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Summary

Towards Control Relevant System Design
and Constrained Order Controller Synthesis

Photolithographic machines are responsible for a key step in the production of
integrated circuits. The societal demand for additional functionality and faster
computing is leading to ever increasing requirements on the precision of these
machines. A dominant factor that currently limits this precision is the thermally
induced deformation of several machine components; and in fact, it is predicted
that this problem is one of the main hurdles in the years to come.

The control solutions that are developed in order to deal with this problem, cur-
rently rely on so-called classical controller designs. These solutions are, however,
reaching the limits of their capabilities. To meet future performance requirements,
it is often proposed to utilise optimal control instead. Results have shown—in sev-
eral applications—that the design of these controllers requires a substantial amount
of time and effort, while in many of these applications only a moderate to small in-
crease in performance is achieved. For this reason, optimal control is often regarded
as cost-ineffective and rarely applied in industrial applications.

The performance in any optimal control application is determined by the combined
effect of the system design, the modelling procedure and the control design. These
three aspects are in most applications viewed as separate fields of research and it
is hypothesised in the introduction that such a separation limits performance. We
therefore propose to acquire a better understanding of the relation between these
fields, in order to improve both the performance and cost-effectiveness of optimal
control.

For each field we will investigate one problem with the aim of bringing us closer to
coordinating these three aspects. These three problems, together with the results
for a thermal control application, will now briefly be discussed.

Closed-Loop Optimal Actuator and Sensor Selection:

Actuators and sensors are essential components that directly contribute towards the
performance in a control system. The question of how many actuators or sensors
to use and where to place them is therefore important in many applications. This
question is closely related to so-called actuator and sensor selection problems, for
which the allowed actuators and sensors must be chosen from a large sets of possible
control inputs and measured outputs, respectively. In this way, the placement

vii



viii Summary

problem becomes a combinatorial optimisation problem in which optimal subsets
of actuators and sensors need to be determined.

We will consider the problem of selecting the actuators and sensors that maximise
closed-loop performance when optimal control is considered. It will be shown that
the controller must, indeed, be taken into account with such a selection problem.
Therefore, the problem of designing an optimal actuator configuration for a fixed
sensor configuration is investigated. In addition, the dual problem of designing an
optimal sensor configuration for a fixed actuator configuration is discussed.

Control Relevant Order Reduction:

For the control of thermally induced deformations, it is required to build models
that commonly contain well over 10, 000 states. It is often not possible to directly
design an optimal controller on the basis of such a model due to computational
constraints. A common method to overcome this problem, is to utilise model and
controller order reduction.

For this reason, the use of order reduction in combination with optimal controller
design is investigated. It is shown that several existing (control relevant) order
reduction techniques do not provide sufficient guarantees on performance when op-
timal control is considered. In fact, it is shown that—in some cases—the absence
of control leads to a better performance than the reduced order control design
techniques that are advocated in literature. Improvements to these techniques are
therefore proposed.

Minimal Order Optimal Control:

As explained above, the problem of constructing a low order controller for a high
order system is solved in practice by utilising model order reduction techniques.
Such an “indirect” approach is taken, because there does not exist a solution that
directly addresses the problem from an optimal control perspective.

In this thesis we will discuss “direct” control design methods, which aim to con-
struct a controller of minimal order that achieves optimal closed-loop performance
for a given high order system. By investigating the so-called disturbance decou-
pling problems, it is shown that there exist H2 optimal controllers of reduced order;
i.e. the controller order can, in general, be smaller than the system order. Fur-
thermore, preliminary results on the numerical construction of these reduced order
optimal controllers are discussed.

The Results for a Thermal Control Application:

Finally, the importance of coordinating the system design, the modelling procedure
and control design is demonstrated on a numerical model that describes the ther-
mally induced deformations of a specific machine component. For this model, the
relatively simple classical control solutions are able to reduce imaging errors from
approximately 15 nm to 1.8 nm in magnitude. In the future it will be required to
reduce these errors below 1 nm. For this type of controller, however, the introduc-
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tion of additional sensors and actuators does not lead to a significant improvement
in performance.

