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Summary

Our aim is to investigate, by means of molecular dynamics computer simulation,
the structural and dynamical properties of elongated colloidal particles in dense
dispersions. Colloidal particles are present in many industrial processes and al-
most everywhere in our everyday life, as they may be found in paints, cosmetics,
and food. In particular, the interest in elongated colloidal particles has recently in-
creased due to applications in high-performance materials, such as strong fibres
and responsive films, and as a result of the development of well-defined exper-
imental model particles, such as filamentous virus particles. At sufficiently high
concentrations, elongated particles form a plethora of liquid-crystalline phases in
between thewell-known isotropic fluid and crystalline phases. The self-organisation
into these symmetry-broken phases is primarily driven by excluded-volume inter-
actions (entropy). Due to their anisotropy, particles tend to align along a prefer-
ential direction and give up a maximum of two positional degrees of freedom to
optimise the volume accessible to each particle.

Several filamentous and rod-like viruses have shown to exhibit in aqueous so-
lution a uniaxial nematic, a layered smectic A, a smectic B with in-layer quasi long-
range hexatic order, and a columnar liquid-crystalline phase. The phase sequence
of filamentous viruses encountered with increasing concentration is different from
that predicted for a system of infinitely stiff, hard spherocylinders, which do not
support the smectic B and columnar phases. The existence of these phases has
been speculated to be due to the bending flexibility of the particles. In our re-
search we investigate how flexibility affects the stability and the structure of the
liquid-crystalline phases of elongated colloidal particles. Using coarse-grained
bead-spring models, we find that the stability of the smectic A and B phases de-
pends crucially on the bending flexibility of the particles, and on their aspect ra-
tio. The smectic A phase becomes less stable and the smectic B phase more stable
with increasing particle bending flexibility. The former finding had been predicted
theoretically, the latter is a novel insight.

Even if harshly repulsive interactions are thought to dominate in stable dis-
persion of rod-like particles, weakly attractive interactions may still have a large
effect on the stability of liquid-crystalline phases. We investigate this in collab-

i



oration with an experimental research group at Centre de Recherche Paul Pascal
(CRPP) in Bordeaux, France. The group engineered a single type of protein on one
of the two tips of a filamentous virus, allowing them to graft a controlled number
of fluorescent dye molecules and create particles with a polar interaction. As the
dyes are hydrophobic, this results in a controllable, attractive, single-ended and
highly localised interaction between the particles. The surface modification was
found to stabilise the smectic A phase at lower concentrations, at the expense of
the nematic phase, while not affecting any of the other phases. For this reason we
investigate how a weakly attractive tip has such a strong impact upon the phase
behaviour of elongated colloidal particles. Our computer simulations show that
the sticky ends drive the formation of flat, membrane-like aggregates that desta-
bilise the nematic phase in favour of the smectic A phase. We also discover a
transition to an anti-ferroelectric phase that destroys the nematic at sufficiently
large but still rather modest sticking energies. Our findings may contribute to the
rational design of self-assembled structures, for example, for battery applications.

Dispersions of elongated colloidal particles not only have remarkable struc-
tural properties, diffusion of such particles has also interesting and sometimes
counterintuitive features, depending on the underlying symmetry of the phase.
For example, experiments at CRPP in Bordeaux and simulations show that in the
smectic A phase the particles engage mostly in a layer-to-layer, hopping-type dif-
fusion that is strongly affected by their bending flexibility and aspect ratio. In our
work, we investigate how the anisotropy and flexibility of elongated tracer parti-
cles affect their diffusion in a smectic A host phase. Simulations and experiments
show that guest particles that are longer than the host particles diffuse faster in
the host smectic A phase than the host particles do. Our simulations show that
also shorter particles diffuse faster than the guest particles. The bending flexibil-
ity of guest particles, in this case, does not seem to play an important rôle. Our
simulations may help to elucidate the transport mechanisms of macromolecules
through cellular or other biological membranes, which is of interest to cell biology
as well as drug delivery applications.

Finally, in order to make headway in the field of dynamical percolation, rele-
vant in the context of carbon nanotube nanocomposites, we initiate the first study
of the dynamics of geometric percolation of hard particles, taking as starting
point spheres rather than tubes for reasons of simplicity. The question we specifi-
cally address, is whether geometric percolation exhibits critical slowing down be-
cause of the critical nature of the percolation transition. We find that the con-
nectivity length and concentration both impact on the survival dynamics of pre-
critical clusters. Surprisingly, we do not observe any critical slowing down upon
approach of the percolation transition.
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Chapter �

Introduction

The thesis describes results of computer simulation studies concerning the struc-
tural and dynamical properties of elongated colloidal particles in suspension. Col-
loidal particles are present in many industrial processes and almost everywhere
in our everyday life, as they may be found in paints, cosmetics, and food. Further-
more, the interest in elongated colloidal particles has recently increased due to
applications in high-performance materials and due to the development of well-
controlled experimental model particles. At sufficiently high concentrations, such
particles may exhibit various liquid-crystalline phases in which one or more de-
grees of freedom of these particles are frozen in. In this chapter, we provide more
details about our work, the aim of which is to investigate the self-organisation of
rodlike colloidal particles. In particular, we are interested in how this is affected
by the particles’ properties and interactions. We present the context and pose
specific questions that motivate our research. Based on that, we also provide the
outline for the thesis.
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�.� Elongated colloidal particles

Our studies focus on computer simulations of the structure and dynamics of elon-
gated colloidal particles in suspension. These particles are not only present all
around but also inside of us. Examples range from inorganic particles (such as sil-
ica rods [�]), through filamentous viruses (tobacco mosaic virus [�]), to biological
fibres (actin filaments [�]). At the macroscopic level, suspensions of such parti-
cles may show complex optical properties such as birefringence and iridescence
that are of interest to industry for the fabrication of optical devices such as po-
larisers and gratings [�, �]. Elongated colloidal particles may also show superior
mechanical properties. For this reason, they have been applied in the production
of strong fibres and other high-performance materials [�, �]. They have also been
explored in the synthesis of functional materials such as nanowires and batteries
[�–��], and in the investigation of the self-assembly of specific structures such as
multipods and tubes [��–��]. As these particles might be directly visualised using
optical microscopy techniques, they are employed as model systems of atoms
and molecules in the investigation of phase transitions [��]. In this section, we il-
luminate what elongated colloidal particles are from the point of view of physics.
For this purpose, we introduce some features of colloidal particles as well as
of the symmetry-broken configurations formed by these anisotropic particles in
fluid dispersions.

A suspensions of colloidal particles form a highly heterogeneous liquid-solid
or liquid-liquid mixture. Colloidal particles are in the size range from about ��nm
to � µm [��]. Therefore, they are sufficiently small to have their movement in-
fluenced by the many collisions with the molecules constituting the dispersion
medium. The time scale of the movement of solvent molecules is fast compared
to the time scale of the colloidal particles. For this reason, as well as for the
large difference in the length scales involved, the movement of the colloidal par-
ticles is governed by Brownian dynamics, which is well described by irreversible
Langevin equations [��]. The description is simplified because the degrees of
freedom of the molecules forming the dispersion medium are replaced by a fric-
tion and a random force that mimic their overall effect [��]. In addition to these
forces, the motion of colloidal particles is also described in terms the effective
interactions between them. A very important one is the excluded volume inter-
action, which can be understood as the unaccessible volume to a particle due to
the presence of another particle. A hard-core potential, which is zero for non-
overlapping particles and infinity for overlapping ones, is usually used to de-
scribe a system in which excluded-volume interactions dominate. In this case,
the Boltzmann weight of the configurations is independent of the temperature.
As a consequence, there is no energy scale associated to a system of hard par-
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ticles. Such a system is then athermal and, as a consequence, entropy alone is
sufficient to describe its thermodynamic state [��].

In addition to that, if these colloidal particles are elongated, as their concen-
tration increases, they may form additional phases in between the well-known
(disordered) isotropic and (ordered) crystalline phases. In these phases, known
as liquid-crystalline phases�, the particles have a preferential orientation, which
is described by the unit vector n̂, known as the director. The particles also have
short- or quasi long-range translational order. For example, in the nematic phase,
particles have liquid-like, short-range translational order. In the smectic phase,
particles are organised in layers along the director (one-dimensional quasi long-
range order) with a well defined interlayer distance (or layer spacing). There are
many types of smectic phase, depending on the particles’ configuration and or-
ganisation in the layers. For example, particles aligned perpendicularly to the
layers are disordered in the smectic A phase, while they exhibit in addition quasi
long-range bond-orientational order and short-range translational order also
known as hexatic order in the layers of the smectic B phase. It is also possible
that the particles are tilted in relation to the layer, as it is the case in the smectic
C phase. There are many more smectic phases of which the total number cannot
be specified [��]. The smectic and nematic phase can also exhibit chirality if con-
taining chiral particles or dopants. In the columnar phase, particles are organised
in the plane perpendicular to the director (quasi long-range bond-orientational
order), while there is no order along the direction parallel to the director. There
are two types of columnar phase depending if the two-dimensional translational
order is long-range (hexagonal) or short-range (hexatic). See Figure �.�.

In ����, Lars Onsager provided the first theoretical, purely entropic explana-
tion for the isotropic-to-nematic phase transition [��]. The theory is based on the
second virial approximation, whichmeans that it includes only the interaction be-
tween pairs of particle. These are represented by hard cylinders of diameter D
and length L. In this case, their excluded volume is equal to 2DL2` sin �` at least
if they are slender and L � D , where � is the angle between the main axes of
the particles. In the nematic phase, in order to optimise the volume accessible to
each particle (reduce the excluded volume), the particles tend to align along the
director. In other words, the orientational entropy is reduced in order to increase
the translational entropy. The isotropic-to-nematic phase transition is said to
be of the first order, as these phases may coexist under appropriate conditions.

�Liquid crystals of elongated colloidal particles belong to the class of lyotropic liquid crystals.
The concentration is the relevant thermodynamic quantity in determining their state. There are
also the thermotropic liquid crystals, usually a single component fluid composed of lowmolecular
weight elongated or flat particles. In this case, the temperature is the relevant thermodynamic
property [�].
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director

liquid-crystalline phases

concentration

isotropic nematic smectic columnar crystalline

Figure �.�: Schematic illustration of the phases of elongated particles (pictured as
hard cylinders). Between the isotropic and crystalline phases, from left to right,
the liquid crystalline nematic, smectic, and columnar phases are represented.
The director gives the preferential orientation of the particles.

Since then, experiments, simulations, and theory have shown that the excluded-
volume interaction alone is sufficient to explain the formation of the phases de-
scribed above as well as other possible mesophases [��–��]. Nevertheless, there
are many more nuances and possibilities to be explored, as these colloidal par-
ticles might have different sizes, shapes, or localised patchy interactions. Real
particles always present some of these properties at some degree, which are not
captured by the hard cylinder model. We explore a number of them using com-
puter simulations. In the next section, we introduce some more specific findings
related to the structure and dynamics of elongated colloidal particles that insti-
gated questions and inspired our present work.

�.� Motivation and research questions

Our studies are inspired by experiments performed on the filamentous bacte-
riophages M�� and fd, either wild type (wt) or mutants [��, ��]. They are highly
monodispersed model particles of �nm in diameter and about � µm in length.
In Table �.�, these values are specified for different types of filamentous viruses.
Their persistence length is large and can be modified by genetic modifications of
their DNA. In polymer physics, the persistence length LP is a measure of the bend-
ing flexibility or stiffness of a polymer chain. It is defined through the correlation
between the tangent vector t̂(l ) along the contour of the chain described by the
contour distance l . It obeys the relation •t̂(l ) · t̂(l 0)¶ = e| l�l

0 |/LP , where the an-
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gular brackets represent the average over all configurations and e is the Euler’s
constant. Due to the large persistence length and monodispersity, filamentous
viruses are a good model system of hard rods and support the isotropic, chiral
nematic, smectic A, smectic B, columnar and crystalline phases in aqueous so-
lutions [��]. Hence, they exhibit the liquid-crystalline smectic B and columnar
phases in addition to the phases formed by a system of hard spherocylinders
[��]. It is possible that the bending flexibility of the elongated particles or the
combination of this and the aspect ratio are the important elements for the for-
mation of these phases. As a matter of fact, the stability of the columnar phase
is probably linked to this combination as indicated by a recent experiment [��]
and suggested theoretically [��]. This is one example that shows how important
the role of particles anisotropy and bending flexibility is to the existence and
stability range of any liquid-crystalline phase. Actually, the first question of how
the aspect ratio and flexibility changes the stability and structure of the liquid-
crystalline phases has been explored in experiments [��–��, ��, ��], simulations
[��–��], and theory [��–��]. However, the topic is not exhaustively investigated
and our contribution is to expand on the range of bending flexibilities and aspect
ratios investigated previously in computer simulations. Importantly, we investi-
gate the complete phase sequences employing the same simulation approach for
all phases.

D [nm] L [µm] LP [nm]
fd-wt �.� �.�� �.�±�.�

fdY��M � �.�� �.�±�.�
M��K�� � �.� �.�

Table �.�: Particle characteristics of the M�� and fd viruses (and mutants). The
diameter D , contour length L, and persistence length LP are presented for the
fd-wt virus [��] and the fdY��M [��, ��] and M��K�� mutants [��].

Even if excluded volume interactions dominate, weak and highly local inter-
actions may also have a large effect on liquid-crystalline phases. This is the
main finding of our second study, which is inspired by experiments performed by
our collaborators from the Centre de Recherche Paul Pascal (CRPP) in Bordeaux,
France [��]. In their experiments, the filamentous M�� virus has its terminal (P�)
protein modified, allowing the attachment of red dye molecules to one of the
two tips of the virus particle. The procedure results in a controllable, attractive,
single-end localised interaction. Such surface modification stabilises the smectic
A phase at much lower concentrations, leading to our second research question:
what is the effect of a weakly attractive tip on the phase behaviour of elongated
colloidal particles? The stabilisation of the smectic A phase that we find in both
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experiments and simulations might be of interest to industrial and scientific ap-
plications due to its optical and mechanical properties [��, ��]. In particular, to
have it formed at lower concentrations might facilitate processing and reduce
the use of material. Our results may also contribute to the rational design of
self-assembled structures [��, ��].

Our first two studies show that elongated colloidal particles have singular
structural properties. Nevertheless, the diffusion of elongated particles also has
interesting and sometimes counterintuitive features [��, ��–��]. The long-time
diffusion of the particles is different in each phase due to translation-rotation
coupling and the broken symmetry. An example is the fast diffusion along the
main axis in the nematic phase as compared to that of the isotropic phase, and
another one the hopping-type diffusion found in both the smectic phase as well
as in the columnar phase. In the smectic phase, the hops correspond to the layer
size which are approximately equal to the particle contour length [��]. This is
due to the molecular field created by the surrounding particles or smectic order-
ing potential whose minima correspond to the centres of the smectic layers. In
the columnar phase, the hops correspond to both half and full particle contour
length. These two types of particle motions may indicate events in which parti-
cles re-equilibrate after another particle leaves the column and in which particles
swap positions in the same column [��, ��].

In our work, we are also interested in diffusion of particles in the smectic
phase. In particular, in the diffusion of short and long guest particles in the
smectic A phase formed by host particles of fixed contour length. This study
is also inspired by experiments performed on M�� and fd viruses [��]. The ex-
periments show that long, non-commensurate elongated guest particles diffuse
faster in the smectic phase formed by elongated host particles. Nevertheless,
the experiment is limited to a few ratios between guest and host contour lengths
and fixed values of the particles persistence length. Simulations may contribute
to find an optimal combination for, perhaps, finding the fastest guest. They even
may help us understand if the relevant parameter is really the ratio or the actual
contour lengths of both guest and host particles. The third research question in
our study is then how do the anisotropy and the flexibility of elongated particles
affect their diffusion in a lamellar background phase? As pointed out in Reference
[��], the answer to this question may help to elucidate the transport mechanisms
of macromolecules (such as proteins) through cellular or other biological mem-
branes, which is of interest to cell biology and drug delivery applications [�].

Our three previous research questions are about structural and dynamical
aspects considered separately. To conclude our work, we combine them in the
study of the dynamics of clusters and percolation in the isotropic phase of hard
particles. Percolation of elongated colloidal particles is a very interesting topic
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that is not completely understood. Despite that, unlike our previous studies, here
we focus on spherical colloidal particles for reasons of simplicity as, in this case,
there is no rotational diffusion involved. Our fourth question is how long does it
take clusters to substitute all particles that initially form it? We are also interested
in whether geometric percolation exhibits critical slowing down, because of the
critical nature of the percolation transition. We find that the connectivity length
and concentration both impact on the survival dynamics of pre-critical clusters.
Surprisingly, we do not observe any critical slowing down upon approach of the
percolation transition.

�.� Outline of the thesis

The remainder of this thesis contains six chapters. Chapter � contains a general
introduction to the methods employed in our work. Additional procedures that
are specific to one of our studies are presented in the methods and analysis sec-
tion in the respective chapter. These are the remainder five chapters, each of
them addressing one of the research questions presented in Section �.�. Hence,
in Chapter �, we describe how the aspect ratio and bending flexibility affect the
phase behaviour of rod-like particles and analyse the particle conformation in
various phases. In Chapter �, we investigate the effect a weakly attractive tip has
on the stability of the phases previously described and discuss their microscopic
structure. The chapter has attached to it two appendices. In the first one, we
present a Maier-Saupe-McMillan type theory to describe the anti-ferroelectric
phase transition found in the simulations. In the second appendix, we present
the comparison between our results and experimental findings obtained by col-
laborators from the CRPP in Bordeaux. In Chapter �, we describe the dynamics of
short and long guest particles in the smectic A phase formed by elongated host
particles. We also discuss the effect of the persistence length and the flexibility
of the particles studied. In Chapter �, we present results relative to the dynamics
of clusters and percolation in the isotropic phase. In this chapter, unlike the oth-
ers, we focus on repulsive spheres. Finally, in Chapter �, we present our general
conclusions and outlook.
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Chapter �

Our approach

We employ coarse-grained computer simulations to study the structure and dy-
namics of elongated colloidal particles in suspension. In this chapter, we provide
a general introduction to the simulation methods. We also describe the specific
interactions we employ to model elongated colloidal particles. Finally, we provide
details about the methodology procedures that are common to our studies. In
particular, we explain the analysis that we employ to classify the various liquid-
crystalline phases and study the diffusion of particles.
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�.� Computer simulations

The aimof our work is to investigate how the particles’ properties and interactions
affect self-organised structures of elongated colloidal particles from the thermo-
dynamic and dynamical point of view. For this purpose, we use the simulation
package LAMMPS [��] to perform coarse-grained computer simulations: Molec-
ular Dynamics (MD) simulations for the measurement of stationary properties
and Langevin Dynamics (LD) simulations for the measurement of time dependent
properties [��]. MD and LD simulations are computational methods usually em-
ployed to obtain equilibrium and transport properties of classical many-particle
systems. In a system of n particles, the i -th particle is characterised by its po-
sition ri = (xi , yi , zi ) and mass mi . The particles have their movement dictated
by the interaction potential (presumed pair-wise additive) and the external po-
tential energies (electric or magnetic fields, for example). The potential energy
U combines both potential energies and is a function of all particle positions,
U = U (r1, r2, ..., ri , ..., rn). The equation of motion of each particle then depends
on the simulation method considered.

In MD simulations, the movement is described by the Newton’s equations of
motion, Fti = mi r̈i , where the total force Fti corresponds to the total conservative
force Fci acting on the particle i , F

t
i = Fci , and the dots indicate time derivatives.

The conservative force is obtained from the potential energy by the relation Fci =
�riU , where ri is the gradient with respect to the position of the particle i , ri =
(@/@xi , @/@yi , @/@zi ). In LD simulations, a friction force Ffi and a stochastic force
Fsi are also included to the total force, F

t
i = Fci + F

f
i + F

s
i . The friction force emulates

the viscosity of the fluid. This term is given by Ffi = ��i ṙi , where �i is the friction
constant between the fluid and the particle i . The stochastic force represents
the net forces resulting from the many collisions with the fluid particles. It has
the property •Fsi (t + �t ) · Fsj (t )¶ = 2�i kBT �i j �(�t ), where the angular brackets
indicate an ensemble average, kB is the Boltzmann constant, T is the absolute
temperature, �i j is the Kronecker delta, and �(�t ) is the Dirac delta function.

The simulations are based on the simultaneous numerical time integration
of the equations of motion of each particle. In the method, time is discretised
into small time steps, the forces on each particle are calculated at each time step,
new positions are calculated and then the procedure is repeated for the next time
step. Final result is the time evolution of the positions of all particles. For this
purpose, a simple Verlet algorithm is the most commonly employed one [��]. It
can be obtained from the Taylor expansion of the particle position ri around time
t . The position of each particle is updated according to the relation ri (t + �t ) =
2ri (t )� ri (t ��t ) + (Fti /mi )�t 2 +O(�t 4), which means that the new positions are
an estimate with an error of order �t 4.
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�.� Model particles

We model elongated colloidal particles as semi-flexible bead-spring chains of b
overlapping beads of same mass m and diameter D . The beads correspond to
the particles we described in the previous section. From now on, we refer to them
as beads to avoid confusion with the elongated colloidal particles modelled by
the bead-spring chains. The i -th particle form bonds of length si in units of D
and angles of measure ✓i in radians with the consecutive beads in a chain. We
characterise the bond by the distance to the neighbour bead i + 1, si = ri+1 � ri .
Therefore the bond length is si = ksi k, and the normalised si represents the
direction of the bond, ŝi = si/si . The angle is defined as ✓i = arcsin

⇣���ŝi , ^ ŝi�1���
⌘
.

The distance si j between any two beads i and j that are not bonded is defined
as si j =

���sj � si���. See Figure �.�. The centre of mass of the beads within the k -
th chain corresponds to its position, that is Rk =

P
i ri/b as the mass mi = m

is the same for all beads. The orientation of each particle is described by the
normalised, average direction of the b � 1 vectors described by the distances
between the centres of consecutive beads in the same chain, Ŝk =

P
i si/(b � 1).

Interactions

The pairs of bead that form a bond interact via a harmonic potential

U s
i =

1

2
s

 
si �

D

2

!2
, (�.�)

which means that the beads overlap by a half diameter distance. Here, s is
the harmonic bond stretch constant, which we fix to a reasonably large value of
��� kBT /D 2 to ensure minimal entropic stretching of the bonds. In other words,
the average bond length is very close to the rest bond length of one-half D . This
merged-sphere rod configuration provides a smoother particle surface. This way,
our particle approaches the spherocylinder rod, facilitating the comparison with
other works and preventing a biased stacking between the chains in highly con-
gested phases. A harmonic bending potential

U ✓
i =

1

2
✓ (✓i � ⇡)

2 , (�.�)

where ✓ is the bending constant, is assigned to consecutive bonds between
beads to model bending stiffness.

Except for the nearest neighbour beads along the same chain, all beads in-
teract via a purely repulsive, truncated and shifted Lennard-Jones (LJ) potential,
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i

Figure �.�: Schematic representation of our model particles. Elongated colloidal
particles are modelled as a bead-spring chains with diameter D . The length of
the i -th bond si is such that the beads partially overlap for a smoother surface, al-
lowing closer comparison with spherocylinders (dashed lines). The rest distance
of the harmonic bond potential corresponds to half of the bead diameter.

also known as the Weeks-Chandler-Anderson (WCA) potential:

UWCA
i j =

8>>>><>>>>:
4✏

"✓ si j
D

◆�12
�

✓ si j
D

◆�6#
+ ✏, if si j 6 21/6D

0, if si j > 21/6D

. (�.�)

Here, the potential energies and ✏ are given in units of thermal energy kBT . As
we are not using the hard-core potential, the effective hard sphere diameter of a
bead along the chainDeff is slightly larger thanD : Deff ⇠�.���D . This estimate can
be obtained by comparing the second virial coefficient for our purely repulsive
soft potential to the second virial coefficient for the hard sphere potential.

Particle properties

Due to the harmonic bond stretch, the contour length of the particles, L, and,
consequently, their aspect ratio, L/D = (b � 1)•s¶/2, •s¶ denoting the average
bond length of all chains, are not fixed but slightly variable. Hence, we refer to the
aspect ratio as that at very low densities L0/D to characterise our particles. The
actual contour length of the particles is somewhat smaller than this, in particular
in the more congested phases due to the high ambient pressure that compresses
the particles somewhat. See Reference [��] for a discussion. The persistence
length LP of the particle depends on the harmonic bend constant. We have the
simple relation LP = ✓s/kBT , valid for an infinitely large number of beads and
✓s 2/kBT � 1 [��]. The value obtained in our simulations for the end-to-end
distance of particles of various persistence lengths calculated by the previous
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relation in the isotropic phase compares well with the value of the end-to-end
distance predicted by the worm-like chain model, showing that the relation is in-
deed appropriate to describe the persistence length of our particles. See Chapter
�. We measure the particles flexibility by the ratio between the contour length
over persistence length, L0/LP.

