this
theory has reached a critical point where it is ready to be fully embraced by industry,
as supervisors can be synthesized for large-scale infrastructural systems and not just
for academic toy problems. A challenge lies ahead to support the industry in adapting
synthesis-based engineering methods for their supervisory control systems.
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Samenvatting
In de komende decennia moeten verschillende sluizen en bruggen in Nederland gere-
noveerd of vervangen worden, omdat deze het einde van hun levenscyclus naderen
of capaciteitsproblemen hebben. In het verleden zijn deze infrastructurele systemen
ontworpen, gebouwd en onderhouden op projectbasis, wat heeft geresulteerd in een
grote verscheidenheid van oplossingen voor hetzelfde ontwerpprobleem. Bovendien
wordt steeds meer functionaliteit van deze infrastructurele systemen geautomatiseerd.
Daarom zoekt Rijkswaterstaat, onderdeel van het Nederlandse Ministerie van Infras-
tructuur en Waterstaat, naar methoden voor modularisatie en standaardisatie om de
kwaliteit te verhogen, de herbruikbaarheid te verhogen en de levenscycluskosten te
verlagen van toekomstige infrastructurele systemen. Het besturingssysteem van deze
infrastructurele systemen is geïdentificeerd als een deelsysteem met een significante
impact op de beschikbaarheid en betrouwbaarheid van het systeem.

Het doel van dit proefschrift is om te laten zien dat Supervisory Control Theory
(SCT), zoals geïnitieerd door Ramadge-Wonham, heel geschikt is voor het ontwerpen
van besturingssystemen voor deze grote infrastructurele systemen. SCT is een on-
derzoeksgebied dat focust op het ontwikkelen van modelgebaseerde technieken voor
systemen waarvoor het ongestuurd gedrag van de componenten is gegeven en de taak
van de ingenieur is om het gedrag van het systeem te beperken zodat het systeem
alleen gewenst gedrag vertoont. SCT staat de ingenieur toe om te specificeren wat
het systeem moet doen, niet hoe het systeem dit voor elkaar moet krijgen. Daardoor
zou deze synthese-gebaseerd ontwerpmethode bij kunnen dragen aan de doelstelling
van Rijkswaterstaat voor het verhogen van de kwaliteit en herbruikbaarheid van het
besturingssysteem.

In het verleden was het toepassen van supervisory control synthese voor industriële
systemen vaak gelimiteerd door rekenkracht, zowel in tijd als geheugen. Zowel recente
ontwikkelingen in de literatuur als ook kenmerken van infrastructurele systemen worden
in dit proefschrift benut bij het synthetiseren van supervisors voor deze systemen. Dit
proefschrift heeft de volgende vier hoofdbijdragen.

Als eerste, monolithische synthese van een basale sluis, namelijk Sluis III gelegen in
Tilburg, Nederland, laat niet alleen zien dat supervisory control synthese mogelijk is
voor deze systemen, maar ook dat de gesynthetiseerde supervisor geen extra restricties
oplegt aan het systeem naast de al geformuleerde eisen, m.a.w., de eisen samen met het
systeemmodel vormen al een controleerbare, niet-blokkerende maximaal-toestaanbare
supervisor. Voldoende modeleigenschappen worden voorgesteld om te verifiëren of een
gegeven verzameling van systeem- en eismodellen al een supervisor zijn. Als dat zo is,
dan kan synthese worden overgeslagen, waardoor rekenkracht gespaard wordt.

Als tweede, in de gevallen dat synthese nog steeds nodig is, bestaan er verschillende
verdeel-en-heers synthesetechnieken, zoals modulair, gedecentraliseerd en multilevel
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synthese. Die laatste toont gelijkenissen met een systeemdecompositie, die vaak
door engineers wordt gemaakt om te kunnen omgaan met de systeemgrootte. Dit
proefschrift stelt een methode voor om een gegeven verzameling van systeem- en
eismodellen te kunnen transformeren in een multilevel systeem dat als invoer dient voor
multilevel synthese. De methode maakt gebruik van ‘Dependency Structure Matrices’
en clusteringstechnieken om zo’n multilevel structuur te identificeren. Hierdoor kan
multilevel synthese eenvoudig worden toegepast, waardoor de mogelijkheid ontstaat
om supervisors te synthetiseren voor grote infrastructurele systemen.

Als derde, verschillende verdeel-en-heers synthesetechnieken zoals multilevel syn-
these zorgen voor het vergemakkelijken van het berekenen van lokale supervisors, maar
garanderen niet langer dat het complete systeem niet-blokkerend is. Een coördinator
dient gesynthetiseerd te worden voor het oplossen van conflicten tussen supervisors.
Een compositionele coördinator synthese methode is ontwikkeld om zo’n coördinator ef-
ficiënt te kunnen berekenen. De methode maakt gebruik van bekende abstracties, zoals
bijvoorbeeld bisimulatie equivalentie, synthese equivalentie, en variabele uitvouwing,
om de modellen te vereenvoudigen totdat er één enkel model over is. Gebaseerd op
dit geabstraheerd model wordt een coördinator gesynthetiseerd met monolithische
synthese. Als laatste wordt deze coördinator verfijnd terug naar het originele model
om het conflict tussen de gesynthetiseerde supervisors op te lossen.

Als vierde, verschillende casussen met infrastructurele systemen hebben laten zien
dat de formulering van de modellen invloed heeft op de toepasbaarheid en reductie in
de benodigde rekenkracht van de verschillende genoemde bijdragen. Omdat modelleren
een vak apart is, is het verkrijgen van het ‘juiste’ modelformulering van het systeem
samen met de eisen niet vanzelfsprekend. Verschillende modelleerrichtlijnen worden
voorgesteld in dit proefschrift, gebaseerd op ervaringen. Deze richtlijnen dragen bij aan
het verkleinen van het gat tussen theoretisch onderzoek en industriële toepasbaarheid
van supervisory control synthese.

In 2017 is gevierd dat Supervisory Control Theory van Ramadge-Wonham al 30
jaar bestaat. Onderzoek gepresenteerd in dit proefschrift laat zien dat volwassenheid
van deze theorie een kritisch niveau heeft bereikt waardoor de theorie klaar is om
volledig omarmd te worden door de industrie, omdat supervisors gesynthetiseerd
kunnen worden voor grote infrastructurele systemen en niet alleen voor academische
voorbeelden. Er ligt een uitdaging om de industrie te ondersteunen in het accepteren
van synthese-gebaseerd ontwerpmethodes voor besturingssystemen.
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Chapter 1

Introduction

In this chapter, infrastructural systems like navigation locks and movable bridges are
introduced. Subsequently, the problem of designing supervisory controllers for them
is described. This chapter continues with providing the research questions and main
contributions. Finally, the outline of this thesis is provided.

1.1 Research context
The Netherlands has more than 6,000 kilometers of rivers and canals, forming a
network serving all parts of the country (Rijkswaterstaat 2019). The main waterway
network, which consists of 3,437 kilometers of waterways, is state-owned, operated,
and maintained by Rijkswaterstaat (RWS), the executive branch of the Dutch Ministry
of Infrastructure and Waterway Management. Smaller waterways are managed by
different stakeholders, like provinces and municipalities.

In the main waterway network, a total of 128 locks and 333 bridges are located to
facilitate water and land traffic. Main functions of a lock are to maintain the difference
in water level on each side of the lock while at the same time allowing vessels to
navigate from one side to the other. A lock may also function to separate salt and
fresh water, to protect against floods, and to protect against drought. Figure 1.1
shows the Westsluis at Terneuzen, the Netherlands. The main function of a bridge
is to allow land and often also water traffic to cross each other. Movable bridges
contain a section that can be opened to give clearance for large or high vessels to
pass the bridge. Figure 1.2 shows the movable part, in its closed position, of the Van
Brienenoord bridge at Rotterdam, the Netherlands.

In the coming decades, numerous locks and bridges will be renovated or replaced,
as they have reached the end of their life-cycle or have capacity issues. Furthermore,
in the past, these infrastructural systems have been engineered, built, and maintained
on a project basis. This resulted in a large variety of solutions to the same engineering
problem. Therefore, RWS is seeking methods for modularization and standardiza-
tion to increase quality, increase evolvability, and decrease life-cycle costs of future
infrastructural systems.

To this end, RWS initiated the MultiWaterWerk (MWW) project. In this project,
it collaborates with Eindhoven University of Technology and others to establish

3



4 1.2. Control systems of infrastructural systems

Figure 1.1: The Westsluis at Terneuzen, the Netherlands. Image from https://beeldbank.
rws.nl, Rijkswaterstaat.

Figure 1.2: The Van Brienenoord bridge at Rotterdam, the Netherlands. Shown is the part
that can be opened. Image from https://beeldbank.rws.nl, Rijkswaterstaat.

a shift from an Engineering-to-Order to a Configure-to-Order production method,
see (Wilschut 2018). With the Engineering-to-Order method, each infrastructural
system is uniquely designed. With the Configure-to-Order method, (partially) stan-
dardized components and modules are combined to configure the design of a specific
infrastructural system. Within the area of supervisory control, the MWW project
seeks new methods for designing supervisory controllers for infrastructural systems.

1.2 Control systems of infrastructural systems
The task of a supervisory controller is to coordinate the different components and
subsystems to ensure that the complete system behaves as intended. Besides the
two challenges mentioned above about the numerous upcoming renovations and large
diversity in engineering solutions, there are two other relevant challenges for designing
the control systems of infrastructural systems.



Chapter 1. Introduction 5

First, more and more functionality of the lock is being automated. In the past,
infrastructural systems were operated manually by one or more operators. Nowadays,
the installment of actuators and sensors allows for automation of operation of these
systems. For example, the Algera complex, a combination of a lock and a bridge,
described in (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2019), has a total
of 171 actuators and sensors. The operator is able to interact with the system via
64 different commands. For designing error-free control systems, current engineering
methods are insufficient, as illustrated by the recent discovery of urgent problems in
the locks and bridges at the Afsluitdijk, see (van Nieuwenhuizen 2019).

Second, safe operation of these systems is critical. Especially in the context of
locks, safety not only concerns avoiding human injuries or casualties, but also water
management, as large parts of the Netherlands are located below the water level.
Ensuring that a system behaves safely is currently cumbersome work involving a lot
of testing. Furthermore, due to the public context of these infrastructural systems,
an incident with such a system immediately raises safety concerns, sometimes even
leading to investigations by the Dutch Safety Board, see (Joustra, Brouwer-Kor, et al.
2011; Joustra, Muller, et al. 2016).

Within the MWW project, RWS aims to develop methods for the specification,
design, realization, implementation, and maintenance of supervisory control systems
to cope with the above mentioned problems and to increase the quality, decrease
life-cycle costs, and decrease time-to-market.

The supervisory controller is a part of the complete control system of infrastructural
systems. Figure 1.3 shows a typical control system structure, which consists of multiple
layers. The control system interacts with the mechanical components by actuators
and sensors. Low-level feedback control is needed for disturbance rejection, typically
in electro-mechanical actuators. These controllers are called resource controllers. On
top of the resource controllers is the supervisory controller, which is responsible for
the coordination of all actuators and sensors (with their resource controllers) within
the system. One of the main differences between resource control and supervisory

Operator

Supervisory Controller(s)

Resource Controller(s)

Actuators Sensors

Mechanical Components

Figure 1.3: Schematic view of a control system structure of an infrastructural system.
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control is that the first one is time-driven while the latter one is event-driven, where
an event may be, for example, a sensor switching on or a command given by an
operator. A supervisory controller is sometimes also called a logic controller. Finally,
the human operator controls the system by sending commands to the supervisory
controller through a human-machine interface.

1.3 Problem description
Supervisory Control Theory (SCT), as initiated by (Ramadge and Wonham 1987,
1989), is a research area focused on developing model-based techniques for the design
of supervisory controllers. SCT is developed for systems for which the uncontrolled
behavior of the components is given and the task of the engineer is to restrict this
behavior such that the system only exhibits desired behavior. SCT allows the engineer
to specify what the system should do, not how the system should achieve this. The
how (read, supervisory controller) is calculated from the what. This calculation step
is called supervisory control synthesis, or shortly just synthesis. A more in-depth
introduction is provided in Chapter 2.

Applying a formal method like SCT for the design of supervisory controllers
provides several advantages. An important one is that SCT guarantees that the
synthesized supervisor controls the system such that the system obeys all modeled
requirements. As safety is of great concern, this advantage is essential for the design
of supervisory controllers for infrastructural systems.

In the past, applying supervisory control synthesis for industrial-size systems was
often limited by the computational power, both in time and in memory (Lafortune
2019; Wonham, Cai, and Rudie 2018). The number of states of a system grows
exponentially with respect to the number of components. For example, having two
sensors that can both be off or on results in a total of four states (off-off, off-on, on-off,
and on-on as combined states of these two sensors). Having ten sensors results in
210 = 1, 024 ≈ 103 different states. So, for the Algera complex with 171 actuators and
sensors and 64 commands, the number of states of the system is 7.5 ·1057, see (Reijnen,
Goorden, van de Mortel-Fronczak, and Rooda 2019). Therefore, a challenge is to
perform supervisory control synthesis for such large infrastructural systems.

The aim of this thesis is to show that SCT is suitable for the design of supervisory
controllers for large-scale infrastructural systems. In doing so, this model-based
approach can contribute to an increase in the quality, decrease in the cost, and
decrease in the time-to-market of renovating or renewing infrastructural systems.

1.4 Research questions
The following research questions are posed to investigate and increase the applicability
of SCT to large infrastructural systems.

Research question 1: How to model infrastructural systems for the
purpose of supervisory control synthesis?
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SCT relies on models of the components of the system and models of the imposed
control requirements. A first step is to understand infrastructural systems and modeling
them. Lock III, located at Tilburg, the Netherlands, is chosen as a first case study.
The system may be modeled in different ways. Some questions related to modeling
are the following ones. Can a particular infrastructural system be modeled such
that parts of the model can be easily reused (as numerous infrastructural systems
have to be renovated or renewed)? Is a particular way of modeling beneficial for
the applicability of supervisory control synthesis? Can theoretically substantiated
guidelines be formulated to assist control engineers in applying SCT in practice?

Research question 2: How can the design of supervisory controllers for
infrastructural systems benefit from divide-and-conquer synthesis tech-
niques?

To cope with the computational complexity of supervisory control synthesis, extensive
research has been carried out to come up with divide-and-conquer strategies to
synthesize multiple supervisors. A review of this work is provided in Chapter 2. Any
divide-and-conquer technique tries to solve several smaller problems instead of just
one problem. Yet, which strategy can be applied for synthesizing supervisors for
infrastructural systems? What is the effectiveness of applying such a divide-and-
conquer strategy? How straightforward is it to apply a divide-and-conquer strategy?

Research question 3: What can be learned from the synthesized super-
visor(s) about supervisory control of infrastructural systems?

As mentioned before, SCT guarantees that the synthesized supervisor controls the
system such that the system obeys all modeled requirements. After the controlled
behavior is validated to be as intended (i.e., the correct requirements were modeled), a
practitioner can implement the supervisory controller. Yet, from a research perspective,
inspecting the synthesized supervisor may be beneficial. Which events is the supervisor
restricting in order to meet the requirements? Or did supervisor synthesis verify that
the modeled requirements can act as a supervisor? Based on the answers to the
previous questions, can infrastructural systems be classified and characterized as a
special case of supervisory control synthesis and, therefore, can synthesis be performed
more efficiently?

1.5 Main contributions
Recent developments described in the literature as well as characteristics of infrastruc-
tural systems are utilized in this thesis to synthesize supervisors for those systems.
The thesis has the following four main scientific contributions.

Contribution 1: The case study of Lock III showed that it is possible to model
the system and the control requirements and subsequently synthesize a monolithic
supervisor. These results have been published in (Reijnen, Goorden, van de Mortel-
Fronczak, and Rooda 2017). This case study also showed that the synthesized
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supervisor does not impose any additional restrictions on the system besides the
modeled requirements. This implies that the modeled requirements together form
the supervisory controller logic. Sufficient model properties are proposed to verify
whether a given set of system and requirement models can already act as a supervisory
controller, without applying synthesis algorithms. If so, synthesis can be skipped to
save computational resources. This contribution relates to Research questions 1 and 3.

Contribution 2: In case synthesis is still needed, as the provided models do not
satisfy the properties proposed in Contribution 1, the divide-and-conquer method
called multilevel synthesis is applied, as developed by (Komenda, Masopust, et al.
2016). This method is inspired by decomposition of systems, what is often done
by engineers to cope with the size of the system. This thesis proposes a method to
transform any given set of system and control requirement models into a multilevel
system representation needed for multilevel synthesis. Dependencies within the model
are analyzed using Dependency Structure Matrices, see (Eppinger and Browning
2012), and clustering algorithms to identify a multilevel system representation, which
may be different from the one made by an engineer. This contribution allows for
easy application of multilevel synthesis, thereby opens the possibility to synthesize
supervisory controllers for large infrastructural systems. This contribution relates to
Research questions 2 and 3.

Contribution 3: Several divide-and-conquer methods, like multilevel synthesis,
ease the computation of local supervisors, but no longer guarantee that the system is
controlled properly. Local supervisors may conflict with each other such that the system
can reach blocking states. A so-called coordinator needs to be synthesized to resolve
any conflict between supervisors. A compositional coordinator synthesis framework
is developed to synthesize such a coordinator efficiently, thus circumventing the use
of monolithic synthesis on the set of supervisors to synthesize a coordinator, which
is proposed in the literature (Su, van Schuppen, and Rooda 2009). The framework
deploys known abstractions to simplify the models until a single one is obtained. This
first phase is based on the compositional nonconflicting check of (Mohajerani, Malik,
and Fabian 2016). Based on this abstracted model, a coordinator is synthesized with
monolithic synthesis, which should now be doable. Finally, this coordinator is refined
back to resolve the conflicts between the synthesized supervisors. This contribution
relates to Research question 2.

Contribution 4: Several case studies with infrastructural systems, like (Reijnen,
Goorden, van de Mortel-Fronczak, and Rooda 2017; Reijnen, Verbakel, et al. 2019;
Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2019), have shown that models
of infrastructural systems may be formulated in various ways. Experiments show
that the formulation of these models has impact on the applicability and on the
computational gain of the previously mentioned contributions. As modeling is an
‘art’, obtaining the ‘right’ model formulation of the system together with its control
requirements is nontrivial. Several modeling guidelines are proposed in this thesis
based on experience. Proposing these guidelines contributes to closing the gap between
theoretical research and industrial applicability of supervisory control synthesis. This
contribution relates to Research questions 1, 2 and 3.

While the research presented in this thesis is focused on infrastructural systems,
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like locks and bridges, the above mentioned contributions are also applicable in other
application domains. Results are shown where the proposed methods are applied on
case studies of, for example, manufacturing systems and automotive systems.

1.6 Outline thesis
This thesis is partitioned into two parts. In the first part, Part I, the contributions
of this thesis are explained on a conceptual level, making it accessible for both
researchers and practitioners, as the research described in the thesis is performed in
close collaboration with RWS. Furthermore, Part I puts the different contributions
together and shows the relationship between the scientific papers resulting from this
project. The second part, Part II, includes five appended papers that describe the
individual contributions in more detail, thereby providing the scientific fundament of
Part I. These appended papers are referred to in Part I as Paper 1 till Paper 5.

Part I is structured as follows. Chapter 2 provides an introduction into synthesis-
based engineering and supervisory control theory. Furthermore, it provides an overview
of available synthesis techniques. Chapter 3 analyzes supervisors obtained from several
case studies and proposes model properties to verify whether synthesis can be skipped.
In case a model does not have the proposed properties, Chapter 4 describes a divide-
and-conquer synthesis technique, called multilevel synthesis, to synthesize supervisors
for large infrastructural systems. It shows how Dependency Structure Matrices
and clustering algorithms assist in applying these techniques. The thesis continues
by proposing in Chapter 5 a framework to synthesize a coordinator for conflicting
supervisors. Chapter 6 relates monolithic, multilevel, and modular synthesis, three of
the many available synthesis techniques. In Chapter 7, several modeling guidelines
are proposed and illustrated with examples, all inspired by the performed case studies.
Chapter 8 provides answers to the research questions, puts the main contributions
into a broader perspective, and closes with an epilogue.





Chapter 2

Synthesis-based engineering of
supervisory controllers

In this chapter, synthesis-based engineering (SBE) of supervisory controllers is intro-
duced and its advantages and disadvantages are discussed. Subsequently, supervisory
control theory is introduced, as a method to use in SBE. The chapter concludes by
providing a brief overview of available synthesis techniques.

2.1 Synthesis-based engineering

Traditionally, systems are developed with a document-based method. In such a method,
all system requirements, i.e., the specifications, are described in documents, which may
result in 100+ pages of documents per component for large systems, see (Weber and
Weisbrod 2002). As a first step in improving the quality of the engineering process,
requirement management systems like the one described in (John et al. 1999) have
been introduced. Nevertheless, specifications are described in documents, which could
be generated from those requirement management systems.

Model-based systems engineering (MBSE) is often proposed as a design method-
ology used to increase the quality of a system, decrease the development cost, and
decrease time-to-market, see (Bahill and Botta 2008) and (Ramos et al. 2012). Often
MBSE refers to the use of Unified Modeling Language (UML) or UML-based languages
in the engineering process (Estefan 2007). While UML has a formal syntax (how can
models be written down), it lacks a complete formal semantics (what is the meaning of
the model). When part of the model has no formal semantics, analyzing the behavior
of the modeled system is still cumbersome.

Combining MBSE with a mathematical formalism opens up the possibility to
even further improve the design, as desired properties can be analyzed by algorithms,
see for example (Waymore 1993). An example of such an integration is MBSE with
supervisory control synthesis, see (Baeten, van de Mortel-Fronczak, et al. 2016), which
is called synthesis-based engineering (SBE). In the rest of this section, SBE will be
introduced in more detail.

11



12 2.1. Synthesis-based engineering

2.1.1 Overview SBE
Figure 2.1 shows synthesis-based engineering as proposed by (Baeten, van de Mortel-
Fronczak, et al. 2016; Schiffelers et al. 2009). SBE starts by defining top-level system
requirements and an initial design of the system, depicted on the left in the figure.
After the initial system design, several parallel design tracks are initiated. To illustrate
SBE, only two tracks are shown. The bottom track shows the engineering process
of the physical components in the system, called the plant; the top track shows the
engineering process of the supervisory controller. For both tracks, requirements are
defined based on the initial system design. For the plant, a design is proposed based
on the requirements. Subsequently, this design is modeled and, after approval, realized.
For the controller, instead of proposing a design based on its requirements, as is the
case with the plant, the requirements are modeled. Now, a supervisory controller
describing how the system works can be synthesized based on models of what the
system can do (the plant) and what the system should do (the control requirements).
This synthesized model of the supervisory controller can be used to generate control
code, which can be implemented on control hardware. Finally, the plant and the
controller can interact with each other via an interface, as defined in the initial system
design.

The first steps of SBE have already been performed in the context of infrastructural
systems. Top-level system requirements are, for example, to maintain difference in
water level and to allow vessels to pass from one side to the other. From these
top-level system requirements, a lock as initial system design follows. Furthermore,
Rijkswaterstaat has derived standardized requirements for several systems. For
the requirements of several physical systems, depicted by PR in Figure 2.1, it has
developed among other things the basic specifications ‘Basisspecificatie schutsluis’ (for
locks) (Nieman 2016), ‘Basisspecificatie beweegbare brug’ (for movable bridges) (van
der Heide 2017), and ‘Basisspecificatie vaste brug’ (for fixed bridges) (Rijnen 2019). For
the requirements of the control systems, depicted by CR in Figure 2.1, it has developed
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Interface I
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define design

model

design

synthesize

model
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integrate

integrate

integrate
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S = system, C = controller, P = plant, R = requirement, D = design.

Figure 2.1: An overview of synthesis-based engineering. Courtesy of (Schiffelers et al. 2009).
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among other things the national standards ‘Landelijke brug- en sluisstandaard’ (for
locks and movable bridges) and ‘Landelijke tunnelstandaard’ (for tunnels).

2.1.2 Advantages and disadvantages
The inclusion of formal models (having a syntax and semantics) in the engineering
process has several advantages, as mentioned in (Baeten, van de Mortel-Fronczak,
et al. 2016; Braspenning et al. 2006).

• Models allow for a more consistent and less ambiguous description of the system
and its desired behavior in comparison to textual documents.

• Models allow for the integration of formal methods, such as SCT, into the
engineering process.

• Models allow the application of various model-based analysis techniques in
different stages of the engineering process to identify errors before components
are realized.

Specifically for SBE, utilizing supervisory control synthesis has an advantage over
other formal methods, like formal verification and model-based testing, as in SBE the
deployed algorithms guarantee a correct-by-construction supervisory controller. With
for example formal verification techniques, the model of the supervisory controller
is still designed manually from the requirements and checked afterwards whether
the supervisory controller satisfies the imposed requirements. Yet, in the following
paragraphs it is illustrated that other formal methods may compliment SBE in various
stages of the design and realization of supervisory controllers.

SR SD

CR CR C C

PR PD P P

Interface I

define

define

define design

model

design

synthesize

model

generate

realize

integrate

integrate

integrate

integrate

model simulation and model checking
hardware-in-the-loop simulation

validation and implementation testing

= documents, = models, = realizations.

S = system, C = controller, P = plant, R = requirement, D = design.

Figure 2.2: Synthesis-based engineering combined with several model-based analysis tech-
niques. Courtesy of (Baeten, van de Mortel-Fronczak, et al. 2016).
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Figure 2.2 shows several examples of model-based analysis techniques in the context
of SBE. Simulation is a powerful tool helping to identify errors in an early design stage,
see (Shannon 1975). Even when supervisory control synthesis is used, the controlled
system should be validated. The plant model may not accurately enough describe the
possible behavior of the system or requirements may have been wrongly formulated.
Simulation, enhanced with visualization of the system, eases the identification of such
errors. Examples of this analysis for infrastructural systems can be found in (Reijnen,
Goorden, van de Mortel-Fronczak, and Rooda 2017; Reijnen, Goorden, van de Mortel-
Fronczak, and Rooda 2019). Furthermore, formal verification, in particular model
checking (Baier and Katoen 2008), can be used to verify correctness of the supervisor
with respect to properties not guaranteed by SCT, like progress properties others than
nonblocking.

Second, hardware-in-the-loop simulation is a means to integrate early realized
controllers with a model of the physical system, see (Bacic 2005). With hardware-
in-the-loop simulation, more aspects of the final implementation can be tested like,
for example, the execution of the supervisory controller on the control hardware and
communication between the supervisory controller and the operator via the human-
machine interface. An application of hardware-in-the-loop simulation for synthesized
supervisory controllers is described in (Reijnen, Verbakel, et al. 2019).

Third, if all components of the system have been realized, the final implementation
can be tested to verify whether it fulfills the high-level system requirements defined
at the start of SBE. In this phase, model-based testing can be applied, where, for
example, the tests to execute are derived from the models (Utting et al. 2012).
Applying model-based testing in the context of infrastructural systems is currently
work-in-progress.

Nonetheless, SBE has currently also some disadvantages. The industrial acceptance
of SBE is in its infancy. The number of published case studies in collaboration with
industry is yet low, see, for example, (Forschelen et al. 2012; Swartjes, van Beek, et al.
2017; Theunissen et al. 2014; Zita et al. 2017). In (Wonham, Cai, and Rudie 2018), two
explanations are provided for this situation. The first is a lack of experience among
control engineers in applying formal methods. The second is the lack of supporting
tooling capable of synthesizing supervisory controllers for industrial-size systems, i.e.,
able to cope with the size of these systems. Finally, related to the previous point,
all tooling currently available is of academic nature, while the industry demands
commercially supported tools when they adapt their design process.

2.2 Supervisory control theory
Supervisory Control Theory (SCT), as initiated by (Ramadge and Wonham 1987,
1989), is a research area focused on developing model-based techniques for the design
of supervisory controllers. Based on a model of what the system can do (called the
plant model) and a model of what the system should do (called the requirement model),
a supervisory controller is synthesized. In the remainder of this section, we detail
what a plant model is, what a requirement model is, and what is regarded as a desired
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supervisory controller. The content of this section is inspired by (Cassandras and
Lafortune 2008; Wonham and Cai 2019).

2.2.1 Plant model
In control theory, the system to-be-controlled is called the plant. What this exactly
entails, differs with each specific controller. Looking at the schematic view of a control
system as shown in Figure 1.3, the plant for the resource controller includes mechanical
components, actuators, and sensors; the plant for the supervisory controller includes
mechanical components, actuators, sensors, and the resource controllers; and the
plant for the operator includes mechanical components, actuators, sensors, resource
controllers and supervisory controllers. In this thesis, the focus is on developing
supervisory controllers, so the notion of plant includes the mechanical components,
actuators, sensors, and the resource controllers.

The model of the plant represents, to a certain abstraction level, what it can do
without the supervisory controller, i.e., it describes what is possible in the uncontrolled
situation. In this thesis, (finite) automata are used as a modeling formalism. Other
modeling formalisms are included in the overview of synthesis techniques in Section 2.3.
An example of an automaton modeling a door actuator of a lock is shown in Figure 2.3a.
An automaton consists of locations (depicted by circles) representing the states
of the modeled system, edges (depicted by arrows) labeled by events indicating
state transitions, the initial location (depicted by an incoming arrow without source
location) indicating where to start, and marked locations (depicted by concentric
circles) representing ‘accepting’ or ‘final’ locations in which the system can rest. The
simplified door actuator A_Door has two locations Off and On, it can go from the
Off location to the On location by taking a transition labeled with event c_on and
can go from the On location to the Off location by taking a transition labeled with
event c_off, it is initially in the location Off, and the marked location is Off.

For the purpose of supervisory control synthesis, each event is categorized as either
controllable or uncontrollable. A controllable event may be disabled by the supervisory
controller to prevent it from happening. As opposed to that, an uncontrollable event
may not be disabled by the supervisory controller. Examples of controllable events
include turning an actuator on or off; examples of uncontrollable events include a
sensor switching on or off, or receiving a command from the operator. In this thesis,
controllable events are depicted with solid arrows and uncontrollable events by dashed
arrows. To illustrate this, Figure 2.3b shows the model of a sensor measuring whether

A_Door
Off Onc_on

c_off
(a)

S_Door
Off Onu_on

u_off
(b)

Figure 2.3: Examples of two plant models, with (a) an actuator of a door and (b) a sensor
of a door.
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the door of the lock is open (represented by the sensor being on).
For large systems, it is often inconvenient to provide a single automaton model

to describe the uncontrolled behavior of that system, as it would be too large to be
comprehended. Therefore, the plant is modeled by a set of automata resulting in
a composed system representation. For example, the two automata from Figure 2.3
together represent the behavior of a (simplified) lock door with a single actuator and
a single sensor. Multiple automata models interact with each other by synchronizing
on shared events: transitions labeled by shared a event in the different models have
to be taken simultaneously. The automata in the example do not share any events,
so no transitions are taken simultaneously. An example synchronizing automata
using events is shown later in this section. Synchronizing automata by shared events
into a new single automaton is called synchronous composition, denoted by ‖. The
synchronous composition of the door actuator and sensor is shown in Figure 2.4. With
naming the composed locations the convention is used that the order of the composed
location names corresponds to the order of the automata mentioned in the synchronous
composition. In this example, automaton A_Door ‖ S_Door is displayed, so in the
location name (Off,Off) the first Off refers to the Off location of automaton A_Door
and the second one to the Off location of automaton S_Door.

When a composed system consists of automata that do not share events, the com-
posed system is called a product system. Every composed system can be transformed
into a product system. The most trivial product system is the one where all automata
of a composed system are synchronized into a single automaton. Then, no event is
shared between automata, because there is only a single automaton. The product
system containing the largest number of automata in the product system is called the
most refined product system (de Queiroz and Cury 2000b).

Finally, the introduction of composed systems allows to model small parts of the
system and to combine the models afterwards. The last concept to finalize the plant
model is to describe the interaction between components. Consider again the example
of the door actuator and sensor in Figure 2.3. These models indicate no interaction
between the actuator and the sensor, as there are no shared events. In reality, the
design of the system ensures that the sensor only changes its state when the actuator
is on. The importance of modeling the interaction between different components

A_Door ‖ S_Door
(Off,Off) (On,Off)

(Off,On) (On,On)

c_on

c_off

c_on

c_off

u_onu_off u_onu_off

Figure 2.4: The synchronous composition of the door actuator and sensor of Figure 2.3.
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I_Door I

u_on
when

A_Door.On

u_off
when

A_Door.On
(a)

(Off,Off, I)

A_Door ‖ S_Door ‖
I_Door

(On,Off, I)

(Off,On, I) (On,On, I)

c_on

c_off

c_on

c_off

u_onu_off

(b)

Figure 2.5: Example of (a) an interaction model describing the interaction between the door
actuator and sensor of Figure 2.3 and (b) the synchronous composition of those models
following the definition of (Cassandras and Lafortune 2008).

in the system is pointed out in (Zaytoon and Carre-Meneatrier 2001). To ease the
modeling of these interactions, discrete variables are introduced, resulting in extended
finite automata. Extended finite automata have the same expressive power as regular
finite automata, as shown by (Skoldstam et al. 2007), yet it provide a more concise
representation of the modeled behavior. The introduction of variables allows, for
example, to refer to locations and provide conditions, called guards, on the enablement
of transitions. Figure 2.5a models the interaction between the door actuator and
sensor. This model expresses that event u_on is only possible (denoted by keyword
when) if automaton A_Door is in location On (denoted by A_Door.On). A similar
interaction holds for event u_off. The synchronous composition of the door actuator,
sensor, and interaction model is shown in Figure 2.5b.

2.2.2 Requirement model
The requirement model represents what the plant should do, i.e., it describes the
desired behavior of the plant. For example, a textual requirement can express that a
door on one side of the lock may only be opened when the door on the other side is
not open. A requirement model formalizes such a textual requirement by using the
events, locations, and variables introduced by the plant model. Similar to the plant
model, a requirement model may be provided as a collection of multiple requirement
models.

A requirement model can be provided as an extended finite automaton, just as
a plant model. Figure 2.6a shows a requirement model for the above described
textual requirement. For brevity, A denotes actuator, S sensor, U upstream, and
D downstream. As can be seen from this model, the text ‘a door on one side’ is
interpreted as the door on the upstream side, ‘be opened’ as switching the actuator
at that side on with event c_on, ‘the door on the other side’ as the door on the
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R_Doors
A_U_Door.c_on

when
not S_D_Door.On

(a)

requirement A_U_Door.c_on
needs not S_D_Door.On

(b)

Figure 2.6: Example of a requirement model describing the interaction between doors on
opposite sides of the lock. In (a) it is modeled with an automaton, in (b) with a logical
expression.

downstream side, and ‘is not open’ as the sensor at that side not being in the location
On. The difficult part in modeling requirements is often relating parts of a textual
requirement with concepts from the plant model.

Requirements may also be formulated with logical expressions, as introduced
in (Ma and Wonham 2005; Markovski et al. 2010). These logical expressions are often
more similar to the textual requirements. Figure 2.6b shows the logical expression
form of the example requirement. As can be seen, a logical expression eliminates
the need to introduce irrelevant locations and transitions to model a requirement.
Furthermore, logical expressions as introduced in (Markovski et al. 2010) can always
be easily transformed into extended finite automata. Yet, they may not be suitable
as a modeling formalism for all requirements. For example, when a certain order of
events is desired, it is more convenient to express this with an automaton instead of a
logical expression.

2.2.3 Supervisor
The primary aim of supervisory control synthesis is to find a supervisory controller
that can intervene such that the controlled system adheres to the requirement model.
Adhering to the specified requirements is called safety. In solving this problem, we need
to specify the mechanism by which a supervisory controller is able to intervene with the
system. With regard to this aspect, there is a subtle difference between a supervisor
and a supervisory controller (which has been ignored until now). A supervisor is only
allowed to disable events, while a supervisory controller is also allowed to force events.
The concept of supervisory controller emerges when an implementation is generated
from a supervisor. Nevertheless, in the remainder of Part I we ignore this subtle
difference and use the terms supervisor and supervisory controller interchangeably.
The appended papers in Part II make a distinction between supervisor and supervisory
controller.

Besides safety, there are other required properties. The first one is called nonblock-
ingness. Marked locations of an automaton indicate ‘final’ or ‘accepting’ locations.
Nonblockingness denotes that the plant controlled by a supervisor should always be
able to reach such a marked location (it does not matter which marked location in
case of multiple ones). Therefore, the controlled system never blocks in non-marked
locations.

The second one is called controllability. A supervisor can disable events, but not
all of them. Now, the distinction between controllable and uncontrollable events, as
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introduced in Section 2.2.1, is going to play a role. Controllability denotes that a
supervisor may only disable controllable events. Uncontrollable events are untouched
by the supervisor, i.e., when the controlled plant is in some state able to execute an
uncontrollable event, the supervisor should always allow this event to happen.

The third one is called maximal permissiveness. Maximal permissiveness denotes
that the desired supervisor allows for as much as possible behavior in the controlled
system while still ensuring safety, nonblockingness, and controllability. Maximal
permissiveness also allows one to reason about absent behavior, see (Swartjes, Reniers,
et al. 2016). If some behavior is absent, it is either because it violates the requirements,
it is no longer possible to reach a marked location, or some uncontrollable events had
to be disabled.

To summarize, a desired supervisor has the following four properties:

• Safety: all possible behavior of the controlled system should always satisfy the
imposed requirements.

• Nonblockingness: the controlled system should be able to reach a marked location
from every reachable location.

• Controllability: uncontrollable events may never be disabled by the supervisor.

• Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, nonblockingness, and controllability.

2.2.4 Available tooling
For industrial-size systems, tooling is needed to actually perform supervisory control
synthesis on this scale. There exist many academic tools, which are summarized
on the webpage (Technical Committee On Discrete Event Systems 2019). In this
thesis, CIF (Compositional Interchange Format) is used, see (van Beek et al. 2014).
Other notable tools in the field of supervisory control synthesis of automata are (in
alphabetical order) DESUMA (Ricker et al. 2006), libFAUDES (Moor et al. 2008),
Supremica (Malik, Åkesson, et al. 2017), and TCT (Feng and Wonham 2006a). At
the time of writing, no commercially available tool exists.

2.3 Overview of synthesis techniques
In the past 30 years, numerous synthesis techniques have been developed. In this
section, an overview of these techniques is provided. The reason to provide this
overview is threefold: this incomplete overview shows that a control engineer has
numerous options to choose from, it provides researchers new to SCT a means to
navigate the literature, and it identifies missing synthesis techniques suitable for future
research. Each synthesis technique is classified with two metrics: the supervisory
control architecture and the modeling formalism.

Supervisory control architecture denotes whether multiple supervisors are synthe-
sized, how they relate to each other, and how they relate to the plant and requirement
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model. The basic supervisory control architecture is a monolithic supervisor. A
monolithic supervisor is a single supervisor that controls the complete plant to ensure
the properties mentioned in Section 2.2.3. Other supervisory control architectures
used in this overview, modular, hierarchical, decentralized, and distributed, all belong
to the so-called divide-and-conquer synthesis methods, as each architecture consists
of multiple supervisors. These supervisory control architectures are proposed in an
effort to reduce the computational effort. We will not explain all different supervisor
architectures here. Multilevel synthesis is explained in Section 4.1, modular synthesis
is explained in Section 6.1.

The modeling formalism refers to the mathematical framework used to model the
system. Four categories are used in this classification: languages and finite automata,
extended finite automata, Petri-nets, and other modeling formalisms. Some examples
of other modeling formalism include modal logic, failure semantics, and process algebra.
While in this thesis finite and extended finite automata are deployed, the overview
shows that other modeling formalism are also used in the supervisory control theory
community.

Table 2.1 shows the overview of synthesis techniques. While this overview is not
complete, it shows where the major focus has been: on the one hand on developing
techniques for monolithic supervisory controllers in different modeling formalisms, on
the other hand on developing different supervisory controller architectures for the
finite automata modeling formalism.

Control engineers may read Table 2.1 as follows. Given a system, a modeling
formalism has to be chosen that is able to model those aspects of the system of interest.
Furthermore, a control engineer has to settle for a desired control architecture (possibly
limited by the deployment on control hardware). With these two design decisions,
the control engineer can consult the table to identify suitable synthesis techniques to
synthesize a supervisor. Each reference mentioned in the table provides a technique
to synthesize a supervisor for the given modeling formalism and supervisory control
architecture.
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Table 2.1: Overview supervisory control synthesis techniques

Monolithic Modular Hierarchical Decentralized Distributed

Languages and
finite automata

(Ramadge and Wonham
1987) (Ramadge and
Wonham 1989) (Seatzu
et al. 2013) (Cassandras
and Lafortune 2008) (Yin
and Lafortune 2016)
(Fabian and Lennartson
1996) (Kumar and
Shayman 1996) (Heymann
and Lin 1998) (Zhou et al.
2006) (Miremadi and
Lennartson 2016) (Flordal,
Malik, et al. 2007)
(Mohajerani, Malik, Ware,
et al. 2011)

(Ramadge and Wonham
1989) (de Queiroz and
Cury 2000a) (de Queiroz
and Cury 2000b)
(Cassandras and
Lafortune 2008) (Teixeira
et al. 2011) (Wonham and
Ramadge 1988) (Åkesson
et al. 2002) (Schmidt and
Breindl 2008) (Hill and
Tilbury 2006)
(Mohajerani, Malik, and
Fabian 2014) (Komenda,
Masopust, et al. 2016)

(Thistle 1994) (Zhong and
Wonham 1990) (Leduc
et al. 2009) (Wong and
Wonham 1996) (Schmidt
and Breindl 2008) (Hill
and Tilbury 2006) (Feng
and Wonham 2008)
(Schmidt and Breindl
2011) (Komenda,
Masopust, et al. 2014)

(Ramadge and Wonham
1989) (Yoo and Lafortune
2002) (Rudie and
Wonham 1992)
(Cassandras and
Lafortune 2008) (Feng and
Wonham 2008) (Schmidt,
Marchand, et al. 2006)

(Malik and Flordal 2008)
(Cai and Wonham 2014)
(Cai and Wonham 2010)
(Zhang et al. 2015)
(Seatzu et al. 2013) (Su,
van Schuppen, and Rooda
2010) (Su, van Schuppen,
and Rooda 2009)

Extended finite
automata

(Su, van Schuppen, and
Rooda 2012) (Ouedraogo
et al. 2011) (Miremadi,
Lennartson, and Åkesson
2012) (Vahidi et al. 2006)
(Kirilov et al. 2013)

(Malik and Teixeira 2016) (Shoaei et al. 2012)

Petri-nets

(Seatzu et al. 2013)
(Holloway et al. 1997)
(Iordache and Antsaklis
2006) (Cassandras and
Lafortune 2008) (Giua
and DiCesare 1994b)
(Giua and DiCesare 1994a)
(Giua and Silva 2018)
(Ghaffari et al. 2003)

(Iordache and Antsaklis
2006)

Other

(de Queiroz, Cury, and
Wonham 2005) (Baeten,
van Beek, et al. 2011)
(Overkamp 1997)
(van Hulst et al. 2017)
(Ma and Wonham 2005)
(Zgorzelski and Lunze
2017)

(Schmidt, de Queiroz,
et al. 2007)

(Schmidt, de Queiroz,
et al. 2007) (Komenda
and van Schuppen 2008)
(Komenda and
van Schuppen 2003)





Chapter 3

Model properties for nonblocking
modular supervisors

A common first try of applying supervisory control synthesis to a new application is
to model the plant and its control requirements, and then synthesize, if possible, a
monolithic supervisory controller. Several case studies with infrastructural systems
showed that this is possible, see (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda
2017; Reijnen, Verbakel, et al. 2019; Reijnen, Goorden, van de Mortel-Fronczak, and
Rooda 2019). Furthermore, these case studies revealed that the synthesized supervisor
does not add any restrictions on the system besides the formulated requirements,
which is an interesting observation. In this chapter, we first discuss this observation in
more detail. Subsequently, model properties and a graph-based dependency analysis is
proposed to identify models that result in a supervisor with no additional restrictions.
This chapter concludes with several examples of the method.

3.1 Observation from supervisors for infrastructu-
ral systems

The analysis of the synthesis result strengthens the understanding of the system.
For example, the synthesized supervisor may reveal additional restrictions of the
behavior besides those expressed in the requirement models that a control engineer
may immediately identify as missing requirements.

For the case studies of infrastructural systems, inspecting the result of synthesis
showed that the supervisor is not restricting the system more than the imposed
requirements, i.e., the plant models together with the requirements can act already
as a supervisor satisfying safety, nonblockingness, controllability, and maximal per-
missiveness, the four properties listed in Section 2.2.3. This renders synthesis into a
verification problem, i.e., verifying that the provided models are already a supervisor.
Therefore, time and computing resources could have been wasted, as synthesis turned
out to be unnecessary. If it had been known beforehand that a synthesized supervisor
would not impose additional restrictions, then these time and computing resources
could have been saved by skipping synthesis.

23
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The following characteristics of the models are observed. First, as the supervisors
synthesized for the case studies are intended to be implemented on control hardware,
the input-output perspective of (Balemi 1992) is used. This entails that each input,
typically a sensor, and each output, typically an actuator, are modeled separately.
This modeling paradigm results in a collection of numerous small plant models that
are not coupled by shared events. Therefore, the plant model is a product system.

As pointed out in (Zaytoon and Carre-Meneatrier 2001), it may be desired to
model the physical interaction between actuator and sensor components. Adding
shared events to model the interactions renders the set of plant models to be no
longer a product system. Yet, such a model with interactions can be transformed into
the most-refined product system representation, where the actuator and sensors are
combined into one including the interaction.

Second, both sensors and actuators have cyclic behavior, i.e. they may continue
on performing events indefinitely. Therefore, each state is always reachable from any
other state.

Finally, requirements for industrial applications often originate from safety risk
analysis (Modarres 2016). States are identified in which some actuator actions would
result in unsafe behavior. For example, the safety specification of a waterway lock that
needs to be fulfilled by the supervisor is described in Section 4.191 of (Rijkswaterstaat
2015). Each of the 16 requirements describes a state of the system and the disablement
of certain actuator actions for that state. For example, one requirement expresses that
a door may not be opened if the door on the other side of the lock is already open. It
is shown in (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017) that these
textual specifications can be described with logical expressions.

3.2 Model properties
In (Goorden and Fabian 2019), model properties are formulated and it is proven that
if a set of plant and requirement models satisfy these properties, no synthesis is needed
and the plant and requirement models are already a supervisor. The advantage of
these properties is that they can be checked locally, i.e., each plant and requirement
model can be analyzed individually. In this section, these properties are illustrated
with several small examples. In (Goorden and Fabian 2019), more examples given
that show for each single model property why synthesis is needed if the property is
violated.

A_Door
Off Onc_on

c_off
(a)

S_Door
Off Onu_on

u_off
(b)

Figure 3.1: Examples of two plant models, with (a) an actuator of a door and (b) a sensor
of a door (the same as Figure 2.3).
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The first property captures the observation that plant models do not share events,
resulting in a product system, as introduced in Section 2.2.1. Figure 3.1 shows a door
actuator and a door sensor that do not share any event. Having a product system
allows subsequent analysis of individual plant models without considering all other
plant models each time.

For each individual plant model, two properties are checked. The first one expresses
that from each location reachable from the initial location, a marked location should
be reachable. This property ensures that the plant model itself is nonblocking. To
illustrate this property, consider the door actuator in Figure 3.1a. Both locations
Off and On can be reached from the initial location, and from both locations the
marked location Off can be reached. The second property expresses that from each
location, all other locations should be reachable. This property captures the cyclic
behavior observed from the case studies. To illustrate this property, consider again
the door actuator in Figure 3.1a. It can be observed immediately that from location
Off location On can be reached and from location On location Off.

For each individual requirement model, seven properties are checked. The three
conceptually important properties are the following ones, the other four properties
can be found in (Goorden and Fabian 2019). First, the requirement needs to be
formulated as a logical expression of the form ‘event needs condition’, indicating
that a certain event is only enabled if the condition holds, otherwise the event is
disabled. An example of such a requirement is shown in Figure 3.2 expressing that
the door actuator may only go on if the door sensor is not on (representing an open
door). Second, the event mentioned by the requirement should be a controllable event.
This property relates to controllability of a supervisor. The example requirement
satisfies this property as the controllable event A_Door.c_on is mentioned. Third, the
condition should only refer to locations of sensor models (having only uncontrollable
events). This property relates to nonblockingness of a supervisor. Indeed, the example
requirement satisfies this property, as only location On of sensor model S_Door is
used in the condition.

In case a system only consists of the plant models shown in Figure 3.1 and the
requirement model in Figure 3.2, we can conclude with Theorem 1 of (Goorden and
Fabian 2019) that no synthesis is needed for this system. The plant and requirement
models together form a supervisor satisfying safety, nonblockingness, controllability,
and maximal permissiveness.

3.3 Graph-based dependency analysis
As indicated in Paper 1, there exist published control problems that do not satisfy
the model properties from the previous section, but still turned out not to require

requirement A_Door.c_on needs not S_Door.On

Figure 3.2: Example of a requirement model describing the interaction between doors on
opposite sides of the lock (similar as Figure 2.3).
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synthesis. In this section, a deeper analysis is proposed to relax the model properties.
The main reason the control problems of (Reijnen, Goorden, van de Mortel-

Fronczak, and Rooda 2017; Reijnen, Verbakel, et al. 2019; Reijnen, Goorden, van de
Mortel-Fronczak, and Rooda 2019) do not satisfy the model properties of Section 3.2
is the violation of the property that requirements may only use sensor models in
their conditions. In these control problems, there exist requirements that restrict the
enablement of controllable events based on the behavior of plant models other than
sensors. Several causes of this violation are described in Section 4.1 of Paper 1.

To relax the initial model properties, the dependencies implied by the require-
ments of the form ‘event needs condition’ are used. Such a requirement formulation
essentially expresses that the behavior of the plant model containing the mentioned
event depends on the behavior of the plant models mentioned in the condition. This
directed relationship between plant models can be analyzed using a dependency graph,
as we introduced in Paper 1.

Figure 3.3 shows the dependency graph of the plant models in Figure 3.1 and
requirement in Figure 3.2. Each vertex in this dependency graph (depicted by circles)
represents a plant model in the product system representation. As the example only
has two plant models, A_Door and S_Door, two vertices are present. Each directed
edge (depicted by arrows) results from a requirement and indicates that the behavior
of a certain plant model depends on the behavior of another plant model. The initial
vertex of an edge corresponds to the plant model containing the event mentioned
in a requirement and the terminal vertex corresponds to a plant model mentioned
in the condition of the same requirement. An edge can be labeled with any unique
name. For the example shown in Figure 3.3, there is a requirement where the event is
from plant model A_Door and the condition mentions S_Door. Therefore, an edge is
drawn from A_Door towards S_Door.

An example of several plant and requirement models is shown in Figure 3.4. The
dependency graph of this example is shown in Figure 3.5. Notice that requirement R5
results in two edges e5 and e6, as there are two different plant models mentioned in the
condition of this requirement. The rest of the dependency graph can be constructed
as explained in the previous paragraph.

The dependency graph shown in Figure 3.5 reveals two cycles: one with plant
models P1 and P2, and one with P3 and P4. A cycle may require synthesis, as both
plant models may reach a state where they are waiting for each other to perform a
transition. Monolithic synthesis identifies this issue and ensures that the synthesized
supervisor restricts the behavior such that this state is never reached.

A_Door

S_Door

e1

Figure 3.3: The dependency graph of the plant models in Figure 3.1 and requirement in
Figure 3.2.
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R1 : a needs P2.q4

R2 : c needs P1.q2

R3 : e needs P3.q7

R4 : g needs P4.q5
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R5 : j needs P2.q4 or P3.q6
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q14
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R7 : a needs P7.q13

R8 : g needs P8.q14

Figure 3.4: A control problem with six plant models P1, . . . , P8 and six requirements
R1, . . . , R8.

P1 P2 P3 P4

P5

P6

P7 P8

e1

e2

e3

e4

e5 e6

e7

e8 e9

Figure 3.5: The dependency graph of the models shown in Figure 3.4.
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What is shown with Theorem 2 in Paper 1 is that when a dependency graph does
not contain any cycle, synthesis can still be skipped and the collection of plant and
requirement models together can act as a supervisor to satisfy safety, nonblockingness,
controllability, and maximal permissiveness. If requirements R2 and R3 were removed
from the example in Figure 3.4, the corresponding dependency graph would have no
cycles and with Theorem 2 we know synthesis can be skipped.

However, in case of cycles in the dependency graph, it is not yet sure whether
synthesis can be skipped. Theorem 3 in Paper 1 provides a way to reduce the original
synthesis problem. Instead of performing monolithic synthesis with all plant and
requirement models, the problem of synthesizing a supervisor can be split into multiple
ones based on the dependency graph. Roughly speaking, for each non-overlapping
extended strongly connected component (a group of intertwined cycle and all vertices
for which there exists a path to this group) a supervisor may be synthesized such that
the combination of these supervisors together with all original plant and requirement
models can act as a supervisor to satisfy safety, nonblockingness, controllability, and
maximal permissiveness.

For the example dependency graph shown in Figure 3.5, the synthesis problem can
be reduced as follows. Plant models P1 and P2 form a cycle. Furthermore, there exists
a path from both plant models P5 and P6 to this cycle (in this case also the strongly
connected component), so the extended cycle is formed by P1, P2, P5, and P6. Plant
models P3 and P4 also form a cycle. Furthermore, there exists paths from both plant
models P5 and P6 to this cycle, so the extended cycle is formed by P3, P4, P5, and
P6. Now, these two extended cycles overlap with plant models P5 and P6. Therefore,
the two extended cycles are merged into one to create a non-overlapping extended
strongly connected component of plant models P1, . . . , P6 for which a supervisor can
be synthesized. The reduction relates to the absence of plant models P7 and P8 in the
extended cycle. These two plant models are not needed in any ‘local’ synthesis and
together with requirements R7 and R8 they can be added to the synthesized supervisor
with synchronous composition.

With Theorems 2 and 3 in Paper 1, first steps are taken to identify industrial-size
problems that do not need synthesis, enlarging the applicability of supervisory control
theory in practice.

3.4 Case studies

In this section, several case studies are used to generate dependency graphs. The
generation of the dependency graphs uses the tools CIF (van Beek et al. 2014) and
Matlab (Mathworks 2019). At the time of writing, the incorporation of Theorem 3
of Paper 1 has not yet been automated. First, a smaller case study is discussed to
understand the dependency graph. Subsequently, the dependency graphs of four large
infrastructural systems are shown.
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Figure 3.6: The dependency graph of a simplified lock model.

3.4.1 Simple Lock
The first case study models a simplified lock, as described in (Goorden, van de Mortel-
Fronczak, Reniers, and Rooda 2017) and Paper 2. The model contains all main
components of a lock, but defined on a very abstract level, leaving out a lot of details.

Figure 3.6 shows the dependency graph of the simple lock model. Red edges
indicate extended strongly connected components. For readability, the plant model
names are replaced by numbers (this is also done in subsequent figures in this section).
The numbers and names are related as follows:

1. Side 1 entering light

2. Side 1 leaving light

3. Side 1 gate

4. Side 1 sewer

5. Side 1 equal-water sensor

6. Side 2 entering light

7. Side 2 leaving light

8. Side 2 gate

9. Side 2 sewer

10. Side 2 equal-water sensor

This dependency graph shows that Theorem 2 of Paper 1 does not apply, as the
graph contains cycles. Therefore, it cannot yet be concluded that synthesis is not
needed. With the help of Theorem 3 of Paper 1, the synthesis problem can be reduced.
There is no path going from either of the equal-water sensor (numbered 5 and 10 in
the figure), so these two plant models can be safely removed from the problem and
added to the supervisor after performing synthesis on the rest of the system.

3.4.2 Lock III
Figure 3.7 shows the dependency graph of the model of Lock III, as published in (Rei-
jnen, Goorden, van de Mortel-Fronczak, and Rooda 2017). This dependency graph
shows similarities with the one of the simplified lock in Figure 3.6: it contains several
intertwined cycles. However, it contains 28 plant models and related requirements
that can be omitted during synthesis.
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Figure 3.7: The dependency graph of Lock III.

The dependency graph of Lock III also contains vertices from which there are paths
towards any of the cycles, as explained in Section 3.3. For example, from vertices 31
and 32 (in the top middle of the figure) vertex 30 can be reached, which is part of a
cycle. Therefore, these vertices need to be added to the extended strongly connected
component and incorporated into the synthesis problem.

3.4.3 Prinses Marijkesluis

The Prinses Marijkesluis complex, as presented in (Reijnen, Verbakel, et al. 2019),
consists of two locks and a storm surge barrier. The dependency graph of this model
is shown in Figure 3.8.

The dependency graph shows three non-overlapping extended strongly connected
components. These groups of vertices can be related to the three different infras-
tructural objects: on the bottom left of the figure is the storm surge barrier, in the
middle the first lock, and on the right the second lock. Furthermore, as expected, the
dependency graphs of the two locks are identical.

Several plant models can be omitted from synthesis: plant models 9, 18, 19, 20,
29, 38, 39, 40, 46, and 47. After omitting these plant models, three supervisors can
be synthesized, each for a single non-overlapping extended cycle. Then, Theorem 1
of Paper 1 expresses that these three supervisors together with the omitted plant
models and their corresponding requirements act as a supervisor satisfying safety,
nonblockingness, controllability, and maximal permissiveness.
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Figure 3.8: The dependency graph of the Marijkesluis.

3.4.4 Algera Complex
The final case study considered is the Algera Complex, as presented in (Reijnen,
Goorden, van de Mortel-Fronczak, and Rooda 2019), a combination of a lock and a
bridge. Furthermore, the lock modeled in this case study has five sets of doors, instead
of the usual two sets of doors, like the Lock III and the Marijkesluis locks. The Algera
lock has five sets of doors to cope with varying water levels on both sides of the lock.

Figure 3.9 shows the dependency graph of the Algera Complex. The majority of
the vertices and edges in this figure relate to the lock, only the upper left cluster of
vertices and edges belongs to the bridge. The configuration of the Algera lock is the
reason for the difference in dependency graph structure of this lock and those of Lock
III and Marijkesluis lock. Many interactions are due to the interaction between the
five sets of doors, resulting in a single non-overlapping extended cycle for the complete
Algera Complex. Only a few plant models can be omitted from synthesis.

3.5 Conclusion
In this chapter, properties are presented such that when a model satisfies them,
synthesis can be skipped. Furthermore, relaxed properties together with the analysis
of the dependency graph of the model may reveal parts that still may require synthesis.
Case studies demonstrated the application of the dependency graph. This chapter



32 3.5. Conclusion

  1

  2

  3

  4  5

  6

  7

  8

  9  10

  11

  12

  13

  14

  15
  16

  17
  18

  19
  20

  21
  22

  23
  24

  25

  26

  27

  28

  29

  30
  31

  32

  33  34  35  36
  37   38  39  40

  41
  42

  43

  44  45  46

  47

  48
  49

  50

  51  52  53  54  55
  56  57

  58

  59

  60

  61

  62

Figure 3.9: The dependency graph of the Algera lock-bridge combination.

started with the observation that inspecting the result of synthesis showed that the
supervisor is not restricting the system more than the imposed requirements. Yet,
the case studies in this section show that more research is needed to explain why no
synthesis is needed for these models, as their dependency graphs contain cycles. In the
meantime, several methods are provided in the next chapters to efficiently synthesize
supervisors in the case synthesis is still needed.



Chapter 4

Multilevel synthesis with
DSM-based techniques

Synthesizing a monolithic supervisor becomes problematic when the size of the infras-
tructural systems grows. Therefore, multilevel synthesis is exploited in this chapter to
reduce the computational effort. First, multilevel synthesis is explained conceptually,
where emphasis is put on the input needed from the control engineer designing a super-
visory controller. Subsequently, it is explained how this input can be obtained. Finally,
this chapter concludes with providing experimental results of applying multilevel
synthesis on several case studies.

4.1 Multilevel synthesis
Multilevel supervisory control synthesis is inspired by decompositions of systems by
engineers, see (Komenda, Masopust, et al. 2016). For each subsystem, a supervisor
is synthesized based on requirements for only that subsystem. To apply multilevel
synthesis, the set of plant and requirement models should be provided as a tree-
structured system. This entails that all plant and requirement models need to be
distributed over the nodes in the tree, where plant and requirement models may be
placed into multiple nodes. This tree resembles the decomposition of a system.

Obtaining a multilevel system is nontrivial. There is no unique decomposition of a
system. Furthermore, engineers from different disciplines could decompose a system
differently. In the subsequent sections, a method is presented to transform a given
set of plant and requirement models into a multilevel system such that multilevel
synthesis can be applied.

4.2 Analyzing relationships in models with DSMs
Any decomposition of a system shows how different components of the system are
related to each other. Typical dependencies between components are their spatial
proximity, exchange of energy, exchange of material flow, or exchange of information,
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see (Pimmler and Eppinger 1994). For the purpose of supervisory control synthesis, a
different relationship is chosen.