By considering H2 optimal control without improving the system, a significant
improvement in performance cannot be achieved either. At the same time, the
introduction of H2 optimal control is accompanied by additional freedom in the
system design. It is shown that the imaging errors can (significantly) be reduced
to 0.4 nm in magnitude when H2 optimal control is introduced and this additional
freedom is exploited.
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The true function of philosophy is to educate us in the
principles of reasoning and not to put an end to further
reasoning by the introduction of fixed conclusions.

George Henry Lewes

1
Introduction

Lithographic machines are responsible for a key step in the production
of integrated circuits. The societal demand for additional functional-

ity and faster computing is leading to ever increasing requirements on the
precision of these machines. A dominant factor that currently limits this
precision is the thermally induced deformation of several machine compo-
nents; and in fact, it is predicted that this problem is one of the main
hurdles in the years to come.

The control solutions that are developed in order to deal with this prob-
lem, currently rely on so-called classical controller designs. These solu-
tions are, however, reaching the limits of their capabilities. To meet future
performance requirements, it is often proposed to utilise optimal control
instead. Results have shown—in several applications—that the design of
these controllers requires a substantial amount of time and effort, while
in many of these applications only a moderate to small increase in perfor-
mance is achieved. For this reason, optimal control is often regarded as
cost-ineffective and rarely applied in industrial applications.

The performance in any optimal control application is determined by the
combined effect of the system design, modelling procedure and control de-
sign. These three aspects are in most applications viewed as separate fields
of research and it is hypothesised in this chapter that such a separation lim-
its performance. We therefore propose to acquire a better understanding of
the relation between these fields, in order to improve both the performance
and cost-effectiveness of optimal control.

1



2 Chapter 1. Introduction

1.1 Motivation and Background Information

In 1990—the year that I was born—navigation of a car could cause a lot of stress in
an otherwise happy marriage. At that time, a person could probably not imagine
that a pocket-size device would soon be capable of performing such a complex
task. Nowadays, most people cannot imagine life without their smartphone which
is capable of navigation, taking photos, several types of communication and showing
live television. As users we often take these technological developments for granted
and it is easy to overlook the incredibly complex problems that have to be overcome
in order to develop these devices.

Improvements in the performance of digital computers have been at the heart of
nearly all of these technological breakthroughs. With these improvements, the
production of computers has become an extremely high precision process and the
companies involved are therefore facing ever increasing performance requirements—
as reported in the Semiconductor Industry Association [2015] roadmap.

The research as presented in this thesis is funded by ASML Netherlands B.V.
ASML produces (photo)lithographic machines that are responsible for a key step
in the production of digital computers. A major factor that currently limits the
precision of these machines, is the thermally induced deformation of several ma-
chine components; for example, deformation of the mirrors in the optical system as
explained by Bikcora et al. [2014] and Habets et al. [2015]. In fact, it is predicted
that these thermal effects are one of the main hurdles that the company will face
in the years to come.

At this moment, a set of relatively simple control solutions is applied in order to
deal with these problems. These solutions are, however, reaching the limits of
their capabilities and it remains unclear how further improvements can be made.
The research as presented in this thesis is therefore directly aiming to get a better
understanding of these problems and, based on this knowledge, to improve the
control solutions that are currently in place. Before addressing the control of
thermally induced deformations, let us first establish how and why the production
of computers has become such a high-precision process.

1.1.1 Moore’s Law

A typical computer consists of several integrated circuits (ICs)—better known as
“chips”. Such an IC contains a large number of transistors that determine its speed
and efficiency, which is explained in great detail by Toumazou et al. [2002, Ch. 3].
The speed of an IC relates to the amount of instructions (i.e. calculations) that
can be performed per second; efficiency relates to power consumption of and heat
generation within the IC.

A fast IC is created by performing tasks in parallel, which requires the use of a large
number of transistors. IC manufacturers are therefore continuously making efforts
to increase this number. In 1965—before the introduction of the first commercially
available IC—it was observed by Moore [1965] that the number of transistors on
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an IC approximately doubles every year. Ten years later Moore [1975] re-evaluated
this observation and predicted a doubling per two years for the future.