�.� Phase behaviour and microstructure

In our MD simulations we insist on using the NPT (or isothermal-isobaric) en-
semble when pressure and temperature are fixed with the aid of the Nosé-Hoover
baro- and thermostat. In other words, the number of particles (or chains)N , pres-
sure P , and temperatureT are constant. The particles are initially parallel to the
z -axis and organised in a hexagonal lattice and divided in �� AAA staked layers,
which means that the layers are identical copies shifted along the director, and
in each layer there is perfect hexagonal ordering. We used a simulation box with
periodic boundary conditions and dimensions Lx, Ly, and Lz. The barostat can
adjust the rectangular simulation box dimensions independently, which allows
relaxation to the correct layers spacings in the smectic and crystalline phases.
Therefore the changes in the box shape are anisotropic. The system is equili-
brated when its volumeV no longer changes with time. Unless specified in the
subsequent chapters, each simulation runs for ����� time units. Our time unit
is set by the LJ timescale (m/kBT )1/2D and we use time steps of ���3 in these
units in our simulations, implying that our simulations run �⇥��7 time steps. The
relaxation times for temperature and pressure are �.�� and �.� time units cor-
responding to about �� and ��� time steps, respectively. Once equilibrated, we
obtain the particle configurations from the positions of all beads. Approximately
��� configurations of every run are stored, in other words, one in every ��� time
units. Once equilibrated, we obtain the particle configurations from the positions
of all beads.

The reason why we take the crystal phase as our initial configuration is that
starting from an ordered structure we are unlikely to end up in a jammed state.
Arguably, the lower the symmetry of the configuration of particles the more likely
it jams on account of the associated decrease in free volume. Of course, one could
argue that this procedure might give rise to metastable layered phases, that is,
the smectic A and B phases and the crystalline phase. To verify that this is not the
case, we performed compression simulations for one particular aspect ratio and
one degree of flexibility near all phase transitions that we find in our simulations
starting off the crystalline state. For this purpose, we use a configuration from the
highest concentration of the less ordered phase and increase the pressure to a
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value at which themore ordered phase should appear. From the evaluation of the
order parameters (see below), we find that the order in which the transitions ap-
pear are consistent with the expansion simulations and the largest disagreement
in the concentration at which the transitions occur is �.��. Hence, we believe that
the results our simulations starting off the crystal configuration are robust. Next
we calculate order parameters and correlation functions in order to classify the
state of aggragation and build phase diagrams. Refer to References [��–��] for a
detailed discussion.

In order to study the phase behaviour, the MD simulations are performed at
various pressures. The corresponding volume fraction � of any given configura-
tion is defined as � = Nv0/V , where v0 is the volume of a chain we approximate
by taking a spherocylinder with volume v0 = ⇡D 3/6+⇡D 2L0/4. That means that
the actual volume fraction is slightly lower than the value we adopt to represent
it. This choice is made in order to keep most of the parameters of our simula-
tion fixed. In Figure �.�, our methods and analysis for the phase classification are
schematically represented.

Order parameters

An order parameter is a normalised parameter indicating the degree of order of
a system. The system is in a disordered state if its value is � and in an ordered
state if its value is �. The first order parameter employed is the nematic order
parameter, which quantifies the alignment with a preferential direction. For each
equilibrium configuration considered, the global nematic order parameter can be
obtained from the following tensor

Qvw =
1

N

NX

j=1

 
Sjv Sjw �

1

3
�vw

!
, (�.�)

where v ,w correspond to the components of the vector in the Cartesian coordi-
nate system and �vw is the Kronecker delta. S is the orientation of the particle,
as previously defined in this section. The nematic order parameter S2 and the
director n̂ are the largest eigenvalue and the respective eigenvector of this ten-
sor. The nematic order parameter S2 for one configuration is proportional to
the average angle between the director and the direction of each molecule # ,
S2 = •P2(cos #)¶ = 3

2
•cos2 #¶ � 1

2
, where P2 is the second Legendre polynomial,

P2(q ) = (3q 2
� 1)/2.

Once the we obtain the director n̂ from the procedure described above, we
quantify the organisation in layers and determine their size using the function
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Figure �.�: Schematic representation of our methods and analysis. Model parti-
cles are overlapping, purely repulsive bead-spring chains. Nearest neighbours
interact by a harmonic elastic and bending potential. Except for the nearest
neighbour beads along the same chain, all beads interact via the WCA poten-
tial. We calculate order parameters and correlation functions in order to classify
the phases. We are able to distinguish between the isotropic, nematic, smectic A,
smectic B, columnar, and crystalline phases.
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defined as follows:

f (q ) =

�������
1

N

NX

k=1

exp
 
2⇡i

Rk · n̂
q

! �������
, (�.�)

whereN is the total number of particles and the imaginary number i is defined as
p
�1. This function presents several local maxima depending on the type of order.

From the set of arguments of themaxima, argmax f , we are interested in the value
nearest to the particle lengthL+D , because the smectic layers are expected to be
comparable to the size of the particles. This value corresponds to the interlayer
distance �. From the interlayer distance �, we obtain the smectic order parameter
⌧ given by ⌧ = f (�). Figure �.� represents the function f calculated for several
example configurations indicated in the figure.

The bond order parameter  6 is defined as

 6 =

�������
1

N

NX

k=1

1

N

NX

l=1

exp(6i#k l )
�������
, (�.�)

where N is the number of particles near to the reference particle k and # is
the angle between the director and the direction of each molecule, as previously
defined in this section. These nearest neighbour particles are within the volume
defined by a cylinder parallel to the director and centred in the reference particle
the radius 1.7D . The height of the cylinder is the average particle size L + D .

Pair correlation function

We employ the in-layer pair correlation function g to distinguish between the
smectic B and crystalline phases. Details about the procedure is presented in
Chapter �.

g (q ) =
1

N

*
1

⇢

NX

k=1

NX

l=k+1

�
�
q ���Rk l ^ n̂���⇥

 
�

2
���Sk l · n̂��

!+
, (�.�)

where ⇢ = N /V is the number density of particles and ⇥ is the Heaviside step
function, which filters the particles that are in the same layer.

�.� Diffusion

The LD simulations are performed in the NVT (or canonical) ensemble using the
Langevin thermostat [��, ��]. In this case, the volumeV is constant with fixed Lx,
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Figure �.�: The full and the various types of dashed line correspond to the func-
tion from Equation �.� calculated for the particle configurations I through V repre-
sented below the graph. Configurations are obtained from the melting of bead-
spring chains initially organised in a AAA crystal-like phase (configuration I) to
the isotropic phase (configuration V) at same concentration for the purpose of
illustration. The value of the function at the local maxima nearest to the particle
length L + D corresponds to the smectic order parameter ⌧ . The illustration on
the right top we show that the distance in which the function is maximum in fact
corresponds to the interlayer distance � in units of the particle diameterD , which
we estimate dividing the box size along the director, Lz , by the total number of
layers inside the simulation box.
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Ly, and Lz dimensions, as specified by the initial configuration. The initial config-
uration is obtained from the set of equilibrium configurations obtained from MD
simulations performed as described in the previous section (in the NPT ensem-
ble). From the configurations obtained from the LD simulations, we study such
diffusion in the various liquid-crystalline phases. Diffusion is a process caused
by the molecular motion of the particles in the fluid, which is represented by the
stochastic force previously described. It is usually measured by the diffusion co-
efficient D, which we obtain from the mean squared displacement (MSD) by the
relation •��R(t + �t ) � R(t )��2¶ = 6Dt . For particles in liquid-crystalline phases,
we separate the diffusion coefficient D into the components parallel and per-
pendicular to the director n̂,D? andDk .

In the smectic phase, as discussed in the Chapter �, the elongated particles
engage in a non-Gaussian hopping-type diffusion in smectic phases. We quantify
it by calculating the self-vanHove functionGs , that is defined as [��] and following
[��]:

Gs (Z ,�t ) =
1

N

* NX

k=1

�
�
Z � Zk (t + �t ) + Zk (t )

�+
, (�.�)

where �t defines the time span between the configurations and Zk is the com-
ponent position of the particle centre of mass along the director. The van Hove
function measures the time-dependent probability distribution of particles that,
for the displacement along the director, shows peaks at integer multiples of the
smectic layer thickness [��].
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Chapter �

Self-organisation of semi-flexible
elongated particles

In this chapter, we present a comprehensive computer simulation study of the
liquid-crystalline phase behaviour of purely repulsive, semi-flexible rod-like par-
ticles. For the four aspect ratios we consider, the particles form five distinct phases
depending on their packing fraction and bending flexibility: the isotropic, ne-
matic, smectic A, smectic B and crystalline phase. Upon increasing the particle
bending flexibility, the various phase transitions shift to larger packing fractions.
Increasing the aspect ratio achieves the opposite effect. We find two different ways
in which the layer spacing of the particles in the smectic A phase may respond to
an increase in concentration. The layer spacing may either decrease or increase
depending on the aspect ratio and flexibility. For the smectic B and the crystalline
phases, increasing the concentration always decreases the layer spacing. Finally,
we find that the layer spacing jumps to a larger value on transitioning from the
smectic A to the smectic B phase and we explain this in terms of the gain in free
volume due to the increased ordering of the phase.
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�.� Introduction

Rod-like colloidal particles, DNA strands, carbon nanotubes, and filamentous
viruses have in common that, if dispersed in a fluid at sufficiently high concen-
trations, they exhibit various kinds of liquid-crystalline phase [�, ��–��]. This is
because with increasing concentration, the dispersion runs out of free volume
leading to increasingly ordered states. This class of material is usually referred
to as lyotropic liquid crystals, which sets it apart from that of thermotropic liquid
crystal, because the driving force is not energy but, in essence, entropy. This was
first recognised by Lars Onsager in his seminal paper describing the isotropic-to-
nematic phase transition of cylindrical particles interacting via a hard-core repul-
sive interaction [��]. In agreement with experiment and computer simulations,
the theory predicts the transition to occur at a volume fraction that decreases
inversely proportional to the aspect ratio of the particles. The impact of particle
bending flexibility on the isotropic-nematic transition was first investigated the-
oretically by Khokhlov and Semenov more than thirty years later [��, ��], and a
decade after that others investigated how flexibility impacts upon the nematic-
columnar and the nematic-smectic A transition [��, ��–��].

Over the past few decades, interest in lyotropic liquid crystals has increased
significantly, in part because of potential applications and in part because of the
development of well-controlled model particles [�, ��]. Indeed, lyotropic liquid
crystals have been intensively investigated experimentally [��–��, ��, ��], theo-
retically [��–��] and with the aid of computer simulations [��, ��–��, ��]. In spite
of this, our understanding of the isotropic and nematic phases is most compre-
hensive, whilst that of the others remains much less detailed. In particular, how
flexibility and aspect ratio impact upon the other liquid crystal transitions have
received much less attention. Here, we aim to fill in this gap from the perspec-
tive of computer simulations, in particular because these are much more diffi-
cult to address theoretically. One reason is that the second virial approximation,
which allowed Onsager to accurately describe the isotropic-nematic transition,
no longer holds at densities where the smectic and columnar phases appear.
Another reason is translation-rotation coupling, which makes density functional
and integral equation theories virtually intractable [��, ��, ��].

We extend earlier simulation studies on semi-flexible chains by covering a
larger range in persistence length, aspect ratio, and particle numbers, and inves-
tigate more comprehensively the microscopic structure of the liquid crystalline
and crystalline phases. In agreement with theory and simulation, we find that
particles with longer aspect ratio support over a larger concentration range and
a broader range of bending flexibilities liquid-crystalline states. This is particu-
larly true for the nematic and the smectic A phase. We find that the stability of
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the smectic B and crystalline phases, recently both found experimentally in col-
loidal systems [��, ��], to be less sensitive to both aspect ratio and flexibility, at
least for the ranges investigated. The aspect ratio of our particles vary between
� and �� while the ratio of the bare contour length and persistence length vary
between �.�� and �.�. For these aspect ratios and persistence lengths all phase
transitions are either second or weakly first order, except the transition between
smectic A and smectic B that clearly is first order. The difference in behaviour of
the smectic A and B phases expresses itself most clearly in how the layer spac-
ing responds to increases in density. For the smectic B phase, the layer spacing
always decreases with increasing density. This is not so for the smectic A phase,
where depending on aspect ratio and persistence length it may in- or decrease,
in truth depending on whether the increase of the particles density is translated
into reduced layer spacing and/or increased in-layer density.

The remainder of this chapter is structured as follows. In Section �.� we de-
scribe ourmodel particles that we construct from overlapping, mutually repulsive
bead-spring chains. We also make explicit our simulation protocol and explain
how we identify the various liquid crystal phases in our simulation data. In Sec-
tion �.� we present the phase diagrams we obtain and show how the aspect ratio
and flexibility influence the phase transitions. In Section �.� we describe the in-
fluence of the phase transitions on the individual particle structure and smectic
layer thickness. We furthermore present a simple model based on Onsager the-
ory that explains the changes in the particle length as a function of density in the
isotropic and nematic phases in Appendix �.�. Finally, in Section �.�, we present
our most important conclusions.

�.� Methods and analysis

To study the equilibrium properties of semi-flexible rod-like particles, we perform
MD simulations on ���� particles modelled according to the description provided
in Section �.�. In our simulations we allow for chains consisting of n = ��, ��, ��,
and �� beads per chain. The corresponding aspect ratios L0/D in the limit of
zero pressure we find to be equal to L0/D =�.��, �.��, �.��, and ��.��. For every
aspect ratio we vary the bending stiffness ✓ to obtain a series of ratios of the
base contour length L0 and the persistence length Lp , L0/Lp = �.��, �.�, �.�,
�.�, �.�, and �.�. We perform isobaric-isothermal (NPT) simulations at various
pressures as described in Section �.�. Each simulation runs for ����� time units.
Our time unit is set by the LJ timescale (m/kBT )1/2D and we use time steps of ���3

in these units in our simulations, implying that our simulations run �⇥��7 time
steps. The relaxation times for temperature and pressure are �.�� and �.� time
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Figure �.�: Schematic representation of the liquid crystal phases found in aque-
ous dispersions of the rod-like fd virus [��]. The phase sequence with increasing
concentration is isotropic, nematic, smectic A, smectic B, columnar, and crystal.
The double pointed arrow indicates the preferential direction of the aligned par-
ticles, the director. We note that the precise structure of the crystal phase is
unknown.

units corresponding to about �� and ��� time steps, respectively. Approximately
��� configurations of every run are stored, in other words, one in every ��� time
units.

The initial configuration is that of the crystal phase, with all rod-like parti-
cles perfectly aligned, AAA stacked in �� layers of ��⇥�� particles each. That the
initial box is very elongated is sensible because it is approximately the �� lay-
ers times the length of the particles that themselves have a large aspect ratio.
In the isotropic phase the box elongation relaxes and on average becomes iso-
metric albeit that the box shape fluctuates considerably, in particular near the
isotropic-to-nematic phase transition. In the nematic phase the box can become
very much more elongated than the initial elongation. In the smectic and crys-
talline phase the box anisometry remains roughly equal to the initial one. If in
our simulations one box dimension drops below about one particle length we
discard the run.

The equilibrium configurations stored are used to calculate the usual order
parameters and the pair correlation functions of the collection of particles. The
order parameters quantify (i) the degree of orientation of the chains, given by the
nematic order parameter S2; (ii) the organisation in layers perpendicular to the
director, given by the smectic order parameter ⌧ ; and (iii) the hexagonal ordering
of the closest neighbours within the same layer, which is described by the bond
order parameter 6. See Section �.� for details. With these order parameters, the
isotropic, nematic, smectic A, columnar, and smectic-B or crystal phases can be
identified and distinguished. All these phases are schematically represented in
Figure �.�.

In the isotropic phase there is only short-range correlation between the po-
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Figure �.�: Order parameters as a function of the volume fraction � for aspect
ratio L0/D = ��.��, and flexibility L0/Lp = �.��. Indicated are, respectively the
nematic order parameter S2 (degree of alignment along the director), the smectic
order parameter (organisation in layers) ⌧ , and the bond order parameter 6 (in-
plane hexagonal organisation)

.

sitions and between the orientations of the chains, and S2 should be zero, but
need not be exactly that on account of finite size effects [��]. With the alignment
of the particles in the nematic phase, the order parameter S2 increases abruptly
when crossing the phase boundary, so it can be readily identified. The same is
true for the smectic and bond order parameters ⌧ and 6, allowing us to identify
the smectic A phase and the smectic B or crystal phase. See Figure �.�. Snapshots
of the various phases are given in Figure �.�. The smectic B phase differs from
the smectic A and crystal phases in that it does have (quasi) long-range in-plane
bond order but no actual long range positional order. The smectic A phase has
neither and the crystal phase has both long-range bond and positional order. We
cannot distinguish between the smectic B and crystal phase based only on cal-
culating the correlation function g lay

6 of the order parameter  6 due to the finite
size of the system. See Figure �.�. However, we can distinguish between them by
considering the in-layer pair correlation function glay of the centres of mass of
the chains [��, ��].

As can be seen in Figure �.� (a) and (b), there is a clear difference in glay(r )
between two states at different pressures with equal magnitude of the order pa-
rameters S2, ⌧ , and  6. Figure �.� (a) exhibits a split second peak in glay(r ), a
characteristic of a crystalline phase that the system with the pressure shown in
(b) does not have. We therefore associate the absence of peak splitting with the
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Figure �.�: Snapshots representing the arrangement of particles along the direc-
tor for the different phases observed in our simulations for aspect ratio L0/D =
�.�� and ratio of contour length and persistence length of L0/Lp = �.�. From
left to right with increasing density: isotropic, nematic, smectic A, smectic B, and
crystal. The colour of the particle is a combination of red, blue, and green, whose
intensities are respectively proportional to the x , y , and z components of the
orientation of the particle.

smectic B phase and assume the phase transition takes place when the second
peak in the pair correlation function splits. So, we use the splitting of the second
peak in glay(r ) as a proxy for distinguishing between the smectic B and the crystal
phase. Note that the smectic B phase that we identify in (b) has a much noisier
g lay
6 than that of the crystal phase of (a). The difference in structure of the crystal
and smectic B phase is also evident from the snapshots also presented in Figure
�.�.

In order to determine the crystal symmetry, we compare the pair correlation
function glay of the centers of mass of the particles. We distinguish four cases. In
the first, we calculate the pair correlation function for particles in the same layer.
In the second, we consider pairs of particle in consecutive layers. In the third
and fourth, the pair correlation function considers pairs of particle separated by
one and two layers. We expect that all pair correlation functions must be similar
for the AAA crystal structure, whilst the first and fourth should be similar for the
ABC structure. We observe neither of these patterns, implying that we cannot
pinpoint the exact crystal structure. A possible explanation for this is that the
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Figure �.�: (a) The bond order  6 correlation function g lay
6 (r ) (left) and the pair

correlation function glay(r ) (right) as a function of the reference particle distance
in units of D for particles with aspect ratio L0/D = ��.��, flexibility L0/Lp =
�.� and volume fraction � = �.��. The pair correlation function exhibits peaks
characteristic for a crystal phase and hence we identify it as such. (b) The same
for a volume fraction of� = �.��. The pair correlation function does not show the
characteristic crystal peaks. Hence at a volume fraction of � = �.�� the particles
must in the smectic B phase. Note that the bond order correlation shows a weaker
decay in the crystal phase in comparison to the smectic B. See also the main text.
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ordering between layers is not so well defined for semi-flexible particles. The
fact that we start off from an initial AAA structure that does not seem to survive,
we conclude that our simulations are not kinetically trapped.

�.� Phase behaviour

The phase diagrams of our particles are presented in Figure �.�. Recall that our
particles are semi-flexible, rod-like chains interacting via a soft-core, repulsive
potential. We present phase diagrams as a function of volume fraction and bend-
ing flexibility, ranging from L0/Lp = �.�� to �.� covering particles from near the
rigid-rod limit to semi-flexible chains, for four aspect ratios, L0/D = �.��, �.��,
�.��, and ��.��. We distinguish between the following phases: isotropic, nematic,
smectic A, smectic B and crystal (Figure �.�). For our set of parameters, we did not
encounter any evidence for the occurrence of a columnar phase. Based on what
we know on the phase behaviour of the fd virus, which does support a columnar
phase, we must conclude that our particles do not have a large enough aspect
ratio for this phase to appear in the phase diagram [��].

Focusing on the aspect ratio L0/D = �.�� first, representing the trends ob-
served for the other aspect ratios, Figure �.� tells us that all phase transitions
shift to larger volume fractions with increasing flexibility. The isotropic-nematic
transition increases approximately linearly with increasing degree of flexibility,
which for large persistence lengths is consistent with theory and Monte Carlo
simulations [��]. Both the isotropic-nematic and the nematic-smectic A transi-
tion are significantly impacted upon by any bending flexibility. Theoretically this
has been predicted to be the case albeit that these theories are typically valid
in the long-chain and/or large persistence length limits relative to the width of
the particles [��–��, ��, ��, ��, ��]. The result also agrees with previous simu-
lation by Bladon and Frenkel [��]. We find that the smectic A phase is strongly
destabilised by decreasing the chain stiffness, in line with results from earlier
computer simulations by Cinacchi and Gaetani on shorter rods and for smaller
box sizes [��].

For values of L0/Lp > �.� we find a direct transition from the nematic to the
smectic B phase, i.e., the smectic A phase disappears for large enough flexibili-
ties. We notice that the transitions between the nematic and the smectic B, the
smectic A and the smectic B, and the smectic B and the crystal phase are much
less sensitive to changes in particle flexibility, and in fact also to variations in
the aspect ratio. The smectic A phase is more stable for larger aspect ratios and
present in the phase diagram all flexibilities probed for the aspect ratio L0/D =
��.��. The transition from the smectic A or nematic to the smectic B, and that from
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Figure �.�: Phase diagrams as a function of the volume fraction � and flexibility
L0/Lp for rods with aspect ratios L0/D = �.��, �.��, �.��, and ��.��. Indicated
are the isotropic phase (green circles), the nematic phase (red stars), the smectic
A phase (blue diamonds), the smectic B phase (black squares), and the crystal
phase (purple triangles). Corresponding background colours are added to aid
identifying the various phases. The isotropic-nematic and the nematic-smectic
A phase transitions shift to higher volume fractions with increasing degree of
flexibility. Furthermore, the smectic A phase disappears above a critical aspect-
ratio, dependent degree of flexibility. The smectic A-smectic B or nematic-smectic
B and smectic B-crystal phase transitions shift to larger volume fractions with
increasing degree of flexibility albeit that the effect is relatively weak. The bars
placed at zero flexibility indicate the simulation results of Bolhuis and Frenkel for
infinitely rigid, hard spherocylinders for comparison [��].
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the smectic B to the crystal phase, are only very weakly dependent on the aspect
ratio and bending flexibility of the particles. This is not entirely unexpected, on
the one hand because the particles in these dense phases are almost perfectly
aligned, and on the other hand because the Odijk deflection length �Odijk = Lp•✓2¶
turns out to be of the order the width of the particles in those phases. This im-
plies that bending modes with smaller wavelengths cannot be suppressed and
that in this limit bending flexibility should be unimportant [��]. Practically, this
is true if the degree of alignment of particles, given by the nematic order param-
eter S , is larger than �-(�D )/(�LP). This happens to be the case for the smectic B
and crystal phases for the range of flexibilities that we cover.

Our simulation results are consistent with those of Bolhuis and Frenkel for
rigid, hard spherocylinders [��], represented in Figure �.� by the bars placed at
zero flexibility (L0/Lp ! 0). The agreement is even quantitative for less ordered
phases whilst for the highly ordered phases the phase transitions in Bolhuis and
Frenkel’s simulations shift to larger concentrations compared to ours. There are
several explanations for this. First, our rod-like chains are slightly compress-
ible. As we shall see in the next section, excluded-volume interactions cause the
chains to compress in particular in the phases where free volume become scarce,
so in the denser phases. Second, our particles interact through a soft-core inter-
action while the rigid rods of Ref. [��] interact via a hard-core potential. Third,
our simulation box is much larger than that of ���� study of Bolhuis and Frenkel.
Their particle number was at most ��� whilst in our case it is ����, suggesting
that finite size effects might also play a role in discrepancy.

Regarding the order of the transitions, we can only confirm that the transition
from the nematic or the smectic A to the smectic B phase is most definitely of first
order: we observe a clear jump in the density at the pressure where the transition
takes place (results not shown). We find the isotropic-to-nematic transition to
be weakly first order, if at all, but it seems to become more strongly first order
with increasing aspect ratio, to shift to lower concentrations and generally to
become more stable. This is in line with the computer simulations of Bolhuis
and Frenkel [��]. For the other transitions, we find that, if there are jumps, we
do not have the resolution to observe them. The experiments of, e.g., Grelet et
al. on aqueous dispersions of fd virus particles, which have a base aspect ratio
of ��� and an effective one of about ��, accounting for the electric double layer
of the particles, indicate that the nematic-to-smectic A transition is first order
[��, ��, ��]. The order of the transition from smectic A to smectic B for fd virus
remains unclear. Fd virus does not transition from smectic B to crystal but to a
columnar phase [��, ��]. We hypothesise that the large aspect ratio of the viruses
particles somehow stabilises the columnar phase. Indeed, end grafted polymers
onto the surface of the viruses make the effective aspect ratio smaller and these
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do not seem to support columnar phase [��].
Having discussed the macroscopic (thermodynamic) properties of our parti-

cles, we next investigate in more depth how the particles and the structure of the
more ordered phases respond to particle length and flexibility. Interestingly, we
find that the layer spacing in the smectic A phase may increase or decrease with
increasing concentration depending on flexibility and aspect ratio of the chain.
This increase of the layer spacing with increasing density is counter intuitive but,
as we shall see next, is somehow connected with the layer spacing.