The plant models can be considered to be the components of the system. As
already observed in Chapter 3, the plant models form a product system or can
be easily transformed into the most-refined product system. Therefore, previous
suggestions in the literature to use shared events between plant models to relate those,
see e.g. (Flordal and Malik 2009; Komenda, Masopust, et al. 2013), are insufficient for
infrastructural systems, as in the most-refined product system there is no relationship
based on events between disjoint plant models. In Paper 2 we propose to use the
requirement models to relate the plant models to each other, which is similar to the
method used in Chapter 3 and the method of control-flow nets described in (Feng and
Wonham 2006b).

To illustrate the method, the simplified lock model from Section 3.4.1 is used again.
As a preprocessing step, a set of plant models is transformed into its most-refined
product system, if it is not a product system already. This results in ten plant models
for the simplified lock.

First, the dependencies between plant models and requirement models are captured.
Since plant models and requirement models have a different role in the synthesis process,
we consider them as different domains. There is a dependency between a plant model
and a requirement model if they share one or more events or variables (location
references included). All these dependencies are collected and displayed in a Domain
Mapping Matrix (DMM), see (Eppinger and Browning 2012). This method can be
seen as a generalization of control-flow nets, as the DMM can be constructed from
any set of plant models and requirement models. Figure 4.1 shows the DMM of the
simplified lock. The plant models are placed on the rows and the requirement models
on the columns. A one in this matrix indicates that the requirement model from the
column shares an event or variable with the plant model from the row, a zero (yet not
visualized in the figure) indicates no dependency. If there is a dependency, it may be
possible after synthesis that the behavior of that particular plant model is restricted
by that requirement.

From a DMM, a Dependency Structure Matrix (DSM) can be constructed. A

PR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1
2
3
4
5
6
7
8
9
10 1

1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1
1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Figure 4.1: The DMM PR of the simple lock. Only the nonzero elements are shown for
readability.
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Figure 4.2: DSM P for the simple lock example: (a) the unclustered DSM P and (b) the
clustered DSM PC .

DSM is a square matrix with the same system elements on its rows and columns,
see (Browning 2016; Eppinger and Browning 2012). A DSM provides a concise
representation for the analysis of the structure of a systems. The DSM is obtained
from the DMM with simple matrix multiplications as described by (Maurer 2007).
The DSM P of the simplified lock is shown in Figure 4.2a. Entries in such a DSM
have the following interpretation. The number k in a cell indicates that there are k
requirements having shared events and variables with both the plant model of the row
and the plant model of the column. For example, entry P (1, 3) = 4 in Figure 4.2a
indicates that there are four requirements which use both plant component 1 (side 1
entering light) and plant component 3 (side 1 gate). As can be seen from Figure 4.1,
these four requirements are the ones numbered 7, 8, 9, and 10. Furthermore, the
elements on the diagonal indicate the number of requirements related to the plant
component on that row.

Clustering a DSM reveals the system structure based on the dependencies between
components. Clustering a DSM entails grouping components together in order to
maximize the dependencies within a cluster and minimizing the dependencies between
clusters by reordering the rows and columns of the DSM. Figure 4.2b shows the
clustered DSM PC of the simplified lock. This clustering is obtained with the algorithm
presented in (Wilschut et al. 2017). Different clusterings can be obtained by changing
the parameters of the algorithm. There are three clusters indicated: a cluster with the
entering light, leaving light, gate, and equal water sensor of side 1, a similar cluster
with elements of side 2, and a cluster with the circulation sewers of both sides.

4.3 Transform DSM to multilevel system
A clustered DSM is not yet a multilevel system needed as input for multilevel synthesis.
In this section, it is explained how a clustered DSM (together with the DMM) can be
used to create a multilevel system.

The clustering of the DSM can be converted into a tree, which is exactly the
underlying structure needed for multilevel synthesis. Each diagonal element of the
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DSM is considered to be a leaf node of the tree. Subsequently, a cluster in the DSM
indicates a parent node in the tree. This transformation of a cluster to a parent
node continues until the complete DSM is considered as the final cluster. This is a
bottom-up construction of the tree.

Figure 4.3 shows the tree structure derived from the clustered DSM PC of the
simplified lock model. The first cluster of plant models 1, 2, 3, and 5 indicates that
those leaf nodes get a parent node, which is numbered node 11 in the tree. Similarly,
the second cluster of plant models 6, 7, 8, and 10 indicates that those leaf nodes get a
parent node as well, which is numbered 12 in the tree. Furthermore, the cluster of
plant models 4 and 9 indicates that those leaf nodes have a parent, which is numbered
13 in the tree. Finally, the complete DSM results in the top node, which is numbered
14 in the tree, having the three cluster nodes 11, 12, and 13 as children.

Distributing the plant and requirement models over the nodes in this tree is
done with the clustered DSM as well as the DMM started with. This distribution
is performed top-down, where plant and requirement models are placed as low as
possible in the tree.

Explaining the method can be best done with the example of the simplified lock.
Starting at the top node, i.e., the complete clustered DSM, we identify nonzero elements
inside this cluster but outside its subclusters. Plant and requirement models related
to these elements are placed in the top node. Figure 4.2b shows six of these nonzero
elements: PC(3, 8), PC(3, 9), PC(4, 8), PC(8, 3), PC(8, 4), and PC(9, 3). Therefore, plant
models numbered 3, 4, 8, and 9 are placed in the top node. The DMM shown in
Figure 4.1 is used to identify the six requirements resulting in these nonzero elements.
For example, to identify the two requirements resulting in the nonzero elements of
PC(3, 8) and PC(8, 3), those columns of the DMM are selected that have a one in
row 3 and row 8. These are the requirements numbered 5 and 20. The other four
requirements numbered 2, 4, 17, and 19 are obtained similarly. As can be seen in
Figure 4.3, the identified plant and requirement models are placed in the top node.

The same method is used to identify the plant and requirements for each other
node, where each node relates to a cluster. Figure 4.3 shows the result for the three
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9
P4
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P9

11
P1 ‖ P2 ‖ P3 ‖ P5

R3 ‖ R6 ‖ R7 ‖ R8 ‖ R9 ‖
R10 ‖ R11 ‖ R12 ‖ R13 ‖ R14 ‖ R15

12
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P4 ‖ P9
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14
P3 ‖ P4 ‖ P8 ‖ P9

R2 ‖ R4 ‖ R5 ‖ R17 ‖ R19 ‖ R20

Figure 4.3: The multilevel system of the simplified lock: the tree structure derived from the
clustered DSM together with the plant and requirement models for each node.
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subclusters. Yet, this identification method changes slightly when a leaf node is
reached. A leaf node does not have any children (or subclusters in the DSM), so this
has to be taken into account. When a leaf node is reached, the single plant model
related to this leaf node is always placed in it. For example, in leaf node 1 plant model
1 is placed, in leaf node 2 plant model 2 is placed, and so on. Subsequently, only those
requirements that relate to just this single plant model are placed in that leaf node.
In this example, no requirement is placed in a leaf node as none relate to just one
plant model. The complete multilevel system is shown in Figure 4.3.

Figure 4.4 summarizes the presented method. In Paper 2 it is shown (Theorem 2)
that the output produced by this method is a valid input for multilevel synthesis.
This implies that no plant or requirement model is lost along the transformation
and for each node monolithic synthesis can be performed. Now, multilevel synthesis
of (Komenda, Masopust, et al. 2016) can be applied with the obtained multilevel
system as input.

Figure 4.5 shows the clustered DSM of Lock III obtained with the presented method.
For the major clusters, an interpretation is provided based on the components that
have been placed in that cluster. While this model is more detailed than the simplified
lock model, some similarities can be observed. Most of the major clusters contain
components of either the upstream or the downstream side of the lock. Furthermore,
for the simplified lock as well as Lock III, the exception is the water leveling system,
where components of both the upstream and the downstream side are clustered
together.

The following results are obtained after applying multilevel synthesis with the
clustering of Lock III shown in Figure 4.5. A total of 30 supervisors are synthesized.
The sum of the state-space sizes of these supervisors is 3.1 · 109 states. This is a
significant reduction compared to the monolithic supervisor with a state-space size of
6.0 · 1024 states.

4.4 Bus components
Observing the DSM of Lock III in Figure 4.5 more closely, one may observe several
components that have many dependencies across the system, acting as system-level
integrating components. This can also be observed in DSMs from other infrastructural
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Figure 4.4: Overview of the proposed method. It starts with given sets of plant and
requirement models. First, the dependencies between the plant models and the requirement
models are recorded in a rectangular DMM. Then, this DMM is transformed into a DSM
and subsequently clustered. From the clustered DSM, a multilevel system is created. Finally,
multilevel synthesis of (Komenda, Masopust, et al. 2016) can be applied to synthesize a
supervisor for each node in the multilevel system.
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Figure 4.5: The clustered DSM of Lock III.

systems. These components are called bus components, see (Yu et al. 2007). With the
method presented in Paper 2, the bus components are placed high, or even in the top
node, in the multilevel system, as they are related to many components in the system.
In top nodes, this produces large sets of plant and requirement models, resulting in a
large supervisory control problem to solve.

Bus components can be identified with the clustering algorithm of (Wilschut et al.
2017), where the bus detection heuristic can be tuned manually to identify busses with
different sizes. Figure 4.6 shows the clustered DSM of Lock III including identified
bus components. The bus components are placed at the top left corner of the DSM
and include the stops and emergency stop. For the non-bus part, there is again a
distinction between the upstream and the downstream side, except for the water
leveling systems.

The question remains how to transform a clustered DSM with bus components
into a multilevel system. Intuitively, one might place the bus components in the top
node, as they act as system-level integrating components. Yet, as discussed earlier,
this results in a large synthesis problem to solve in the top node, which is exactly what
should be avoided with deploying a divide-and-conquer synthesis strategy. Therefore,
another transformation method is proposed in (Goorden, Dingemans, et al. 2019).
Without explaining this method in detail, it tries to place requirements between bus
and non-bus components as low as possible in the non-bus tree. In this way, creating
large supervisory control problems to solve in a particular node is avoided.

Multilevel synthesis with a bus is beneficial for the Lock III model. The state-space
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Figure 4.6: The clustered DSM of Lock III with bus components identified.

size of the supervisor(s) for the lock model is reduced from 6.0 · 1024 states of the
monolithic supervisor to 7.7 · 106 states of the multilevel bus supervisors where the
clustering from Figure 4.6 is used. The latter state-space size is actually the sum of
the state-space sizes of all synthesized multilevel bus supervisors.

4.5 Conclusion
In this chapter, a method is presented to transform any set of plant and requirement
models into the input needed for multilevel synthesis. In this method, the dependencies
between plant models and requirement models are captured in and analyzed with
DMMs and DSMs. Subsequently, from a clustered DSM the input for multilevel
synthesis can be created. Special attention is also paid to systems containing bus
components, which act as system-level integrating elements. Examples with models of
Lock III show the applicability of the method for large-scale infrastructural systems.
Yet, an essential detail is left out. When supervisors are synthesized in a modular
fashion, like multilevel synthesis, they may conflict with each other, i.e., together they
no longer satisfy the nonblockingness property. In the next chapter, this problem is
discussed in more detail.





Chapter 5

Compositional coordinator
synthesis for EFAs

Supervisors synthesized in a modular fashion, like multilevel synthesis, may conflict
with each other, i.e., together they no longer satisfy the nonblockingness property.
In this chapter, the issue of conflicting supervisors is explained in more detail. Sub-
sequently, it is explained how it can be efficiently verified whether supervisors are
conflicting and, in case of conflicting supervisors, how the issue can be resolved.

5.1 Conflicting supervisor
To illustrate the problem of conflicting supervisors, consider the following two supervi-
sors each controlling one of the two incoming traffic lights at the same side of a lock
head, depicted in Figure 5.1. The first supervisor ensures that traffic light 1 may only
switch from green to red if traffic light 2 is already red. The second supervisor is
exactly the opposite of the first supervisor: it ensures that traffic light 2 may only
switch from green to red if traffic light 1 is already red. Assuming that only the red
state of the traffic light is marked, one can verify that when considering only one of the
supervisors at a time, the state where both traffic lights are red can be reached, i.e.,
each individual supervisor is nonblocking. Now, consider both supervisors together.
When both traffic lights are green, neither one of them can go to red. Therefore,
the marked state (both traffic lights are red) can no longer be reached, violating the

Sup_TL_1
Red Greenc_green

c_red
when

Sup_TL_2.Red
(a)

Sup_TL_2
Red Greenc_green

c_red
when

Sup_TL_1.Red
(b)

Figure 5.1: Example of two conflicting supervisors.
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desired nonblockingness property. When this happens, the set of supervisors is called
conflicting, otherwise it is called nonconflicting.

The issue of conflicting supervisors is well-known in literature. Already with the
initial publication of modular supervisory control synthesis, see (Wonham and Ramadge
1988), this issue is identified. As deploying conflicting supervisors is undesirable,
research is published to circumvent the issue. The first solution is formulating
additional conditions on the plant and requirement models such that modular synthesis
(and similar synthesis techniques) guarantee to calculate nonconflicting supervisors,
see for example (de Queiroz and Cury 2000a; de Queiroz and Cury 2000b; Wonham
and Ramadge 1988). The second solution is to deploy another synthesis technique
that guarantees nonconflicting supervisors, such as aggregative synthesis of (Su, van
Schuppen, and Rooda 2010) or compositional synthesis of (Malik and Flordal 2008).
A third solution is to verify after synthesis whether the supervisors are conflicting.
When the set of supervisors is nonconflicting, the supervisors together satisfy safety,
nonblockingness, controllability, and maximal permissiveness, as shown in (Wonham
and Ramadge 1988).

In this thesis, the thirds solution is chosen for two reasons. Firstly, the first two
options often makes the applied synthesis algorithms conceptually more complex, which
makes explaining the used methods to industry more difficult. Secondly, several case
studies of infrastructural systems have shown that most likely no synthesis is needed,
see Chapter 3. In that case, modular and multilevel supervisors are nonconflicting,
which can always be verified with a nonconflicting check.

5.2 Compositional nonconflicting check
The worst-case computational complexity of the nonconflicting verification is the same
as of the monolithic supervisory control synthesis, see (Cassandras and Lafortune
2008; Wonham, Cai, and Rudie 2018). This means that if one uses modular synthesis
when monolithic synthesis was running into computational problems, performing the
nonconflicting check could become the bottleneck and in the worst-case scenario also
fail computationally. There exist several nonconflicting verification procedures in the
literature that deploy different abstraction techniques to reduce the computational
effort for most cases, see (Flordal and Malik 2006; Mohajerani, Malik, and Fabian
2016; Pena et al. 2008; Su, van Schuppen, Rooda, and Hofkamp 2010).

A promising nonconflicting verification procedure is compositional nonblocking
verification of (Mohajerani, Malik, and Fabian 2016), as this procedure is also able
to cope with automata having variables and location references. An overview of this
compositional nonblocking verification procedure is shown in Figure 5.2. The main

Set of
automata

Normalized
system · · · Single

automaton (non)blockingnormalize abstract1 abstractn verify

Figure 5.2: Overview of compositional nonblocking verification of (Mohajerani, Malik, and
Fabian 2016).
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idea of this compositional nonconflicting verification is to apply multiple small and
simple conflict-equivalent abstractions on a collection of automata until one automaton
is obtained. Examples of these abstractions are partial composition, variable unfolding,
and event merging.

The first step is to normalize the system. In a normalized system, each event
is associated with a unique guard and update throughout the system. This eases
reasoning about the effect of executing an event, as each transition labeled with the
same event has the same effect on the values of the variables.

After obtaining a normalized system, several small conflict-equivalent abstractions
are applied. For each of these abstractions, it is proven that the obtained system is
nonblocking if and only if the system before abstraction is nonblocking. Therefore,
the nonblocking property is preserved, resulting in a conflict-equivalent system.

Finally, when a single automaton without variables is obtained, a standard mono-
lithic nonblocking verification procedure is applied. The result of this verification is
returned as the result of this compositional nonblocking verification procedure.

5.3 Compositional coordinator synthesis
The question remains what to do in case of conflicting supervisors. To resolve the
issue of conflicting supervisors, an additional supervisor needs to be synthesized to
solve it. This supervisor is called a coordinator. Then, the synthesized supervisors and
the coordinator together satisfy safety, nonblockingness, controllability, and maximal
permissiveness.

In (Su, van Schuppen, and Rooda 2009), it is suggested to synthesize a coordinator
by applying the monolithic synthesis procedure on the collection of synthesized
supervisors. In such cases, the advantages of using a non-monolithic synthesis procedure
to synthesize the supervisors may be lost. For some special cases where only a small
number of events is shared between supervisors, abstractions employing natural
observers can be used to synthesize a coordinator, see for example (Feng and Wonham
2008). A study by (Zita et al. 2017) suggests to use counterexamples to refine the
system to resolve conflicts.

In Paper 3, we propose a procedure to use the result of the nonconflicting verification
of (Mohajerani, Malik, and Fabian 2016) to synthesize a coordinator in case of
conflicting supervisors. Using this resulting single automaton, we can synthesize a

Set of
EFAs

Normalized
system · · · Single

automaton (non)blocking

Coordinator′′ Coordinator′ · · · Coordinator

normalize abstract1 abstractn verify

synthesize
refinenrefine1denormalize

coordinate

Figure 5.3: The top row represents the compositional nonblocking verification of (Mohajerani,
Malik, and Fabian 2016). In this thesis, we propose the addition of the bottom row: synthesize
a coordinator based on the single, simplified automaton and then transform this coordinator
back to the original system.
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coordinator, as shown in Figure 5.3, to resolve blocking with for example monolithic
synthesis, see (Ouedraogo et al. 2011). In general, the coordinator for the single,
abstracted automaton is not a proper coordinator for the original set of automata,
as the abstracted system may use notions not present in the original system, such as
renamed events. We show in Paper 3 how the synthesized coordinator can be refined
in order to be a coordinator for the original system.

For each abstraction defined in (Mohajerani, Malik, and Fabian 2016), we investi-
gate if and how the coordinator for the abstracted system can be transformed back
while maintaining nonblockingness, controllability, and maximal permissiveness, as
illustrated in Figure 5.4. It has been shown in, for example, (Mohajerani, Malik, and
Fabian 2014) that for finite automata, thus without variables, some conflict preserving
abstractions may not be suitable for synthesis. In Paper 3, we define the notion of
coordinator equivalence to determine which abstractions defined in (Mohajerani, Malik,
and Fabian 2016) are also suitable for synthesis refinement.

Coordinator equivalence relates the different composed systems obtained by apply-
ing abstractions, taking into account that eventually a coordinator has to be refined
back. Consider the two composed systems E and F from Figure 5.4, yet not composed
with each other. We could directly synthesize a coordinator CE based on E , resulting
in some closed-loop behavior of E together with this coordinator. Now, composed
system F is said to be coordinator equivalent to E roughly speaking if coordinator
C ′ in Figure 5.4 results in the same closed-loop behavior of E together with C ′ as E
with coordinator CE . Abstractions, together with their associated refinements, can be
used when for any system E the abstracted system F is always coordinator equivalent
to E . It turns out that these refinements are simple, but may involve more than just
renaming of events, as is the case for finite automaton-based compositional synthesis,
see (Mohajerani, Malik, and Fabian 2014).

Paper 3 presents ten different abstractions of which it is proven that there exists a
refinement such that the original and abstracted systems are coordinator equivalent.
Table 5.1 provides an overview of these abstractions and indicates where in Paper 3
the abstractions are described.

E F

C ′ C

abstracti

synthesize

refinei

coordinatecoordinate

Figure 5.4: The structure of the theorems in Paper 3. The abstraction abstracti from system
E to F is one of those mentioned in (Mohajerani, Malik, and Fabian 2016). The related
refinement refinei from coordinator C to C ′ is novel work. The abstraction and refinement
step can also be replaced with normalize and denormalize, respectively.
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Table 5.1: An overview of all abstractions mentioned in Paper 3, including a reference to
the sections that describe these abstractions.

Abstraction Section Abstraction Section
Local normalization Section 5 Variable unfolding Section 6.4
Global normalization Section 5 False removal Section 6.5
FA-based abstractions Section 6.1 Selfloop removal Section 6.6
Partial composition Section 6.2 Event merging Section 6.7
Update simplification Section 6.3 Update merging Section 6.8

5.4 Conclusion
In this chapter, a framework for compositional coordinator synthesis is presented to
resolve potential conflict between supervisors synthesized in a modular fashion. This
framework builds upon the state-of-the-art compositional nonblocking verification
available in the literature. The framework utilizes several abstractions to simplify the
models, on the abstracted model the coordinator is synthesized, and subsequently
this coordinator is refined back to interact with the original models. While the
proposed framework has not been implemented yet, published work of the compositional
nonblocking verification shows promising results with regard to the computational
efficiency gain for multiple case studies. It is expected that similar results would be
obtained with the framework proposed in this chapter.





Chapter 6

A unifying perspective on
monolithic, modular, and
multilevel synthesis

An engineer applying supervisory control synthesis has a choice from numerous
synthesis techniques, as shown in Section 2.3. In case studies with infrastructural
systems, monolithic, modular, and multilevel synthesis are applied. Using the DSM-
based method of Chapter 4 and experimenting with the clustering algorithm, the
relationship between these three synthesis techniques became apparent. In this chapter,
a unifying perspective is presented on monolithic, modular, and multilevel synthesis.

6.1 Modular synthesis
Modular supervisory control synthesis uses the fact that the desired behavior is often
specified with a collection of requirements, see (Wonham and Ramadge 1988). Instead
of first transforming the collection of requirements into a single requirement, as mono-
lithic synthesis does, modular synthesis calculates for each requirement a supervisor
based on the complete plant model. This local supervisor is a safe, nonblocking,
controllable, and maximally permissive supervisor. When multiple supervisors are put
together, an event is enabled when all supervisors enable it, otherwise the event is
disabled.

A useful extension to modular synthesis, as proposed by (de Queiroz and Cury
2000b), states that instead of synthesizing each time with the complete plant model,
it suffices to only consider those automata that relate to the requirement that is
considered. For example, when synthesizing the two supervisors for the incoming
traffic lights, only the plant models of these two traffic lights are needed, all other
plant models can be omitted. This extension is used in the rest of this thesis.

Applying modular synthesis is rather straightforward. It suffices to have just a set
of plant and requirement models. The information necessary to determine for each
requirement which plant models to take into account is embedded in the plant and
requirement models themselves.
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As a side note, a DMM constructed in Section 4.2 also shows exactly which plant
models to select for the modular synthesis of (de Queiroz and Cury 2000b). For each
requirement, only those plant models that are related need to be included to synthesize
a local supervisor. For each column in the DMM, nonzero elements indicate exactly
those plant models that are related to the requirement of that column. For example,
to synthesize a local supervisor for the first requirement of the simple lock model, the
DMM of Figure 4.1 shows that only plant models numbered 4 and 9 need to be taken
into account.

6.2 Relating the three synthesis techniques
The starting position for the analysis in this chapter is a given set of plant models and
a given set of requirement models, from which one or multiple supervisory controllers
need to be synthesized. So, these models are given as a composed system, but they
may not necessarily be a (most refined) product system.

Figure 6.1 provides a schematic view on the relationship between the three synthesis
techniques. On the one hand, monolithic synthesis groups all requirements together
and synthesizes a single supervisor for this group. On the other hand, modular
synthesis separates all requirements and synthesizes a supervisor for each requirement.
Multilevel synthesis bridges these two techniques. It synthesizes a supervisor for each
node in the multilevel system, which relates to a group of requirements when the
method described in Chapter 4 is used. With just a few groups of requirements,
multilevel synthesis approaches monolithic synthesis, and with numerous groups of
requirements, multilevel synthesis approaches modular synthesis.

The method presented in Chapter 4 and in Paper 2 essentially is grouping require-
ments. While a DSM with plant models along its axis is used to find the structure of
the multilevel system, each requirement is assigned to a node. Therefore, each node
forms a group of requirements.

After determining the groups of requirements, the set of ‘appropriate’ plant models
is created. For monolithic synthesis, this is just all plant models. For modular
synthesis, (de Queiroz and Cury 2000b) describes in a detailed fashion which plant
models need to be selected for each requirement to perform synthesis. Finally, for
multilevel synthesis the method in Chapter 4 utilizes the DMM to identify which plant
models to use for each group (or node) of requirements.

Monolithic

A supervisor for
all requirements

Modular

A supervisor for
each requirement

Multilevel

A supervisor for
each group of requirements

Figure 6.1: Relating monolithic, multilevel, and modular supervisory control synthesis, where
the grouping of requirements varies along the horizontal axis.
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When only a single requirement is provided, monolithic, multilevel, and modular
synthesis become the same, which Figure 6.1 shows clearly, as there is only one way of
grouping possible. Both multilevel and modular synthesis become monolithic synthesis.
Also, when the multilevel system is constructed such that each node contains only one
of the requirements, multilevel and modular synthesis become the same.

6.3 Illustration with two examples
In this section, the discussion above is illustrated with two examples. First, results for
the simplified model are presented (the model also used in Sections 3.4.1, 4.2, and 4.3).
This model has 10 plant models in the most refined product system representation
and 30 requirement models.

Synthesizing supervisors for the two extremes of Figure 6.1 is straightforward.
Monolithic synthesis results in a single supervisor having a state space of 688 states.
Modular synthesis results in 30 supervisors of which the median state-space size is 18
states and the largest is 81 states.

Multilevel synthesis allows the result to be more towards monolithic or modular
synthesis. To demonstrate this, the DSM of the simplified lock is clustered with
different settings, resulting in two different clusterings. Figure 6.2 shows the two
clustered DSMs. The left one (Figure 6.2a) is the one from Section 4.2 and it can be
considered to be more towards monolithic synthesis. The right one (Figure 6.2b) can
be considered more towards modular synthesis. One of the main differences between
these two clusterings is the presence of smaller clusters in the right one. For example,
plant models numbered 1 and 2 form a cluster; similarly plant models numbered 3
and 5 form a cluster. These two small clusters are absent in the left one.

Table 6.1 shows results of performing synthesis with the different synthesis tech-
niques. As a reference, the number of states of the uncontrolled system, i.e., the plant,
is also shown. First, the number of supervisors clearly demonstrates the effect of
grouping requirements according to the view of Figure 6.1. Monolithic and modular
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Figure 6.2: DSM P for the simple lock example clustered in two different ways. The relation
between the plant numbers and names can be found in Section 3.4.1.
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Table 6.1: Synthesis results on the simplified lock. Multilevels A and B refer to the clusterings
of Figure 6.2a and Figure 6.2b, respectively.

Synthesis technique Number of
supervisors

Maximum
number of states

Sum of number
of states

Monolithic 1 688 688
Multilevel A 4 176 227
Multilevel B 8 86 165
Modular 30 81 678
Uncontrolled system - - 82, 944

synthesis are the extremes and multilevel synthesis is in between. Second, looking
at the maximum number of states of the synthesized supervisors, i.e., the largest
supervisor synthesized, the transition from monolithic through multilevel to modular
synthesis is visible.

The second example is the model of Lock III, see (Reijnen, Goorden, van de Mortel-
Fronczak, and Rooda 2017). This model has 51 plant models in the most refined
product system representation and 198 requirement models. Again, two different
clusterings are used for multilevel synthesis. The first one, more closely to monolithic
synthesis, is shown in Figure 6.3; the second one, more closely to modular synthesis,
is shown in Figure 4.5 in Section 4.3.
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Figure 6.3: An alternative clustered DSM of Lock III.
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Table 6.2: Synthesis results on case Lock III. Multilevels C and D refer to the clusterings of
Figure 6.3 and Figure 4.5, respectively.

Synthesis technique Number of
supervisors

Maximum
number of states

Sum of number
of states

Monolithic 1 6.0× 1024 6.0× 1024

Multilevel C 15 3.3× 1016 3.3× 1016

Multilevel D 30 2.4× 1009 3.1× 1009

Modular 198 1.4× 1005 6.7× 1005

Uncontrolled system - - 6.0× 1032

Table 6.2 shows results of performing synthesis with the different synthesis tech-
niques for the model of Lock III. Similar to the results of the simplified lock model,
both the number of supervisors and the maximum number of states confirm the view
of Figure 6.1 where one can transition from monolithic synthesis through multilevel
synthesis to modular synthesis and vice versa.

Finally, based on experience with applying multilevel synthesis on different cases,
we have the following observation to note. The closer to monolithic synthesis, the
more the sum of the numbers of states is determined by a single group of requirements.
For this group of requirements, a large supervisor is synthesized, hence having a major
contribution in the total number of states and the computational effort needed. For
example, for multilevel synthesis variant 1 in Table 6.2, there were one large supervisor
and 14 small supervisors. The largest of these 14 smaller supervisors has 2.6× 109

states, not even close to the largest one of 3.3 × 1016. Furthermore, the median
supervisor has only 360 states.

6.4 A generalized unifying perspective
The method of grouping requirements can be further generalized. Consider again the
starting point of the analysis: a set of plant models and a set of requirement models
describing the system to be controlled. In the previous section, only the grouping of
requirement models is considered. One can also think of the grouping of plant models
together, and a more generalized view is the grouping of plant models and requirement
models together.

The generalized synthesis method works as follows. From the given set of plant
models and requirement models, zero or more plant models and zero or more re-
quirement models are picked. Subsequently, for this group of models, a supervisor is
synthesized. After this, one repeats the process an arbitrary number of times, each
time starting with the given set of models, so each model may be picked multiple
times.

The design freedom for the engineer is in determining how and how often plant
and requirement models are picked. Based on the desired properties of the synthesized
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supervisors (any combination of nonblockingness, controllability, and maximal per-
missiveness, see Section 2.2.3), conditions may be imposed on the process of picking
models. For example, modular supervisors need to synthesize that are nonblocking,
controllable, and maximally permissive, for each requirement all relevant plant mod-
els need to be picked by looking at shared controllable and uncontrollable events
(see (de Queiroz and Cury 2000b)). Yet, when the nonblocking property is dropped,
for each requirement all relevant plant models need to be picked by looking at only
shared uncontrollable events (see (Åkesson et al. 2002)). Ideally, conditions should
be formulated on the process of picking plant an requirement models for each of the
seven possible combinations of desired conditions. For example, it may be interesting
to know what the conditions are when only nonblockingness is of interest.

6.5 Conclusion
In this chapter, a unifying perspective on monolithic, modular, and multilevel syn-
thesis is presented. Monolithic synthesis constructs a supervisor for all requirements
together; modular synthesis constructs a supervisor for each requirement separately;
and multilevel synthesis constructs a supervisor for each group of requirements. With
this perspective, multilevel synthesis can be seen as the method bridging monolithic
and modular synthesis. The relationship between the three synthesis methods is
demonstrated with several case studies.



Chapter 7

Modeling guidelines for DESs

This chapter discusses several modeling guidelines, which emerged from the case
studies performed within the context of this research. First, the need for these
modeling guidelines is explained. Subsequently, the modeling guidelines are presented.
The presentation is split into two parts: one with modeling guidelines to eliminate
modeling errors (how to obtain a correct model) and one with modeling guidelines to
reformulate models (how to obtain a ‘better’ model). At the time of writing of this
thesis, Guidelines 1, 2, and 3 have been published in Paper 4, Guideline 7 in (Reijnen,
Goorden, van de Mortel-Fronczak, and Rooda 2019), and Guideline 10 in Paper 5.

7.1 The need for modeling guidelines
It can be safely stated that (mathematical) modeling is an art, no matter the scientific
field or the purpose of the model. Similar to art, becoming a master in modeling
requires dedicated practice. As applications of supervisory control theory are yet few
in numbers, see (Wonham, Cai, and Rudie 2018), there is also the question when a
model can be considered a ‘good’ model, as there would probably be multiple views
on what ‘good’ entails in this context.

Within the MultiWaterWerk project, several case studies have been performed,
with results presented in (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al.
2018; Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017; Reijnen, Verbakel,
et al. 2019; Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2019). Similar
to art, only the final result is shown to the public, not the journey to arrive at the
published model. Yet, this journey is important to master the art of modeling.

In (Wonham, Cai, and Rudie 2018), two reasons are provided why the number of
applications of supervisory control theory is low. First, it mentions the lack of tooling
with sufficient computational strength to cope with the size of industrial applications.
The case studies used in this thesis show that tooling has sufficiently evolved to
be computationally strong enough for infrastructural systems. Second, it mentions
the “lack of experience among control engineers with modeling and specification in
the framework of automata”. Currently, only scientists performing case studies have
experience in modeling for the purpose of synthesizing supervisors.
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The aim of providing modeling guidelines is twofold: 1) to transfer experience
about modeling towards control engineers (considering) applying supervisory control
synthesis, and 2) to have a discussion in the scientific community about the question
when a model can be considered a ‘good’ model.

7.2 Modeling guidelines to eliminate modeling er-
rors

Supervisory control synthesis guarantees that the synthesized supervisory controllers
are correct with respect to the provided plant model and requirement model. However,
if the quality of these models is insufficient, the guarantee of a correct supervisory con-
troller is meaningless when it is implemented on the actual system, which undermines
all its benefits. As modeling is still a human activity, the quality of these models is
susceptible to modeling errors. As systems to be automated become larger and larger,
identifying modeling errors becomes cumbersome.

In Paper 4 it is shown that DSMs are powerful tools for the control engineer to
recognize modeling errors. It utilizes the same matrix construction as presented in
Chapter 4. The first guideline utilizes the DMM, while the second and third ones
utilize the DSM, both introduced in Section 4.2.

Guideline 1: A Domain Mapping Matrix of the plant and requirement models should
not contain any empty row or column.

A DMM shows relationships between plant and requirement models. As explained
in Paper 4, an empty row (column) indicates either a missing requirement (plant)
model or an obsolete plant (requirement) model. Figure 7.1 shows the DMM of the
first workstation of the FESTO production line, as described in (Reijnen, Goorden,
van de Mortel-Fronczak, Reniers, et al. 2018). This DMM is generated from an earlier
(incomplete and incorrect) version of the model, not the published version. As can be
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Figure 7.1: The DMM of the first workstation of the FESTO production line.
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observed in this DMM, row 11, corresponding to plant G11, is empty and therefore
indicates a modeling error. After analysis, it turned out that the modeled sensor of the
production line is indeed obsolete for the intended functioning and this plant model
was removed in the published version.
Guideline 2: A Dependency Structure Matrix of the plant and requirement models
should not have independent clusters.

A DSM relates plant models based on the requirements. Clustering such a DSM
may reveal independent clusters, i.e., there is no dependency shown in the DSM relating
plant models from different clusters together. Yet, as the modeler has combined these
plant models into a single model, he or she probably considered it as a single system
and not multiple independent subsystems. Either some plant models are obsolete
(see also the previous guideline) or, more likely, some requirement models are missing.
Figure 7.2 shows the DSM of the FESTO production line, again an earlier version
than the published model. Looking at this DSM, one immediately recognizes multiple
independent clusters. Using this DSM, the missing requirements describing the desired
interaction between the third and fourth workstation have been identified easily.
Guideline 3: Similar components of the system should have similar relationships in
a Dependency Structure Matrix.

Often, large cyber-physical systems contain multiple similar components performing
similar functions. For example, components included for additional redundancy can be
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Figure 7.2: The DSM of the FESTO production line based on an earlier version, not the
published version.



56 7.2. Modeling guidelines to eliminate modeling errors

emergencystop: 31
stop3: 32
stop1: 33
stop2: 34
stop4: 35

Figure 7.3: The part of the DSM of Lock III of Figure 4.5 with only the stops and emergency
stop.

considered similar. Therefore, one expects to see similar clusters for these components.
Figure 7.3 shows the part of the DSM of Lock III of Figure 4.5 with only the stops and
emergency stop. The operator has five buttons: an emergency button and four buttons
stopping parts of the system. Inspection of this part of the DSM shows that stop3
(second row in the figure) has fewer dependencies than all other stop buttons, while all
of them have similar functions. After inspecting the actual model, it turned out that
quite some requirements were referring to the stop4 button while they should have
referred to stop3. Such typing errors are not identified by the modeling formalism, as
stop4 is also a model in the system. Yet, by analyzing the DSM this modeling error is
recognized.

Guideline 4: Add selfloops of uncontrollable events to locations of an automaton
requirement, unless you are sure it has to be blocked in that location.

A common mistake in modeling automaton-based requirements is the omission of
uncontrollable events in some locations, leading to controllability issues that have to
be solved by synthesis. Often, this leads to the empty supervisor as the solution, which
clearly indicates that something went wrong in modeling the system. Consider the
simple example of a lamp and a button in Figure 7.4 together with the requirement
expressing that the lamp may only go on when the button is pressed (requirement
R). Now, this requirement disables event press after the sequence press-release (so
without switching the lamp on), which probably is not the intention of the modeler.
The controllability property of the supervisor prevents any synthesized supervisor
from disabling this uncontrollable event. Synthesis would eventually conclude that
there is no solution for this problem. A simple solution is to add a selfloop with
uncontrollable events from the requirement alphabet to the locations when there is
yet no outgoing transition labeled with these uncontrollable events, as requirement
R′ depicts in Figure 7.4 by adding a selfloop with press. The modeler may ignore to

Off On
Lamp L:

on

off

Released Pressed
Button B:

press

release

Requirement R:
press

on
Requirement R′:

press

on

press

Figure 7.4: An example of a system with a lamp and a button.
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add selfloops with uncontrollable events if he or she consciously wants to introduce a
controllability issue in the requirement.

7.3 Modeling guidelines to reformulate models
For a given system, there is no unique way of modeling that system, which makes
modeling hard. In this section, several guidelines provide directions for several
modeling alternatives. These alternatives are evaluated based on the correctness of the
synthesized supervisors, the applicability of synthesis (with respect to computational
effort), and the maintainability of the models over time.

Guideline 5: Behavior that can “or cannot” happen should be described by the
plant model, behavior that should or should not happen should be described by the
requirement model.

While this guideline essentially states the purpose of the plant and requirement
models, it is reiterated as a modeling guideline. In (Fabian, Fei, et al. 2014) it is
mentioned that distinguishing between the plant and requirement model is neither
easy nor clear-cut. There are two main reasons why this guideline matters. First,
due to the controllability property of supervisory control synthesis, see Section 2.2.3,
modeling an informal requirement disabling an uncontrollable event as a plant or as a
requirement results in different supervisors. If the model of this requirement is labeled
as a requirement model, a supervisor needs to disable one or more controllable events
in order to meet this requirement; on the other hand, if it was labeled as a plant model,
the supervisor could safely assume that the uncontrollable event is disabled. The
second reason concerns the maintainability of the model. If the informal requirement
was incorporated in the plant model and this plant model is changed later in the
design process, one might forget that an informal requirement was implemented in
that plant model, which introduces a modeling error.

Guideline 6: Model independent plant components as asynchronous plant models.

Plant components that have no relationship with each other, should not be combined
into a single plant model. A single plant model suggests a relationship, which is absent
in this case. Having asynchronous models (i.e., no shared events) increases readability
of the model, but also allows divide-and-conquer strategies to synthesize supervisors
for smaller subsystems.

Consider the following example where an autonomous omnidirectional robot can
move on a factory floor along a grid, inspired by the application published in (Gonzalez
et al. 2018). We want to model the pose of the robot, i.e., the combination of position
along the x-axis, position along the y-axis, and orientation of the front of the robot.
Following that paper, the model of the factory floor would be the one shown in
Figure 7.5, while the three asynchronous models shown in Figure 7.6 capture the exact
same dynamics.

For modular synthesis approaches, having multiple asynchronous plant models
instead of a single large model is an advantage. Instead of always using the large
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Figure 7.5: The factory floor modeled as a single plant model. Event labels are not depicted.
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Figure 7.6: The factory floor modeled as three asynchronous plant models.
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plant model, a selection of the three smaller plant models could be used. For a more
in-depth argument about performance gains, see Guideline 10 and Paper 5.

Guideline 7: Use the abstraction level of the inputs and outputs of the control
hardware for the plant model.

Choosing the ‘right’ abstraction level for the model is often not straightforward.
For the case studies with infrastructural systems, the goal was to eventually deploy
the synthesized supervisor on hardware. Choosing the abstraction level of the inputs
and outputs of the control hardware, as introduced for supervisory control synthesis
in (Balemi 1992), allows for the generation of control code, see (Fabian and Hellgren
1998). Furthermore, this abstraction level leads to many small and loosely coupled
models of the sensors and actuators, based on just a few templates, as introduced
in (Grigorov et al. 2011). Work presented in this thesis benefits from having (almost)
a product system. The work of (Swartjes 2018) confirms this view. In software
engineering, this modeling method is called component-based modeling, see (Gössler
and Sifakis 2005). Another modeling method called product-based modeling should
be avoided when possible. An example of a model with this abstraction level is the
wafer scanner logistics model of (van der Sanden et al. 2015), where all plant models
are connected with each other by synchronizing events to follow the products in the
system. This is detrimental for the applicability of synthesis, as mentioned by the
authors of that paper.

Guideline 8: Requirements should not introduce new events or variables.

SCT is built upon the assumption that the desired behavior as described by the
requirement models should be part of all possible behavior as described by the plant
model. This implies that a requirement should not introduce events or variables
not mentioned by the plant models. Yet, tooling like CIF and Supremica allows the
engineer to introduce new events and variables in requirements. First, the conceptual
interpretation of those events and variables with respect to the plant is unclear, which
could become problematic for the maintenance of the models. Second, tools may
circumvent the introduction events or variables in the requirements by assuming
additional implicit plant models just containing these new events and variables.
Unfortunately, this solution is not documented for the user of the tools and, maybe
even more problematic, it is not used consequently throughout the tooling. For
example, in CIF event-based synthesis simply rejects such a model, while data-based
synthesis provides a supervisor for it.

Guideline 9: Requirements should not refer to locations of other requirements.

The tool CIF allows for location names to be used as variables in the models. This
possibility may result in requirement models referring to locations of other requirement
models, see for example (Reniers and van de Mortel-Fronczak 2018). There are three
reasons why one should avoid such a construction.

First, there is a conceptual problem. As Guideline 5 stated, a requirement should
formulate what the system should or should not do. By referring to the location of
another requirement, understanding such intertwined requirements may be difficult.
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A question to the modeler is why there is a need for a requirement to restrict the
behavior of another requirement to restrict the behavior of the plant.

The second reason is related to the applicability of the method presented in
Chapter 4 and Paper 2. The method simply fails when a requirement refers to another
requirement, see Proposition 4 in Paper 2.

Finally, a deterioration of performance is observed in CIF during the development
of the model for infrastructural systems when requirements refer to locations of other
requirements. The reason for this is yet unclear, but it may be related to the step
where requirements are plantified. Plantification transforms requirement models into
plant models, such that synthesis only has to be performed on plant models, see for
example (Flordal, Malik, et al. 2007; Malik and Flordal 2008; Ouedraogo et al. 2011).
Further research is needed to fully understand this performance degradation.
Guideline 10: Split requirements formulated with logical expressions into a set of
smaller ones.

By splitting requirements, more elementary requirements are created. Having
smaller requirements turns out to be beneficial for the applicability of modular and
multilevel synthesis, as shown in Paper 5. To demonstrate this modeling guideline,
consider the requirement expressing that a gate may only be closed if (1) the command
to close the gate is given, (2) the gate is not yet closed, and (3) the command to stop
the gate is not given. The model of this textual requirement for one of the gates is

gate_D_N.c_close needs cmd_D_gate_close ∧ ¬gate_D_N.S.closed ∧
¬cmd_stop_D_gate,

where D is an abbreviation for downstream, N for north, S for sensor, and cmd for
command. The three terms of the condition are conjunctive, thus this requirement
can be split into three smaller requirements as follows:

gate_D_N.c_close needs cmd_D_gate_close,
gate_D_N.c_close needs ¬gate_D_N.S.closed,
gate_D_N.c_close needs ¬cmd_stop_D_gate.

This splitting of requirements is applied on four different case studies: Lock III
of (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017), the Prinses Marijke
complex of (Reijnen, Verbakel, et al. 2019), the Advanced Driver Assistant Systems
(ADAS) of (Korssen et al. 2017), and the FESTO production line of (Reijnen, Goorden,
van de Mortel-Fronczak, Reniers, et al. 2018). Table 7.1 shows numerical results of
performing different synthesis techniques on the original and adapted model. The
reported state-space size for modular and multilevel synthesis is the sum of the state-
space sizes of the individual supervisors. The number of supervisors refers to the
result of multilevel synthesis; monolithic synthesis results in only one supervisor and
modular synthesis creates a supervisor for each requirement.

For all four cases, adapting the models by splitting requirements increases the
number of requirements significantly, it often more than doubles. The results for
modular and multilevel synthesis indicate that splitting the requirements is beneficial
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Table 7.1: Experimental results for synthesizing modular and multilevel supervisors with
the original and adapted models of the several case studies.

Model Variant
Number
of require-
ments

Monolithic Modular Multilevel
Number
of super-
visors

LockIII Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7
Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

Marijke Original 248 6.68 · 1026 1.29 · 107 5.50 · 1012 26
Adapted 529 6.68 · 1026 2.24 · 105 4.03 · 1011 33

ADAS Original 33 2.0 · 1010 1.5 · 104 1.1 · 108 8
Adapted 72 2.0 · 1010 1.1 · 103 5.2 · 105 16

FESTO Original 78 2.2 · 1025 2.10 · 104 4.00 · 106 12
Adapted 205 2.2 · 1025 2.00 · 103 5.06 · 104 24

for the efficiency of these supervisor architectures. For multilevel synthesis, splitting
the requirements allows to decompose the system differently such that more subsystems
are identified. Therefore, smaller control problems are defined to be solved, resulting in
the reduction of the computational effort. A more in-depth theoretical substantiation
of the observed computational effort reduction can be found in Paper 5.

7.4 Conclusion
In this chapter, ten modeling guidelines are presented. These guidelines are split into
two sets: guidelines to eliminate modeling errors and guidelines to reformulate models.
The first set of guidelines aims to increase the correctness of the models, while the
second set aims to increase the applicability of supervisory control synthesis. Several
of these guidelines should be implementable in tooling as checks or transformations,
like Guidelines 8 and 10, which can be applied before performing synthesis techniques.
Proposing these modeling guidelines contributes to bridging the gap between scientific
research and industrial application, while it also invites the scientific community to
answer the question when a model can be considered as a ‘good’ model.





Chapter 8

Concluding remarks

This chapter concludes Part I of this thesis. First, the research questions from
Section 1.4 are answered. Subsequently, the contributions are put into the research
context described in Chapter 1. Finally, a short epilogue is provided.

8.1 Answers to research questions
In the introduction, three research questions have been posed. In this section, we
answer these questions.

Research question 1: How to model infrastructural systems for the
purpose of supervisory control synthesis?

Modeling infrastructural systems in this research project always started with the
inputs and outputs of the control hardware. First, this abstraction level allows the
synthesized supervisors to be implemented on the control hardware, where events in
the model relate to signals in the realized system. Second, it is shown in this thesis
that using a component-based modeling method aids in synthesizing supervisors. The
combination of this method with the abstraction level of the hardware input and
output results in small numerous models forming (almost) a product system. This
property of the plant being a product system is utilized in Paper 1 to determine
whether synthesis can be skipped, in Paper 2 to generate a multilevel structure of
the system, and in Paper 5 to increase the effectiveness of modular and multilevel
synthesis by splitting requirements.

Publications of case studies almost always only report on the final model and not
the actual steps to obtain that model. To share knowledge obtained during modeling
and to increase the applicability of supervisory control synthesis, modeling guidelines
are formulated in Chapter 7.

Research question 2: How can the design of supervisory controllers for
infrastructural systems benefit from divide-and-conquer synthesis tech-
niques?

63
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Engineers tend to reason about systems as if they were composed of subsystems,
each composed of again subsystems, and so on. Multilevel supervisory control synthesis
was inspired by this multilevel thinking. In order to apply multilevel synthesis, the plant
and requirement models have to be transformed to a multilevel system representation.
Paper 2 deploys dependency structure matrices to identify relationships in a system and,
based on a clustering of such a matrix, constructs a multilevel system which can be used
as input for multilevel synthesis. This method is effective for large-scale infrastructural
systems when multilevel synthesis is followed by compositional coordinator synthesis
of Paper 3 to resolve any potential conflicts between the supervisors.

Research question 3: What can be learned from the synthesized super-
visor(s) about supervisory control of infrastructural systems?

Inspecting the synthesized supervisors for infrastructural systems reveals that for
most of the case studies the supervisor does not pose any additional restrictions on
the system, i.e., the provided requirements together already define the supervisor with
the desired properties. After performing synthesis, one realizes that synthesis could
be skipped. Paper 1 proposes a first step towards determining when synthesis can
be skipped. It verifies certain model properties based on which it can be concluded
that synthesis can be skipped completely or for which parts of the model synthesis
still may be needed. This work is a first step in exploring model properties, as this
method cannot yet explain why no synthesis is needed for the performed case studies
with large-scale infrastructural systems.

8.2 Main contributions into context
In this section, the contributions of this thesis are put into the context as introduced
in Chapter 1. The aim of this thesis is to show that supervisory control theory is very
suitable for the design of supervisory controllers for large-scale infrastructural systems.
During the project, four main benefits have been identified:

1. increase of the quality of the requirements,

2. increase of the reusability and evolvability of the models,

3. increase of confidence in the correctness of manually designed supervisors, and

4. correct-by-construction supervisory controller implementation on control hard-
ware.

First, the quality of the textual requirements of infrastructural systems, especially
locks and movable bridges, has been improved by deploying supervisory control syn-
thesis. Working with the case studies has reduced ambiguity, identified conflicting
requirements, identified incorrect requirements, identified missing requirements, and
formulated new requirements (which were known to be not yet formulated as require-
ments in contrast to the identified missing requirements). An example of an incorrect
requirement is the following textual requirement regarding a movable bridge: “When
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all boom barriers are not opened, the land traffic lights may not be turned off.” It
may take some time to realize that this requirement is incorrectly formulated. Right
now, a simulation of a synthesized supervisor would reveal that the traffic lights can
be turned off when at least one boom barrier is open. This situation is regarded as
unsafe, as traffic may collide with the other still closed boom barriers. The solution is
to move the word ‘not’ in the requirement: “When not all boom barriers are opened,
the land traffic lights may not be turned off.”

Second, the component-based modeling in combination with templates allows for
easy reuse and evolution of models. Creating the first model of a lock took a couple
of months. After that, the models were reused to analyze four other locks, where the
modeling time decreased significantly with each new lock. Furthermore, the templates
of actuators and sensors have also been reused to model other infrastructural systems,
like movable bridges, tunnels, and roadside systems.

Third, even in the case that the actual implemented supervisor is designed with
traditional methods, plant models, requirement models, and synthesized supervisors
can provide value in automating the verification and validation of the manually
designed supervisors. As the synthesized supervisor is correct-by-construction, model-
based tests with the manually designed supervisor can be verified with the synthesized
supervisor. This allows for a more systematic method to answer questions like whether
the manually designed supervisor implements all requirements correctly, and whether
it still contains desired behavior, i.e., the manually designed supervisory does not
remove too much desired behavior.

Finally, the synthesis-based engineering method as discussed in Chapter 2 is possible
for infrastructural systems, from textual specifications all the way to implementation
on real systems. In a related project, experiments have been performed with a movable
bridge including synthesized supervisors for nominal behavior, fault-tolerant control,
and implementation on safety PLC hardware. Essentially, the only issues encountered
during these experiments were related to the hardware interface converting signals
into variables and vice versa.

8.3 Epilogue
In 2017, 30 years of supervisory control theory of Ramadge-Wonham have been
celebrated. Since the publication of the seminal works of (Ramadge and Wonham
1987) and (Ramadge and Wonham 1989), numerous publications in the field of discrete-
event systems have followed. The recently published special section in Annual Reviews
in Control about the discrete-event systems (Silva 2018) provides means to put all
publications into historical perspective.

Research presented in this thesis shows that the maturity level of supervisory
control theory has reached a critical point where it is ready to be fully embraced
by industry. Several case studies performed during the project have shown that
supervisors can be synthesized for large-scale infrastructural systems and not just
academic toy problems. In my view, there are two main developments coming together.
First, developments in synthesis algorithms, see Table 2.1 in Chapter 2, provide new
ways to synthesize supervisors. Second, developments in the implementation of these
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algorithms provide new ways to compute supervisors for large-scale models, making
tools more powerful.

A challenge lies ahead to support the industry in adapting synthesis-based engi-
neering methods for the design of supervisory control systems. With the advances of
computation power, systems having some form of control are ubiquitous. To increase
the quality and reliability of these systems, the gap between theoretical advances of
formal methods and current practice in industry should be bridged.
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Paper 1. Model properties for nonblocking
modular supervisors

Martijn Goorden, Joanna van de Mortel-Fronczak, Michel Reniers, Martin Fabian,
Wan Fokkink, and Jacobus Rooda

Abstract

Supervisory control theory provides means to synthesize supervisors for
cyber-physical systems based on models of the uncontrolled plant and
models of the control requirements. In general, it has been shown that
supervisory control synthesis is NP-hard. However, supervisory control
synthesis turns out to be easier for several industrial-sized systems com-
pared to the theoretical worst-case complexity. In this paper, we propose
model properties and a method to identify when no synthesis is needed for
a given set of plant models and requirement models, i.e., the plant models
and requirement models together form a maximally permissive, modular,
controllable, and nonblocking supervisor. In summary, the method creates
a control problem dependency graph and verifies whether it is acyclic to
establish that synthesis can be skipped. In case of a cyclic graph, potential
blocking issues can be localized, so the original control problem can be re-
duced to only synthesizing supervisors for smaller partial control problems.
The proposed method is illustrated with a case study of a production line
for which the method identifies a large part of the system that requires no
synthesis.

1 Introduction
The design of supervisors for cyber-physical systems has become a challenge as these
high-tech systems include more and more components to control and functions to
fulfill, while at the same time market demands require verified safety, decreasing costs
and decreasing time-to-market for these systems. Model-based systems engineering
methodologies can help in overcoming these difficulties.

For the design of supervisors, the supervisory control theory of Ramadge-Wonham
(Ramadge and Wonham 1987, 1989) provides means to synthesize supervisors from
a model of the uncontrolled plant and a model of the control requirements. Then
synthesis guarantees by construction that the closed-loop behavior of the supervisor
and the plant adheres to all requirements, is nonblocking, is controllable, and is
maximally permissive.

Supervisors can be implemented on several different hardware platforms, of which
the Programmable Logic Controller (PLC) is the one typically used (Fabian and
Hellgren 1998). Those hardware platforms have in common that the supervisor
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receives sensor signals through the input channels and sends actuator signals into the
field through the output channels.

Models on this input/output level are very well suitable for supervisory control
theory as shown by (Balemi 1992). The notion of controllable events match with (actu-
ator) commands given by the supervisor to the system, and the notion of uncontrollable
events match with responses of the system to these commands.

Recently, several models of industrial-size applications have been published that
utilizes this input/output perspective, among them (Reijnen, Goorden, van de Mortel-
Fronczak, Reniers, et al. 2018; Reijnen, Goorden, van de Mortel-Fronczak, and Rooda
2017; Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2019). Analyzing the
results of these cases, one discovers that the synthesized supervisors do not impose
additional restrictions on the system, i.e., the provided set of requirement models
is sufficient to control the plant such that the closed-loop behavior is nonblocking,
controllable, and maximally permissive. Therefore, time and computing resources have
been wasted, as synthesis turned out to be unnecessary. If it was known beforehand
that a synthesized supervisor would not impose additional restrictions, then this
time and computing resources could be saved. Furthermore, if properties are defined
that lead to a supervisor that does not impose any additional restrictions, one could
try to model the system in such a way that those properties are fulfilled, and thus
immediately know that by construction it fulfills the requirements of a supervisor.

The main contribution of this paper is to provide a method to determine whether
synthesis can be skipped for a given set of plant models and requirement models based
on clear model properties. The method may circumvent the state-space explosion
problem as globally only the dependencies between plant models are analyzed and not
the actual global state-space. In case the method cannot completely conclude that
synthesis can be skipped, it can reduce the monolithic synthesis problem into a set of
smaller synthesis problems as it can indicate where still potentially synthesis is needed
and which plant models and requirement models do not require synthesis. Furthermore,
it is shown that the synthesized supervisors are guaranteed to be nonconflicting.

As far as the knowledge of the authors reach, no similar properties have been
proposed before within the community of supervisory control theory. In (Gohari and
Wonham 2000) it was already noted that by observing real-world problems more closely
one could discover instances of supervisory control synthesis that are no longer NP-hard.
The authors do not include any suggestion of what these instances might be or how to
find these. Within the community of reactive synthesis, a class of LTL formulas exists,
called Generalized reactivity(1), for which it is known that the synthesis problem can
be solved in N3 time, where N is the size of the state space, instead of the theoretical
double exponential lower bound for the general case (Piterman et al. 2006). Restricting
this class even further can result in N2 solutions (Asarin et al. 1998). Furthermore,
the authors of (Piterman et al. 2006) argue that the class of Generalized reactivity(1)
is sufficiently expressive to provide complete specifications for many design problems
suitable for reactive synthesis. Readers interested in the similarities and differences
between supervisory control synthesis and reactive synthesis are referred to (Ehlers
et al. 2017). Improved calculation complexity notwithstanding, those approaches still
rely on synthesis, whereas properties presented in this paper do away with synthesis
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altogether. If the defined properties of the plant and the requirements are met, the
resulting model will be a correct supervisor, so synthesis can be skipped.

This paper builds upon first results published in (Goorden and Fabian 2019).
While the model properties proposed in that paper capture the essence of models of
industrial applications, we provide in this paper arguments why these properties need
to be relaxed to determine more often that synthesis can be skipped. We introduce the
notion of dependency graph to analyze dependencies between plant models based on
the requirement models. If this directed graph is acyclic, synthesis can still be skipped.
While if this directed graph is cyclic, the cycles indicate potential problems that
require synthesis. In this paper, we finally show that supervisors can be synthesized
for the strongly connected components of this graph (i.e., the cycles) independently,
resulting in a set of nonconflicting modular supervisors. This reduces the synthesis
problem.

The structure of this paper is as follows. In Section 2 the preliminaries of this paper
are provided. The properties as proposed in the previous work (Goorden and Fabian
2019) are presented in Section 3. In Section 4 the dependency graph is introduced
which will be used to analyze the control problem. In Section 5 the result is established
that synthesis can be skipped when the dependency graph is acyclic. Section 6 extends
the analysis to cyclic dependency graphs to reduce the original control problem into a
set of smaller control problems. Section 7 provides a case study of a production line
to demonstrate the proposed analysis method. Section 8 concludes the paper.

2 Preliminaries
This section provides a brief summary of concepts related to automata, supervisory
control theory, and directed graphs relevant for this paper and in context of supervisory
control theory. The concepts related to automata and supervisory control theory are
taken from (Cassandras and Lafortune 2008; Wonham, Cai, et al. 2018); the concepts
related to directed graphs are taken from (Diestel 2017).

2.1 Automata
An automaton is a five-tuple G = (Q,Σ, δ, q0, Qm), where Q is the (finite) state set,
Σ is the alphabet of events, δ : Q× Σ→ Q the partial function called the transition
function, q0 ∈ Q the initial state, and Qm ⊆ Q the set of marked states. The alphabet
Σ = Σc ∪ Σu is partitioned into two disjoint sets containing the controllable events
(Σc) and the uncontrollable events (Σu), and Σ∗ is the set of all finite strings of events
in Σ, including empty string ε.

We denote with δ(q, σ)! that there exists a transition from state q ∈ Q labeled
with event σ, i.e., δ(q, σ) is defined. The transition function can be extended in the
natural way to strings as δ(q, sσ) = δ(δ(q, s), σ) where s ∈ Σ∗, σ ∈ Σ, and δ(q, sσ)!
if δ(q, s)! ∧ δ(δ(q, s), σ)!. We define δ(q, ε) = q for the empty string. The language
generated by the automaton G is L(G) = {s ∈ Σ∗ | δ(q0, s)!} and the language marked
by the automaton is Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.
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A path p of an automaton is defined as a sequence of alternating states and events,
i.e., q1σ1q2σ2 . . . σn−1qnσnqn+1 such that for i ∈ [1, n] it holds that δ(qi, σi) = qi+1. A
path can also be written in infix notation q1

σ1−→ q2
σ2−→ . . .

σn−1−−−→ qn
σn−→ qn+1.

A state q of an automaton is called reachable if there is a string s ∈ Σ∗ with
δ(q0, s)! and δ(q0, s) = q. The automaton G itself is called reachable if every state
q ∈ Q is reachable. A state q is coreachable if there is a string s ∈ Σ∗ with δ(q, s)!
and δ(q, s) ∈ Qm. The automaton G itself is called coreachable if every state q ∈ Q is
coreachable. An automaton is called nonblocking if every reachable state is coreachable.
An automaton is called trim if it is reachable and coreachable. Notice that a trim
automaton is nonblocking, but a nonblocking automaton may not be trim, since it
may have unreachable states.

An automaton is called a strongly connected automaton if from every state you
can reach all other states, i.e., given a pair of states q1, q2 ∈ Q there exists a string
s ∈ Σ∗ such that δ(q1, s) = q2 (Ito 1978).

Two automata can be combined by synchronous composition.

Definition 1. Let G1 = (Q1,Σ1, δ1, q0,1, Qm,1), G2 = (Q2,Σ2, δ2, q0,2, Qm,2) be two
automata. The synchronous composition of G1 and G2 is defined as

G1 ‖ G2 = (Q1 ×Q2,Σ1 ∪ Σ2, δ1‖2, (q0,1, q0,2), Qm,1 ×Qm,2)

where

δ1‖2((x1, x2), σ) =

(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩ Σ2, δ1(x1, σ)!,
and δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 and δ1(x1, σ)!
(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 and δ2(x2, σ)!
undefined otherwise.