This prediction has become self fulfilling to some extend and today it is best known
as “Moore’s law”. A more detailed description of this law and its implications for
other industries can be found in many on-line sources such as Wikipedia [2018b].
As a result of this law, the amount of transistors on an IC has increased from
10, 000 up to 10, 000, 000, 000 in less than 50 years of time; this continuous and
enormous increase is graphically depicted in figure 1.1.

In the engineering world, almost everything comes at a price. An increase in the
amount of transistors on an IC therefore comes with a number of challenges as well.
First of all, each individual transistor consumes a certain amount of power and will
generate heat. A larger number of transistors will therefore consume more power in
total and will generate more heat, which both have a negative impact on the speed
of an IC—as explained by Toumazou et al. [2002, Ch. 3]. Furthermore, the velocity
at which information travels along a wire imposes an upper limit on the size of an
IC and therefore also on the number of transistors. To put this into perspective, a
typical IC is nowadays capable of performing over 50, 000, 000, 000 instructions per
second. Assuming that this information travels at the speed of light, a maximum
distance of 0.6 cm can be covered in the timespan of one instruction.

The amount of transistors and the number of instructions per second can therefore
only be increased simultaneously, if the transistors themselves are reduced in size.
Another advantage of smaller transistors is that they are typically faster, require
less power and will generate less heat—as explained by Toumazou et al. [2002,
Ch. 3]. The overall size of a typical IC has, as a consequence, remained nearly
constant over the past 50 years and the area per transistor is therefore inversely
related to the amount of transistors per IC. This implies that the size of a transistor
halves every four years, as is shown in figure 1.2.

Year of Introduction

1970 1980 1990 2000 2010 2020

N
u
m
b
er

o
f
T
ra
n
si
st
o
rs

1,000

1,000,000

1,000,000,000

Figure 1.1: The number of transistors as a function of the introduction date for
several ICs.
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Year of Introduction

1970 1980 1990 2000 2010 2020
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1 nm

10 nm

100 nm

1 µm

10 µm

Figure 1.2: The transistor size as a function of the introduction date for several
technology nodes in IC production.

1.1.2 Manufacturing of Integrated Circuits

Now let us briefly discuss the main steps that are taken in the IC production
process. For this purpose, consider the schematic overview in figure 1.3. Please
note that a more detailed description of all steps involved is given by Mack [2007,
Ch. 1].

The production of an IC starts with a silicon boule that is sliced into so-called
wafers. Several ICs—which are a three dimensional structure that is built up by
20 to 30 layers—are created on the top surface of such a wafer. After this entire
structure is built, the wafer is cut into separate ICs that are ready for packaging.

For each layer, the wafer surface is first coated with a light-sensitive material that
is called a photoresist. An illumination pattern is then applied to this coated
surface during the exposure step, which changes certain material properties of the
photoresist—e.g. the photoresist hardens under the influence of light. In this way,
the light and photoresist are combined in order to protect certain areas on the wafer
surface from processes like etching and ion implantation. The layer is finalised by
removing the remaining photoresist afterwards.

1.1.3 Photolithography

The (photo)lithographic machines that ASML produces are responsible for the
exposure step in figure 1.3. During this step an illumination pattern is created on
the top surface of a wafer, as described above. It is explained by Ito and Okazaki
[2000] that the performance of these machines is the driving force behind Moore’s
Law, because smaller transistors can only be created when the features of the
illumination pattern become smaller.
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Material deposition 
or modification

PolishingSlicing

Photoresist
coating

repeat 20 to 30 times 
to build a 3 dimensional

structure

Development 
and baking

Etching and ion 
implantationCompleted

wafer
Separation

Packaging Removing
the photoresist

Exposure
(step and scan)

Figure 1.3: A schematic overview of the production process for ICs.
(Courtesy of ASML Netherlands B.V.)