�.� Microstructure

Our first probe of the microscopic structure of the various phases is the actual
contour length of the chains relative to the unperturbed contour length. This is
important because our particles are not only flexible but also slightly compress-
ible. Hence, we expect that with increasing particle density they should become
shorter in order to accommodate a decreasing free volume. This can be seen as a
drawback of our model particles but in fact allows us to address the question to
what extent particle flexibility impacts upon the excluded volume in the isotropic
phase, and, vice versa if and how excluded volume interactions impact upon the
effective particle bending flexibility.

In Figure �.�a, the contour length •L¶ is scaled to the reference contour length
L0 for the aspect ratio L0/D = �.�� as a function of the volume fraction and the
flexibility. The contour length decreases with increasing volume fraction in the
isotropic phase. This decrease does not depend on particle flexibility, suggesting
that volume exclusion in the isotropic phase is an invariant of the particle flex-
ibility, as has been presumed in the past [�, ��, ��, ��, ��]. We observe a small
but sudden increase of the contour length at the isotropic-nematic transition,
except for the most flexible chains for which the transition seems to become ei-
ther second or very weakly first order. (We note that both the insensitivity of the
excluded volume to chain flexibility in the isotropic phase and the lengthening
of the rods in crossing over to the nematic phase was observed by Wilson, using
a very different flexibility model in his simulations [��].)

Arguably, the reason for this jump is an increased free volume caused by
the alignment of the particles in the nematic phase [�]. This confirms that the
transition is first order albeit more weakly so for the more flexible chains. In
the nematic phase, the contour length decreases with increasing concentration,
again because of the decrease in free volume with increasing concentration. A
much stronger jumpwe find on going from the nematic or smectic A to the smectic
B phase. Simple second virial calculations presented in the Appendix �.� confirms
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the observed trends for the isotropic and nematic phases, explaining also the
jump in length.

In Figure �.�b, the end-to-end length •Lete¶ is scaled to the measured contour
length •L¶ for aspect ratio L0/D = �.�� as a function of the volume fraction and
the flexibility. In the isotropic phase, this end-to-end length apparently depends
only on the ratio L0/Lp . It depends weakly on the concentration except for the
most flexible chains and then only near the isotropic-to-nematic phase transition.
This we argue is again caused by the excluded-volume interactions not being af-
fected by particle flexibility. Our measured values for the relative end-to-end
length are in very good agreement with prediction given by the worm-like chain
model, also indicated in the figure. This confirms that our estimate of the persis-
tence length for our model chains is accurate. In the liquid crystalline phases the
end-to-end distance does depend on the concentration and more so the more
flexible the particles. This can straightforwardly be understood by realising that
a combination of persistence and the molecular ordering field attenuates the
bending fluctuations [��, ��] . The latter becomes stronger the larger the particle
density. The same is true for the remaining phase transitions as in fact we already
alluded to in the previous section.

Perhaps the most interesting structural feature is how the average smectic
layer thickness depends on the contour length and persistence length of the par-
ticles, that we calculate from the recipe of Ref [��]. In practice, the layer thickness
corresponds to the layer height (approximately the rod length) plus the spacing
between layers. This is shown in Figure �.�. For all cases, we find that transition-
ing from the smectic A to the smectic B phase, the layer spacing increases. We
speculate that this is due to the larger degree of in-layer packing possible in the
more strongly ordered smectic B phase. In essence, this is caused by an increase
in free volume. Depending on the aspect ratio and flexibility, we observe that the
layer spacing in the smectic A phase itself may in- or decrease with increasing
concentration. This is not so for the smectic B and crystalline phases. It seems
that in the smectic A phase, increasing the particle density may translate into
a more or less proportional increase in in-layer density. If the in-layer density
increases more strongly than the average density, then the layer spacing must
increase. Because of the appreciable scatter in the data, we have not been able
to find a clear trend. We also have no explanation for this phenomenon.

We notice that measurements of the concentration dependence of the layer
thickness of smectic A and smectic B phases of the fd virus show approximately
linear decrease of the layer spacing with increasing concentration [��]. This in-
deed is what we obtain for our longest particles. The jumps in layer spacing that
we find at the smectic A-to-smectic B phase transition are not observed in the ex-
periments on fd viruses. In addition, the actual layer spacings scaled to particle
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Figure �.�: (a) The average change in contour length of the chains (•L¶ � L0)/L0
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Figure �.�: The scaled smectic layer thickness d/•L¶ versus density � for various
aspect ratios L0/D . We calculate the layer thickness using the recipe of Ref [��].
In practice, the layer thickness corresponds to the layer height (rod length) plus
to the spacing between layers. The symbols are introduced in Figure �.�. The
smectic layer thickness is scaled to the measured average contour length of the
particles •L¶ at that volume fraction. Note the sizeable jump in the layer thickness
at the smectic A-to-smectic B phase transition. Furthermore, the layer thickness
decreases as a function of the volume fraction in for the smectic B and crystal
phases. For the smectic A phase, the relation between layer thickness behaviour
and particle density depending on the aspect ratio and flexibility.
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lengths are also smaller for fd viruses than for the particles in our simulations.
On the other hand, we should not expect quantitative agreement with measure-
ments on fd virus solutions on account of their much larger aspect ratio.

�.� Discussion and conclusions

We preform molecular dynamics simulations to study the influence of flexibil-
ity and aspect ratio on the phase behaviour of purely repulsive, rod-like parti-
cles. Our particles have aspect ratios between � and ��, and ratios of the contour
length over the persistence length between �.�� and �.�, i.e., we cover the range
from very stiff to slightly flexible particles. By measuring the nematic, smectic
and bond-order parameters and analysing correlation functions, we are able to
distinguish five different phases. In order of increasing volume fraction these in-
clude isotropic, nematic, smectic A and B, and crystal phases. Of those phases
we probe the structure of the particles and their arrangement, in particular in the
smectic and crystalline phases.

In agreement with theoretical predictions and previous simulations, we con-
clude that the isotropic-nematic and nematic-smectic A phase transitions are
sensitive functions of the aspect ratio and the flexibility of the particles. For the
former, the larger the aspect ratio, the lower the volume fraction at the transition.
For the former and the latter, the larger the flexibility, the larger the volume frac-
tion at the transition. In fact, the smectic A phase disappears for sufficiently large
ratio of the contour length over the persistence length, which is a measure for the
bending flexibility of the particles. The transitions to the other, more highly or-
dered phases we find to be much less influenced by both the aspect ratio and the
flexibility of the particles.

On increasing the concentration and going from the isotropic phase through
the various liquid-crystalline phases to the crystal phase, we find that the end-to-
end distance of the particles increasingly approaches their contour length. This
is not entirely surprising because the more strongly ordered the phase, the more
bending fluctuations are suppressed. In fact, we find, at least for our model bead-
chain particles, that bending fluctuations are essentially completely suppressed
in smectic B and crystalline phases, explaining the insensitivity of their stability to
the persistence length. In other words, the particles in those phases are stretched
to their contour length and resemble rigid rods.

The layer spacings that we find in the smectic A, smectic B, and crystal phases
exceed the contour length of the particles. Interestingly and counter intuitively,
these layer spacings need not decrease with increasing concentration of parti-
cles, at least not in the smectic A phase. We find that depending on aspect ratio
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and flexibility the spacing may actually increase. This is possible provided the
increasing concentration is more than compensated for by an in-layer density
increase. We verified this and, not surprisingly, this turns out to be the case in
our simulations. We have not been able to pinpoint under what conditions this
happens and also do not have an explanation for this phenomenon. Connected
to this, we also find that the layer spacing increases upon going from the smectic
A to the smectic B phase. This, arguably, is caused by the increase in free volume
across the transition. The layer spacing in the smectic B and crystalline phases
does behave as expected, that is decrease with increasing concentration.

If we compare our phase diagrams with that of fd viruses in aqueous solution
then all phases are reproduced, except for the columnar phase that for fd viruses
occurs for concentrations in between the smectic B and crystal phases are stable.
Of course, our particles are much shorter and perhaps it is this that suppresses
the columnar phase in our simulations. The existence of the columnar phase in
dispersions of monodisperse rod-like particles remains somewhat enigmatic and
has been subject of a lot of debate in the literature [��]. It has been suggested
that explicit modelling of electrostatic interactions stabilises that phase albeit
that we cannot exclude the possibility that it is a question of a combination of
flexibility and large-enough aspect ratio [��]. The challenge is to reach aspect
ratios large enough to investigate this hypothesis.

�.A Onsager theory of linearly compressible hard rods

We observe in our simulations the contraction of the average contour length of
the chains for increasing volume fractions on account of their finite extensional
compressibility. At the isotropic-nematic phase transition there is also a dis-
continuity in their contour length, with the particles in the nematic phase being
slightly longer. A similar discontinuity occurs at the phase transition towards the
smectic-B-crystal phase. These two observations can be rationalised with theo-
retical predictions we obtain by applying Onsager theory to extensible rods, ex-
tending earlier work describing the impact of a compressible polymer grafted to
the surface of the rods [��].

To this end we consider a system of N bead-spring chains in a volumeV at
temperature T . Each rod consists of n beads connected with n � 1 harmonic
bonds with elastic constant  and rest length r . Each chain has total rest length
L0 = (n � 1)r and diameter D . The contour length L changes with the concen-
tration of the dimensionless concentration c = B iso

2 ⇢ with ⇢ = N /V the num-
ber density of particles and B iso

2 ' (⇡/4)L2D the second virial coefficient of the
rods in the isotropic phase . The free energy F can be written as a function of
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the orientational distribution function f (⌦) and the compression of the chain
x = L/L0:

F [f ]

NkBT
= A + ln c + �[f ] + c⇢[f ]x 2 + K (x � 1)2, (�.�)

where A is a constant, ln c is the ideal gas distribution, �[f ] is the orientation
entropy, c⇢[f ]x 2 is the packing entropy, andK (x�1)2 is relatedwith the potential
energy of the harmonic springs with

K =
L2

0

2(n � 1)kBT
. (�.�)

The third and fourth terms mentioned previously are given by the expressions

�[f ] =

Z
f (⌦) ln (4⇡f (⌦))d⌦ (�.�)

and
⇢[f ] =

4

⇡

Z
` sin �`f (⌦)f (⌦0)d⌦d⌦0, (�.�)

where ` sin �` is the angle between the rods with orientation ⌦ and ⌦0.
In the isotropic phase, the normalised distribution function is f (⌦) = 1/4⇡ ,

resulting in an orientational entropy �[f ] = 0 and a packing entropy ⇢[f ] = 1.
The free energy for the isotropic state becomes

F iso

NkBT
= A + ln c + cx 2 + K (x � 1)2. (�.�)

The equilibrium condition for x , @
@x


F iso

NkBT

�
= 0, leads to the compression in the

isotropic phase

x iso =
K

c + K
. (�.�)

For the nematic phase, we follow a similar procedure as Odijk [��]. We assume
the orientational distribution function to be Gaussian and obey cylindrical and
inversion symmetry:

f (✓) =
8>><>>:
↵/4⇡ exp

�
�↵✓2/2

�
, if 06✓ 6 ⇡/2

↵/4⇡ exp
�
�↵(⇡ � ✓)2/2

�
, if ⇡/2 < ✓ 6 ⇡

, (�.�)

where the normalisation is only accurate for ↵ � 1. For this distribution we have
for the orientational entropy �[f ] ⇠ ln↵ � 1 and for packing entropy ⇢[f ] ⇠
4/
p
↵⇡ [��]. The free energy for the nematic state is then

F nem

NkBT
= A + ln c + ln↵ � 1 +

4cx 2

p
↵⇡

+ K (x � 1)2. (�.�)
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From this expression we find equilibrium values ↵ = 4c2x 4/⇡ and

x nem =
1

2
+

r
1

4
�

2

K
. (�.�)

For x nem there is also a negative root solution that we ignore for it being physi-
cally unrealistic. For K ! 1, x nem = 1. For K < 8, the compression becomes
imaginary, meaning that the nematic phase becomes unstable.

Equations �.� and �.� describe the behaviour of themean length of our chains
in the isotropic and nematic phases. We now calculate the coexistence con-
centration. Coexistence between two phases occurs when the osmotic pressure
⇧ = �(@F /@V )N ,T and chemical potential µ = (@F /@N )V ,T are equal for both
states, µ iso = µnem and ⇧iso = ⇧nem. From these equations we calculate the coex-
istence concentrations for the isotropic c iso and the nematic phase cnem.

We now add flexibility to our model to study how it affects the discontinuity
in the average length of the chains at the isotropic-nematic phase transition. Our
starting point is the expression derived by Odijk [��, ��] are inspired by the work
by Khokhlov and Semenov [��, ��] describing the orientational entropy for semi-
flexible particles, L/LP ⌧ 1. For the isotropic phase there is no change of the
orientational entropy. For the nematic phase there is the extra term L0↵x/4LP ,
then the orientational entropy is

� = ln↵ � 1 +
L0↵x

4LP

. (�.��)

With this new orientational entropy, the free energy for the nematic phase
becomes

F nem

NkBT
= A + ln c + ln↵ � 1 +

L0↵x

4LP

+
4cx 2

p
↵⇡

+ K (x � 1)2. (�.��)

Solving the equilibrium value for ↵ and x we obtain the compression of the chain
as a function of the dimensionless concentration. These and the coexistence
concentrations are calculated numerically.

Finally, we compare the simulations with the model calculations. We specif-
ically perform the calculations for K = 150 and for flexibilities L0/LP = 0, �.��,
�.�, �.�, �.�, �.� and �.�, as can be seen in Figure �.�. These values coincide with
the simulated values, except L0/LP = 0, the rigid rod limit that we did not simu-
late. We find similarities between these results and our simulation results. First,
the decrease of the average length of the chain with increasing concentration for
both isotropic and nematic phase. Second, the discontinuity in an average length
decreases with the increase of the flexibility. There are some differences though,
such as the curvature of the lines, straight for our calculations but curved for our
simulations. This may be due to one second virial approximation which is not
expected to be accurate for rods of aspect ratio below ��� [��].
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Figure �.�: Scaled average length of the chains x = L/L0 as a function of the
dimensionless concentration c , for K = 150 and flexibilities L0/LP = 0, �.��, �.�,
�.�, �.�, �.� and �.�. The green dashed line represents the isotropic phase, the
red lines represent the nematic phase, and the black dots connect the points of
coexistence.

Acknowlegments

We thank Eric Grelet for critical reading of the manuscript of the article that is
the base for this chapter.

��



��



Chapter �

Self-organisation of
tip-functionalised elongated particles

Weakly attractive interactions between the tips of rod-like colloidal particles af-
fect their liquid-crystal phase behaviour due to a subtle interplay between en-
thalpy and entropy. In this chapter, we employ molecular dynamics simulations
on semi-flexible, repulsive bead-spring chains of which one of the two end beads
attract each other. We calculate the phase diagram as a function of both the vol-
ume fraction of the chains and the strength of the attractive potential. We iden-
tify a large number of phases that include isotropic, nematic, smectic A, smectic
B and crystalline states. For tip attraction energies lower than the thermal en-
ergy, our results are qualitatively consistent with experimental findings: we find
that an increase of the attraction strength shifts the nematic to smectic A phase
transition to lower volume fractions, with only minor effect on the stability of the
other phases. For sufficiently strong tip attraction, the nematic phase disappears
completely, in addition leading to the destabilisation of the isotropic phase. In
order to better understand the underlying physics of these phenomena, we also
investigate the clustering of the particles at their attractive tips and the effective
molecular field experienced by the particles in the smectic A phase. Based on these
results, we argue that the clustering of the tips only affects the phase stability if
lamellar structures (“micelles”) are formed. We find that an increase of the attrac-
tion strength increases the degree of order in the layered phases. Interestingly, we
also find evidence for the existence of an anti-ferroelectric smectic A phase transi-
tion induced by the interaction between the tips. A simple Maier-Saupe-McMillan
model confirms our findings.
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�.� Introduction

Elongated colloidal particles form additional phases under conditions in between
thosewhere thewell-known isotropic (disordered) and crystalline (ordered) phases
are found [�–�]. The particles are invariably aligned but have no or only par-
tial (short-range or quasi long-range) positional order in these phases and, for
this reason, are called liquid-crystalline phases. The phase transitions are driven
primarily by entropy, as theoretical, simulation, and experimental studies have
shown [��–��, ��–��]. More recently, the use of selective surface functionalisa-
tion of elongated colloidal particles has opened up an interesting novel path of
investigation, allowing us to modify the self-assembled liquid-crystalline phases
and/or to manipulate their stabilities [��]. For example, such particles have been
explored in the synthesis of functional materials including nanowires and batter-
ies [�–��], and in the investigation of specific structure formation such as mul-
tipods, tubes, and bottle brushes [��–��, ��]. Nevertheless, studies concerning
how a relatively weak and highly local surface modification affects the phase se-
quences for a wide range of concentrations, as well as particles characteristics
such as aspect ratio and bending flexibility, remain scarce.

A good example of functionalised elongated colloids is the recent work by
Repula et al. using filamentous M�� virus particles [��], which measure � µm in
length, �nm in width and which have persistence length of about � µm. In their
experiments, the M�� virus has its terminal (P�) protein modified, allowing for
the attachment of red dye molecules to one of the tips of these polar particles.
The procedure results in a controllable, attractive, single-end local interaction
in what was previously a purely repulsive rod. From previous work, we know that
the complete phase sequence of suspensions of such viruses comprises isotropic,
nematic, smectic A, smectic B, columnar, and crystalline phases [��]. Interestingly,
the surface modification seems to affect only one of various phase transitions:
the nematic-smectic A phase transition is influenced by the number of red dye
molecules grafted to the virus tip, stabilisesing the latter phase. For the purpose
of understanding the reason for this, we investigate how a weakly attractive tip
modifies the liquid crystalline behaviour of repulsive, semi-flexible rod-like par-
ticles using computer simulations.

In this chapter, we present the calculated phase diagram of such particles as
a function of both the concentration and the attraction strength between tips,
demarcating two regimes. In the first regime, in which the strength of the tip-
tip interaction corresponds to energies lower than or comparable to the thermal
energy, our results are qualitatively consistent with the experimental findings
[��]. In the second regime, corresponding to slightly stronger attractive energies,
we find interesting effects including the complete suppression of the nematic
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phase and the destabilisation of the isotropic phase. Additionally, we address in
this paper several other topics regarding the microstructure of the phases, such
as: (�) qualitative and quantitative aspects of the supramolecular aggregation
due to the presence of the attractive tips in the various phases; (�) the response
of the interlayer distance and the molecular field for the various concentrations
and attraction strengths between the tips in the smectic and crystalline phases;
(�) evidence for the existence of an anti-ferroelectric smectic A phase induced by
the interaction between the ends.

Related to the anti-ferroelectric smectic A phase, note that the bilayer struc-
ture is anti-ferroelectric in �-dimension. In �-dimensions or, in other words, within
a smectic layer, the structure is ferroelectric. We make an analogy with ferroelec-
tricity instead of ferromagnetism for historical reasons. The term was previously
employed in the literature of liquid crystals, referring to compounds that form
bilayer structures in the smectic A phase [��]. The term (anti-)ferromagnetism is
usually restricted to magnetic phenomena, while (anti-)ferroelectricity is more
liberally used, referring to various types of polar phenomena [��]. We note in this
context that the existence of an anti-ferroelectric phase of end-functionalised
hard rods with double periodicity was anticipated long ago by Jackson and co-
workers by means of density functional theoretical calculations [��]. We also
present a simplemodel based on theMaier-Saupe-McMillan theory that describes
the phase transition within the smectic A phase and that qualitatively explains
our simulation results.

The remainder of this paper is structured as follows. We describe themethods
and model particle employed in our computer simulations as well as the data
analysis procedure in Section �.�. In Sections �.� and �.�, we present the results
followed by a discussion. These sections are devoted to the phase behaviour
and the microstructure of the phases. In Section �.�, we compare our results with
experimental findings. In Section �.�, we present ourmost important conclusions.
Finally, in the Appendix �.�, we present our Maier-Saupe-McMillan theory for end-
functionalised, perfectly parallel rods.

�.� Methods and analysis

Model particles -Wemodel the semi-flexible rod-like particles as the bead-spring
chains of b overlapping beads of diameter D and mass m , similarly to the parti-
cles described in details in Chapter �. Nevertheless, here, the b-th bead in a chain
is not identical to the other beads. The single-end attractive interaction is mod-
elled using a second type of bead at one of the ends of every chain, represented
in red in the snapshots of our simulations (Figure �.�). These beads interact with
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each other via the full Lennard-Jones potential, ULJ = 4✏[(R/D )�12 � (R/D )�6],
with various values of ✏ >�. Notice that because only one end of every chain
is sticky, the chains are polar and lack inversion symmetry. Also for the parti-
cles employed in this study, we refer to the mean aspect ratio at very low densi-
ties, L0/D , to characterise our particles. We quantify the particles’ flexibility by
the ratio of the dilute-solution contour length and the persistence length, L0/LP.
Simulations are performed for chains of aspect ratio L0/D = ��.�� and flexibility
L0/LP = �.�. The aspect ratio chosen gives us a reasonable compromise between
equilibration time and particle number in simulations at high concentrations. The
flexibility matches the one of the experimental model particles mentioned earlier
[��]. More details are given in Section �.�. We perform preliminary simulations
on somewhat shorter and stiffer chains of L0/D = �.�� and L0/LP = �.� (results
not shown). The only impact aspect ratio seems to have is that the volume frac-
tions at which the various phase transitions take place decreases as the aspect
ratio increases, as in fact expected from the previous study presented in Chapter
�. The same is true for the effect of bending flexibility, which increases the vol-
ume fraction at which the various phase transitions occur. Hence, we focus our
presentation in this work on results for the longer particles.

Molecular dynamics (MD) - We perform MD computer simulations using the
Nosé-Hoover thermo- and barostat on ���� bead-spring chains in a box in or-
der to obtain structural properties of the tip attractive rod-like particles, also as
described in Chapter �. Our simulations run for ����� time units that, in phys-
ical quantities, correspond to

p
mD 2/✏0. We employ time steps of ���3 in these

units, in other words, a total of �⇥��7 time steps. We save configurations every
�⇥��5 time steps. The results we present in this paper are from expansion simu-
lation runs starting from a crystal-like configuration, which we describe in more
detail in the paragraph below. The discussion relative to the compression runs
for the particles without attractive end tips for all phase transitions identified is
presented in the previous Chapter.

Initial configurations - For the expansion simulation runs, we consider diverse
variations of the crystal-like initial configurations corresponding to how our po-
lar particles are oriented. In all configurations, the particles are organised in ��
AAA stacked layers. In each layer, particles are organised in a hexagonal lattice
and aligned parallel to z -direction. For this reason, if particles in our simulations
have a preferential direction, which is described by the director n, this is usually
approximately parallel to the z -direction, n k ẑ. In the first type of initial con-
figuration, all attractive beads are in the upper tip of the particle. Even though
our simulation time is relatively long, it is not sufficiently long to equilibrate the
system at all concentrations. In other words, in the more condensed phases, we
do not reach �:� chains up and down relative to the director. In the second type
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of initial configuration investigated, the attractive beads alternate between the
upper and the bottom tip within the same layer. In the third type of initial config-
uration tested, half of the layers have the attractive groups in the upper tip and
the other half have the particles’ attractive bead in the bottom tip. These layers
alternate in a way that this third configuration has a bilayer type of structure. The
latter two initial configurations result in structures with fewer or no defects at all.
Hence, in the following sections, we present the results from the simulations in
which the third type of initial configuration is used. See in Figure �.� the schematic
representation of the three initial configurations followed of a snapshot from the
preliminary simulations (in which our particles have an aspect ratio L0/D = �.��
and a flexibility L0/LP = �.�) after �������� timesteps at approximately con-
stant volume fraction � = �.�� (at a fixed pressure �.� ✏/D 3) for the attraction
strength of �.� kBT .

Phase classification - Our equilibrium configurations are classified using or-
der parameters and correlation functions. The liquid-crystalline phases we first
distinguish from the isotropic phase by quantifying the degree of alignment of
the particles through the usual nematic order parameter. A second order pa-
rameter quantifies the organisation of the particles in layers. If layers are not
formed, we have either a nematic or a columnar phase. If layers are formed, we
have either smectic or crystalline phases. A third order parameter quantifies the
hexagonal bond order. This procedure, described in detail in Chapter �, allows
us to distinguish between nematic and columnar, and between the smectic A and
the smectic B and crystal phases. This final classification is possible by studying
the correlation of the bond order (measuring two-dimensional hexagonal order)
and the pair correlation function (probing radial in-plane positional order). Us-
ing this procedure, we are able to distinguish between all known phases of the fd
virus suspensions, mentioned in Section �.�. We also identify two distinct smec-
tic and crystalline phases due to the attraction between the functionalised tips.
The procedure to distinguish between them we describe below in the paragraph
dealing with the anti-ferroelectric phase transition.