Synchronous composition is associative and commutative up to reordering of the
state components in the composed state set.

A composed system G is a collection of automata, i.e., G = {G1, . . . , Gm} with
Gi = (QGi ,ΣGi , δGi , q0,Gi , Qm,Gi). The synchronous composition of a composed system
G, denoted by ‖ G, is defined as ‖ G = G1 ‖ . . . ‖ Gm, and the synchronous composition
of two composed systems G1 ‖ G2 is defined as (‖ G1) ‖ (‖ G2). A composed system is
called a product system if the alphabets of the automata are pairwise disjoint, i.e.,
Σi ∩ Σj = ∅ for all i, j ∈ [1,m], i 6= j (Ramadge and Wonham 1989).

Finally, let G and K be two automata with the same alphabet Σ. K is said to
be controllable with respect to G if, for every string s ∈ Σ∗ and u ∈ Σu such that
δK(q0,K , s)! and δG(q0,G, su)!, it holds that δK(q0,K , su)!.

2.2 Supervisory control theory
The objective of supervisory control theory (Cassandras and Lafortune 2008; Ramadge
and Wonham 1987, 1989; Wonham, Cai, et al. 2018) is to design an automaton called
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a supervisor which function is to dynamically disable controllable events so that the
closed-loop system of the plant and the supervisor obeys some specified behavior. More
formally, given a plant model P and requirement model R, the goal is to synthesize
supervisor S that adheres to the following control objectives.

• Safety: all possible behavior of the closed-loop system P ‖ S should always
satisfy the imposed requirements, i.e., L(P ‖ S) ⊆ L(P ‖ R)

• Controllability: uncontrollable events may never be disabled by the supervisor,
i.e., S is controllable with respect to P .

• Nonblockingness: the closed-loop system should be able to reach a marked state
from every reachable state, i.e., P ‖ S is nonblocking.

• Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, controllability, and nonblockingness, i.e., for
all other supervisors S ′ it holds that L(P ‖ S ′) ⊆ L(P ‖ S).

Monolithic supervisory control synthesis results in a single supervisor S from a
single plant model and a single requirement model (Ramadge and Wonham 1987).
Without loss of generality we assume that S = P ‖ S. When the plant model and
the requirement model are given as a composed system Ps and Rs, respectively, the
monolithic plant model P and requirement model R are obtained by performing the
synchronous composition of the models in the respective composed system. Further-
more, S can be obtained by calculating the supremal element of the set of controllable
and nonblocking supervisors.

For the purpose of supervisor synthesis, requirements can be modeled with automata
and state-based expressions (Ma and Wonham 2005; Markovski et al. 2010). The latter
is useful in practice, as engineers tend to formulate requirements based on states of
the plant. There are two forms of state-based expressions: state invariant expressions
and state-event invariant expressions. To refer to states of the plant, we introduce
the notation P.q which refers to state q of plant P . State references can be combined
with the Booleans literals T and F and logic connectives to create predicates.

In this paper, only state-event invariant expressions are considered. A state-event
invariant expression formulates conditions on the enablement of an event based on
states of the plant, i.e., a state-event invariant expression should evaluate to true for
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q2 q3
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b

a

b
R1 : b needs P1.q3

q1

P1 ‖ R1
q2 q3

a a

b

Figure 1.1: An example of the synchronous product of an automaton and a state-event
invariant expression.
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the event to be enabled. A state-event invariant expression is of the form σ needs C
where σ is an event and C a predicate stating the condition. Let R be a state-event
invariant expression, then event(R) returns the event used in R and cond(R) returns
the condition predicate. The synchronous composition of a plant P with a state-event
invariant expression R, denoted with P ‖ R, is defined by altering the transition
function δ.

Definition 2. Let P = (Q,Σ, δ, , q0, Qm) and R = µ needs C. Then the synchronous
composition of P and R is defined as

P ‖ R = (Q,Σ, δ′, q0, Qm)

where δ′(q, σ) = δ(q, σ) if σ 6= µ, or σ = µ and C|P.q = T where C|P.q indicates that all
state references P.q in C are substituted by T and all state references P.r, r ∈ Q, r 6= q
in C replaced by F.

An example to illustrate the synchronous product between an automaton and a
state-event invariant expression is provided in Figure 1.1. This definition can be easily
extended to a set of state-event invariant expressions Rs = {R1, . . . , Rn}.

Given a composed system representation of the plant Ps = {P1, . . . , Pm} and a
collection of requirements Rs = {R1, . . . , Rn}, we define the tuple (Ps, Rs) as the
control problem for which we want to synthesize a supervisor. We make the following
(technical) assumptions about this control problem:

• Ps 6= ∅, while Rs can be the empty set.

• For all Pi ∈ Ps, it holds that Pi is an automaton where QPi and ΣPi are nonempty.

• For all Rj ∈ Rs, it holds that

– if Rj is an automaton, then QRj and ΣRj are nonempty, and ΣRj ⊆ ΣP

where ΣP = ⋃m
i=1 ΣPi ,

– if Rj is a state-event invariant expression, then event(Re) ∈ ΣP , and for
each state reference Pi.q in cond(Re) it holds that Pi ∈ Ps and q ∈ QPi .

Modular supervisory control synthesis uses the fact that often the desired behavior
is specified with a collection of requirements Rs (Wonham and Ramadge 1988).
Instead of first transforming the collection of requirements into a single requirement,
as monolithic synthesis does, modular synthesis calculates for each requirement a
supervisor based on the plant model. In other words, given a control problem (Ps, Rs),
modular synthesis solves n control problems (Ps, {R1}), . . . , (Ps, {Rn}) where n is the
number of requirements. Each control problem (Ps, {Ri}) for i ∈ [1, n] results in a safe,
controllable, nonblocking, and maximally permissive supervisor Si. Unfortunately, the
collection of supervisors Ss = {S1, . . . , Sn} can be conflicting, i.e., S1 ‖ . . . ‖ Sn can
be blocking. A nonconflicting check can verify whether Ss is conflicting (Mohajerani
et al. 2016; Su, van Schuppen, Rooda, and Hofkamp 2010). In the case that Ss is
nonconflicting, Ss is also safe, controllable, nonblocking, and maximally permissive for
the original control problem (Ps, Rs). In the case that Ss is conflicting, an additional
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coordinator C can be synthesized such that Ss ∪{C} is safe, controllable, nonblocking,
and maximally permissive for the original control problem (Ps, Rs) (Su, van Schuppen,
and Rooda 2009).

2.3 Directed graphs

Definitions and notations of directed graphs are taken from (Diestel 2017). A directed
graph is a tuple (V,E) of disjoints sets of vertices V (or nodes) and edges E (or arcs),
together with two functions init : E → V and ter : E → V . The function init assigns
to each edge e an initial vertex init(e) and the function ter assigns to each edge e a
terminal vertex ter(e). An edge e is said to be directed from vertex init(e) to vertex
ter(e). If init(e) = ter(e), the edge e is called a loop. A directed graph G′ = (V ′, E ′)
is a subgraph of G = (V,E), written by G′ ⊆ G, if V ′ ⊆ V and E ′ ⊆ E.

A path in directed graph G = (V,E) is a sequence of its vertices p = x0x1 . . . xk, k ≥
0 such that for each step xixi+1, i ∈ [0, k − 1] along the path there exists an edge
ei ∈ E with init(ei) = xi and ter(ei) = xi+1. The path p is also called a path from x0
to xk. Two paths p1 = x0 . . . xk and p2 = y0 . . . yl can be concatenated into path p1p2
if xk = y0. A cycle is a path c = x0 . . . xkx0 with k ≥ 1, i.e., a cycle is a path from x0
to itself with at least one other vertex along the path (a loop is not considered to be a
cycle). A directe graph is called acyclic if it does not contain any cycles, otherwise it
is called cyclic.

A directed graph is called strongly connected if there is a path between each pair
of vertices. A strongly connected component of a directed graph is a maximal strongly
connected subgraph.

3 Nonblocking modular supervisors
In this section, we first describe several characteristics of applications where synthesis
does not add any restrictions besides those implied by the requirements. Then, we
provide properties that together guarantee controllable and nonblocking modular
supervisors that are together nonconflicting. Finally, we provide the formal result.

3.1 Characteristics of models

First, as the supervisors synthesized for the applications presented in (Reijnen, Go-
orden, van de Mortel-Fronczak, Reniers, et al. 2018; Reijnen, Goorden, van de
Mortel-Fronczak, and Rooda 2017; Reijnen, Goorden, van de Mortel-Fronczak, and
Rooda 2019) are intended to be implemented on control hardware, the input-output
perspective of (Balemi 1992) is used. This entails that each sensor is modeled with
uncontrollable events, while actuators are modeled with controllable events. Each
event represents a change of the state of such a physical component. This modeling
paradigm results in a collection of numerous small plant models that are not coupled
by shared events. Therefore, the plant model is a product system.
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In the rest of this paper we call an automaton a sensor automaton if its alphabet
only has uncontrollable events, i.e., Σ = Σu and Σc = ∅, or an actuator automaton if
the alphabet only contains controllable events, i.e., Σ = Σc and Σu = ∅.

Second, both sensors and actuators have cyclic behavior, resulting in a trim and
strongly connected plant model. For example, all sensors and actuators in a production
line are modeled in this way in (Reijnen, Goorden, van de Mortel-Fronczak, Reniers,
et al. 2018). Furthermore, unreachable states in an uncontrolled plant represent states
that are physically impossible to reach.

Finally, requirements for applications often originate from safety risk analy-
sis (Modarres 2016). States are identified in which some actuator actions would
result in unsafe behavior. For example, the safety specifications of a waterway lock
that need to be fulfilled by the supervisor are described in Section 4.191 of (Rijk-
swaterstaat 2015). Each of the 16 requirements describes a state of the system and
the disablement of certain actuator actions for that state. It is shown in (Reijnen,
Goorden, van de Mortel-Fronczak, and Rooda 2017) that these textual specifications
can be described with state-event invariant expressions.

3.2 Properties
The following properties together guarantee that the control problem itself is a modular
globally nonblocking and controllable system.
CNMS (Controllable and Nonblocking Modular Supervisors) properties
A control problem (Ps, Rs) satisfies CNMS if it has the following properties:

1. Ps is a product system

2. For all Pi ∈ Ps holds

a. Pi is trim (which implies nonblocking)
b. Pi is a strongly connected automaton

3. For all Rj ∈ Rs holds

a. Rj is a state-event invariant expression µ needs C
b. There exists no other requirement for this event µ
c. µ ∈ Σc

d. C is in a disjunctive normal form (see (Davey and Priestley 1990)) where
the atomic proposition is Pk.q with Pk ∈ Ps

e. Each conjunction contains at most one reference to each Pk
f. When Pk only has a single state, the literal ¬Pk.q is not allowed in C
g. Pk is a sensor model

The following theorem formulates that for a control problem satisfying CNMS
synthesis can be skipped, i.e., the plant models and requirement models together
already form controllable and nonblocking modular supervisors, and therefore by
definition they are also maximally permissive.
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Theorem 1 (CNMS). Let (Ps, Rs) be a control problem satisfying CNMS. Then
no supervisor synthesis is required, i.e., Ps ‖ Rs is controllable and nonblocking.

Proof. See (Goorden and Fabian 2019).

4 Dependency graphs of control problems
As indicated in (Goorden and Fabian 2019), there exist published control problems
that do not satisfy CNMS, but still turned out to require no synthesis. In this section,
a deeper analysis is proposed to relax the CNMS properties.

4.1 Observations from models
The main reason the control problems of (Reijnen, Goorden, van de Mortel-Fronczak,
Reniers, et al. 2018; Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017;
Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2019) do not satisfy theCNMS
properties is the violation of Property 3.g. In these control problems, there exist
requirements that restrict the behavior of controllable events based on the behavior of
plant models other than sensor models, which in turn may also be restricted by other
requirements. Several causes of this violation are described below.

The first reason to refer to non-sensor models is due to modeling the interaction
between components in the system. As pointed out in (Zaytoon and Carre-Meneatrier
2001), it may be desired to model the physical interaction between actuator and sensor
components, as they showed that a supervisor that is proven to be deadlock-free may
deadlock after implementation. Adding shared events to model the interactions will
violate Property 1, as it is no longer a product system. Transforming this new model
into a product system representation, the actuator and sensor models are combined
into one. Therefore, requirements no longer refer only to states of sensor models
(violating Property 3.g).

Second, sometimes a requirement needs to refer explicitly to the state of an actuator
model to guarantee safety of the system. For example, consider a hydraulic arm that
has one actuator to extend it and one actuator to retract it. In this case, the modeler
could express that it is undesired that both actuators are on at the same time, resulting
in two requirements each expressing that one actuator may only be activated if the
other actuator is deactivated.

Finally, timer-based requirements violate Property 3.g. A timer is typically modeled
with a controllable event to activate it and an uncontrollable event to indicate the
timeout of the timer. Therefore, the model of a timer is neither a sensor model nor an
actuator model. If a timer is needed, typically two requirements associated with it
express when it can be activated (the controllable events of the timer model are used)
and what should happen when the timer has timed out (the state of the timer model
is used). Service calls in a server-client architecture are modeled in the same way,
see for example (Loose et al. 2018), where service calls are modeled with controllable
events and responses with uncontrollable events.
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4.2 Dependency graph
For control problems (Ps, Rs) satisfying all properties of CNMS except Property 3.g
(which we will call the Relaxed Controllable and Nonblocking Modular Supervisors
Properties RCNMS), a directed graph can be constructed indicating the dependencies
between plant models from Ps based on the requirement models from Rs. In this
directed graph, each vertex represents a plant model from the control problem. For
each requirement in the control problem, a set of edges is present in the graph such that
the initial vertex of each edge is the plant model containing the event that is restricted
by the requirement and for each plant model used in the condition of the requirement
there is an edge having this plant model as terminating vertex. For example, consider
the control problem ({P1, P2, P3}, {R}) with R = µ needs P2.q1∨¬P3.q1 and µ ∈ ΣP1 .
The dependency graph of this control problem is shown in Figure 1.2. It has three
vertices P1, P2 and P3. For requirement R, two edges e1 and e2 are present such that
init(e1) = init(e2) = P1 as the restricted event of R originates from P1, ter(e1) = P2
as P2 is mentioned in the condition of R, and ter(e2) = P3 as P3 is mentioned in the
condition of R. This example also shows that there may be multiple, but isomorphic,
dependency graphs for the same control problem.

More formally, let the dependency graph of control problem (Ps, Rs) be a directed
graph Gcp = (Ps, E) such that for each requirement R ∈ Rs there exists a set of edges
{e1, . . . , ek} ⊆ E such that for all l ∈ [1, k]: init(el) = Pi with event(R) ∈ ΣPi , and
for each Pj used in cond(R) there is an edge el with ter(el) = Pj.

A control problem satisfying CNMS results in an acyclic bipartite dependency
graph.

5 Acyclic dependency graphs
Figure 1.3 shows the dependency graph of a control problem satisfying RCNMS, but
not CNMS. With this example we demonstrate why the control problem underlying
this graph still requires no synthesis.

For the CNMS properties, we have shown with Theorem 1 that essentially no
edge is permanently disabled. As the properties ensure that in a controlled system
each sensor model can always reach each state, the condition of each state-event
invariant expression can be eventually satisfied, enabling the controllable event of each
state-event invariant expression. Therefore, each non-sensor plant model can reach all
states from each state.

This argument can be used inductively to show that a control problem satisfying
RCNMS still requires no synthesis. As the behavior of plants P2 and P3 in Figure 1.3
only depends on sensor plants P4 and P5, it holds that P2 and P3 can reach all states
from each state. Since the behavior of P1 only depends on the plant models P2, P3,
and P5, and it is already known that all these models can reach all states from each
state, we can conclude that P1 also can reach all states from each state. Therefore,
the complete control problem is nonblocking. This is formalized in Theorem 2.

Before we prove this theorem, the following lemma is introduced which transforms
an acyclic dependency graph into a forest of trees. A tree is an acyclic directed graph
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P1

P2 P3

e1 e2

Figure 1.2: The dependency graph Gcp of control problem ({P1, P2, P3}, {R}) with R =
µ needs P2.q1 ∨ ¬P3.q1 and µ ∈ ΣP1 .
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Figure 1.3: A dependency graph Gcp of a control problem with five plant models satisfying
RCNMS where P4 and P5 are sensor models.
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Figure 1.4: The forest of dependency graph Gcp from Figure 1.3.

where each vertex has at most one incoming edge, i.e., for each vertex v there is at
most one edge e such that ter(e) = v. A forest is a set of trees. A forest can be
constructed from an acyclic directed graph recursively. Assume that a subgraph T
having vertex v as root node is already a tree. Then for each incoming edge into v
subgraph T is duplicated and set to the terminating vertex of that edge. Figure 1.4
shows the forest with a single tree of the dependency graph as shown in Figure 1.3. As
vertex P5 has two incoming edges, the directed graph Gcp is not a tree. By duplicating
vertex P5, the tree in Figure 1.4 is constructed.

From a dependency (sub)graph, the control problem it represents can be recon-
structed as follows. The control problem (Ps, R′s) represented by a dependency graph
(Ps, E) is the one where R′s = {R ∈ Rs | ∃e ∈ E : event(R) ∈ Σinit(e) and ter(e) is
used in cond(R)}.
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Lemma 1. Let GCP = (Ps, E) be an acyclic dependency graph of control problem
CP = (Ps, Rs) satisfying RCNMS, and let F be the forest constructed from GCP.
Then S is a maximally permissive, controllable, and nonblocking supervisor of CP if
and only if S is a maximally permissive, controllable, and nonblocking supervisor of
the control problem CP ′ represented by F .

Proof. In the construction of the forest F from GCP , subgraphs are duplicated. Dupli-
cating plants and requirements results in the same maximally permissive, controllable,
and nonblocking supervisor, i.e., S is a maximally permissive, controllable, and non-
blocking supervisor for (P ′s ‖ P ′s) ‖ (R′s ‖ R′s) if and only if S is a maximally permissive,
controllable, and nonblocking supervisor for P ′s ‖ R′s, where P ′s ⊆ Ps and R′s ⊆ Rs are
sets of plant models and requirement models, respectively. As forest F is constructed
recursively in this manner, the result holds for the complete forest.

Theorem 2 (Acyclic RCNMS). Let (Ps, Rs) be a control problem satisfying RC-
NMS. Then no supervisor synthesis is required, i.e., Ps ‖ Rs is controllable and
nonblocking, if the dependency graph Gcp of (Ps, Rs) is acyclic and loop free.

Proof. For CP = (Ps, Rs), CP ′ = (P ′s, R′s) is a partial control problem of CP , denoted
by CP ′ � CP, if P ′s ⊆ Ps and R′s ⊆ Rs. From Lemma 1 it follows that the forest F
constructed from Gcp can be analyzed instead of Gcp directly. Now, we will prove this
theorem by induction on the depth of each tree in forest F .

Base case Let subgraph (P ′s, ∅) ⊆ F with P ′s ⊆ Ps be a tree of depth zero, i.e., it
only contains a leaf node. Then the partial control problem (P ′s, ∅) represented by this
subgraph is trivially controllable and nonblocking, and P ′s is strongly connected.

Inductive hypothesis Assume the set of trees {T1, . . . , Tk} each with depth at
most n such that for each tree (P i

s , E
i) the partial control problem (P i

s , R
i
s) represented

by this subgraph is controllable and nonblocking, and P i
s ‖ Ri

s is strongly connected.
Inductive step Denote P ′s = P 1

s ∪ . . . ∪ P k
s the set of all vertices and E ′ =

{E1 ∪ . . .∪Ek} the set of all edges of the trees with depth n, and the control problem
(P ′s, R′s) represented by subgraph (P ′s, E ′). Let P ∈ Ps \ P ′s be a vertex not yet in
any tree of depth n such that for all edges e ∈ E with init(e) ∈ ΣP , collected in
EP , it holds that ter(e) ∈ P ′s. Let R = {R ∈ Rs | event(R) ∈ ΣP} contain all
requirements restricting the behavior of P . We will show that the partial control
problem represented by tree (P ′s ∪ {P}, E ′ ∪ EP ) of depth n + 1 is controllable and
nonblocking, and strongly connected.

From the induction hypothesis it follows that the control problem represented by
subgraph (P ′s, E ′) is strongly connected, i.e., P ′s ‖ R′s is strongly connected. Therefore,
similarly to Lemma 3 of (Goorden and Fabian 2019), for each requirement R ∈ R
there exists a string such that state r of P ′s is reached that satisfies the condition
cond(R), thus enabling controllable event event(R). Analogous to the proof of Lemma
4 of (Goorden and Fabian 2019), it holds that a string can be constructed in P ′s such
that for each path in plant P all controllable events are enabled. Therefore, the partial
control problem (P ′s ∪ {P}, R′s ∪R) represented by subgraph (P ′s ∪ {P}, E ′ ∪ EP ) of
depth n+ 1 is controllable and nonblocking, and for each P ∈ P ′s ∪ {P} all states can
be reached from each state. This concludes the inductive step.
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6 Cyclic dependency graphs
The moment a dependency graph is cyclic, supervisory control synthesis may be
needed as Ps ‖ RS could be blocking. Figure 1.5 shows two control problems CP1 =
({P1, P2}, {R1, R2}) and CP2 = ({P1, P2}, {R3, R4}), both based on the same set of
plant models {P1, P2}. Those control problems result in the same cyclic dependency
graph. But, CP1 is blocking, while CP2 is nonblocking.

Furthermore, there may be incoming edges to the strongly connected component
containing the cycle. If the cycle itself is fine, like the one of control problem CP2,
having such an incoming edge may or may not be problematic. In Figure 1.5, CP2
may be extended to ({P1, P2, P3}, {R3, R4, R5}). While the cycle is nonblocking, this
extended control problem is no longer nonblocking.

So, a dependency graph containing cycles may or may not require synthesis to
obtain a maximally permissive, controllable, and nonblocking supervisor. In the
remainder of this section we show that in case of a cyclic dependency graph the
original control problem can be reduced to a partial control problem containing the
cycle(s).

6.1 Control problem reduction
When a dependency graph is cyclic, further analysis is needed. From the dependency
graph, all strongly connected components containing a cycle are identified, which we
denote by Φ = {φ1, . . . , φm}. From the definition of strongly connected components,
it follows that they are non-overlapping.

The example in Figure 1.5 not only shows that the strongly connected components
with cycles need to be analyzed, but also plants which behavior depends on the
behavior of these strongly connected components. Therefore, vertices are added
recursively to these strongly connected components. A vertex is added to a set of
vertices if there exists an edge such that this edge originates in this added vertex and
terminates in one of the vertices already in the set. Eventually, the strongly connected
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R1 : b needs P2.q4

R2 : d needs P1.q2

R3 : a needs P2.q3

R4 : c needs P1.q1

R5 : f needs P1.q2 ∧ P2.q4

Figure 1.5: Both control problems CP1 = ({P1, P2}, {R1, R2}) and CP2 = ({P1, P2},
{R3, R4}) result in a cyclic dependency graphs, but the first one is blocking while the second
one is not. Furthermore, adding P3 and R5 to the second control problem makes it blocking.
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component is enlarged with those vertices such that there exists a path from each of
these vertices to a vertex in the strongly connected component. Formally, the extended
set of vertices for each strongly connected component with a cycle Vφi is defined as
Vφi = {P ∈ Ps | ∃p = x0x1 . . . xk, k ≥ 0 : x0 = P ∧ xk ∈ φi}, and V = {Vφ1 , . . . , Vφm}.

Still, it is insufficient to only analyze each extended vertex set Vφi . Two extended
vertex sets may share vertices. This sharing could be problematic. Figure 1.6 shows
control problem CP , with its dependency graphGCP shown in Figure 1.7. GCP contains
two cycles c1 = P1P2P1 and c2 = P3P4P3. In this example, the strongly connected
components of these two cycles are φ1 = {P1, P2} and φ2 = {P3, P4}. The extended
sets of vertices are calculated as Vφ1 = {P1, P2, P5, P6} and Vφ1 = {P3, P4, P5, P6},
which share vertices P5 and P6. The ‘cause’ of shared vertices is vertex P5 with edges
e5 and e6, and not the shared vertex P6 as P6 would not be a shared vertex if P5 was
not shared.

Shared vertices between extended sets Vφi and Vφj will not always imply that it is
necessary to analyze the partial control problem represented by Vφi ∪ Vφj . Sometimes,
it is still sufficient to analyze the partial control problems of Vφi and Vφj separately.
For the control problem CP of Figure 1.6, Vφ1 and Vφ2 should be combined, as the
edges e5 and e6 relate to the same requirement R5. The evaluation of the condition
of requirement R5 requires the result of the analysis of both strongly connected
components φ1 and φ2. If we replace requirement R5 by, for example, the two
requirements R′5 : i needs P2.q4 and R′′5 : j needs P3.q6, the extended sets Vφi and
Vφj do not need to be merged for analyzing the cycles. While the dependency graph
remains the same, edges e5 and e6 are induced by different requirements.

Unfortunately, the above reasoning cannot be generalized. Let us modify the
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R5 : j needs P2.q4 ∨ P3.q6
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Figure 1.6: A control problem CP = ({P1, . . . , P6}, {R1, . . . , R6}).
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Figure 1.7: The dependency graph of the control problem shown in Figure 1.6.

control problem in Figure 1.6 again. An additional transition is added to plant
model P5 from state q10 to q9 labeled with j′. Requirement R5 is replaced by
two requirements R′5 : j needs P2.q4 and R′′5 : j′ needs P3.q6. Again, the depen-
dency graph in Figure 1.7 remains unchanged. The maximally permissive, control-
lable, and nonblocking supervisor S1 synthesized for the partial control problem
({P1, P2, P5, P6}, {R1, R2, R

′
5, R6}) would disable the transition labeled with event j,

and the maximally permissive, controllable, and nonblocking supervisor S2 synthesized
for the partial control problem ({P3, P4, P5, P6}, {R3, R4, R

′′
5, R6}) would disable the

transition labeled with event j′. Now, S1 ‖ S2 is blocking, as plant P5 may deadlock
in state q10, as the supervisors together disable both event j and event j′.

Therefore, two extended sets of vertices need to be merged once they share a vertex.
Let ∼ ⊆ V× V be a relation between extended sets of vertices. (Vφi , Vφj) ∈ ∼ if and
only if Vφi ∩Vφj 6= ∅, i.e., they share at least one vertex. From this definition, it follows
directly that ∼ is reflexive and symmetric, but not transitive. We extend this relation
(which we will also denote by ∼) to be transitive by defining that if (Vφ1 , Vφ2) ∈ ∼
and (Vφ2 , Vφ3) ∈ ∼, then (Vφ1 , Vφ3) ∈ ∼. Now, ∼ has become an equivalence relation.

Based on this condition, extended sets can be merged. Essentially, the partition
W of V is the set of all equivalence classes of V with equivalence relation ∼, i.e.,
W = V/ ∼ is the quotient set of V by ∼.

A simplified partial control problem (P ′s, R̃s) represented by a subset of vertices
P ′s ⊆ Ps is constructed as follows. First, R′s = {R ∈ Rs | ∃P ∈ P ′s : event(R) ∈ ΣP}.
Subsequently, the condition of each requirement in this set is adjusted where each
reference to a state of a plant not in P ′s is replaced by the boolean literal T, resulting
in the set of adjusted requirements R̃s.

Theorem 3 contains the main result of this section: based on the dependency
graph, synthesizing a supervisor can be performed following a modular approach
which guarantees global maximal permissiveness, controllability, and nonblockingness.
This theorem can be used to reduce the computational complexity of synthesizing
supervisors.

Theorem 3 (CyclicRCNMS). Let (Ps, Rs) be a control problem satisfying RCNMS
and Gcp its dependency graph. For each W ∈W, let SW be a maximally permissive,
controllable, and nonblocking supervisor for the simplified partial control problem
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represented by ⋃V∈W V . Then Ps ‖ Rs ‖ (‖W∈W SW ) is a maximally permissive,
modular, controllable, and nonblocking supervisor of (Ps, Rs).

Proof. First, let P ′s be the set of all vertices not contained in W, i.e., P ′s = Ps \
(⋃W∈W ⋃V ∈W V ). From the definition of V it follows that for each vertex P ∈ P ′s there
does not exist a path to a cycle. Therefore, the subgraph (P ′s, E ′) with E ′ = {e ∈
E | init(e) ∈ P ′s} is acyclic. From Theorem 2 it directly follows that control problem
(P ′s, R′s) represented by this acyclic graph is already controllable and nonblocking, i.e.,
synthesis can be skipped for this part. Furthermore, from the proof of that theorem it
follows that P ′s ‖ R′s is also strongly connected.

Now, consider W ∈ W. The simplified partial control problem (PW , R̃W ) repre-
sented by PW = ⋃

V ∈W V may contain requirements where the condition is simplified
by replacing some state references P.q by T. As W is the quotient set of V by ∼, it
follows from the definition of ∼ that each plant P of those replaced state references is
from P ′s. As we already showed in the previous paragraph that P ′s ‖ R′s is strongly
connected, it is always possible to reach state P.q, which justifies the replacement of
this state reference by T. Therefore, if SW is a maximally permissive, controllable,
and nonblocking supervisor of the simplified partial control problem (PW , R̃W ), then
P ′s ‖ R′s ‖ SW is a maximally permissive, controllable, and nonblocking supervisor
for the partial control problem (P ′s ∪ PW , R′s ∪ RW ), with RW the non-simplified
requirements of R̃W .

From the definition of W = V/ ∼, it follows that no vertex is shared between
two distinct W1,W2 ∈ W,W1 6= W2, i.e., (⋃V ∈W1 V ) ∩ (⋃V ∈W2 V ) = ∅. Let SW1

and SW2 be the maximally permissive, controllable, and nonblocking supervisors for
the simplified control problems represented by W1 and W2, respectively. Then the
supervisors are asynchronous and it holds trivially that SW1 ‖ SW2 is a maximally
permissive, controllable, and nonblocking supervisor.

Finally, combining the above observations for each W ∈ W it follows that P ′s ‖
R′s ‖ (‖W∈W SW ) = Ps ‖ Rs ‖ (‖W∈W SW ) is a maximally permissive, controllable, and
nonblocking supervisor.

7 Case study

The proposed method is demonstrated in this section with a case study. For this case
study, a small-scale production line consisting of six workstations has been considered,
see Figure 1.8. The hardware of the system is produced by Festo Didactic for vocational
training in the field of industrial automation. This system has been previously modeled
in (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al. 2018). In the remainder
of this section, we first provide a description of this production line. Subsequently, we
analyze two workstations in isolation to demonstrate theorems 1 and 2. Finally, the
complete production line is analyzed to demonstrate Theorem 3.
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Figure 1.8: Overview of the FESTO production line.

7.1 Case description

While no real production takes place, all movements, velocities, and timings are as if
there was. In total, the production line consists of 28 actuators, like DC motors and
pneumatic cylinders, and 59 sensors, like capacitive, optical, and inductive ones.

The intended controlled behavior is as follows. Products enter the production line
through the distribution station where products have been placed in three storage
tubes. For each storage tube, a pusher is able to release a new product. The second
workstation, the handling station, transports products from the distribution station
to the testing station in two steps. First, pneumatic gripper transports released
products to an intermediate buffer. From this buffer, a transfer cylinder picks them up
and places them in the testing station where the product’s height is tested. Correct
products are moved via an air slide to the next station while rejected products are
stored in a local buffer. In the forth station, the buffering station, products can be
held on a conveyor belt. A separator controls the release of products from the conveyor
belt. At the next station, the processing station, products are hypothetically processed.
A turntable with six places rotates products through this station. After entering the
processing station, the product is moved to a testing location where the orientation of
the product is checked. Subsequently, the next location drills a hole in the product
only if the orientation is correct. At the fourth location, process products are ejected
to the sorting station. The last two locations can be used to correct the orientation if
needed, and in that case the product can be processed again. In the final workstation,
the sorting station, products are stored in one of the three slides, depending on color
and material of the product. Two pneumatic gates can be used to divert the product
to the correct slide.

The production line has been modeled in (Reijnen, Goorden, van de Mortel-
Fronczak, Reniers, et al. 2018), which is slightly adjusted for this case study. The
model contains 75 plant models and 214 requirement models, which can be accessed
through at GitHub repository1.

1https://github.com/magoorden/NonblockingModularSupervisors

https://github.com/magoorden/NonblockingModularSupervisors
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Performing monolithic synthesis on this model reveals that the synthesized supervi-
sor does not impose any additional restrictions to ensure controllable and nonblocking
behavior, i.e., the set of requirements is already maximally permissive, modular,
controllable, and nonblocking.

7.2 Distribution station
The distributed construction of the model of the production line eases the analysis of
workstations individually. As a first example, the distribution station is analyzed.

Figure 1.9 shows the dependency graph of the distribution station. To prevent
cluttering of names, numbers are displayed in this and subsequent figures instead of
the actual plant names in the model. The readme file in the model repository explains
how the actual names can be obtained. Plant models 1 through 10 are sensor models,
i.e., they only have uncontrollable events in their alphabet, plant models 11, 12, and
13 are actuator models, i.e., they only have controllable events in their alphabet. As
each edge in this dependency graph has an actuator model as initial vertex and a
sensor model as terminal vertex, Theorem 1 applies. This indicates that, if only a
supervisor is needed for this workstation, synthesis can be skipped and the set of plant
models and requirement models already represent the supervisor.

7.3 Sorting station
Figure 1.10 shows the dependency graph of the sorting station. In this workstation,
plant models 1 through 7 are sensor models, plant models 8 through 11 are actuator
models and plant model 12 contains both controllable and uncontrollable events. This
graph already indicates that Theorem 1 does not apply: there are edges (representing
requirements) that have a non-sensor model as a terminal vertex. In particular, plant
models 11 and 12 have both incoming and outgoing edges, which indicate a violation
of property 3.g of the CNMS properties. Fortunately, as the model satisfies the

  1   2   3  4   5   6   7   8   9  10

  11   12   13

Figure 1.9: The dependency graph of the distribution station. For readability, numbers are
used as nodes instead of the actual names in the model.
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Figure 1.10: The dependency graph of the sorting station.

RCNMS properties and the control dependency graph is acyclic, Theorem 2 applies.
Therefore, synthesis can be skipped to obtain a supervisor for the sorting workstation.

7.4 Production line
Figure 1.11 shows the dependency graph of the complete production line. Cycles in
this graph are indicated in red. Clearly, both Theorems 1 and 2 are not applicable for
the control problem of the complete production line.

With the help of Theorem 3, the problem of synthesizing a monolithic supervisor
can be reduced to analyzing smaller control problems based on the identified cycles. In
the dependency graph, we can identify five strongly connected components containing
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Figure 1.11: The dependency graph of the complete production line. Red indicates cycles.
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cycles: φ1 = {P21, P22}, φ2 = {P25, P26}, φ3 = {P36, P37}, φ4 = {P47, P48}, and
φ5 = {P58, P59, P60, P61, P62}. Next, these sets need to be extended to include all plant
models from which there exists a path to one of the plants in that particular strongly
connected component. This is only the case for φ1, as from P23 there exists a path
from P23 to P21 (and P22). Therefore, Vφ1 = {P21, P22, P23}, while Vφ2 = φ2, Vφ3 = φ3,
Vφ4 = φ4, and Vφ5 = φ5. In this case, there is no overlap between these extended sets,
so Wi = Vφi for i ∈ [1, 5].

Finally, five supervisors, S1, . . . , S5 are synthesized, one for each simplified partial
control problem represented by ⋃Vφi∈W Vφi . From Theorem 3 it follows that Ps ‖
Rs ‖ S1 ‖ S2 ‖ S3 ‖ S4 ‖ S5 is a maximally permissive, modular, controllable, and
nonblocking supervisor for the production line.

Table 1.1 compares the presented reduction approach with monolithic synthesis.
For each control problem solved, the uncontrolled and controlled state-space size
is provided. The control problems for synthesizing supervisors S1, . . . , S4 are tiny
compared to monolithic synthesis, i.e., obtaining these supervisors can be done even
manually. The control problem for synthesizing S5 is considerable larger than the
previous four, but still much smaller than the control problem for monolithic synthesis.

8 Conclusion
In this paper, we presented a method to determine whether synthesis can be skipped
for a given set of plant models and requirement models based on clear model properties.
Therefore, the control problem itself represents a safe, controllable, nonblocking, and
maximally permissive supervisor. The presented method uses dependency graphs.
When such a directed graph is acyclic, it is proven that synthesis can be skipped.

The second contribution is that when the dependency graph is cyclic (and thus it
is not clear whether synthesis can be skipped), the strongly connected components
of identified cycles provide means to reduce the original control problem into smaller
partial control problems to solve. This results in modular, controllable, and nonblocking
supervisors that are proven to be also nonconflicting.

Table 1.1: Results of supervisory control synthesis for the production line.

Model
Uncontrolled
state-space size

Controlled
state-space size

Synthesis duration
[s]

Monolithic 5.9 · 1026 2.2 · 1025 370

S1 8 6 < 1

S2 4 3 < 1

S3 4 3 < 1

S4 6 6 < 1

S5 512 76 < 1
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The infrastructural systems we have encountered in the project with Rijkswater-
staat, like waterway locks (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda
2017) and movable bridges (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda
2019), satisfy RCNMS. This is a motivation to further investigate the applicability
of the proposed model properties and analysis method to systems from other domains,
like, e.g., manufacturing and automotive systems.

Future work also includes the identification of special cases to be able to conclude
that synthesis can be skipped for some of the partial control problems identified by
the strongly connected components. Monolithic supervisors of the partial control
problems of the production line case still indicate that synthesis can be skipped, but
it is yet unclear how this conclusion could be obtained without performing synthesis
for these partial control problems.
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Abstract

Despite the correct-by-construction property, one of the major draw-
backs of supervisory control synthesis is state-space explosion. Several
approaches have been proposed to overcome this computational difficulty,
such as modular, hierarchical, decentralized, and multilevel supervisory
control synthesis. Unfortunately, the modeler needs to provide additional
information about the system’s structure or controller’s structure as input
for most of these non-monolithic synthesis procedures. Multilevel synthesis
assumes that the system is provided in a tree-structured format which may
resemble a system decomposition. In this paper, we present a systematic
approach to transform a set of plant models and a set of requirement mod-
els provided as extended finite automata into a tree-structured multilevel
discrete-event system to which multilevel supervisory control synthesis can
be applied. By analyzing the dependencies between the plants and the
requirements using dependency structure matrix techniques, a multilevel
clustering can be calculated. With the modeling framework of extended
finite automata, plant models and requirements depend on each other
when they share events or variables. We report on experimental results of
applying the algorithm’s implementation on several models available in the
literature to assess the applicability of the proposed method. The benefit
of multilevel synthesis based on the calculated clustering is significant for
most large-scale systems.

1 Introduction
The complexity of high-tech systems has increased over the last few decades due to
increasing market demands for better performance and verified safety. Furthermore, the
time-to-market has to be decreased while the quality of the engineering process has to
be increased. Model-based systems engineering approaches provide support for dealing
with these demands in the context of supervisory controller design. In this paper,
discrete-event systems (DESs) are considered for which supervisory controllers need to
be developed. The supervisory control theory (SCT) of Ramadge-Wonham (Ramadge
and Wonham 1987, 1989) provides an approach to synthesize supervisory controllers
such that the controlled system behavior exhibits the specified behavior.

107
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A DES can be modeled with Extended Finite Automata (EFAs), see (Skoldstam
et al. 2007). Extended finite automata are finite automata enhanced with discrete
variables. This allows for more compact model representation as shown in (Miremadi
et al. 2010) and for the usage of state-based requirements as introduced in (Ma and
Wonham 2005; Markovski et al. 2010). Furthermore, EFAs allow for efficient symbolic
computations with binary decision diagrams, see (Fei et al. 2014).

A major drawback of synthesizing supervisory controllers is the step where the
supremal controllable language is calculated. Although the time complexity of this step
is polynomial in the number of states that represent the system, this number increases
exponentially with the number of constituent models used to represent the system,
as already observed in (Ramadge and Wonham 1989). Several attempts exploiting
different architectures are proposed to overcome these computational difficulties:
modular (Åkesson et al. 2002; de Queiroz and Cury 2000; Teixeira et al. 2011; Wong and
Wonham 1998; Wonham and Ramadge 1988), hierarchical (Leduc et al. 2009; Thistle
1994; Wong and Wonham 1996; Zhong and Wonham 1990), decentralized (Feng and
Wonham 2008; Lin and Wonham 1990; Rudie and Wonham 1992; Yoo and Lafortune
2002), distributed (Cai and Wonham 2010; Cai and Wonham 2014; Seatzu et al. 2013;
Su et al. 2010; Zhang et al. 2015), coordinated (Komenda, Masopust, et al. 2012, 2014;
Komenda and van Schuppen 2008; Wong and Wonham 1998), compositional (Flordal,
Malik, et al. 2007; Hill and Tilbury 2006; Malik and Flordal 2008), and, more recently,
multilevel supervisory control synthesis (Komenda, Masopust, et al. 2016).

Although such techniques help in reducing the complexity of synthesis, applying
them may require more effort from an engineer than monolithic synthesis. A problem
with several of these supervisory control architectures is that, besides the plant
models and control requirements, additional information about the system’s structure
or controller’s structure needs to be provided as input for synthesis. For example,
hierarchical supervisory control needs a hierarchical mapping of events or traces
between the different levels, decentralized control requires projections to the subsystem
alphabets, and multilevel control needs a tree-structured system. Sometimes, additional
properties need to be satisfied, for example coobservability in decentralized control,
see (Rudie and Wonham 1992). For those supervisory control synthesis procedures
that require additional information, often a systematic approach is missing in the
literature to transform any DES plant models together with control requirements to
the appropriate input needed for such a procedure.

In this paper, we exploit the structure embedded in the set of plant models and
the set of requirement models by using Dependency Structure Matrices (DSMs). A
DSM is an N ×N matrix capturing the dependencies among N system elements. A
DSM provides a concise representation for the analysis of the structure of systems
in many areas of engineering and research, see for industrial examples (Browning
2016; Eppinger and Browning 2012). With appropriate analysis techniques, such
as clustering and sequencing, one is able to highlight important aspects in system
structures, such as modules of system elements and cycles of process steps, respectively.

In addition to most suggestions found in the SCT literature to analyze the re-
lationship between plant models (e.g., shared events in (Flordal and Malik 2009;
Komenda, Masopust, et al. 2013)), we analyze the relationship within the combined set
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Figure 2.1: Overview of the proposed method. It starts with a given set of plant models
{P1, . . . , Pg} and a given set of requirement models {R1, . . . , Rk}. First, the dependencies
between the plant models and the requirement models are recorded in a rectangular Domain
Mapping Matrix (DMM). Then, this DMM is transformed into a Dependency Structure
Matrix (DSM) and subsequently clustered. From the clustered DSM, a Multilevel Discrete
Event System (MLDES) is created. Finally, multilevel synthesis of (Komenda, Masopust,
et al. 2016) can be applied to synthesize a supervisor for each node in the MLDES.

of plant models and the requirement models, as also suggested in (Feng and Wonham
2006). The motivation is twofold: (1) supervisory control synthesis requires both plant
models and requirement models, and (2) plant models of realistic systems are often
not directly related to each other and only indirectly via the requirements, see for
example (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017). The work
of (Feng and Wonham 2006) introduces control-flow nets to analyze dependencies
in the system and subsequently abstract away those parts of the system that will
not contribute to a potential blocking issue. Control-flow nets are defined for shuffle
systems with server and buffer specifications, which limits the applicability. The
introduction of DSMs could be seen as a generalization of control-flow nets.

The contribution of this paper is a proposal for a systematic approach to transform
a set of plant models and a set of requirement models into a tree-structured multilevel
discrete-event system with the properties needed for multilevel supervisory control
synthesis of (Komenda, Masopust, et al. 2016). Multilevel synthesis is chosen as it
resembles the multilevel (or decompositional) way of thinking of engineers and directly
raises the question how to obtain a multilevel structure. The proposed method is
summarized in Figure 2.1. First a domain mapping matrix is created that relates plant
models to requirement models. A DSM is constructed from this domain mapping
matrix with the plant models as system elements. Two plant models are related to
each other when there exists a requirement that depends on both plant models. The
DSM is clustered to identify a clustering of plant models. Finally, this clustering is
transformed into a tree-structured multilevel discrete-event system (MLDES) such
that multilevel supervisory control synthesis can be applied resulting in a supervisor
for each node.

This paper is an extended version of (Goorden, van de Mortel-Fronczak, Reniers,
and Rooda 2017). Firstly, this paper uses the modeling formalism of EFAs, instead of
finite automata (FAs). By using EFAs, plant models and requirement models depend
on each other by shared events and shared variables, instead of just shared events in the
FA formalism. Therefore, recording the dependencies should be changed accordingly.
The two subsequent steps in the proposed method turn out to be independent of the
chosen modeling formalism. In the last step, when supervisors are synthesized for
each node, an EFA-based synthesis algorithm should be used instead of an FA-based
one. Furthermore, defining the proposed method for EFAs makes it applicable to both
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EFAs and FAs, since each FA is also an EFA. The second extension is the inclusion
of numerical results on the effect of clustering parameters on the computational
complexity reduction of supervisor synthesis, on the effect of different clusterings on
nonblocking control, and on the applicability of the proposed method on small and
large benchmark models.

This paper is structured as follows. The concepts and notations used are provided
in Section 2 regarding DSMs and in Section 3 regarding SCT. The main results are
presented in Section 4 with an illustrative example of a DES model of a lock. Section 5
provides results of three experiments with the implementation of the proposed method.
The conclusions are presented in Section 6.

2 Dependency structure matrices

In this section, the concepts and notations related to Dependency Structure Matrices
(also called Design Structure Matrices) used in this paper are summarized. A DSM is
a square matrix with the same entities along its axis (e.g., components of a system)
and cells representing relationships between the entities (e.g., a spatial relationship).
These relationships can be different per DSM. DSMs with a single kind of off-diagonal
mark are called binary DSMs, while DSMs with off-diagonal cells containing numbers
are called numerical DSMs. Fig. 2.2 left shows an example DSM P of a system with
five entities numbered 1 through 5. A relationship between two entities is indicated
with a 1. The absence of a relation is indicated with an empty matrix entry. Therefore,
this DMS is a binary DSM.

A matrix in which the relationships between different domains are described is
called a Domain Mapping Matrix (DMM), which is a rectangular matrix. A DMM
can also be binary or numerical. The generation of DSMs from DMMs with matrix
multiplications is described in (Maurer 2007; Yassine et al. 2003).

There exist different types of DSMs. Undirected relationships result in a static
DSM, while directed relationships result in a dynamic DSM. The different types of
DSMs allow for different types of analyses of the considered system. In this paper, a
static DSM is analyzed. Often, the goal of analyzing static DSMs is to find a modular
structure by clustering the entities of the DSM, as shown, for example, in (Wilschut
et al. 2017). Fig. 2.2 right shows the clustered example DSM PC . By reordering the
rows and columns of the unclustered DSM P , strongly related entities are placed
together to form a cluster. Entities 1 and 4 form a cluster and entities 2, 5, and 3 form
a cluster. These clusters are called modular clusters as each entity of the system is
included in exactly one of the clusters. Several heuristics exists in literature to cluster
a DSM, see for example (Wilschut et al. 2017). Typically, different settings for these
heuristics will result in different clusters for the same DSM.

In (Eppinger and Browning 2012), a more in-depth introduction to DSM analysis,
including notions not used in this paper, is given. Examples and applications of DSMs
can be found in the recent review paper (Browning 2016).
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Figure 2.2: Left the unclustered example DSM P and right the clustered DSM PC revealing
two clusters.

2.1 Multilevel Markov clustering
The clustering algorithm of (Wilschut et al. 2017) utilizes Markov clustering (van
Dongen 2008). In Markov clustering, a symmetric stochastic matrix P is used that
represents the transition matrix of a Markov chain. The clustering algorithm is an
iterative process where each iteration k consists of two steps: the expansion step and
the inflation step.

In the expansion step, the transition matrix of the previous step Pk−1 is raised
to the power α to obtain Pk = Pα

k−1. The new transition matrix represents the
transition probabilities of a Markov chain where a random walker has taken α steps.
In the inflation step, high transition probabilities are increased and low transition
probabilities are decreased by taking the Hadamard (entry wise) power of Pk with
coefficient β and then normalizing the columns.

The Markov clustering terminates when a fixed-point is reached (van Dongen
2008). The resulting invariant matrix is then interpreted as the adjacency matrix of a
weighted directed graph denoting disjoint clusters.

To apply Markov clustering on a DSM, the DSM has to be converted into a
transition matrix of a Markov chain. To this end, the DSM is interpreted as an
adjacency matrix of a weighted directed graph, where the rows and columns are the
nodes and the entries are the weights. For each node, a positive fluid is injected to
determine the influence of this node on other nodes, while a negative fluid is injected to
determine the dependency of this node on other nodes. The strength of the influence
and dependency decreases with a factor µ each time the flow passes through a node.

This Markov clustering is turned into a multilevel Markov clustering by using
graph coarsening. All elements within a cluster are collapsed into a new super-node.
The original DSM is coarsened with these new super-nodes, where the new weight
between the super-nodes equals the sum of the inter-cluster edge weights between the
clusters.

3 Multilevel discrete-event systems
In this section, the concepts and notations of Supervisory Control Theory used in this
paper are summarized. A more in-depth introduction to SCT, including notions not
used in this paper, can be found in (Cassandras and Lafortune 2008; Wonham and
Cai 2019).
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3.1 Preliminaries
Discrete-event systems can be modeled with extended finite automata (EFAs). An
EFA using variable set V with initial valuation v̂0 is a 5-tuple (L,Σ,→, Lm, l0) where
L is a finite set of locations, Σ an alphabet, → ⊆ L × Σ × ΠV × L the transition
relation with ΠV the set of all update functions using variables from V , Lm ⊆ L a set
of marked locations indicating ‘accepting’ or ‘final’ locations, and l0 ∈ L the initial
location.

The alphabet Σ is partitioned into two disjoint sets: the set of controllable events
Σc and the set of uncontrollable events Σuc. Controllable events can be disabled by
the supervisor, e.g., switching on an actuator, while uncontrollable events cannot be
disabled, e.g., switching sensor values. We introduce the function Alp(E) to represent
the alphabet of EFA E.

In an EFA, each transition is augmented with an update using variables, constants,
the Boolean literals true (T) and false (F), and the usual arithmetical and logical
connectives, see (Mohajerani et al. 2016). With each variable v ∈ V , a domain
dom(v) of values is associated. A valuation is a mapping v̂ : V → ⋃

v∈V dom(v)
with v̂(v) ∈ dom(v) for each v ∈ V . The set of all valuations on V is denoted by
Val(V ). The initial valuation is denoted by v̂0. An example of an update function
is p(v̂1, v̂2) ≡ v̂1(v1) = 1 ∧ v̂2(v1) = 2 where v̂1 and v̂2 denote the current-state and
next-state valuations, respectively. This update function evaluates to true if the
current-state value of v1 equals 1 and the next-state value equals 2. Formally, an
update function is a predicate function u : Val(V )×Val(V )→ B. The set of all update
functions using variables from V is denoted by ΠV . A more detailed discussion on
predicates and combining predicates can be found in (Kumar et al. 1993). From now
on we assume that there is a globally defined variable set V together with domains of
each variable and initial valuation v̂0.

In an EFA, a transition (l1, σ, u, l2) ∈ → can be taken if u(v̂1, v̂2) evaluates to
true with the current-state valuation v̂1 and next-state valuation v̂2. After taking the
transition, the current location l1 of the EFA has been updated to l2 and the valuation
v̂1 to v̂2.

It is not necessary to use all variables in an update. Let Var(u) ⊆ V denote the
variables used in update u. This function can be extended to an EFA as Var(E) =⋃

(l1,σ,u,l2)∈→Var(u) providing the set of variables used somewhere in this EFA.
An automaton is called prefix-closed if all locations are marked. In a prefix-closed

automaton it holds that for each path from the initial location to a marked location
all prefixes also lead to a marked state.

For large-scale systems, the model is given as a collection of EFA models Gs =
{G1, G2, . . . , Gm}. Such a collection is called a composed system. Two EFAs can be
combined by using the synchronous composition, see (Mohajerani et al. 2016).

Definition 1 (Synchronous composition). Let Gk = (Lk,Σk,→k, Lkm, l
k
0), k = 1, 2 be

EFAs with variable set V . The synchronous composition of G1 and G2 is

G1 ‖ G2 = (L1 × L2,Σ1 ∪ Σ2,→, L1
m × L2

m, (l10, l20))

where the transition relation → is defined as
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• ((l11, l21), σ, u, (l12, l22)) ∈→ if σ ∈ Σ1 ∩ Σ2 and there exist (l11, σ, u1, l12) ∈→1 and
(l21, σ, u2, l22) ∈→2 such that u = u1 ∧ u2;

• ((l11, l21), σ, u1, (l12, l21)) ∈→ if σ ∈ Σ1 \ Σ2 and (l11, σ, u1, l12) ∈→1;

• ((l11, l21), σ, u2, (l11, l22)) ∈→ if σ ∈ Σ2 \ Σ1 and (l21, σ, u2, l22) ∈→2.

Synchronous composition is associative, i.e., (G1 ‖ G2) ‖ G3 = G1 ‖ (G2 ‖ G3) =
G1 ‖ G2 ‖ G3.

A less frequently used notion is that of a product system representation of FAs (Ra-
madge and Wonham 1989), which is here adapted for EFAs. Let P(Gs) be the set of
all partitions of the composed system Gs, which is a lattice (Birkhoff 1940). In the
remainder, we write P instead of P(Gs) for notational simplicity. A partition P ∈ P is
called a product system if for every pair of cells p1, p2 ∈ P , if p1 6= p2 then the alphabets
are disjoint and the sets of used variables are disjoint, i.e., Alp(p1) ∩ Alp(p2) = ∅ and
Var(p1) ∩ Var(p2) = ∅ where Alp(p) = ⋃

Gi∈p Alp(Gi) and Var(p) = ⋃
Gi∈p Var(Gi).

The infimum of the set of all product systems PS is called the most refined product
system partitioning and the most refined product system G′s = {‖Gi∈p Gi | p ∈ inf(PS)}.

Proposition 1 (Most refined product system). Let Gs be a composed system. Then
inf(PS) ∈ PS .

Proof. As the lattice of partitions is finite, and the meet of two product systems is
again a product system, it follows that inf(PS) ∈ PS .

EFA models in a product system representation do not interact with each other, i.e.,
they behave asynchronously. The product system representations ease the reasoning
about the system, see (Feng and Wonham 2006; de Queiroz and Cury 2000). Any
composed system Gs can be transformed into a product system representation; the
trivial one is just the synchronous product of all models. The most-refined product
system can be seen as the one obtained with the least number of synchronous product
operations.

Finally, in SCT a distinction is made between plant models and requirement models.
Plant models describe the uncontrolled behavior of a system, while requirement models
describe the desired behavior of the system.

Requirements can be expressed with both EFAs and state-based expressions(Ma
and Wonham 2005; Markovski et al. 2010). Mutual state exclusion requirements refer
to forbidden combinations of states of the plant models in the composed system. We
define the alphabet Alp(K) of a mutual state exclusion expression K as the empty set
and the set of variables Var(K) as all variables used in K.

3.2 Monolithic supervisor synthesis
The objective is to design a controller whose function is to disable controllable events
so that the closed loop system of the plant and the controller obeys the specified
behavior. SCT provides a method to synthesize a supervisor that adheres to the
following control objectives for given plant and requirement models, see (Ouedraogo
et al. 2011).
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• Safety: all possible behavior of the controlled system should always satisfy the
imposed requirements.

• Controllability: uncontrollable events may never be disabled by the supervisor.

• Non-blockingness: the controlled system should be able to reach a marked state
from every reachable state.

• Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, controllability, and non-blockingness.

Monolithic supervisory control synthesis results in a single supervisor S from a
single plant model and a single requirement model. We refer to S as the automaton
representation of the synthesized supervisor. When the plant model and the require-
ment model are given as a collection of models Ps and Rs, respectively, the monolithic
plant model P and requirement model R are obtained by performing the synchronous
products of the models in the respective collection.

3.3 Multilevel discrete-event systems
A multilevel discrete-event system (MLDES) is a system with a tree-based structure, as
recently proposed in (Komenda, Masopust, et al. 2016). More formally, let T represent
an index set for a tree structure, where each element n ∈ T represents a node in the
tree. An MLDES is defined as a set Gs of subplants, {Gn | n ∈ T}, such that global
plant G is given by G =‖n∈T Gn.

The control synthesis problem of MLDES is stated as follows. Consider the
supervisory control problem where the global plant is given as G =‖n∈T Gn and
the global requirement K =‖n∈T Kn. Find a set of supervisors where the global
supervisor is given by S =‖n∈T Sn such that the controlled system S ‖ G satisfies
safety, controllability, nonblockingness, and maximal permissiveness.

As shown in (Komenda, Masopust, et al. 2016), the set of supervisors Ss can be
constructed by synthesizing for each node n ∈ T a supervisor Sn with monolithic
supervisory control synthesis. The following theorem states that there exists a solution
satisfying safety for FA models.

Theorem 1 (Existence of MLDES supervisors (Komenda, Masopust, et al. 2016)).
Consider an MLDES with FA-based subplant set Gs and a set of prefix-closed, control-
lable requirements {Kn | n ∈ T ∧Kn ⊆ Σ∗Gn} such that K =‖n∈T Kn. There exists a
set of supervisors Ss, where Ss = {Sn | n ∈ T ∧ Sn ‖ Gn = Kn}, such that S ‖ G = K
with S ‖ G =‖n∈T Sn ‖ Gn.

For prefix-closed requirements it can then also be shown that the solution is
maximally permissive and nonblocking (Cassandras and Lafortune 2008; Komenda,
Masopust, et al. 2016). Otherwise, a nonblocking check, for example the one described
in (Flordal and Malik 2009), should be performed to assess whether the system
controlled by the resulting set of supervisors is nonblocking. As stated by (Komenda,
Masopust, et al. 2016), the case of non-prefix closed requirements in conjunction with
controllability is part of future research.
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In (Komenda, Masopust, et al. 2016), only FA-based models are considered. The
extension of Theorem 1 to EFA-based models is part of ongoing research.

4 Proposed method
In this section, the proposed method of transforming a set of plant models and
requirement models into an MLDES is described. The input for the method can be
any set of plant models and requirement models. The transformation consists of three
stages: recording the dependencies between the models, finding a valid clustering of
the composed system, and constructing the MLDES. These three stages are explained
in detail below. Finally, the complete algorithm is provided.

In the remainder of this paper, a problem definition denotes any composed system,
i.e., G =‖i∈I Gi, I = {1, 2, . . . , g}, g ∈ N+, together with the composed global
requirement, i.e., K =‖j∈J Kj, J = {1, 2, . . . , k}, k ∈ N+.

Example: Throughout this section, an illustrative example of a lock is provided to
explain the presented method. To maintain different water levels within a canal, a lock
is constructed which allows ships to be lifted to the higher water level or to be lowered
to the lower level. Fig. 2.3 shows the lock located at Terneuzen, The Netherlands.

The following subplants are present in this simplified system:

Figure 2.3: The lock at Terneuzen, The Netherlands. Image from https://beeldbank.rws.nl,
Rijkswaterstaat.
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• Side 1 entering light

• Side 1 leaving light

• Side 1 gate actuator

• Side 1 gate sensor

• Side 1 sewer actuator

• Side 1 sewer sensor

• Side 1 equal-water sensor

• Side 2 entering light

• Side 2 leaving light

• Side 2 gate actuator

• Side 2 gate sensor

• Side 2 sewer actuator

• Side 2 sewer sensor

• Side 2 equal-water sensor

On this system, 30 requirements are imposed to guarantee the safe operation of the
lock. These requirement are formulated by engineers of Rijkswaterstaat. An example
of a safety requirement is that if there is no equal water level over a gate, then the gate
may not be opened. The complete model, and all other models used later in this paper,
can be found in (Goorden, van de Mortel-Fronczak, Reniers, Fokkink, et al. 2019).

4.1 Recording the dependencies
The relationships within the problem definition are analyzed. Since plant models and
requirement models have a different role in the synthesis process, we consider them
as different domains. The dependencies between plants and requirements result in
a DMM. From this domain mapping, we could create in a later stage a DSM with
plants as entities and a DSM with requirements as entities, both using simple matrix
multiplications, see (Maurer 2007).

As a first step, we transform the general problem definition into the most refined
product system. Therefore, if we later refer to an event or a variable, there will
be only a single plant model containing this event in the alphabet or using this
variable. Let the most refined product system be denoted by {G′i | i ∈ I ′} with
G =‖i∈I′ G′i, I ′ = {1, 2, . . . , g′}, g′ ≤ g.