The performance of these lithographic machines is measured in terms of through-
put and the critical dimension (CD). These measures are therefore addressed in
great detail at public presentations by Van den Brink [2016]—the company’s chief
technical officer. Throughput is often measured by the amount of wafer layers that
can be exposed per hour, which is an important measure for the industry since
lithographic machines are used for mass production of ICs. The CD is a measure
for the minimum feature size within the illumination pattern at the wafer. This
CD is strongly related to the minimum size of a transistor and therefore limits the
amount of transistors on an IC1.

In lithography, a pattern is created on the wafer surface by illuminating the so-
called photomask as depicted at the top of figure 1.4. This mask is in essence a
larger version of the desired illumination pattern at the wafer, while an optical
system is used to scale this pattern down to the desired size. Diffraction of light
imposes a theoretical limit on the CD of such a process, as is discussed in great
detail by Mack [2007, Sec. 10.1]. This limit is approximately given by

CD = k1
λ

NA
,

where k1 describes several process-related effects, λ is the wavelength of the light
(in vacuum) that is used and NA is the numerical aperture of the optical system.

ASML is continuously making efforts to minimise this fundamental limit on the
CD of their machines, while maintaining a sufficiently high throughput. Over the

1Multiple patterning technique, as explained by Drapeau et al. [2007], are currently used to
create features that are smaller than the CD. A reduction in the CD therefore allows transistors
to become smaller; these numbers are, however, not a directly related.
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past decades, state of the art machines have utilised immersion lithography and
deep ultraviolet (DUV) light with a wavelength of λ = 193 nm. These machines
currently have a throughput of 275 wafers per hour and a critical dimension of
CD = 38 nm. The fact that water has a higher refractive index than air is used
in immersion lithography to raise the NA of the system—as explained by Mack
[2007, sec. 3.7]. In this way a numerical aperture of NA = 1.35 is achieved, which
is well above the theoretical limit of 1.0 that can be achieved with an infinitely
large optical system in “dry” lithography.

In order to further reduce the CD in the future, the use of extreme ultraviolet
light (EUV) with a wavelength of λ = 13.5 nm is proposed—as explained by Lin
[2018]. The introduction of EUV light does, however, come with many technical
challenges and it has taken approximately 15 years to develop the first commer-
cially viable EUV machine. Current state of the art EUV machines have a critical
dimension of CD = 13 nm, which is a substantial improvement with respect to the
DUV machines. Nevertheless, these machines should still be improved since their
throughput is currently limited to 125 wafers per hour.

Figure 1.4: A simplified visualisation of the (photo)lithographic process.



1.1 Motivation and Background Information 7

1.1.4 Focus and Overlay Errors

Reducing the theoretical limit on the CD is not the only challenge in lithography.
For example, incorrect alignment of several components in a machine could shift
and deform the illumination pattern at the wafer, which leads to undesired imaging
errors. These errors are often categorised as overlay errors and focus errors.

So-called in-plane errors are caused by a shift or deformation of the illumination
pattern that is tangential to the wafer surface. This type of error is not directly
problematic when a layer is added to the wafer, because the pattern itself remains
nearly unchanged. However, a misalignment could arise between subsequent layers
when these shifts and deformations vary over time. Alignment errors between the
layers of an IC are called overlay errors and it is important that these errors are
several factors smaller than the CD, as explained by Megens [2007].

Out-of-plane errors are, on the other hand, caused by a shift or deformation of the
illumination pattern that is orthogonal to the wafer surface. This type of error is the
main cause of focus errors, which lead to undesired smoothing effects at the corners
of features1. Mack and Lin [1988] explain in great detail how the requirements on
orthogonal alignment of the wafer surface are determined by Rayleigh depth of
focus (DOF). This quantity is approximately given by

DOF = k2
λ

NA2
,

where k2 is another process dependent constant. It is important to note that the
CD and the DOF are typically similar in order. This implies that the requirements
on focus are often less strict than the requirements on overlay, since the latter
should be several orders smaller in magnitude.