Aggregation statistics - Further analysis is required in order to study the
structure of supramolecular assemblies in all phases, in particular in the lay-
ered phases where the spacing is expected to be influenced by (i) the attraction
strength between tip beads and (ii) the concentration of the particles. We quan-
tify the aggregation of the particles by focusing on cluster sizes. By cluster we
refer to groups of attractive tip beads that are spatially close or connected by a
bead satisfying this criterion. We arbitrarily choose a distance rc . The first choice
for rc is �.��D . This value corresponds to the second root of a parabola, whose
minimum is at the minimum of the Lennard-Jones potential and the first root co-
incides with the root of this potential. If pairs of attractive tip bead are closer
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Figure �.�: Schematic representation of the initial configurations and snapshots of
resulting configurations after �������� timesteps of simulations starting from
each of them at approximately constant volume fraction� = �.�� (at a fixed pres-
sure �.� ✏/D 3) for the attraction strength of �.� kBT . In the initial configuration in
(a), all particles have the same orientations, in (b), particles alternate orientation
within the same layer, and in (c), all particles have the same orientation within
the layer, but the orientation alternate from consecutive layers.
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than this distance, we consider them as belonging to the same group. Note that
not all beads in a group need to be closer than rc , as some can be connected
indirectly via other attractive beads, as represented in the inset of Figure �.�, in
Section �.�.

Anti-ferroelectric phases - Due to the polarity of our molecules, we identify
two types of organisation in the layered phases: one in which the attractive tip
beads are present in roughly equal numbers in every interlayer spacing and an-
other in which the attractive tip beads aremostly present in every other interlayer
spacing, creating a bilayer structure with double the periodicity of that of the lay-
ers. In order to pinpoint the transition between these two states within our phase
diagram, we project the particle orientations on a vector along the director. We
define the orientation vector of the particles connecting the repulsive end bead
to the attractive end bead. The two extreme situations are: (�) the rods are in a bi-
layer type of configuration and, as a result, all particles within a layer are either
parallel or anti-parallel to a vector along the director; (�) the ratio between par-
allel and anti-parallel particles to the same vector within a layer is �:�. For these
cases, if the fractions of particles in a particular orientation in even and odd lay-
ers are respectively f = 0 and �.�, then the anti-ferroelectric order parameter
is defined as � = �-�f . We choose the value � = �.� as a criterion to classify
the phases as the usual smectic A (� < �.�) or the anti-ferroelectric smectic A2
(� > �.�). The same procedure is applicable to the smectic B and crystalline
phases, whose corresponding anti-ferroelectric phases are denoted smectic B2

and crystalline2 phases. From snapshots of our simulations, we find that even at
the lowest attraction strength investigated, the smectic B and crystalline phases
are anti-ferroelectric.

Layer thickness - We utilise two different procedures to calculate the inter-
layer distance in the layered phases. As a first procedure, we take the value that
maximises the Fourier component of the normalised distribution of centre of
masses along the director [��]. This does not differentiate between the layers
regarding the fraction of particles pointing up. Because there are two types of
smectic A phase, we expect that the interlayer distance is different if in their in-
terface there are mostly attractive or repulsive tips. In order to measure this
difference in the bi-layered phase, we plot the histogram of counts of the centre
of mass for each (arbitrary) interval of positions along the director. In the lay-
ered phases, the distribution of the centres of mass of the particles along the
director is peaked around the centres of the layers. Hence, we fit a Gaussian
function to each counting of the centre of mass divided by the maximum count,
gj (z ) = e�bj (z�aj )

2
, where e is the usual Euler constant. The parameter bj is re-

lated to the standard deviation s of the Gaussian function by bj = �/�s 2 and de-
scribes how well-ordered the layers are. The centre of the Gaussian distribution
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aj corresponds to the position of the j -th layer along the director. The distance
between two consecutive layers is then calculated as �j = aj+1 � aj . Beyond
the anti-ferroelectric transition, the values of �j with odd j correspond to the
distance between layers in which there are more attractive tips than tails facing
each other. For this reason, the average value �odd is expected to be lower than
�even beyond the anti-ferroelectric transition; �even is then the average over the
values �j with even j and over the equilibrium configurations for a given pressure.

Smectic ordering potential - The smectic ordering potential �U (z ) describes
themolecular field experienced by each individual particle in the smectic A phase.
It is obtained from the distribution of the particles’ centres of mass along the z -
direction, which corresponds approximately to the director n, ⇢(z ). More specif-
ically, the relation ⇢(z ) / e��U (z )/kBT holds by virtue of assuming a Boltzmann
distribution. We fit this relation to the simulation data to extract �U (z ). From
the smectic ordering potential, we compare between various attraction strengths
and volume fractions how well-defined the layers are and how difficult it is for a
particle to hop from layer to layer. We quantify it by measuring the difference be-
tween the highest and lowest value of the smectic ordering potential �U , which
defines the height of the smectic ordering potential h�U , for several values of the
attraction strength and volume fraction. We also estimate the width of the smec-
tic ordering potentialw�U by calculating the full width at half maximum of ⇢(z ),
using the standard deviation s of the gaussian function described in the previous
paragraph, givingw�U = 2

p
2 ln 2s .

�.� Phase behaviour

We focus attention on the phase behaviour of semi-flexible rod-like particles that
have an aspect ratio of L0/D = ��.�� and a flexibility of L0/Lp = �.�. The flexibil-
ity of our model particles matches that of the M�� virus investigated in Reference
[��] albeit that the aspect ratio of our particles is considerably shorter by a factor
of ��. Actually, the effective aspect ratio of the viruses, accounting for the electric
double layer of theM�� particles, is about three times our aspect ratio. We choose
to simulate shorter particles, because it enables us to investigate them for a wide
range of concentrations, keeping the same number of particles in our simulation
box and the total simulation time. In general, as the aspect ratio of the particles
is reduced, the phase transitions of their suspensions are shifted to larger vol-
ume fractions because the excluded volume interaction is less anisotropic. Still,
both experimental and simulation particle models support the same phases ex-
cept for the columnar phase, which has not yet been observed in particle-based
simulations involving monodisperse particles [��, ��, ��, ��]. Therefore, we are
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Figure �.�: Calculated phase diagram of repulsive, rod-like particles that have
a single attractive tip as a function of the attraction strength between the end
tips (in units of thermal energy) and the volume fraction �. The particles have a
base aspect ratio L0/D = ��.�� and flexibility of L/LP = �.�. (See main text.) The
following phases are identified: isotropic (orange circle), nematic (yellow square),
smectic A (green triangle up), smectic A2 (dark green triangle down), smectic B
(blue diamond), smectic B2 (dark blue diamond), crystalline (purple pentagon)
and crystalline2 (dark purple pentagon). Snapshots of the data points highlighted
by red circles in the phase diagram are presented in Figure �.�.
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able to compare them in what is our main interest in this paper: the increase of
the stability of the smectic A phase at the expense of the nematic phase.

In the phase diagram presented in Figure �.�, the phase sequence at the zero
attraction strength, ✏ = � kBT , is taken from our previous work [��]. See also
Chapter �. In this case, the particles are purely repulsive and have the same total
number of beads as the particles with an attractive tip. Note that as they are
not equipped with the attractive bead these rods are not polar. For these purely
repulsive particles, the phase sequence consists of the following phases from
lower to higher volume fractions: isotropic, nematic, smectic A, smectic B, and
crystalline phases. From these simulations, we find that the isotropic-to-nematic
and the smectic A-to-smectic B phase transitions seem to be of the first order.
The smectic B-to-crystalline phase transition appears to be continuous, while
the nematic-to-smectic A phase transition is either continuous or weakly first
order. In the recent work of Milchev et al., in which very large-scale simulations of
semi-flexible particles are performed, the latter transition is continuous [��]. For
the model particles described in the methods section, we vary the depth of the
attraction well ✏ of the Lennard-Jones potential between the beads representing
the functionalised tips of the viruses, that is, the attraction strength, from �.� to
� kBT . The calculated volume fraction is within the range of approximately �.�
to �.�. In order to obtain more resolution in volume fraction near the isotropic-
nematic transition, we perform additional simulations for the attraction strengths
� and �.� kBT near the transition. We do likewise for the nematic-smectic A and
isotropic-smectic A phase transitions for the attraction strengths �.� and �.� kBT .
We separate our discussion of the phase diagram in the next two paragraphs,
related to the low- and a medium-energy regime of the single-end, attractive
interaction on account of the qualitative difference in behaviour.

Lower attraction strengths - For values of the attraction strength up to about
� kBT , our simulations show that there is no significant change in the isotropic-to-
nematic phase transition. Comparing the sequences at � and � kBT , which is the
one withmore resolution in volume fraction in this regime of attraction strengths,
we find that the largest and lowest volume fractions in which these phases are
stable in our simulations (corresponding to the coexistence concentrations) co-
incide. For this reason, the isotropic-to-nematic phase transition remains first
order. We find that the nematic phase is destabilised in favour of the smectic
A phase and that this phase transition becomes more strongly first order as the
strength of the attraction interaction is increased. These findings are consistent
with the recent experimental observations on aqueous suspensions of M�� virus
[��]. Our most remarkable finding is an anti-ferroelectric phase transition within
the smectic A phase. We identify the new smectic A2 phase, characterised by a
bi-layer type structure, in our phase diagram at �.� kBT and higher attraction
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strengths, depending on the density. Section �.� provides more details about the
anti-ferroelectric transition, which in our simulations is continuous. There are
also anti-ferroelectric smectic B and crystalline phases. In fact, even at the low-
est attraction strength investigated, we find only the anti-ferroelectric smectic B2

and crystalline2 phase, suggesting that only tiny interaction energies are required
to stabilise these. We did not attempt to pinpoint at what low value of ✏ the tran-
sition happens for these phases. As for the other phase transitions, we find that
there is no significant change in the smectic A or smectic A2 to smectic B2 phase
transition. Furthermore, the smectic B2 phase destabilises with increasing value
of ✏ and the crystalline2 phase becomes more stable at lower volume fractions.
We understand that the suppression of the smectic B2 phase is due to the in-
creased ordering of particles due to the sticky end groups, as we shall see below
when discussing the changes in the microstructure of the phases with increas-
ing attraction between the tips. Note that, despite the distinct polarity caused
by single sticky end, this fundamentally does not allow for macroscopically polar
phases as the sticky ends attract each other.

Higher attraction strengths - In order to investigate the effect of larger attrac-
tion energies between the end groups, we performed simulations for attraction
strengths up to � kBT . The phase sequence at �.� kBT follows the trends described
in the previous paragraph. For this reason, the coexistence concentrations (vol-
ume fractions) of the nematic and smectic A2 phases are even lower and the dif-
ference between them (the phase gap) becomes larger. For stronger attraction,
the smectic B2 disappears, and as a result the smectic A2-to-smectic B2 phase
transition is replaced by a smectic A2-to-crystalline2 transition. This transition
seems to be independent of the attraction strength and the phases have similar
coexistence volume fractions as the transition at lower values of the attraction
strength. Between attraction strengths �.� and �.� kBT , we find that the nematic
phase is completely suppressed in favour of the smectic A2, thus also affecting the
stability of the isotropic phase. Therefore, the phase sequence at the highest at-
traction strengths �.� and � kBT consist of only three phases: isotropic, smectic A2,
and crystalline2. From these results, we find that the isotropic phase may also be
further destabilised with increasing attraction strength between the tips. A simi-
lar transition between an isotropic and a smectic A phase with additional double
periodicity was found in simulations of hinged rods for a model of gapped DNA
complexes [��]. These authors dubbed this phase the Sm-fA, where the f stands
for folded because the rods are folded at the hinge, creating this additional dou-
ble periodicity of the position of the hinges in the structure. From the simulations
at increased resolution, we are able to conclude that the isotropic-nematic phase
gap in volume fraction is about �.�� for the attraction strength of � kBT and only
slightly larger than that for �.� kBT , corresponding to approximately �.��. There-
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fore, the order of this phase transition does not seem to be strongly affected
by the attractive end aggregation. On the other hand, the nematic-smectic A2,
as previously discussed, and isotropic-smectic A phase transitions become more
strongly first order with an increase of the attraction strength, as we find from
the more detailed sequences at the attraction strengths of �.� and �.� kBT .

The phase diagram presented here compares reasonably well with the phase
diagramobtained from the numerical solving of our simpleMaier-Saupe-McMillan
model for end-functionalized, perfectly parallel rods (Figure �.�� b). See the Ap-
pendix for a discussion. Next, we discuss in more detail the microscopic structure
of the various phases. See Section �.� for the comparison of our phase diagram
with experimental findings.

�.� Microstructure

In this section, we present the most salient features of the microstructure of the
various phases, focusing in particular on those of the smectic A and smectic A2
phases in order to better understand what drives the anti-ferroelectric phase
transition. First, we discuss the qualitative and quantitative changes in the ag-
gregation of the particles with attractive tips. For this purpose, we investigate
snapshots as well as the aggregation statistics of the particles in the various
phases. Second, we discuss the behaviour of the interlayer distance for the smec-
tic and crystalline phases, as well as their anti-ferroelectric version based on re-
sults from the two different analysis procedures described in Section �.�. Next, we
provide more details about the order of the anti-ferroelectric phase transition,
presenting the order parameter used for the classification of the smectic A and
smectic A2 phases. Finally, we analyse the stability of the smectic A and smectic
A2 at a constant volume fraction, using the smectic ordering potential for various
attraction strengths. For the different phases, we identify the following features.

Clustering of particles - In the next paragraphs, we describe how the aggre-
gation of elongated particles is influenced by the strength of the attractive tips
in the various phases. The snapshots in Figure �.� represent the aggregation pat-
terns at approximately constant volume fraction � in the isotropic phase at � ⇠
�.�� (a), nematic phase at � ⇠ �.�� (b), smectic A and smectic A2 phases at � ⇠
�.�� (c), smectic B and crystal phases at � ⇠ �.�� (d). Left to right, each pair of
snapshots shows examples of configurations of particles with attraction strengths
of �.� and �.� kBT . The snapshots show that the aggregation pattern of the tips
is clearly distinct, depending on the attraction strength for particles in the same
phase and at the same volume fraction, as we describe in detail in the paragraph
below.
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Figure �.�: Snapshots of the simulations at approximately constant volume frac-
tion � in the (a) isotropic phase at � ' �.��, (b) nematic phase at � ' �.��,
(c) smectic A and smectic A2 phases at � ' �.��, (d) smectic B (left) and crystal
phases (right) at � ' �.��. From left to right, pair of snapshots for each value
of the volume fraction are given for attractions strengths of �.� and �.� kBT . The
corresponding data points are highlighted by red circles in the phase diagram in
Figure �.�.

From our phase diagram in Figure �.�, we find that the isotropic-to-nematic
transition is only affected for ✏ > �.� kBT . At this attraction strength, lamellar,
disk- or inverted-micelle-like structures are formed. These two different aggre-
gation patterns are represented in the snapshots on the right in Figure �.� (a)
and (b). In Figure �.� (a), we find that, overall, the particles have random orien-
tations, as expected for the isotropic phase. The particles aggregated in lamellar
structures have similar orientation but the structures themselves have diverse
orientations. In Figure �.� (b), at attraction strenght �.� kBT (right), we note that
the alignment of the particles in the nematic phase results in a structure that
resembles a highly disordered smectic phase. In view of that we conclude that
the formation of such lamellar structures must be the reason that there is a sup-
pression of the nematic phase in favour of the smectic phase. In the snapshots
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of Figure �.� (c), we compare how particles are organised along the director in the
smectic A (left) and the smectic A2 (right) phases at the same volume fraction. We
find that the layers becomemorewell-definedwith increasing attraction strength.
This is confirmed comparing the snapshots of Figure �.� (d) for the smectic B2 and
crystalline2 phases. The attraction between the tips increases the degree of order
of the particles, reducing the stability range of the smectic B2 phase in favour of
the crystalline phase.

We compare these patterns with the corresponding aggregation statistics as
a function of the volume fraction in Figure �.�, where we present (a) the average
tip aggregation number for various attraction strengths and (b) the fraction of
particles in monomers, dimers, and trimers or larger aggregates for an attraction
strength of �.� kBT . Figure �.� (a) shows, as expected, that the average aggre-
gation number increases with increasing attraction strength and with increasing
concentration due to mass action [��]. The microstructure therefore changes
even in the isotropic phase, although, surprisingly, the isotropic-nematic phase
transition is not affected at all. As we infer from the inset in Figure �.�, the tip
clustering is weak at attraction strengths up to � kBT in both the isotropic and
the nematic phases. For these phases and attraction strengths, the aggregation
numbers remain modest even though growth is stronger than a linear increase
with the volume fraction. Actually, in these phases the average aggregation num-
ber is not larger than �.�, which means that the tips are mostly monomers. Figure
�.� (b) confirms this: in both the isotropic and the nematic phases, the fraction of
monomers and dimers predominate. The fraction of trimers or larger aggregates
surpasses the fraction of dimers only in the smectic A phase and the fraction
of monomers in the smectic B2 phase. This indicates that larger aggregates are
formed due to the inherent structure of the phase rather than due to the at-
traction strength alone. Indeed, part of the clustering is due to the change in the
contact value of the pair distribution function with increasing of pressure [��]. For
this reason, there is aggregation of tips even for ✏ = � kBT and the aggregation
becomes much more prominent in the smectic and crystalline phases, and their
anti-ferroelectric versions on account of the strongly increased pressures. Note
the abrupt increase in size in going from the the isotropic or nematic to the smec-
tic A2 phase for stronger attractions and from smectic A or smectic A2 to smectic
B2 for weaker attractions in Figure �.� (a). This in all likelihood is connected with
the transition appearing strongly first order.

Figure �.� corresponds to another version of the inset of Figure �.�(a). In this
figure, we present the average aggregation number divided by the pressure P
in the isotropic and nematic phases for the attraction strengths between � and
� kBT , presented as a function of the volume fraction �. The overlapping of the
curves for the attraction strengths between � and � kBT indicates that, at this
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Figure �.�: (a) Average aggregate size for various attraction strengths between the
end groups as a function of the volume fraction of particles. Attraction strengths
�.�, �.�, �.�, �.�, �.�, and �.� kBT from right to left. The inset is an enlarged view
of the graph for lower volume fractions for attractive strength equally spaced
between � and � kBT . (b) Fraction of monomers, dimers, trimers or larger aggre-
gates, which are connected via the attractive ends for attraction strength �.� kBT .
The particles have aspect ratio L0/D = ��.�� and a flexibility of L0/LP = �.�. The
following phases are identified: isotropic (orange circle), nematic (yellow square),
smectic A (green triangle up), smectic A2 (dark green triangle down), smectic B2

(dark blue diamond), and crystalline2 (dark purple pentagon). In the illustration,
rc represents the distance criterion that determines if beads are directly con-
nected.
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interval of attraction energies, the aggregation of the attractive tips is mainly
due to the mass action [��].
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Figure �.�: Average aggregation number for the attraction strengths between �
and � kBT divided by pressure and presented as a function of the volume frac-
tion � in the isotropic (orange circle), and nematic (yellow square) phases. The
particles have a base aspect ratio L0/D = ��.�� and flexibility of L/LP = �.�.

Interlayer distance - The interlayer distance � corresponds to the average dis-
tance between the centre of masses of consecutive layers. This quantity com-
prises the average layer size added to the average interlayer gap, as represented
in the inset of Figure �.�, and depends on the characteristics and interactions of
the particles. As described in the methods section, we apply two different anal-
ysis procedures to our data in order to investigate the interlayer distance. We
refer to the results relative to the standard procedure as the averaged interlayer
distance and to the results relative to the second procedure as the differentiated
interlayer distance. The main difference is that in the second procedure we dif-
ferentiate between odd and even layer numbers. In Figure �.�, we present the
averaged interlayer distance � relative to the average particle length L +D , as a
function of the volume fraction� for attraction strengths between the end groups
ranging in strength from � to � kBT . In Figure �.�, we present the values of the dif-
ferentiated interlayer distance for even �even and odd �odd over the particle length
L +D as a function of the volume fraction � for attraction strengths �.�, �.�, and
�.� kBT . Note that the length L is not the bare length but the actual, measured
value, somewhat compressed by the ambient pressure.

In Figure �.�, we find that the scaled interlayer distance �/(L + D ) exhibits
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Figure �.�: Scaled interlayer distance �/(L + D ) of repulsive, rod-like particles
with a single attractive tip as a function of the volume fraction � for attraction
strengths between the end groups ranging from � to � kBT from top to bottom in
the smectic A (green triangle up), smectic A2 (dark green triangle down), smec-
tic B (blue diamond), smectic B2 (dark blue diamond), crystalline (purple pen-
tagon) and crystalline2 (dark purple pentagon) phases. Particles have aspect ra-
tio L0/D = ��.�� and a flexibility of L0/LP = �.�. The inset is an illustration
representing the interlayer distance �.

a rich behaviour depending on the attraction strength between the tips and on
the state of aggregation. In the smectic A phase and at attraction strengths larger
than or equal to � kBT , the scaled interlayer distance increases with the volume
fraction. Note that these values are smaller than unity, which means that the
layers slightly interdigitate. This interpenetration lowers the interaction energy
because it allows for a larger surface contact between the tips, which consist of
an exposed attractive hemispherical cap. Between �.� and �.� kBT , the interlayer
distance seems to decrease with increasing volume fraction. Interestingly, it is for
these strengths that we identify both the smectic A and the smectic A2 phase. For
lower attraction strengths, the scaled interlayer distance is slightly larger than
unity, indicating that, in this case, layers are nearly touching each other. Nev-
ertheless, the dependence on the volume fraction is not obvious. Overall, the
scaled interlayer distance seems to decrease with increasing attraction strength
between tips. This effect is unambiguous if we consider volume fractions lower
than �.��. In other words, at a fixed volume fraction, layers interpenetrate more
as the attraction strength between tips increases. As a result, the inlayer density
is expected to be smaller. In fact, in a previous paper, where we investigate the
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semi-flexible repulsive rods, we find similar behaviour [��]. In the smectic B and
the crystalline phases or the smectic B2 and the crystalline2 phases, we note that
the scaled interlayer distance decreases with volume fraction and that the value
converges to unity with increasing volume fraction for all attraction strengths.
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Figure �.�: Average interlayer distance relative to the average rod length �odd/(L+
D ) for odd and �even/(L + D ) for even interlayer distances of repulsive, rod-like
particles that have an attractive tip in the smectic A (green triangle up), smectic
A2 (dark green triangle down), smectic B2 (dark blue diamond), and crystalline2
(dark purple pentagon) phases for attraction strengths of (a) �.� kBT , (b) �.� kBT ,
and (c) �.� kBT . Particles have aspect ratio L0/D = ��.�� and flexibility of L/LP =
�.�.

Figure �.� clarifies several features of our system but hides the distinction be-
tween layers present in the anti-ferroelectric phases. In Figure �.�, which presents
results from the differentiated analysis, there is the distinction between odd and
even interlayers at three values of the attraction strength. At the first value of
�.� kBT , represented in (a), we find that the interlayer distance is approximately
the same for even and odd interlayers in the smectic A phase. As expected, their
values are also approximately equivalent to the averaged layer thickness, once
the layers are nearly indistinct in this phase. Nevertheless, in the smectic B2 and
crystalline2 phases, the values for the even and odd interlayer distance, which
respectively contain the smaller and larger fraction of attractive tips, are distinct.
The former is larger than unity and the latter is approximately unity. These val-
ues slightly decrease with the volume fraction. In Figure �.� (b), the results are
for the attraction strength of �.� kBT . In the smectic A phase, we find that for
that case the values of the odd and even interlayer distances are approximately
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equal only at the lowest volume fraction, and that they become distinct as the
volume fraction increases. Notice that the even interlayer distances are larger
than the odd ones, because even though the anti-ferroelectric order parameter
� is different from zero, it is smaller than �/� and hence the phase is not clas-
sified as smectic A2. The even interlayer distance is approximately constant and
equal to unity, while the odd interlayer distance becomes smaller, meaning that
the layers in these interfaces are also interpenetrating. In the smectic A2 phase,
the even interlayer distance follows the same trend as in the smectic A phase,
while the odd interlayer is slight smaller but the dependence on volume fraction
is not clear due to the lack of data points available in this phase. In the smectic B2

and crystalline2 phases, it seems that even and odd interlayer distances do not
depend on the concentration. Their values are slightly above and below unity,
respectively. We find the same for an attraction strength of �.� kBT , as we see in
Figure �.� (c). For the smectic A2 phase, we find that the values are rather differ-
ent and that, while the trend for even interlayer distance remains as described
before, the odd interlayer distance, which is smaller than unity, tends to slightly
increase with increasing volume fraction. This effect is probably due to the lower
in-layer density of particles at lower volume fractions, which offers more space
for the particles to interpenetrate.