Let the DMM be denoted by PR. Construct PR such that PR(i, j) = 1 if the
alphabets or the used variables sets of component i and requirement j are not disjoint,
else PR(i, j) = 0. During the supervisory control synthesis procedure, it may be
possible that the behavior of G′i is restricted by requirement Kj if PR(i, j) = 1. If
PR(i, j) = 0, we know that requirement Kj has no effect on the behavior of plant
model G′i during the supervisory control synthesis procedure. Therefore, a binary
DMM is sufficient and no need for a numerical DMM is present.

Example: The most refined product system of the simplified lock is given by:

1. Side 1 entering light

2. Side 1 leaving light

3. Side 1 gate

4. Side 1 sewer

5. Side 1 equal-water sensor

6. Side 2 entering light

7. Side 2 leaving light

8. Side 2 gate
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PR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1
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3
4
5
6
7
8
9
10 1

1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1
1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Figure 2.4: The DMM PR of the simple lock. Only the nonzero elements are shown for
readability.

9. Side 2 sewer 10. Side 2 equal-water sensor

Instead of 14 components, the most refined product system has 10 components. On
each side, the gate actuator and sensor have been merged, as well as the circulation
sewer actuator and sensor. The numbers before the components are used in the
remainder of this section to refer to a particular component of the product system.

The resulting DMM of the simple lock example is shown in Fig. 2.4. Consider
the requirement mentioned before: if there is no equal water over a gate, then the
gate may not be opened. For side 1, this is the third requirement. This requirement
has a relationship with the gate component (number 3) and the equal water sensor
component (number 5). Therefore, PR(3, 3) = 1, PR(5, 3) = 1, and all other elements
in column 3 of PR are zero. This is done for all 30 requirements.

4.2 Finding a valid clustering
Before we can find clusters, we need to define a multilevel clustering. A multilevel
clustering can be seen as recursively partitioning set A, i.e., set A is partitioned into
{A1, . . . , As} where each cell Ai is again partitioned, and so on until partitions with a
single element are reached.

Definition 2 (Multilevel clustering). The set of all multilevel clusterings Cm
A on a

non-empty element set A is inductively defined.

• When |A| = 1, (A,A) ∈ Cm
A .

• {A1, . . . , As} is a partition of A for some s ≥ 2, and ∀1 ≤ i ≤ s : (Ai,Mi) ∈ Cm
Ai

with Mi the multilevel clustering of Ai, then (A, {(Ai,Mi) | 1 ≤ i ≤ s}) ∈ Cm
A .

In tuple (A,M) ∈ Cm
A , A provides immediately all elements in this multilevel

clustering and set M contains the multilevel clusterings of its children. For example,
({1, 2, 3}, {({1}, {1}), ({2, 3}, {({2}, {2}), ({3}, {3})})}) is a multilevel clustering on
the set {1, 2, 3}.

A multilevel clustering will function as a basis for creating the tree index set T in
the next step. To find a multilevel clustering of the product system G =‖i∈I′ G′i, we
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first transform DMM PR into a DSM with the plants as the domain. Let DSM P be
defined as P = PR · PRT with PRT the transpose matrix of PR.

By creating DSM P from DMM PR, we have the following interpretation. When
P(a, b) = k we know that there exist k requirements that use events or variables from
both G′a and G′b to describe the desired behavior. Therefore, in a multilevel clustering
based on DSM P a cluster of plant models indicates that multiple requirements relate
the plant models from the cluster. Plant models from different clusters are related by
none or only some requirements.

Example: Fig. 2.5 left shows the DSM P of the lock example. For example, cell
P (3, 1) = 4 indicates that there are four requirements which use both plant component 1
(entering light side 1) and plant component 3 (gate side 1). Furthermore, the elements
on the diagonal indicate the number of requirements related to that particular plant
component.

The clustering algorithm as presented in (Wilschut et al. 2017) is used to find
a multilevel clustering. This paper does not discuss which clustering algorithm is
the best for our purpose of eventually synthesizing supervisors. Any valid multilevel
clustering according to Definition 2 can be used. Due to the bottom-up partitioning
approach used in (Wilschut et al. 2017), a valid multilevel clustering is calculated.
Furthermore, it does not require any information on the structure of the multilevel
clustering as input, like the number of expected clusters or the number of hierarchical
layers.

Example: Fig. 2.5 right shows the clustered DSM PC for the simple lock model.
The clustering is generated with the algorithm presented in (Wilschut et al. 2017) with
the parameter values α = 2, β = 2.2, γ = 10 and µ = 2.0. There are three clusters
indicated: a cluster with the entering light, leaving light, gate, and equal water sensor
of side 1, a similar cluster with elements of side 2, and a cluster with the circulation
sewers of both sides.

4.3 Constructing the MLDES

From now on we assume that we have a multilevel clustering (I ′,M) on index set I ′ of
the most refined product system {G′i | i ∈ I ′}. We will use the information from DSM
P and DMM PR to construct the index set T of the tree structure together with the
set of plant models {Gn | n ∈ T} and the set of requirement models {Kn | n ∈ T}.

In this section, we present algorithms to construct the tree index set T and the
problem definition at each node in the tree. We first explain the algorithm to construct
the index set of the tree structure. Then we explain the algorithm to determine the
problem definition.



Paper 2. Structuring MLDES with DSM 119

P

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

4
2
6

4
6
2

2
2

1

13
4
4

2
2

4
1

1

4
2
6

4
6
2

1

13
4
4

2
2

4

2
2

1

1

PC

1
1

2

2

3

3

5

5

6

6

7

7

8

8

10

10

4

4

9

9

4
2
6

4
6
2

2

2

1
13
4
4

1
1

4
2
6

4
6
2

2
1
13
4
4

2

1
1

2
4

2

4
2

2

Figure 2.5: DSM P for the simple lock example: left the unclusterd P and right the clustered
PC .

Algorithm 1 TransformCmtoT
Input: multilevel clustering (A,M), new node index n, DSM P of (A,M), DMM PR,
most refined product system {G′i}, set of requirements {Kj}
Output: index set of tree-structure T of (A,M), set of plant models GT = {Gn | n ∈
T}, set of requirement models KT = {Kn | n ∈ T}, last used node index m
1: Set T = {n} and m = n
2: Gn, Kn, Pmod ,PRmod =

CalculateGnandKn((A,M), P,PR, {G′i}, {Kj})
3: Set GT = {Gn}, KT = {Kn}
4: if size(M) > 1 then
5: for all (Ap,Mp) ∈M do
6: Tp, GTp , KTp ,mp =

TransformCmtoT ((Ap,Mp),m+ 1,
Pmod ,PRmod , {G′i}, {Kj})

7: T = T ∪ Tp, GT = GT ∪GTp , KT = KT ∪KTp

8: m = mp

9: end for
10: end if

Algorithm 1 creates the index set T of the tree structure embedded in the given
multilevel clustering (A,M). We apply this algorithm recursively to do a depth-first
search through the multilevel clustering (I ′,M) obtained from the previous step. This
algorithm consists of two parts: first, the plant model and requirement model are
calculated for the new node with Algorithm 2, and second, we explore new nodes
further down the tree and repeat the algorithm. Initially, Algorithm 1 is called with
TransformCmtoT ((I ′,M), 1, P,PR, {G′i|i ∈ I ′}, {Kj|j ∈ J}).

When Algorithm 1 is performed, we know that there exists a valid level in the
tree structure. This level n is added to the tree structure in Line 1 and noted that
this is the last tree index currently used. Furthermore, in Lines 2-3 the plant model
and requirement model on level n are calculated, see Algorithm 2. This algorithm
modifies the DSM P and DMM PR. The algorithm continues if we can go further
down in the tree structure. At Lines 4-10 we go further down the tree structure for
each subcluster. In Line 6 the recursive call is performed. The results of this call are
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added to the already obtained results in Lines 7-8. The order of the calls chosen in
Line 5 only influences the order of the nodes.

The following proposition ensures that Algorithm 1 terminates.

Proposition 2 (Termination of Algorithm 1). Given a valid multilevel clustering
(A,M) with A a finite set, Algorithm 1 terminates.

Proof. A new inductive call of Algorithm 1 is performed when the cardinality of the
current multilevel clustering (A,M) is larger than 1. Furthermore, observe that the new
inductive calls are performed on subclusters of the current multilevel clustering. For
each subcluster (Ap,Mp) of (A,M) it holds that |Ap| < |A| and thus finite. Therefore,
we can construct the following inductive proof.

Inductive base When |A| = 1, Algorithm 1 terminates.
Inductive hypothesis Assume that ∀(Ap,Mp) ∈M , Algorithm 1 will terminate

eventually for (Ap,Mp).
Inductive step In Algorithm 1 inductive calls are performed for all (Ap,Mp) ∈M .

Since we know by the inductive hypothesis that each of these inductive calls will
terminate, all inductive calls in Algorithm 1 will terminate. Therefore, the call of
Algorithm 1 with (A,M) will terminate.

Example: Starting from the root node, we can identify three subclusters: {1, 2, 3, 5},
{6, 7, 8, 10}, and {4, 9}. Searching further, we see that the first subcluster has four
child nodes, the second subcluster also has four child nodes, and the third subcluster
has two child nodes. The resulting tree T has three levels and is shown in Fig. 2.6.

Algorithm 2 shows the procedure to calculate the problem definition for a certain
node n in the tree structure. Conceptually, the algorithm uses the DMM PR and
DSM P to calculate the plant model and requirement model for the node as follows.
If a singleton has been reached in the multilevel clustering, a leaf node in the tree
structure is reached, the plant model in this singleton is directly placed in the node,
and requirements are identified that only have a dependency with this plant model
(and no other plant model). In all other cases of multilevel clusterings, a regular node
in the tree has been reached, requirement models for this node are identified based on
dependencies outside the subclusters and within the current cluster, and the plant
models are those that relate to the identified requirement models.

In detail, Algorithm 2 works as follows, where P (:, j) indicates column vector j
of matrix P . In Line 1 we create Pmod and PRmod as we may modify it. We need to
make a distinction between a leaf node and a non-leaf node.

If we have reached a leaf node, then in Lines 3-4, plant index set In at this node is
set to the plant of the product system indicated by the multilevel clustering. For this
single subplant, there may exist requirements which are only related to this subplant.
These requirements are identified in Line 4.

If we did not reach a leaf node, the multilevel clustering (A,M) consists of multiple
subclusters. At the current node, we need to identify the requirements which combine
the subclusters into this particular multilevel clustering (A,M). To this end, we search
in DSM P nonzero elements outside each of the subclusters, but inside cluster (A,M).
In Lines 6-8 we consider all possible combinations of elements from two different
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3
G′1

4
G′2

5
G′3

6
G′5

8
G′6

9
G′7

10
G′8

11
G′10

13
G′4

14
G′9

2
G′1 ‖ G′2 ‖ G′3 ‖ G′5

K3 ‖ K6 ‖ K7 ‖ K8 ‖ K9 ‖
K10 ‖ K11 ‖ K12 ‖ K13 ‖ K14 ‖ K15

7
G′6 ‖ G′7 ‖ G′8 ‖ G′10

K18 ‖ K21 ‖ K22 ‖ K23 ‖ K24 ‖
K25 ‖ K26 ‖ K27 ‖ K28 ‖ K29 ‖ K30

12
G′4 ‖ G′9
K1 ‖ K16

1
G′3 ‖ G′4 ‖ G′8 ‖ G′9

K2 ‖ K4 ‖ K5 ‖ K17 ‖ K19 ‖ K20

Figure 2.6: Tree structure: index set T together with Gn and Kn.

subclusters. If we find a nonzero element in Pmod , we know that there exists at least
one requirement which relates the two different subclusters to each other. In Line 9 we
identify these requirements by searching DMM PRmod . It is possible that one of these
particular requirements also relates to other subclusters or even relates to elements
inside a particular subcluster. To prevent placing a requirement in multiple nodes,
we update Pmod and PRmod by removing all relationships resulting from the found
requirements. When we have found all requirements relating the subclusters together
at this node, we calculate at Lines 18 and 19 the plant model and requirement model
for this node.

Example: Consider the first node 1. In Fig. 2.5 we can identify three non-zero
elements in P outside the clusters {1, 2, 3, 5}, {6, 7, 8, 10}, and {4, 9} and in the lower
triangular part: P (8, 3), P (4, 8) and P (9, 3). For the first element P (8, 3), we search
in PR for all j ∈ J such that PR(8, j) 6= 0 ∧ PR(3, j) 6= 0. From Fig. 2.4, we can
see that only j = 5 and j = 20 satisfy this condition and are therefore added to Jn.
Repeating this for P (4, 8) and P (9, 3) results finally in J(1,1,1) = {2, 4, 5, 17, 19, 20}.

To create In, we search again PR to find those i ∈ I ′ such that PR(i, j) 6= 0, j ∈ Jn.
From Fig. 2.4 we can conclude that I(1,1,1) = {3, 4, 8, 9}.

The same approach can be applied to find Gn and Kn for each node n ∈ T . Fig. 2.6
shows the resulting plant and requirement models at each node. If a node does not show
a requirement model Kn, none of the original requirements is placed at this node. A
node will not get assigned any requirement if there are no requirements related to only
the plant models in that node. For the simple lock model, there are no requirements
related to only a single plant model, see the DMM in Fig. 2.4.

We can prove the following two Propositions 3 and 4, which state that every
original plant model and requirement model is located somewhere in the constructed
MLDES, respectively. The necessary and sufficient condition in Proposition 4 simply
states that each requirement has a dependency with some plant model, which is a
reasonable assumption for models of real systems.

Proposition 3 (Plant model conservation). Consider the MLDES constructed with
Algorithm 1, it holds that ‖i∈I′ Gi = G =‖n∈T Gn.



122 4. Proposed method

Algorithm 2 CalculateGnandKn

Input: multilevel clustering (A,M), DSM P of (A,M), DMM PR, most refined
product system {G′i}, set of requirements {Kj}
Output: Plant model Gn for top cluster of (A,M), requirement model Kn of top
cluster (A,M), modified DSM Pmod , modified DMM PRmod

1: Pmod = P,PRmod = PR
2: if size(M) = 1 then
3: In = A
4: Jn = {j ∈ J | PR(A, j) = 1 ∧∑

i∈I′ PR(i, j) = 1}
5: else
6: for all (Ax,Mx), (Ay,My) ∈M,Ax 6= Ay do
7: for all x ∈ Ax, y ∈ Ay do
8: if Pmod(x, y) 6= 0 then
9: Jtemp = {j ∈ J | PRmod(a, j) = 1 ∧

PRmod(b, j) = 1}
10: Pmod = Pmod−∑

j∈Jtemp PRmod(:, j) · PRmod(:, j)T
11: In = In ∪ {i ∈ I ′ | ∃j ∈ Jtemp :

PRmod(i, j) = 1}
12: Jn = Jn ∪ Jtemp
13: PRmod(:, Jtemp) = 0
14: end if
15: end for
16: end for
17: end if
18: Gn =‖i∈In G′i
19: Kn =‖j∈Jn Kj

Proof. For each node n visited by Algorithm 1, Algorithm 2 is called at Line 2. It
follows from Algorithm 2, Line 18, that Gn =‖i∈In G′i where In ⊆ I ′. Thus,

‖n∈T Gn =‖n∈T (‖i∈In G′i) =‖i∈(∪n∈T In) G
′
i ⊆‖i∈I′ G′i. (2.1)

For a valid multilevel clustering (I ′,M) on index set I ′ it holds that each index is
included in exactly one leaf node. For the leaf node of element i, we know by Algorithm
2 that Gn = G′i. Therefore, the subset equality in Equation 2.1 becomes a set equality,
since ∪n∈T,n is leaf node In = I ′.

Proposition 4 (Requirement model conservation). Consider the MLDES constructed
with Algorithm 1, it holds that ‖j∈J Kj = K =‖n∈T Kn if and only if ∀j ∈ J : PR(:
, j)T · PR(:, j) ≥ 1.

Proof. (⇐) For each node n visited by Algorithm 1, Algorithm 2 is called at Line
2. It follows from Line 19 of Algorithm 2 that Kn =‖j∈Jn Kj. So, to prove that
K =‖n∈T Kn, it suffices to prove that ∪n∈TJn = J .
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Requirement j is added to Jn for some n if one of the nonzero elements of
PR(:, j) · PR(:, j)T is encountered by Algorithm 2 when Algorithm 1 is at node n.
From the assumption that PR(:, j)T · PR(:, j) ≥ 1 it follows that there exists at least
one nonzero element in PR(:, j) · PR(:, j)T . Therefore, we know that one of these
nonzero elements is checked if we check all elements of P = PR · PRT .

All diagonal elements of P are checked at the leaf nodes of the tree structure.
For all off-diagonal elements P (a, b) with a, b ∈ I ′ it holds that we always can find
two multilevel clusters (Ax,Mx) and (Ay,My) such that Ax 6= Ay ∧ a ∈ Ax ∧ b ∈
Ay ∧ ∃(Ap,Mp) : (Ax,Mx), (Ay,My) ∈Mp. Since Algorithm 1 starts at the root node
of the tree structure and inductively creates the index set T until it has reached all leaf
nodes, we must have found (Ap,Mp) such that Algorithm 2 checks P (a, b). Therefore,
all elements of P are checked, is one of the nonzero elements of PR(:, j) · PR(:, j)T
encountered, is j added to Jn for some n, and finally ∪n∈TJn = J .

(⇒) From ‖j∈J Kj = K =‖n∈T Kn it follows that ∀j ∈ J,∃n ∈ T : j ∈ Jn.
Requirement j is added to Jn if one of the nonzero elements of PR(:, j) · PR(:, j)T is
encountered by Algorithm 2 when Algorithm 1 is at node n.

From the argumentation above it follows that all elements of P are checked
whether that element is nonzero, and thus all elements of PR(:, j) · PR(:, j)T are
checked. Therefore, as j ∈ Jn, the matrix PR(:, j) · PR(:, j)T should contain at least
one nonzero element. As each element in PR is either zero or one, we can conclude
that PR(:, j)T · PR(:, j) ≥ 1.

4.4 Complete algorithm
Algorithm 3 shows the steps performed to transform a general problem definition
into a tree-structured system with at each node a plant model and a requirement
model. The following theorem states that the result of Algorithm 3 is a valid input
for synthesis of a set Ss of supervisors according to (Komenda, Masopust, et al. 2016)
and Theorem 1. Algorithm 3 also works correctly for FA models, as for those models
Var(Gi) = Var(Kj) = ∅ for all Gi and Kj by definition.

Algorithm 3 TransformToMLDES
Input: set of plant models {Gi | i ∈ I}, set of requirement models {Kj | j ∈ J}
Output: index set of tree-structure T of MLDES, set of plant models GT = {Gn | n ∈
T}, set of requirement models KT = {Kn | n ∈ T}
1: Transform {Gi} to a most refined product system {G′i} with new index set I ′.
2: Construct matrix PR such that PR(i, j) = 1 iff Alp(G′i)∩ Alp(Kj) 6= ∅∨Var(G′i)∩

Var(Kj) 6= ∅,∀i ∈ I ′, j ∈ J .
3: Calculate P = PR · PRT .
4: Cluster P , for example with algorithm presented in (Wilschut et al. 2017). Assign

the computed multilevel clustering to (I ′,M).
5: Transform (I ′,M) to the tree structure including {Gn}, {Kn} by Algorithm 1

with initial parameter values TransformCmtoT ((I ′,M), 1, P,PR, {G′i}, {Kj})
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Theorem 2 (Valid MLDES tree). Consider a general composed system {Gi | i ∈ I}
and prefix-closed requirements {Kj | j ∈ J} with G =‖i∈I Gi and K =‖j∈J Kj,
respectively. The output T, {Gn | n ∈ T}, and {Kn | n ∈ T} generated by Algorithm 3
is an MLDES for synthesis of the set Ss = {Sn | n ∈ T, Sn ‖ Gn ⊆ Kn} according to
Theorem 1.

Proof. It suffices to show that G =‖n∈T Gn, K =‖n∈T Kn and ∀n ∈ T : Kn ⊆ Σ∗Gn .
Theorems 3 and 4 show that G =‖n∈T Gn and K =‖n∈T Kn, respectively. It only
remains to prove that ∀n ∈ T : Kn ⊆ Σ∗Gn .

Consider a node n, it holds that Kn ⊆ Σ∗Gn if ΣKn ⊆ ΣGn . In Algorithm 2, Kn is
constructed at Line 18 according to the index set Jn. One can observe at Lines 3 and
10 of Algorithm 2 that ∀j ∈ Jn : ∀i ∈ I ′ ∧ PR(i, j) = 1 : i ∈ In. By the construction
of PR given in Line 2 of Algorithm 3 and the fact that Gn =‖i∈In G′i, we can conclude
that ΣKn ⊆ ΣGn .

Theorem 2 applies for prefix-closed requirements. In case of non-prefix closed
requirements, the presented method can still be used to construct an MLDES. After
synthesizing supervisors for the MLDES, a nonconflicting check should be performed
as mentioned in Section 3.3.

Example: Fig. 2.6 shows the result after applying Algorithm 3. For each node
n ∈ T , supervisor Sn is synthesized with monolithic supervisory control synthesis
procedure. Table 2.1 shows the number of states and transitions of the supervisors. For
a comparison, also the number of states and transitions are shown of the uncontrolled
system and the supervisory controller obtained with monolithic synthesis procedure.
We noticed in this example that all nodes at level 3 have no requirements and each
plant model is already located in one of the nodes where a supervisor is synthesized,
so no supervisors are synthesized at these nodes as any potential blocking state in the
plant models is solved by one of the four supervisors.

As can be seen, the constructed set of supervisors {Sn | n ∈ T} has a smaller
automaton representation than a single monolithic supervisor Smono. Furthermore, it

Table 2.1: Results of Supervisory Control Synthesis on the Simple Lock Model

Synthesis architecture Subsystem Number of
states

Number of
transitions

Uncontrolled system G 82.944 1.041.408

Monolithic supervisor Smono 688 4288

MLDES supervisors Sum 227 954
S(1,1,1) 176 824
S(2,1,1) 22 59
S(2,1,2) 22 59
S(2,1,3) 7 12
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has been checked that the system controlled by the set of supervisors is nonblocking.
Therefore, it holds that ‖n∈T Sn = Smono.

4.5 Complexity analysis
The complexity of Algorithm 3 and performing subsequently multilevel synthesis
depends on the reduction in size of the problem definition in each node. In the worst
case, the most refined product system reduces the original set of plants to only a single
plant model, resulting in monolithic synthesis. Nevertheless, in (Komenda, Masopust,
et al. 2016) it is shown that for some MLDES a considerable gain in computational
time complexity of supervisor synthesis can be achieved.

In the next section, several models from the literature are analyzed to assess the
applicability of the presented method. The purpose is (1) to determine whether the
above described worst-case scenario is present in models of realistic systems and (2)
to observe the complexity reduction for different scenarios.

5 Experimental results
The presented method to transform any problem definition into an MLDES using DSMs
has been implemented in the discrete-event systems tool CIF (van Beek et al. 2014)
and Matlab (Mathworks 2019). Three different experiments have been executed. First,
the effect of different values for clustering parameters on the synthesized supervisors
has been investigated. Second, the effect of different clusterings on nonblocking control
has been investigated. Finally, tests on benchmark models have been performed. The
CIF representation of the models used and results generated can be found in (Goorden,
van de Mortel-Fronczak, Reniers, Fokkink, et al. 2019).

5.1 Clustering parameters
The first experiment investigates the observed computational complexity by applying
the proposed method with different clustering settings. We chose α ∈ {1, 2, 3},
β ∈ {1.1, 1.2, . . . , 3.5}, and µ ∈ {1.1, 1.2, . . . , 7.5}. The ranges are extended versions
of the recommended ranges in (Wilschut et al. 2017). As the goal is to synthesize
supervisors, we chose the sum over the nodes in the MLDED tree of the controlled state
space size, i.e., ∑n∈T mcssn, as the quantitative index to compare different clustering
results (and no quantitative index based on the clustered DSM). We performed all
experiments on the lockIII model.

lockIII A waterway lock is used in rivers and canals to raise and lower vessels
between different water levels (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda
2017). This model has various subsystems: gates, paddles, culverts, two-lamp traffic
lights, and three-lamp traffic lights. An operator can interact with the system through
a human-machine interface.

Fig. 2.7 shows three histograms with the results focussing on the effect of parameter
α. On the horizontal axis, the quantitative index is shown. In this case, the closer
to the origin, the better we consider the results. From these histograms, it can be
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Figure 2.7: Histograms in red of sum of controlled state space sizes split for α = 1 (left),
α = 2 (middle), and α = 3 (right). The blue histogram in the background is the complete
histogram without splitting the data.

conclude that for the lockIII model it is better to have α = 1 instead of α = 2 or α = 3.
We can also explain this result on a conceptual level. The parameter α is involved in
the expansion step where the probability matrix of a Markov chain (representing the
DSM) is raised to the power α, i.e., it indicates a random walker walking α steps. The
DSM of the lockIII model is quite dense. Having an α > 1 results in the ability that
the random walker may reach (almost) all nodes. This reduces the ability to cluster,
as everything seems to be directly connected to everything else.

Fig. 2.8 shows the effect of parameters β and µ. On the vertical axis, the quan-
titative index is shown. Again, the closer to the origin, the better we consider the
results. First, we focus on the effect of parameter β (the left scatter plot). We may
distinguish two regions in the scatter plot: approximately β < 2 and β > 2. For β > 2
we see repetitive results in the scatter plot, while for β < 2 we see both decrease
of minimum and increase of maximum. So, the interesting region to search for the
absolute minimum of the quantitative index is β < 2, but from this scatter plot it is
still unclear if, for example, the smaller β is, the better are the synthesis results.

Second, we focus on the effect of parameter µ (the right scatter plot). The results
are really scattered around and no distinct pattern can be detected.

Looking at these results from an engineering perspective, we can conclude the
following. As an engineer, you may be satisfied with a good reduction and not primarily
the best reduction. For lockIII, the monolithic controlled state space size is 6.0 · 1024,
so reducing this to 109 − 1010 is already a good reduction, while ∼ 108 would be the
best reduction. No matter which β is chosen, there exist multiple values of µ that
would result in a good reduction. This manual search for a good reduction turns out
to be easy.

Finally, we were also interested in the effect of parameter β in the region β < 2.
Therefore, we repeated the above experiment for α = 1, β ∈ {1.1, 1.11, . . . , 2.0}, and
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Figure 2.8: Scatter plots of all data with α = 1. On the left, the parameter β is placed
on the horizontal axis, while on the right it is parameter µ. Both plots have the sum of
controlled state space sizes on the vertical axis. In case several parameter settings result in
the same quantitative index, the circles are drawn on top of each other.
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Figure 2.9: Scatter plots of all data with α = 1 and increased precision of β. On the left, the
parameter β is placed on the horizontal axis, while on the right it is parameter µ. Both plots
have the sum of controlled state space sizes on the vertical axis. In case several parameter
settings result in the same quantitative index, the circles are drawn on top of each other.
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µ ∈ {1.1, 1.2, . . . , 7.5}. The results are shown in Fig. 2.9. Two parameter settings
having a quantitative index smaller than 108 can now be identified, which were not
observed in Fig. 2.8. Nevertheless, no clear relationship between the parameter values
of β and µ and the quantitative index can be observed. So, if the best reduction is
desired, it may involve more effort.

5.2 Nonblocking control
The second experiment investigates the effect of different clustering outcomes on
nonblocking control. Again, the lockIII model is used for these experiments. The
model does not contain any conflicting requirements, so any clustering and MLDES
would result in nonconflicting supervisors. Therefore, a conflicting requirement is
introduced into the model. For this new model, monolithic synthesis would result in
nonblocking control, while modular supervisors (de Queiroz and Cury 2000) would
result in conflicting supervisors.

The following approach is used to create a conflicting requirement. For requirement
R1 = e needs C, which expresses that event e is only allowed if condition C is satisfied,
a new potential conflicting requirement is R2 = e needs ¬C. The combination of
these two requirements expresses that event e is never allowed to happen. Blocking
event e is problematic if a non-marked state can be reached having an outgoing
transition labeled with e and this transition must be included in any path to a marked
state.

Above strategy is insufficient for this experiment: both requirements R1 =
e needs C and R2 = e needs ¬C have the same dependencies with plant mod-
els (the plant model of e and those used in C). Therefore, these two requirements
are always placed in the same node and synthesis will resolve the blocking issue in
that node. Therefore, the condition of the artificial requirement is extended as follows:
R3 = e needs ¬C ∧ (D ∨ ¬D) with D another condition. It is easy to see that ¬C
and ¬C ∧ (D ∨ ¬D) are logically equivalent. Therefore, this extended requirement
results in the same blocking issue as with the first artificial requirement. We now
use condition D to relate this extended requirement R3 to another plant model not
yet mentioned in the original requirement R1. This opens the possibility that both
requirements end up in different nodes in the MLDES.

We applied the above strategy to create an artificial blocking requirement in
lockIII. Conflicting supervisors are obtained with clustering settings α = 1, β = 2.0,
and µ = 4.6, and nonconflicting supervisors with α = 1, β = 2.0, and µ = 4.5. In
the first clustering, the two conflicting requirements are placed in different nodes,
while in the latter they are placed in the same node. These results show that the
proposed method may lead to a solution for nonblocking control, but it should be
further investigated under which conditions the nonblocking result can be guaranteed.

5.3 Benchmark testing
The implementation of the presented algorithm has been tested on several models
available in the literature, which are listed below. The models selected are either
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fully described in the reference or fully available in the discrete-event systems tool
Supremica (Malik, Åkesson, et al. 2017). Most of the models have also been used
previously in benchmark testing, see, e.g., (Fei et al. 2014; Flordal and Malik 2009;
Mohajerani et al. 2016).

transfer-line In this transfer line, products are processed by two machines (Won-
ham and Cai 2019). The first machine places the products after processing them in the
first buffer. The second machine takes products from the first buffer and places them
in the second buffer. A test unit verifies whether the products in the second buffer
are acceptable. If accepted, the products leave the system, otherwise the products
move back to the first buffer.

circular-table In this manufacturing cell metal pieces are drilled and tested (de
Queiroz and Cury 2002). The machine consists of a four-stages circular table with
four operational devices: an input conveyer, a drilling machine, a test device, and a
manipulator.

intertwined This models a manufacturing system where two types of products
are processed (Lin and Wonham 1990). The system consists of two machines, four
handling devices, and six buffers. For each type of product, a pre-specified production
cycle is given.

agent-formation This multi-agent formation problem considers a circular route
where three agents can only travel clockwise (Cai and Wonham 2014; Wonham and Cai
2019). There are two alternative desired formations possible: an equilateral triangle
and an alignment curve. A team leader or a remote operator decides which formation
is currently needed.

work-cycle This manufacturing system consists of three machines and two
buffers (Ouedraogo et al. 2011). Parts are supplied through an input buffer and
are after processing stored in two output buffers. In this system, the first buffer has a
capacity of 16 products and the second buffer a capacity of 8 products.

agv A set of five automatic guided vehicles (AGVs) serve several workstations in
a manufacturing cell (Feng and Wonham 2008). Each AGV travels on one of the fixed
circular routes serving two input stations, three work stations, and a single output
station.

central-lock This models the central locking system of a BMW car. The modeled
system consists of three doors controlled by a central locking system. The model
is derived from the KorSys project and it is available in the tool Supremica (Malik,
Åkesson, et al. 2017).

cluster-tool An integrated manufacturing system that is used for processing
wafers (Su et al. 2010). Four robots move the wafers in the system that consists of
nine work chambers, three buffers, an input load lock, and an output load lock. Wafers
need to be processed according to a pre-specified routing.

production-cell In this production cell, metal blanks need to be forged by a
press (Feng, Cai, et al. 2009). The feed belt forwards blanks from the stock to the
elevating rotary table. The first arm of the robot picks up the blank and places it
in the press. After processing, the second arm from the same robot picks the blank
and drops it on the deposit belt. At the end of the deposit belt, the test unit checks
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whether the forging was successful. If it passes the test, the blank leaves the system,
otherwise it is moved back to the feed belt by the crane.

adas A car is modeled with two Advanced Driver Assistance Systems (ADASs):
Cruise Control (CC) and Adaptive Cruise Control (ACC) (Korssen et al. 2017). CC is
used to maintain a desired velocity using feedback control. ACC is used to maintain a
constant inter-vehicle time gap with respect to the predecessor. The user operates the
ADASs with a human-machine interface and can therefore choose between manual
control, CC, or ACC.

testbed-rail A railroad system is used to resemble a set of three interacting work
units in a manufacturing cell (Leduc 1996). The trains simulate AGVs that handle
material to and from each work unit. Each unit has a small crane for loading and
unloading the material. Several switches in the track allow for different train paths.

wafer-scanner This model concerns the routing of wafers through a wafer scan-
ner (van der Sanden et al. 2015). The system consists of two areas: the wafer stage
where wafers are measured and exposed, and the wafer handler where several pre-
exposure steps are performed. The wafers enter and exit through the wafer handler
area. Furthermore, there are two dummy wafers available in the system.

container-terminal A LEGO model of a container terminal system is used to
demonstrate model-based engineering (Reniers and van de Mortel-Fronczak 2018).
The system consists of three lanes each with a moving crane and a truck transporting
containers between the three lanes. Containers are loaded into the system in one lane
and finally unloaded via one of the other two lanes. The choice between one of the
two unload lanes depends on the color of the container.

festo This didactic production line system consists of 28 actuators and 59 sen-
sors (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al. 2018). Products
undergo various processing steps in six different workstations: distributing station,
handling station, testing station, buffering station, processing station, and sorting
station.

For each model we collect the following metrics: the modeling formalism, the
number of plant models |I|, the number of requirement models |J |, the number of
plant models in the most refined product system |I ′|, the uncontrolled state space
size uss, the controlled state space size of the monolithic supervisor mcss, the sum of
the controlled state space sizes of the multilevel supervisors mlcss = ∑

n∈T mcssn, the
number of supervisors ns, the calculation time t in seconds, and whether the calculated
set of supervisors is nonblocking. For each individual model, a good clustering has been
searched manually. The used clustering parameter values can be found in (Goorden,
van de Mortel-Fronczak, Reniers, Fokkink, et al. 2019).

Table 2.2 shows the experimental results for the different models. The models
are ordered based on the uncontrolled state space size. For some models, during the
calculation of some metrics an out-of-memory (OoM) error has been encountered and
indicated in Table 2.2. A nonblocking check has been performed for those models that
have non-prefix closed requirements. The table shows a wide range of diversity of the
different models. All calculations have been performed on an HP ZBook laptop with
Intel i7 2.4 GHz CPU and 8GB RAM. At most 2 GB of the available RAM could be
allocated for the calculations.
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Table 2.2: Experimental Results for Different Models

Model Form. |I| |J | |I ′| uss mcss mlcss ns t Nonblocking

transfer-line FA 3 2 3 8 28 30 2 4.5 no
circular-table FA 5 8 5 32 151 91 2 4.8 yes

intertwined FA 6 6 2 256 9,216 9,248 3 4.5 yes
agent-formation EFA 4 13 1 1,000 304 304 1 0.27 yes
work-cycle EFA 5 2 1 1,224 1,188 1,188 1 0.02 yes
agv FA 5 8 5 1,664 4,406 9,837 3 4.9 no

central-lock FA 74 35 74 2.6 · 105 OoM 3.9 · 105 15 12.0 yes

cluster-tool FA 18 16 1 2.6 · 108 2.7 · 106 2.7 · 106 1 7.8 yes
production-cell FA 11 19 10 3.8 · 108 1.1 · 108 22,827 7 9.8 no
adas EFA 28 33 27 3.4 · 109 2.0 · 1010 1.1 · 108 8 5.5 yes

adas* EFA 28 72 27 3.4 · 109 2.0 · 1010 5.2 · 105 16 5.7 yes

testbed-rail FA 6 29 4 5.6 · 109 OoM OoM OoM OoM OoM
wafer-scanner EFA 48 37 1 OoM OoM OoM OoM OoM OoM
container-
terminal EFA 45 35 15 3.8 · 1022 OoM 3.4 · 1018 6 275 yes

festo EFA 113 211 88 1.5 · 1026 2.2 · 1025 50,638 24 9.6 yes

lockIII EFA 71 198 51 6.0 · 1032 6.0 · 1024 3.1 · 109 30 14.9 yes
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The models can be clustered into two groups based on the experimental results:
the smaller models and the larger models. The smaller models are the first 6 models
(transfer-line up to and including agv); the larger models are the last 10 models
(central-lock up to and including lockIII).

As expected, the benefit of multilevel synthesis is minimal or sometimes even
absent for the smaller models. The number of independent plant models (indicated
by |I ′|) is often too small to allow for the creation of an effective MLDES. Only for
the circular-table model an MLDES can be created that reduces the state space size
of the multilevel supervisors. For the agv model, an MLDES is not beneficial. The
state space size of the monolithic supervisor is already larger than the state space size
of the uncontrolled system. Dividing requirements into different nodes even further
increases the controlled state space size.

For the larger models, the benefit of MLDESs becomes more apparent. For
example, for the two largest models (festo and lockIII), the state space size of the
multilevel supervisors is significantly smaller than the state space size of the monolithic
supervisor.

The worst-case scenario as described in Section 4.5 becomes reality for some of the
presented models. The cluster-tool as well as the wafer-scanner have a single plant in
the most refined product system representation (|I ′| = 1). For the wafer-scanner it
was already reported in (van der Sanden et al. 2015) that monolithic synthesis was not
feasible. The testbed-rail resulted in only 4 plant models in the most refined product
system representation, of which one contains almost all the original plant models. For
this model, neither monolithic nor multilevel supervisors could be synthesized.

Creating an MLDES tackles the out-of-memory problem for the container model.
While no monolithic supervisor could be synthesized, six multilevel supervisors are
synthesized. MLDESs can be beneficial in case the synthesis of a monolithic supervisor
turns out to be infeasible.

Finally, the formulation of the requirements has influence on the result of transform-
ing a DES to an MLDES. For example, one could have the state-transition exclusion
requirement σ needs A.l1 ∧ B.l2 ∧ C.l3 stating that event σ is only allowed when
automaton A is in location l1 and automaton B is in location l2 and automaton C
is in location l3. As the synthesized supervisor should satisfy all requirements, we
can rewrite this single requirement as a set of three requirements: σ needs A.l1,
σ needs B.l2, and σ needs C.l3. Each of these three new requirements relates to a
smaller set of plant models than the original one, resulting in fewer relationships in
the DSM P , and finally locating these requirements in a lower node in the MLDES.
This creates the potential of obtaining a smaller state space size of the multilevel
supervisors.

To demonstrate this observation, the original adas model is reformulated into
adas* where requirements are split into multiple smaller ones when possible. For the
original adas model we obtained a state space size of 1.1 · 108 states. By splitting the
requirements we can reduce the state space size to 5.2 · 105 states. Also observe that
the number of supervisors is doubled from 8 to 16.
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6 Conclusion
In this paper, a framework is presented that can be used to transform a set of plant
models and a set of requirement models into an MLDES. The plant models and re-
quirement models are represented by EFAs and state-based expressions. Relationships
between plant models and requirement models are used to analyze the structure in
the problem description with DSM-based techniques in order to find an MLDES. For
each node in the MLDES a supervisor can be synthesized.

Experimental results obtained for a set of models from the literature show that the
presented approach helps in overcoming the state space explosion problem. For some
models for which no monolithic supervisor could be synthesized, multilevel supervisors
could be synthesized after transforming these models into an MLDES.

The benefit of MLDESs depends on the modeling decisions made by the modeler
in creating the model. First, when the plant models are ‘loosely coupled’, i.e., only a
few plant models need to be combined to get the most refined product system, the
benefit of MLDESs is very clear. For the festo model, 24 supervisors are created to
reduce the controlled state space size of the monolithic supervisor of 2.2 · 1025 states
to only 50, 638 states for the multilevel supervisors. Second, splitting a composite
requirement into multiple separate, but together equivalent, requirements can also
benefit the result, as shown with the adas model.

Future research directions include specifying modeling guidelines to tackle the
above mentioned problems. For instance, it may be possible to define certain rewriting
algorithms like a ‘requirement decomposition’ algorithm. In case the model cannot be
rewritten (easily), one may need to use other clustering architectures like, for example,
overlapping clusters. Another direction is to consider other supervisory control
architectures, like hierarchical and coordinated supervisory control, and investigate
the changes needed to the proposed method such that proper input is generated for
those architectures.

Furthermore, the question remains whether a different structure analysis could
guarantee nonblocking control of MLDES. Finally, DSM-based structure analysis may
also be useful for guiding abstraction-based methods like coordination control and
compositional synthesis.
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Abstract

This paper presents a framework for compositional coordinator synthesis
for discrete-event systems modeled as extended finite automata. To avoid
the state-space explosion problem, a set of supervisors may be synthesized
using divide and conquer strategies, like modular or multilevel synthesis.
Unfortunately, these supervisors may be conflicting, i.e., while they are
individually nonblocking, together they may be blocking. Abstraction-
based compositional nonblocking verification of extended finite automata
provides means to verify whether a set of models is nonblocking. In case
of a blocking system, a coordinator needs to be synthesized to resolve this.
The framework presented in this paper allows for synthesis of a coordina-
tor on the abstracted system in case compositional verification identifies
the system to be blocking. As the abstracted system may use notions
not present in the original model, like renamed events, the synthesized
coordinator is refined such that it will be nonblocking, controllable, and
maximally permissive for the original system. For each abstraction, it is
shown how this refinement should be performed. It turns out that for the
presented set of abstractions the coordinator refinement is straightforward.

1 Introduction
The design of supervisory controllers for Cyber-Physical Systems becomes increasingly
complex, where failures can result in human fatalities or financial losses. Formal
methods, such as Supervisory Control Theory proposed by (Ramadge and Wonham
1987), are used to reduce this complexity. A supervisor is synthesized based on discrete-
event models of the uncontrolled system and of the control requirements. There
exist several automata-based synthesis procedures to obtain one or more supervisors:
monolithic (Ramadge and Wonham 1987), modular (Wonham and Ramadge 1988),
hierarchical (Zhong and Wonham 1990), decentralized (Rudie and Wonham 1992),
distributed (Cai and Wonham 2010), compositional (Mohajerani, Malik, and Fabian
2017), and multilevel supervisory control synthesis (Komenda et al. 2016).

A set of supervisors, for example obtained with modular supervisory control syn-
thesis, may be conflicting, giving rise to global blocking of the system, see (Cassandras
and Lafortune 2008; Hill and Tilbury 2006; de Queiroz and Cury 2000; Wonham and
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Ramadge 1988). Therefore, a nonconflicting verification should be performed on the
set of synthesized supervisors.

The worst-case computational complexity of the nonconflicting verification is the
same as of the monolithic supervisory control synthesis, see (Cassandras and Lafortune
2008; Wonham, Cai, et al. 2017). There exist several nonconflicting verification
procedures in the literature that deploy different abstraction techniques to reduce the
computational complexity for most cases, see (Flordal and Malik 2006; Mohajerani,
Malik, and Fabian 2016; Pena et al. 2008; Su, van Schuppen, Rooda, and Hofkamp
2010).

When such nonconflicting verification reports a conflict, a supervisor needs to be
synthesized to solve it. This supervisor is called a coordinator. In (Su, van Schuppen,
and Rooda 2009), it is suggested to synthesize a coordinator by applying the monolithic
synthesis procedure on the collection of synthesized supervisors. In such cases, the
advantages of using a non-monolithic synthesis procedure to synthesize the supervisors
may be lost. For some special cases, abstractions employing natural observers can be
used to synthesize a coordinator, see for example (Feng and Wonham 2008). A study
by (Zita et al. 2017) suggests to use counterexamples to refine the system to resolve
conflicts.

In this paper, we propose a procedure to use the result of the nonconflicting
verification of (Mohajerani, Malik, and Fabian 2016) to synthesize a coordinator
in case of conflicting supervisors within the framework of extended finite automata
(EFAs). The main idea of this compositional nonconflicting verification is to apply
multiple small and simple conflict equivalent abstractions on a collection of automata
until one automaton is obtained, see the top row depicted in Figure 3.1. Examples
of these abstractions are partial composition, variable unfolding, and event merging.
Numerical results show that compositional nonblocking verification can be efficiently
performed, see (Mohajerani, Malik, and Fabian 2016). Using this resulting single
automaton, we can synthesize a coordinator as shown in Figure 3.1 to resolve blocking
with, for example, monolithic synthesis, see (Ouedraogo et al. 2011). In general, the
coordinator for the single, abstracted automaton is not a proper coordinator for the
original set of automata, as the abstracted system may use notions not present in the
original system, such as renamed events. We show in this paper how the synthesized
coordinator can be refined in order to be a coordinator for the original system.

For each abstraction defined in (Mohajerani, Malik, and Fabian 2016), we in-
vestigate if and how the coordinator for the abstracted system can be transformed

Set of
EFAs

Normalized
system · · · Single

automaton (non)blocking

Coordinator′′ Coordinator′ · · · Coordinator

normalize abstract1 abstractn verify

synthesize
refinenrefine1denormalize

coordinate

Figure 3.1: The top row represents the compositional nonblocking verification of (Mohajerani,
Malik, and Fabian 2016). In this paper, we propose the addition of the bottom row: synthesize
a coordinator based on the single, simplified automaton and then transform this coordinator
back to the original system.
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E F

C ′ C

abstracti

synthesize
refinei

coordinatecoordinate

Figure 3.2: The structure of the theorems in this paper. The abstraction abstracti from
EFA system E to F is one of those mentioned in (Mohajerani, Malik, and Fabian 2016).
The related refinement refinei from coordinator C to C ′ is novel work. The abstraction and
refinement step can also be replaced with normalize and denormalize, respectively.

back to maintain nonblockingness, controllability, and maximal permissiveness, as
illustrated in Figure 3.2. It has been shown in, for example, (Mohajerani, Malik,
and Fabian 2014a) that for finite automata (FAs), thus without variables, that some
conflict preserving abstraction may not be suitable for synthesis. In this paper, we
define the notion of coordinator equivalence to determine which abstractions defined
in (Mohajerani, Malik, and Fabian 2016) are also suitable for synthesis refinement. It
turns out that these refinements are simple, but may involve more than just renaming
as is the case for FA-based compositional synthesis, see (Mohajerani, Malik, and
Fabian 2014a).

This paper is structured as follows. Section 2 provides the preliminaries for
this paper. Section 3 illustrates the proposed method with an example of a small
manufacturing unit. The paper continues by introducing the notion of coordinator
tuples and coordination equivalence in Section 4, which are the fundament of the
framework. Next, Section 5 shows that normalization is coordinator equivalent,
while Section 6 shows several coordinator equivalence preserving FA- and EFA-based
abstractions. Section 7 combines the abstractions in an algorithm for compositional
nonblocking verification and coordinator synthesis and discusses the computational
complexity. Finally, Section 8 concludes the paper.

2 Preliminaries
This section provides a brief introduction to automata, supervisory control theory,
and compositional nonconflicting verification. This introduction is based on the work
of (Cassandras and Lafortune 2008; Mohajerani, Malik, and Fabian 2016; Ouedraogo
et al. 2011; Skoldstam et al. 2007; Wonham, Cai, et al. 2018).

2.1 Finite automata
A finite automaton (FA) is a five-tuple G = (Q,Σ,→, q0, Qm), with Q a finite state
set, Σ a finite set of events, → ⊆ Q × Σ × Q a state transition relation, q0 ∈ Q an
initial state, and Qm ⊆ Q a set of marked states.

We denote by Σ∗ the set of all finite strings of events in Σ. Furthermore, the
alphabet is partitioned into two disjoint sets containing the controllable events Σc and
uncontrollable events Σu.
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The transition relation can also be written in infix notation x σ−→ y, and can be
extended for traces in Σ∗ as follows: x ε−→ x for all x ∈ Q, and x sσ−→ z for all x, z ∈ Q
, σ ∈ Σ, and s ∈ Σ∗ if x s−→ y and y σ−→ z for some y ∈ Q. The language generated
by automaton G is L(G) = {s ∈ Σ∗ | ∃x ∈ Q, q0

s−→ x} and the marked language is
Lm(G) = {s ∈ L(G) | ∃x ∈ Qm, q0

s−→ x}.
An automaton is called deterministic if for each state q ∈ Q and event σ ∈ Σ there

exists at most one state y ∈ Q such that x σ−→ y; otherwise, it is called nondeterministic.
Two automata can be combined by synchronous composition.

Definition 1 (Synchronous composition FAs). Let G1 = (Q1,Σ1,→1, q1
0, Q

1
m) and

G2 = (Q2,Σ2,→2, q2
0, Q

2
m) be two automata. The synchronous composition of G1 and

G2 is defined as

G1 ‖ G2 = (Q1 ×Q2,Σ1 ∪ Σ2,→1‖2, (q1
0, q

2
0), Q1

m ×Q2
m)

where

→1‖2 = {(x1, x2) σ−→ (y1, y2) | σ ∈ Σ1 ∩ Σ2, x1
σ−→1 y1, x2

σ−→2 y2}
∪ {(x1, x2) σ−→ (y1, x2) | σ ∈ Σ1 \ Σ2, x1

σ−→1 y1}
∪ {(x1, x2) σ−→ (x1, y2) | σ ∈ Σ2 \ Σ1, x2

σ−→2 y2}.

Synchronous composition is associative and commutative up to reordering of the
state components in the composed state set.

2.2 Extended finite automata
Extended finite automata (EFAs) are FAs extended with discrete variables, see
(Skoldstam et al. 2007). In an EFA, each transition is augmented with a guard and
an update (the latter one sometimes also called an action) using variables, constants,
the Boolean literals true (T) and false (F), and the usual arithmetical operators and
logical connectives (Ouedraogo et al. 2011). Let V be a finite set of discrete variables.
Each variable v ∈ V is associated with a domain dom(v) of values. A valuation is
a mapping v̂ : V → ⋃

v∈V dom(v) with v̂(v) ∈ dom(v) for each v ∈ V . The set of all
valuations on V is denoted by Val(V ). The initial valuation is denoted by v̂0.

Guards express under which conditions a transition is enabled. A guard is a Boolean
expression, or predicate, using variables from V . The set of all guard expressions is
denoted by GV . An example of a guard expression g is v1 = 1 ∧ v2 = 2. Any valuation
v̂ ∈ Val(V ) such that v̂(v1) = 1 and v̂(v2) = 2 ensures that this guard evaluates to
true, i.e., v̂ � g, which we also denote by g[v̂] = T. Two guards can be combined with
the usual logical connectives.

Updates change current-state valuations into the next-state valuations after exe-
cuting an enabled transition. We consider an update to be a collection of n individual
update expressions, each updating a single variable from V , where n is the number of
variables in V . Formally, let ΠV be the set of all expressions with variables from V .
For p ∈ ΠV , p[v1 7→ a1, . . . , vn 7→ an] denotes the substitution where each occurrence
of variable vi is replaced by value ai. For example, v1 + v2[v1 7→ 1] = 1 + v2. The
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valuation function is extended to expressions in the following way: for any v̂ ∈ Val(V ),
v̂ : ΠV 7→

⋃
v∈V dom(v) such that v̂(p) = p[v̂]. Now, an update function is u : V → ΠV

such that for all variables the updated value remains within the domain, i.e., for all
v ∈ V, v̂ ∈ Val(V ), v̂(u(v)) ∈ dom(v). The set of all update functions is UV . Given a
valuation v̂ ∈ Val(V ) and an update function u ∈ UV , the new valuation ŵ can be cal-
culated by ŵ(v) = v̂(u(v)). For example, update function u = {v1 7→ v1 + v2, v2 7→ 2}
expresses that the new value of v1 is the current values of v1 and v2 summed together
and the new value of v2 is 2. An update function may also be written as a comma
separated list of expressions. For example, the update function u may also be written
as v1 := v1 + v2, v2 := 2. Combining updates can be done as follows. Let update u1 be
defined on V1 and update u2 on V2. The expression u1 ⊕ u2 denotes the combination
of two updates that is defined as follows:

u1 ⊕ u2(v) =



u1(v) if v ∈ V1 ∩ V2,∀v̂ ∈ Val(V1 ∪ V2) :
v̂(u1(v)) = v̂(u2(v))

u1(v) if v ∈ V1 \ V2

u2(v) if v ∈ V2 \ V1

undefined otherwise.

If u1 and u2 do not agree with each other on a variable update, otherwise, the update
function will become undefined for that variable. In the remainder of this paper we
assume that updates agree for shared variables.

An EFA is a 7-tuple (L,Σ, V,→, l0, v̂0, Lm) where L is a finite set of locations, Σ
a finite set of events, V a set of variables, → ⊆ L × Σ × GV × UV × L a transition
relation, l0 ∈ L an initial location, v̂0 the initial valuation, and Lm ⊆ L a set of marked
locations.

A transition (l1, σ, g, u, l2) ∈→ is enabled if g[v̂1] evaluates to true for the current-
state valuation v̂1. After taking the transition the current location of the EFA is l2
and the global valuation of v̂1 has been updated to v̂2(v) = v̂1(u(v)). For EFAs, the
infix notation is l1

σ,g,u−−→ l2.
A state of an EFA is the combination of a location and a valuation. The state

space of an EFA captures all these possible states and transitions between these states,
see (Mohajerani, Malik, and Fabian 2016).

Definition 2 (State space). Let E = (L,Σ, V,→, l0, v̂0, Lm) be an EFA. The state
space of E is the FA U(E) = (LU ,Σ,→U , lU,0, LU,m) where

• LU = L× Val(V ),

• ((l1, v̂1), σ, (l2, v̂2)) ∈→U if (l1, σ, g, u, l2) ∈→, g[v̂1] = T, and v̂2(v) = v̂1(u(v)),

• lU,0 = (l0, v̂0), and

• LU,m = Lm × Val(V ).

An EFA E is called deterministic if and only if its state space FA U(E) is deter-
ministic.

The language of an EFA is defined using the FA-based language definition.
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Definition 3 (Language of EFA). Let E be an EFA. The language of E, denoted with
L(E), is defined as L(E) = L(U(E)). The marked language is defined similarly, i.e.,
Lm(E) = Lm(U(E)).

Two EFAs can be combined by using the synchronous composition, see (Ouedraogo
et al. 2011). As we assume that updates of shared variables are consistent with each
other, we only define synchronous composition with consistent updates.

Definition 4 (Synchronous composition EFAs). Let Ek = (Lk,Σk, V k,→k, lk0 , v̂
k
0 , L

k
m),

k = 1, 2 be EFAs such that for shared variables v ∈ V 1 ∩ V 2 the initial valuation is the
same, i.e., v̂1

0(v) = v̂2
0(v). The synchronous composition of E1 and E2 is

E1 ‖ E2 = (L1 × L2,Σ1 ∪ Σ2, V 1 ∪ V 2,→, (l10, l20), v̂1
0 ⊕ v̂2

0, L
1
m × L2

m)

where the transition relation → is defined as

• ((l11, l21), σ, g, u, (l12, l22)) ∈→ if σ ∈ Σ1 ∩ Σ2, (l11, σ, g1, u1, l12) ∈→1 and (l21, σ,
g2, u2, l22) ∈→2 such that g = g1 ∧ g2 and u = u1 ⊕ u2;

• ((l11, l21), σ, g1, u1, (l12, l21)) ∈→ if σ ∈ Σ1 \ Σ2 and (l11, σ, g1, u1, l12) ∈→1;

• ((l11, l21), σ, g2, u2, (l11, l22)) ∈→ if σ ∈ Σ2 \ Σ1 and (l21, σ, g2, u2, l22) ∈→2

and the new initial valuation

(v̂1
0 ⊕ v̂2

0)(v) =


v̂1

0(v) if v ∈ V 1 ∩ V 2

v̂1
0(v) if v ∈ V 1 \ V 2

v̂2
0(v) if v ∈ V 2 \ V 1.

The synchronous composition of more than two EFAs can be calculated by recur-
sively applying the above definition. For notational simplicity, since the synchronous
composition is associative and commutative up to reordering state labels, we write
for the synchronous composition of more than two EFAs simply E1 ‖ E2 ‖ . . . ‖ En

instead of ((E1 ‖ E2) ‖ . . .) ‖ En. Therefore, the location set of E1 ‖ E2 ‖ . . . ‖ En is
denoted by L1 × L2 × . . .× Ln, where Li is the location set of EFA Ei.

An EFA system is a collection of EFAs E = {E1, . . . , En}. The EFA obtained from
the synchronous composition of an EFA system is denoted by ‖ E , with ‖ E = E1 ‖
. . . ‖ En. In order to successfully apply this synchronous composition, the EFAs in the
EFA system need to agree on initial valuation of shared variables and have consistent
updates. From now on we assume that this is the case. The EFA system’s alphabet
is ΣE = Σ1 ∪ . . . ∪ Σn and the EFA system’s transition relation is →E=

⋃
Ei∈E →i.

Finally, we use the notation A ‖ E to express the synchronous composition of EFA A
and EFA system E , i.e., A ‖ E = A ‖ (‖ E).

A renaming is a surjective function from one alphabet to another one and can be
used to change the event labels on transitions.

Definition 5 (Renaming). Let Σ1 and Σ2 be two sets of events. A renaming ρ : Σ1 →
Σ2 is a surjective map that preserves the controllability status of renamed events, i.e.,
for σ ∈ Σ1, ρ(σ) is controllable if and only if σ is controllable.
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Renaming and inverse renaming applied on EFAs are defined as follows. Applying
renaming ρ on an EFA results in the EFA where each transition labeled with event σ
is replaced by a transition labeled with the renamed event ρ(σ) leaving guards and
updates unchanged. Similarly, applying inverse renaming ρ−1 on an EFA results in the
EFA where each transition labeled with event µ is replaced by a set of transitions that
are labeled with the event σ such that ρ(σ) = µ, again leaving guards and updates
unchanged. Renaming and inverse renaming applied on FAs are defined in the same
way. Below we only show the formal definitions for EFAs.

Definition 6 (Renamed EFA). Let G = (L, V,Σ,→, l0, v0, Lm) be an EFA and let
ρ : Σ→ Σ′. Then ρ(G) = (L, V,Σ′, ρ(→), l0, v0, Lm) where ρ(→) = {(x, ρ(σ), g, u, y) |
(x, σ, g, u, y) ∈→}. For EFA system G = {G1, . . . , Gn}, renaming is defined as ρ(G) =
{ρ(G1), . . . , ρ(Gn)}.

Definition 7 (Inverse renamed EFA). Let G = (L, V,Σ,→, l0, v0, Lm) be an EFA
and let ρ : Σ′ → Σ. Then ρ−1(G) = (L, V,Σ′, ρ−1(→), l0, v0, Lm) where ρ−1(→) =
{(x, σ, g, u, y) | (x, ρ(σ), g, u, y) ∈→}. For EFA system G = {G1, . . . , Gn}, inverse
renaming is defined as ρ−1(G) = {ρ−1(G1), . . . , ρ−1(Gn)}.

2.3 Supervisory control theory
A supervisor is a control function that dynamically disables controllable events in the
plant it controls, such that the closed-loop system of the plant and the supervisor
obeys some specified behavior. Supervisory control theory of (Ramadge and Wonham
1987, 1989) gives means to automatically calculate a supervisor given models of the
plant. A supervisor can be defined in multiple ways. In this paper, we define supervisor
S as a subautomaton of the plant P , which is closely related with the definition used
in (Ouedraogo et al. 2011). Given two guards g and h, h is said to be a subguard of g,
denoted by h � g, if h is stronger than g, i.e., h ∧ g = h. Now, given two EFAs A and
A′, we say that A′ is a subautomaton of A, denoted with A′ � A, if A′ is obtained
from A by replacing guards with subguards.

Definition 8 (Supervisor). Given a plant modeled by deterministic EFA P = (L, V,Σ,
→P , l0, v̂0, Lm), a supervision map S for P is a function S : →P → GV which maps
each transition e = (l1, σ, g, u, l2) to a guard S(e) such that S(e) � g if σ ∈ Σc and
S(e) = g if σ ∈ Σu. The supervisor S is the subautomaton obtained from G by
replacing its guards with those provided by S, i.e., S = (L, V,Σ,→S, l0, v̂0, Lm) where
→S = {(l1, σ,S(e), u, l2) | e = (l1, σ, g, u, l2) ∈→P}.

A supervisor S should adheres to the following control objectives for given plant
model P (Ramadge and Wonham 1987, 1989).

• Controllability: uncontrollable events may never be disabled by the supervisor,
i.e., S is controllable with respect to P .

• Nonblockingness: the controlled system should be able to reach a marked state
from every reachable state, i.e., S ‖ P is nonblocking.



148 3. Illustrative example

• Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce controllability and nonblockingness, i.e., for all other
supervisors S ′ it holds that L(S ′) ⊆ L(S).

Monolithic supervisory control synthesis results in a single supervisor S from a
single plant model (Ramadge and Wonham 1987). When the plant model is given
as a composed system Ps, the monolithic plant model P is obtained by performing
the synchronous composition of the models in the composed system. Furthermore,
S can be obtained by calculating the supremal element of the set of controllable
and nonblocking supervisors, i.e., S = sup CN (P ). A nonblocking, controllable, and
maximally permissive supervisor can be calculated, for example, by the fixed-point
algorithm SSEFA as presented in (Ouedraogo et al. 2011).

Multiple (E)FAs in a composed system Ps may be conflicting with each other, i.e.,
their synchronous composition is blocking. A supervisor with the aim of resolving a
conflict in an (E)FA system is called a coordinator.