1.1.5 Thermally Induced Deformations

So far we have seen that it is important for ASML to create a sharp, undeformed and
correctly aligned illumination pattern on the surface of a wafer. It is therefore also
required that the wafer surface itself is correctly aligned by a positioning system.
Vibration effects of the wafer and this positioning system have been a substantial
source of imaging errors in the past. Nowadays, however, thermal disturbances
have become a substantial source of errors. These disturbances come from several
sources, such as

• dissipation energy which is generated by electrical currents in the linear mo-
tors of the wafer positioning system.

• evaporation of water in the immersion system.
• the absorption of DUV or EUV light by the wafer.

During exposure, the wafer is clamped onto a wafer table as depicted in figure 1.5.
Thermal disturbances do, however, cause temperature variations of around 1 K in
the wafer and wafer table, which—due to thermal expansion—lead to wafer surface

1Theoretically speaking, some degree of smoothing is always expected due to the diffraction
of light; focus errors are therefore increasing this undesired effect.
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deformations in the order of 10 nm. As a rule of thumb, these deformations lead
to imaging errors that are similar magnitude when no corrective measure is taken.
In lithography the performance requirements have become so demanding that this
effect is considered to be one of the dominant factors that limits precision.

To put this into perspective, Van den Brink [2016] predicted that mass production
of ICs with features in the order of 7 nm should have started at the end of 2018;
according to Wikipedia [2018a] this prediction was correct. In order to create these
ICs, it is important that overlay errors are smaller than 3 nm in magnitude. This is
approximately a factor 3 smaller than the “uncontrolled” thermally induced wafer
surface deformations of 10 nm. We can therefore conclude that the imaging errors
as a result of these deformations must be reduced by several orders in magnitude;
for example, by implementing a number of preventive and corrective measures.

Preventive measures aim at directly minimising the wafer surface deformations dur-
ing operation. This could, for example, be achieved by introducing heaters, coolers
or thermal isolation with the aim of minimising temperature changes in the sys-
tem. With a corrective measure on the other hand, the wafer surface deformations
remain unchanged, while an improvement is made by reducing the imaging errors
as a result of these deformations. An example of this is calibration, which utilises
wafer alignment to compensate for the imaging errors that each machine produces
on average.

The research as presented in this thesis is mainly focussed on the development of
tools and theory that can be used to create the next generation of preventive and
corrective measures for this type of application. More specifically, the focus will be
on system, estimator and measurement feedback controller design.

Figure 1.5: A wafer table (Source: Amcoss [2019]).
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1.2 The Control of Thermally Induced
Deformations

In section 1.1 it is explained why preventive and corrective measures are required
in order to reduce imaging errors as a result of thermally induced deformations
of the wafer surface. Such measures aim at minimising the effect that unknown
disturbances have on certain quantities, which in control theory is referred to as
“disturbance rejection”. Measurement feedback controllers are well-suited for deal-
ing with type of control problem, as explained by Franklin et al. [2015, Ch. 1].

In this section we will fist introduce the application and some basic notions from
systems and control theory. The rationale behind the theory involved is explained
later in chapter 2. Secondly, we will take a closer look at the system design method-
ology and the controllers that are currently used in the application; followed by
a discussion on improvements that are proposed for the future. It is, however,
important to note that a similar methodology is applied in a wide range of applica-
tions. E.g. electronic power steering (Mehrabi [2014]), vibration control (Verkerk
[2018]) and several systems in the process industry (Subawalla et al. [1996]). For
this reason the analysis will be performed by using the generic systems and control
framework.

1.2.1 The Application

As application, we will consider the design of a controller in DUV lithography,
which aims at minimising the imaging errors caused by a thermal disturbance that
is introduced by the immersion system. In order to introduce this disturbance,
consider a cross section of the wafer, wafer table and immersion system as depicted
in figure 1.6.

A potential problem arises during exposure, when the immersion system crosses the
wafer edge. Namely, a pocket of air is trapped by water which leads to the formation
of air bubbles; these bubbles could—due to the scattering of light as explained
by Davis [1955]—cause severe imaging errors. A bubble extraction system (BES)
is therefore used, which essentially creates a low pressure in the gap between the
wafer and wafer table in order to draw the bubbles away from the immersion
system—as explained by Hanema [2018].