Anti-ferroelectric phase transition - The anti-ferroelectric phase transition in
the phase diagram is linked with the polarity of our single-ended attractive elon-
gated particles. We identify this phase transition using the anti-ferroelectric or-
der parameter � , defined in Section �.�, and presented in Figure �.� as a function
of the volume fraction � for various values of the attraction strength. Its value
continuously increases with increasing volume fraction, which indicates a second
order phase transition. As previously mentioned, we are not able to pinpoint the
anti-ferroelectric phase transition in the smectic B and crystalline phases: we find
the smectic B2 and crystalline2 even at the lowest attraction strength investigated
(�.� kBT ). In the inset, the anti-ferroelectric order parameter � is represented to-
gether with the smectic � order parameter as a function of concentration for
attraction strength �.� kBT . The smectic order parameter itself does not provide
a clear indication of the presence of a anti-ferroelectric transition although that
it could be masked by our limited resolution in the volume fraction�. For a com-
parison with our simple Maier-Saupe-McMillan model, where we do see much
more enhanced smectic ordering beyond the transition in Figure �.�� (a), we re-
fer to the Appendix �.� and to Figure �.�, which is another version of the inset of
Figure �.�. In the figure, we compare the smectic order parameter � as a function
of ��/�N�Sm , where �� is the difference between the volume fraction and the
volume fraction at the Nematic-to-Smectic A (for ✏ = � kBT ) or Smectic A2 phase
(for ✏ = �.� kBT ) transition, �� = � � �N�Sm . The volume fraction �N�Sm at the
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Figure �.�: Anti-ferroelectric order parameter � of repulsive, rod-like particles
that have a single attractive tip as a function of volume fraction � for various
values of the attraction strength between the attractive tips. In the inset we com-
pare the anti-ferroelectric � and smectic � order parameters for the attraction
strength of 0.7 kBT . Particles have aspect ratio L0/D = ��.�� and flexibility of
L0/LP = �.�. The following phases are identified: nematic (yellow square), smec-
tic A (green triangle up), and smectic A2 (dark green triangle down) phases.

transition is estimated by the average between the highest and lowest values of
the volume fraction at which, respectively, the nematic and smectic A or smectic
A2 phases are stable. We find that the smectic order parameter � is smaller at
smaller attraction strength from the comparison of the values of ✏ between �
and �.� kBT . Therefore, this result shows that the degree of order increases due
to the attraction between single tips in the layered phases.

Smectic ordering potential - The smectic ordering potential�U (z ) represents
the molecular field that a particle experiences from the other particles within a
smectic layer. We calculate it for our simulations in the smectic A phase around
the anti-ferroelectric phase transition, as represented in the top inset of Figure
�.��. From the inset, we find that both the height and the width changes as we
increase the attraction strength at a constant volume fraction of � = �.��: the
potential barrier increases and becomes narrower around the centre of the layer
z/L = �.�. In other words, the smectic layers become increasingly ordered, as
we also see from the snapshots in Figure �.� (c). The smectic ordering potential
seems to showmore noise at higher attraction strengths, in particular in between
the layers. This, in all likelihood, is due to the poor statistics: once the particle
centres of masses are concentrated around the centre of the layer fewer parti-
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Figure �.�: Smectic order parameter � of repulsive, rod-like particles that have
a single attractive tip as a function of ��/�N�Sm , where �� is the difference
between the volume fraction and the volume fraction at the Nematic-to-Smectic
A (for ✏ = �) or Smectic A2 phase (for ✏ = �.� kBT ) transition, �� = � � �N�Sm ,
for attraction strengths of � and �.� kBT . Particles have aspect ratio L0/D =
��.�� and flexibility of L0/LP = �.�. The following phases are identified: nematic
(yellow square), smectic A (green triangle up), smectic A2 (dark green triangle
down), smectic B (blue diamond), and smectic B2 (dark blue diamond) phases.

cles venture out in between the layers. From Figure �.��, we find that the height
of the smectic ordering potential linearly increases with the attraction strength
at the volume fraction of � = �.��, and the trend does not seem to be changed
crossing the anti-ferroelectric phase transition. The same is true if the volume
fraction is increased at constant attraction strength, as it is shown in the top in-
set of Figure �.��. Therefore, our particles are more strongly attached to a layered
structure and, on top of that, the layer itself is more strongly confined due to the
small amplitude in the fluctuations of the particle positions around the aver-
age. This molecular field of particles in the smectic phase as well as the smectic
and anti-ferroelectric order parameters, presented in the previous paragraph, are
also reasonably well-described by our simple Maier-Saupe-McMillan model (see
Figures �.�� and �.�� in the Appendix).
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Figure �.��: Smectic ordering potential of repulsive, rod-like particles with a single
attractive tip. Particles have an aspect ratio of L0/D = ��.�� and a flexibility
of L0/LP = �.�. (a) Height of the smectic ordering potential of repulsive as a
function of the attraction strength between tips in the smectic A (green triangle
up) or smectic A2 (dark green triangle down) phases at a volume fraction of � �
�.��. In the inset, there is the same height of the smectic ordering potential of
repulsive as a function of the volume fraction for attraction strengths �, �.�, �.�
and �.� kBT . (b) Width of the smectic ordering potential of repulsive as a function
of the attraction strength between tips in units of kBT . In the inset, the smectic
ordering potential �U (z ) is presented as a function of the position along the
director, normalised by the particle length z/L. The increase of the attraction
strength drives the stabilisation of the smectic A and smectic A2 phases.
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�.� Comparison with experiments

Here, we compare our simulations with experiments on the M�� virus performed
by our collaborators from the Centre de Recherche Paul Pascal (CRPP) in Bor-
deaux, France [��]. (See Chapter � for its dimensions and persistence length.) In
Figure �.��, we show a schematic of the structure of this chiral virus, which has
different ends and hence is chemically asymmetric. Because of this, it is possible
to selectively graft fluorescent dye molecules of the DyLight Fluor family onto the
end exposing the P� protein [��]. These dye molecule are hydrophobic, implying
that the number of grafted dye molecules dictates the size of the hydrophobic
patch on the surface of an overall hydrophilic surface of the virus. We assume
here that the strength of the attraction between the patches is proportional to
this area. Whether there is a linear relationship between the number of dyes and
the strength of the attraction is contentious, because grafting the dyes into the
proteins could potentially unfold P� protein and expose hydrophobic moieties.

P3 proteins

B

A

C

Figure �.��: (A) Transmission electron microscopy (TEM) of the M�� virus. (B)
Schematic representation of untreated (left) and functionalised (right) virus ex-
hibiting attractive patch at its single tip. (C) Schematic representation of semi-
flexible rod-like particle, modelled as a bead-spring chain. Purely repulsive par-
ticle (left) and particle with one attractive bead at a single end (right). Figure
reproduced from Reference [��].

Figure �.�� presents the phase diagrams from experiments and simulations in
vertical side-by-side view and same colour code for easier comparison. For the
experimental phase diagram that is shown in Figure �.�� A , �, �, �, and �� dyes
are attached to virus end for the preparation of samples with various concentra-
tions up to around ���mg/mL. Indicated in the phase diagram are, as a function
of concentration of particles and the number of grafted dyes, the various phases
that include isotropic, (chiral) nematic, smectic A and B, and columnar phases.
The smectic phases are identified using differential interference contrast (DIC)
and fluorescence optical microscopy. The smectic A and B phases and columnar
phase are distinguished by small angle X-ray scattering (SAXS) and optical (DIC
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and fluorescence) microscopy. Finally, the isotropic and (chiral) nematic phases
are identified by employing polarising optical microscopy. Details of the proce-
dure to identify the various phases can be found in references [��, ��]. The sta-
bility ranges of the isotropic phase (green area), the nematic (red), the smectic
phases (blue), and columnar phase (yellow) are also indicated in Figure �.�� A. In
the nematic domain, the usual nematic and the chiral nematic are represented
by the red and pink symbols. In the smectic domain we distinguish between sin-
gle and coexisting phases using open and solid symbols. Insets give the nematic
(a) and chiral nematic (b) textures as observed in polarisation microscopy. The
lamellar texture of the smectic phases is clearly visible in a DIC image (c), but is
lacking in the columnar phase (d). In Figure �.�� B, we present the phase diagram
from simulations that we explain in detail in Section �.�. In this version of the
phase diagram, we do not differentiate between the smectic A and smectic A2, as
the experimental techniques employed do not allow to distinguish them, also for
easier comparison.

From the experimental phase diagram, we find that an increasing the number
of dye molecules at the tips of the virus particles strongly affects the nematic-
smectic transition yet has virtually no effect on the other transitions. We clearly
see that the smectic phase is stabilised at the expense of the nematic phase with
increasing strength of the attraction between the tips of the particles. The phase
gap between the two phases also increases with increasing strength of the at-
traction. Another striking feature of the phase diagram is the disappearing of the
chiral nematic (cholesteric) phase in favour of the uniaxial nematic phase upon
grafting even a single dye molecule to the tip of the particles. We put forward that
an explanation for our observations must lie in the fact that the end function-
alised rods turn out to form planar aggregates. Our simulations show qualitative
agreement with the experimental data: increasing the stickiness of the tips af-
fects only the nematic-smectic phase transition. We find that the stability of the
smectic phase increases at the cost of the nematic phase with increasing the tip
stickiness, as does the phase gap. There are some discrepancies too, in partic-
ular the absence of the columnar phase that is replace by a crystalline phase,
as already discussed in Section �.�. Another discrepancy is the large phase gap
between the smectic A and smectic B phases that is not seen experimentally. It
is not clear if this is due to a different ways of classifying the smectic B phase,
which is not trivial. Finally, Figures �.��A and B show that there is not an one-
to-one correspondence between mass concentration in the experiments and the
volume fraction in the simulations.

As in the experiments, we find planar aggregates to form in the simulations.
This is supported by the representative images of Figure �.��, where we compare
typical textures obtained by means of fluorescence optical microscopy and our
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Figure �.��: (A) Phase diagramof filamentous viruses in terms of number of grafted
dyes as a function of concentration cvirus. System with � dyes represents “raw”
viruses and systemswith �, �, and �� dyes represent the patchy viruses. The colour
code for the different phases is given in the insert. We use DIC and fluorescence
optical microscopy to identify the smectic phases. To distinguish between the
smectic A and B phases and columnar phase we make use of SAXS and optical
(DIC and fluorescence) microscopy. Polarising optical microscopy we use to iden-
tify the isotropic and (chiral) nematic phases. Insets give the nematic (a) and
chiral nematic (b) textures as observed in polarisation microscopy. The lamellar
texture of the smectic phases is clearly visible in a DIC image (c), which lacks in
the columnar phase (d). (B) Calculated phase diagram in terms of the attraction
strength u between the end groups as a function of the volume fraction � of the
semi-flexible particles. Aspect ratio L0/D = ��.�� and length over persistence
length of L0/LP = �.�. Non-sticky end group beads interact via a repulsive soft-
core potential. The phases are identified using global order parameters. Figure
reproduced from Reference [��].
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Figure �.��: (A) Typical textures of patchy virus suspension in various liquid-
crystalline phases taken with fluorescent optical microscopy. A red signal cor-
responds to the position of the patch. A green signal corresponds to body-
functionalised viruses which are added in tracer amount to the suspension. (B)
Corresponding simulation snapshots. White beads are purely repulsive and red
bead are attractive. In the isotropic phase (Iso), the viruses have random orien-
tations. In the nematic phase (N), viruses are aligned along the director but lack
positional order. There are some aggregates in both phases, which are precur-
sors of smectic layers. The first order Nematic-Smectic phase transition (N-Sm) is
confirmed by the presence of sharp boundary between the phases. In the smectic
phase (Sm), all patches are well localised in the interlayer space. In the columnar
phase (Col), patches are uniformly distributed. Body-functionalised viruses are
not aligned due to small domains size. Scale bar: �µm. Figure reproduced from
Reference [��].

computer simulations. Focusing on the isotropic phase first, we find experimen-
tally randomly oriented "lamellae": in the left most microscopic image of Figure
�.�� an elongated red objects representing the clustered tips. Also visible are
the green lines which are viruses body-labeled with a different fluorescent dye.
(�:��5 of the virus particles are body-labeled.) In the microscopic image, these
are attached to the red tip regions and nearly perpendicular to them. This shows
that the aggregates are indeed planar. The planar structure is consistent with the
snapshot of our computer simulations shown below it. The snapshot provides
detailed information about the structure of the lamellae in which the tips form �
dimensional structure attached to which are attached the body of the particles in
both sides. They superficially resemble disk-like inverted micelles, as we discuss
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in Section �.�.
Similar lamellae can be observed in the nematic phase except that in this

phase they are oriented perpendicular to the director, whereas in the isotropic
phase they are randomly oriented both in the experiments and simulations (see
Figure �.�� b). Figure �.��c shows that lamellar aggregates condensed in smectic
domains in the nematic background. The particles are aligned along the director
in both phases, as to be expected. In Figure �.�� d we have the single phase
smectic. The alignment of the particles is perpendicular to the layer allowing
us to rule out smectic C or other types of tilted smectic. In the simulations we
are able to distinguish between two types of smectic A phase, as shown in the
bottom part of Figure �.�� d. For small values of ✏, the red tip beads occupy every
interlayer spacing and for large enough values only every other interlayer spacing
creating a bilayer-like structure. We speculate that because the optical images
are the result of signal integration through the sample thickness, shifted bilayer
domains project pattern with � particle length periodicity not allowing them to
be experimentally discriminated.

In contrast to the smectic phases, which do exhibit an almost defect free
structure, the columnar phase is characterised by finite domain sizes as a com-
parison between Figures �.�� d (top images). Figure �.�� e represents the columnar
phase because lamellar structures are not observed in DIC images and, perhaps
more convincingly, the SAXS profile reveals positional order consistent with with
hexagonal/hexatic ordering [��]. The fact that the three signals of body-labeled
viruses are not parallel confirms the absence of a single domain. The absence
of bright red localised signals support the absence of layering. The diffuse sig-
nals arguably do not reflect actual clustering but are a result of the integration
of signal through the bulk of the sample.

We also compare the smectic ordering potential from experiments and simu-
lations in Figure �.��, as themain effect of the attractive tip is to widen the smectic
stability range. We find that the results show the same trends: (i) the magnitude
of the ordering potential increases with an increasing tip patchiness for a given
particle packing fraction as shown in (a) and (b), and (ii) the potential height in-
creases with the particle concentration, for both repulsive and attractive tips as
can be observed from (c) and (d). Additionally, from Figure �.�� (a) and (b), we find
that the smectic potential also becomes narrower with an increasing concentra-
tion and the attraction between (or the number of dyes in) the tips of the viruses.
This implies that the amplitude of the fluctuations of the particles around their
equilibrium positions in the layers becomes weaker and, hence, that the particle
positions becomemore localised. As the aspect ratio of the particles is smaller in
our numerical simulations, we expect lower smectic potentials compared to the
experimental ones, as shown in Figure �.��. The reason is that the stability of the
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Figure �.��: Smectic ordering potentials calculated from experimental (a) and sim-
ulated (b) distribution of particles, as a function of the particle position, nor-
malised by the smectic layer spacing, for different particle concentrations and
volume fractions. In grey, we indicate the experimentally measured potential of
immobile particles, which is the equivalent for potentials of the point spread
function (PSF) of the optical setup. Smectic potential barriers as a function of the
virus concentration for experiments (c) and as a function of the volume fraction
for simulations (d). In all graphs, open black and full red symbols correspond
to “raw” repulsive and tip-functionalised rod-like particles, respectively. Figure
reproduced from Reference [��].
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smectic A phase of repulsive rod-like particles reduces with decreasing length
[��]. Notice from Figure �.�� (c) and (d) that, irrespective of the strength of tip
attraction, we find the same slope of the ordering potential as a function of the
particle concentration in both the experiments and the simulations. This is to be
expected, because the molecular field a test particle experiences in a lyotropic
smectic must be proportional to the average density [��]. Even though we have
not been able to find a sensible mapping between our experimental and simula-
tion results because of the large disparity between the respective aspect ratios
of the particles, our simulations do account for most of the features we observe
in our experimental system. This is true for both the phase behaviour and or-
dering potentials, suggesting that our prediction that a tip attraction strength as
small as ✏ ⇠ � kBT is sufficient to fully suppress the nematic phase and promote
the smectic organisation in dispersions of otherwise mutually repelling rod-like
particles is plausible. This small value is actually not surprising, considering that
free energy differences between particles in coexisting liquid crystalline phases
of rod-like particles are typically of the order of the thermal energy and often
much smaller than that [��].

�.� Discussion and conclusions

The aim of the present work is to study by means of molecular dynamics simu-
lations the influence that attractive interaction between one of the two ends of
a collection of otherwise mutually repulsive, elongated particles have on their
phase behaviour, using computer simulations. Our work shows that their phase
behaviour, and the structure of the various liquid-crystalline phases, are strongly
affected even by relatively weak interaction strengths on the order of the ther-
mal energy. The phase behaviour has two striking features: (�) the formation
of bi-layered anti-ferroelectric phases and (�) the large increase of stability of
smectic A at the expense of the nematic phase, and even at the expense of the
isotropic phase as we increase the attraction strength between the tips beyond
about �.� kBT . The key factor is the interplay between the interaction energy,
polarity of the particles, and the phase microstructure. The analysis of the mi-
crostructure reveals that the stability of the isotropic and nematic phases is af-
fected by the aggregation of the tips, only if the particles align in response to
the local increase in concentration. In the layered phases, the organisation of
the particles with the attractive tips results in more strongly ordered microstruc-
tures even at very weak attraction energies.

Our results concerning the shift of the nematic-to-smectic A phase transition
to lower volume fractions, which also seems to become more strongly first or-
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der with an increase of the attraction strength, are supported by experimental
evidence. Despite the fact that the difference in the aspect ratio between simu-
lated and experimental particles prevents us to make a quantitative comparison,
we are able to qualitatively compare the smectic ordering potential of the ex-
perimental and computational model particles. We find for both of them larger
values of the height and smaller values of the width as the attraction strength
between tips increases. As expected, because the experimental model particles
are larger in aspect ratio, their smectic potential height is also larger, due to the
increase of stability of the smectic A phase with increasing aspect ratio [��]. In
our theory (Appendix �.�), the shift of the nematic-to-smectic A phase transition
is independent of the volume fraction. Nevertheless, the shift to lower volume
fractions is captured if the nematic-to-smectic A2 phase transition is considered.
The height and width of the effective smectic ordering potential from our Maier-
Saupe-McMillan theory does not emulate the smectic ordering potential from our
simulations. This might be due to our choice of representing it as a cosine func-
tion instead of a Gaussian function.

In spite of the obvious limitations, our study does contribute to the under-
standing of how selective surface functionalisation of colloidal liquid crystals af-
fects their self-organisation, by providing a systematic study of the stability and
structure of these phases for a wide range of both volume fractions and attrac-
tion strengths. We show that incorporating a single (enthalpic) functionalised
end in elongated colloidal particles gives rise to an even more complex and rich
phase behaviour than for the purely repulsive ones. In the light of this, we sug-
gest that agreement between purely repulsive models and experiment cannot be
expected because residual attractive interactions, local or global, strongly influ-
ence the phase behaviour.

�.A The anti-ferroelectric phase transition within a
Maier-Saupe-McMillan type theory

Here, we describe a simplified model for the anti-ferroelectric phase transition
for N perfectly parallel, rod-like particles, equipped with a single tip attractive
interaction. These particles are aligned along the z -axis, forming the nematic
phase if they are uniformly distributed, or smectic phases if their positions are
periodically distributed along the z -axis. The periodicity in the smectic phases
is d , corresponding to the spacing between the layers. The single tip attraction
is the key element for the existence of the smectic A2 phase. In this bilayered
phase, the distribution of the attractive tip has the periodicity �d .

Our description is inspired by Maier-Saupe-McMillan theory [��, ��]. We write
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the Helmholtz free energy F in one layer as the sum of the Gibbs entropy, pro-
portional to the position density distribution along the director of both the elon-
gated particles p(z ) and the attractive tips f (z ), and energy terms proportional
to themolecular field or smectic ordering potential,�USmA(z ), and the interaction
energy between attractive tips, �USmA2(z ),

�F

N
=

Z + d
2

�
d
2

dz

"
p(z ) ln p(z ) +

1

2
p(z )��USmA(z )

#

+

Z + d
2

�
d
2

dz

"
f (z ) ln f (z ) +

1

2
f (z )��USmA2(z )

#
.

The factor 1/2 in the energy terms corrects for double counting; the distribution
functions f (z ) and p(z ) are properly normalised.

The energy term ��USmA(z ) drives the nematic-smectic A phase transition
and it is expected to be proportional to the volume fraction � 2 [0, 1] and the
smectic ordering parameter � , so

��USmA(z ) = ���� cos
 
2⇡z

d

!
, (�.�)

where � is an adjustable parameter and the cosine describes the periodic molec-
ular field (of periodicity d ). The smectic ordering parameter is given by

� =

Z + d
2

�
d
2

dz p(z ) cos
 
2⇡z

d

!
. (�.�)

Note that �.� is temperature invariant: it represents the hard-core nature
of the interactions. The energy term ��USmA2(z ) drives the anti-ferroelectric
transition and it should arguably be also proportional to the volume fraction �
and some power of the smectic ordering parameter � , as well as to the anti-
ferroelectric order parameter � itself. We put forward

��USmA2(z ) = �� �
2✏̃ � sin

 
2⇡z

2d

!
,

where ✏̃ is a (dimensionless) measure for the strength of the attraction between
the tips and the sine function represents the periodicity 2d of the anti-ferroelectric
state. There is no obvious mapping of the sticking energy of our simulations and
that of our model, although we would guess that ✏̃ / ✏. The anti-ferroelectric
ordering parameter is given by

� =

Z + d
2

�
d
2

dz f (z ) sin
 
2⇡z

2d

!
. (�.�)
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Figure �.��: Theoretical approach to describe the anti-ferroelectric phase tran-
sition for perfectly parallel, hard rods that have a single attractive end. Phases
identified are: nematic (yellow square), smectic A (green triangle up), and smectic
A2 (dark green triangle down). (a) Smectic and anti-ferroelectric order parame-
ters numerically calculated for the attraction strength ✏̃ = � and the adjustable
parameter � = �, chosen to adjust the volume fraction interval for convenient
viewing. (b) Phase diagram obtained from classification based on the order pa-
rameters for the same value of the adjustable parameter � = �. We find that
the nematic phase is destabilised in favour of the smectic A2 phase and that the
smectic A phase is suppressed at high enough attraction strength ✏̃.
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In equilibrium, the free energymust be functionallyminimised, �
�
�F /N

�
/�p =

� and �
�
�F /N

�
/�f = µ, accounting for the normalisation conditions

Z + d
2

�
d
2

dz p(z ) =

Z + d
2

�
d
2

dz f (z ) = 1,

which require us to introduce the Lagrange multipliers � and µ.
Making use of the normalisation of p(z ), we find that

p(z ) =
exp


��(� + ✏̃�2) cos

⇣
2⇡z
d

⌘�
R + d

2

�
d
2

dz exp

��(� + ✏̃�2) cos

⇣
2⇡z
d

⌘� . (�.�)

Note that ✏̃ is an energy scaled to the thermal energy and hence temperature
dependent. From thermodynamics, we have ✏̃(T ) = ✏̃(T0)� h̃(T0)(T �T0)/T0, with
h̃ a dimensionless enthalpy and T0 a reference temperature. For hydrophobic
interactions h̃ < � implying that the molecular field increases in strength with
increasing temperature.
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Figure �.��: Energy term ��USmA2(z ) or smectic ordering potential as a function
of the position normalised by the layer thickness numerically calculated for the
attraction strength ✏̃ = � and the adjustable parameter � = � in the nematic (at
volume fraction � = �.�), smectic A (at � = �.�), and smectic A2 (at � = �.�)
phases. In the inset, the same energy term ��USmA2(z ) calculated for the volume
fraction� = �.� and the adjustable parameter � = � in the smectic A (at attraction
strengths ✏̃ = � and �), and smectic A2 (at ✏̃ = �� and ��) phases. Note that the
curves overlap for the same phase.
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We employ the same procedure for f (z ), and find

f (z ) =
exp


���2✏̃ sin

⇣
2⇡z
2d

⌘�
R + d

2

�
d
2

dz exp

���2✏̃ sin

⇣
2⇡z
2d

⌘� . (�.�)

We linearise the equations for the smectic and the anti-ferroelectric order
parameters, given by Equations �.� and �.�, in which we substitute the explicit
expression for the density distribution of both the elongated particles p(z ) and
the attractive tips f (z ), from Equations �.� and �.�. From the linearisation, we
obtain the following expressions for the order parameters:

�2 =

 
4

�(� + ✏̃�2)

!  
1

2
�

4

�(� + ✏̃�2)

!
(�.�)

and

�2 =

 
4

��2✏̃

!  
1

2
�

4

��2✏̃

!
. (�.�)

From Equation �.�, we find that, in order that the smectic order parameter is pos-
itive, � > 0,

�(� + ✏�2) > 2, (�.�)

and, from Equation �.�, we find that �2 > 0 ) �(� + ✏̃�2) > 2. From these
results, we have that the transitions to the smectic A or smectic A2 phases are
continuous.

Alternetivaly, we recursively solve the coupled integral equations numerically
for the smectic and the anti-ferroelectric order parameters, using the Mathemat-
ica software. We fix the value for adjustable parameter � = � in order to shift the
transitions volume fractions to values close to where we find the transitions in
our simulations. The initial values for the smectic and the anti-ferroelectric order
parameters is chosen to be �. From each iteration, we obtain new estimates for
� and � that are the input values to the next one. The volume fraction is fixed
and increased from � to � in �� steps. The sticking energy is also fixed at val-
ues between ✏̃ = � and ��, which we increased at steps of � in each run of our
numerical calculations. The convergence criterion is that consecutive integration
results differ less than �.��� for at least �� iterations.