2.4 Compositional nonblocking verification
In this section, we provide a short summary of the compositional nonblocking verifica-
tion as presented in (Mohajerani, Malik, and Fabian 2016).

The upper row of Figure 3.1 shows a schematic overview of the steps performed.
The compositional nonblocking verification starts with a given set of EFAs. The first
step is to normalize the system. In a normalized system, each event is associated with
a unique guard and update throughout the system. This eases the reasoning about
the effect of executing an event, as each transition labeled with the same event has
the same guard and update.

After obtaining a normalized system, several small conflict equivalent abstractions
are applied. For each of these abstractions, it is proven that the obtained system is
nonblocking if and only if the system before abstraction is nonblocking. Therefore, the
nonblocking property is preserved resulting in a, so-called, conflict equivalent system.

Finally, when a single EFA without variables is obtained, a standard monolithic
nonblocking verification procedure is applied. The result of this verification is returned
as the result of this compositional nonblocking verification procedure.

In this paper, we enhance this compositional nonblocking verification procedure so
that in case of a blocking system, a coordinator can be synthesized. The bottom row
of Figure 3.1 shows this enhancement. The single automaton is used to synthesize a
coordinator which resolves the blocking in this single automaton. Each abstraction in
the top row is reversed such that a coordinator is obtained for the system one step to
the left. Finally, after reversing the normalization step, a coordinator is obtained for
the original set of EFAs.

3 Illustrative example
In this section, we illustrate the proposed procedure in this paper with an example. We
use the manufacturing system example as presented in (Mohajerani, Malik, and Fabian
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2016) extended with controllable and uncontrollable events. On this example we first
perform coordinator equivalent abstractions until a single automaton is obtained. On
this automaton we perform a nonblocking verification. As this example contains a
conflict, we synthesize a coordinator with the simplified single automaton. Finally, we
refine this coordinator back to the original system.

Figure 3.3 shows the manufacturing system consisting of a conveyer belt split into
two sections CB1 ,CB2 and two machines M1, M2. Products are loaded from the
environment onto the conveyor belt (event l1) with a capacity of 2. The conveyor
belt is split into two sections: CB1 and CB2. Event l2 represents a product being
transported from the first section to the second section. At the beginning of CB2 a
product detection sensor determines the type of products (events p1 and p2). Products
of type 1 are processed by machine M1 (event s1), while products of type 2 are
processed by machine M2 (event s2). Both machines M1 and M2 process products
and output them from the manufacturing system (events f1 and f2, respectively). In
this manufacturing system, events l1, l2, s1 and s2 are considered to be controllable,
while p1, p2, f1 and f2 are uncontrollable.

Each part of the manufacturing system is modeled by an EFA. Variables v1
and v2 represent the number of products on conveyer belt sections CB1 and CB2,
respectively. Both variables have domain {0, 1, 2} and the initial value is 0. Variable t
keeps track of the type of product the product detection sensor has observed. The
domain of t is {0, 1, 2} and the initial value is 0. The EFA system is given by
E0 = {CB1,CB2 ,M1,M2}.

As shown later, the model in Figure 3.3 has an incorrect implementation of the
type recognition procedure. This renders the system to be blocking. Compositional

CB1 CB2

M1

M2

l1 l2

s1

s2

f1

f2

CB1
l1; v1 + v2 < 2; v1 := v1 + 1
l2; 0 < v1; v1 := v1 − 1 M1

s1; t := 0, v2 := v2 − 1

f1

CB2

s1; t = 1 ∧ 0 < v2
s2; t = 2 ∧ 0 < v2

l2; v2 < 2; v2 := v2 + 1

p1; t = 0; t := 1
p2; t = 0; t := 2l2; v2 = 2

M2

s2; t := 0; v2 := v2 − 1

f2

Figure 3.3: The manufacturing system example presented in (Mohajerani, Malik, and Fabian
2016) extended with controllable and uncontrollable events. All variables are initially 0.
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nonblocking verification will show that this system is blocking without exploring its
complete state space. After creating an abstracted representation, a nonblocking,
controllable, and maximally permissive coordinator is synthesized. As only coordinator
equivalent abstractions are deployed, the coordinator can be refined to control the
original EFA system correctly.

3.1 Model abstractions

The first steps of compositional nonblocking verification are to normalize the EFA
system. In a normalized system, each transition labeled with the same event also has
the same guard and update. This facilitates the reasoning about EFAs, as a normalized
system shows directly what the effect is on the variables when executing events. When
the system is normalized, several conflict and synthesis preserving abstractions are
applied to simplify the system. The choice of when to apply which abstraction is
determined heuristicallyby trying to either create or utilize local events. Below, we
explain at each step why a certain abstraction is chosen. We try to follow the order of
abstractions as presented in (Mohajerani, Malik, and Fabian 2016); as some conflict
preserving abstractions are not coordinator equivalent, we have to deviate at several
points. Nevertheless, the correctness of the approach does not depend on the order of
abstractions, the order only affects the observed computational reduction.

Abstraction step 1. Normalization is performed in two parts: first each EFA
is normalized locally, and then the EFA system is normalized globally. Each EFA in
Figure 3.3 is locally normal except CB2. Event l2 refers to two different pairs of guards
and updates. In order to normalize CB2, event l2 is renamed by l21 and l22, where l21
is associated with guard v2 < 2 and update v2 := v2 + 1, while l22 is associated with
guard v2 = 2. In all other EFAs, we need to replace every occurrence of l2 by l21 and
l22. In CB1, event l2 is replaced by l21 and l22 both having guard 0 < v2 and update
v1 := v1 − 1. Local normalization of CB2 results in two new EFAs C1 and C2, shown
in Figure 3.4, that replace CB1 and CB2, respectively. The EFA system is now given
by E1 = {C1, C2,M1,M2}.

Abstraction step 2. When all EFAs are locally normal, the EFA system is
globally normalized by taking the conjunction of guards and updates. For example,
event l21 is associated in EFA C1 with guard 0 < v1 and update v1 := v1 − 1, while
the same events is associated in C2 with guard v2 < 2 and update v2 := v2 + 1. The
guard of l21 becomes 0 < v1 ∧ v2 < 2 and update v1 := v1 − 1, v2 := v2 + 1. Figure 3.5

C1

l1; v1 + v2 < 2; v1 := v1 + 1
l21; 0 < v1; v1 := v1 − 1
l22; 0 < v1; v1 := v1 − 1

C2

s1; t = 1 ∧ 0 < v2
s2; t = 2 ∧ 0 < v2

l21; v2 < 2; v2 := v2 + 1

p1; t = 0; t := 1
p2; t = 0; t := 2

l22; v2 = 2

Figure 3.4: Locally normalized EFAs C1 and C2 obtained from CB1 and CB2, respectively.
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N (C1)
l1
l21
l22

N (M1)
s1

f1

N (C2)

s1
s2

l21

p1
p2

l22

N (M2)
s2

f2

Event Guard and update
l1 v1 + v2 < 2; v1 := v1 + 1

l21
0 < v1 ∧ v2 < 2; v1 :=
v1 − 1, v2 := v2 + 1

l22 0 < v1 ∧ v2 = 2; v1 := v1 − 1
p1 t = 0; t := 1
p2 t = 0; t := 2
s1 t = 1∧ 0 < v2; t := 0, v2 := v2− 1
s2 t = 2∧ 0 < v2; t := 0, v2 := v2− 1
f1 T
f2 T

Figure 3.5: The normalized EFA system. For notational simplicity, for each event the guard
and update is displayed in the table.

shows the normalized EFA system. As each transition with the same event has the
same guard and update, we can display the guards and updates in a separate table.
In this way, the automata can be presented without the guards and updates on the
transitions. The EFA system is now transformed into the normalized EFA system
E2 = {N (C1),N (C2),N (M1),N (M2)}.

Abstraction step 3. Event f1 only belongs to the alphabet of N (M1), it is
always enabled, and does not change the valuation of any variable. Therefore, this
event is in the EFA setting a local event. The FA-based abstraction of weak synthesis
observation equivalence (see (Mohajerani, Malik, and Fabian 2014a)) shows that the
two locations of N (M1) can be merged when f1 is considered to be local. This results
in the abstracted EFA M̃1 as shown in Figure 3.6. The EFA system is now given by
E3 = {N (C1),N (C2), M̃1,N (M2)}.

Abstraction step 4. Event f1 appears only on a transition in M̃1 and this
transition is a selfloop. Furthermore, the guard is true and the event does not change
the valuation of variables. Therefore, event f1 can be safely removed from the EFA
system, resulting in M̃1\f1 as shown in Figure 3.6. The EFA system is now given by
E4 = {N (C1),N (C2), M̃1\f1 ,N (M2)}.

Abstraction step 5. As this example is symmetric with respect to the machines,
the previous two steps can be repeated for Machine 2. First, the abstracted EFA

M̃1

s1

f1

M̃1\f1

s1

M̃2

s2

f2

M̃2\f2

s2

Figure 3.6: Simplified EFAs of N (M1) and N (M2).
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M̃2 as shown in Figure 3.6 is obtained. The EFA system is now given by E5 =
{N (C1),N (C2), M̃1\f1 , M̃2}.

Abstraction step 6. Second, removing event f2 results in M̃2\f2 as shown in
Figure 3.6. The EFA system is now given by E6 = {N (C1),N (C2), M̃1\f1 , M̃2\f2}.

Abstraction step 7. Events p1 and p2 are local in N (C2). Unfortunately, variable
t is associated with these events. Therefore, these two events cannot be considered to
be local in the EFA setting, as for example the value of t effects the enablement of
the transitions labeled with these events. In order to make them truly local, variable
t needs to be unfolded. Unfolding a single variable replaces the variable with a new
variable EFA representing it, which has one location for each value in its domain and
transitions reflecting the changes in valuation of this variable. Figure 3.7 shows the
variable EFA T for t. As only p1, p2, s1, and s2 use variable t, these events are included
in T . The guards and updates of these events can now be simplified, as is shown in
the table. The EFA system is now given by E7 = {T,N (C1),N (C2), M̃1\f1 , M̃2\f2}.

Abstraction step 8. While events p1 and p2 fromN (C2) now have no dependency
with variables, they are no longer local: the events also appear on transitions in T .
Therefore, the synchronous composition is calculated of T ‖ N (C2) = TC 2. This
synchronous composition is shown in Figure 3.7 and the EFA system is now given by
E8 = {N (C1),TC 2, M̃1\f1 , M̃2\f2}.

Abstraction step 9. Multiple locations in TC 2 are blocking locations. All these
blocking states can be merged into a single blocking state, as they are equivalent
in the automata contexts (see (Flordal and Malik 2009)). The abstracted system
T̃C 2 is shown in Figure 3.7 and the EFA system is now given by E9 = {N (C1), T̃C 2,
M̃1\f1 , M̃2\f2}.

Abstraction step 10. Events p1 and p2 have become truly local now: they only
appear on transitions in T̃C 2 and no variables are used in the guards and updates.
Unfortunately, no synthesis equivalent FA-based abstraction available can simplify
the automaton in its current form. Therefore, we continue by localizing another
event. Events s1 and s2 only appear on transitions in T̃C 2 and N (M1) and N (M2),

T
p2

p1

s1

s2
TC 2

l21

s1

s2

l22

l22

l22

l21

l21

p1

p2

T̃C 2

l21

s1

s2

l21
l22

l22

l21
l22

p1

p2

Event Guard and update
l1 v1 + v2 < 2; v1 := v1 + 1

l21
0 < v1 ∧ v2 < 2; v1 :=
v1 − 1, v2 := v2 + 1

l22 0 < v1 ∧ v2 = 2; v1 := v1 − 1
p1 T
p2 T
s1 0 < v2; v2 := v2 − 1
s2 0 < v2; v2 := v2 − 1

Figure 3.7: Unfolding variable t.
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respectively. Furthermore, those events only use variable v2.
First, the synchronous composition T̃C 2 ‖ M̃1\f1 = T̃C 2 is calculated. This ensures

that event s1 only belongs to the alphabet of T̃C 2. The EFA system is now given by
E10 = {N (C1), T̃C 2, M̃2\f2}.

Abstraction step 11. Second, the synchronous composition T̃C 2 ‖ M̃2\f2 = T̃C 2

is calculated. This ensures that event s2 only belongs to the alphabet of T̃C 2. The
EFA system is now given by E11 = {N (C1), T̃C 2}.

Abstraction step 12. Finally, variable v2 is unfolded, resulting in variable EFA
V2, shown in Figure 3.8 together with the updated table with guards and updates.
Events l1, l21, l22, s1, and s2 use variable v2 and, therefore, these events appear on
transitions in V2. To keep the new EFA system normalized, event l1 is renamed into
l10 and l11. This renaming also affects N (C1), resulting in C ′1, where the occurrence
of l1 is replaced by l10 and l11. The EFA system is now given by E12 = {V2, C

′
1, T̃C 2}.

Abstraction step 13. Events s1 and s2 have now a true guard and update, but
appear on transitions in multiple EFAs. Therefore, first the synchronous composition
T̃C 2 ‖ V2 = TC 2V2 is calculated. The result is shown in Figure 3.8. The EFA system
is now given by E13 = {C ′1,TC 2V2}.

Abstraction step 14. Observe that event l22 has become a blocked event in
TC 2V2: it is in the alphabet of TC 2V2, but it does not appear on a transition. Therefore,
this event can be safely removed from the EFA system. The EFA system is now given
by E14 = {C ′1\l22

,TC 2V2\l22}.
Abstraction step 15. After eliminating machines 1 and 2 from the EFA system,

the events p1, p2, s1, and s2 are all local and do not change the valuation of any variable.
Applying weak synthesis observation equivalence on TC 2V2\l22 with this set of local

V2
l21 l21

s1
s2

s1
s2l10 l11 l22

C ′1
l10
l11
l21
l22

C ′1\l22

l10
l11
l21

TC 2V2

Blocked: l22

l21

s1

s2

l21

l21

p1

p2

l10 l11

l11

l11

Event Guard and update
l10 v1 < 2; v1 := v1 + 1
l11 v1 < 1; v1 := v1 + 1
l21 0 < v1; v1 := v1−1
l22 0 < v1; v1 := v1−1
p1 T
p2 T
s1 T
s2 T

Figure 3.8: Unfolding variable v2.
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T̃CV

l21 l21

p1
p2

s1
s2

l10 l11

T̃CV \p1,p2

l21 l21

s1
s2

l10 l11

T̃CV s

l21 l21

s

l10 l11

Event Guard and update
l10 v1 < 2; v1 := v1 + 1
l11 v1 < 1; v1 := v1 + 1
l21 0 < v1; v1 := v1−1
s T

Figure 3.9: Simplifying TC 2V2.

events results in T̃CV , as shown in Figure 3.9. The EFA system is now given by
E15 = {C ′1\l22

, T̃CV }.
Abstraction step 16. Events p1 and p2 now only appear on selfloops in T̃CV

and have true guards and updates. Therefore, these events can be safely removed from
the EFA system, resulting in T̃CV \p1,p2 , as shown in Figure 3.9. The EFA system is
now given by E16 = {C ′1\l22

, T̃CV \p1,p2}.
Abstraction step 17. From the only two remaining EFAs, C ′1\l22

consists of a
single location and selfloops. Therefore, the following step is to perform the synchronous
composition T̃CV \p1,p2 ‖ C ′1\l22

= T̃CV \p1,p2 , essentially to eliminate C ′1\l22
. The EFA

system is now given by E17 = {T̃CV \p1,p2}.
Abstraction step 18. In EFA T̃CV \p1,p2 , the events s1 and s2 have the same

guard and update, and always appear on the same transition. Therefore, we can merge
these events into the new event s with renaming function ρ18. This results in EFA
T̃CV s together with a new table of guards and updates, both shown in Figure 3.9.
The EFA system is now given by E18 = {T̃CV s}.

V1 l10
l11 l10

l21l21

TCVV
l10 l10

l11

l21 l21

l21

s s

Figure 3.10: Unfolding variable v1 together with the final abstracted system TCVV .
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Abstraction step 19. The last variable v1 can be unfolded, resulting in variable
EFA V1, as shown in Figure 3.10. The events l10, l11, and l21 use variable v1 and,
therefore, appear on transitions in V1. The EFA system is now given by E19 =
{V1, T̃CV s}.

Abstraction step 20. The final abstraction step is to calculate the synchronous
composition T̃CV s ‖ V1 = TCVV , which is shown in Figure 3.10. This abstracted
EFA shows that the system blocks when a second product enters CB2 before the
previous product was sent to one of the machines. The EFA system is now given by
E20 = {TCVV }.

3.2 Coordinator synthesis
On the final abstracted result TCVV we can apply any monolithic synthesis procedure
to resolve the blocking issue. Figure 3.11 shows a nonblocking, controllable, and
maximally permissive coordinator S for TCVV . As this coordinator is synthesized for
the abstracted system, this coordinator cannot be directly deployed on the original
system where compositional nonblocking verification started with. Therefore, this
coordinator will be refined step by step to obtain a nonblocking, controllable, and
maximally permissive coordinator of the original EFA system.

3.3 Coordinator refinement
In this section, coordinator S is refined, starting with reversing abstraction step 20,
then reversing abstraction step 19, all the way back till abstraction step 1. These
reversals are called refinement steps. To track the different coordinators in this example
properly, a subscript is added to indicate for which system it is a coordinator. Initially,
S20 = S.

Refinement step 20. In abstraction step 20, a synchronous composition was
calculated. The coordinator does not need to be changed to be a coordinator for the
previous EFA system, i.e., S19 = S20 is a nonblocking, controllable, and maximally
permissive coordinator for E19.

Refinement step 19. In abstraction step 19, a variable was unfolded. For
this particular unfolding, no renaming was required to keep the system normalized.
To reintroduce variable v1, the refined coordinator is obtained from synchronous
composition of the previous coordinator together with the system before unfolding

S

l10 l10

l11

l21 l21s s

Figure 3.11: Supervisor S obtained from abstracted EFA TCVV .
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variable v1, i.e., S18 = S19 ‖ E18. As we are manually refining the coordinator in
this example, we do not calculate each coordinator explicitly in this and subsequent
refinement steps. Instead, we indicate how the coordinator can be calculated using
known models.

Refinement step 18. In abstraction step 18, events s1 and s2 were merged
into s with renaming ρ18. In general, just replacing s by s1 and s2 may result
in more behavior than originally possible. Therefore, after replacing event s, the
synchronous composition with E17 is calculated to keep only those events that were
originally possible, i.e., S17 = ρ−1

18 (S18) ‖ E17. Observe that for this particular example,
S17 = ρ−1

18 (S19) ‖ ρ−1
18 (E18) ‖ E17 = S ′ ‖ E17, where S ′ is shown in Figure 3.12.

Refinement step 17. In abstraction step 17, a synchronous composition was
calculated. As explained before, nothing has to be changed, i.e., S16 = S17.

Refinement step 16. In abstraction step 16, events p1 and p2 were removed, as
they only appeared on selfloops with true guards and updates. Therefore, these selfloops
need to be placed back onto the coordinator. This can be achieved by calculating the
synchronous composition of the coordinator with the previous abstracted EFA system,
i.e., S15 = S16 ‖ E15.

Refinement step 15. In abstraction step 15, an FA-based abstraction was
applied. In general, a quotient automaton may contain more behavior than the original
automaton. In this example, in T̃CV it is possible to execute more than one transition
labeled with p1, while in the original model T̃CVM \f1 this is not possible. To refine
the coordinator, the synchronous composition is calculated of the coordinator with the
previous abstracted EFA system, i.e., S14 = S15 ‖ E14, which for this particular example
can be rewritten as S14 = S16 ‖ E15 ‖ E14 = S17 ‖ E14 = S ′ ‖ E17 ‖ E14 = S ′ ‖ E14.

Refinement step 14. In abstraction step 14, event l22 was removed, as it is
always disabled. As this event was not possible before and after the abstraction, there
is no need to reintroduce this event in the coordinator. Therefore, nothing has to be
changed, i.e., S13 = S14.

Refinement step 13. In abstraction step 13, a synchronous composition was
calculated. As explained before, nothing has to be changed, i.e., S12 = S13.

Refinement step 12. In abstraction step 12, a variable was unfolded. For this
particular unfolding, renaming was required to keep the system normalized. Therefore,
the renaming function ρ12 needs to be applied to get the original event names back.
Furthermore, to reintroduce variable v2, the refined coordinator is obtained from

S ′

l10 l10

l11

l21 l21
s1
s2

s1
s2

S ′′

l1 l1

l1

l21 l21
s1
s2

s1
s2

Sf

l1 l1

l1

l2 l2
s1
s2

s1
s2

Figure 3.12: Intermediate refined coordinators.
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synchronous composition of the renamed previous coordinator together with the system
before unfolding variable v2, i.e., S11 = ρ12(S12) ‖ E11. For this particular example,
S11 = ρ12(S14) ‖ E11 = ρ12(S ′ ‖ E14) ‖ E11 = ρ12(S ′) ‖ ρ12(E14) ‖ E11 = S ′′ ‖ E11, where
S ′′ is shown in Figure 3.12.

Refinement step 11. In abstraction step 11, a synchronous composition was
calculated. As explained before, nothing has to be changed, i.e., S10 = S11.

Refinement step 10. In abstraction step 10, a synchronous composition was
calculated. As explained before, nothing has to be changed, i.e., S9 = S10.

Refinement step 9. In abstraction step 9, an FA-based abstraction was applied.
As explained before, the refined coordinator is obtained by calculating the synchronous
composition with the previous abstracted EFA system. i.e., S8 = S9 ‖ E8 = S11 ‖ E8 =
S ′′ ‖ E14 ‖ E8 = S ′′ ‖ E8.

Refinement step 8. In abstraction step 8, a synchronous composition was
calculated. As explained before, nothing has to be changed, i.e., S7 = S8.

Refinement step 7. In abstraction step 7, a variable was unfolded. For this
particular unfolding, no renaming was required to keep the system normalized. To
reintroduce variable t, the refined coordinator is obtained from the synchronous
composition of the previous coordinator together with the system before unfolding
variable t, i.e., S6 = S7 ‖ E6 = S8 ‖ E6 = S ′′ ‖ E8 ‖ E6 = S ′′ ‖ E6.

Refinement step 6. In abstraction step 6, event f2 was removed, as it only
appeared on selfloops with true guards and updates. As explained before, the refined
coordinator is obtained by calculating the synchronous composition with the previous
abstracted EFA system, i.e., S5 = S6 ‖ E5 = S ′′ ‖ E6 ‖ E5 = S ′′ ‖ E5.

Refinement step 5. In abstraction step 5, an FA-based abstraction was applied.
As explained before, the refined coordinator is obtained by calculating the synchronous
composition with the previous abstracted EFA system. i.e., S4 = S5 ‖ E4 = S ′′ ‖ E5 ‖
E4 = S ′′ ‖ E4.

Refinement step 4. In abstraction step 4, event f1 was removed, as it only
appeared on selfloops with true guards and updates. As explained before, the refined
coordinator is obtained by calculating the synchronous composition with the previous
abstracted EFA system, i.e., S3 = S4 ‖ E3 = S ′′ ‖ E4 ‖ E3 = S ′′ ‖ E3.

Refinement step 3. In abstraction step 3, an FA-based abstraction was applied.
As explained before, the refined coordinator is obtained by calculating the synchronous
composition with the previous abstracted EFA system. i.e., S2 = S3 ‖ E2 = S ′′ ‖ E3 ‖
E2 = S ′′ ‖ E2.

Refinement step 2. In abstraction step 2, global normalization was applied. To
refine global normalization, nothing has to be changed, i.e., S1 = S2.

Refinement step 1. In abstraction step 1, an EFA was locally normalized. To
refine the coordinator, the applied renaming needs to be reversed to get the original
event names back, i.e., S0 = ρ1(S1) = ρ1(S2) = ρ1(S ′′ ‖ E2) = Sf ‖ E0, where Sf is
shown in Figure 3.12.

We now verify that the closed-loop behavior of the monolithic coordinator calculated
with the original EFA system S = S ‖ E20 is the same as the closed-loop behavior of
the refined compositional coordinator S0 = S0 ‖ E0 = Sf ‖ E0.
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In this example, the system was abstracted until a single FA was obtained. The
proposed method allows the user to stop with abstracting at any given moment,
synthesize a nonblocking, controllable, and maximally permissive coordinator, and
refine this coordinator back to the original EFA system. As shown in (Gommans
2016), stopping the refinements before a single FA is obtained may be beneficial in
some cases.

4 Coordinator equivalence framework
In this section the compositional coordinator synthesis framework is described, includ-
ing a newly introduced data structure called coordinator tuple.

4.1 Coordinator tuples
In this paper, we generalize abstractions, seeing them as functions that generate for a
given EFA system a new one. Some abstraction functions may be straightforward,
like for example, taking synchronous composition of two EFAs, while others may be
more complex, like for example, the merging of events.

Definition 9 (Abstraction function). An abstraction function is a function ξ : 2P →
2P , with P the universe of EFAs, that transforms a given EFA system into another
EFA system. The composition of two abstraction functions ξ1 and ξ2, denoted with
ξ1 ◦ξ2, is defined by ξ1 ◦ξ2(E) = ξ1(ξ2(E)) for any given EFA system E . The refinement
of an abstraction function ξ is a function ξ−1 : 2P → 2P . The refinement of a
composite abstraction function ξ1 ◦ ξ2 is defined as (ξ1 ◦ ξ2)−1 = ξ−1

2 ◦ ξ−1
1 .

In this paper we limit ourselves to a specific class Ξ of abstraction functions, as
coordinator equivalence, see next section, can only be proven for specific abstraction
functions. The set Ξ is defined recursively.

• ξ ∈ Ξ if ξ−1 is the identity function, i.e., for any EFA system E and abstracted
EFA system F : ξ−1(F) = id(F) = F .

• ξ ∈ Ξ if ξ−1 is a renaming function, i.e., for any EFA system E and abstracted
EFA system F : ∃ρ s.t. ξ−1(F) = ρ(F) where ρ : ΣF → ΣE .

• ξ ∈ Ξ if ξ−1 is a renaming function in synchronous composition with the
EFA system, i.e., for any EFA system E and any EFA system F : ∃ρ s.t.
ξ−1(F) = ρ(F) ‖ E where ρ : ΣF → ΣE .

• ξ ∈ Ξ if ξ−1 is an inverse renaming in synchronous composition with the
EFA system, i.e., for any EFA system E and any EFA system F : ∃ρ s.t.
ξ−1(F) = ρ−1(F) ‖ E where ρ : ΣE → ΣF .

• ξ1 ◦ ξ2 ∈ Ξ if ξ1 ∈ Ξ and ξ2 ∈ Ξ.

We can now define a coordinator tuple.
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Definition 10 (Coordinator tuple). A coordinator tuple is a tuple (E , ξ), where E is
a deterministic EFA system and ξ ∈ Ξ.

Given a coordinator tuple (E , ξ), the EFA system E represents the abstracted
models and ξ the (composed) abstraction function used to get E from some initial
modelM, i.e., E = ξ(M). A coordinator tuple represents an intermediate control
problem in the compositional coordinator framework and contains all information to
either apply a new abstraction or to synthesize a coordinator and refine it back.

4.2 Coordinator equivalence
In this section, we define coordinator equivalence, which is inspired by synthesis
equivalence of triples as defined in (Mohajerani, Malik, and Fabian 2014a). Two
coordinator tuples are said to be coordinator equivalent if the coordinator synthesized
for the abstracted models results in the same closed-loop behavior after applying the
refinement functions. This notion is captured formally in the following definition.

Definition 11 (Coordinator equivalence). Let (G1, ξ1) and (G2, ξ2) be two coordinator
tuples. Then these coordinator tuples are said to be coordinator equivalent, denoted
with (G1, ξ1) 'co (G2, ξ2), if

L(ξ−1
1 (sup CN (G1))) = L(ξ−1

2 (sup CN (G2)))

It follows directly from the definition that 'co is indeed an equivalence relation,
as it is reflexive, symmetric, and transitive. Therefore, it follows that we can discuss
each abstraction step separately and combine the results in a compositional manner.

We briefly discuss the similarities and the differences between coordinator tuples
and synthesis triples. For compositional supervisor synthesis of FA, the synthesis
triple (E ,S, ρ) is defined in (Mohajerani, Malik, and Fabian 2014a), where E is a set
of abstracted plant models, S a set of supervisors collected so far, and ρ a renaming
function that maps events in E and S back to events in the original plant model.
Therefore, a synthesis triple represents an intermediate step in the compositional
synthesis approach. The equivalence of both coordinator tuples and synthesis triples
are based on the closed-loop behavior of the supervised systems. A difference is
that in our approach, see Figure 3.1, no supervisor is collected while performing the
abstractions, resulting in the absence of the set S in a coordinator tuple. Furthermore,
in the FA-based approach, it is sufficient to have only renaming as a refinement
function, while in the EFA-based approach, some more complicated refinements are
necessary. Therefore, a (composed) renaming function is included in the synthesis
triple and a (composed) abstraction function is included in the coordinator tuple.

Several abstractions may introduce nondeterminism: these are FA-based abstrac-
tions (Section 6.1) and event merging (Section 6.7). As it is not straightforward how to
synthesize supervisors for nondeterministic systems, nondeterminism is circumvented.
When an FA-based abstraction results in nondeterminism, we use the approach of (Mo-
hajerani, Malik, and Fabian 2011; Mohajerani, Malik, and Fabian 2014a) where first
renaming is applied and then the FA-based abstraction. This renaming introduces
new events to disambiguate between nondeterministic branching behavior. When
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event merging results in nondeterminism, another abstraction needs to be chosen, as
renaming does not solve the problem.

In de remainder of the paper we present ten different abstractions. Table 3.1
provides an overview of these abstractions and indicates where in the remainder of
this paper the abstractions are described.

5 Normalization
The first steps of the compositional nonblocking verification is normalization. To
normalize an EFA system E = {E1, . . . , En}, first all individual EFAs of the system are
locally normalized by renaming events with renaming functions ρi for i ∈ {1, . . . , n}.
When all individual EFAs have been locally normalized, then the EFA system is
globally normalized by merging updates. These two procedures are treated separately.

A normalized system is formally defined as follows, adapted from (Mohajerani,
Malik, and Fabian 2016).

Definition 12 (Normalized system). An EFA system E is normalized if for all pairs
of transitions (l1, σ, g1, u1, l2) ∈→E and (l3, σ, g2, u2, l4) ∈→E it holds that g1 = g2 and
u1 = u2, i.e., the guards and the updates are the same. An EFA E is normalized if
the EFA system {E} is normalized.

Definition 13 (Normalized form). Let E = {E1, . . . , En} be an EFA system where
each Ei = (Li, V i,Σi,→i, li0, v̂

i
0, L

i
m) is (locally) normalized. The normalized form of E

is denoted by N (E) = {N (E1), . . . ,N (En)} where N (Ei) = (Li, V,Σi,→i
N , l

i
0, v̂0, L

i
m),

V = ∪iV i, →i
N= {(li1, σ, gσ, uσ, li2)| (li1, σ, giσ, uiσ, li2) ∈→i}, gσ = ∧i:σ∈Σig

i
σ, uσ =

⊕i:σ∈Σiu
i
σ, and v̂0 = ⊕iv̂i0.

In a normalized EFA system E , each transition labeled with the same event σ has
the same guard and update. Therefore, the guard and update are related to the event,
which we denote by gσ and uσ, respectively.

For local and global normalization, we can express the following two theorems,
respectively. The proofs of these theorems can be found in Sections 1.1 and 1.2 of the
supplementary material. Each theorem in this paper has the same structure, which is
depicted in Figure 3.2. Given two particular EFA systems E and F and an abstraction
function ξ1, we show that there exists an abstraction function ξ such that F = ξ(E)
and that (E , ξ1) 'co (F , ξ ◦ ξ1).

Table 3.1: An overview of all abstractions mentioned in this paper, including a reference to
the sections that describe these abstractions.

Abstraction Section Abstraction Section
Local normalization Section 5 Variable unfolding Section 6.4
Global normalization Section 5 False removal Section 6.5
FA-based abstractions Section 6.1 Selfloop removal Section 6.6
Partial composition Section 6.2 Event merging Section 6.7
Update simplification Section 6.3 Update merging Section 6.8
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Theorem 1 (Local normalization). Let (E , ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic EFA system, and let ρ : Σ′ → ΣE be a renaming function
such that F = {F 1, ρ−1(E2), . . . , ρ−1(En)}, ρ(F 1) = E1, and F 1 is a normalized EFA.
Then there exists an abstraction function ξ ∈ Ξ such that F = ξ(E) and ξ−1(G) = ρ(G)
for any EFA G, and (E , ξ1) 'co (F , ξ ◦ ξ1).

Theorem 2 (Global normalization). Let (E , ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic EFA system, where each individual EFA Ei ∈ E locally
normalized. Construct the normalized form of E as F = N (E) = {N (E1), . . . ,N (En)}.
Then there exists an abstraction function ξ ∈ Ξ such that F = ξ(E) = N (E) and
ξ−1 = id with id the identity function, and (E , ξ1) 'co (F , ξ ◦ ξ1).

To refine the coordinator for local normalization, events need to be renamed back
to their original names to have the same closed-loop behavior as the coordinator
synthesized before local normalization. In Figure 3.12 of the illustrative example, the
refinement of step 1 consists of renaming events l21 and l22 back to their original event
name l2.

The coordinator does not have to be changed to refine global normalization. Global
normalization of an EFA system with locally normalized EFAs does not change the
behavior of the system as shown in Proposition 3 of (Mohajerani, Malik, and Fabian
2016). Therefore, a coordinator synthesized for the EFA system just before global
normalization would be the same as the coordinator synthesized for the globally
normalized EFA system.

6 Coordinator equivalent abstractions
After normalizing the system, several abstractions can be applied to simplify the system.
The following sections describe several abstractions suitable for the nonblocking
verification and coordinator refinement. All EFA-based conflict preserving abstractions
presented in (Mohajerani, Malik, and Fabian 2016) are also suitable for coordinator
refinement, while some conflict preserving FA-based abstractions are no longer suitable
for synthesis, see for counterexamples the work of (Mohajerani, Malik, and Fabian
2014a).

6.1 FA-based abstractions
For FA-based abstractions, we use the following notions of conflict equivalence and
synthesis abstraction. The notion of conflict equivalence is from (Flordal and Malik
2009), while the notion of synthesis abstraction is from (Mohajerani, Malik, Ware,
et al. 2011).

Definition 14 (FA conflict equivalence). Two FAs E and F are called conflict
equivalent with respect to a set of local events Γ, denoted with E 'conf,Γ F , if for any
FA T with alphabet ΣT and Γ ∩ ΣT = ∅ it holds that E ‖ T is nonblocking if and only
if F ‖ T is nonblocking.
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Definition 15 (FA synthesis abstraction). FA F is called a synthesis abstraction
of FA E with respect to a set of local events Γ, denoted with E .synth,Γ F , if for
any FA T with alphabet ΣT and Γ ∩ ΣT = ∅ it holds that L(E ‖ T ‖ sup CN
(E ‖ T )) = L(E ‖ T ‖ sup CN (F ‖ T )).

Let E = (L,Σ,→, l0, Lm) be an FA and ∼⊆ L × L an equivalence relation.
Given an equivalence relation ∼ on L, the equivalence class of a location l ∈ L
is [l] = {l′ | (l, l′) ∈∼}, and L /∼= {[l] | l ∈ L} is the set of all equivalence
classes modulo ∼. The quotient automaton of E, denoted with E /∼, is given by
E /∼= (L /∼,Σ,→/∼, [l0], Lm /∼) where →/∼= {([l1], σ, [l2]) | (l1, σ, l2) ∈→}.

Furthermore, to apply FA-based abstractions, we need the notion of local events
(as several FA-based abstractions heavily rely on local events) and a mechanism to
transform an EFA to an FA.

In an FA system, an event is considered to be local in A if it only appears in
the alphabet of A and not in the alphabet of other FAs. In the context of EFA
systems, considering the alphabets is insufficient to determine local events. An EFA
may influence (or be influenced by) another EFA through variables. An event can be
considered local in an EFA system if it only appears in the alphabet of a single EFA
and it has no dependencies and effect on variables, i.e., on transitions labeled with a
local event the guards are true and the updates do not alter the valuation of variables.

An FA may be obtained from an EFA by calculating its state space, see Definition 2.
Unfortunately, this operation suffers from the state-space explosion problem. For a
normalized EFA, it is possible to create an FA by simply disregarding all guards and
updates, as in a normalized system all transitions labeled with the same event have
the same guard and update. The following definition introduces the FA form of an
EFA.

Definition 16 (FA form). Let E = (L, V,Σ,→, l0, v̂0, Lm) be an EFA. The FA form
of E is the FA φ(E) = (L,Σ,→φ, l0, Lm), where →φ= {(x, σ, y) | (x, σ, g, u, y) ∈→}.

The conversion from an EFA to its FA form does not suffer from the state-space
explosion problem, and at the same time makes it possible to perform FA-based
abstractions. Note that the FA form of an EFA may be different from its state space.

The following theorem shows the result for FA-based abstractions. The proof of
this theorem can be found in Section 1.3 of the supplementary material.

Theorem 3 (FA-based abstractions). Let (E , ξ1) be a coordinator tuple with E =
{E1, E2, . . . , En} a normalized EFA system, ∼⊆ L1 × L1 an equivalence relation, and
Γ ⊆ Σ1 such that (Σ2 ∪ . . . ∪ Σn) ∩ Γ = ∅ and gσ ≡ T and v̂(v) = v̂(uσ(v)) for all
σ ∈ Γ, v ∈ V , and v̂ ∈ Val(V ). Let F = {F 1, E2, . . . , En} be a normalized EFA system
such that φ(F 1) = φ(E1) /∼, φ(E1) 'conf,Γ φ(F 1), and φ(E1) .synth,Γ φ(F 1). Then
there exists an abstraction function ξ ∈ Ξ such that F = ξ(E) and for any EFA system
G, ξ−1(G) = id(G) ‖ E, and (E , ξ1) 'co (F , ξ ◦ ξ1).

Compared to compositional nonblocking verification, Theorem 3 requires that the
FA-based abstraction is not only conflict equivalent, but also a synthesis abstraction.
Furthermore, this theorem requires that the abstraction can be performed by creating
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an equivalence relation on the location set and then calculating the quotient automaton.
Several FA-based abstractions fit this requirement, see (Flordal and Malik 2009;
Mohajerani, Malik, and Fabian 2014a; Mohajerani, Malik, Ware, et al. 2011). In
general, quotient automata allow for more behavior than the original automaton.
Therefore, the coordinator synthesized for the quotient automaton may contain more
behavior than the coordinator for the original automaton. This difference can be
taken away by synchronizing the abstracted coordinator with the original automaton.

Example: In the illustration provided in Section 3, EFA TC 2V2 as shown in
Figure 3.8 is abstracted into T̃CV as shown in Figure 3.9. The coordinators synthe-
sized from TC 2V2 and T̃CV are shown in Figure 3.13. Observe that the language
of L(STC2V2) ⊂ L(ST̃CV ): in the quotient automaton, for example, a sequence of
consecutive p1 events is possible after string l21, which is not possible in the origi-
nal automaton. Nevertheless, it holds that L(STC2V2) = L(ST̃CV ‖ TC 2V2), i.e., the
language of the original coordinator is the same as the language of the abstracted
coordinator in synchronous composition with the original EFA.

6.2 Partial composition
Partial composition is one of the simplest abstractions. While the synchronous
composition of two EFAs typically enlarges the representation of the state space,
events may become local in the sense that they only appear in the alphabet of this
synchronous composition and not elsewhere in the EFA system.

It follows from the definitions of synchronous composition and EFA systems (and
it is confirmed with Proposition 6 of (Mohajerani, Malik, and Fabian 2016)) that
partial composition does not alter the behavior of the system. Therefore, a monolithic

STC2V2

l21

s1

s2

l21;F

l21;F

p1

p2

l10 l11

l11

l11

ST̃CV

l21 l21;F

p1
p2

s1
s2

l10 l11

Event Guard and update
l10 v1 < 2; v1 := v1 + 1
l11 v1 < 1; v1 := v1 + 1
l21 0 < v1; v1 := v1−1
p1 T
p2 T
s1 T
s2 T

Figure 3.13: The coordinators calculated from TC 2V2 and T̃CV . In the table the original
normalized guards and updates are displayed, while the guards strengthened by supervisor
synthesis are displayed in the automaton itself.
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supervisor synthesized for the EFA system before partial composition is the same as the
one after partial composition. No refinement is needed, as expressed with Theorem 4.
The proof of this theorem can be found in Section 1.4 of the supplementary material.

Theorem 4 (Partial composition). Let (E , ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic normalized EFA system. Construct F = {E1 ‖ E2, E3,
. . . , En}. Then there exists an abstraction function ξ ∈ Ξ such that F = ξ(E) and
ξ−1 = id, and (E , ξ1) 'co (F , ξ ◦ ξ1).

6.3 Update simplification
In an EFA, updates may be simplified into equivalent ones without changing the
behavior of that EFA. This rewriting operation is called update simplification. In
simplifying updates, the notion of logical equivalence is used (taken from (Mohajerani,
Malik, and Fabian 2016)).

Definition 17 (Logical equivalence). Two predicates p, q ∈ ΠV are said to be logically
equivalent with respect to variable set V , denoted by p ⇔ q, if p[v̂] = q[v̂] for all
valuations v̂ ∈ val(V ).

The following theorem shows that nothing has to be changed in the coordinator to
refine an update simplification abstraction, as the behavior of the system is essentially
the same before and after the abstraction. The proof of this theorem can be found in
Section 1.5 of the supplementary material.

Theorem 5 (Update simplification). Let (E , ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic normalized EFA system. Construct F = {F 1, . . . , F n}
with F i = (Li,Σi, V,→i

F , l
i
0, v̂0, L

i
m) such that V = vars(E) = vars(F), gEσ ⇔ gFσ for all

σ ∈ ΣE = ΣF , and →i
F= {(x, σ, gFσ , u, y) | (x, σ, gEσ , u, y) ∈→i

E}. Then there exists an
abstraction function ξ ∈ Ξ such that F = ξ(E) and ξ−1 = id, and (E , ξ1) 'co (F , ξ ◦ξ1).

6.4 Variable unfolding
To consider an event local, the guard of that event should be true and the update
should not alter the valuation of variables, as explained in Section 6.1. Often this can
be achieved by eliminating one or more variables from the EFA system. In (Mohajerani,
Malik, and Fabian 2016), a particular method of unfolding a variable is presented that
keeps a normalized system normalized after the abstraction.

Below the definitions for variable unfolding as presented in (Mohajerani, Malik, and
Fabian 2016) are shown and adapted for using guards and updates on the transitions.
These definitions are briefly discussed below, more details can be found in (Mohajerani,
Malik, and Fabian 2016).

Definition 18 (Variable alphabet). Let z be a variable and Σ an alphabet. The
variable alphabet of z with respect to Σ is Uz(Σ) = Σ × dom(z) × dom(z), where
(σ, a, b) ∈ Uz(Σ) is controllable if and only if σ ∈ Σ is controllable. The variable
renaming function ρz is defined as ρz((σ, a, b)) = σ for all (σ, a, b) ∈ Uz(Σ).
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When a variable is unfolded, a new alphabet is created based on the original
alphabet and the variable that is unfolded. For each event in the original alphabet,
new events are created by combining the event with two values from the domain of the
variable being unfolded. The first value represents the value of the unfolded variable
before taking a transition labeled with the event, and the second value represents the
value of the unfolded variable after taking the transition. The variable alphabet may
be larger than strictly necessary: it may contain events that are never enabled in the
model. Subsequent abstractions, like update simplification (Section 6.3), false removal
(Section 6.5), and event merging (Section 6.7), will determine this.

Definition 19 (Normalized variable EFA). Let E be a normalized EFA system with
variable set V . The normalized variable EFA of z ∈ V is

UE(z) = (dom(z), V \ {z}, Uz(Σz),→z, v̂0(z), v̂0\z, dom(z))

where

Σz = {σ ∈ Σ | z ∈ vars(gσ) ∪ vars(uσ)},
→z = {(a, (σ, a, b), gσ[z 7→ a] ∧ b = uσ(z)[z 7→ a], uσ\z[z 7→ a], b) |

σ ∈ Σz, (x, σ, gσ, uσ, y) ∈→E , a, b ∈ dom(z)},

with uσ\z the update function without the update expression for z, uσ\z[z 7→ a] the
update function where in each update expression the variable z is substituted by a, and
v̂0\z is the initial valuation without variable z.

The normalized variable EFA captures all theoretically possible behavior of that
variable. As this EFA represents the effect of the unfolded variable on the EFA
system, only events from the original EFA system that use this variable are included
in the normalized variable EFA. Figure 3.14 shows an example where variable x
is unfolded resulting in the normalized variable EFA UE(x). The new guard after
unfolding a variable consists of the original guard where the variable is substituted by
its current value in conjunction with the update of that variable, to include the fact
that a transition is taken in the normalized variable EFA only for the value where the
variable would be updated to in the original system. Observe that several guards of the
normalized variable EFA can be simplified with the abstraction update simplification,
see Section 6.3.

When a variable is unfolded, new events are introduced. To keep the complete EFA
system normalized, all other EFAs in the EFA system need to be updated with these
new events in a similar manner as local normalization (see Section 5). Furthermore,
the guards and updates of events used to create the normalized variable EFA need to
be changed in all EFAs in the same manner as in the normalized variable EFA. Both
changes are captured below in the definition of variable expansion.

Definition 20 (Variable expansion). Let E = (L, V,Σ,→, l0, v̂0, Lm) be an EFA and
let z ∈ V . The expansion of E after unfolding variable z is defined by

Uz(E) = (L, V \ {z},ΣU ,→U , l0, v̂0\z, Lm)
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E

β α

α

UE(x)

(α, 0, 1)
(β, 0, 1)

(α, 1, 0)
(β, 1, 0)

(α, 0, 0)
(β, 0, 0)

(α, 1, 1)
(β, 1, 1)

Ux(E)

(β, 0, 0)
(β, 0, 1)
(β, 1, 0)
(β, 1, 1)

(α, 0, 0)
(α, 0, 1)
(α, 1, 0)
(α, 1, 1)

(α, 0, 0)
(α, 0, 1)
(α, 1, 0)
(α, 1, 1)

Event Guard and update
α T;x := x, y := x+ 1
β T;x := y + 1, y := y

(α, 0, 0) T ∧ 0 = 0; y := 0 + 1
(α, 0, 1) T ∧ 0 = 1; y := 0 + 1
(α, 1, 0) T ∧ 1 = 0; y := 1 + 1
(α, 1, 1) T ∧ 1 = 1; y := 1 + 1
(β, 0, 0) T ∧ 0 = y + 1; y := y

(β, 0, 1) T ∧ 1 = y + 1; y := y

(β, 1, 0) T ∧ 0 = y + 1; y := y

(β, 1, 1) T ∧ 1 = y + 1; y := y

Figure 3.14: Example of unfolding variable x, taken from (Mohajerani, Malik, and Fabian
2016). In this example, dom(x) = dom(y) = {0, 1}. Initially, v̂0(x) = 0 and v̂0(y) = 0.

where

ΣU = Uz(Σ ∩ Σz) ∪ (Σ \ Σz),
→U = {(x, (σ, a, b), gσ[z 7→ a] ∧ b = uσ(z)[z 7→ a], uσ\z[z 7→ a], y) |

σ ∈ Σ ∩ Σz, (x, σ, gσ, uσ, y) ∈→} ∪
{(x, σ, gσ, uσ, y) | σ ∈ Σ \ Σz, (x, σ, gσ, uσ, y) ∈→}

Figure 3.14 shows an example of variable expansion of E with respect to variable
x.

Given these definitions, unfolding variable z in an EFA system is defined as follows.

Definition 21 (Variable unfolding). Let E = {E1, . . . , En} be a normalized EFA
system with variable set V and z ∈ V a variable. The result of unfolding z in E is

E\z = {UE(z), Uz(E1), . . . , Uz(En)}.

Two things need to be accomplished to properly refine a coordinator based on the
abstracted system back to the original system: events need to be renamed back and the
variable needs to be reintroduced. The first action is needed as coordinator equivalence
is based on having the same closed-loop language, which in essence requires the same
alphabet. The second action is needed to ensure that all following refinements of the
coordinator can use the unfolded variable. Renaming can be achieved by the renaming
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function ρz. Reintroducing the unfolded variable can be achieved by calculating the
synchronous composition of the abstracted coordinator after renaming and the original
EFA system. Now Theorem 6 confirms that the coordinator can be refined. The proof
of this theorem can be found in Section 1.6 of the supplementary material.

Theorem 6 (Variable unfolding). Let (E , ξ1) be a coordinator tuple with E a deter-
ministic normalized EFA system with variable set V and z ∈ V . Then there exists
an abstraction function ξ ∈ Ξ such that ξ(E) = E\z and for any EFA system F ,
ξ−1(F) = ρz(F) ‖ E, and (E , ξ1) 'co (E\z, ξ ◦ ξ1).

Example: The coordinators synthesized for the EFA systems before and after
variable unfolding as presented in Figure 3.14 are shown in Figure 3.15. In the
initial location, the transition labeled with β needs to be disabled to prevent the system
from being blocking after taking this transition. During supervisor synthesis on the
abstracted system, the algorithm evaluates the guards and updates on the transitions
and finds out that several of them are not possible, as their guards evaluate to false.
Therefore, the synthesized coordinator only strengthens the guard on the transition
from the initial location labeled with event (β, 0, 1); other transitions do not need to be
strengthened. If we apply the refinement on coordinator SUE(x)‖Ux(E), we observe that
SE = ρx(SUE(x)‖Ux(E)) ‖ E.

6.5 False removal

It may happen that after variable unfolding and update simplification, several events
have a false guard, i.e., transitions labeled with these events are never enabled.
Furthermore, it could be that the synchronous composition of two EFAs may result in
having an event in the alphabet, but no transition in the synchronous composition is

SE

β;F α

α

SUE(x)‖Ux(E)

(β, 0, 0)
(β, 0, 1);F

(α, 0, 0)
(α, 0, 1)

(α, 0, 0)
(α, 0, 1)
(α, 1, 0)
(α, 1, 1)

Event Guard and update
α T;x := x, y := x+ 1
β T;x := y + 1, y := y

(α, 0, 0) T ∧ 0 = 0; y := 0 + 1
(α, 0, 1) T ∧ 0 = 1; y := 0 + 1
(α, 1, 0) T ∧ 1 = 0; y := 1 + 1
(α, 1, 1) T ∧ 1 = 1; y := 1 + 1
(β, 0, 0) T ∧ 0 = y + 1, y := y

(β, 0, 1) T ∧ 1 = y + 1, y := y

(β, 1, 0) T ∧ 0 = y + 1, y := y

(β, 1, 1) T ∧ 1 = y + 1, y := y

Figure 3.15: The coordinators synthesized for the EFA systems {E} and {UE(x), Ux(E)} as
shown in Figure 3.14.
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labeled with this event. In this case, the event is also never executed. These events can
be safely removed from the EFA system without altering the behavior of the system.

Events (and transitions labeled with these events) can be removed from an EFA
by restricting it to an alphabet Σ′ ⊆ Σ (see (Mohajerani, Malik, and Fabian 2016)).

Definition 22 (Restriction). Let E = (L, V,Σ,→, l0, v0, Lm) be an EFA. The re-
striction of E with respect to Σ′ is E|Σ′ = (L, V,Σ′∩Σ,→|Σ′ , l0, v0, Lm) where →|Σ′=
{(l1, σ, g, u, l2) | (l1, σ, g, u, l2) ∈→, σ ∈ Σ′}. The restriction of EFA system E =
{E1, . . . , En} with respect to Σ′, denoted with E|Σ′, is E|Σ′ = {E1

|Σ′ , . . . , E
n
|Σ′}.

Theorem 7 (False removal). Let (E , ξ1) be a coordinator tuple with E a deterministic
normalized EFA system, and let ΣE = Ω ∪̇ Λ such that for all λ ∈ Λ at least one of
the following conditions holds:

1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any transition
x

λ,gλ,uλ−−−−→ y in Ei.

Then there exists an abstraction function ξ ∈ Ξ such that E|Ω = ξ(E) and ξ−1 = id,
and (E , ξ1) 'co (E|Ω, ξ ◦ ξ1).

Theorem 7 shows that when events are removed from the EFA system because
they are never enabled, the abstracted coordinator does not need to be changed. The
proof of this theorem can be found in Section 1.7 of the supplementary material.

Example: Figure 3.16 shows an example of false removal. Event β in E has a
false guard and is therefore never enabled. Therefore, this event is removed, resulting in
E|Ω. The coordinator for E, automaton SE in Figure 3.16, only has to strengthen the
guard of γ to prevent the system from reaching the blocking location. The same holds
for the abstracted coordinator SE|Ω. The languages of the original and the abstracted
coordinators are the same, so no refinement is needed.

6.6 Selfloop removal
In FAs, selfloops can be safely removed in compositional synthesis, as these selfloops
do not change the state of the system, see (Mohajerani, Malik, and Fabian 2014a).

E

β
γ

α

SE

β
γ;F

α

E|Ω

γ

α

SE|Ω

γ;F

α

Event
Guard and
update

α T
β F
γ T

Figure 3.16: Example of false removal and coordinator refinement.
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In EFAs, selfloops do not alter the location, but they may change the valuation and
therefore the state of the system. Therefore, events are considered to be selfloop only
in EFAs if all transitions labeled with these events cause no location change and no
valuation change.

The coordinator obtained from the EFA system before selfloop removal and the
coordinator obtained from the EFA system after selfloop removal are not entirely
the same. The difference is that by removing selfloops, these events are no longer
included in the language of the abstracted coordinator, while these events are included
in the original coordinator. To refine the abstracted coordinator, i.e., to have the same
language as the original coordinator, these removed selfloops need to be placed back at
the right locations. This can be achieved by performing the synchronous composition
of the abstracted coordinator with the EFA system before selfloop removal. This is
summarized in the following theorem. The proof of this theorem can be found in
Section 1.8 of the supplementary material.

Theorem 8 (Selfloop removal). Let (E , ξ1) be a coordinator tuple with E a deterministic
normalized EFA system and let Λ ⊆ ΣE , where for each λ ∈ Λ, any transition
(l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) = v̂1(u(v)) = v̂1(v) for all v ∈ V and
v̂1, v̂2 ∈ Val(V ). Then there exists an abstraction function ξ ∈ Ξ such that E|Σ\Λ = ξ(E)
and for any EFA system F , ξ−1(F) = ρ(F) ‖ E where ρ = id is the identity renaming
function, and (E , ξ1) 'co (E|Σ\Λ, ξ ◦ ξ1).

Example: Figure 3.17 shows an example of EFA E with selfloops. While both
events α and β appear on selfloop transitions, the update of α results in a change in
valuation. Therefore, this event cannot be considered to be a selfloop in the EFA setting.
Event β does not change the valuation and can thus be considered as a selfloop. The
abstracted EFA E|Σ\Λ is also shown in Figure 3.17. Both coordinators obtained from
the original system and the abstracted system are included in Figure 3.17, where the
guards strengthened by supervisor synthesis are displayed in the automata themselves.
As can be seen, both coordinators prevent event γ from happening. Unfortunately,
L(SE|Σ\Λ) ⊂ L(SE), as event β is no longer possible in the abstracted EFA. However,
by taking the synchronous composition of the coordinator and the EFA system before
selfloop removal, this language inclusion can be transformed into a language equality,
i.e., L(SE|Σ\Λ ‖ E) = L(SE).

E

γ

α
β

SE

γ;F

α
β

E|Σ\Λ

γ

α

SE|Σ\Λ

γ;F

α

Event Guard and update
α x = 0;x := x+ 1
β x = 1
γ x < 1

Figure 3.17: Example of selfloop removal and coordinator refinement.
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6.7 Event merging
Variable unfolding introduces new events to be sure that the system after variable
unfolding remains normalized. As observed in the illustrative example (see Section 3),
sometimes these new events are needed to keep the system normalized (see step 12
where variable v2 was unfolded), while sometimes no renaming was necessary (see step
7 where variable t was unfolded).

After variable unfolding, the abstraction of event merging identifies events that can
be merged into a single event. This is what essentially happened when variable t is
unfolded in the illustrative example. Events can be merged if they have the same guard
and update, for all EFAs in the EFA system except one they appear on transitions
with the same source and target location, and they have the same controllability status.
By construction of the EFA system after variable unfolding, all new events introduced
for a single original event appear everywhere on the same transition except the newly
created normalized variable EFA, and the renaming does not alter the controllability
of events.

To refine a coordinator synthesized for the abstracted system, the merged events
need to be converted back to original events. As event merging applies a renaming to
go from multiple events to a single event, refinement applies an inverse renaming to go
from a single event to multiple events. But, in general, for any renaming and EFA A
it holds that L(ρ−1(ρ(A))) ⊇ L(A), i.e, more behavior may be possible after applying
renaming and inverse renaming than originally possible. This may also be the case for
event merging. To solve this, the synchronous composition of the coordinator obtained
after inverse renaming and the original system ensures that the languages become
equal. Theorem 9 formalizes this. The proof of this theorem can be found in Section
1.9 of the supplementary material.

Theorem 9 (Event merging). Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En}
a deterministic normalized EFA system. Let Ek ∈ E and let ρ : ΣE → Σ′ be a renaming
such that the following conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1 = gσ2 and uσ1 = uσ2,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all l1, l2 ∈ Li
it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then there exists an abstraction function ξ ∈ Ξ such that ξ(E) = ρ(E) and for any
EFA system F , ξ−1(F) = ρ−1(F) ‖ E, and (E , ξ1) 'co (F , ξ ◦ ξ1).

Keep in mind that we assumed that all abstracted systems remain deterministic.
Only with this assumption, event merging can be properly refined.

Example: Figure 3.18 shows an example where event merging is applied. In the
original EFA system, events β1 and β2 have the same guard and update, and they
always appear in any EFA on the same transitions except for E1. Therefore, these
events can be merged into, for example, β, which results in EFAs ρ(E1) and ρ(E2). For
the original and the abstracted system a coordinator is synthesized. The strengthened
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β2

E2

α

β1
β2

ρ(E1)

β

α

β

ρ(E2)

α β

SE

α;F β1

Sρ(E)

α;F β

Event
Guard and
update

α x := 1
β1 x = 0
β2 x = 0
α x := 1
β x = 0

Figure 3.18: Example of event merging and coordinator refinement. In the table, the top
three events constitute the original alphabet, while the bottom two the one after event
merging.

guards are shown directly in the automaton representation of the coordinators. We can
now observe that simply applying inverse renaming is insufficient, as a refinement as
ρ−1(Sρ(E)) allows for β1 and β2 from the initial state, while the coordinator based on
the original system only allows β1. This problem is solved by taking the synchronous
composition of the renamed abstracted coordinator with the original EFA system, i.e.,
L(ρ−1(Sρ(E)) ‖ (E1 ‖ E2)) = L(SE).

6.8 Update merging

The final abstraction considered in this paper is called update merging. In the context
of separate guards and updates, a more appropriate terminology may be guard merging.
As introduced by (Mohajerani, Malik, and Fabian 2016), update merging merges events
together if they always appear together on the same transitions in the EFA system
and they have the same set of updated variables. This formulation allows events
to be merged if they both update a variable, but update it to different valuations.
In this case, the abstracted system becomes nondeterministic, which we avoid. For
update merging, the general strategy of nondeterminism avoidance by first applying
a renaming would not help. Therefore, we need to strengthen the conditions when
update merging may be applied: besides appearing always together on the same
transitions, the updates should be the same. Requiring that the updates are the same
ensures that a deterministic system remains deterministic after update merging.

Similar to event merging, update merging applies a renaming function to get from
multiple events to a single event. Refining update merging would require to apply
the inverse renaming to get from a single event to multiple events. Unfortunately,
this may introduce too many possible events in the coordinator. Therefore, the same
solution as event merging may be applied: perform the synchronous composition of
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the inverse renamed abstracted coordinator with the original system. Theorem 10
expresses this formally. The proof of this theorem can be found in Section 1.10 of the
supplementary material.

Theorem 10 (Update merging). Let (E , ξ1) be a coordinator tuple with E = {E1, . . . ,
En} a deterministic normalized EFA system. Let ρ : ΣE → Σ′ be a renaming such
that the following conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , F n} such that each F i = (Li, V i, ρ(Σi),→i,F

, li0, v̂
i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E} and gFρ(σ) =∨

σ′∈ρ−1(ρ(σ)) g
E
σ′. Then there exists an abstraction function ξ ∈ Ξ such that ξ(E) = F

and for each EFA system G with alphabet Σ′, ξ−1(G) = ρ−1(G) ‖ E. Then (E , ξ1) 'co
(F , ξ ◦ ξ1).