Within the BES, however, air with a low relative humidity is flowing in a channel
that contains water. This causes some water to evaporate, which is an endothermic
process (Gold [2014]) and heat is removed from the system. The wafer table and
the wafer cool down by approximately 0.8 K as a result of this thermal disturbance,
which causes wafer surface deformations in the order of 11 nm.

Wafer surface deformations are strongly related to imaging errors. To explain this
relation, we start by observing from figure 1.6 that only a small section of the
wafer surface is exposed to light at any time instance. Imaging errors are therefore
caused by deformations at the location of illumination. More specifically, overlay
errors are caused by in-plane deformations (i.e. in the x and y direction) and focus
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errors by out-of plane deformations (i.e. in the z direction) at this so-called point
of interest.

In order to minimise imaging errors, preventive measures should therefore aim at
minimising the wafer surface deformations around this moving point of interest.
Deformations at other locations could, however, also cause other undesired effects;
for example, the wafer could start slipping with respect to the wafer table. In order
to avoid this type of effect, it is for this application decided to not take the location
of illumination into account and to minimise all wafer surface deformations instead.

Water
Location of 
IlluminationWafer

Wafer Table

x

z

y

Figure 1.6: A cross section of the wafer, wafer table, immersion system and
bubble extraction system.

1.2.2 Linear and Time-invariant Systems and Controllers

With controller design for disturbance rejection problems, a feedback interconnec-
tion as depicted in figure 1.7 is typically considered. In this figure, the system is
denoted by Σ, the controller by Σc and the quantities of interest are denoted by
signals w(t), u(t), y(t) and z(t), which are functions of time t. The interconnection
between Σ and Σc is called the closed-loop system, which is denoted by Σcl.

The disturbance w(t) represents all unknown external quantities that cannot be
affected or controlled, but which do influence the system. Examples are the evap-
orative load as explained above and noise that affects the measured output y(t).

The control input u(t), on the other hand, represents all external quantities that
can be utilised in order to manipulate the system during operation. Examples are
the heating power generated by a heater and the flow rate of water in a cooling
channel.

The measured output y(t) represents all internal quantities of the system which
are measured by sensors during operation. Examples are hall sensors that measure
electrical currents and temperature sensors that measure temperature at a specific
location. These measurements are in practice affected by noise, which is often
described as an external disturbance w(t) that directly affects these measurements.

Finally, the control output z(t) represents all internal quantities of the system which
should be altered by the controller. Examples are the wafer surface deformations
and the resulting imaging errors, which both should be reduced in magnitude.
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Σc

Σcl

Σ
u(t) y(t)

w(t) z(t)

Figure 1.7: The closed-loop interconnection between the system Σ and a mea-
surement feedback controller Σc.

A norm is often used to describe the magnitude of a time dependent quantity with
a single number—for more information about norms, consider reading the work
by Kreyszig [1989, Ch. 2,3]. Norms are denoted by ‖ · ‖, for example ‖z(t)|t=t0‖
denotes the norm of z at time t0 and ‖z(t)‖ denotes the norm of the entire signal1.

At this moment a conceptual definition for system, controller and closed-loop sys-
tem have been given. However, we still require a mathematical formulation that
describes the relation between the signals of interest. In control applications, linear
and time-invariant (LTI) continuous-time state-space systems are often considered,
which are defined as

Σ =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) =Cyx(t) +Dwyw(t)

z(t) =Czx(t) +Duzu(t),

(1.1)

where ẋ(t) denotes the derivative of x(t) with respect to time t. The quantities
w(t), u(t), y(t) and z(t) as depicted in figure 1.7 are represented mathematically by
vector signals of dimension nw, nu, ny and nz, respectively. In addition, the internal
state of the system is described by x(t), which is a vector signal of dimension nx;
this state dimension is also called the system order. Finally, the dynamical relation
between all signals is described by real-valued matrices of appropriate dimension.