From the results obtained using the procedure described in the paragraph
above, we calculate the values for the order parameters � and � , with which
we classify the corresponding phase at the fixed set of sticking energy and vol-
ume fraction parameters. From this procedure, we obtain the phase diagram of
perfectly parallel, hard rods that have a single attractive end. In Figure �.��, we
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present in (a) the smectic � and anti-ferroelectric � order parameters as a func-
tion of the volume fraction � at sticking energy ✏̃ = � (and � = �) and in (b) the
phase diagram obtained from classification based on these order parameters.
Notice that the numerical phase diagram shows that the nematic-to-smectic A
transition is at � = 0.4, which is the value given by Equation �.� for � = 0 and
the adopted value of � = 5, as expected.
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Figure �.��: The height of the effective smectic ordering potential ��(� + ✏̃�2)
as a function of the volume fraction � for the attraction strengths ✏̃ from � to ��
with intervals of �. The following phases are identified: nematic (yellow square),
smectic A (green triangle up), smectic A2 (dark green triangle down) phases. The
linear dependence of the amplitude of the smectic ordering potential with the
volume fraction is also what we find in our simulations. See inset in Figure �.��(a).

From Figure �.�� (a), we find that, unlike the corresponding order parame-
ters obtained from our simulations, there is a shoulder in the smectic ordering
parameter at the volume fraction where the anti-ferroelectric phase transition
occurs. It indicates that the particles become more strongly ordered along the
director as the rods transition to the smectic A2 phase. The effect is not captured
by the smectic order parameter in our simulations but this could be due to the
limited resolution in our simulations. For a comparison, see the inset in Figure
�.� (a). From Figure �.�� (b), we find that our model captures the destabilisation
of the nematic phase in favour of the smectic A2 but the same is not true for the
smectic A. In this case, the phase transition is independent of the sticking en-
ergy. Nevertheless, the destabilisation of the smectic A in favour of the smectic
A2 phase seems to represent what is seen in the simulations. From Figure �.��, we
find that the height is approximately the same in each phase, independently of
the attraction strengths between tips, unlike what we find in the simulations. The
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same is true for the width of the smectic ordering parameter. It is independent
of both the attraction strength and the volume fraction.
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Figure �.��: The height of the effective smectic ordering potential ��(� + ✏̃�2)
as a function of the attraction strength at the volume fraction �.�. The following
phases are identified: smectic A (green triangle up) and smectic A2 (dark green
triangle down) phases.The linear dependence of the amplitude of the smectic
ordering potential with the attraction strength is also what we find in our simu-
lations. See Figure �.��(b).

The height of the effective smectic ordering potential is given by ��(�+ ✏̃�2).
See Equation �.�. This quantity is represented both as a function of the volume
fraction for all the attraction strengths investigated (Figure �.��) and as a function
of the attraction strength for the volume fraction �.�, in which only the smectic
A and smectic A2 phases are found (Figure �.��). From the comparison between
Figure �.�� and the inset in Figure �.�� and between Figure �.�� and the Figure
�.�� itself, we find that the theory emulates the linear dependence of the height
of the smectic ordering potential as a function of the volume fraction and of the
attraction strength except for the angular coefficient depending on the phase.
The same is true for the width of the smectic ordering potential that does not
decrease as the attraction strength increases but is constant as can be seen in
Figure �.��.
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Chapter �

Dynamics of elongated guest particles
in the smectic A phase

Rod-like colloidal particles self-assembled in a smectic A phase exhibit an unusual
hopping-type of diffusion between the layers and quasi two-dimensional diffusion
within the layers. Recent experiments show that rod-like guest particles dispersed
in the smectic diffuse faster along the director than the host particles do but only
if they are incommensurately longer than these. In order to understand why this is
so, we perform molecular dynamics computer simulations on semi-flexible guest
particles of contour length ranging from �.� to � times the contour length of the
host particles. We also investigate the impact of the bending flexibility of the
guest particles on their diffusivity along and perpendicular to the director. We
show that the faster layer-to-layer diffusion is characterised by more frequent
jumps between the layers and, consequently, a shorter residence time in them.
Interestingly, it seems that the persistence length does not play a significant role
in the diffusion process of the guest particle. We argue that this might be due to
the resolution of the bead-spring chain model that we employ in our bead-chain
particles: in all cases studied the deflection length seems to be of the order of
magnitude of a particle bead. As a consequence, flexibility is not able to facilitate
the penetration into a neighbouring smectic layer. We conclude that the longer
guest particles we tested are the fastest particles, in particular guest particles with
an incommensurate contour length of⇠�.� the contour length of the host particles.
For this case a larger persistence length also leads to a larger diffusivity.
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�.� Introduction

The diffusion of elongated colloidal particles presents interesting and sometimes
counterintuitive features, depending very much on the underlying symmetry of
the phase in which they find themselves. For example, in the smectic phase,
which is characterised by (quasi) long-range one-dimensional translational or-
der, recent experiments indicate that particles engage mostly in a layer-to-layer,
hopping-type diffusion strongly affected by both their bending flexibility and as-
pect ratio [��, ��, ��, ��]. This type of motion is linked with the periodic molecular
field created by the surrounding particles, also called the smectic ordering po-
tential [��]. The congested nature of the smectic phase requires a cooperative
motion of strings of particles, in order to create an empty space for every dif-
fuser part of these strings that are also referred to as vortices on account of their
closed-loop character [��, ��].

Recent experiments at the Centre de Récherche Paul-Pascal in Bordeaux, France,
show that long guest particles in the smectic A phase formed by shorter host
particles diffuse faster along the director than the host particles themselves [��].
Such behaviour seems unusual in highly congested dispersions such the smectic
phase. The host and guest particles used in the experiments referred to are the
filamentous fdY��M and M��K�� viruses, and constructs thereof. The values of
the contour length L and persistence length LP of these particles are tabulated
in Chapter �, Table �.�. From the values of the persistence lengths of the viruses,
we calculate their structural “flexibilities” as L/LP that we present in the Table �.�
below. Indicated also are their role as guest or host particle, as well as the calcu-
lated values of the ratio between the contour length of the particle and the host
fdY��M virus L/L fdY21M. In the table, 2⇥ fdY��M and 3⇥ fdY��M refer to engineered
“multimeric” viruses that have � and � times the length of the fdY��M particle.
If we assume that their persistence length is left unchanged by the engineering,
the flexibility of these multimeric guest particles are approximately �.� and �.�.

role L/L fdY21M L/LP

fdY��M host � �.�
M��K�� guest �.� �.�

2⇥ fdY��M guest � �.�
3⇥ fdY��M guest � �.�

Table �.�: Guest and host particles employed in the experiments as reported in
Reference [��]. For each of them, we calculate the ratio between the contour
length of guest and host particles L/Lf dY 21M and the ratio between the contour
and persistence length of the particle L/LP.
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From Table �.� we notice that long guest particles of three different contour
lengths are employed in the experiments. One particle has an “incommensurate”
contour length that is approximately �.� times longer than the contour length of
the host particle. “Incommensurate” here refers to an incompatibility with the
smectic layer spacing, which is approximately equal to the particle length and
that is also approximately equal to the interlayer spacing, as the particle is semi-
flexible [��]. The other two guest particles are even longer, but do have a com-
mensurate contour length of � and � times the contour length of the host particle.
Between all, the former turns out to be the fastest diffuser, presumably because
its larger and non-commensurate length create voids in the adjacent layers facil-
itating the diffusion through them [��]. This fastest guest particle also happens to
have a different persistence length from that of the host and the commensurate
guest particles. Confusingly, the flexibility, as we define it, is not kept constant for
the various particles of the experiment. Therefore, the observations must be a
result of the combined effect of contour and persistence length, implying that the
explanation remains tenuous and requires further study. We note that both the
stability of the smectic A phase and cage-scape dynamics are strongly affected
by both the aspect ratio and the flexibility of the particles [��, ��, ��, ��, ��, ��].

The quoted experiments of Reference [��] are the inspiration for the simula-
tion study that we present in this Chapter. Aim is to address the question of in
what way anisotropy and particle flexibility of elongated tracer particles affect
their diffusion in a smectic A host phase. In Section �.�, we explain the methods
that we employ to investigate the most salient features of these particles dynam-
ics. In Section �.�, we characterise the in-layer diffusion as well as the diffusion
of the guest particle through the smectic layers. In Section �.�, we focus on diffu-
sion through the layers. There, we characterise in more detail the hopping-type
diffusion referred to above, and discuss the relevant parameters in the diffusion
of the guest particles. Finally, in Section �.�, we present our main conclusions.

We note that for the simulations presented in these sections, we keep the
persistence length LP of our particles constant, rather than the flexibility L/LP.
We do this because we already vary the contour length L of the particle to inves-
tigate the effect of the various ratios between the contour length of guest and
host particles on the dynamics of guests in the smectic phase.

�.� Methods and Analysis

Our particles are modelled as harmonic bead-spring chains, described in de-
tail in Chapter �. We recall that the energy of each bond of length s is given
by U = 1/2s(s � D/2)2, where s = ��� kBT /D 2 is the harmonic elastic con-
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stant. Because the mean bond length is not fixed, the contour length of the par-
ticle is strictly speaking not constant but depends on the pressure. For simplic-
ity, we choose to ignore this in this chapter and refer to the contour length as
L = (b � 1)D/2, where b is the total number of overlapping beads in the chain.
The persistence length is also dependent on the bond length s . Employing the
same convention, we set LP = ✓s/kBT = ✓D/2kBT , where ✓ is the harmonic
elastic constant.

We study the diffusion of guest particles in a smectic A phase formed by host
particles of contour length Lhost � ��D and persistence length LP = ���D , so
aspect ratio Lhost/D = �� and flexibility Lhost/LP = �.�. The number of beads b ,
contour length Lhost , and persistence length LP for the various particles employed
are given in Table �.�. In that table, we also present the ratios between the contour
length of the guest and host particles Lguest/Lhost. The contour length ratios of the
guest and host particles are �.�, �.�, �, �.�, �.� and �. For each guest particle we
track the diffusion for two distinct values of the persistence length, LP = ��� and
��D .

b Lguest [D ] LP [D ] Lguest/Lhost

guest �.� � � �� and ��� �.�
guest �.� �� �.� �� and ��� ⇠�.�
guest � �� �� �� and ��� �

guest �.� �� ��.� �� and ��� ⇠�.�
guest �.� �� �� �� and ��� �.�
guest � �� ��.� �� and ��� ⇠�

Table �.�: Guest particles employed in our simulations. Indicated are the number
of overlapping beads b , the contour length Lguest, the persistence length LP, and
ratio of the contour lengths of guest and host particles Lguest/Lhost. Note that guest
� with persistence length LP = ���D corresponds to the host particle.

We equilibrate the simulation box at a constant number of particles of N =
����, temperatureT , and pressure P , following the Molecular Dynamics simula-
tions procedure described in the Chapter �. We set the temperature at � ✏/kB. The
pressure is set at P = �.� ✏/D 3, which leads to particles in the smectic A phase at
the volume fraction of � = 0.5. From our previous work, presented in Chapter �,
we find that the smectic layer for particles of aspect ratio L/D = �� and flexibility
L/LP = �.� at this volume fraction is approximately � =��.�D . We take � as the
length scale that we employ as distance unit for the dynamics along the director.

The initial configuration of our simulations consists of �� layers of AAA stacked
host particles in the simulation box. The particles are hexagonally organised in
each layer. Approximately in the centre of every other layer, we substitute a host

��



Figure �.�: Schematic representation of the initial configuration. Approximately in
the centre of every other layer we substitute a host (white rod) by a guest particle
(red rod). In the neighbouring layers, the host particles with the corresponding
positions are excluded in order to create space for the long guest particle.

particle for a guest particle. In the plane of the layer, the guest particle is placed
as shown in Figure �.�. The host particles in the neighbouring layers with the cor-
responding positions of the guest particle are excluded in order to create space
for the long guest particle and avoid overlap with any host particles. This way, we
have a total of N = ���� particles in the simulation box, of which eight are guest
particles.

We select five distinct equilibrium configurations, each one separated in time
by more than two thousand timesteps to the other configurations. These config-
urations are employed as the initial configurations for Langevin Dynamics sim-
ulations that run for about ��5 time units, corresponding to �⇥��8 timesteps of
�⇥���3 time unit. We save configurations for each time unit, resulting in a to-
tal of ��5 configurations. We apply the analysis procedure to the particles of all
simulations, a total of �� particles for each ratio and persistence length studied.

We explicitly investigate the motion of the guest particles perpendicular and
parallel to the director n. Due to the initial configuration, the director points
approximately along the z direction, n k ẑ. Therefore, we consider the perpen-
dicular motion of the k -th guest particle as described by the coordinates Xk (t )
and Yk (t ) of its centre of mass at time t , and the parallel motion as described
by Zk (t ). Typical traces of the particles are represented in Figure �.� for the case
of Lp = ���D , that is, a guest particle with the same bending stiffness as the
host particles. We show the position of three guest particles k = � with differ-
ent guest-to-host length ratios Lguest/Lhost �.�, � and �.�, focusing on the motion
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in the x � y plane and along the director, corresponding to the z direction as a
function of time. Shown are the traces X1(t ) � X1(0) andY1(t ) �Y1(0) (top, (a)),
and the position Z1(t )� Z1(0) (bottom, (b)). Note that in the figure, the particles
coordinates are not wrapped at the periodic boundaries, and that the grey box
represents the simulation box dimensions in each direction.

From Figure �.� (a), we find that the perpendicular or in-plane movement can
be described as a conventional Brownian motion, while from Figure �.� (b) we
conclude that the movement perpendicular to the director is characterised by
a short-time rattling and a hopping-type Brownian motion on sufficiently long
time scales. A particle rattles within a smectic layer, until it hops to another,
neighbouring smectic layer. Thismeans that, for short times, the particle’smotion
is constrained by a molecular confinement field provided by all other particles in
the simulation box, the so-called smectic ordering potential. We employ the in-
layer rattling to calculate the smectic ordering potential as to be explained in
more detail below.

The figure suggests that guest particles shorter and longer than the host par-
ticles cover more distance within the same time and hence diffuse faster, both in
the x y -plane, so within a smectic layer, and along the z -axis (the director). That
longer particles would be faster is unexpected, given that their self-diffusivities
in the dilute regime are smaller as these scale with reciprocal length of the par-
ticles [��]. This implies that this finding must be due to the interaction with the
host particles, e.g., associated with caging phenomena of the effective molecular
field they experience from the host particles.

To make the analysis more quantitative, we evaluate from the trajectories of
all guest particles the mean-square displacement (MSD) for the movement in the
x y -plane and along the z -axis. We also evaluate the number of jumps between
layers, and the residence time of the guest particles in a layer. The procedure
we follow to obtain these values we explain in the next paragraph. Because we
employ bead-spring chains to model our particles and invoke Langevin dynamics
simulations, longer particles are subject to a larger friction proportional to the
number of beads that make up the chain, as already alluded to. Therefore, in
order to compare the MSD of the various guest particles, and compensate for
the effect of the friction, we multiply the value of the MSD obtained from the
simulations by the number of beads b that make up a particular guest particle.
Similarly, the same procedure is performed for the number of jumps, while the
residence time in a layer, on the other hand, is divided by the number of beads.

To extract the long-time diffusivity, and correct for the friction, we divide the
MSDs scaled by the number of beads b⇥ MSD and by the time interval �t . For
late times, we expect an approximately constant value as function of the time
interval �t . This value represents the long-time diffusion constant, denoted D.
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Figure �.�: Traces of guest particles perpendicular and parallel to the director
n for one particle of the guest � (Lguest = ��D), guest �.� (Lguest = �.�D), guest
�.� (Lguest = ��.�D) type of persistence length ���D . (a) The perpendicular in-
plane movement shown in the x y -plane can be described as Brownian, mainly
caused by the interaction with neighbouring particles, while (b) the movement
perpendicular to the director is Brownian but resembles a hopping-type motion.
The grey box represents the simulation box dimensions in each direction. The
total diffusion time is equal in a) and b), and corresponds to 105 time units.
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We estimate the diffusion coefficients perpendicular and parallel to the director,
D? and Dk , by taking the average of b⇥MSD?/�t and b⇥MSDk/�t from �t �
���� time units, which corresponds to �D? and �Dk . We utilise this average of
b⇥MSD�t rather than the coefficients of the linear regression of the logarithm
of the MSD as a function of the logarithm of the time interval �t for two rea-
sons. First, because of the limitations of our statistics which involves only ��
particles. Second, due to the presence of different and usually not distinct dif-
fusion regimes involving ballistic, short-time and long-time diffusive behaviour,
and crossovers between them. From the aforementioned linear regression, we
obtain the diffusion exponent � that we present in the next section.

Our procedure to obtain the smectic ordering potential, the number of jumps
and the residence time in a smectic layer consists of two steps. First, we deter-
mine the positions of the centres of mass of the particles that are temporarily
“trapped” in a smectic layer, which we find to coincide with the centres of that
layer (to be discussed in more detail below). See Figure �.� (a). Second, we calcu-
late the degree to which their instantaneous positions deviate from these posi-
tions. For the first step, we take the displacement along the director of all � guest
particles in the simulation box and count the frequency of their positions in bins
of �.�D length. We employ the function in the software Mathematica to find the
position of the peaks, illustrated in Figure �.� (b).

For the next step, we compare the position of each guest particle with the
list of peaks in order to determine the position where it is temporarily trapped.
If in the next configuration the particle is located around another position, we
count this as one jump. The interval between two jumps is the residence time
of the particle k in a layer. We store the number of jumps Jk and the average
residence time between jumps ⌧k for the entire simulation time for each particle.
We then take their averages, which include the data from the other � simulation
runs, and study their distribution. The deviation of the instantaneous particle
position to the trapping position Z �

k is stored for the calculation of the smectic
ordering potential.

As discussed in Chapter �, the smectic ordering potential �U describes the
molecular field experienced by each individual particle in the smectic phase. In
this case, because there are only a few particles in each configuration, it is ob-
tained from the distribution of all guest particles positions p for the entire simu-
lation. The distribution ⇢ is the frequency count of the various values of p in bins
of �.�D , divided by the maximum count of p . The smectic ordering potential �U
is then related to ⇢ by ⇢ / e��U/kBT , as we assume a Boltzmann distribution. The
smectic ordering potential presented here corresponds to the average over all
five simulation runs (involving �� particles). It is important to stress that, except
for the short guest particles, an individual particle does not usually visit all lay-
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Figure �.�: (a) The position along the director as a function of the simulation
time for all � guest particles in the simulation box, each particle has its trajectory
along the director represented by a different colour. The grey box represents
the height of the simulation box. (b) The frequency count of positions in bins
of �.�D as a function of the position along the director for guest �.� particles of
persistence length ���D . The red dots represent the position where the particles
are temporarily trapped in a smectic layer for approximately ��� time units, which
is the average residence time for this particular guest particle.
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ers in the simulation box within a simulation run. However, each layer is visited
by at least one of the eight particles within a run, suggesting we are probing a
sufficient number of configurations. This can be seen in Figures �.� and �.� from
the comparison between the particles’ trajectories with the dimensions of the
simulation box, represented by the grey box.

We find from our simulations (results not shown) that the positions of the
centres of mass of the guest particles represented in Figure �.� (b) correspond to
the centres of the smectic layers. For this, we compare the centre of the distri-
bution of the positions along the director of the host particles to the position of
each particle at every configuration. The distribution of these values show that
they are indeed usually located near the centre of the smectic layer. The dis-
tribution for guest � is the one with highest probability to be around the centre
within a deviation of ±�.�D , as to expected: guest � has the same length as the
host particle. Interestingly, it is the shortest and the largest guest particles, that
is guests �.� and �, that are more widely spread around the centre of the smec-
tic layer. For the guest �.�, most of configurations are near the centre of a layer,
but exhibit a deviation of about ±�D , indicating that this is probably due to an
in-layer rattling. For the guest �, we expect that such a wide distribution is due to
permeation to adjacent layers already partially occupied by the particle, allowing
for significantly more rattling space than the host particles have.

�.� Characterisation of the dynamics

In this section, we characterise the dynamics of the guest particles perpendicular
and parallel to the director, n̂, which is parallel to the z axis. A taste of this was
already given in the previous section, in Figure �.�, representing the host (guest
�), a short guest particle (guest �.�), and a long guest particle (guest �.�) of per-
sistence length LP = ���D . These already indicate some of the findings that we
confirm more quantitatively in this section. We recall that from Figure �.� (a) we
find that the random displacement of the particles perpendicular to the director
does not appear to be very strongly influenced by the difference in contour length
between the guest and the host particles. Figure �.� (b) shows that the displace-
ment along to the director is of a hopping-type, as the particles remain in a layer
for some time and jump to another layer several times during the simulation run.
In this case, unlike the displacement perpendicular to the director, both the short
and long guest particles seem to diffuse faster, as we observe a larger number of
jumps within the simulation time. In line with what is found experimentally [��],
the hopping-type diffusion of shorter and longer guest particles is not sluggish
as that of the host particles, where we note that the guest � of persistence length
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LP = ���D corresponds to the host particle. Therefore, host particles stay longer
in a given smectic layer than shorter or longer guest particles, which results in a
longer residence time.

From the traces of all �� guest particles of each contour and persistence
length considered, we calculate the MSD parallel and perpendicular to the di-
rector in order to quantify the diffusion. In Figure �.�, we present the average
of b⇥MSD along and perpendicular to the director, which we respectively de-
note b⇥MSDk (a) and b⇥MSD? (b), for the host and guest particles of persistence
length LP = ���D . We obtain the diffusion exponent � form the time evolution
of the MSD for the perpendicular and parallel displacement for all cases, MSD
⇠ �t � . These values are mostly around unity and all of them are larger than �.��,
as can be seen in the Table �.�. Therefore, we find that the particles are for all
intents and purposes diffusive in both directions, as expected from the displace-
ment of these particles presented in Figure �.�. For the displacement along the
director, we note that this is only true for larger time scales, as to be expected.

LP = ���D LP = ��D
MSDk MSD? MSDk MSD?

guest �.� �.��� �.��� �.��� �.���
guest �.� �.��� �.��� �.��� �.���
guest � �.��� �.��� �.��� �.���

guest �.� �.��� �.��� �.��� �.���
guest �.� �.��� �.��� �.��� �.���
guest � �.��� �.��� �.��� �.���

Table �.�: The scaling exponent � form the time evolution of the MSD for the per-
pendicular and parallel displacement for guests particles of persistence lengths
LP = ��� and ��D .

The insets in Figure �.� give the same b⇥MSD, but now divided by the time
interval �t in the linear scale, starting from ���� time units. As can be seen from
these insets, the values of b⇥MSD/�t are not exactly constant, despite the fact
that values of the diffusion exponent � are very close to unity, presumably due
to insufficient statistics.

In Figure �.�, the diffusion coefficients perpendicular and parallel to the di-
rector, D? and D, for all guest/host particle ratios and persistence lengths are
represented. Note these diffusion coefficients are scaled by the number of beads
b . Error bars indicate the standard deviation obtained from our data. A first ap-
proach to provide an order of the various diffusers by their relative speed from
slowest to fastest, is to compare the values of the diffusion constants for the
guest particles. Figure �.� (a) shows that the scaled diffusion coefficients perpen-
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Figure �.�: (a) Scaled MSD perpendicular and (b) parallel to the director for the
host and guest particles of persistence length LP = ���D diffusing in the smectic
A phase at volume fraction � = �.�. The MSD is scaled by the number of beads
b that compose the guest particle. The insets represent the same MSD divided
by the time interval �t on a linear scale, starting from ���� time units. See also
Table �.�.
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dicular to the director cannot reasonably make a distinction between the various
ratios and contour lengths studied, as the differences in values are quite limited
in magnitude. In other words, the diffusion perpendicular to the director is sim-
ilar for all ratios and persistence lengths considered, if we scale out the trivial
dependence on their length.

In Figure �.� (b), we present the (scaled) diffusion coefficients parallel to the
director. In this case, we notice that the non-commensurate long guests are the
fastest. The trend is upwards: diffusivity increases with the length ratio. The re-
lation is not strictly linear nor monotonic, however, as we can identify two peaks.
The first peak is around the ratio Lguest/Lhost of �.�, and the second around �.�. This
indicates that short guests may diffuse faster than host particles, even we cor-
rect for the difference in fraction. If we consider the average value of the b⇥MSD
divided by �t , we find the following sequences (ordered from the slowest to the
fastest diffusors): guest � (or host), guest �.�, guest �.�, guest �.�, guest �.�, and
guest �.�, for the persistence length LP = ���D ; and guest �.�, guest �.�, guest
�.�, guest �.�, guest �.�, and guest �.� for the persistence length LP = ��D .

Note that we also find no clear trend of how flexibility influences the diffusion
of the guest particles. We discuss this further in the next section, in which we
focus on the diffusion along the director.

�.� Hopping-type diffusion

The results presented in the previous section are supported by our analysis of
the average number of jumps of a guest particle during the simulation time over
all �� particles J . We evaluate this quantity, scaled by the number of beads b to
account for differences in friction, as a function of the ratio between the contour
length of guest and host particles for guests of persistence length LP = ��� and
��D . Results are presented in Figure �.�.