Example: Figure 3.19 shows an example where update merging is applied. In
the original EFA system, events β1 and β2 have the same update and they always
appear on the same transitions. Therefore, these events can be merged into, for
example, β, which results in EFA ρ(E). For the original and the abstracted system a
coordinator is synthesized. The strengthened guards are shown directly in the automaton
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β2
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SE

β1;x = 1
β2
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β2
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β;x = 1

γ
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β
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Guard and
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α x := 1
β1 x = 0;x := x

β2 x = 1;x := x
γ x = 1
α x := 1

β
x = 0 ∨ x =
1;x := x

γ x = 1

Figure 3.19: Example of update merging and coordinator refinement. Initially, v̂0(x) = 0. In
the table, the top for events constitute the original alphabet, while the bottom three the
one after event merging.
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representation of the coordinators. If we would just apply inverse renaming, too much
behavior is possible in ρ−1(Sρ(E)). In Sρ(E), the left transition labeled with β has guard
(x = 0 ∨ x = 1) ∧ x = 1, where x = 1 is added by the coordinator. Inverse renaming
would result in two transitions, one labeled with β1 and one labeled with β2, and both
having guard (x = 0 ∨ x = 1) ∧ x = 1. Therefore, after performing event α, both β1
and β2 are possible in ρ−1(Sρ(E)), while only β2 would be possible in SE. Taking the
synchronous composition of ρ−1(Sρ(E)) with E resolves this problem and ensures that
L(ρ−1(Sρ(E)) ‖ E) = L(SE).

7 Algorithm
This section enhances the EFA-based compositional nonblocking verification algorithm
of (Mohajerani, Malik, and Fabian 2016) to refine the coordinator synthesized from
the abstracted system. For a detailed discussion on the EFA-based compositional
nonblocking verification algorithm, including several heuristics for choosing the order
of abstractions, the reader is referred to (Mohajerani, Malik, and Fabian 2016).

Algorithm 4 shows the enhanced algorithm. The enhancement is visualized by
underlining the additions. It requires a deterministic EFA system as input, and
produces the answer nonblocking if the EFA system is nonblocking, or the answer
blocking together with the refined coordinator Cr if the EFA system if blocking. The
algorithm can be split into three parts: the initialization and normalization in Lines
1 and 2, the abstractions in Lines 3-22, and the verification and refinement in Lines
23-29.

The first two parts, initialization and normalization and abstractions, are basically
the same as in the EFA-based compositional nonblocking verification algorithm of (Mo-
hajerani, Malik, and Fabian 2016), where now the abstraction function ξ is constructed
along the way, i.e., Algorithm 4 keeps track of which abstractions are performed.
Furthermore, the simplify procedure needs to be adjusted to match Theorem 3, as no
longer all FA-based abstractions for verification can be used.

The third part of Algorithm 4 is responsible for synthesizing and refining the
coordinator in case a coordinator is needed to solve the blocking issue. Some algorithms
available in literature for verification are (Abdelwahed and Wonham 2003; Flordal and
Malik 2006) and for synthesis are (Fei et al. 2014; Ouedraogo et al. 2011). If verification
of the abstracted EFA system is successful, then the algorithm returns that the original
EFA system provided as input is nonblocking in Line 24. Otherwise, the algorithm
continues to synthesize a coordinator C based on the abstracted EFA system. As
abstraction function ξ is constructed along the way, it holds that ξ(Eoriginal) = Eabstracted.
Furthermore, Theorems 1 through 10 show that each abstraction preserves coordinator
equivalence, from which it follows that the initial and abstracted coordinator tuples
are coordinator equivalent, i.e. (Eoriginal, id) 'co (Eabstracted, ξ) and thus we conclude
that L(id−1(sup CN (Eoriginal))) = L(ξ−1(sup CN (Eabstracted))). Therefore, in Line 27
the synthesized coordinator C is refined by applying the refinement function ξ−1. The
final result is returned in Line 28.

The theoretical worst-case complexity of this algorithm is the same as the worst-
case complexity of monolithic nonblocking verification and monolithic synthesis. This
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Algorithm 4 EFA-based compositional nonblocking verification and coordinator
refinement
Input: deterministic EFA system E = {E1, . . . , En}
Output: nonblocking in case when E is nonblocking, or blocking and refined coordi-
nator Cr in case when E is blocking
1: V = V 1 ∪ . . . ∪ V n

2: (E , ξ) = normalize(E)
3: while |E| > 1 ∧ |V | > 0 do
4: (Vc, Ec) = selectCandidate(E)
5: if Vc 6= ∅ then
6: v = selectVariable(Vc)
7: V = V \ {v}
8: (E, ξ′) = unfold(v)
9: ξ = ξ′ ◦ ξ

10: else
11: E = E \ Ec
12: E = synchronize(Ec)
13: ξ = id ◦ ξ
14: end if
15: (E ∪ {E}, ξ′) = removeEvents(E ∪ {E})
16: ξ = ξ′ ◦ ξ
17: Γ = getLocalEvents(E, E)
18: (E, ξ′) = simplify(E,Γ)
19: ξ = ξ′ ◦ ξ
20: (E ∪ {E}, ξ′) = removeEvemts(E ∪ {E})
21: ξ = ξ′ ◦ ξ
22: E = E ∪ {E}
23: end while
24: if monolithicVerification(E) is successful then Output: nonblocking
25: else
26: C = monolithicSynthesis(E)
27: Cr = ξ−1(C) Output: blocking and Cr
28: end if
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can be seen as follows. Consider an EFA system where each EFA has the same
alphabet. As the compositional nonblocking verification algorithm tries to utilize local
events, it needs to calculate the synchronous product of all EFAs in this EFA system
to have at least one local event. In this case, there is no computational complexity
reduction compared to monolithic nonblocking verification and monolithic synthesis.
Nevertheless, experimental results as presented in (Mohajerani, Malik, and Fabian
2016) show that for realistic systems the observed computation time of compositional
nonblocking verification is in the order of 100− 102 seconds. As monolithic verification
and monolithic synthesis have the same computational complexity, see (Cassandras
and Lafortune 2008), and all refinements are straightforward, the implementation of
Algorithm 4 is expected to have similar computational results as the ones reported
in (Mohajerani, Malik, and Fabian 2016) for compositional nonblocking verification.

8 Conclusion

In this paper, the general framework of EFA-based compositional nonblocking ver-
ification of (Mohajerani, Malik, and Fabian 2016) is enhanced such that in case of
a blocking system a coordinator can be synthesized and refined back to the original
system. The notion of a general abstraction function is introduced, which transforms a
given EFA system into another EFA system. All presented abstractions belong to the
particular class of abstraction functions Ξ with the characteristic that the abstraction
function ξ itself may be complex, but the inverse ξ−1 of it, i.e., the refinement, is
straightforward. The following refinement functions are used: the identity function, a
renaming function, an (inverse) renaming function in synchronous composition with
the EFA system before abstraction, or a composition of functions in Ξ.

To reason about refinement of coordinators, we introduced the notion of coordina-
tor equivalence. Two EFA systems are considered to be equivalent if the closed-loop
behavior after refining the coordinators synthesized for these systems is the same.
Various abstractions are shown to preserve this property. This allows for a com-
positional approach, where the closed-loop behavior after refining the coordinator
synthesized for the abstracted system is the same as the closed-loop behavior of the
coordinator synthesized for the original system. All presented EFA-based conflict
equivalent abstractions in (Mohajerani, Malik, and Fabian 2016) are also coordinator
equivalent, while not all FA-based conflict equivalent abstractions are coordinator
equivalent. Nevertheless, all abstractions presented in this paper are sufficient to
abstract any EFA system to a single FA, synthesize a coordinator, and than refine it
back for the original EFA system.

In the future, after implementing the proposed algorithm, the results presented
in this paper will be used in the development of infrastructural applications like,
for example, bridges (Reijnen et al. 2019) and locks (Reijnen et al. 2017) to deploy
nonconflicting modular supervisors.
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Appendix - proofs of theorems
The maximally permissive supervisor supCN (G) can be calculated by the fixed-point
algorithm SSEFA as presented in (Ouedraogo et al. 2011). For convenience, this
algorithm is shown in Algorithm 5. It is proven in that paper that SSEFA(G) =
supCN (G).

This algorithm uses nonblocking predicates and bad state predicates. Predicates are,
like guards, Boolean expressions that evaluate to true or false for a given valuation,
i.e., v̂ � p or v̂ 2 p. In Algorithm 5 we use a standard notation for each edge:
e = (oe, σe, ge, ue, te) ∈ E, where oe represents the origin location of edge e, σe the
event label, ge the guard, ue the update, and te the terminal location. Furthermore,
N [ue] andB[ue] represents the substitution of the update expressions in the nonblocking
and bad location predicates, respectively. This can be best explained with an example.
Let N ≡ v1 > v2 + 2 be a nonblocking predicate expressing that variable v1 should
be larger than v2 + 2, and u = {v1 7→ v1 + 1, v2 7→ v2 − v1} the update that increases
the value of v1 by 1 and sets the new value of v2 as the difference between the
current values of v2 and v1. Substituting this update in the predicate N results in
N [u] ≡ v1 + 1 > v2 − v1 + 2 (which may be simplified into N [u] ≡ 2 · v1 > v2 + 1).



Paper 3. Compositional coordinator synthesis of EFA 177

Algorithm 5 Supervisory Synthesis for EFA (SSEFA)
Input: EFA G = (L, V,Σ, E, l0, v0, Lm)
Output: SSEFA(G) is the supremal controllable and nonblocking subautomaton of
G, if SSEFA(G) is nonblocking and controllable
1: Initialize iterators: i := 0, j := 0, k := 0
2: Initialize guards: ∀e ∈ E : g0

e = ge
3: Initialize the nonblocking predicate of every location l ∈ L:
4:

N j,0
l =

T, if l ∈ Lm
F, if l /∈ Lm

5: Update the nonblocking predicate of every location l ∈ L:
6:

N j,k+1
l = N j,k

l ∨
∨

{e|oe=l}

[
gje ∧N

j,k
te [ue]

]
7: if there exists an l ∈ L such that N j,k

l 6= N j,k+1
l then

8: k := k + 1
9: Go to 4
10: else
11: for all l ∈ L: N j

l = N j,k
l

12: k := 0
13: end if
14: Initialize the bad location predicate of every location l ∈ L:
15:

Bj,0
l =


T, if l ∈ Lf
¬N j

l , if l /∈ Lf and j = 0
¬N j

l ∨B
j−1
l , if l /∈ Lf and j > 0

16: Update the bad location predicate of every location l ∈ L:
17:

Bj,i+1
l = Bj,i

l ∨
∨

{e|oe=l,σe∈Σu}

[
gje ∧B

j,i
te [ue]

]
18: if there exists an l ∈ L such that Bj,i

l 6= Bj,i+1
l then

19: i := i+ 1
20: Go to 13
21: else
22: for all l ∈ L: Bj

l = Bj,i
l

23: i := 0
24: end if . Continues on next page



178 8. Conclusion

25: Update the guard of every edge e ∈ E:
26:

gj+1
e =

gje ∧ ¬B
j
te [ue], if σ ∈ Σc

gje, if σ ∈ Σu

27: if there exists an l ∈ L such that gj+1
e 6= gje then

28: j := j + 1
29: Go to 3
30: else
31: Stop
32: end if

Local normalization
Local normalization makes sure that within a single automaton, transitions labeled
with the same event have the same effect on the valuations of variables, i.e., each
event can be associated with a guard and update. When an automaton is locally
normalized, guards and updates are no longer solely associated with transitions, but
are also associated with the event.

Lemma 1. Let E be a deterministic EFA and let ρ : Σ′ → Σ be a renaming function.
Create F such that ρ(F ) = E. Then SSEFA(E) = ρ(SSEFA(F )).

Proof. From the definition of renaming, it follows that E and F have the same location
set, same set of variables, same initial location, same initial valuation, and same set of
marked locations. Furthermore, as ρ(F ) = E, for each edge eE = (l1, σ, g, u, l2) ∈ EE
there exists an edge eF ∈ EF in F such that eF = (l1, µ, g, u, l2) and ρ(µ) = σ, and
for each edge eF = (l1, µ, g, u, l2) ∈ EF there exists an edge eE ∈ EE in E such that
eE = (l1, σ, g, u, l2) and σ = ρ(µ).

Now, consider SSEFA, Algorithm 5. First, for any EFA A, A and SSEFA(A) only
differ in the set of edges; all other elements of the EFA tuple are the same. Second,
as renaming preserves by definition the controllability status of an event, for each
iteration j, the nonblocking predicates and the bad location predicates do not depend
on the event name of edges. Therefore, these predicates are the same for E and F .
This shows us that, eventually, for every pair of edges eE = (l1, σ, g, u, l2) ∈ EE and
eF = (l1, µ, g, u, l2) ∈ EF with σ = ρ(µ), the fixed-point guard g∗ for eE and eF are
the same, i.e., (l1, σ, g∗, u, l2) is an edge in SSEFA(E) if and only if (l1, µ, g∗, u, l2) is
an edge in SSEFA(F ).

Finally, when we apply renaming on SSEFA(F ) it follows from the definition that
(l1, µ, g∗, u, l2) is an edge in SSEFA(F ) if and only if (l1, ρ(µ), g∗, u, l2) = (l1, σ, g∗, u, l2)
is an edge in ρ(SSEFA(F )). Furthermore, the alphabet of E is the same as ρ(SSEFA(
F )). Combining this with the conclusion of the previous paragraph, we can conclude
that (l1, σ, g∗, u, l2) is an edge in SSEFA(E) if and only if (l1, σ, g∗, u, l2) is an edge in
ρ(SSEFA(F )). This concludes the proof.
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Lemma 2. Let E = {E1, . . . , En} be a deterministic EFA system, and let ρ : Σ′ → ΣE

be a renaming function such that F = {F 1, ρ−1(E2), . . . , ρ−1(En)}, ρ(F 1) = E1, and
F 1 is a normalized EFA. Then E = ρ(F).

Proof. From the definition of renaming and inverse renaming it follows that for any
EFA G it holds that ρ(ρ−1(G)) = G. As renaming applied on an EFA system
is defined as applying renaming on the individual EFAs, it follows that ρ(F) =
{ρ(F 1), ρ(ρ−1(E2)), . . . , ρ(ρ−1(En))} = {E1, E2, . . . , En} = E . This concludes the
proof.

Theorem 11. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
EFA system, and let ρ : Σ′ → ΣE be a renaming function such that F = {F 1, ρ−1(E2),
. . . , ρ−1(En)}, ρ(F 1) = E1, and F 1 is a normalized EFA. Then there exists an
abstraction function ξ ∈ Ξ such that F = ξ(E) and ξ−1(G) = ρ(G) for any EFA G,
and (E , ξ1) 'co (F , ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. From
Lemma 2 it follows that E = ρ(F). Therefore, from Lemma 1 it follows that
supCN (E) = SSEFA(E) = ρ(SSEFA(F)) = ρ(supCN (F)). Therefore, L(ξ−1

1 (supCN (
E))) = L(ξ−1

1 (ρ(supCN (F)))) = L(ξ−1
1 (ξ−1(supCN (F)))).

Global normalization
Definition 23. Let A = (LA,ΣA, VA, EA, l0,A, v̂0,A, Lm,A) and B = (LB,ΣB, VB,
EB, l0,B, v̂0,B, Lm,B) be two EFAs. A and B are said to be logically equivalent with re-
spect to variable set V , written A⇔V B, if LA = LB, ΣA = ΣB, VA = VB, l0,A = l0,B,
v̂0,A = v̂0,B, and Lm,A = Lm,B, and eA = (l1, σ, gA, u, l2) ∈ EA is an edge in A if and
only if eB = (l1, σ, gB, u, l2) ∈ EB is an edge in B such that gA ⇔V gB.

Lemma 3. Let E and F be two deterministic EFAs such that E ⇔V F . Then
SSEFA(E)⇔V SSEFA(F ).

Proof. As E and F are logically equivalent, and Algorithm 5 only alters guards on
edges, it follows that SSEFA(E) and SSEFA(F ) have the same location set, alpha-
bet, variables, initial location, initial valuation, and set of marked locations, and
(l1, σ, gE, u, l2) is an edge in SSEFA(E) if and only if (l1, σ, gF , u, l2) is an edge in
SSEFA(F ). It remains to be proven that gE ⇔V gF .

In the remainder of this proof, we use the notation xE to refer to usage of some
symbol x in EFA E, while xF refers to the usage of some symbol x in EFA F .

Consider the first iteration of Algorithm 5, i.e., j = 0. From Line 2 we can observe
that for all edges e = (l1, σ, ∗, u, l2) with (l1, σ, gE , u, l2) ∈ E and (l1, σ, gF , u, l2) ∈ F
it holds that gE 0

e = gE and gF 0
e = gF . Therefore, gE 0

e ⇔V gF 0
e.

Continuing with the nonblocking predicates, we observe that the initial nonblocking
predicate for each location as defined in Line 3 does not depend on any guard. Therefore,
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for all locations l ∈ L it holds that NE 0,0
l = NF 0,0

l . It then follows from Line 4 that
for all locations l ∈ L: NE 0,k+1

l ⇔V NF 0,k+1
l . Thus, for all locations l ∈ L we can

conclude that NE 0
l ⇔V NF 0

l .
Continuing with the bad location predicates, we observe from Line 12 that for all

locations l ∈ L it holds that initially BE 0,0
l ⇔V BF 0,0

l . It then follows from Line 13
that for all locations l ∈ L: BE 0,k+1

l ⇔V BF 0,k+1
l . Thus, for all locations l ∈ L we can

conclude that BE 0
l ⇔V BF 0

l .
Finally, continuing with the update of the guards in Line 21, we can conclude that

for all edges e it holds that gE 1
e ⇔V gF 1

e.
When the algorithm goes back to Line 3 for the next iteration, we can repeat

the argumentation above for j > 0 to conclude after each iteration that gE j
e ⇔V gF j

e.
Therefore, when the fixed-point is reached after n iterations, it follows that for all
edges e it holds that gE n

e ⇔V gF n
e . This concludes the proof.

Lemma 4. Let E and F be two deterministic EFAs such that E ⇔V F . Then, for
any EFA T it holds that U(E ‖ T ) = U(F ‖ T ).

Proof. Clearly, U(E ‖ T ) and U(F ‖ T ) have the same state set, alphabet, initial
location, and marked locations. It remains to be proven that they have the same
transitions. Because of symmetry of E and F in the lemma it is enough to show
that, if ((lE1 , lT1 ), v̂1) σ−→ ((lE2 , lT2 ), v̂2) is a transition in U(E ‖ T ), then ((lE1 , lT1 ), v̂1) σ−→
((lE2 , lT2 ), v̂2) is a transition in U(F ‖ T ).

Assume that ((lE1 , lT1 ), v̂1) σ−→ ((lE2 , lT2 ), v̂2) in U(E ‖ T ). By the definition of
state space this means that (lE1 , lT1 ) σ,g,u−−→ (lE2 , lT2 ) in E ‖ T such that g[v̂1] = T and
v̂2(v) = v̂1(u(v))). Consider three cases for σ.

• σ ∈ Σ ∪ ΣT . Then by the definition of synchronous composition it follows
that lE1

σ,gE ,uE−−−−→ lE2 in E, lT1
σ,gT ,uT−−−−→ lT2 in T , g = gE ∧ gT , and u = uE ⊕ uT .

As F is logically equivalent to E, it follows that lF1
σ,gF ,uF−−−−→ lF2 in F where

lF1 = lE1 , l
F
2 = lE2 , u

F = uE, and gF ⇔V g
E. Finally, as g[v̂1] = T and g = gE∧gT ,

it follows that gE[v̂1] = T and gT [v̂1] = T. Together with gF ⇔V gE it holds
that gF [v̂1] = T.

• σ ∈ Σ \ ΣT . Then by the definition of synchronous composition it follows that
lE1

σ,gE ,uE−−−−→ lE2 in E, lT1 = lT2 , g = gE, and u = uE. As F is logically equivalent
to E, it follows that lF1

σ,gF ,uF−−−−→ lF2 in F where lF1 = lE1 , l
F
2 = lE2 , u

F = uE,
and gF ⇔V gE. Finally, as g[v̂1] = T, g = gE, and gF ⇔V gE it holds that
gF [v̂1] = T.

• σ ∈ ΣT \ Σ. Then by the definition of synchronous composition it follows that
lT1

σ,gT ,uT−−−−→ lT2 in T , lE1 = lE2 , g = gT , and u = uT . As F is logically equivalent to
E, it follows that there is no transition in F , i.e., lF1 = lE1 and lF2 = lE2 .

Using the definition of the synchronous product on the situations described above, it
follows that (lF1 , lT1 ) σ,g,u−−→ (lF2 , lT2 ) in F ‖ T such that g[v̂1] = T and v̂2(v) = v̂1(u(v)).
Therefore, ((lF1 , lT1 ), v̂1) σ−→ ((lF2 , lT2 ), v̂2) is a transition in U(F ‖ T ), which can be
rewritten as ((lE1 , lT1 ), v̂1) σ−→ ((lE2 , lT2 ), v̂2) with the observations above.
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Lemma 5. Let E and F be two deterministic EFAs with shared alphabet Σ such that
E ⇔V F , and ρ : Σ→ Σ′ a renaming function. Then ρ(E)⇔V ρ(F ).

Proof. From the definition of renaming and that E ⇔V F , it follows that ρ(E) and
ρ(F ) have the same location set, alphabet, variables, initial location, initial valuation,
and set of marked locations.

As E ⇔V F , it follows that (l1, σ, gE, u, l2) is an edge in E if and only if
(l1, σ, gF , u, l2) is an edge in F and gE ⇔V gF . Therefore, after applying the re-
naming function ρ, we know that (l1, ρ(σ), gE, u, l2) is an edge in ρ(E) if and only if
(l1, ρ(σ), gF , u, l2) is an edge in ρ(F ) and gE ⇔V g

F . This concludes the proof.

Lemma 6. Let E and F be two deterministic EFAs with shared alphabet Σ such that
E ⇔V F , and ρ : Σ′ → Σ a renaming function. Then, it holds that ρ−1(E)⇔V ρ

−1(F ).

Proof. From the definition of inverse renaming and that E ⇔V F , it follows that
ρ−1(E) and ρ−1(F ) have the same location set, alphabet, variables, initial location,
initial valuation, and set of marked locations.

As E ⇔V F it follows that (l1, σ, gE, u, l2) is an edge in E if and only if (l1, σ, gF , u,
l2) is an edge in F and gE ⇔V gF . Therefore, after applying the inverse renaming
function ρ−1, we know for all µ ∈ ρ−1(σ) that (l1, µ, gE, u, l2) is an edge in ρ(E) if and
only if (l1, µ, gF , u, l2) is an edge in ρ(F ) and gE ⇔V g

F . This concludes the proof.

Lemma 7. Let E and F be two deterministic EFAs with shared alphabet Σ such that
E ⇔V F . Then, for any EFA T it holds that E ‖ T ⇔V F ‖ T .

Proof. From the definition of E ⇔V F , it follows that E and F have the same location
set, alphabet, variables, initial location, initial valuation, and set of marked locations.
Furthermore, from the definition of synchronous product it follows that E ‖ T and
F ‖ T have the same location set, alphabet, variables, initial location, initial valuation,
and set of marked locations.

As E ⇔V F it follows that (l1, σ, gE, u, l2) is an edge in E if and only if (l1, σ, gF , u,
l2) is an edge in F and gE ⇔V g

F . Consider three cases for event σ.

• σ ∈ Σ∪ΣT . In this case ((l1, x1), σ, gE ∧ gT , u⊕ uT , (l2, x2)) is an edge in E ‖ T
if and only if (l1, σ, gE, u, l2) is an edge in E and (x1, σ, g

T , uT , x2) is an edge in
T . Similarly, ((l1, x1), σ, gF ∧ gT , u⊕ uT , (l2, x2)) is an edge in F ‖ T if and only
if (l1, σ, gF , u, l2) is an edge in F and (x1, σ, g

T , uT , x2) is an edge in T . Observe
that gE ∧ gT ⇔V g

F ∧ gT ,

• σ ∈ Σ \ΣT . In this case ((l1, x1), σ, gE, u, (l2, x2)) is an edge in E ‖ T if and only
if (l1, σ, gE, u, l2) is an edge in E and x1 = x2. Similarly, ((l1, x1), σ, gF , u, (l2,
x2)) is an edge in F ‖ T if and only if (l1, σ, gF , u, l2) is an edge in F and x1 = x2

• σ ∈ ΣT \Σ. In this case ((l1, x1), σ, gT , uT , (l2, x2)) is an edge in E ‖ T if and only
if (x1, σ, g

T , uT , x2) is an edge in T and l1 = l2. Similarly, ((l1, x1), σ, gT , uT , (l2,
x2)) is an edge in F ‖ T if and only if (x1, σ, g

T , uT , x2) is an edge in T and
l1 = l2.
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Combining the observations above, we can conclude that ((l1, x1), σ, gET , u⊕uT , (l2, x2))
is an edge in E ‖ T if and only if ((l1, x1), σ, gFT , u⊕ uT , (l2, x2)) is an edge in F ‖ T
and gET ⇔V g

FT . This concludes the proof.

Lemma 8. Let E and F be two deterministic EFAs with shared alphabet Σ such that
E ⇔V F , and ξ ∈ Ξ an abstraction function. Then ξ−1(E)⇔V ξ

−1(F ).

Proof. This lemma is proven by induction on the structure of ξ−1. Denote ξ−1 = (ξ1 ◦
. . .◦ξm)−1. Assume that (ξ1◦ . . .◦ξi)−1(E)⇔V (ξ1◦ . . .◦ξi)−1(F ) with i ∈ [0 . . .m−1].
Consider the following four cases for ξi+1.

• ξ−1
i+1 is the identity function. It follows immediately that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(E)
⇔V (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(F ).

• ξ−1
i+1 is a renaming. From Lemma 5 it follows that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(E)
⇔V (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(F ).

• ξ−1
i+1 is a renaming in synchronous composition with the original EFA system.
From Lemma 5 and 7 it follows that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(E)⇔V (ξ1 ◦ . . . ◦ ξi ◦
ξi+1)−1(F ).

• ξ−1
i+1 is an inverse renaming in synchronous composition with the original EFA
system. From Lemma 6 and 7 it follows that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(E) ⇔V

(ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(F ).

This concludes the proof.

Lemma 9. Let E = {E1, . . . , En} be a deterministic EFA system, where each in-
dividual EFA Ei ∈ E is locally normalized. Construct the normalized form of E as
F = N (E) = {N (E1), . . . ,N (En)}. Then ‖ E ⇔V ‖ F .

Proof. From the definition of the globally normalization function N , it follows for each
index i that Ei and F i have the same set of locations, same alphabet, same variable
set, same initial location, same initial valuation, and same set of marked locations.
Therefore, the synchronous products ‖ E and ‖ F also have the same set of locations,
same alphabet, same variable set, same initial location, same initial valuation, and
same set of marked locations.

Furthermore, it holds that there is an edge (li1, σ, giσ, u, li2) in Ei if and only if
there is an edge (li1, σ, gσ, u, li2) in F i where gσ = ∧

i:σ∈Σi g
i
σ and giσ the guard asso-

ciated with event σ in normalized EFA Ei. Therefore, in the synchronous prod-
uct we have an edge ((l11, . . . , ln1 ), σ,∧i:σ∈Σi g

i
σ, u, (l12, . . . , ln2 )) in ‖ E if and only if

((l11, . . . , ln1 ), σ,∧i:σ∈Σi gσ, u, (l12, . . . , ln2 )) is an edge in ‖ F . Now it follows immediately
that ∧i:σ∈Σi g

i
σ ⇔V

∧
i:σ∈Σi gσ. This concludes the proof.

Theorem 12. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
EFA system, where each individual EFA Ei ∈ E locally normalized. Construct the
normalized form of E as F = N (E) = {N (E1), . . . ,N (En)}. Then there exists an
abstraction function ξ ∈ Ξ such that F = ξ(E) = N (E) and ξ−1 = id with id the
identity function, and (E , ξ1) 'co (F , ξ ◦ ξ1).
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Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. Again,
from Lemma 9 it follows that ‖ E ⇔V ‖ F . From Lemma 3 it follows that supCN (E) =
SSEFA(E) ⇔V SSEFA(F) = supCN (F). And from Lemma 8 it follows that ξ−1

1 (
supCN (E))⇔V ξ

−1
1 (supCN (F)). Thus, from Lemma 4 it follows that U(ξ−1

1 (supCN (
E))) = U(ξ−1

1 (supCN (F))). We can now observe that

L(ξ−1
1 (supCN (E))) = L(U(ξ−1

1 (supCN (E))))
= L(U(ξ−1

1 (supCN (F))))
= L(ξ−1

1 (supCN (F)))
= L(ξ−1

1 (ξ−1(supCN (F))))

This concludes the proof.

FA-based abstractions
Definition 24. Two FAs E and F are said to be bisimilar, denoted with E↔F , if
there exists a bisimulation relation R ⊆ LE × LF such that (lE0 , lF0 ) ∈ R. Furthermore,
a relation R ⊆ LE × LF is called a bisimulation relation if the following holds for any
tuple (lE1 , lF1 ) ∈ R:

• if lE1
σ−→ lE2 in E, then lF1

σ−→ lF2 in F with (lE2 , lF2 ) ∈ R,

• if lF1
σ−→ lF2 in F , then lE1

σ−→ lE2 in E with (lE2 , lF2 ) ∈ R,

• if lE1 ∈ LEm, then lF1 ∈ LFm, and

• if lF1 ∈ LFm, then lE1 ∈ LEm.

Definition 25. Two EFAs E and F with same variable set V are said to be valuation
bisimilar, denoted with E↔V F , if there exists a valuation bisimulation relation R ⊆
LE ×LF ×Val(V ) such that (lE0 , lF0 , v̂0) ∈ R. Furthermore, a relation R ⊆ LE ×LF ×
Val(V ) is called a valuation bisimulation relation if the following holds for any triple
(lE1 , lF1 , v̂) ∈ R:

• if (lE1 , v̂) σ−→ (lE2 , ŵ) in U(E), then (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ) with (lE2 , lF2 , ŵ) ∈ R,

• if (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ), then (lE1 , v̂) σ−→ (lE2 , ŵ) in U(E) with (lE2 , lF2 , ŵ) ∈ R,

• if lE1 ∈ LEm, then lF1 ∈ LFm, and

• if lF1 ∈ LFm, then lE1 ∈ LEm.

For EFA E we denote with supCN (E) the nonblocking, controllable, and maximally
permissive EFA supervisor. For FA E we denote with supCNF (E) the nonblocking,
controllable, and maximally permissive FA supervisor.
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Lemma 10. Let E be an FA and ∼ an equivalence relation on E such that E 'conf,Γ
E /∼ and E .synth,Γ E /∼. Then for any FA T it holds that supCNF (E ‖
T )↔ supCNF (E /∼‖ T ) ‖ E ‖ T .

Proof. Let E = (LE,ΣE,→E, lE0 , L
E
m) and T = (LT ,ΣT ,→T , lT0 , L

T
m). First, observe

that the initial location of E ‖ T and supCNF (E ‖ T ) is (lE0 , lT0 ). From the construction
of E /∼ it follows that the initial location of E /∼‖ T and supCNF (E /∼‖ T )
is ([lE0 ], lT0 ). Therefore, the initial location of supCNF (E /∼‖ T ) ‖ E /∼‖ T is
([lE0 ], lT0 , lE0 , lT0 ).

Construct R ⊆ (LE × LT )× (LE /∼, LT , LE, LT ) as

R = {((e, t), ([e], t, e, t)) | l ∈ LE, t ∈ LT , (e, t) ∈ Reach(supCNF (E ‖ T ))},

where Reach(F ) denotes the reachable states of FA F . We will show that R is a
bisimulation relation.

Let ((e, t), ([e], t, e, t)) ∈ R.

• Let (e, t) σ−→ (e′, t′) in supCNF (E ‖ T ). As (e, t) ∈ Reach(supCNF (E ‖ T )),
it holds that there exists a string s such that (lE0 , lT0 ) s−→ (e, t), i.e., s ∈
L(supCNF (E ‖ T )). As E .synth E /∼, it follows that s ∈ L(supCNF (E /∼‖
T ) ‖ E ‖ T ). Furthermore, s ∈ L(E ‖ T ). Combining this with the construction
of E /∼, it follows that ([lE0 ], lT0 , lE0 , lT0 ) s−→ ([e], t, e, t). As (e, t) σ−→ (e′, t′) in
supCNF (E ‖ T ), it follows that (e, t) σ−→ (e′, t′) in E ‖ T . Consider three cases
for σ.

– σ ∈ ΣE ∩ ΣT . From the definition of synchronous product it follows that
e

σ−→ e′ in E and t σ−→ t′ in T . From the construction of E /∼ it follows that
[e] σ−→ [e′] in E /∼.

– σ ∈ ΣE \ ΣT . From the definition of synchronous product it follows that
e

σ−→ e′ in E and t = t′. From the construction of E /∼ it follows that
[e] σ−→ [e′] in E /∼.

– σ ∈ ΣT \ ΣE. From the definition of synchronous product it follows that
t

σ−→ t′ in T and e = e′. From the construction of E /∼ it follows that
[e] = [e′] in E /∼.

In all three cases it follows using synchronous product again that ([e], t) σ−→ ([e′], t′)
in E /∼‖ T . Furthermore, as (e, t) σ−→ (e′, t′) in supCNF (E ‖ T ), it also follows
that sσ ∈ L(supCN (E ‖ T )) = L(supCNF (E /∼‖ T ) ‖ E ‖ T ). This implies
that ([e], t, e, t) σ−→ ([e′′], t′′, e′′, t′′) in supCNF (E /∼‖ T ) ‖ E ‖ T for some
e′′ ∈ LE and t′′ ∈ LT . Combining above observations it must hold that e′′ = e′

and t′′ = t′. Therefore, ([e], t, e, t) σ−→ ([e′], t′, e′, t′) in supCNF (E /∼‖ T ) ‖ E ‖ T .
Finally, observe that ((e′, t′), ([e′], t′, e′, t′)) ∈ R by the construction of R.

• Let ([e], t, e, t) σ−→ ([e′], t′, e′, t′) in supCNF (E /∼‖ T ) ‖ E ‖ T . Consider three
cases for σ.

– σ ∈ ΣE ∩ ΣT . From the definition of synchronous product it follows that
([e], t) σ−→ ([e′], t) in supCNF (E /∼‖ T ), e σ−→ e′ in E, and t σ−→ t′ in T .
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– σ ∈ ΣE \ ΣT . From the definition of synchronous product it follows that
([e], t) σ−→ ([e′], t) in supCNF (E /∼‖ T ), e σ−→ e′ in E, and t = t′.

– σ ∈ ΣT \ ΣE. From the definition of synchronous product it follows that
([e], t) σ−→ ([e′], t) in supCNF (E /∼‖ T ), e = e′ in E, and t σ−→ t′ in T .

In all three cases it follows that (e, t) σ−→ (e′, t′) in E ‖ T . As sσ ∈ L(supCNF (
E /∼‖ T ) ‖ E ‖ T ) = L(supCNF (E ‖ T )), it follows that (e, t) σ−→ (e′, t′)
in supCNF (E ‖ T ). Finally, observe that ((e′, t′), ([e′], t′, e′, t′)) ∈ R by the
construction of R.

• Let (e, t) ∈ LEm × LTm in supCNF (E ‖ T ). As both supervisor synthesis and
quotient automaton do not alter the marking of locations, it follows that (e, t) ∈
LEm × LTm in E ‖ T and in E /∼‖ T . Therefore, ([e], t, e, t) ∈ LEm /∼ ×LTm ×
LEm × LTm in supCNF (E /∼‖ T ) ‖ E ‖ T .

• Let ([e], t, e, t) ∈ LEm /∼ ×LTm × LEm × LTm in supCNF (E /∼‖ T ) ‖ E ‖ T . As
both supervisor synthesis and quotient automaton do not alter the marking of
locations, it follows that (e, t) ∈ LEm × LTm in E ‖ T , and thus (e, t) ∈ LEm × LTm
in supCNF (E ‖ T ).

This shows that R is a bisimulation relation. Finally, as the initial locations are in
this bisimulation relation (by the construction of it), it follows that supCNF (E ‖
T )↔ supCNF (E /∼‖ T ) ‖ E ‖ T . This concludes the proof.

Lemma 11. Let E = {E1, E2, . . . , En} be a normalized EFA system. Then (l11, . . . , ln1 ,
v̂) σ−→ (l12, . . . , ln2 , ŵ) is an edge in supCNF (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) if and only if
(l11, . . . , ln1 ) σ,g∗,u−−−→ (l12, . . . , ln2 ) is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and
ŵ(v) = v̂(u(v)), where (l11, . . . , ln1 , v̂) is a reachable location in supCNF (φ(E1) ‖ . . . ‖
φ(En) ‖ VE) and (l11, . . . , ln1 ) a reachable location in supCN (E1 ‖ . . . ‖ En).

Proof. First, Lemma 13 of (Mohajerani, Malik, and Fabian 2016) states that U(E) =
φ(E1) ‖ . . . ‖ φ(En). Therefore, it follows that L(supCN (E)) = L(supCNF (U(E))) =
L(supCNF (φ(E1) ‖ . . . ‖ φ(En))).

If L(supCN (E)) = ∅, then trivially no edge is enabled in supCN (E) and supCNF (
φ(E1) ‖ . . . ‖ φ(En)). In the case that L(supCN (E)) 6= ∅, we will prove the lemma by
induction on the length i = [0, k] of string s = σ1 . . . σk ∈ L(supCN (E)).

Base case. Let i = 0. As both supCN (E) and supCNF (φ(E1) ‖ . . . ‖ φ(En)) are
automata, it holds that the empty string is included in their languages. Furthermore,
the state reached after performing the empty string is the initial state. For supCN (E)
the initial state is the same as E , which is initial location (l10, . . . , ln0 ) together with
initial valuation v̂0; for supCNF (φ(E1) ‖ . . . ‖ φ(En)) the initial state is the same as
φ(E1) ‖ . . . ‖ φ(En), which is (l10, . . . , ln0 , v̂0) by following the definitions of φ and VE .

Inductive step. Assume as induction hypothesis that string si = σ1 . . . σi ∈
L(supCN (E)) and supCN (E) reached location (l11, . . . , ln1 ) together with valuation
v̂ while supCNF (φ(E1) ‖ . . . ‖ φ(En)) reached location (l11, . . . , ln1 , v̂). As s ∈
L(supCN (E)), it follows that si+1 = σi . . . σiσi+1 ∈ L(supCN (E)). Therefore, there
exists an edge (l11, . . . , ln1 ) σ,g∗,u−−−→ (l12′ , . . . , ln2′) in supCN (E) with g∗[v̂] = T and ŵ′(v) =
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v̂(u(v)), and there exists an edge (l11, . . . , ln1 , v̂) σ−→ (l12′′ , . . . , ln2′′ , ŵ′′) in supCNF (φ(E1) ‖
. . . ‖ φ(En) ‖ VE). From the construction of the supervisors, it follows that (l11, . . . , ln1 )
σ,g,u−−→ (l12′ , . . . , ln2′) is an edge in E with g[v̂] = T and ŵ′(v) = v̂(u(v)), and (l11, . . . , ln1 , v̂)
σ−→ (l12′′ , . . . , ln2′′ , ŵ′′) is an edge in φ(E1) ‖ . . . ‖ φ(En) ‖ VE . Following the definitions
of φ and VE and that E is deterministic, we can conclude that li2′ = li2′′ = li2 for all
i ∈ [1, n] and ŵ′ = ŵ′′ = ŵ. Therefore, (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is an edge in
supCNF (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) and (l11, . . . , ln1 ) σ,g∗,u−−−→ (l12, . . . , ln2 ) is an edge in
supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)), and supCN (E) reached
location (l12, . . . , ln2 ) together with valuation ŵ while supCNF (φ(E1) ‖ . . . ‖ φ(En))
reached location (l12, . . . , ln2 , ŵ).

As string s is chosen arbitrarily, it follows that (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is an
edge in supCNF (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) if and only if (l11, . . . , ln1 ) σ,g∗,u−−−→ (l12, . . . , ln2 )
is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)). This
concludes the proof.

Lemma 12. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then for any renaming
function ρ : Σ→ Σ′ it holds that ρ(E) ↔V ρ(F ).

Proof. As E ↔V F , there exists a valuation bisimulation relation R ⊆ QE × QF ×
Val(V ) such that (lE0 , lF0 , v̂0) ∈ R. We show that R is also a valuation bisimulation
relation for ρ(E) and ρ(F ). Observe that renaming does not change the location set,
variable set, initial location, initial valuation, and marked states.

Given a triple (lE1 , lF1 , v̂) ∈ R, consider the following four cases.

• If (lE1 , v̂) µ−→ (lE2 , ŵ) in U(ρ(E)), then there exists an event σ ∈ ρ−1(µ) such that
(lE1 , v̂) σ−→ (lE2 , ŵ) in U(E). As E ↔V F , it follows that (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F )
and (lE2 , lF2 , ŵ) ∈ R. Applying renaming results in (lF1 , v̂) µ−→ (lF2 , ŵ) in U(F ) as
ρ(σ) = µ.

• If (lF1 , v̂) µ−→ (lF2 , ŵ) in U(ρ(F )), then there exists an event σ ∈ ρ−1(µ) such that
(lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ). As E ↔V F , it follows that (lE1 , v̂) σ−→ (lE2 , ŵ) in U(E)
and (lE2 , lF2 , ŵ) ∈ R. Applying renaming results in (lE1 , v̂) µ−→ (lE2 , ŵ) in U(E) as
ρ(σ) = µ.

• If lE1 ∈ Lρ(E)
m , then lE1 ∈ LEm as renaming does not alter the marking of states.

As E ↔V F , it follows that lF1 ∈ LFm and, therefore, lF1 ∈ Lρ(F )
m .

• If lF1 ∈ Lρ(F )
m , then lF1 ∈ LFm as renaming does not alter the marking of states.

As E ↔V F , it follows that lE1 ∈ LEm and, therefore, lE1 ∈ Lρ(E)
m .

Therefore, we can conclude that ρ(E) ↔V ρ(F ) as (lρ(E)
0 , l

ρ(F )
0 , v̂0) = (lE0 , lF0 , v̂0) ∈

R.

Lemma 13. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then for any renaming
function ρ : Σ′ → Σ it holds that ρ−1(E) ↔V ρ−1(F ).
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Proof. As E ↔V F , there exists a valuation bisimulation relation R ⊆ QE × QF ×
Val(V ) such that (lE0 , lF0 , v̂0) ∈ R. We show that R is also a valuation bisimulation
relation for ρ−1(E) and ρ−1(F ). Observe that renaming does not change the location
set, variable set, initial location, initial valuation, and marked states.

Given a triple (lE1 , lF1 , v̂) ∈ R, consider the following four cases.

• If (lE1 , v̂) µ−→ (lE2 , ŵ) in U(ρ−1(E)), then (lE1 , v̂) σ−→ (lE2 , ŵ) in U(E) where ρ(µ) = σ.
As E ↔V F , it follows that (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ) and (lE2 , lF2 , ŵ) ∈ R.
Applying inverse renaming results in (lF1 , v̂) µ−→ (lF2 , ŵ) in U(F ) as µ ∈ ρ−1(σ) =
ρ−1(ρ(µ)).

• If (lF1 , v̂) µ−→ (lF2 , ŵ) in U(ρ−1(F )), then (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ) where ρ(µ) = σ.
As E ↔V F , it follows that (lE1 , v̂) σ−→ (lE2 , ŵ) in U(E) and (lE2 , lF2 , ŵ) ∈ R.
Applying inverse renaming results in (lE1 , v̂) µ−→ (lE2 , ŵ) in U(E) as µ ∈ ρ−1(σ) =
ρ−1(ρ(µ)).

• If lE1 ∈ Lρ
−1(E)
m , then lE1 ∈ LEm as renaming does not alter the marking of states.

As E ↔V F , it follows that lF1 ∈ LFm and, therefore, lF1 ∈ Lρ
−1(F )
m .

• If lF1 ∈ Lρ
−1(F )
m , then lF1 ∈ LFm as renaming does not alter the marking of states.

As E ↔V F , it follows that lE1 ∈ LEm and, therefore, lE1 ∈ Lρ
−1(E)
m .

Therefore, we can conclude that ρ−1(E)↔V ρ
−1(F ) as (lρ

−1(E)
0 , l

ρ−1(F )
0 , v̂0) = (lE0 , lF0 , v̂0)

∈ R.

Lemma 14. Let E and F be two deterministic normalized EFAs with the same alphabet
Σ and same variable set V . Furthermore, E ↔V F . Then for any deterministic EFA
T it holds that E ‖ T ↔V F ‖ T .

Proof. As E ↔V F , there exists a valuation relation R ⊆ LE × LF × Val(V ) such
that (lE0 , lF0 , v̂0) ∈ R. We construct a new valuation relation RT ⊆ (LE ×LT )× (LF ×
LT )× Val(V ) inductively such that ((lE0 , lT0 ), (lF0 , lT0 )), v̂0) ∈ RT .

Start with adding ((lE0 , lT0 ), (lF0 , lT0 )), v̂0) ∈ RT . Given a triple ((lE1 , lT1 ), (lF1 , lT1 )),
v̂) ∈ RT , consider the following four cases.

• If ((lE1 , lT1 ), v̂) σ−→ ((lE2 , lT2 ), ŵ) in U(E ‖ T ), then (lE1 , lT1 ) σ,g,u−−→ (lE2 , lT2 ) in E ‖ T
with g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Consider three cases for σ.

– If σ ∈ ΣE ∩ ΣT , then from the definition of synchronous product it follows
that lE1

σ,gE ,uE−−−−→ lE2 in E, lT1
σ,gT ,uT−−−−→ lT2 in T , g = gE ∧ gT , u = uE ⊕ uT .

As g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)), it follows that gE[v̂, ŵ] = T and
ŵ(v) = v̂(uE(v)) and thus (lE1 , v̂) σ−→ (lE2 , ŵ) in U(E). As E ↔V F , it
follows that (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ). This implies that lF1

σ,gF ,uF−−−−→ lF2 in F
with gF [v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Using the definition of synchronous
product again we can conclude that (lF1 , lT1 ) σ,g,u−−→ (lF2 , lT2 ) in F ‖ T .
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– If σ ∈ ΣE \ ΣT , then from the definition of synchronous product it follows
that lE1

σ,g,u−−→ lE2 in E and lT1 = lT2 in T . Thus, (lE1 , v̂) σ−→ (lE2 , ŵ) in U(ρ(E))
and, as E ↔V F , it follows that (lF1 , v̂) σ−→ (lF2 , ŵ) in U(F ). This implies that
lF1

σ,g,u−−→ lF2 in F with g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Using the definition
of synchronous product again we can conclude that (lF1 , lT1 ) σ,g,u−−→ (lF2 , lT2 ) in
F ‖ T .

– If σ ∈ ΣT \ ΣE, then from the definition of synchronous product it follows
that lE1 = lE2 in E and lT1

σ,g,u−−→ lT2 in T . As E ↔V F , it follows that σ /∈ ΣF .
Using the definition of synchronous product again we can conclude that
(lF1 , lT1 ) σ,g,u−−→ (lF2 , lT2 ) in F ‖ T .

In all three cases we have established that (lF1 , lT1 ) σ,g,u−−→ (lF2 , lT2 ) in F ‖ T with
g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Therefore, ((lF1 , lT1 ), v̂) σ−→ ((lF2 , lT2 ), ŵ) in
U(F ‖ T ) and we add ((lE2 , lT2 ), (lF2 , lT2 )), ŵ) ∈ RT .

• Because of symmetry in E and F , we can show with the same reasoning as above
that if ((lF1 , lT1 ), v̂) σ−→ ((lF2 , lT2 ), ŵ) in U(F ‖ T ), then ((lE1 , lT1 ), v̂) σ−→ ((lE2 , lT2 ), ŵ)
in U(E ‖ T ). Therefore, we add ((lE2 , lT2 ), (lF2 , lT2 )), ŵ) ∈ RT .

• If (lE1 , lT1 ) ∈ LE‖Tm , then from the definition of synchronous product it follows
that lE1 ∈ LEm and lT1 ∈ LTm. As E ↔V F , it follows that lF1 ∈ LFm. Using the
definition of synchronous product again, we have that (lF1 , lT1 ) ∈ LF‖Tm .

• Because of symmetry in E and F , we can show with the same reasoning as
above that if (lF1 , lT1 ) ∈ LF‖Tm , then (lE1 , lT1 ) ∈ LE‖Tm .

This concludes the proof.

Lemma 15. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F . Then L(E) = L(F ).

Proof. As E↔V F , there exists a valuation bisimulation relation R ⊆ LE×LF×Val(V )
such that (lE0 , lF0 , v̂0) ∈ R. We will show by induction on the length i of string
s = σ1 · · ·σn with n ∈ N that s ∈ L(E) if and only if s ∈ L(F ).

Base case. For i = 0, it holds that s0 = ε ∈ L(E) and s0 ∈ L(F ) as both E
and F are automata. Furthermore, (lE0 , v̂0) = δE((lE0 , v̂0), s0) in U(E) and (lF0 , v̂0) =
δF ((lF0 , v̂0), s0) in U(F ).

Inductive step. Assume that si = σ1 · · ·σi ∈ L(E) if and only if si ∈ L(F ), and that
(lEi , lFi , v̂i) ∈ R where (lEi , v̂i) = δE((lE0 , v̂0), si) in U(E) and (lFi , v̂i) = δE((lF0 , v̂0), si)
in U(F ). As (lEi , lFi , v̂i) ∈ R, it follows directly that (lEi , v̂i)

σi+1−−→ (lEi+1, v̂i+1) if and
only if (lFi , v̂i)

σi+1−−→ (lFi+1, v̂i+1). Therefore, siσi+1 ∈ L(E) if and only if siσi+1 ∈
L(F ). Furthermore, (lEi , v̂i)

σi+1−−→ (lEi+1, v̂i+1) if and only if (lEi+1, l
F
i+1, v̂i+1) ∈ R where

(lEi+1, v̂i+1) = δE((lE0 , v̂0), si+1) in U(E) and (lFi+1, v̂i+1) = δE((lF0 , v̂0), si+1) in U(F ).
Finally, as string s is chosen arbitrarily, it follows that L(E) = L(F ). This

concludes the proof.
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Lemma 16. Let E and F be two deterministic normalized EFAs with the same
alphabet Σ and same variable set V . Furthermore, E ↔V F and ξ ∈ Ξ an abstraction
function. Then L(ξ−1(E)) = L(ξ−1(F )).

Proof. This lemma is proven by induction on the structure of ξ−1. Denote ξ−1 =
(ξ1 ◦ . . . ◦ ξm)−1. First, we show that ξ−1(E) ↔V ξ−1(F ).

Base case. It follows from the assumption of the lemma that E ↔V F .
Inductive step. Assume that (ξ1 ◦ . . . ◦ ξi)−1(E) ↔V (ξ1 ◦ . . . ◦ ξi)−1(F ). Consider

the following cases for ξi+1.

• ξ−1
i+1 is the identity function. It follows immediately that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(E)
↔V (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(F ).

• ξ−1
i+1 is a renaming. From Lemma 12 it follows that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1

(E) ↔V (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(F ).

• ξ−1
i+1 is a renaming in synchronous composition with the original EFA system.
From Lemmas 12 and 14 it follows that (ξ1 ◦ . . . ◦ ξi ◦ ξi+1)−1(E) ↔V (ξ1 ◦ . . . ◦
ξi ◦ ξi+1)−1(F ).

• ξ−1
i+1 is an inverse renaming in synchronous composition with the original EFA
system. From Lemmas 13 and 14 it follows that (ξ1◦ . . .◦ξi◦ξi+1)−1(E)↔V (ξ1◦
. . . ◦ ξi ◦ ξi+1)−1(F ).

We can conclude that ξ−1(E) ↔V ξ−1(F ). Finally, from Lemma 15 it follows that
L(ξ−1(E)) = L(ξ−1(F )). This concludes the proof.

Lemma 17. Let E = {E1, E2, . . . , En} be a normalized EFA system and Γ ⊆ Σ1 such
that (Σ2 ∪ . . . ∪ Σn) ∩ Γ = ∅ and gσ ≡ T and v̂(v) = v̂(uσ(v)) for all σ ∈ Γ, v ∈ V ,
and v̂ ∈ Val(V ). Let F = {F 1, E2, . . . , En} be a normalized EFA system such that
∼⊆ L1 × L1 is an equivalence relation, φ(F 1) = φ(E1) /∼, φ(E1) 'conf,Γ φ(F 1), and
φ(E1) .synth,Γ φ(F 1). Then supCN (E) ↔V supCN (F) ‖ E.

Proof. Events from Γ can be considered to be local in the FA-based abstractions, as
the proof of Proposition 5 from (Mohajerani, Malik, and Fabian 2016) shows that
U(E) = φ(E1) ‖ . . . ‖ φ(En) ‖ VE = φ(E1) ‖ . . . ‖ φ(En) ‖ VE|Σ\Γ.

In order to show the valuation bisimarity, we first observe from Lemma 10 it
follows that supCNF (φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE)↔ supCNF (φ(E1) /∼‖
φ(E2) ‖ . . . ‖ φ(En) ‖ VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE . Further-
more, we know from Lemma 11 that (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is an edge in
supCNF (φ(E1) ‖ . . . ‖ φ(En) ‖ VE) if and only if (l11, . . . , ln1 ) σ,g∗,u−−−→ (l12, . . . , ln2 ) is an
edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)). Finally, from the
construction of the supervisor it follows that if (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is an
edge in supCNF (φ(E1) ‖ . . . ‖ φ(En) ‖ VE), then (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is also
an edge in φ(E1) ‖ . . . ‖ φ(En) ‖ VE .

Combining the above observations we know that (l11, . . . , ln1 ) σ,g∗,u−−−→ (l12, . . . , ln2 ) is
an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) = v̂(u(v)), if and only
if (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is an edge in supCNF (φ(E1) ‖ . . . ‖ φ(En) ‖ VE), if
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and only if ([l11], l21, . . . , ln1 , v̂, l11, . . . , ln1 , v̂) σ−→ ([l12], l22, . . . , ln2 , ŵ, l12, . . . , ln2 , ŵ) is an edge
in supCNF (φ(E1) /∼‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE .

In order to show valuation bisimilarity, we construct a valuation bisimulation
which includes the initial states of both systems. Let R ⊆ (L1 × . . .× Ln)× (L1 /∼
×L2 × . . .× Ln, L1 × . . .× Ln)× Val(V ) be constructed by

R = {((l1, . . . , ln), ([l1], l2, . . . , ln, l1, . . . , ln), v̂) |
(l1, . . . , ln) ∈ Reach(supCN (E))}.

Consider the triple ((l11, . . . , ln1 ), ([l11], l21, . . . , ln1 , l11, . . . , ln1 ), v̂) ∈ R.

• If (l11, . . . , ln1 , v̂) σ−→ (l12, . . . , ln2 , ŵ) is an edge in U(supCN (E1 ‖ . . . ‖ En)), it
follows that (l11, . . . , ln1 ) σ,g∗,u−−−→ (l12, . . . , ln2 ) is an edge in supCN (E1 ‖ . . . ‖ En)
with g∗[v̂] = T and ŵ(v) = v̂(u(v)). With the previous observation we have
that ([l11], l21, . . . , ln1 , v̂, l11, . . . , ln1 , v̂) σ−→ ([l12], l22, . . . , ln2 , ŵ, l12, . . . , ln2 , ŵ) is an edge in
supCNF (φ(E1) /∼‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖
VE . As the construction of E1 /∼ does not alter the alphabet, it follows from the
definition of synchronous product that ([l11], l21, . . . , ln1 , v̂) σ−→ ([l12], l22, . . . , ln2 , ŵ) is
an edge in supCNF (φ(E1) /∼‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE) and (l11, . . . , ln1 , v̂) σ−→
(l12, . . . , ln2 , ŵ) is an edge in φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE . If we denote
φ(F 1) = φ(E1) /∼, we can apply Lemma 11 to find that ([l11], l21, . . . , ln1 ) σ,g∗,u−−−→
([l12], l22, . . . , ln2 ) is an edge in supCN (F 1 ‖ E2 ‖ . . . ‖ En) with g∗[v̂] = T and
ŵ(v) = v̂(u(v)). From the fact that U(E) = φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE ,
it follows that (l11, . . . , ln1 ) σ,g,u−−→ (l12, . . . , ln2 ) is an edge in E1 ‖ . . . ‖ En with
g[v̂] = T and ŵ(v) = v̂(u(v)). Using the definition of synchronous product,
we conclude that ([l11], l21, . . . , ln1 , l11, . . . , ln1 ) σ,g∗∧g,u−−−−−→ ([l12], l22, . . . , ln2 , l12, . . . , ln2 ) is
an edge in supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖ E1 ‖ E2 ‖ . . . ‖ En with (g∗ ∧
g)[v̂] = T and ŵ(v) = v̂(u(v)). This implies that ([l11], l21, . . . , ln1 , l11, . . . , ln1 , v̂) σ−→
([l12], l22, . . . , ln2 , l12, . . . , ln2 , ŵ) is an edge in U(supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖
E1 ‖ E2 ‖ . . . ‖ En). Finally, from the construction of R it follows that
((l12, . . . , ln2 ), ([l12], l22, . . . , ln2 , l12, . . . , ln2 ), ŵ) ∈ R.

• If ([l11], l21, . . . , ln1 , l11, . . . , ln1 , v̂) σ−→ ([l12], l22, . . . , ln2 , l12, . . . , ln2 , ŵ) is an edge in U(
supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖ E1 ‖ . . . ‖ En), then ([l11], l21, . . . , ln1 , l11, . . . , ln1 )
σ,g,u−−→ ([l12], l22, . . . , ln2 , l12, . . . , ln2 ) is an edge in supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖ E1 ‖
. . . ‖ En with g[v̂] = T and ŵ(v) = v̂(u(v)). As both the construction of E1 /∼
and supervisor synthesis do not alter the alphabet and updates, it follows from
the definition of synchronous product that ([l11], l21, . . . , ln1 ) σ,g′,u−−−→ ([l12], l22, . . . , ln2 )
is an edge in supCN (F 1 ‖ E2 ‖ . . . ‖ En), (l11, . . . , ln1 ) σ,g′′,u−−−→ (l12, . . . , ln2 ) is an
edge in E1 ‖ . . . ‖ En, and g = g′ ∧ g′′. Therefore, g′[v̂] = T and g′′[v̂] = T.
From Lemma 11 it follows that ([l11], l21, . . . , ln1 , v̂) σ−→ ([l12], l22, . . . , ln2 , ŵ) is an
edge in supCNF (φ(F 1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE), and from the fact that
U(E) = φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE , it follows that (l11, . . . , ln1 , v̂) σ−→
(l12, . . . , ln2 , ŵ) is an edge in φ(E1) ‖ . . . ‖ φ(En) ‖ VE . Using the defini-
tion of synchronous composition we get that ([l11], l21, . . . , ln1 , v̂, l11, . . . , ln1 , v̂) σ−→
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([l12], l22, . . . , ln2 , ŵ, l12, . . . , ln2 , ŵ) is an edge in supCNF (φ(E1) /∼‖ φ(E2) ‖ . . . ‖
φ(En) ‖ VE) ‖ φ(E1) ‖ φ(E2) ‖ . . . ‖ φ(En) ‖ VE where we used φ(F 1) =
φ(E1) /∼. With the previous observation it follows that (l11, . . . , ln1 ) σ,g∗,u−−−→
(l12, . . . , ln2 ) is an edge in supCN (E1 ‖ . . . ‖ En) with g∗[v̂] = T and ŵ(v) =
v̂(u(v)). Now it follows from the definition of unfolding that (l11, . . . , ln1 , v̂) σ−→
(l12, . . . , ln2 , ŵ) is an edge in U(supCN (E1 ‖ . . . ‖ En)). Finally, from the con-
struction of R it follows that ((l12, . . . , ln2 ), ([l12], l22, . . . , ln2 , l12, . . . , ln2 ), ŵ) ∈ R.

• Let (l11, . . . , ln1 ) be a marked location in supCN (E1 ‖ . . . ‖ En). As both the con-
struction of F 1 and supervisor synthesis do not alter the marking of locations, it
follows directly that (l11, . . . , ln1 ) is a marked location of E1 ‖ . . . ‖ En, ([l11], . . . , ln1 )
is a marked location of F 1 ‖ . . . ‖ En, and ([l11], . . . , ln1 ) is a marked location of
supCN (F 1 ‖ . . . ‖ En). Therefore, it follows that ([l11], l21, . . . , ln1 , l11, . . . , ln1 ) is a
marked location in supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖ E1 ‖ . . . ‖ En.

• If ([l11], l21, . . . , ln1 , l11, . . . , ln1 ) is a marked location in supCN (F 1 ‖ E2 ‖ . . . ‖ En) ‖
E1 ‖ . . . ‖ En, then ([l11], l21, . . . , ln1 ) is a marked location in supCN (F 1 ‖ E2 ‖
. . . ‖ En) and (l11, . . . , ln1 ) is a marked location in E1 ‖ . . . ‖ En. As supervisor
synthesis does not alter the marking of locations, it follows that (l11, . . . , ln1 ) is a
marked location in supCN (E1 ‖ . . . ‖ En).

This shows that R is a valuation bisimulation relation. Finally, as the initial lo-
cations are in this bisimulation relation (by construction of it), it follows that
supCN (E) ↔V supCN (F) ‖ E . This concludes the proof.