Notice the direct relation between Figures �.� (b) and �.� (a) with the excep-
tion of flexibility effects. Similarly to Figure �.� (b), we also find two peaks in
Figure �.� (a), indicating that an increase in jump frequency is at the root of the
faster diffusion of guests �.� and �.�. Still, it is the non-commensurate long guest
particle �.� that exhibits the fastest diffusion. In other words, the optimal length
ratio for the fastest diffusion must be around �.�.

Even though the figures present the same trends, there is a difference if we
focus on the effect of the persistence length of the fastest diffuser. Again, the
impact of bending flexibility on the dynamics seems relatively weak. From the
analysis of the diffusion coefficient, the fastest diffuser is the guest �.� with a
persistence length LP = ���D , while from our analysis of the number of jumps,
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Figure �.�: (a) Scaled diffusion coefficient perpendicular to the director D? and
the (b) diffusion coefficient along the director Dk for particles in the smectic A
phase at volume fraction � = �.�. Values are calculated from the average value
of the b⇥MSD/�t as a function of the ratio of the contour length of the guest and
the host particles Lguest/Lhost for the persistence lengths LP = ��� and ��D of the
guest particles.
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it is the same length ratio but the particle with persistence length LP = ���D
wins out in this case. From our findings, it seems justified to conclude that the
impact of flexibility is not always to increase the jump frequency, even though this
might be expected (see below). It depends also on the length ratio considered.
For example, a similar effect presents itself for the commensurate length ratios
�.� and �.�.

A measure related to the average of the number of jumps is the average res-
idence time in the simulation run over all �� particles ⌧ , that we again divide by
the number of beads b and probe as a function of the ratio between the contour
length of guest and host particles for guests of persistence length LP = ��� and
��D . See Figure �.� (b). The average residence time is approximately inversely
proportional the average of the number of jumps, therefore presenting valleys in-
stead of peaks near the ratios �.� and �.�. This implies our findings are internally
consistent, as they should.

In order to come to some sort of understanding of these findings, in Figure
�.�, we present themean smectic ordering potential as a function of the z position
relative to the smectic layer. This is done for all ratios of the guest/host contour
lengths with persistence lengths LP = ��� (a) and ��D (b) of the guest particle.
By comparing what we find from the smectic ordering potential in the light of the
order of the diffusers by their speed, discussed above, we infer that not only the
height of the smectic ordering potential but also the shape must be relevant to
their dynamics. For example, for the guest �.�, the smectic ordering potential for
persistence lengths LP = ��� and ��D are comparable in height, but that of the
latter is much wider. This is in line with our finding that the more flexible guest
�.� diffuses faster than its stiffer version. Note that the shapes of the smectic
ordering potential are actually quite different for the different guest particles,
where in particular that of guest �.� springs out from the rest.

In spite of this, there is an interesting similarity of the potentials for positions
very near the smectic layer centre (Z� = �). Indeed, it seems that the shape of
the potential is the same independent of the particle contour length and persis-
tence length. Beyond this region, the smectic potentials diverge from each other.
Near Z� = �/�, a second regime presents itself near the transition zone between
smectic layers. Here the potential rise fast with position. Because few particles
reside in that region, statistics are low. There, small differences in height are
probably not statistically significant.

To highlight the differences in smectic ordering potential, we present in Figure
�.� the same results but now separated by the contour length ratios Lguest/Lhost,
and focusing on the effect of flexibility. Note that the shapes of the curves vary
significantly between the different length ratios, but less so between the two flex-
ibilities for a given length ratio. We present the smectic ordering potential using
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Figure �.�: (a) Average of the number of jumps during the simulation time over all
�� guest particles J (diffusing in the smectic A phase at volume fraction � = �.�)
times the number of beads b . (b) of the average residence time in the simulation
run over all �� particles ⌧ divided by the number of beads b in the guest chain
as a function of the ratio between the contour length of guest and host particles
for guests of persistence length LP = ��� and ��D .
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Figure �.�: Smectic ordering potential as a function of the Z position along to the
director to the smectic layer. This is for all ratios between the contour length of
the guest and host particles for (a) the persistence length LP = ��� and (b) ��D
of the guest particle diffusing in the smectic A phase at volume fraction � = �.�.
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slightly different scales for the commensurate and incommensurate guest parti-
cle contour lengths, for it allows us to better appreciate the differences in shape.
Notice that there are similarities between the smectic ordering potential curves
that are paired in rows, so comparing the figure in the columns on the left and
right.

In (a) and (d) the figure shows that the more flexible guests (for guests �.� and
�.�) experience a larger potential, indicating that they diffuse more slowly than
the more stiff ones do. Nevertheless, the difference in height of about �.�� kBT
remains rather small. This is probably the reason for the not-so clear trend we
saw of the diffusivities in terms of the effect of flexibility on the diffusion. In figure
(e), representing the guest � that has the same contour length as the host parti-
cles, they have nearly coinciding smectic ordering potentials (shape and height),
yet we do observe small differences in the diffusivity and number of jumps show
in our simulations, indicating that themore flexible host is the fastest in this case.

From the remaining figures (b), (e), and (f), we find that the potential is larger
for the stiffer particle, and therefore the more flexible guest must arguably be the
faster. The differences in shape of the smectic ordering potential seems to be the
mostly influenced by contour length of the guest particle. It is only the guest �.�
that shows a substantial difference in height of the potential. In comparison to
the guests �, which corresponds to the host particles themselves for LP = ���D ,
the smectic ordering potential is approximately � kBT higher. For this case, the
shape is also substantially different, showing an almost flat profile in the interval
-� to �D , in which the value of the potential less than �.� kBT . This indicates that
the particle may easily move between these positions in the smectic layer. This
implies large fluctuations in the position relative to the centre of the layer.

The smectic ordering potentials that we just considered point at significant
differences in the level of ordering of the guest particles in the smectic layers.
This expresses itself also in the development of the self-van Hove function, as
shown in Figure �.�. In the figure we show the van Hove function at the time of
��4 time units for all cases, for which time up to six jumps may be observed. From
(a) to (e), the van Hove function is presented for each ratio of contour lengths
of the guest and host particles. Indicated are results for the two values of the
persistence length LP = ��� and ��D of the guest particle.

We do not correct for the larger viscous force felt by the longer rods and focus
on the number of layers a particle visits during the time interval considered but
rather on how distinct the peaks in the distribution are for each contour length
ratio. In accordance with what we find in Figure �.�, the van Hove function for
guests �.� (b) and �.� (e) do not present very distinct peaks: this is not surprising
giving that they also present the flattest smectic ordering potentials.

The peaks that we find for all guest particle lengths and flexibilities corre-
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Figure �.�: Smectic ordering potential as a function of the Z position in relation
to the centre of the smectic layer for the persistence length LP = ��� and ��D
of the guest particle, for ratios between the contour length of the guest and host
particles Lhost/Lguest of (a) �.�, (b) �.�, (c) �, (d) �.�, (e) �.�, and (f) �. Note that the y-
axis for the non-commensurate values (a), (b), (d), and (e) represents the interval
[�,�.�] and for commensurate values (c) and (f) represents a larger interval [�,�.�].
This way the height of the smectic ordering potential for these guests is higher
and it is possible to better compare the shapes of the curves.
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sponding to excursions to the nearest neighbour layer indicate a lower probabil-
ity for particles whose contour length is commensurate with the contour length
of the host particles in comparison to the other guest particles investigated. See
in particular Figure �.� (c) and (f). Not surprisingly, these are also the slowest
diffusers.

�.� Deflection length

That aspect ratio must have an effect on the layer-to-layer diffusion of particles
seems reasonable to assume, andwe are seeing this in the diffusivities but not re-
ally in the free energy barriers between the smectic layers as we have seen in the
previous section. This implies that layer-to-layer hopping might be dominated by
particle density fluctuation necessary to transport a particle to a neighbouring
layer, given that our smectic phase is very congested [��]. That in-layer diffusion
seems also to be virtually independent of the length ratio suggests that caging
by host particles involves correlated particles in neighbouring layers, which per-
haps is not all that surprising, considering that the layer spacing is about one rod
length and that guest particles make direct contact with the neighbouring layers
too on account of their rattling.

What is also not intuitive is that we are not really seeing significant differences
in the diffusive behaviour of particles with different bending flexibilities. More
flexible particles should be able to escape a cage formed by host particles more
easily than rigid ones, which seems to be true in isotropic dispersions [��, ��].
Whether this is true in liquid-crystalline phases has as far as we are aware not
definitively been established but seems likely [��], but a simple analysis does
suggest that for highly aligned particles flexibility must play a must smaller role
in diffusive processes than in congested isotropic systems. Indeed, the alignment
of the rod-like particles should strongly attenuate any bending modes that could
assist in cage escape [��, ��].

To illustrate this, we investigate the orientation of the guest particles Sk for all
contour lengths and persistence lengths considered in this study. We take all the
absolute value of the orientations of all guest particles ��Sk · n̂�� as an estimate of
the average orientation angle •✓2¶ in the phase. With this value, we estimate the
nematic order parameter S2 using the relation S2 = 1 � 3•✓2¶2/2. These values,
as well as the values of the so-called Odijk deflection length �Odijk, are presented
in Table �.� for guests particles of persistence lengths LP = ��� and ��D [��]. The
Odijk length measures the length scale over which a local bending fluctuation of
a semi-flexible particle is directed back to the director.

We find that for all guest particles, except the shortest, the scalar nematic
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Figure �.�: Van Hove function l as a function of the Z position in relation to the
centre of the smectic layer for the persistence length LP = ��� and ��D of the
guest particle, for ratios between the contour length of the guest and host par-
ticles Lhost/Lguest of (a) �.�, (b) �.�, (c) �, (d) �.�, (e) �.�, and (f) �. Note that the
y-axis for the non-commensurate values (a), (b), (d), and (e) represents the in-
terval [�,�.�] and for commensurate values (c) and (f) represents a larger interval
[�,�.�]. This way the height of the smectic ordering potential for these guests is
higher and it is possible to better compare the shapes of the curves.
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LP = ���D LP = ��D
S2 �Odijk [D ] S2 �Odijk [D ]

guest �.� �.��� ��.� �.��� �.�
guest �.� �.��� �.� �.��� �.�
guest � �.��� �.� �.��� �.�

guest �.� �.��� �.� �.��� �.�
guest �.� �.��� �.� �.��� �.�
guest � �.��� �.� �.��� �.�

Table �.�: The nematic order parameter S2 estimated from the orientation of the
guest particles and the corresponding Odijk deflection length �Odijk for guests par-
ticles of persistence lengths LP = ��� and ��D .

order parameter is close to unity. Consequently, the deflection length is equal to
the particle width or even below that. This implies the particles behave more or
less as rigid chains as bending modes are strongly suppressed by the ordering
field. This in turns means that bending modes cannot assist the particles to find,
say, a vacancy in the neighbouring smectic layers and hop to that layer. If the
diffusion is not so much made possible by spontaneous openings of vacancies in
neighbouring layers but by a concerted motion of particles across layers [��, ��],
then finding partner particles that are able to engage in this kind of motion must
also be much more difficult. Our results seem to suggest this.

�.� Discussion and conclusions

In this Chapter we investigate by means of overdamped molecular dynamics sim-
ulations the impact on the single-particle dynamics of the contour and persis-
tence length in a high-density smectic A phase consisting of slightly rigid, rod-like
host particles. Interactions between all particles are purely repulsive and hence
our study focuses specifically on lyotropic liquid crystals.

We find that for the diffusion perpendicular to the director, so within the
smectic layers, contour and persistence length do not seem to play a very sig-
nificant role if we correct for the length dependence of the solvent friction of the
particles. For the diffusion along the director, non-commensurate short and long
guest particles diffuse faster than commensurate ones, including and in partic-
ular those identical to the host particles. Remarkably, the by far fastest non-
commensurate particle is longer than the host particles are. Our calculations
show that this must be due to a much weaker and flatter molecular field that
these particles experience by the host particles.
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Interestingly, even though that the long commensurate guest �.� does not
diffuse faster than the shorter guests �.� and �.�, it is still, relatively speaking, as
fast or even faster than the shorter commensurate and incommensurate parti-
cles. It seems that the advantage that a longer guest particle has is the partial
penetration into the neighbouring layers, creating the space needed to diffuse
along the director as in fact was also suggested in reference [��].

Remarkably, the persistence length of the guest particles does not seem to
significantly change the trends that we observe with increasing contour length.
This is unexpected for one would naively surmise that bending fluctuations of the
particle help cage escape, in particular between layers. Nevertheless, suppres-
sion of bending modes by the molecular ordering field is possibly the root cause
of our finding that bending flexibility does not strongly affect diffusion parallel
and perpendicular to the director.

We realise that our results are tentative, in spite of the fact that in our simula-
tions we consider a total number of �� guest particles of a total of ���� particles
in the simulation box, and a total simulation time of ��5 time units. This rea-
sonably large number of guest particles and seemingly long simulation time still
result in, e.g., mean-square displacements that bear the hallmarks of incomplete
statistics. Indeed, the mean-square displacement divided by the time is not a
strict invariant of time and shows long-time fluctuations. It may well be thatmuch
longer simulations are needed to unequivocally establish the impact of length on
the diffusivity of the rod-like guest particles in a sea of host particles in the smec-
tic A phase. We also surmise that much more finely grained bead-chain particles
are needed to pinpoint the subtle effects of flexibility in this context.
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Chapter �

Dynamics of clusters and percolation
in the isotropic phase

In order to make headway in the field of dynamical percolation, relevant in the
context of the fabrication of carbon nanotube nanocomposites, we study the stat-
ics and dynamics of geometric percolation of mutually repulsive particles, tak-
ing as a starting point spheres rather than tubes for reasons of simplicity. The
question that we address here is whether geometric percolation exhibits critical
slowing down expected because of the critical nature of the percolation transition.
While we find that at the percolation threshold the size distribution of clusters is
algebraic and scale free up to a certain cutoff, suggesting critical behaviour, tell-
tale signs of a diverging time scale remain elusive. Interestingly, the connectivity
length strongly impacts upon the survival dynamics of pairs of particle in clusters.
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�.� Introduction

There is a significant interest in the physics of continuum percolation of colloidal
particles dispersed in a fluid hostmedium, on account of potential applications in
photovoltaics, electromagnetic shielding, electromechanical energy conversion
and actuation, and so on [��–��]. In these applications, one makes use of the col-
lective properties of system-spanning networks of the in some sense connected
particles. Connectivity may, for instance, be defined in terms of a length scale
relevant to the efficient transport of charge carriers for electrical conductivity,
that of energy for heat transfer, or the extent of charge separation for amplifica-
tion of electrical permittivity [��]. Of particular interest are particles of very large
aspect ratio, such as carbon nanotubes and graphene, as these tend to have a
very low percolation threshold, that is, the minimum filler fraction required to
obtain a system-spanning network in the host medium [��, ��]. In electrical per-
colation the conductivity of a composite increases very strongly with increasing
filler fraction beyond the percolation threshold [��].

Although actual applications typically involve solid-state devices, their pro-
cessing and manufacturing takes place in the fluid state. It is often thought that
the properties of the final solid-state composites, in most cases involving host
materials of polymeric nature, somehow reflect the collective properties of the
particle networks in the fluid state prior to solidification [��]. The solidification
process itself may involve the polymerisation of initially low-molecular weight
compounds, compression moulding in the melt, spin and slot die coating from
solution, and so on [��, ��]. Whilst by far most of the theoretical and simula-
tion efforts in this field focus on the impact of the so-called formulation of the
composite, that is, its composition [��, ��, ��–���], and presume thermodynamic
equilibrium to apply, there are strong indications that liquid-state processing
conditions also strongly affect the properties of the final product [��, ���, ���].
Most attempts to deal theoretically or computationally with any effects of out-of-
equilibrium processes on percolation involve investigating the impact of exter-
nal fields on particle alignment [���–���], although there are notable exceptions
[���, ���]. The impact of elongational flow fields on alignment of rods can indeed
be modelled at the level of an equilibrium theory [��], but such is not the case
for that of shear fields [��].

Theoretically, the field of non-equilibrium percolation phenomena remains
unchartered territory, although one would naively think that ab extension of Sch-
molukowski theory should prove a promising starting point [���]. Notwithstand-
ing that a connectedness percolation version of the framework of Schmolukowski
theory would indeed seem promising, it would suffer from the same disadvantage
as the original equilibrium version, which is that it deals solely with a few mo-
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ments of the full cluster size distribution [��]. Indeed, connectivity percolation
theory, which has at its root classical liquid state theory, focuses attention on
the pair connectedness function, from which the mean aggregation number and
mean radius of gyration of clustersmay be calculated [���]. Hence, if interested in
cluster dynamics, this avenue of theoretical investigation would provide limited
information only.

It seems sensible, then, to opt for dynamical computer simulations and in-
vestigate the statics and dynamics of connectedness clustering ofmutually repul-
sive spheres near the percolation threshold, making use of the so-called cherry
pit model [��]. We focus on spheres rather than elongated particles for simplic-
ity, because for the latter the clustering dynamics is impacted upon not only by
translational diffusion but also rotational diffusion of particles. This should lead
to very different buildup and breakdown dynamics of clusters, as we may deduce
from the fact that the regression of concentration fluctuations is very different
for interacting rod-like particles compared to that of spherical shape [���]. As
this is a preliminary study, we limit ourselves to cluster dynamics in quiescent
suspension, postponing shear-flow studies to future work.

While the dynamics of the clustering of spherical particles has been exten-
sively studied in the context of the sol-gel transition of mutually attractive parti-
cles and the crystallisation ofmutually repulsive particles [���, ���], little is known
about the statics and dynamics of geometric clusters of repulsive spheres away
from any actual phase transition, kinetic trapping or structural arrest. Hence to
make headway in this field of study, we investigate average cluster distributions,
temporal fluctuations in the average cluster size and pair survival times for con-
ditions under which we expect percolation to occur on a macroscopic scale. We
pinpoint these conditions by relying on the crossing of the percolation probabil-
ities for different box sizes.

Even though in our finite simulation box the percolation probability is under
those conditions not equal to unity, we do find universal cluster size distribu-
tions following a power-law distribution. This is indicative of critical behaviour
[���]. The temporal autocorrelation function of the average cluster size, while
somewhat noisy, seems to point at two time scales. This is confirmed by our cal-
culated pair survival probability, which shows much cleaner statistics and clearly
demonstrates the existence of two relevant time scales for the problem at hand.
We associate the short time scale with individual particle movements, attaching
and detaching from clusters, and the longer time scale with large-scale attach-
ment and detachment processes involving groups of particles.

Interestingly, the short time scale is only weakly dependent on the connectiv-
ity range, while the longer time scale strongly increases with increasing connec-
tivity range. However, both do not seem to be very sensitive to the system size.
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This we interpret as there not being a diverging time scale at percolation, to be
expected in the thermodynamic limit if percolation indeed is akin to a (second
order) phase transition [��, ���]. A naïve diffusion model that we put forward in
the Appendix �.A also points at the existence of such a diverging time scale. It
seems that more extensive simulations on much larger systems need to be done
to confirm the absence of critical slowing down near percolation.

The remainder of this chapter is organised as follows. In Section �.�wepresent
the methods and analysis procedures employed. In Section �.� we present the
percolation threshold for three values of the connectedness diameter and two
values of the box size. At the percolation threshold, we quantify the statics and
dynamics of the clusters in the isotropic phase. These results are presented in
Section �.�. In Section �.� we present the main conclusions. In addition, we also
present a simple argument for the diverging time scale in Appendix �.A.

�.� Methods and analysis

Computer simulations -We perform Langevin dynamics (LD) simulations using the
simulation package LAMMPS on N mutually repulsive spheres in an implicit sol-
vent. The particles have a massm and interact by the Weeks-Chandler-Anderson
(WCA) potential given in Equation �.� of Section �.�. From this equation, we have
the parameter D (which defines the particle diameter) and ✏ as our length and
energy units. The temperature T is kept constant, T = � ✏/kB. The particles re-
side in a cubic simulation box of fixed side L ranging between ��D and ��D ,
with periodic boundary conditions. Initially, the particles are placed at random
positions (pseudo-random generation using the time as seed) in the simulation
box. If this leads to a configuration in which they partially overlap, the initial
configuration is discarded. The particles are equilibrated for �⇥��5 timesteps or
���� time units, where the time unit is given by (m/kBT )1/2D , at a given volume
fraction � = N⇡D 3(�V )�1, whereV is the volume of the box,V = L3. The damp-
ing factor of the implicit solvent is �.� time units, which corresponds to a solvent
viscosity of just below that of water. For the data acquisition run, the total simu-
lation time t s is such that the particles can explore the entire simulation box. In
other words, the MSD at t s has to be larger than �L2 (cubic box diameter squared).
We employ the mean-square-displacement (MSD) of the particles as a measure
of the particle displacement. The configurations are recorded every�t , a time in-
terval chosen such that particles move on average half a diameter between two
consecutive configurations: the values t s = ��7 and �t = ��� timesteps satisfy
these criteria, and produce a total of ��5 configurations.

We perform our simulations for various values of the number of particles
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N and box size dimension L. In each configuration, we classify these particles
in clusters based on the distance between the particles. A cluster is formed by
particles that are connected. The connectedness diameter d demarcates a maxi-
mumdistance between centres of mass for two particles to be considered directly
connected. This is known as the cherry pit model in continuum percolation [��],
schematically represented in Figure �.�. Two particles may also be indirectly con-
nected by intermediate particles.

D

connected pair

d

Figure �.�: Schematic illustration of cherry pit model [��]. In this model, a particle
is characterised by the particle diameter D (or impenetrable diameter) and the
connectedness diameter d (or penetrable diameter).

After all the particles in the simulation box have been divided in clusters, we
verify if there is at least one cluster that is connected to its periodic image. If
that is the case, it percolates the simulation box. This may occur in one or more
dimensions of the simulation box. For this reason, there are several ways to de-
termine if percolation occurs. Here, we compare two different criteria. Firstly,
percolation occurs if there is a cluster connecting to its periodic image in at least
one dimension (criterion �). Secondly, percolation occurs if there is a cluster con-
necting to its periodic image in each of the three dimensions (criterion �). We
calculate the percolation probability by taking the number of configurations that
has a system-spanning cluster divided by the total number of configurations.

We obtain the percolation probability as a function of the dimensionless
number density Nd 3/L3 as defined in Reference [���] for different box sizes and
values of the connectedness diameter d . Next we identify the percolation thresh-
old as the crossing point of the percolation probability curves as a function of
the number density for the two different box sizes we tested. Such a crossing
point occurs for sufficiently large boxes, and is known to coincide with the per-
colation point in the thermodynamic limit [���]. This means that a formal (and
time-consuming) finite-size analysis is not necessary [���].

At the percolation threshold, we analyse the distribution of sizes of the clus-
ters for each combination of box size and ratio between the connectivity and
particle diameters, D/d . We also record the time evolution of the average clus-
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ter size. The time series of the average cluster size may present an underlying
correlation. For this reason, we perform further analysis of the average cluster
size, including the calculation of the temporal autocorrelation function of the av-
erage cluster size. We also present the scatterplot of the average cluster size c
at time t , subtracted by the global averages of the cluster size c̄ versus the same
quantity at time t � 1 unit in order to study the correlation in the cluster size in
our simulation. We compute the time interval for which a pair of particles remains
connected in a cluster.

�.� Percolation threshold

We validate our procedure to find the percolation threshold (using dynamical
simulations) for our somewhat soft repulsive spheres, by comparing our results
the with recent results of Monte Carlo (MC) simulations by Miller for hard spheres
based on ��5 configurations [���]. In the MC simulations, the box sizes are L1 =
�d and L2 = ��d , which are the sizes we choose for our simulation as well. In our
simulations, we consider three values of the ratio D/d = �.�, �.�, and �.�. As we
keep the impenetrable diameter D constant, the penetrable diameters are then
d = �.��D , �D , and �D . Our simulation parameters are summarised in Table �.�.

LD simulations parameters MC simulations
D/d L1/D L2/D Nc(L1) Nc(L2) Ncd 3/L3 Ncd 3/L3

A �.� �� �� ��� ���� �.�� �.��
B �.� �� �� ��� ���� �.�� �.��
C �.� �� �� ��� ���� �.�� �.��

Table �.�: Simulation parameter and comparison with literature. Given are the
ratio between the connectivity and particle diameters D/d , the two box sizes L1

and L2 in units of the sphere diameter D , the critical number of particles Nc for
each box size and ratio D/d , and the critical number density Ncd 3/L3 from our
simulations and Reference [���].

In Figure �.�, we present the percolation probabilities as a function of the
scaled number density Nd 3/L3 for two box sizes and three values of D/d . For
each combination of these parameter, we calculate the percolation probability
considering the two different percolation criteria described in Section �.�. The
top figures are related to the first criterion saying that percolation occurs if there
is a cluster connecting to its periodic image in at least one dimension. The bottom
figures are related to the second one, which only considers percolation to occur
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Figure �.�: Percolation probability as a function of the scaled number density
Nd 3/L3 for both box sizes L = � (grey) and ��d (black) and ratios of (a) D/d =
�.�, (b) D/d = �.�, and (c) D/d = �.�. The dotted lines indicate the points at
which the curves of the percolation probability for different box sizes cross. The
vertical dotted line indicates the critical number density Ncd 3/L3 for each ratio
D/d and the horizontal dotted line indicates the percolation probability for each
percolation criterion adopted.
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if the clusters are connected in each of the three dimensions. In this case, the
crossing of the percolation probability curves occurs at a very low concentration.
For this reason, we present this figure in the log-linear scale such that the crossing
point can be visualised.