Theorem 13. Let (E , ξ1) be a coordinator tuple with E = {E1, E2, . . . , En} a nor-
malized EFA system, ∼⊆ L1 × L1 an equivalence relation, and Γ ⊆ Σ1 such that
(Σ2 ∪ . . . ∪ Σn) ∩ Γ = ∅ and gσ ≡ T and v̂(v) = v̂(uσ(v)) for all σ ∈ Γ, v ∈ V ,
and v̂ ∈ Val(V ). Let F = {F 1, E2, . . . , En} be a normalized EFA system such that
φ(F 1) = φ(E1) /∼, φ(E1) 'conf,Γ φ(F 1), and φ(E1) .synth,Γ φ(F 1). Then there ex-
ists an abstraction function ξ ∈ Ξ such that F = ξ(E) and for any EFA system G,
ξ−1(G) = id(G) ‖ E, and (E , ξ1) 'co (F , ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent.

L(ξ−1
1 (supCN (E))) = L(ξ−1

1 (supCN (F) ‖ E)) by Lemmas 17 and 16
= L(ξ−1

1 (ξ−1(supCN (F)))).

This concludes the proof.

Partial composition
Theorem 14. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
normalized EFA system. Construct F = {E1 ‖ E2, E3, . . . , En}. Then there exists an
abstraction function ξ ∈ Ξ such that F = ξ(E) and ξ−1 = id, and (E , ξ1) 'co (F , ξ ◦ξ1).
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Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. We can
derive that

L(ξ−1
1 (supCN (E))) = L(ξ−1

1 (supCN (E1 ‖ E2 ‖ . . . ‖ En)))
= L(ξ−1

1 (supCN ((E1 ‖ E2) ‖ . . . ‖ En)))
= L(ξ−1

1 (supCN (F))
= L(ξ−1

1 (ξ−1(supCN (F))).

This concludes the proof.

Update simplification
Theorem 15. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
normalized EFA system. Construct F = {F 1, . . . , F n} with F i = (Li,Σi, V,→i

F
, li0, v̂0, L

i
m) such that V = vars(E) = vars(F), gEσ ⇔ gFσ for all σ ∈ ΣE = ΣF , and

→i
F= {(x, σ, gFσ , y) | (x, σ, gEσ , y) ∈→i

E}. Then there exists an abstraction function
ξ ∈ Ξ such that F = ξ(E) and ξ−1 = id, and (E , ξ1) 'co (F , ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

By construction of F it follows that ‖ E ⇔‖ F . Therefore, from Lemma 3 it follows
that supCN (E) = SSEFA(‖ E)⇔ SSEFA(‖ F) = supCN (F). And from Lemma 8 it
follows that ξ−1

1 (supCN (E))⇔ ξ−1
1 (supCN (F)). Thus, from Lemma 4 it follows that

U(ξ−1
1 (supCN (E))) = U(ξ−1

1 (supCN (F))).
Then, by rewriting, we can show the following.

L(ξ−1
1 (supCN (E))) = L(U(ξ−1

1 (supCN (E))))
= L(U(ξ−1

1 (supCN (F))))
= L(ξ−1

1 (supCN (F)))
= L(ξ−1

1 (ξ−1(supCN (F))))

This concludes the proof.

Variable unfolding
Lemma 18. Let E be a deterministic normalized EFA with variable set V and z ∈ V .
Then for each edge e = (l1, σ, gσ, uσ, l2) in E there exists in ρz(SSEFA(E)\z) ‖ E a
set of edges {((a, l1, l1), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧ gσ, uσ, (b, l2, l2))
| a, b ∈ dom(z)} if σ ∈ Σz, or a single edge ((a, l1, l1), σ, g∗σ ∧ gσ, uσ, (a, l2, l2)) with
a ∈ dom(z) if σ /∈ Σz.
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Proof. From Algorithm 5 we have that if e = (l1, σ, gσ, uσ, l2) is an edge in E, then
(l1, σ, g∗σ, uσ, l2) is an edge in SSEFA(E). From the definition of variable unfolding, it
follows that SSEFA(E)\z = {USSEFA(E)(z), Uz(SSEFA(E))}. This results for edge e in
the set of edges {((a, l1), (σ, a, b), g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a], uσ\z, (b, l2))
| a, b ∈ dom(z)} if σ ∈ Σz or in the edge ((a, l1), (σ, a, a), g∗σ, uσ\z, (a, l2)) with a ∈
dom(z) if σ /∈ Σz. After applying renaming ρz, it follows that for edge e we have
the set of edges {((a, l1), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a], uσ\z, (b, l2))
| a, b ∈ dom(z)} if σ ∈ Σz or in the edge ((a, l1), σ, g∗σ, uσ\z, (a, l2)) with a ∈ dom(z)
if σ /∈ Σz. Finally, in the system ρz(SSEFA(E)\z) ‖ E we have for edge e in E the
set of edges {((a, l1, l1), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧ gσ, uσ, (b, l2, l2))
| a, b ∈ dom(z)} if σ ∈ Σz, or a single edge ((a, l1, l1), σ, g∗σ ∧ gσ, uσ, (a, l2, l2)) with
a ∈ dom(z) if σ /∈ Σz.

Lemma 19. Let E be a deterministic normalized EFA system with variable set V and
z ∈ V . Then SSEFA(E) ↔V ρz(SSEFA(E)\z) ‖ E.

Proof. Observe that the initial location of SSEFA(E) is l0 and the initial valuation
v̂0. Thus, the initial location of ρz(SSEFA(E)\z) is (v̂0(z), l0) and initial valuation is
v̂0\z. Therefore, the initial location of ρz(SSEFA(E)\z) ‖ E is (v̂0(z), l0, l0) and initial
valuation is v̂0.

Let the relationR be defined asR = {(x, (a, x, x), v̂) |x ∈ LE , v̂ ∈ Val(V ), a = v̂(z)}.
We will show that this is a valuation bisimulation relation.

Consider the triple (x, (a, x, x), v̂) ∈ R.

• Let (x, v̂) σ−→ (y, ŵ) be an edge in U(SSEFA(E)) for some y and ŵ. It then holds
that x σ,g∗σ ,u−−−→ y is an edge in SSEFA(E) with g∗σ[v̂] = T and ŵ(v) = v̂(u(v)).
From the construction of SSEFA(E) it follows that x σ,gσ ,u−−−→ y is an edge in E
with g∗σ � gσ, i.e., gσ[v̂] = T, and ŵ(v) = v̂(u(v)). Now consider two cases for σ.

– If σ ∈ Σz, then from Lemma 18 it follows that there exists a set of
edges {((a, x, x), σ, g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧ gσ, u, (b, y, y))
| a, b ∈ dom(z)} in ρz(SSEFA(E)\z) ‖ E . As E is deterministic, there exists
at most one pair of values for a, b such that (g∗σ[z 7→ a, z′ 7→ b] ∧ b =
uσ(z)[z 7→ a] ∧ gσ)[v̂, ŵ] = T. From the construction of R it follows that
v̂(z) = a and, with an unchanged update ŵ(v) = v̂(u(v)), it follows that
ŵ(z) = b, resulting in (g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a])[v̂, ŵ] = T.
We can conclude that (a, x, x) σ,g∗σ [z 7→a,z′ 7→b]∧b=uσ(z)[z 7→a]∧gσ ,u−−−−−−−−−−−−−−−−−−−−−→ (b, y, y) is an
edge in ρz(SSEFA(E)\z) ‖ E with (g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→
a] ∧ gσ)[v̂, ŵ] = T and ŵ(v) = v̂(u(v)).

– If σ /∈ Σz, then from Lemma 18 it follows that there exists an edge
(a, x, x) σ,g∗σ∧gσ ,u−−−−−→ (a, y, y)) for some a ∈ dom(z) in ρz(SSEFA(E)\z ‖ E .
From the construction of R it follows that v̂(z) = a. Furthermore, as
g∗σ[v̂] = T and gσ[v̂] = T, it follows that (g∗σ ∧ gσ)[v̂, ŵ] = T. Finally, as u
is unchanged, it follows that ŵ(v) = v̂(u(v)) still holds.
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In both cases, it has been shown that (a, x, x) σ,g′,u−−−→ (b, y, y) is an edge in
ρz(SSEFA(E)\z) ‖ E with g′[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Calculating the state
space, it follows that (a, x, x, v̂) σ−→ (b, y, y, ŵ) is an edge in U(ρz(SSEFA(E)\z) ‖
E) with v̂(z) = a and ŵ(z) = b. Finally, observe by construction of R that
(y, (b, y, y), ŵ) ∈ R.

• Let (a, x, x, v̂) σ−→ (b, y, y, ŵ) be an edge in U(ρz(SSEFA(E)\z) ‖ E) with v̂(z) = a

and some b, y, and ŵ. It then holds that (a, x, x) σ,g,u−−→ (b, y, y) is an edge in
ρz(SSEFA(E)\z) ‖ E with g[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Consider two cases
for σ.

– If σ ∈ Σz, it follows from the definition of synchronous product and
variable unfolding that g = g∗σ[z 7→ a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a] ∧ gσ,
(a, x)

σ,g∗σ [z 7→a,z′ 7→b]∧b=uσ(z)[z 7→a],u\z [z 7→a]
−−−−−−−−−−−−−−−−−−−−−−−→ (b, y) is an edge in ρz(SSEFA(E)\z),

and x σ,gσ ,u−−−→ y is an edge in E . Furthermore, from the construction of the
normalized variable EFA, it follows that b = ŵ(z) = v̂(u(z)). Combining
this with the fact that g[v̂, ŵ] = T and a = v̂(z), it follows that (g∗σ[z 7→
a, z′ 7→ b] ∧ b = uσ(z)[z 7→ a])[v̂, ŵ] = g∗σ[v̂, ŵ] = T.

– If σ /∈ Σz, it follows from the definition of synchronous product and variable
unfolding that g = g∗σ ∧ gσ, (a, x) σ,g∗σ ,u−−−→ (b, y) is an edge in ρz(SSEFA(E)\z),
and x σ,gσ ,u−−−→ y is an edge in E . Furthermore, from the construction of the
normalized variable EFA, it follows that b = a = ŵ(z). Combining this
with the fact that g[v̂, ŵ] = T, it follows that g∗σ[v̂, ŵ] = T.

As x σ,gσ ,u−−−→ y is an edge in E in both cases above, it follows by construction that
x

σ,g∗σ ,u−−−→ y is an edge in SSEFA(E). Furthermore, in both cases we have that
g∗σ[v̂, ŵ] = T and ŵ(v) = v̂(u(v)). Finally, it follows that (x, v̂) σ−→ (y, ŵ) is an
edge in U(SSEFA(E)), and from the construction of R that (y, (b, y, y), ŵ) ∈ R.

• Let x ∈ Lm in SSEFA(E). As SSEFA(E) is a subautomaton of E , it follows that
x ∈ Lm in E . Furthermore, since renaming and variable unfolding do not change
the marking of locations, and it is assumed that all valuations are marked, it
follows that (a, x) ∈ Lm in ρz(SSEFA(E)\z). From the definition of synchronous
product it follows that (a, x, x) ∈ Lm in ρz(SSEFA(E)\z) ‖ E .

• Let (a, x, x) ∈ Lm in ρz(SSEFA(E)\z) ‖ E . It follows from the definition of
synchronous product that (a, x) ∈ Lm in ρz(SSEFA(E)\z) and x ∈ Lm in E . As
SSEFA(E) is a subautomaton of E , it follows that x ∈ Lm in SSEFA(E).

This shows that R is a valuation bisimulation relation. As the initial locations and
valuation are related, i.e., (l0, (v̂0(z), l0, l0), v̂0) ∈ R, it follows that SSEFA(E) ↔V ρz(
SSEFA(E)\z) ‖ E . This concludes the proof.

Lemma 20. Let E be a deterministic normalized EFA system with variable set V and
z ∈ V . Then E ↔V ρz(E\z) ‖ E.
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Proof. We can follow the proof of Lemma 19, where we replace instances of SSEFA(E)
with E and g∗σ with gσ to prove this lemma. The reason we can follow the proof
exactly is that SSEFA(E) is a subautomaton of E according to the definition of a
supervisor.

Lemma 21. Let E = (L, V,Σ,→, l0, v0, Lm) be an EFA and ρ : Σ→ Σ′ a renaming.
Then L(ρ(E)) = ρ(L(E)).

Proof. In case that L = ∅, i.e., E is an empty automaton, the claim holds trivially as
the language of an empty automaton is by definition the empty set.

Observe that L(ρ(E)) = L(U(ρ(E))) and ρ(L(E)) = ρ(L(U(E))) from the defini-
tion of L for EFAs. This lemma is proven by showing that L(ρ(E)) ⊆ ρ(L(E)) and
ρ(L(E)) ⊆ L(ρ(E)).

First, we show that L(ρ(E)) ⊆ ρ(L(E)). Let s = σ1σ2 . . . σn ∈ L(ρ(E)). This
implies that (l0, v̂0)

σ1−→ (l1, v̂1)
σ2−→ . . .

σn−→ (ln, v̂n) in U(ρ(E)). By induction on the
length i of the prefix si = σ1σ2 . . . σi we show that s ∈ ρ(L(E)).

Base case. Let i = 0 and s0 = ε. As ρ(ε) = ε and ε is in the language of any
nonempty automaton, it follows directly that s0 ∈ ρ(L(E)).

Inductive step. Let si ∈ ρ(L(E)) be the induction hypothesis, i.e., there exists a
string mi = µ1µ2 . . . µi ∈ L(E) such that ρ(mi) = si.

The transition (li, v̂i)
σi+1−−→ (li+1, v̂i+1) in U(ρ(E)) implies that there exists a

transition li
σi+1,gi+1,ui+1−−−−−−−−→ li+1 in ρ(E) such that gi+1[v̂i] = T and v̂i+1(v) = v̂i(ui+1(v)).

From the definition of the renaming ρ it follows that there exists a µi+1 ∈ Σ such
that ρ(µi+1) = σi+1 and li

µi+1,gi+1,ui+1−−−−−−−−→ li+1 in E. Thus, (li, v̂i)
µi+1−−→ (li+1, v̂i+1) is a

transition in U(E). With the induction hypothesis it follows that µ1µ2 . . . µiµi+1 ∈
L(U(E)) and ρ(µ1µ2 . . . µiµi+1) = siσi+1 ∈ ρ(L(U(E))).

As string s is chosen arbitrarily, it follows that L(ρ(E)) ⊆ ρ(L(E)).
Secondly, we show that ρ(L(E)) ⊆ L(ρ(E)). Let s = σ1σ2 . . . σn ∈ ρ(L(E)). From

the definition of renaming ρ it follows that there exists a string m = µ1µ2 . . . µn ∈ L(E)
such that ρ(m) = s. As m ∈ L(E), it implies that path (l0, v̂0)

µ1−→ (l1, v̂1)
µ2−→

. . .
µn−→ (ln, v̂n) is in U(E). From the definition of state space, it follows that path

l0
µ1,g1,u1−−−−→ l1

µ2,g2,u2−−−−→ . . .
µn,gn,un−−−−−→ ln is in E, where for each transition i it holds that

gi[v̂i−1] = T and v̂i(v) = v̂i+1(ui(v)). Applying renaming ρ on this path results in
l0

ρ(µ1),g1,u1−−−−−−→ l1
ρ(µ2),g2,u2−−−−−−→ . . .

ρ(µn),gn,un−−−−−−→ ln in ρ(E), where for each transition i it still
holds that gi[v̂i−1] = T and v̂i(v) = v̂i+1(ui(v)). Therefore, (l0, v̂0) ρ(µ1)−−−→ (l1, v̂1) ρ(µ2)−−−→
. . .

ρ(µn)−−−→ (ln, v̂n) is a path in U(ρ(E)) and ρ(µ1)ρ(µ2) . . . ρ(µn) = ρ(µ1µ2 . . . µn) =
ρ(m) = s ∈ L(U(ρ(E))) = L(ρ(E)). As string s is chosen arbitrarily, it follows that
ρ(L(E)) ⊆ L(ρ(E)).

Lemma 22. Let E be a deterministic normalized EFA with variable set V . Let z ∈ V .
Then (supCN (E))\z ⇔V \{z} supCN (E\z).

Proof. Let E = (L,Σ, V →, l0, v̌0, Lm). After unfolding variable z it follows that the
initial location of E\z =‖ {UE(z), Uz(E)} is (v̌0(z), l0). Combining this with Lemma
15 of (Mohajerani, Malik, and Fabian 2016), which states that (a, x, v̂) σ−→ (b, y, ŵ) in
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ρz(U(E\z)) if and only if (x, v̂⊕{z 7→ a}) σ−→ (y, ŵ⊕{z 7→ b}) in U(E), it follows that
for any EFA T L(T ) = ρz(L(T\z)). Therefore, it follows that

L(supCN (E)) = ρz(L((supCN (E))\z))

As supCN (E) results in the maximally permissive supervisor for E, we can replace
E by its state-space finite automata or even by its language and then calculate the
maximally permissive supervisor based on the finite automata or language, respec-
tively, rather than the EFA representation: L(supCN (E)) = L(supCNF (U(E))) =
supCNL(L(E)) where supCNF and supCNL are based on finite automata and lan-
guages, respectively. Furthermore, Lemma 13 of (Mohajerani, Malik, and Fabian
2014b) shows that renaming and supCNF can be changed, i.e., for any finite automata
T and renaming ρ it holds that ρ(supCNF (T )) = supCNF (ρ(T )). Therefore, we can
show the following.

L(supCN (E)) = supCNL(L(E))
= supCNL(ρz(L(E\z)))
= supCNL(ρz(L(U(E\z))))
= supCNL(L(ρz(U(E\z)))) by Lemma 21
= L(supCNF (ρz(U(E\z))))
= L(ρz(supCNF (U(E\z)))) by Lemma 21
= ρz(L(supCNF (U(E\z))))
= ρz(supCNL(L(U(E\z))))
= ρz(supCNL(L(E\z)))
= ρz(L(supCN (E\z)))

Therefore, we can conclude that ρz(L((supCN (E))\z)) = ρz(L(supCN (E\z))) and
thus L((supCN (E))\z) = L(supCN (E\z)).

Combining the definitions of supervisor and variable unfolding, it follows that
(supCN (E))\z and supCN (E\z) have the same location set, alphabet, variable set,
initial location, initial valuation, and marked states. Furthermore, the sets of edges
are similar: there is an edge ((a, x), σ, g1, u, (b, y)) in (supCN (E))\z if and only if there
is an edge ((a, x), σ, g2, u, (b, y)) in supCN (E\z). Notice that the only difference is the
guards on these edges. Furthermore, as E is deterministic, both (supCN (E))\z and
supCN (E\z) are also deterministic.

Combining the above observations, it follows that location (a, x, v̂) is reached in
U((supCN (E))\z) if and only if the same state is reached in U(supCN (E\z)). In
other words, supCN (E))\z and supCN (E\z) are synchronized with their locations and
valuations. Now assume that some location (a, x) is reached in both supCN (E))\z
and supCN (E\z). Consider each valuation v̂ and each edge e∗ = ((a, x), σ, g∗, u, (b, y))
where ∗ = 1 for supCN (E))\z and ∗ = 2 for supCN (E\z). As their languages are the
same, it holds that edge e1 is enabled if and only if e2 is enabled. Therefore, g1[v̂] = T
if and only if g2[v̂] = T. As we have chosen valuation v̂ arbitrarily, it follows that
g1 ⇔V \z g2. Furthermore, as the location and edge is chosen arbitrarily, it follows that
supCN (E))\z ⇔V \z supCN (E\z). This concludes the proof.
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Theorem 16. Let (E , ξ1) be a coordinator tuple with E a deterministic normalized
EFA system with variable set V and z ∈ V . Then there exists an abstraction function
ξ ∈ Ξ such that ξ(E) = E\z and for any EFA system F , ξ−1(F) = ρz(F) ‖ E, and
(E , ξ1) 'co (E\z, ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. By
rewriting, we can show the following.

L(ξ−1
1 (ξ−1(supCN (E\z)))) = L(ξ−1

1 (ξ−1(SSEFA(E\z))))
= L(U(ξ−1

1 (ξ−1(SSEFA(E\z))))) by definition of
language

= L(U(ξ−1
1 (ξ−1(SSEFA(E)\z)))) by Lemmas 22

and 4
= L(ξ−1

1 (ξ−1(SSEFA(E)\z)))
= L(ξ−1

1 (ρz(SSEFA(E)\z) ‖ E))
= L(ξ−1

1 (SSEFA(E))) by Lemmas 16 and 19
= L(ξ−1

1 (supCN (E)))

This concludes the proof.

False removal
Lemma 23. Let E be a deterministic normalized EFA system, and let ΣE = Ω ∪̇ Λ
such that for all λ ∈ Λ at least one of the following conditions holds:

1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any transition
x

λ,gλ,uλ−−−−→ y in Ei.

Then L(U(E)) = L(U(E|Ω)).

Proof. From Lemma 16 of (Mohajerani, Malik, and Fabian 2016) it follows that
(x1, . . . , xn, v̂) σ−→ (y1, . . . , yn, ŵ) in U(E|Ω) implies (x1, . . . , xn, v̂⊕ û) σ−→ (y1, . . . , yn, ŵ⊕
û) in U(E) where û ∈ dom(vars(E) \ vars(E|Ω)).

From Lemma 17 of (Mohajerani, Malik, and Fabian 2016) it follows that (x1, . . . , xn,
v̂) σ−→ (y1, . . . , yn, ŵ) in U(E) implies (x1, . . . , xn, v̂|W ) σ−→ (y1, . . . , yn, ŵ|W ) in U(E|Ω)
where W = vars(E|Ω)).

Therefore, each transition in one system can be matched with a transition in the
other system. As the initial locations of U(E) and U(E|Ω) are the same, it follows that
L(U(E)) = L(U(E|Ω)). This concludes the proof.

Lemma 24. Let E,F be two EFA and Ω ⊆ ΣE ∪ ΣF . Then (E ‖ F )|Ω = E|Ω ‖ F|Ω.
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Proof. It is clear that (E ‖ F )|Ω and E|Ω ‖ F|Ω have the same location set, variable
set, alphabet, initial location, initial valuation, and marked locations. It remains to
be proven that they have the same transitions.

Assume that (lE1 , lF1 ) σ,g,u−−→ (lE2 , lF2 ) is a transition in (E ‖ F )|Ω. Clearly, as σ ∈ Ω
it follows that (lE1 , lF1 ) σ,g,u−−→ (lE2 , lF2 ) in E ‖ F . Consider three cases for σ.

• σ ∈ ΣE ∩ ΣF . Then by the definition of synchronous composition it follows that
lE1

σ,gE ,uE−−−−→ lE2 in E, lF1
σ,gF ,uF−−−−→ lF2 in F , g = gE ∧ gF , and u = uE ⊕uF . Applying

the restriction on E and F , it follows that lE1
σ,gE ,uE−−−−→ lE2 in E|Ω, lF1

σ,gF ,uF−−−−→ lF2 in
F|Ω, and the rest remains unchanged.

• σ ∈ ΣE \ ΣF . Then by the definition of synchronous composition it follows that
lE1

σ,gE ,uE−−−−→ lE2 in E, lF1 = lF2 , g = gE, and u = uE. Applying the restriction on E
and F , it follows that lE1

σ,gE ,uE−−−−→ lE2 in E|Ω, and the rest remains unchanged.

• σ ∈ ΣF \ ΣE. Then by the definition of synchronous composition it follows that
lF1

σ,gF ,uF−−−−→ lF2 in F , lE1 = lE2 , g = gF , and u = uF . Applying the restriction on F
and E, it follows that lF1

σ,gF ,uF−−−−→ lF2 in F|Ω, and the rest remains unchanged.

Applying the definition of synchronous composition on the three cases above, it follows
that (lE1 , lF1 ) σ,g,u−−→ (lE2 , lF2 ) is a transition in E|Ω ‖ F|Ω.

Conversely, assume that (lE1 , lF1 ) σ,g,u−−→ (lE2 , lF2 ) is a transition in E|Ω ‖ F|Ω. Clearly,
σ ∈ Ω. Consider three cases for σ.

• σ ∈ ΣE ∩ ΣF . Then by the definition of synchronous composition it follows
that lE1

σ,gE ,uE−−−−→ lE2 in E|Ω, lF1
σ,gF ,uF−−−−→ lF2 in F|Ω, g = gE ∧ gF , and u = uE ⊕ uF .

As σ ∈ Ω, it follows that lE1
σ,gE ,uE−−−−→ lE2 in E, lF1

σ,gF ,uF−−−−→ lF2 in F , and the rest
remains unchanged.

• σ ∈ ΣE \ ΣF . Then by the definition of synchronous composition it follows that
lE1

σ,gE ,uE−−−−→ lE2 in E|Ω, lF1 = lF2 , g = gE, and u = uE. As σ ∈ Ω, it follows that
lE1

σ,gE ,uE−−−−→ lE2 in E, and the rest remains unchanged.

• σ ∈ ΣF \ ΣE. Then by the definition of synchronous composition it follows that
lF1

σ,gF ,uF−−−−→ lF2 in F|Ω, lE1 = lE2 , g = gF , and u = uF . As σ ∈ Ω, it follows that
lF1

σ,gF ,uF−−−−→ lF2 in F , and the rest remains unchanged.

Applying the definition of synchronous composition on the three cases above, it follows
that (lE1 , lF1 ) σ,g,u−−→ (lE2 , lF2 ) is a transition in E ‖ F . Applying the restriction on E ‖ F ,
it follows that (lE1 , lF1 ) σ,g,u−−→ (lE2 , lF2 ) is a transition in (E ‖ F )|Ω. This concludes the
proof.

Lemma 25. Let E be a deterministic normalized EFA system, and let ΣE = Ω ∪̇ Λ
such that for all λ ∈ Λ at least one of the following conditions holds:
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1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any transition
x

λ,gλ,uλ−−−−→ y in Ei.

Then SSEFA(E)|Ω = SSEFA(E|Ω).

Proof. Observe that the SSEFA algorithm may only change the guards on edges in E,
while the restriction operator may only change the alphabet Σ and remove edges from
E. As the restriction operator is the only operator that may change the alphabet,
the alphabets of SSEFA(E)|Ω and SSEFA(E|Ω) are trivially the same. It remains to
be proven that the sets of edges are the same. This is proven by showing that for all
edges e ∈ E with σe ∈ Ω it holds that gSSEFA(E)

e = g
SSEFA(E|Ω)
e and that for all edges

e ∈ E with σe ∈ Λ it holds that gSSEFA(E)
e = F.

Consider the first iteration of Algorithm 5, i.e., j = 0. Observe that the initial
nonblocking predicate for each location as defined in Line 3 does not depend on any
guard. Therefore, these initial nonblocking predicates are the same for SSEFA(E) and
SSEFA(E|Ω). The equation on Line 4 can be rewritten as

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ}

[
g0
e ∧N

0,k
te [ue]

]
.

Now, using that g0
e = F for all edges e ∈ {e|oe = l, σe ∈ Λ}, we can rewrite the above

equation into
N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
.

Therefore, we can conclude that the nonblocking predicates N0,k+1
l and eventually N0

l

are the same for SSEFA(E) and SSEFA(E|Ω).
Moving to Line 12, we observe that the initial bad location predicates do not

depend on any guard. Therefore, the initial bad location predicates are the same for
SSEFA(E) and SSEFA(E|Ω). The equation on Line 13 can be rewritten as

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Now, using that g0
e = F for all edges e ∈ {e|oe = l, σe ∈ Λ}, we can rewrite the above

equation into
B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Therefore, we can conclude that the bad location predicates B0,k+1
l and eventually B0

l

are the same for SSEFA(E) and SSEFA(E|Ω).
Moving to Line 21, we can now conclude that for all edges e ∈ E with σe ∈ Ω it

holds that g1
e is the same for SSEFA(E) and SSEFA(E|Ω), and for all edges e ∈ E with

σe ∈ Λ it holds that g1
e = F.

When the algorithm goes back to Line 3 for the next iteration, we can repeat
the argumentation above for j > 0 to conclude after each iteration that both the
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nonblocking predicates N j
l and bad location predicates Bj

l are the same for SSEFA(E)
and SSEFA(E|Ω), and that for all edges e ∈ E with σe ∈ Ω it holds that gj+1

e is the
same for SSEFA(E) and SSEFA(E|Ω), and for all edges e ∈ E with σe ∈ Λ it holds
that gj+1

e = F.

Theorem 17. Let (E , ξ1) be a coordinator tuple with E a deterministic normalized
EFA system, and let ΣE = Ω ∪̇ Λ such that for all λ ∈ Λ at least one of the following
conditions holds:

1. gλ ≡ F, or

2. there exists an Ei ∈ E such that λ ∈ Σi, but there does not exist any transition
x

λ,gλ,uλ−−−−→ y in Ei.

Then there exists an abstraction function ξ ∈ Ξ such that E|Ω = ξ(E) and ξ−1 = id,
and (E , ξ1) 'co (E|Ω, ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. By
rewriting, we can show the following.

L(ξ−1
1 (ξ−1(supCN (E|Ω)))) = L(ξ−1

1 (supCN (E|Ω)))
= L(ξ−1

1 (supCN (E)|Ω)) from Lemma 25
= L(ξ−1

1 (supCN (E))) from Lemma 23

This concludes the proof.

Selfloop removal
Lemma 26. Let E a deterministic normalized EFA and let Λ ⊆ ΣE , where for each
λ ∈ Λ, any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) = v̂1(u(v)) = v̂1(v)
for all v ∈ V and v̂1, v̂2 ∈ Val(V ). Then SSEFA(E)|ΣE\Λ = SSEFA(E|ΣE\Λ).

Proof. First, for notational simplicity, we denote Ω = Σ \ Λ and F = E|ΣE\Λ = E|Ω.
Furthermore, in this proof, we use the notation xE to refer to usage of some symbol x
in EFA E , while xF refers to the usage of some symbol x in EFA F .

Observe that the SSEFA algorithm may only change the guards on edges in E,
while the restriction operator may only change the alphabet Σ and remove edges from
E. As the restriction operator is the only operator that may change the alphabet,
the alphabets of SSEFA(E)|Ω and SSEFA(E|Ω) are trivially the same. It remains to
be proven that the sets of edges are the same. This is proven by showing that for all
edges e ∈ E with σe ∈ Ω it holds that the fixed-point guard gE n

e = gF n
e .

Consider the first iteration of Algorithm 5, i.e., j = 0. Observe that the initial
nonblocking predicate for each location as defined in Line 3 does not depend on any
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guard. Therefore, these initial nonblocking predicates are the same for SSEFA(E) and
SSEFA(E|Ω). The equation on Line 4 can be rewritten as

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ}

[
g0
e ∧N

0,k
te [ue]

]
.

Now, using that te = l and v̂(ue(v)) = v̂(v) for all edges e ∈ {e|oe = l, σe ∈ Λ}, we
have N0,k

te [ue] = N0,k
l . By using the fact that for any two predicates p and q it holds

that q ∨ [p ∧ q] = q, we can rewrite the above equation into

N0,k+1
l = N0,k

l ∨
∨

{e|oe=l,σe∈Ω}

[
g0
e ∧N

0,k
te [ue]

]
.

Therefore, we can conclude that the nonblocking predicate NE 0,k+1
l = NF 0,k+1

l and
eventually NE 0

l = NF 0
l .

Moving to Line 12, we observe that the initial bad location predicates do not
depend directly on any guard. Therefore, the initial bad location predicates are the
same for SSEFA(E) and SSEFA(E|Ω). The equation on Line 13 can be rewritten as

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
∨

∨
{e|oe=l,σe∈Λ∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Now, using again that te = l and v̂(ue(v)) = v̂(v) for all edges e ∈ {e|oe = l, σe ∈ Λ},
we have B0,k

te [ue] = B0,k
l . Therefore, we can rewrite the above equation into

B0,i+1
l = B0,i

l ∨
∨

{e|oe=l,σe∈Ω∩Σu}

[
g0
e ∧B

0,i
te [ue]

]
.

Therefore, we can conclude that the bad location predicate BE 0,k+1
l = BF 0,k+1

l and
eventually BE 0

l = BF 0
l .

Moving to Line 21, we can now conclude that for all edges e ∈ E with σe ∈ Ω it
holds that gE 1

e = gF 1
e.

When the algorithm goes back to Line 3 for the next iteration, we can repeat
the argumentation above for j > 0 to conclude after each iteration that both the
nonblocking predicates N j

l and bad location predicates Bj
l are the same for SSEFA(E)

and SSEFA(E|Ω), and that for all edges e ∈ E with σe ∈ Ω it holds that gj+1
e is the

same for SSEFA(E) and SSEFA(E|Ω).

Lemma 27. Let E a deterministic normalized EFA and let Λ ⊆ ΣE , where for each
λ ∈ Λ any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) = v̂1(u(v)) =
v̂1(v) for all v ∈ V and v̂1, v̂2 ∈ Val(V ). Then ((l1, l1, v̂), σ, (l2, l2, ŵ)) is an edge in
U(SSEFA(E)|Σ\Λ ‖ E) if and only if ((l1, l1, v̂), σ, (l2, l2, ŵ)) is an edge in U(SSEFA(E) ‖
E).

Proof. Observe that the only difference between SSEFA(E)|Σ\Λ and SSEFA(E) is
the absence of the selfloops in the first one. Therefore, we only have to show for
σ ∈ Λ that ((l1, l1, v̂), σ, (l2, l2, ŵ)) is an edge in U(SSEFA(E)|Σ\Λ ‖ E) if and only if
((l1, l1, v̂), σ, (l2, l2, ŵ)) is an edge in U(SSEFA(E) ‖ E).
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By taking the synchronous product of SSEFA(E)|Σ\Λ and E , these selfloops are
placed back. Observe now that the difference between SSEFA(E)|Σ\Λ ‖ E and
SSEFA(E) ‖ E is the guards on the selfloops: in SSEFA(E)|Σ\Λ ‖ E each edge e
labeled with λ ∈ Λ has its original guard gλ, while in SSEFA(E) it is the fixed-point
guard g∗e (where we used the fact that p∗e � pλ and p∗e ∧ pλ = p∗e). Consider two cases
for λ ∈ Λ.
• If λ ∈ Σu, it follows from Line 21 of Algorithm 5 that g∗e = gλ.

• If λ ∈ Σc, it follows from Line 21 of Algorithm 5 that g∗e = gλ ∧ ¬B∗te [ue].
As λ ∈ Λ, we know that te = oe and v̂2(v) = v̂1(u(v)) = v̂1(v). Therefore,
g∗e = gλ∧¬B∗oe . According to Lemma 1 of (Ouedraogo et al. 2011) it follows that
either every state (l, v̂) for which B∗l [v̂] = T is unreachable in SSEFA(E) or there
exists an initial state (l0, v̂0) for which B∗l0 [v̂0] = T. Applying this lemma, either
for each reachable state (eo, ŵ) it holds that B∗eo [ŵ] = F and thus g∗e [ŵ] = gλ[ŵ],
or from Theorems 2 and 3 of (Ouedraogo et al. 2011) we know that SSEFA(E)
is an empty supervisor, and thus SSEFA(E)|Σ\Λ is also an empty supervisor.

For both cases we can conclude that for all λ ∈ Λ : ((l, l, v̂), λ, (l, l, v̂)) is an edge in
U(SSEFA(E)|Σ\Λ ‖ E) if and only if ((l, l, v̂), λ, (l, l, v̂)) is an edge in U(SSEFA(E)).
This concludes the proof.
Lemma 28. Let E and F be two deterministic EFAs with shared alphabet Σ and vari-
able set V such that ((l1, v̂), σ, (l2, ŵ)) is an edge in U(E) if and only if ((l1, v̂), σ, (l2, ŵ))
is an edge in U(F ), and ρ : Σ′ → Σ a renaming function. Then, for any EFA T it holds
that ((l1, t1, p̂), σ, (l2, t2, q̂)) is an edge in U(E ‖ T ) if and only if ((l1, t1, p̂), σ, (l2, t2, q̂))
is an edge in U(F ‖ T ).
Proof. If ((l1, v̂), σ, (l2, ŵ)) is an edge in U(E), then (l1, σ, gE, uE, l2) is an edge in E
with gE[v̂] = T and ŵ(v) = v̂(uE(v)); similarly, if ((l1, v̂), σ, (l2, ŵ)) is an edge in U(F ),
then (l1, σ, gF , uF , l2) is an edge in F with gF [v̂] = T and ŵ(v) = v̂(uF (v)). From the
assumption that each update in an EFA is well defined for all variables, we can replace
uE and uF by u with v̂(u(v)) = ŵ(v). Consider three cases for event σ.
• σ ∈ Σ∪ΣT . In this case ((l1, x1), σ, gE ∧ gT , u⊕ uT , (l1, x2)) is an edge in E ‖ T
if and only if (l1, σ, gE, u, l2) is an edge in E and (x1, σ, g

T , uT , x2) is an edge
in T . Similarly, ((l1, x1), σ, gF ∧ gT , u⊕ uT , (l1, x2)) is an edge in F ‖ T if and
only if (l1, σ, gF , u, l2) is an edge in E and (x1, σ, g

T , uT , x2) is an edge in T .
Furthermore, denote with v̂′ the valuation of variables from E (or F ) extended
with new variables introduced with T . As gE[v̂] = T = gF [v̂], it follows that
(gE ∧ gT )[v̂′] = T = (gF ∧ gT )[v̂′] if and only if gT [v̂′] = T.

• σ ∈ Σ∩ΣT . In this case ((l1, x1), σ, gE, u, (l1, x2)) is an edge in E ‖ T if and only
if (l1, σ, gE, u, l2) is an edge in E and x1 = x2. Similarly, ((l1, x1), σ, gF , u, (l1,
x2)) is an edge in F ‖ T if and only if (l1, σ, gF , u, l2) is an edge in F and x1 = x2.

• σ ∈ ΣT ∩Σ. In this case ((l1, x1), σ, gT , uT , (l1, x2)) is an edge in E ‖ T if and only
if (l1, σ, gT , uT , l2) is an edge in T and x1 = x2. Similarly, ((l1, x1), σ, gT , uT , (l1,
x2)) is an edge in F ‖ T if and only if (l1, σ, gT , uT , l2) is an edge in T and
x1 = x2.
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Combining the observations above, we can conclude that ((l1, x1), σ, gET , u⊕uT , (l2, x2))
is an edge in E ‖ T if and only if ((l1, x1), σ, gFT , u ⊕ uT , (l2, x2)) is an edge in
F ‖ T , and that ((l1, x1, v̂

′), σ, (l2, x2, ŵ
′)) is an edge in U(E ‖ T ) if and only if

((l1, x1, v̂), σ, (l2, x2, ŵ)) is an edge in U(F ‖ T ). This concludes the proof.
Lemma 29. Let E be a deterministic normalized EFA and let Λ ⊆ ΣE , where for each
λ ∈ Λ, any transition (l1, λ, g, u, l2) ∈→E implies l1 = l2 and v̂2(v) = v̂1(u(v)) = v̂1(v)
for all v ∈ V and v̂1, v̂2 ∈ Val(V ). Furthermore, let ξ ∈ Ξ be an abstraction function.
Then L(ξ−1(SSEFA(E)|ΣE\Λ ‖ E)) = L(ξ−1(SSEFA(E) ‖ E)).
Proof. This lemma is proven by induction on the structure of ξ−1. Denote ξ−1 =
(ξ1 ◦ . . . ◦ ξm)−1. From Lemma 27 it follows that ((l1, v̂), σ, (l2, ŵ)) is an edge in
U(SSEFA(E)|ΣE\Λ ‖ E) if and only if ((l1, v̂), σ, (l2, ŵ)) is an edge in U(SSEFA(E) ‖ E).
Now assume that ((l1, v̂), σ, (l2, ŵ)) is an edge in U((ξ1◦ . . .◦ξi)−1(SSEFA(E)|ΣE\Λ ‖ E))
if and only if ((l1, v̂), σ, (l2, ŵ)) is an edge in U((ξ1 ◦ . . . ◦ ξi)−1(SSEFA(E) ‖ E)) with
i ∈ [0 . . .m− 1]. Consider the following four cases for ξi+1.
• ξ−1

i+1 is the identity function. It follows immediately that ((l1, v̂), σ, (l2, ŵ)) is an
edge in U((ξ1◦. . .◦ξi◦ξx+1)−1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if ((l1, v̂), σ, (l2, ŵ))
is an edge in U((ξ1 ◦ . . . ◦ ξi ◦ ξx+1)−1(SSEFA(E) ‖ E))

• ξ−1
i+1 is a renaming. From the definition of renaming it follows directly that

((l1, v̂), ξ−1
i+1(σ), (l2, ŵ)) is an edge in U((ξ1 ◦ . . . ◦ ξi ◦ ξx+1)−1(SSEFA(E)|ΣE\Λ

‖ E)) if and only if ((l1, v̂), ξ−1
i+1(σ), (l2, ŵ)) is an edge in U((ξ1 ◦ . . . ◦ ξi ◦

ξx+1)−1(SSEFA(E) ‖ E)).

• ξ−1
i+1 is a renaming in synchronous composition with the previous original system.
From the definition of renaming it follows directly that ((l1, v̂), ρ(σ), (l2, ŵ)) is an
edge in U(ρ((ξ1 ◦ . . . ◦ ξi)−1(SSEFA(E)|ΣE\Λ ‖ E))) if and only if ((l1, v̂), ρ(σ), (l2,
ŵ)) is an edge in U(ρ((ξ1 ◦ . . . ◦ ξi)−1(SSEFA(E) ‖ E))). Combining this with
Lemma 28, it follows that ((l1, v̂), ξ−1

i+1(σ), (l2, ŵ)) is an edge in U((ξ1 ◦ . . . ◦ ξi ◦
ξx+1)−1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if ((l1, v̂), ξ−1

i+1(σ), (l2, ŵ)) is an edge in
U((ξ1 ◦ . . . ◦ ξi ◦ ξx+1)−1(SSEFA(E) ‖ E)).

• ξ−1
i+1 is an inverse renaming in synchronous composition with the previous original
system. From the definition of inverse renaming it follows for every µ ∈ ρ−1

that ((l1, v̂), µ, (l2, ŵ)) is an edge in U(ρ−1((ξ1 ◦ . . . ◦ ξi)−1(SSEFA(E)|ΣE\Λ ‖ E)))
if and only if ((l1, v̂), µ, (l2, ŵ)) is an edge in U(ρ−1((ξ1 ◦ . . . ◦ ξi)−1(SSEFA(E) ‖
E))). Combining this with Lemma 28, it follows that ((l1, v̂), ξ−1

i+1(σ), (l2, ŵ))
is an edge in U((ξ1 ◦ . . . ◦ ξi ◦ ξx+1)−1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if
((l1, v̂), ξ−1

i+1(σ), (l2, ŵ)) is an edge in U((ξ1 ◦ . . . ◦ ξi ◦ ξx+1)−1(SSEFA(E) ‖ E)).
Therefore, we can conclude that ((l1, v̂), σ, (l2, ŵ)) is an edge in U((ξ1 ◦ . . . ◦ ξm)−1(
SSEFA(E)|ΣE\Λ ‖ E)) = U(ξ−1(SSEFA(E)|ΣE\Λ ‖ E)) if and only if ((l1, v̂), σ, (l2, ŵ))
is an edge in U((ξ1 ◦ . . . ◦ ξm)−1(SSEFA(E) ‖ E)) = U(ξ−1(SSEFA(E) ‖ E)). As the
initial location and valuation of SSEFA(E) ‖ E and SSEFA(E) ‖ E are the same
and that each refinement function ξ−1 does not alter the initial location and initial
valuation, it follows from the definition of languages that L(ξ−1(SSEFA(E)|ΣE\Λ ‖
E)) = L(ξ−1(SSEFA(E) ‖ E)). This concludes the proof.
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Lemma 30. Let E and E ′ be two EFAs such that E ′ � E. Then E ′ ‖ E ↔V E ′.

Proof. Denote E = (L,Σ, V,→, l0, v̂0, Lm) and E ′ = (L,Σ, V,→′, l0, v̂0, Lm). From
the definitions of subautomaton and synchronous product it follows that the initial
location of E ′ ‖ E is (l0, l0) and of E ′ is (l0), and that ((x, x), σ, g′ ∧ g, u, (y, y)) is an
edge in E ′ ‖ E if and only if (x, σ, g′, u, y) is an edge in E ′.

Let the relation R be defined as R = {((x, x), x, v̂) | x ∈ L, v̂ ∈ Val(V )}. We will
show that this is a valuation bisimulation relation.

Consider the triple ((x, x), x, v̂) ∈ R.

• Let ((x, x), v̂) σ−→ ((y, y), ŵ) be an edge in U(E ′ ‖ E) for some y and ŵ. It holds
then that (x, x) σ,g′∧g,u−−−−→ (y, y) is an edge in E ′ ‖ E with (g′ ∧ g)[ŵ] = T and
ŵ(v) = v̂(u(v)). As (g′ ∧ g)[ŵ] = T, it holds that g′[ŵ] = T and g[ŵ] = T.
Furthermore, as x σ,g′,u−−−→ y is an edge in E ′, it follows that (x, v̂) σ−→ (y, ŵ) is an
edge in U(E ′). By construction of R it follows that ((y, y), y, ŵ) ∈ R.

• Let (x, v̂) σ−→ (y, ŵ) be an edge in U(E ′) for some y and ŵ. It holds that x σ,g′,u−−−→ y
is an edge in E ′ with g′[v̂] = T and ŵ(v) = v̂(u(v)). As g′ � g, it holds that
g[v̂] = T. Furthermore, as (x, x) σ,g′∧g,u−−−−→ (y, y) is an edge in E ′ ‖ E, it follows
that ((x, x), v̂) σ−→ ((y, y), ŵ) is an edge in U(E ′ ‖ E). By construction of R it
follows that ((y, y), y, ŵ) ∈ R.

• Let (x, x) ∈ Lm × Lm in E ′ ‖ E. From the definition of synchronous product it
follows that x ∈ Lm in E ′.

• Let x ∈ Lm in E ′. As E ′ is a subautomaton of E, it follows that x ∈ Lm in E.
Therefore, (x, x) ∈ Lm × Lm in E ′ ‖ E.

This shows that R is a valuation bisimulation relation. As the initial locations and
valuations are related, i.e., ((l0, l0), l0, v̂0) ∈ R, it follows that E ′ ‖ E ↔V E ′. This
concludes the proof.

Lemma 31. Let E and E ′ be two EFAs such that E ′ � E, and let ξ ∈ Ξ be an
abstraction function. Then L(ξ−1(E ′ ‖ E)) = L(ξ−1(E ′)).

Proof. It follows from Lemma 30 that E ′ ‖ E ↔V E ′. It then follows from Lemma 16
that L(ξ−1(E ′ ‖ E)) = L(ξ−1(E ′)).

Theorem 18. Let (E , ξ1) be a coordinator tuple with E a deterministic normalized
EFA system and let Λ ⊆ ΣE , where for each λ ∈ Λ, any transition (l1, λ, g, u, l2) ∈→E
implies l1 = l2 and v̂2(v) = v̂1(u(v)) = v̂1(v) for all v ∈ V and v̂1, v̂2 ∈ Val(V ). Then
there exists an abstraction function ξ ∈ Ξ such that E|Σ\Λ = ξ(E) and for any EFA
system F , ξ−1(F) = ρ(F) ‖ E where ρ = id is the identity renaming function, and
(E , ξ1) 'co (E|Σ\Λ, ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.
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Now we show that the two coordinator tuples are coordinator equivalent. By
rewriting, we can show the following.

L(ξ−1
1 (ξ−1(supCN (E|Σ\Λ)))) = L(ξ−1

1 (supCN (E|Σ\Λ) ‖ E))
= L(ξ−1

1 (SSEFA(E|Σ\Λ) ‖ E))
= L(ξ−1

1 (SSEFA(E)|Σ\Λ ‖ E)) from Lemma 26
= L(ξ−1

1 (SSEFA(E) ‖ E)) from Lemma 29
= L(ξ−1

1 (SSEFA(E))) from Lemma 31
= L(ξ−1

1 (supCN (E))).

This concludes the proof.

Event merging
Lemma 32. Let E be a deterministic normalized EFA and let ρ : ΣE → Σ′ be a renam-
ing. For each edge eE = (l1, σ, g, u, l2) ∈→E in E, let eρ(E) = (l1, ρ(σ), g, u, l2) ∈→ρ(E)
denote the edge in ρ(E). Then the fixed point guards of SSEFA g∗eE = g∗eρ(E)

, in other
words, ρ(SSEFA(E)) = SSEFA(ρ(E)).

Proof. Clearly, ρ(SSEFA(E)) and SSEFA(ρ(E)) have the same location set, same
alphabet, same set of variables, same initial location, same initial valuation, and same
set of marked locations. It only remains to be proven that they have the same set of
edges.

Assume (l1, σ, g∗, u, l2) is an edge in ρ(SSEFA(E)). From the definition of renaming,
it follows that there exists an event µ ∈ ΣE such that ρ(µ) = σ and (l1, µ, g∗, u, l2)
is an edge in SSEFA(E). As the algorithm SSEFA only adjusts the guards of edges,
it follows that e = (l1, µ, g, u, l2) with g∗ � g is an edge in E. This means that
f = (l1, σ, g, u, l2) is an edge in ρ(E). Observe that the only difference between edges
e and f is the event name.

Now, consider SSEFA, Algorithm 5. As renaming by definition preserves the
controllability status of an event, it holds for each iteration j that the nonblocking
predicates and the bad location predicates are the same, as the only difference between
E and ρ(E), the event labels on the edges, is never used to calculate the fixed points.
Therefore, the guards and updates of edges e and f are the same. As g∗ is the fixed
point guard of edge e, it must hold that g∗ is also the fixed point guard of edge f .
Therefore, (l1, σ, g∗, u, l2) is an edge in SSEFA(ρ(E)).

Secondly, assume that (l1, σ, g∗, u, l2) is an edge in SSEFA(ρ(E)). As the algorithm
SSEFA only adjusts the guards of edges, it follows that e = (l1, σ, g, u, l2) with
g∗ � g is an edge in ρ(E). From the definition of renaming it follows directly that
f = (l1, µ, g, u, l2) with ρ(µ) = σ is an edge in E. Observe that the only difference
between edges e and f is the event name.

As before, we can conclude that if g∗ is the fixed-point guard of edge e, it must
hold that g∗ is also the fixed-point guard of edge f . Therefore, (l1, µ, g∗, u, l2) is an
edge in SSEFA(E). After applying renaming we obtain that (l1, σ, g∗, u, l2) is an edge
in ρ(SSEFA(E)). This concludes the proof.
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Lemma 33. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
normalized EFA system. Let Ek ∈ E and let ρ : ΣE → Σ′ be a renaming such that the
following conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1 = gσ2 and uσ1 = uσ2,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all l1, l2 ∈ Li
it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then ρ−1(ρ(E)) ‖ E = E ‖ E if and only if ρ(Ek) is deterministic.

Proof. As E = {E1, . . . , En}, we can rewrite E ‖ E = (E1 ‖ . . . ‖ En) ‖ (E1 ‖ . . . ‖
En) = (E1 ‖ E1) ‖ . . . ‖ (En ‖ En), and ρ−1(ρ(E)) ‖ E = (ρ−1(ρ(E1)) ‖ . . . ‖
ρ−1(ρ(En))) ‖ (E1 ‖ . . . ‖ En) = (ρ−1(ρ(E1)) ‖ E1) ‖ . . . ‖ (ρ−1(ρ(En)) ‖ En). We
now show for each i ∈ [1 . . . n] that Ei ‖ Ei = ρ−1(ρ(Ei)) ‖ Ei.

From the definition of renaming and inverse renaming, it follows for each i that
Ei ‖ Ei and ρ−1(ρ(Ei)) ‖ Ei have the same location set, same alphabet, same variable
set, same initial location, same initial valuation, and same marked location set. It
only remains to be proven that they have the same set of edges. In order to do that,
we need to make a distinction between i = k and i 6= k.

First, let i = k. Consider edge e = (l1, σ, g, u, l2) in Ek. Therefore, in the
synchronous product Ek ‖ Ek we have the edge ((l1, l1), σ, g, u, (l2, l2)). Furthermore,
after applying renaming on Ek, we know that there exists an edge (l1, ρ(σ), g, u, l2)
in ρ(Ek). Continuing with applying inverse renaming, we obtain in ρ−1(ρ(Ek)) a
set of edges {(l1, σ, g, u, lj) | (l1, σ′, g, u, lj) is an edge in Ek, σ′ ∈ ρ−1(ρ(σ))} that have
the same event σ as edge e and also originate from the same location. If we now
consider the synchronous product ρ−1(ρ(Ek)) ‖ Ek, we get the set of edges A(e) =
{((l1, l1), σ, g, u, (lj, l2)) | (l1, σ′, g, u, lj) is an edge in Ek, σ′ ∈ ρ−1(ρ(σ)))} that are
associated with edge e. Observe that in Ek ‖ Ek we only have one edge labeled with
σ from location l1, while in ρ−1(ρ(Ek)) ‖ Ek we may have multiple edges labeled with
σ from location l1.

We will now show that ρ−1(ρ(Ek)) ‖ Ek only has a single edge labeled with σ from
location l1 if and only if ρ(Ek) is deterministic. From the definition of determinism, it
follows that ρ(Ek) is deterministic if and only if for each location in U(ρ(Ek)) and
event µ there is at most one outgoing edge labeled with event µ. This implies that
ρ(Ek) is deterministic if and only if for each location in ρ(Ek), event µ and valuation
v̂ there is at most one edge labeled with event µ such that the guard of that edge
evaluates to true for valuation v̂. From condition 1 it follows that for each location in
ρ(Ek) and event µ it holds that all outgoing edges labeled with µ have the same guard.
Therefore, it holds that for each location in ρ(Ek) and event µ only a single outgoing
edge is labeled with event µ if and only if ρ(Ek) is deterministic. Subsequently, for
each location in Ek and event µ there is only one outgoing edge labeled with one
of the events from ρ−1(µ) if and only if ρ(Ek) is deterministic. This is enough to
show that when we consider edge e in Ek, the set A(e) reduced to the single edge
((l1, l1), σ, g, u, (l2, l2)) if and only if ρ(Ek) is deterministic.
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Finally, as edge e is chosen arbitrarily, it follows that Ek ‖ Ek and ρ−1(ρ(Ek))
‖ Ek have the same set of edges if and only if ρ(Ek) is deterministic.

Second, let i 6= k. Consider edge e = (l1, σ, g, u, l2) in Ei. From the sec-
ond condition it follows that for all σ′ such that ρ(σ) = ρ(σ′) = µ it holds that
(l1, σ′, g, u, l2) is also an edge in Ei. Or stated slightly different, we have a set of edges
B(e) = {(l1, σ′, g, u, l2) | e = (l1, σ, g, u, l2) is an edge in Ei, σ′ ∈ ρ−1(ρ(σ))} that are
associated with edge e. Therefore, in the synchronous product Ei ‖ Ei we have the
set of edges {((l1, l1), σ′, g, u, (l2, l2)) | e is an edge in Ei, σ′ ∈ ρ−1(ρ(σ))}.

Furthermore, if e is an edge in Ei, then (l1, ρ(σ), g, u, l2) is an edge in ρ(Ei). After
applying the inverse renaming on ρ(Ei), we know that in ρ−1(ρ(Ei)) there is a set of
edges {(l1, σ′, g, u, l2) | e is an edge in Ei, σ′ ∈ ρ−1(ρ(σ))} associated with edge e. If
we now perform the synchronous product to obtain ρ−1(ρ(Ei)) ‖ Ei, we get the set
of edges {((l1, l1), σ′, g, u, (l2, l2)) | e is an edge in Ei, σ′ ∈ ρ−1(ρ(σ))}, where we used
the previous observation that in Ei we have the set of edges B(e) associated with e.
We now have established that Ei ‖ Ei and ρ−1(ρ(Ei)) ‖ Ei have the same set of edges
associated with edge e. As edge e is chosen arbitrarily, it follows that Ei ‖ Ei and
ρ−1(ρ(Ei)) ‖ Ei have the same set of edges.

Lemma 34. Let E = {E1, . . . , En} be a deterministic normalized EFA system. Let
Ek ∈ E and let ρ : ΣE → Σ′ be a renaming such that the following conditions hold for
all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1 = gσ2 and uσ1 = uσ2,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all l1, l2 ∈ Li
it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then ρ−1(ρ(SSEFA(E))) ‖ E = SSEFA(E) ‖ E if and only if ρ(Ek) is deterministic.

Proof. As E = {E1, . . . , En}, we can rewrite SSEFA(E). Let e = ((x1, . . . , xn),
σ, g, u, (y1, . . . , yn)) be an edge in E1 ‖ . . . ‖ En, and ei = (xi, σ, g, u, yi) the edge in Ei

if σ ∈ Σi or xi = yi if σ /∈ Σi. After applying Algorithm 5, we get for each edge e the
edge e∗ = ((x1, . . . , xn), σ, g∗, u, (y1, . . . , yn)) in SSEFA(E) where g∗ is the fixed-point
guard. Now we can rewrite SSEFA(E) = E1∗ ‖ . . . ‖ En∗ where each edge ei in Ei is
replaced by e∗i = (xi, σ, g∗, u, yi).

Rewrite SSEFA(E) ‖ E = (E1∗ ‖ . . . ‖ En∗) ‖ (E1 ‖ . . . ‖ En) = (E1∗ ‖ E1) ‖
. . . ‖ (En∗ ‖ En) and ρ−1(ρ(SSEFA(E)) ‖ E = (ρ−1(ρ(E1∗)) ‖ . . . ‖ ρ−1(ρ(En∗))) ‖
(E1 ‖ . . . ‖ En) = (ρ−1(ρ(E1∗)) ‖ E1) ‖ . . . ‖ (ρ−1(ρ(En∗)) ‖ En). Following the
same reasoning as the proof in Lemma 33 and knowing that for edge e we have
now guards g∗ and g instead of g and g, we can show for each i ∈ [1 . . . n] that
Ei∗ ‖ Ei = ρ−1(ρ(Ei∗) ‖ Ei if and only if ρ(Ek) is deterministic. This concludes the
proof.

Theorem 19. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
normalized EFA system. Let Ek ∈ E and let ρ : ΣE → Σ′ be a renaming such that the
following conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):
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1. gσ1 = gσ2 and uσ1 = uσ2,

2. for all i 6= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all l1, l2 ∈ Li
it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then there exists an abstraction function ξ ∈ Ξ such that ξ(E) = ρ(E) and for any
EFA system F , ξ−1(F) = ρ−1(F) ‖ E, and (E , ξ1) 'co (F , ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. By
rewriting, we can show the following.

L(ξ−1
1 (ξ−1(supCN (F)))) = L(ξ−1

1 (ξ−1(SSEFA(F))))
= L(ξ−1

1 (ξ−1(SSEFA(ρ(E)))))
= L(ξ−1

1 (ξ−1(ρ(SSEFA(E))))) by Lemma 32
= L(ξ−1

1 (ρ−1(ρ(SSEFA(E))) ‖ E))
= L(ξ−1

1 (SSEFA(E) ‖ E)) by Lemma 34
= L(ξ−1

1 (SSEFA(E))) by Lemma 31
= L(ξ−1

1 (supCN (E))).

This concludes the proof.

Update merging
Lemma 35. Let E = {E1, . . . , En} a be deterministic normalized EFA system. Let
ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all σ1, σ2 ∈ ΣE
with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then for all σ1, σ2 ∈ Σ such that ρ(σ1) = ρ(σ2) it holds that (x, σ1, gσ1 , uσ1 , y) is an
edge in ‖ E if and only if (x, σ2, gσ2 , uσ2 , y) is an edge in ‖ E.

Proof. Consider two cases for each Ei.

• σ1 ∈ Σi if and only if σ2 ∈ Σi. Furthermore, it holds that l1
σ1,gσ1 ,uσ1−−−−−−→ l2 if and

only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2.

• σ1 /∈ Σi if and only if σ2 /∈ Σi.
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Combining the above observations with the definition of the synchronous product, it
follows that (x, σ1, gσ1 , uσ1 , y) is an edge in ‖ E if and only if (x, σ2, gσ2 , uσ2 , y) is an
edge in ‖ E .

Lemma 36. Let E = {E1, . . . , En} a be deterministic normalized EFA system. Let
ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all σ1, σ2 ∈ ΣE
with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , F n} such that each F i = (Li, V i, ρ(Σi),→i,F

, li0, v̂
i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E} and gFρ(σ) =∨

σ′∈ρ−1(ρ(σ)) g
E
σ′. Then for each σ ∈ Σ it holds that (x, σ, gσ, uσ, y) is an edge in ‖ E if

and only if (x, ρ(σ), gρ(σ), uσ, y) is an edge in ‖ F .

Proof. Consider two cases for each Ei.

• σ ∈ Σi if and only if ρ(σ) ∈ ρ(Σi) = Σi,F . Furthermore, it holds that l1
σ,gσ ,uσ−−−−→ l2

in Ei if and only if l1
ρ(σ),gρ(σ),uσ−−−−−−−→ l2 in F i.

• σ /∈ Σi if and only if ρ(σ) /∈ ρ(Σi) = Σi,F .

Combining the above observations with the definition of the synchronous product, it
follows that (x, σ, gσ, uσ, y) is an edge in ‖ E if and only if (x, ρ(σ), gρ(σ), uσ, y) is an
edge in ‖ F .

Lemma 37. Let E = {E1, . . . , E
n} a be deterministic normalized EFA system. Let

ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all σ1, σ2 ∈ ΣE
with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , F n} such that each F i = (Li, V i, ρ(Σi),→i,F

, li0, v̂
i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E} and gFρ(σ) =∨

σ′∈ρ−1(ρ(σ)) g
E
σ′. Then for each edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F) there exists a

set of edges Ae = {(x, σ, g∗σ, uσ, y) | σ ∈ ρ−1(µ)} in SSEFA(E) such that g∗µ ⇔
∨
e∈A g

∗
σ

and uσ = uµ.
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Proof. From the construction of F it follows that ‖ E and ‖ E have the same set of
locations, variables, initial location, initial valuation, and marked states. Further-
more, ΣF = ρ(ΣE) and →F can be constructed from →E according to Lemma 36.
From Algorithm 5 it follows that SSEFA(E) and SSEFA(F) have the same set of
locations, variables, initial location, initial valuation, and marked states. Furthermore,
ΣSSEFA(F) = ΣF = ρ(ΣE) = ρ(ΣSSEFA(F)).

Combining Lemmas 35 and 36 we can construct the set of edges A′e = {(x, σ, gσ, uσ,
y) | σ ∈ ρ−1(µ)} in E for each edge e = (x, µ, gµ, uµ, y) in F and uσ = uµ. As
Algorithm 5 does not change the updates, it holds uσ = uµ after applying SSEFA on
both E and F . It remains to be proven that g∗µ ⇔

∨
e∈A g

∗
σ. In the remainder of the

proof, we use the notation xE to refer to usage of some symbol x in EFA E , while xF

refers to the usage of some symbol x in EFA F .
Consider the first iteration of Algorithm 5, i.e., j = 0. After initializing the guards,

it follows that g0
e = ∨

e′∈A′ g
0
e′ . Observe that the initial nonblocking predicate for each

location as defined in Line 3 does not depend on any guard. Therefore, these initial
nonblocking predicates are the same for SSEFA(E) and SSEFA(F), i.e., NE 0,0

l = NF 0,0
l .

The equation on Line 4 can be rewritten as

NE 0,k+1
l = NE 0,k

l ∨
∨

µ∈ρ(Σ)

 ∨
{e′|ρ(σe′ )=µ}

(
g0
e′ ∧ NE 0,k

te′
[ue′ ]

)
Now, from Lemmas 35 and 36 it follows that for each µ ∈ ρ(Σ) and associated edge e
in F with σe = µ and oe = l it holds for all edges e′ in E with ρ(σe′) = µ and oe′ that
te = te′ and ue = ue′ . Therefore, we can rewrite the above equation into

NE 0,k+1
l = NE 0,k

l ∨
∨

{e∈→F |oe=l}

 NE 0,k
te [ue] ∧

∨
e′∈Ae

g0
e′


= NE 0,k

l ∨
∨

{e∈→F |oe=l}

[
NE 0,k
te [ue] ∧ g0

e

]
.

As initially NE 0,0
l = NF 0,0

l and using the above equation, we can show by induction
on k that NE 0,k

l = NF 0,k
l . Therefore, we can conclude in Line 9 that NE 0

l = NF 0
l .

Moving to Line 12, we observe that the initial bad location predicates do not
depend directly on any guard. Therefore, the initial bad location predicates are the
same for SSEFA(E) and SSEFA(F), i.e., BE 0,0

l = BF 0,0
l . The equation on Line 13 can

be rewritten as

BE 0,k+1
l = BE 0,k

l ∨
∨

µ∈ρ(Σ)

 ∨
{e′|ρ(σe′ )=µ,σe′∈Σu}

(
g0
e′ ∧ BE 0,k

te′
[ue′ ]

)
Now, using again that for each µ ∈ ρ(Σ) and associated edge e in F with σe = µ and
oe = l it holds for all edges e′ in E with ρ(σe′) = µ and oe′ that te = te′ , ue = ue′ , and
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σe′ ∈ Σu if and only if µ ∈ ρ(Σu). Therefore, we can rewrite the above equation into

BE 0,k+1
l = BE 0,k

l ∨
∨

{e∈→F |oe=l,σe∈ρ(Σu)}

 BE 0,k
te [ue] ∧

∨
e′∈Ae

g0
e′


= BE 0,k

l ∨
∨

{e∈→F |oe=l,σe∈ρ(Σu)}

[
BE 0,k
te [ue] ∧ g0

e

]
.

As initially BE 0,0
l = BF 0,0

l and using the above equation, we can show by induction on
k that BE 0,k

l = BF 0,k
l . Therefore, we can conclude in Line 18 that BE 0

l = BF 0
l .

Moving to Line 21, we can now conclude that for each µ ∈ ρ(Σ) and associated
edge e in F with σe = µ and for all e′ ∈ A′e it holds that g1

e = g0
e ∧ ¬ BE 0

l and
g1
e′ = g0

e′ ∧ ¬ BE 0
l if µ ∈ ρ(Σc) and that g1

e = g0
e and g1

e′ = g0
e′ if µ ∈ ρ(Σu). Using the

fact that g0
e = ∧

e′∈A′e g
0
e′ , we can conclude that g1

e ⇔
∧
e′∈A′e g

1
e′ .

When the algorithm goes back to Line 3 for the next iteration, we can repeat the
argumentation above for j > 0 to conclude after each iteration that NE j

l ⇔ NF j
l and

BE j
l ⇔ BF j

l . Therefore, for each µ ∈ ρ(Σ) and associated edge e in F with σe = µ and
for all e′ ∈ A′e it holds that gje ⇔

∧
e′∈A′e g

j
e′ .

Finally, when we reach the fixed-point, i.e., j = ∗, we can conclude that for each edge
e = (x, µ, g∗µ, uµ, y) in SSEFA(F) there exists a set of edges Ae = {(x, σ, g∗σ, uσ, y) | σ ∈
ρ−1(µ)} in SSEFA(E) such that g∗µ ⇔

∨
e∈A g

∗
σ and uσ = uµ.

Lemma 38. Let E = {E1, . . . , En} a be deterministic normalized EFA system. Let
ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all σ1, σ2 ∈ ΣE
with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , F n} such that each F i = (Li, V i, ρ(Σi),→i,F

, li0, v̂
i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E} and gFρ(σ) =∨

σ′∈ρ−1(ρ(σ)) g
E
σ′. For each edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F), create the set of

edges Ae = {(x, σ, g∗σ, uσ, y) | σ ∈ ρ−1(µ)} in SSEFA(E) and denote each guard
g∗f = gf ∧Sf where f is an edge, gf the original guard of edge f before applying SSEFA,
and Sf the final predicate added by SSEFA. Then Se ⇔ Se′ for any e′ ∈ Ae.

Proof. From Line 21 of Algorithm 5 it follows for any edge f that g∗f = g0
f ∧∧

j=0...(∗−1) ¬Bj
tf if σf ∈ Σc, or g∗f = g0

f if σf ∈ Σu. Therefore, Sf = ∧
j=0...(∗−1)

¬Bj
tf if σf ∈ Σc, or Sf = T if σf ∈ Σu.
As renaming preserves controllability, we know that µ ∈ ρ(Σc) if and only if for all

σ ∈ ρ−1 it holds that σ ∈ Σc. Therefore, if µ ∈ ρ(Σu), it follows that Se = T and for
all e′ ∈ Ae that Se′ = T. Thus Se ⇔ Se′ .

Now consider that µ ∈ ρ(Σc). Therefore, Se = ∧
j=0...(∗−1) ¬Bj

te and for all e′ ∈ A
it holds that Se′ = ∧

j=0...(∗−1) ¬Bj
te′
. Observe that te = te′ . Now, using the proof of
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Lemma 37 we know at each iteration j that BE j
l ⇔ BF j

l for each location l. Therefore,
it follows immediately that Se ⇔ Se′ . This concludes the proof.

Lemma 39. Let E = {E1, . . . , En} a be deterministic normalized EFA system. Let
ρ : ΣE → Σ′ be a renaming such that the following conditions hold for all σ1, σ2 ∈ ΣE
with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , F n} such that each F i = (Li, V i, ρ(Σi),→i,F

, li0, v̂
i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E} and gFρ(σ) =∨

σ′∈ρ−1(ρ(σ)) g
E
σ′. Then SSEFA(E) ‖ E ⇔ ρ−1(SSEFA(F)) ‖ E.

Proof. From Lemma 37 we know that SSEFA(E) and SSEFA(F) have the same set of
locations, variables, initial location, initial valuation, and marked states. Therefore,
SSEFA(E) ‖ E and SSEFA(F) ‖ F also have the same set of locations, variables,
initial location, initial valuation, and marked states. It remains to be proven that if
a = (l1, σ, ga, u, l2) is an edge in SSEFA(E) ‖ E if and only if b = (l1, σ, gb, u, l2) is an
edge in SSEFA(F) ‖ F and ga ⇔ gb.

Consider an edge e = (x, µ, g∗µ, uµ, y) in SSEFA(F). From Lemma 37 it follows
that there exists a set of edges Ae = {(x, σ, g∗σ, uµ, y) | σ ∈ ρ−1(µ)} in SSEFA(E).

If we now apply reverse renaming on SSEFA(E), we get for edge e the set of
edges Ee = {(x, σ, g∗µ, uµ, y) | σ ∈ ρ−1(µ)}. If we now perform the synchronous
composition with the original plant model, the set Ee is transformed into E ′e =
{((x, l1), σ, gσ ∧ g∗µ, uµ, (y, l1)) | (x, σ, g∗µ, uµ, y) ∈ Ee} and the set Ae into A′e =
{((x, l1), σ, gσ ∧ g∗σ, uµ, (y, l2)) | (x, σ, g∗σ, uµ, y) ∈ Ae} for some l1, l2 ∈ LE . There-
fore, ((x, l1), σ, gσ ∧ g∗µ, uµ, (y, l1)) is an edge in ρ−1(SSEFA(F)) ‖ E if and only if
((x, l1), σ, gσ ∧ g∗σ, uµ, (y, l2)) is an edge in SSEFA(E) ‖ E . It remains to be proven that
the guards of these edges are logically equivalent.

From Algorithm 5 we can write g∗µ = gµ∧Se and for each edge e′ ∈ A g∗σ = gσ ∧Se′ .
Furthermore, from the construction of F it follows that gµ = ∨

σ′∈ρ−1(µ) gσ′ and from
Lemma 38 it follows that Se ⇔ Se′ . Now we can state the following.

gσ ∧ g∗µ = gσ ∧ gµ ∧ Se
= gσ ∧ (

∨
σ′∈ρ−1(ρ(σ))

gσ′) ∧ Se

⇔ gσ ∧ Se as p ∧ (p ∨ q)⇔ p for any predicates p and q
⇔ gσ ∧ Se′
⇔ gσ ∧ gσ ∧ Se′
= gσ ∧ g∗σ.

This concludes the proof.
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Theorem 20. Let (E , ξ1) be a coordinator tuple with E = {E1, . . . , En} a deterministic
normalized EFA system. Let ρ : ΣE → Σ′ be a renaming such that the following
conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. uσ1 = uσ2,

2. for all i = 1, . . . , n, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi, and for all
l1, l2 ∈ Li it holds that l1

σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1
σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei,

3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Create the EFA system F = {F 1, . . . , F n} such that each F i = (Li, V i, ρ(Σi),→i,F

, li0, v̂
i
0, L

i
m) with →i,F= {(x, ρ(σ), gFρ(σ), uσ, y) | (x, σ, gFσ , uσ, y) ∈→i,E} and gFρ(σ) =∨

σ′∈ρ−1(ρ(σ)) g
E
σ′. Then there exists an abstraction function ξ ∈ Ξ such that ξ(E) = F

and for each EFA system G with alphabet Σ′, ξ−1(G) = ρ−1(G) ‖ E, and (E , ξ1) 'co
(F , ξ ◦ ξ1).

Proof. From the definition of Ξ and the construction of ξ−1, it follows directly that
ξ ∈ Ξ. Therefore, ξ ◦ ξ1 ∈ Ξ.

Now we show that the two coordinator tuples are coordinator equivalent. By
rewriting, we can show the following.

L(ξ−1
1 (ξ−1(supCN (F)))) = L(ξ−1

1 (ξ−1(SSEFA(F))))
= L(ξ−1

1 (ρ−1(SSEFA(F)) ‖ E))
= L(ξ−1

1 (SSEFA(E) ‖ E)) from Lemmas 8 and 39
= L(ξ−1

1 (SSEFA(E))) from Lemma 31
= L(ξ−1

1 (supCN (E))).

This concludes the proof.
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Abstract

The design of supervisory controllers for cyber-physical systems is steadily
becoming harder as increasingly more functionality needs to be automated,
the systems become larger, and safe operation becomes more important.
Model-based systems engineering incorporating formal methods such as
supervisory control synthesis can be used to synthesize these supervisory
controllers based on models of the uncontrolled system components and
models of the control requirements. Although synthesis is an automatic
procedure, creating these models is still a manual activity prone to mod-
eling errors. In this paper, we propose to use several DSM-supported
analysis techniques to identify potential modeling errors. Analyzing the
dependencies between uncontrolled system component models and require-
ment models with both a domain mapping matrix and a dependency
structure matrix reveals potential modeling errors. We present several
examples of models from literature to show the potential effectiveness of
the DSM-supported analysis of the uncontrolled system and the associated
control requirements.

1 Introduction
Currently, the fourth industrial revolution is taking place, called Industry 4.0, where the
physical world and the digital world are intertwined resulting in cyber-physical systems,
see (Lasi et al. 2017). In these cyber-physical systems, more and more functionality is
automated. This results in the ever increasing responsibility of the supervisory control
systems for a proper and safe execution of these automated functions.

Model-based systems engineering (MBSE) is often proposed as a design method
used to increase the quality of the system, decrease the development cost, and decrease
time-to-market, see (Bahill and Botta 2008; Ramos et al. 2012). Combining MBSE
with a mathematical formalism opens up the possibility to even further improve the
design as desired properties can be analyzed by algorithms, see for example (Waymore
1993).

Supervisory Control Synthesis (SCS) of (Ramadge and Wonham 1987, 1989)
provides means to automatically derive (i.e., synthesize) supervisory controllers based
on a model of the system (in control theory called the plant) and a model of the
requirements. These supervisory controllers are proven to ensure that the behavior of
the plant always satisfies the imposed requirements, i.e., the supervisory controllers
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are correct-by-construction. In (Baeten et al. 2016), SCS is integrated into MBSE to
benefit from synthesis in the development of supervisory controllers for cyber-physical
systems

For SCS, the synthesized supervisory controllers are correct for the provided plant
model and requirement model. However, if the quality of these models is insufficient,
the guarantee of a correct supervisory controller is meaningless when it is implemented
on the actual system, which undermines all the benefits of MBSE. As modeling is
still a human activity, the quality of these models is susceptible to modeling errors.
As systems to be automated become larger and larger, identifying modeling errors
becomes cumbersome.

The contribution of this paper is showing how Dependency Structure Matrix
(DSM) based techniques, see (Steward 1981) and (Eppinger and Browning 2012),
can be utilized to analyze the plant and requirement models in order to recognize
potential modeling errors. As SCS deploys a mathematical formalism, the interactions
(dependencies) between plant and requirement models can be automatically recorded
in a Domain Mapping Matrix (DMM). From this DMM, a DSM can be constructed.
Analysis of both the DMM and the DSM can reveal modeling errors previously unseen
by the engineer.

This paper is structured as follows. Section 2 introduces concisely the basic
concepts of SCS to be able to interpret the DMM and the DSM derived from the plant
and requirement models. Section 3 describes the derivation of the DMM and shows
which modeling errors can be identified from the DMM. Subsequently, in Section 4,
it is shown how the analysis of the DSM constructed from the DMM contributes to
finding modeling errors. Examples of modeling errors of large cyber-physical systems
are presented in Sections 3 and 4. The paper concludes with Section 5.

2 Design of supervisory control systems
Supervisory Control Synthesis (SCS) as initiated by (Ramadge and Wonham 1987,
1989) provides the means to automatically derive (i.e., synthesize) a model of a
supervisory controller based on the formal models of the plant and the requirements.
The models of the plant describe all possible behavior of the system, i.e., what the
system can do. The models of the requirements formulate the desired behavior of the
system, i.e., what the system should do.

Automata are one of the modeling formalisms utilized by SCS. An automaton
describes the possible states of a system (e.g., a lamp can have the states On and Off)
and events that change the state of a system (e.g., event go_on turns the lamp on
and event go_off turns it off). Typically, for each component in the system, such as
actuators, sensors, and buttons, an automaton is constructed to act as the plant model.
Automata can be also used to formulate the requirements, one for each requirement.
For example, a requirement may express that a lamp may only go on after the operator
pushed a specific button.

The synthesized supervisory controller can be used to control the uncontrolled
plant. Based on events observed in the plant, it may disable events such that they
cannot be performed next. For example, the supervisor may disable the event go_on
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as long as it has not observed the pushed event of the button. The method guarantees
that the system consisting of the uncontrolled plant and the synthesized supervisor
together adhere to the (modelled) requirements.

Figure 4.1 shows the integration of SCS in MBSE, from (Baeten et al. 2016). In
general, the systems engineering process starts with system requirements followed by a
system design partitioned into subsystems or modules. For each module, requirements
are defined based on the system design. Figure 4.1 shows an example where all modules
of the plant are displayed as one module (bottom row) and the supervisory controller
as the second module (top row). For the plant, a design is defined which is translated
into a model. For the purpose of supervisory control synthesis, the plant is modeled
with automata as described above. For the supervisory controller, no design is defined,
but the requirements are formulated directly as a model. From the model of the plant
and the model of the requirements, a supervisory controller can be synthesized with
SCS. The model of the supervisory controller together with the plant model can be
used, for example, for simulation-based validation. Finally, the actual plant can be
realized from the model and the actual supervisory control code can be generated
from the model of the supervisory controller.

In practice, instead of creating a single large automaton as the model of the plant,
the plant is modeled with a set of smaller automata, which are called the plant models.
Similarly, the model of the requirement consists of a set of small requirement models.
In the rest of the paper, we use this notion of a set of plant models and a set of
requirement models, so a model will be an element of one of these sets.

3 Domain mapping matrix analysis
To obtain a supervisory controller with SCS, two kinds of models are needed: plant
models and requirement models. The roles of these two kinds of models are different

SR SD

CR CR C C

PR PD P P

Interface I

define

define

define design

model

design

synthesize

model

generate

realize

integrate

integrate

integrate

integrate

= documents, = models, = realizations.

S = system, C = controller, P = plant, R = requirement, D = design.

Figure 4.1: CSC in combination with MBSE (Baeten et al. 2016).



222 3. Domain mapping matrix analysis

in the synthesis algorithms. Therefore, a Domain Mapping Matrix (DMM) suits the
analysis of the models where the plant models are the elements on the one axis and
the requirement models are the elements on the other axis.

As automata are used as a modeling formalism in SCS, we define a dependency
between a plant model and a requirement as follows. There is a dependency between
plant model Pi and requirement model Rj if and only if requirement model Rj uses a
state or an event from plant model Pi, as formalized in (Goorden et al. 2017). For
example, consider again the simple system of a lamp and a button, and the requirement
stating that the lamp may only go on when the button is pushed, shown in Figure 4.2.
There is a dependency between this requirement and the lamp, as the requirement
uses the event go_on from the lamp. Furthermore, there is also a dependency between
this requirement and the button, as the requirement uses the state Pushed of the
button. The benefit of using a mathematical formalism is that these dependencies can
be identified automatically from the model.

With this definition of a dependency between plant models and requirement
models, a DMM PR can be constructed. As we construct this DMM automatically,
any observed error in the DMM can be related to an error in the provided models, not
in the method of constructing the DMM. In this paper, we place the plant models along
the rows and the requirements along its columns. A binary DMM (i.e., the entries of
the DMM are either 0 or 1) is sufficient for the purpose of identifying modeling errors,
as we show next.

Figure 4.3 shows the DMM of the first two workstations of a real production
line (which consists of 6 subsequent workstations in total). This production line has
been modeled in (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al. 2018).
An earlier (incomplete and incorrect) version of the model, not the final version
published in (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al. 2018), is
used to show how modeling errors can be identified. The modeling errors in this and
subsequent examples are real life errors, not errors artificially injected in the model for
demonstration purposes of the presented method. For readability of the large DMM,
the names of the plant and requirement models are replaced by numbers. An entry
in row i and column j of the DMM indicates a dependency between plant model Pi
and requirement model Rj. For example, entry (10, 1) indicates that requirement R1
mentions a state or event from plant P10.

Lamp
Off Ongo_on

go_off
(a)

Button
Released Pushedpush

release
(b)

requirement Lamp.go_on needs Button.Pushed

Figure 4.2: Examples of two plant models, with 4.2a) a model of a lamp and 4.2b a model
of a button, and a requirement expressing that the lamp may only go on when the button is
pushed.
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Figure 4.3: The DMM of the first two workstations of a production line.

The following potential modeling errors can be identified from the DMM. First,
an empty row indicates that no requirement mentions a state or an event from that
particular plant model. This means that the behavior of this subsystem is not restricted
by any requirement or the behavior of this subsystem does not influence the behavior
of another subsystem.

Probably, this is not the intention of the modeler. Either requirements are missing
or the subsystem is obsolete and should not be modeled. Consider the example shown
in Figure 4.3. Row 11 is an empty row and therefore indicates a potential modeling
error. After analysis, it turned out that the modeled sensor of the production line is
indeed obsolete for the intended functioning and the plant model P11 was removed
from the system model.

Second, an empty column also indicates a modeling error. Some modeling tools for
SCS allow for the modeling of requirements that refer to other requirements, while this
was never the intention of SCS. A DMM could help in identifying these modeling errors.
As in the DMM the dependencies between plant models and requirement models are
captured, and not the dependencies between requirement models themselves, such a
modeling error would result in an empty column.

Third, a column with just a single nonzero entry may also indicate a modeling error,
but that should be confirmed by the modeler. It may be the case that a requirement
is only restricting the internal behavior of a component and not its interaction; only in
this case a single nonzero entry is expected. If the modeler cannot confirm this, a single
nonzero entry probably indicates a missing dependency or an obsolete dependency. In
Figure 4.3, the last column of requirement R67 has a single nonzero entry. It turned out
that this was indeed a modeling error, as this requirement was stating that component
P31 should not be used. Another way of expressing this is simply by removing this
component from the model, which happened in the revised model of the production
line as published in (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al. 2018).
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4 Dependency structure matrix analysis

From DMM PR, a square Dependency Structure Matrix P 2 can be constructed by
the matrix transformation P 2 = PR · PRT , where PRT is the transpose of matrix
PR (Maurer 2007). In DSM P 2, the plant models are the elements along its axes and
a dependency between two plant models indicates that there exists a requirement that
mentions a state or an event from both plant models. While this DSM construction
would create potential dependencies (which should be checked to verify whether each
potential dependency is an actual dependency), within the context of SCS all potential
dependencies are actual dependencies. Consider the requirement from Section 2 that
expresses that a lamp may only go on after the operator pushed a specific button. SCS
can only synthesize a supervisor for this requirement if both the model of the lamp and
the model of the button are provided as input. Therefore, no matter how the system
is clustered (or portioned), at some point both models need to be together. This
dependency between the plant models is exactly obtained by the matrix transformation
described by (Maurer 2007).

When the DSM P 2 is subsequently clustered, another opportunity to identify
modeling errors is obtained. The DSMs in this paper have been clustered with
the Markov-based clustering algorithm of (Wilschut et al. 2017). Other clustering
algorithms may also be used, like k-means clustering (Hartigan and Wong 1979),
spectral clustering (Sarkar et al. 2014), and hierarchical clustering (AlGeddawy and
ElMaraghy 2013).

First, clustering P 2 may reveal disjoint subsystems. An example is shown in
Figure 4.4, where the clustered DSM of the full production line of (Reijnen, Goorden,
van de Mortel-Fronczak, Reniers, et al. 2018) is shown. The identified plant model
with an empty row in the DMM PR of Figure 4.3 shows up in the DSM as also
having an empty row (and column by construction). More interesting, there are two
large disjoint subsystems present in the model of the system. If the modeler can
argue that they are indeed two independent subsystems, there is no need from the
perspective of SCS to combine them into a single system model. That is, the synthesis
algorithms of SCS can be applied on each subsystem independently to derive two
separate supervisory controllers. More probably, the modeler missed requirements
that combine the two subsystems together resulting in a single system. The latter was
the case in the development of the models for the production line. Using the DSM in
Figure 4.4, the missing requirements describing the desired interaction between third
and fourth workstation have been identified easily.

Second, the clustered DSM P 2 can also be analyzed more deeply by inspecting
how plant models are actually clustered. Often, large cyber-physical systems contain
multiple similar components performing similar functions. Therefore, one expects to
see similar clusters for these components. Consider the DSM shown in Figure 4.5. This
DSM depicts the dependencies within a model for supervisory control of a waterway
lock, as described in (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017).
Despite the size of the system, analyzing the DSM P 2 helped in finding modeling
errors. In Figure 4.5, the buttons of the user interface related to stopping the system
are shown. The operator has five buttons: an emergency button and four buttons
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Figure 4.4: The DSM of the complete production line, based on an earlier version of the
model.
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Figure 4.5: The DSM of the model of Lock III where the part indicated within the blue
rectangle shows the stop buttons in the user interface.
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stopping parts of the system. In the model, G21 is the emergency button, and G22
through G25 are the normal stops. The clustering result shows that all stop buttons are
clustered together, but one hierarchical level lower stop button G24 is clustered with
the emergency stop and not with the other stop buttons, which is counter intuitive
based on system knowledge. Further inspection of the DSM shows that G24 has fewer
dependencies than all other stop buttons, while all of them have similar functions.
After inspecting the actual model, it turned out that quite some requirements were
referring to the stop button G25 while they should have referred to G24. Such typing
errors are not identified by the modeling formalism, as G25 is also a model in the
system, but by analyzing the DSM this modeling error is recognized.

5 Conclusion
The success of MBSE in the design of supervisory controllers for cyber-physical systems
depends on the quality of the provided models. In this paper, we propose to use
DSM-based analysis of these models to reveal potential modeling errors. By analyzing
the dependencies between plant models and requirement models, different kinds of
errors may be identified, like missing requirements, obsolete plant models, and wrongly
formulated requirements. Both the DMM, with plant models along one axis and
the requirement models along the other axis, and the DSM constructed from the
DMM, with plant models along both of its axes, are useful in analyzing the large
system model. Creating the DMM and the DSM during the modeling process allows
the control engineer to reflect on the current models and eventually conclude with
confidence the correctness of the final model

Future work includes clustering of the DMM and investigating the DSM R2 =
PRT · PR with requirement models along both of its axis (instead of plant models) to
see whether the clustered DMM and this DSM also contain features that may indicate
modeling errors.
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Abstract

Supervisory control theory provides means to synthesize supervisors for a
cyber-physical system based on models of the uncontrolled system compo-
nents and models of the control requirements. Although several synthesis
procedures have been proposed and automated, obtaining correct and
useful models of industrial-size applications that are needed as their input
remains a challenge. We show that the efficiency of supervisor synthesis
techniques tends to increase significantly if a single large requirement is
split into a set of smaller requirements. A theoretical underpinning is
provided for showing the strength of this modeling guideline. Moreover,
several examples from the literature as well as some real-life case studies
are included for illustration.

1 Introduction
The design of supervisors for cyber-physical systems has become a challenge as they
include more and more components to control and functions to fulfill, while at the
same time market demands require verified safety, decreasing costs, and decreasing
time-to-market for these systems. Model-based systems engineering methods can help
in overcoming these difficulties, see (Ramos et al. 2012).

For the design of supervisors, the supervisory control theory of Ramadge-Wonham
(Ramadge and Wonham 1987, 1989) provides means to synthesize supervisors from a
model of the uncontrolled plant (describing what the system could do) and a model of
the control requirements (describing what the system should do). Such a supervisor
interacts with the plant by dynamically disabling some controllable events. Then
synthesis guarantees by construction that the closed-loop behavior of the supervisor
and the plant adheres to all requirements and furthermore is nonblocking, controllable,
and maximally permissive.

A major drawback of synthesizing monolithic supervisors is its computational
complexity, both in the time and memory domain. Although the time complexity
of this step is polynomial in the number of states that represent the system, this
number increases exponentially with the number of constituent models of the different
components in the system, as already observed in (Ramadge and Wonham 1989).
For industrial systems, the number of states can easily reach an order of 10100 states.
Different supervisor architectures are exploited in an attempt to overcome these
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computational difficulties: modular (de Queiroz and Cury 2000), hierarchical (Zhong
and Wonham 1990), decentralized (Rudie and Wonham 1992), distributed (Cai and
Wonham 2010), multilevel (Komenda et al. 2016), and compositional supervisory
control synthesis (Mohajerani et al. 2014). Modular, decentralized, and multilevel
synthesis are closely related and in this paper we refer to them as module-based
supervisor architectures.

While these architectures claim to gain computational efficiency, in practice the
observed gain depends on the models provided as input for these synthesis algorithms.
Moreover, as systems can be modeled in several ways, i.e., there is not a single correct
model formulation for a certain plant and its requirements, an engineer might model
an industrial system in a disadvantageous way and might (wrongly) conclude that
supervisory control synthesis is not possible for his system.

To the best of our knowledge, not much attention has been paid in the literature
to the fact that the way in which models are defined can be of a significant influence
on the efficiency of the synthesis procedure. A notable exception is (Jiao et al.
2018), where symmetry in the model is exploited to efficiently synthesize a supervisor.
Others (Fabian et al. 2014; Göbe et al. 2016; Grigorov et al. 2011) have indicated that
modeling the system and its requirements is difficult, and introduced concepts like,
e.g., templates to assist the engineer in modeling correctly, i.e., the obtained models
exhibit the behavior the engineer intended to model.

The purpose of this paper is to provide a modeling guideline to (re)formulate the
models such that the applicability of supervisory control synthesis techniques increases.
This modeling guideline concerns the modeling of the requirements and expresses
that they should be split into smaller ones when possible. We show theoretically why
this modeling guideline increases the applicability of supervisory control synthesis.
Essentially, smaller requirements allow module-based synthesis techniques to solve
numerous but computationally easier problems instead of those obtained with large
requirements, because each new requirement relates to fewer plant models than
the original large requirement. For multilevel synthesis, this effect is visualized by
displaying the dependencies with a Dependency Structure Matrix, see (Eppinger and
Browning 2012). Experimental results of several case studies show that this efficiency
gain can indeed be obtained in practice. By proposing this guideline and by providing
examples, our aim is to assist practitioners in applying supervisory control synthesis.

Requirement specifications in practice often violate the aforementioned guideline,
which turns out to be detrimental for supervisory control synthesis. Although the
guideline may sound somewhat obvious, it required several real-life case studies with
supervisory control synthesis to grasp its importance (Reijnen, Goorden, van de
Mortel-Fronczak, and Rooda 2017; Reijnen, Verbakel, et al. 2019; Reijnen, Goorden,
van de Mortel-Fronczak, and Rooda 2019). These case studies were performed in
the context of a research project with Rijkswaterstaat, the national organisation
responsible for the main infrastructure like roads and bridges in the Netherlands.
Notably, the so-called Oisterwijksebaan revolving bridge in the Dutch city of Tilburg
was recently operated by PLC code automatically generated from the requirements,
by means of the CIF supervisory control toolset (van Beek et al. 2014). These case
studies have inspired us to formulate several modeling guidelines. The aim of this
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paper is to describe one of them in detail.
The paper is structured as follows. Section 2 provides the preliminaries of this

paper. Section 3 continues by discussing the guideline concerning the model of
the requirement in detail including a theoretical substantiation. In Section 4, the
guideline is demonstrated with an example of supervisory control for an infrastructural
system. Section 5 provides experimental results with cases also from other application
domains where applying the guideline benefits supervisory control synthesis. The
paper concludes with Section 6.

2 Preliminaries
This section provides a brief summary of concepts related to automata and supervisory
control theory relevant for this paper. These concepts are taken from (Cassandras
and Lafortune 2008; Wonham, Cai, et al. 2018).

2.1 Automata
An automaton is a five-tuple G = (Q,Σ, δ, q0, Qm), where Q is the (finite) state set,
Σ is the alphabet of events, δ : Q× Σ→ Q the partial function called the transition
function, q0 ∈ Q the initial state, and Qm ⊆ Q the set of marked states. The alphabet
Σ = Σc ∪ Σu is partitioned into sets containing the controllable events (Σc) and
the uncontrollable events (Σu), and Σ∗ is the set of all finite strings of events in Σ,
including empty string ε.

We denote with δ(q, σ)! that there exists a transition from state q ∈ Q labeled
with event σ, i.e., δ(q, σ) is defined. The transition function can be extended in the
natural way to strings as δ(q, sσ) = δ(δ(q, s), σ) where s ∈ Σ∗, σ ∈ Σ, and δ(q, sσ)!
if δ(q, s)! ∧ δ(δ(q, s), σ)!. We define δ(q, ε) = q for the empty string. The language
generated by the automaton G is L(G) = {s ∈ Σ∗ | δ(q0, s)!} and the language marked
by the automaton is Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.

A state q of an automaton is called reachable if there is a string s ∈ Σ∗ with
δ(q0, s)! and δ(q0, s) = q. A state q is coreachable if there is a string s ∈ Σ∗ with
δ(q, s)! and δ(q, s) ∈ Qm. An automaton is called nonblocking if every reachable state
is coreachable.

Two automata can be combined by synchronous composition.
Definition 1. Let G1 = (Q1,Σ1, δ1, q0,1, Qm,1), G2 = (Q2,Σ2, δ2, q0,2, Qm,2) be two
automata. The synchronous composition of G1 and G2 is defined as

G1 ‖ G2 = (Q1 ×Q2,Σ1 ∪ Σ2, δ1‖2, (q0,1, q0,2), Qm,1 ×Qm,2)
where

δ1‖2((x1, x2), σ) =



(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩ Σ2, δ1(x1, σ)!,
and δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 and δ1(x1, σ)!
(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 and δ2(x2, σ)!
undefined otherwise.
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Synchronous composition is associative and commutative up to reordering of the
state components in the composed state set. Two automata are called asynchronous if
no events are shared, i.e., they do not synchronize over any event.

A composed system G is a collection of automata, i.e., G = {G1, . . . , Gm}. The
synchronous composition of a composed system G, denoted by ‖ G, is defined as
‖ G = G1 ‖ . . . ‖ Gm, and the synchronous composition of two composed systems
G1 ‖ G2 is defined as (‖ G1) ‖ (‖ G2). A composed system G = {G1, . . . , Gm} is called a
product system if the alphabets of the automata are pairwise disjoint, i.e., Σi ∩Σj = ∅
for all i, j ∈ [1,m], i 6= j (Ramadge and Wonham 1989).

Finally, let G and K be two automata with the same alphabet Σ. K is said to
be controllable with respect to G if, for every string s ∈ Σ∗ and u ∈ Σu such that
δK(q0,K , s)! and δG(q0,G, su)!, it holds that δK(q0,K , su)!.

2.2 Supervisory control theory
The objective of supervisory control theory is to design an automaton called a supervisor
which function is to dynamically disable controllable events so that the closed-loop
system of the plant and the supervisor obeys some specified behavior, see (Cassandras
and Lafortune 2008; Ramadge and Wonham 1987, 1989; Wonham, Cai, et al. 2018).
More formally, given a plant model P and requirement model R, the goal is to
synthesize supervisor S that adheres to the following control objectives.

• Safety: all possible behavior of the closed-loop system P ‖ S should always
satisfy the imposed requirements, i.e., L(P ‖ S) ⊆ L(P ‖ R)

• Controllability: uncontrollable events may never be disabled by the supervisor,
i.e., S is controllable with respect to P .

• Nonblockingness: the closed-loop system should be able to reach a marked state
from every reachable state, i.e., P ‖ S is nonblocking.

• Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, controllability, and nonblockingness, i.e., for
all other supervisors S ′ satisfying safety, controllability, and nonblockingness it
holds that L(P ‖ S ′) ⊆ L(P ‖ S).

For the purpose of supervisor synthesis, requirements can be modeled with automata
and state-based expressions, as introduced in (Ma and Wonham 2005; Markovski et al.
2010). The latter is useful in practice, as engineers tend to formulate requirements
based on states of the plant. To refer to states of the plant, we introduce the notation
P.q which refers to state q of plant P . State references can be combined with the
Boolean literals T and F and logic connectives to create predicates.

A state-event invariant expression formulates conditions on the enablement of an
event based on states of the plant, i.e., the condition should evaluate to true for the
event to be enabled. A state-event invariant expression is of the form σ needs C
where σ is an event and C a predicate stating the condition. Let R be a state-
event invariant expression, then event(R) returns the event used in R and cond(R)
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returns the condition predicate. An example of a state-event invariant expression is
a needs P1.q1 ∧ P2.q2 formulating that event a is only allowed when automaton P1 is
in state q1 and automaton P2 is in state q2.

Given a composed system representation of the plant Ps = {P1, . . . , Pm} and a
collection of requirements Rs = {R1, . . . , Rn}, we define the tuple (Ps, Rs) as the
control problem for which we want to synthesize a supervisor.

Monolithic supervisory control synthesis results in a single supervisor S from a
single plant model and a single requirement model (Ramadge and Wonham 1987).
There may exist multiple automata representations of the maximally permissive, safe,
controllable, and nonblocking supervisor. When the plant model and the requirement
model are given as a composed system Ps and Rs, respectively, the monolithic plant
model P and requirement model R are obtained by performing the synchronous
composition of the models in the respective composed system.

Modular supervisory control synthesis uses the fact that the desired behavior is
often specified with a collection of requirements Rs (Wonham and Ramadge 1988).
Instead of first transforming the collection of requirements into a single require-
ment, as monolithic synthesis does, modular synthesis calculates for each require-
ment a supervisor based on the plant model. In other words, given a control prob-
lem (Ps, Rs) with Rs = {R1, . . . , Rn}, modular synthesis solves n control problems
(Ps, {R1}), . . . , (Ps, {Rn}). Each control problem (Ps, {Ri}) for i ∈ [1, n] results in a
safe, controllable, nonblocking, and maximally permissive supervisor Si. Unfortunately,
the collection of supervisors Ss = {S1, . . . , Sn} can be conflicting, i.e., S1 ‖ . . . ‖ Sn
can be blocking. A nonconflicting check can verify whether Ss is nonconflicting,
see (Mohajerani et al. 2016; Su, van Schuppen, Rooda, and Hofkamp 2010). In the
case that Ss is nonconflicting, Ss is also safe, controllable, nonblocking, and maximally
permissive for the original control problem (Ps, Rs) (Wonham and Ramadge 1988). In
the case that Ss is conflicting, an additional coordinator C can be synthesized such
that Ss ∪ {C} is safe, controllable, nonblocking, and maximally permissive for the
original control problem (Ps, Rs) (Su, van Schuppen, and Rooda 2009). An extension
to this approach, as proposed by (de Queiroz and Cury 2000), states that instead of
synthesizing each time with the complete plant Ps, it suffices to only consider those
automata that relate to the requirement that is considered. This extension is used in
the remainder of this paper.

Decentralized supervisory control synthesis has a similar setting as modular super-
visory control synthesis, except that each supervisor is only allowed to observe certain
events, called local events, instead of all events (Lin and Wonham 1990). This results
in the notion of observability, which is not further discussed in this paper. Nevertheless,
also for decentralized supervisory control synthesis with multiple requirements, the
obtained supervisors may be conflicting.

Multilevel supervisory control synthesis is inspired by decompositions of systems by
engineers (Komenda et al. 2016). For each subsystem, a supervisor is synthesized based
on requirements for only those subsystems. For synthesis, this resembles modular
supervisory control in the sense that for multilevel synthesis requirements related to
the same subsystem are grouped together before synthesis is performed using those
requirements and the plant model representing the subsystem. Again, the collection
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of synthesized supervisors may be conflicting.

3 Modeling guideline and theoretical substantia-
tion

When formulating the requirements, engineers often tend to think in desired control
logic and formulate this logic as requirements. The benefit of supervisory control
synthesis is that an engineer is able to focus on what the system should do, not how
it should do it. By shifting from specifying how to specifying what, requirements do
not always become smaller. In this section, we show that module-based supervisor
architectures benefit from having small requirement models.

We specifically focus on requirements formulated with state-event invariant expres-
sions. This form matches well with requirements formulated in a natural language like,
e.g., English, see (Markovski et al. 2010). Furthermore, requirements for industrial-size
applications often originate from failure-mode analysis (Modarres 2016). States are
identified in which some actuator actions would result in unsafe behavior. Therefore,
this form is frequently used in real-life case studies of infrastructural systems, see (Rei-
jnen, Goorden, van de Mortel-Fronczak, and Rooda 2017; Reijnen, Verbakel, et al.
2019; Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2019).

The modeling guideline is formulated as follows:
Split requirements formulated with state-event invariant expressions into a set of

smaller ones.
Splitting a state-event invariant expression can be done as follows. Consider require-

ment σ needs C expressing that event σ is only allowed when condition C holds. When
this condition is denoted in conjunctive normal form, i.e., C = C1 ∧ . . . ∧ Cl, the sin-
gle requirement can be split into multiple requirements σ needs C1, . . . , σ needs Cl.
Due to the safety property of synthesized supervisors, mentioned in Section 2.2, the
set of requirements is equivalent to the single requirement. In the rest of this section,
we show the benefit of having small requirements theoretically.

Splitting requirements in the form of propositional formula to benefit controller
synthesis is a well-known strategy for software product lines, see for example (Basile
et al. 2017; Greenyer et al. 2013). Here, a requirement, called a feature constraint,
is split into several configurations (or products) each describing a specific feature
combination. For each configuration a controller is synthesized. There are two main
differences between that work and the work in this paper. First, a feature constraint
limits the possible configurations, while requirements in this paper limit the behavior
of one configuration. Second, only one of the synthesized supervisors for a software
product line is active (the one for that specific configuration), while in this work all
modular supervisors work in conjunction.

3.1 Theoretical substantiation
Consider the plant being modeled with a product system Ps = {P1, . . . , Pn}, and
assume that a requirement R may also be modeled with a set of requirements Rs =
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{R1, . . . , Rm} such that R =‖ Rs.1 Any module-based supervisor architecture ensures
that for each (set of) requirement(s) synthesis is performed with only those plant models
that are related to the (set of) requirement(s). Reformulating a larger requirement
into smaller requirements ensures that module-based supervisor architectures can
identify smaller control problems to solve. Hence, a reduction in computational effort
is gained.

For modular supervisory control synthesis, the analysis above can be even further
detailed as follows. Assume for simplicity that requirement R relates to all plant
models in Ps, while each smaller requirement Rj ∈ Rs only refers to a subset Ps,j ⊆ Ps.
In the case of a single requirement R, modular supervisory control synthesis obtains a
supervisor for control problem (Ps, {R}). In the case of multiple smaller requirements,
m supervisors are obtained for each control problem (Ps,j, {Rj}), 1 ≤ j ≤ m. As
|Ps,j| ≤ |Ps| holds, the state-space size of Ps,j is smaller or equal than Ps. The
computational effort for each synthesis problem is therefore at most equal to that
of monolithic synthesis. Yet, m supervisors are synthesized instead of just one, so
there is a tradeoff between more control problems to solve and creating smaller control
problems to solve. As the state-space size grows exponentially with the number of
automata, reducing the number of plant components often has a larger effect than
synthesizing more supervisors. Experimental results in Section 5 confirm this tradeoff.

For multilevel supervisory control synthesis, we analyze the effect of splitting
requirements differently than for modular supervisory control synthesis. In multilevel
synthesis, the system is decomposed into subsystems. The dependencies between
plant models indicate how the system may be decomposed. For the purpose of
multilevel synthesis, analyzing the dependencies between plant models induced by
the requirement models is valuable, see (Goorden et al. 2017). Dependencies between
two plant models can be formalized as follows. Given Pi, Pj ∈ Ps, Pi 6= Pj, there is
a dependency between Pi and Pj if and only if there exists a requirement Rk ∈ Rs

such that both plant models are used in Rk. A plant model is used in a state-event
invariant expression if the event in the requirement originates from the alphabet of
that plant model or the condition uses a state of that plant model. For example, in
R = P1.σ needs P2.q2, where we used the notation P1.σ to indicate that σ is in the
alphabet of P1, plant models P1 and P2 are used in R.

Now, consider requirement R = P.σ needs C where condition C is the conjunction
of some state references, that is C = P1.q1 ∧ . . . ∧ Pl.ql . This requirement results
in dependencies between plant models P and P1, P and P2, and so on, and also in
dependencies between any pair (Pi, Pj), i, j ∈ [1, l], i 6= j. These dependencies can be
visualized with a Dependency Structure Matrix (DSM), see (Eppinger and Browning
2012). Figure 5.1 shows on the left the DSM D for requirement R with l = 4. A
dependency between plant models is indicated in this DSM with a 1, no dependency
is indicated with an empty cell. Such a visualization shows that all plant models
are related with each other. Therefore, multilevel synthesis considers plant models

1Here we have a slight abuse of notation of the synchronous product operator, as this one is
only formally defined for automata. In case of two requirements modeled with state-event invariant
expressions restricting the same event σ, denoted by Ri = σ needs C1, i ∈ {1, 2}, we define
R1 ‖ R2 = σ needs C1 ∧ C2.
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P, P1, . . . , Pl as a single subsystem and synthesizes a supervisor for control problem
({P, P1, . . . , Pl}, {R}).

When requirement R is split into multiple requirements collected in set Rs =
{R1, . . . , Rl} where Rk = P.σ needs Pk.qk, k ∈ [0, l], the dependencies between the
plant models reduces. There are still dependencies between plant models P and P1, P
and P2, and so on till P and Pl, yet there are no longer dependencies between any
pair (Pi, Pj), i, j ∈ [1, l], i 6= j, which is the case with the single requirement R. The
effect of splitting requirements is visualized in DSM D′ in Figure 5.1. The number
of dependencies has reduced significantly. This reduction allows multilevel synthesis
to decompose the system into smaller subsystems, for example into two subsystems
where the first is composed of plant models P, P1, P2 and the second of plant models
P, P3, P4. Similar to modular synthesis, smaller subsystems result in smaller control
problems to solve, resulting in a reduction of computational effort. Therefore, splitting
requirements can be beneficial for multilevel supervisory control synthesis.

3.2 Conflicting supervisors

Similar to modular synthesis, splitting requirements introduces an over-approximation.
Synthesizing multiple supervisors for the split requirements may result in conflicting
supervisors.

Consider the following example to illustrate the over-approximation induced by split-
ting requirements. Figure 5.2 shows the plant models of a door actuator and a door sen-
sor. Requirement R = A_Door.c_off needs S_Door.Off∧S_Door.On expresses that
the actuator may only be turned off when the door sensor is off and on. This require-
ment can be split into the two requirements R1 = A_Door.c_off needs S_Door.Off
and R2 = A_Door.c_off needs S_Door.On. Since an automaton cannot be in two
locations at the same time, the condition of the original requirement R can never be
satisfied, effectively disabling event c_off indefinitely. A supervisor synthesized for
the single requirement disables event c_on of the actuator, because location On is not
marked. When the single requirement R is replaced by the two requirements R1 and
R2, conflicting modular supervisors are synthesized. Each local supervisor will not
disable event c_on, allowing the actuator to block in location On.

In general, one can perform a nonconflicting check after synthesizing modular or
multilevel supervisors for the split requirements. Yet, as discussed in Section 2.2, a
nonconflicting check should always be performed if modular or multilevel synthesis
is applied, even when requirements are not split. It is an interesting question for
future research to determine the effect of splitting requirements on the efficiency of
the nonconflicting check and on the synthesis of a coordinator.

The example may indicate that splitting ‘bad’ requirements could induce conflicts.
A requirement demanding an automaton to be in multiple states at the same time
would probably not be the intention of an engineer. Yet, there is no guarantee that
an engineer does not formulate such a requirement. Notwithstanding the general
situation, the following conjecture formalizes the situations encountered in cases where
requirements can be split which will not introduce conflicting problems.
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Figure 5.1: Left the DSM D constructed with the original requirement R and right the DSM
D′ with the set of splitted requirements Rs.
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Figure 5.2: Examples of two plant models, with an actuator of a door and a sensor of a door.
Concentric circles indicate marked locations. Solid arrows indicate controllable events while
dashed arrows indicate uncontrollable events.

Conjecture 1. Let P = {P, P1, . . . , Pm} be a product system and requirement R =
P.σ needs C1 ∧C2 ∧ . . .∧Cn such that no pair of conditions Ci, Cj, i, j ∈ [1, n], i 6= j
uses the same plant model. Construct the set of split requirements R = {R1, . . . , Rn}
with each split requirement being Ri = P.σ needs Ci. Then the set of modular
supervisors for R is nonconflicting.

4 Demonstration with case study of infrastructural
system

Splitting state-event invariant requirements is demonstrated with the model of Lock
III, located at Tilburg, The Netherlands. Figure 5.3 shows the lock. The model of
Lock III is given in (Reijnen, Goorden, van de Mortel-Fronczak, and Rooda 2017). A
lock is an infrastructural system in rivers and canals with the purpose to maintain
different water levels outside the lock while also allowing the vessels to pass from one
level to the other. A lock consists primarily of a lock chamber with a lock head on
each side. The main subsystems of a lock head are the gates, water leveling systems,
and the incoming and outgoing traffic lights. Supervisory control is deployed to ensure
safe operation of the system. In this context, safety not only concerns avoiding human
injuries or causalities, but also water management as large parts of The Netherlands
are located below water level.

For modeling convenience, there is also the state-event invariant expression
D disables σ, which expresses that event σ is disabled when condition D holds.
This expression has the same expressiveness as the form σ needs C: D disables σ
is equivalent to σ needs ¬D. Following the same splitting mechanism as introduced
with the guideline, requirements of the form D disables σ can be split if condition D
is in disjunctive normal form, i.e., D = D1 ∨ . . . ∨Dk.
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Figure 5.3: Photo of Lock III, located at Tilburg, The Netherlands. Image from
https://beeldbank.rws.nl, Rijkswaterstaat.

The guideline is demonstrated with the following requirement: it is unsafe to open
a gate if (1) the water-leveling system at the other side is not closed, or (2) the gate
at the other side is not closed, or (3) there is no equal water over the gate, or (4) the
incoming traffic light at that lock head is not showing a red or red-red aspect, or (5)
the outgoing traffic light at that lock head is not showing a red aspect. For one of the
gates this requirement is formalized in the model as

(1) culvert_N.S.flow ∨ culvert_N.A.open ∨ culvert_S.S.flow ∨ culvert_S.A.open ∨
(2) ¬gate_U_N.S.closed ∨ gate_U_N.Dir.opening ∨

¬gate_U_S.S.closed ∨ gate_U_S.Dir.opening ∨
(3) s_equal_D.off ∨
(4) ¬(in_D_N.S.red ∨ in_D_N.S.redred) ∨ ¬(in_D_N.A.red ∨ in_D_N.A.redred) ∨

¬(in_D_S.S.red ∨ in_D_S.S.redred) ∨ ¬(in_D_S.A.red ∨ in_D_S.A.redred) ∨
(5) ¬out_D_N.S.red ∨ ¬out_D_N.A.red ∨ ¬out_D_S.S.red ∨ ¬out_D_S.A.red

disables gate_D_N.c_open,

where before the first full stop (.) in every state and event name the letter D is an
abbreviation for downstream, U for upstream, N for north, and S for south, and where
after the first full stop the letter A stands for actuator and S for sensor. The five
unsafe situations in which the gate should not open are indicated in the requirement.

The first option for splitting this requirement is creating five requirements, one for
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each unsafe situation. This results in the following five requirements:

(1) culvert_N.S.flow ∨ culvert_N.A.open ∨ culvert_S.S.flow ∨ culvert_S.A.open
disables gate_D_N.c_open,

(2) ¬gate_U_N.S.closed ∨ gate_U_N.Dir.opening ∨ ¬gate_U_S.S.closed ∨
gate_U_S.Dir.opening
disables gate_D_N.c_open,

(3) s_equal_D.off
disables gate_D_N.c_open,

(4) ¬(in_D_N.S.red ∨ in_D_N.S.redred) ∨ ¬(in_D_N.A.red ∨ in_D_N.A.redred) ∨
¬(in_D_S.S.red ∨ in_D_S.S.redred) ∨ ¬(in_D_S.A.red ∨ in_D_S.A.redred)
disables gate_D_N.c_open,

(5) ¬out_D_N.S.red ∨ ¬out_D_N.A.red ∨ ¬out_D_S.S.red ∨ ¬out_D_S.A.red
disables gate_D_N.c_open.

By specifying these five requirements instead of one, the readability and maintainability
of the models also increases. Yet, these requirements can be split even further, as
each condition is still in disjunctive normal form. Hence, 17 requirements can be
formulated, of which the first four originated from (1) are

(1a) culvert_N.S.flow disables gate_D_N.c_open,
(1b) culvert_N.A.open disables gate_D_N.c_open,
(1c) culvert_S.S.flow disables gate_D_N.c_open,
(1d) culvert_S.A.open disables gate_D_N.c_open.

The other requirements can be split similarly.
Another requirement describes normal closing of a gate and expresses that a gate

may only be closed if (1) the command to close the gate is given, and (2) the gate is
not yet closed, and (3) the command to stop the gate is not given. The model of this
textual requirement for one of the gates is

gate_D_N.c_close needs cmd_D_gate_close ∧ ¬gate_D_N.S.closed ∧
¬cmd_stop_D_gate,

where D is an abbreviation for downstream, N for north, S for sensor, and cmd for
command. The three terms of the condition are conjunctive, thus this requirement
can be split into three smaller requirements as follows:

gate_D_N.c_close needs cmd_D_gate_close,
gate_D_N.c_close needs ¬gate_D_N.S.closed,
gate_D_N.c_close needs ¬cmd_stop_D_gate.
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Finally, not all requirements may be split. Consider the requirement expressing
that the outgoing traffic light may only switch to a red aspect if the command for
showing the red aspect is given or any stop command is given. This requirement is
formalized for one of the outgoing traffic lights as

out_D_N.c_red needs cmd_D_out_r ∨ cmd_stop.

Experimental results are shown in Table 5.1. These results have been obtained with
the CIF toolset (van Beek et al. 2014) and the models can be accessed at a GitHub
repository2. For both the original model and the adapted model we show the number
of requirements, the controlled state-space size of the monolithic supervisor, the sum
of the controlled state-space sizes of each modular and multilevel supervisor, and the
number of multilevel supervisors. Splitting the requirements more than doubles the
number of requirements and significantly increases the efficiency of both modular
and multilevel supervisory control synthesis. Focussing on multilevel synthesis, the
gain of using that supervisor architecture for the original model is already substantial
comparing to monolithic synthesis. Yet, for the adapted model, the state-space size of
the multilevel supervisors approaches the result of modular supervisors by synthesizing
only 34 supervisors instead of 358 supervisors, respectively. Also, the number of
multilevel supervisors indicates that by splitting the requirements the system can be
decomposed into more subsystems, as what is expected from the analysis in Section 3.1.

5 Four case studies with experimental results
In this section, the modeling guideline described in Section 3 is applied on several
other models of real-life case studies. We first introduce the case studies and show a
typical requirement that is split according to the modeling guideline. Subsequently,
experimental results are shown after applying modular and multilevel supervisory
control synthesis on these models.

5.1 Case studies description
CaseMarijke. In this case study, the Prinses Marijke complex is modeled, see (Reijnen,
Verbakel, et al. 2019). This infrastructural complex is located in the center of The
Netherlands and consists of two waterway locks and a storm surge barrier. In case
of high water levels in the Amsterdam-Rhine Canal, the barrier is closed and vessels
need to use the waterway locks. In all other conditions, the barrier is opened and
vessels can pass under it, without using the waterway locks.

The models of the locks in the Prinses Marijke complex are similar to the model
of Lock III, see Section 3. Only the modeling level, or abstraction detail, differs.
Therefore, the same requirements are specified, which opens the opportunity to split
them.

2https://github.com/magoorden/SplittingRequirements

https://github.com/magoorden/SplittingRequirements
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Table 5.1: Experimental results for synthesizing modular and multilevel supervisors with
the original and adapted Lock III models. The reported state-space size for modular and
multilevel synthesis is the sum of the state-space sizes of the individual supervisors. The
number of supervisors refers to the result of multilevel synthesis, monolithic synthesis results
in only one supervisor and modular synthesis creates a supervisor for each requirement.

Model
Number of
require-
ments

Monolithic Modular Multilevel
Number of
supervisors

Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7
Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

Case ADAS. In this case study, an Advanced Driver Assistant Systems (ADAS) is
modeled, see (Korssen et al. 2017). In such an application, a supervisor is synthesized
to safely switch in a vehicle between the modes ‘no cruise control (NCC)’, ‘cruise
control (CC)’, and ‘adaptive cruise control (ACC)’. Based on input from the driver
as well as vehicle sensors, the vehicle may or may not switch between these different
modes of cruise control.

One of the formulated requirements is related to the desired behavior of the CC
mode. It expresses that the set-point velocity can be decreased if CC is active and
the brake sensor is off and the set-point velocity is higher than 30 km/h and the CC
lever is pushed up for longer than 0.5 s and a set-point velocity is stored and CC is
enabled and the vehicle velocity is higher than 30 km/h. This single requirement can
be split into seven smaller requirements.

Case FESTO. In this case study, a production line designed by FESTO is modeled,
see (Reijnen, Goorden, van de Mortel-Fronczak, Reniers, et al. 2018). The FESTO
production line is designed for vocational training in the field of industrial automation.
While no real production takes place, all movements, velocities, and timings are as if
it were. The production line consists of six workstations with in total 28 actuators,
like DC motors and pneumatic cylinders, and 59 capacitive, optical, and inductive
sensors.

In the first workstation, products enter the system from a storage tube. At the
bottom of the tube, a pusher is able to push a product out. This pusher is only
allowed to push (extend) if the system is initialized and the pusher is fully retracted
and there is a product in the storage tube and the output place to push the product
to is empty. This example requirement can be split into four smaller requirements
formulating together the same desired behavior.

5.2 Results
For each case study, requirements are split as much as possible according to the
modeling guideline of Section 3, which results in the original model and an adapted
model. Subsequently, monolithic, modular, and multilevel supervisory control synthesis
are applying with the CIF toolset (van Beek et al. 2014).

The results are shown in Table 5.2. For the three different synthesis techniques, the
controlled state space is reported. For monolithic synthesis, the number is the state-
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Table 5.2: Experimental results for synthesizing modular and multilevel supervisors with
the original and adapted models of the several case studies. The reported state-space size
for modular and multilevel synthesis is the sum of the state-space sizes of the individual
supervisors. The number of supervisors refers to the result of multilevel synthesis, monolithic
synthesis results in only one supervisor and modular synthesis creates a supervisor for each
requirement.

Model Variant
Number
of require-
ments

Monolithic Modular Multilevel
Number
of super-
visors

LockIII Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7
Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

Marijke Original 248 6.68 · 1026 1.29 · 107 5.50 · 1012 26
Adapted 529 6.68 · 1026 2.24 · 105 4.03 · 1011 33

ADAS Original 33 2.0 · 1010 1.5 · 104 1.1 · 108 8
Adapted 72 2.0 · 1010 1.1 · 103 5.2 · 105 16

FESTO Original 78 2.2 · 1025 2.10 · 104 4.00 · 106 12
Adapted 205 2.2 · 1025 2.00 · 103 5.06 · 104 24

space size of the single synthesized supervisor; for modular and multilevel synthesis,
the number is the sum of the state-space sizes of the individual supervisors. The
number of supervisors in the table refers to the number of supervisors of multilevel
synthesis. The number of supervisors for modular synthesis equals the number of
requirements and for monolithic synthesis there is only one supervisor. The results
from Lock III, discussed in Section 4, are added for completeness.

For all four cases, adapting the models by splitting requirements increases the
number of requirements significantly, it often more than doubles. The results for
modular and multilevel synthesis indicate that splitting the requirements is beneficial
for the efficiency of these supervisor architectures. For multilevel synthesis, splitting
the requirements allows to decompose the system differently such that more subsystems
are identified. Therefore, smaller control problems are defined to be solved, resulting
in the reduction of the computational effort.

As expected, the obtained efficiency gain of splitting the requirements differs per
model. For example, reformulating the model of Lock III allows multilevel synthesis to
formulate an efficient decomposition, indicated by the state-space size and the number
of supervisors, while the reduction is minimal for the model of the Prinses Marijke
complex. Nevertheless, reformulating the model by splitting the requirements seems
to be always valuable for models of real-life cases.

6 Conclusion and future work
This paper presents a guideline expressing that requirements should be split into smaller
ones, each referring to less plant models than before. Theoretical substantiation is
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provided for the effectiveness of this guideline. Examples from practice show how
the guideline can be used. Experimental results indicate that splitting requirements
increases the applicability and efficiency of module-based supervisor architectures.

The examples indicate that automatic model transformation based on this guideline
should be possible. Future work includes the design and implementation of such
transformations. Furthermore, Section 3 showed an example of a requirement that
could not be split. In (Theunissen 2015), the introduction of new event in the plant is
suggested to circumvent this issue. It is worth investigating this suggestion, albeit
that also the plant model needs to be adapted. Finally, another direction for future
research is considering requirements in the form of state invariant expressions, like the
one expressing that actuators A and B may never be both on at the same time, and
determining whether, for example, a logically equivalent set of state-event invariant
expressions may be more beneficial for module-based supervisor architectures.
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