In Figure �.�, the dotted lines cross at the point where the curves of the perco-
lation probability for different box sizes cross. The vertical dotted line indicates
the critical number density for each ratio D/d , and the horizontal dotted line in-
dicates the percolation threshold for each percolation criteria adopted. We find
that criterion �, the percolation in one dimension criterion, leads to a percolation
probability of approximately �.�� at the threshold in the thermodynamic limit,
and that criterion �, the percolation in all dimensions, to a much smaller perco-
lation probability of approximately �.�⇥���2 at the threshold in that limit. These
values are smaller than those found in previous work [���] and we have no expla-
nation for it. However, the concentration at the crossing points that we identify
as the percolation threshold agree well with the Miller data [���] that we also
quote in the last column of Table �.�. For example, from the MC simulations for
the ratio D/d = �.�, the number of particles in the simulation box at the perco-
lation threshold corresponds to Nc = ��� and ���� particles, if the the box size
is respectively L = �d and ��d . In comparison, our simulations for d = �D , so
that we have the same case of D/d = �.�, L = ��D = ��d (for soft spheres) give
very similar values of Nc = ��� and ����. These values agree within about one
percent. The fact that the percolation threshold for our two criteria are internally
consistent, and that our percolation thresholds agree with those of Miller [���],
support our conclusion that our simulation procedure is reliable.

�.� Cluster dynamics

Next, we discuss the cluster statics and dynamics for the two box sizes and three
values of the ratioD/d , at what we infer must be the percolation threshold in the
thermodynamic limit, see Table �.�. We analyse several features of the dynamics
of the spheres near the percolation threshold, the first of which is the distribu-
tion of cluster sizes. In Figure �.�, we present the distributions of the cluster sizes
for both box sizes L = �d and ��d and ratios of (a) D/d = �.�, (b) D/d = �.�,
and (c) D/d = �.� in log-linear and log-log scales. From the figures on the left
(log-linear), we find that larger clusters form for smaller values of the ratio of the
impenetrable and penetrable diameters of the spheres, D/d . This is expected
as, for these ratios, the simulation boxes are proportionally larger (in units of the
particle diameter D ). The difference between the distribution becomes clearer if
we compare the ratios D/d = �.� and �.� as, for these ratios, there is the same
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Figure �.�: Distribution of the cluster size for both box sizes L = �d and ��d and
ratios of (a)D/d = �.�, (b)D/d = �.�, and (c)D/d = �.� in a log-linear scale (left)
and a log-log scale (right). Particle numbers are fixed to correspond conditions
at the percolation threshold in the thermodynamic limit. See Table �.�.
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number of particles Nc in each size of the simulation box, a particle number that
we identified as the critical number corresponding to percolation in the ther-
modynamic limit. For the ratio D/d = �.�, we find a considerably larger tail (a
larger number of clusters contains more than ��� particles, as indicated by the
dotted line). In the figures on the right (log-log), we find that the distributions
follow a power law with exponent -� for all box sizes and ratios D/d . A power
law of -�.� is found in the off-lattice simulation of sticky particles close to the
percolation threshold [���]. For concentrations below the percolation threshold,
in the flocculation regime, the cluster size distribution follows a power law of �.�
in the same system. Actually, the power law of approximately � is also found in
lattice-based simulations in � and � dimensions [���]. This indicates that lattice
and off-lattice percolation belong to the same universality class. The algebraic
distribution seems to cross over to an exponential one beyond some large cluster
size, which is expected theoretically [���].
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Figure �.�: Time evolution of the average cluster size for both box sizes L = �d
(grey) and ��d (black) and ratios of (a) D/d = �.�, (b) D/d = �.�, and (c) D/d =
�.�. The data points are presented every ��� time units for better visualisation.
As mentioned previously, we probe � times more points as the sampling time is
every ��� time units. The time unit isD

p
m/kBT . We indicate the global averages

of the cluster size c̄ and standard deviation �c for the data presented.

Having stablished the mean size distribution, we now turn to temporal fluc-
tuations in this distribution, focusing on a single moment of this distribution. In
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Figure �.� we present the average cluster size as a function of the simulation time
for the box sizes L = �d (grey) and ��d (black) and core-shell ratios of (a)D/d =
�.�, (b) D/d = �.�, and (c) D/d = �.�. Data points are presented every ��� time
units. We also indicate the global averages of the cluster size c̄ and standard
deviation �c of the data presented. The averages shown are not for a percolat-
ing cluster as this should have at least around �� particles in order to cover the
distance of one box dimension. As expected, we find in Figure �.� that the aver-
age cluster size increases with decreasing values of the ratio D/d . By eye, the
time-dependent mean cluster size of Figure �.� seems to be dominated by two
time scales: a short noisy time scale and a longer time scale. Naively one expects
the short time scale to be related to the attachment to and detachment of sin-
gle particles from a cluster, and a long time scale related to similar processes on
a larger length scale, involving entire subclusters. To verify this we analyse the
frequency spectrum by performing a Fast Fourier Transform of the time evolution
of the average cluster size (results not shown). We cannot identify characteristic
frequencies in this spectrum, probably due to the noise in the data. Hence, we
calculate the autocorrelation of the average cluster size. In Figure �.�, we present
the autocorrelation for both box sizes L = �d and ��d and ratio of the impene-
trable and penetrable diameters of the spheres of (a) D/d = �.�, (b) D/d = �.�,
and (c) D/d = �.�. The figure clearly shows that the correlation time decreases
with increasing value of D/d . This is expected as the clusters are more “dense”:
there is more overlap between the particles due to the larger penetrable diame-
ter. Actually, a closer inspection of the decay of the cluster size autocorrelation
function shows that it is not a simple single exponential decay. The short-time
decay seems to be algebraic whilst the long-time decay seems exponential. We
can quantify the long-time decay by measuring the relaxation time associated
with the exponential decay regime. This produces decay times of approximately
���, ���, and �� time units for D/d = �.�, �.� and �.�. Interestingly, as can be
inferred from Figure �.�, these values seem to depend quite strongly on the ratio
D/d and much less so on the simulation box size.

That there are temporal correlations in the instantaneous cluster size can also
be seen in the scatterplot of the average cluster size c at time t subtracted by the
global averages of the cluster size c̄ versus the same quantity at time t �1. In Fig-
ure �.�, we find that for the ratio D/d = �.� the time evolution of the cluster size
is less correlated over one time unit but the correlation increases as we decrease
the ratio D/d . This agrees with what we find previously from the autocorrela-
tion function in Figure �.�. Unlike our findings by considering the autocorrelation
function, the scatterplot does indicate that there are differences between the box
sizes for each value of the ratioD/d . These, presumably, are related to the larger
(relative) fluctuations in the average cluster size for the smaller box sizes.
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Figure �.�: Autocorrelation of the average cluster size as a function of time for
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We obtain better statistics if we measure the survival time of pairs of particle
in the same cluster, that is, if we focus on particles that are directly or indirectly
connected during the simulation run, and we measure the time that they remain
connected. In Figure �.�, we present the distribution of the lifetime ⌧ for both
box sizes L = �d and ��d , and connectivity ratios (a) D/d = �.�, (b) D/d =
�.�, and (c) D/d = �.�. The counts of number of pairs connected seem to decay
biexponentially with different characteristic times ⌧c for short and long times.
The values for the short and long characteristic times that we find are collected
in Figure �.�. It shows that the latter depends strongly on the ratioD/d , whereas
the former does not. We note that for the short lifetime it is not clear whether the
decay is actually exponential, as it could also be algebraic on account of the low
resolution in this interval, we fit an exponential to obtain the appropriate time
scale. The values of both characteristic times seem to not depend on the box size,
supporting earlier finding focusing on the cluster size autocorrelation function.
This suggests that increasing the system size does not lead to a diverging time
scale, and hence we surmise that there is no equivalent of the expected critical
slowing down near the percolation transition.

To investigate this in more detail, we performed our simulations and analysis
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Figure �.�: Scatterplot of the average cluster size c at time t subtracted by the
global averages of the cluster size c̄ versus the lag-� time unit. This is for both box
sizes L = �d and ��d and ratio of the impenetrable and penetrable diameters
of the spheres of (a) D/d = �.�, (b) D/d = �.�, and (c) D/d = �.�.
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also for a larger box size of L = ��d for the connectivity ratio D/d = �.�. For
this additional box size, the percolation probability as a function of the scaled
number density Nd 3/L3 crosses the percolation probabilities of the box sizes
L = �d and L = ��d at their crossing point for both percolation criteria adopted
within �� error. We find that the critical number of particles Nc for this larger box
is Nc = ����. This gives the number density Ncd 3/L3 of �.��, in agreement with
the MC simulations in Reference [���]. Therefore, this result (not shown) confirms
what we find for the smaller box sizes.

In addition, we investigate the time evolution of the average cluster for this
box size at the percolation threshold as well as for values of the connectedness
diameter d slightly below and above d = �D , but keeping their respective val-
ues of the critical number of particles Nc for d = �D constant. In other words,
we compare the time evolution of the average cluster at the percolation with
simulation conditions slightly below and above percolation. The average cluster
size increases with increasing connectedness diameter, as expected. Results not
shown. The same procedure is applied for the distribution of both the cluster
size and the lifetime that a pair of particles remain connected. In Figure �.�, we
show that the distribution of the cluster size also follow a power law with expo-
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nent -� for all critical and off-critical values of the connectedness diameter d =
�.��, �.��, �.��, �.��, and �.��D for box sizes L = ��D (a) and L = ��D (b), which
correspond to the box sizes L = ��d and �� d if d = �D . The major difference
between these distributions of the cluster size is the tail, as the number of large
clusters increases with increasing d . There is, nevertheless, a limitation in size
for the clusters (that is the total number of particles in the box). For this reason,
we find a deviation in the decay of the cluster distribution for the connectedness
diameter d = �.��, and �.��D for both box sizes. As expected, for the distribu-
tion of the lifetime that a pair of particles remain connected, we find that both
the short and long characteristic lifetime increase with increasing connectedness
diameter. Results not shown.

�.� Discussion and conclusions

We perform Langevin dynamics computer simulations in order to investigate the
statics and dynamics of clustering in suspensions of mutually repulsive spherical
particles. The clustering we investigate is purely geometric and determined by
a maximum distance between the particles’ centres of mass. The percolation
threshold is defined as the critical concentration beyond which there is at least
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one system-spanning network in the dispersion.
While the statics of geometric percolation is reasonably well understood, this

is not the case for the dynamics associated with this phenomenon. If percolation
is akin to a second order phase transition, as it is often put forward [���], then
naively this might imply that the dynamics should exhibit critical slowing down.
This would, for instance, imply that clustering becomes infinitely slow at the tran-
sition. If so, then the percolation threshold would be impossible to pinpoint ac-
curately. The problem thus merits some attention.

In our simulations, we evaluate the percolation probability for various con-
centrations of particle, connectivity ranges, and simulation box sizes. We pinpoint
the macroscopic percolation threshold by evaluating at what density the perco-
lation probabilities cross for different system sizes. The percolation thresholds
that we find agree with values of recent Monte Carlo simulations [���]. The stat-
ics and dynamics of the clustering we evaluate for densities at the percolation
threshold.

We find for finite-size simulations at the concentration corresponding to the
macroscopic percolation threshold that the cluster size distribution is algebraic,
crossing over to what seems an exponential distribution. We find that this is
independent of the connectivity range and the box size, at least for the box sizes
that we tested. The exponential tail we expect because of our finite system size,
implying that there is no actual percolation threshold in our simulations.

The mean cluster size that we find varies with time. This is not surprising
because particles, depending on their instantaneous time-dependent location,
continuously “attach to” and “detach from” the clusters and spend time as not
connected to any cluster. The temporal fluctuations of the average cluster size
must contain information on these processes. If we investigate the existence of
dominating time scales by means of evaluating the autocorrelation function, we
find evidence for two regression times. However, because of poor statistics, we
are not able to quantitatively evaluate the prevalent times.

Hence, we resort to evaluating the survival time of pairs of particle in the
same cluster. This quantity turns out to present good statistics, confirming that
there are indeed two underlying time scales that define the physics of the prob-
lem in hand. These two time scales turn out to depend on the connectivity range.
The shorter time scale depends only weakly on that, whilst the longer time scale
is very sensitive to the connectivity range. We speculate that the first involves
local attachment and detachment events, and the second global ones involving
whole clusters.

The two time scales that we find are relatively insensitive to the simulation
box size, even though the average cluster size does vary with box size albeit mod-
estly so. The longer time scale we expect to be the candidate that might exhibit
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critical slowing down, implying that if that were the case it should become slower
with increasing system size. It does do that but only very weakly so. From our
simulations, we cannot confirm that it is indeed a diverging time scale at the per-
colation threshold. Of course, our simulations are restricted to very small box
sizes, so we cannot exclude this possibility either. Clearly, more study is needed
to settle this issue.

�.A Estimate of the cluster renewal time

To estimate the renewal time of a cluster, we make use of the idea that all par-
ticles that make up a cluster must be replaced by particles coming from further
away than the volume spanned by the cluster. We presume that there is a steady
state influx of particles from outside of the cluster that obeys the diffusion equa-
tion, @⇢/@t = Dr2⇢, where ⇢ is the number density of particles, D is their
(collective) diffusion coefficient, and r2 the Laplacian operator. As we are inter-
ested in steady-state renewal of clusters, we ignore any time dependence and
put r2⇢ = 0.

Presuming the cluster is more or less spherical in shape, and making use
of spherical coordinates, we find for the solution of the Laplace equation ⇢ =
⇢(r ) = a + (b/r ), with r � R the radial distance from the centre of the cluster of
radius R . Note that a and b are constants to be fixed by the boundary conditions.
We plausibly presume that at infinity, so for r ! 1, we have the bulk density
⇢(r ! 1) ⌘ ⇢1, implying that a = ⇢1. We surmise that upon entering the cluster
via its boundary at r = R , a particle immediately becomes part of the cluster
and hence no longer counts as a bulk particle. Hence, we impose an absorbing
boundary condition: ⇢(R ) = 0. This in turn implies that b = �⇢1/R , and ⇢(r �
R ) = ⇢1(1 � r /R ).

To answer the question how much time it takes to completely renew the par-
ticles in a cluster, we evaluate the flux Jr (R ) across the surface of the envelope
towards the cluster: Jr (R ) = limr!R D@r⇢(r ) = D⇢1/R . Let N be the number
of bulk particles that have entered the cluster. The rate at which particles enter
the volume of the cluster obeys @N /@t = 4⇡R 2Jr (R ) = 4⇡RD⇢1. This means it
takes ⌧ = N /4⇡RDc1 seconds to get N particles across the surface of the clus-
ter. Now, the total number of particles n in an average cluster of size R obeys,
within mean-field continuum percolation theory [���], R ⇠ Dn1/2. Since we need
to renew all particles, we must have n = N . In other words, the renewal time
must be equal to ⌧ = N 1/2/4⇡D⇢1.

For volume fractions � = ⇡⇢1D 3/6 just below the percolation threshold, �c

, we have, again within mean-field theory [���] and in the thermodynamic limit,
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N ⇠ (�c � �)�1. Hence, the renewal time scales as ⌧ ⇠ (�c � �)�1/2 and should
therefore diverge at the percolation threshold. Obviously, this somewhat naïve
analysis remains contentious, not least as it presumes that all bulk particles that
enter the cluster become part of the cluster on time scales small compared to
the diffusion time to the cluster. Also, we ignore replacement of newly absorbed
particles by even more recently absorbed particles.
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Chapter �

Conclusion

In this chapter we return to the original research questions presented in the Intro-
duction. We summarise our main results and conclusions of each chapter. Finally,
we reflect on the limitations and the possible developments of the research pre-
sented in this thesis and give suggestions for further research.
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�.� Aim of the thesis

Since the introduction of filamentous viruses as model systems of hard rods,
we have learned a lot about their self-organisation and dynamics in suspen-
sions. Interesting behaviours are experimentally observed as particle proper-
ties such as the particle anisotropy, bending flexibility and “localised” interac-
tions are changed. The contribution of this thesis is to closely investigate some
of these behaviours by means of computer simulations. Simulations allow for a
better control over some of the variables for testing the relationship between the
particle properties and the structure of the various phases that these particles
may support, as well as their self-diffusion in these phases. Additionally, in our
particle-based simulations we are able to analyse their configurations and relate
these with the stability of the phases found.

In most chapters, we support our simulations by simple theoretical models
and compare our results with experiments on filamentous viruses. The differ-
ences in aspect ratio and interactions between these model particles prevents
us to make a quantitative comparison. Nevertheless, we are able to qualitatively
compare results and usually good agreement between them is found. Our final
goal is to understand the physical principles that are relevant for understanding
the structure and dynamics of the suspension of filamentous viruses in the wider
context of elongated colloidal particles. Our research questions are recapitulated
in the next section. They are followed by our response to them in the light of our
main conclusions that are also summarised there. Finally, we give suggestions
for further research based on the limitations of our work.

�.� Summary and conclusions

In this thesis we address four research questions. In Chapter �, the question we
focus on is how do aspect ratio and flexibility change the stability and structure
of the liquid-crystalline phases? We find that our semi-flexible rods form five
distinct phases, namely, in order of increasing particle concentration, isotropic,
nematic, smectic A, smectic B, and crystalline phases. In general, on one hand, the
phase transitions are shifted to lower particle concentrations as the aspect ratio
increases due to the increase in the excluded volume interaction. On the other
hand, they usually shift to higher concentrations as the flexibility increases due to
the increase of particle entropy. In agreement with previous works, we find that
the isotropic-nematic and nematic-smectic A phase transitions are particularly
responsive to changes in the aspect ratio and the flexibility of the particles.

In addition, we examine the particle behaviour within the phases in order to
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better understand the relationship between the phase stability and the particles
flexibility. We find that the end-to-end distance of the particles increasingly ap-
proaches their contour length with increasing concentration, which reduces their
bending fluctuations. Within our model description, these bending fluctuations
are essentially suppressed in smectic B and crystalline phases, explaining the
insensitivity of this phases to the changes in persistence length of our particles.
Interestingly, we find that the interlayer spacing in the layered phases do not al-
ways decrease with increasing concentration of particles. At least in the smectic
A phase, depending on aspect ratio and flexibility, the spacing may increase. This
is possible provided that the increasing concentration is compensated for by a
more than proportional in-layer concentration increase. For the increase in layer
spacing going from the smectic A to the smectic B phase, we provide another ex-
planation. This, we believe, is caused by the increase in free volume across the
transition.

In Chapter �, our research question is what is the effect of a weakly attractive
tip on the phase behaviour of elongated colloidal particles? Our work surprisingly
shows that the phase behaviour as well as the structure of the various phases are
strongly affected by relatively weak interaction strengths, of the order of the ther-
mal energy. The main effects of the attractive tips on the phase behaviour are the
formation of bi-layered anti-ferroelectric phases and a large increase of stability
of smectic A at the expense of the nematic phase, and even at the expense of
the isotropic phase as we increase the attraction strength between the tips. We
discuss that the key factor is the interplay between the interaction energy, po-
larity of the particles, and the phase microstructure. Here, we also analyse the
behaviour of particles within the various phases. We find that the stability of the
isotropic and nematic phases is affected by the aggregation of the tips, only if the
particles align in response to the local increase in concentration. In the layered
phases, the organisation of the particles with the attractive tips results in more
strongly ordered microstructures even at very weak attraction energies.

Supported by experimental evidence, we find a shift of the nematic-to-smectic
A phase transition to lower volume fractions, which also seems to become more
strongly first order with an increase of the attraction strength. We also compare
the smectic ordering potential from experiments and simulations. We find for
both of them larger values of the height and smaller values of the width as the
attraction strength between tips increases. As expected, because the experimen-
tal model particles are larger in aspect ratio, their smectic potential height is also
larger, increasing the stability of the smectic A phase with increasing aspect ratio.
Our study contributes to the understanding of how selective surface functional-
isation of colloidal liquid crystals affects their self-organisation by providing a
systematic study of the stability and structure of these phases for a wide range
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of both volume fractions and attraction strengths. We show that incorporating
a single (enthalpic) functionalised end in elongated colloidal particles gives rise
to an even more complex and rich phase behaviour than for the purely repulsive
ones.

In Chapter �, we address the question of how do the anisotropy and the flexi-
bility of elongated particles affect their diffusion in a lamellar background phase?
We show that the in-layer rattling and the diffusion through smectic layers of the
guest particle is mostly determined by the ratio between the contour length of
the guest and host particles and not so much by the persistence length of the
guest particle. This is unexpected as it is reasonable to assume that bending
fluctuations of the particle help cage escape, in particular between layers. Nev-
ertheless, it is also possible that there is a suppression of bending modes by the
molecular ordering of the host phase that is the root cause of our finding that
bending flexibility does not strongly affect diffusion parallel and perpendicular
to the director. The in-layer diffusion does not seem to be affected by either the
ratio between the contour length of guest and host particles or the guest particle
persistence length.

In agreement with experiments, both shorter and longer guest particles of
incommensurate contour length in relation to the host particles diffuse faster
along the director, in other words, through the smectic layers. As suggested ear-
lier [��], the advantage that a longer guest particle seems to have is the partial
penetration into the neighbouring layers, creating the space needed to diffuse
along the director. That is not the case for the shorter guests. The advantage that
these particles have probably is the larger amplitude of their in-layer rattling in
comparison to the other guest particles. Interestingly, it is the shortest and the
largest guest particles that we tested that are more widely spread around the
centre of the smectic layer.

The question of how long does it take clusters to substitute all particles that
initially form it? is the motivation for the study presented in Chapter �. This
question is not directly addressed. Instead, we evaluate the lifetime that a pair
of particles remain connected. The long lifetimes are an indication of the renewal
time we are interested in. The distribution of the lifetime that a pair of particles
remain connected seems to decay exponentially with two different exponents
that, similarly to the critical concentration, do not depend on the simulation box
size but do depend on the ratio of the sphere diameter and the connectedness
diameter. We associate each of the exponents found to a short and a long time
scale. This short time scale we speculate is related to the attachment to and
detachment from the cluster of single particles, and the long time scale could be
related to similar processes on a larger length scale, involving entire subclusters.
Unlike our initial expectation, we do not find a diverging time scale.
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In addition, we analyse the cluster size distribution at the percolation thresh-
old. The distribution of cluster sizes seems to decay following a power law with
exponent -� which does not depend on both the box size and the ratio of the
sphere diameter to the connectedness diameter. This power law is also found in
concentrations below and above the critical concentration. An explanation re-
mains elusive.

�.� Outlook

Based on our findings, we suggest here some points for further research. In Chap-
ter �, we indicate that the phase sequences of our semi-flexible particles does not
include the columnar phase probably due to their short aspect ratio. A natural
but still ambitious next step is to simulate longer semi-flexible rods. Their aspect
ratio should be larger than �� to find this phase, as indicated by experiments
[��]. The short aspect ratio of the particles is also an issue for the comparison
between experiments and simulations in the next two chapters. The unexpected
increase in the interlayer spacing with increasing concentration of particles in
the smectic A phases is also another point for further investigation. We have not
been able to pinpoint under what conditions this happens and also do not have
an explanation for this phenomenon.

In Chapter �, we present a simple theoretical model for perfectly parallel
hard rods with an attractive end based on the Maier-Saupe-McMillan theory. The
model presents a fairly good agreement with the simulations but it could be ex-
panded so that it describes the nematic-to-smectic A and the smectic ordering
potential more closely to what is found in our simulations. In our model, despite
the fact that it does predict a shift to lower volume fractions for the nematic-
to-smectic A2 phase transition, the shift of the nematic-to-smectic A phase tran-
sition is independent of the volume fraction. This is not the case in our sim-
ulations. (From the experiments, we cannot tell if there is an anti-ferroelectric
phase transition in the smectic A phase, but also in this case the nematic phase
is destabilised.) In addition, the height and width of the effective smectic order-
ing potential from our theory does not emulate the smectic ordering potential
from our simulations. A possible approach could be representing it as a Gaus-
sian function instead of a cosine function.

In Chapter �, the overall small effect flexibility has on the several aspects of
the diffusion of guest particles in a smectic background could be due to the res-
olution of our model particles. It is interesting to perform simulations employing
model particles that have better resolution for the matter of testing the effect
of flexibility in the self-diffusion. As we show, flexibility has a large effect in the
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phase behaviour and particle configurations. For this reason, it could well be that
the particle persistence length has an effect on the caging time, which impacts
on the hopping diffusion.

In Chapter �, we investigate dynamical percolation of not quite hard spheres.
Unlike the simulations of elongated particles, whose dynamic properties are in-
vestigated in highly congested phases, we study particles in isotropic solution at
quite low packing fraction. For this reason, hydrodynamic interactions could be
relevant in this work, not included in our simulations. Because we focus on the
data analysis in this chapter, the simulations including hydrodynamic effects are
relegated for future developments of this study. The percolation probability that
we find is of approximately �.� at the percolation threshold. It means that about
�/� of the configurations contain a (wrapping) system spanning cluster. It may
well be that considering only the configurations containing the percolating clus-
ters rather than all clusters reveals features that are not picked up in the type of
analysis we perform.
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