For this type of system it is often considered to use an LTI controller, which is
mathematically defined as

Σc,nc =

{
ẋc(t) = Jxc(t) +Ky(t)

u(t) =Mxc(t) +Ny(t).
(1.2)

The dimensions of the inputs and outputs of such a controller are determined by
Σ (1.1). Its internal state is described by the vector signal xc(t) of dimension nc;
this dimension is called the controller order and the dynamical relation between
all signals is again defined by real-valued matrices of appropriate dimension.

1Norms will formally be defined in chapter 2 and at this moment it suffices to know that the
norm of a signal describes its magnitude.
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Finally, Σ (1.1) can be interconnected with Σc,nc (1.2) in order to mathematically
define the closed-loop system as

Σcl,nc =



(
ẋ(t)

ẋc(t)

)
=

(
A+BuNCy BuM

KCy J

)(
x(t)

xc(t)

)
+

(
Bw +BuNDwy

KDwy

)
w(t)

z(t) =
(
Cz +DuzNCy DuzM

)( x(t)

xc(t)

)
+
(
DuzNDwy

)
w(t).

(1.3)

The aim with disturbance rejection by measurement feedback is to design a con-
troller Σc,nc (1.2) such that the effect of w(t) on z(t) is reduced for the closed-loop
system Σcl,nc

(1.3). A system norm is often used in order to quantify with one num-
ber how much w(t) affects z(t); for Σcl,nc

(1.3) this norm is denoted by ‖Σcl,nc
‖1.

In addition to reducing ‖Σcl,nc
‖, it is in practice required that the closed-loop

system is internally stable. Σcl,nc (1.3) is said to be internally stable if for all
initial conditions x(0) = x0, xc(0) = xc,0 and all bounded signals w(t), the states
x(t) and xc(t) also remain bounded for all t ≥ 0.

1.2.3 Classical Control

Feedback controllers have successfully been applied in many applications where
some degree of disturbance rejection is required—see for example the works by Liu
et al. [2016] Yang et al. [2018] Zhao et al. [2015]. In order to reduce the potential
for problems and the resulting delay during development, it is often viewed as good
engineering practice to start with a relatively simple solution. For the considered
application, it is therefore decided to first apply classical controller designs such as
Proportional-Integral-Derivative (PID) controllers.

With classical controller design, the aim is to control a quantity that is directly
measured during operation. This is equivalent to requiring that y(t) = z(t)—i.e.
you measure what you want to control—which in this application requires the de-
formations to be measured. It is, however, technically not possible to continuously
measure around 10 nm accuracy and a different physical quantity must be measured
instead. To determine what quantities could be considered, let us first establish
how the dynamics in this application can mathematically be described.

The dynamics behind thermally induced deformations are physically governed by
thermal diffusion and convection, combined with with mechanical elasticity—as
explained by Van den Hurk et al. [2018]. Both the thermal and the mechanical be-
haviour is mathematically described by linear partial differential equations (PDEs),
which are coupled though (linear) thermal expansion. These coupled PDEs can be
transformed into a, potentially large, set of linear ordinary differential equations
(ODEs) with the separation of variables technique as discussed by Renardy and
Rogers [2004, Sec. 1.2]. The dynamical behaviour for this application can therefore
be described mathematically by Σ (1.1).

1System norms will formally be defined in chapter 2 and at this moment it suffices to know
that such a norm quantifies how much w(t) affects z(t).
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It has also been shown by Van den Hurk et al. [2018] that the thermal behaviour is
much slower than the mechanical behaviour in this type of application. The latter
can therefore be considered to be an instantaneous effect (i.e. without dynamics).
The state of the system is, as a consequence, described by temperature variations
with respect to some reference temperature2, while the deformations are described
by linear combinations of this state. In this way, the dynamical behaviour of the
system can be interpreted as follows. The thermal disturbances w(t) directly affect
the state x(t), while the wafer surface deformations z(t) are a linear function of
state.

Sensors and Actuators

In terms of magnitude, a relation between deformations and temperature variations
can now be established for Σ (1.1), which is given by

‖z(t)‖ = ‖Czx(t)‖ ≤ ‖Cz‖ ‖x(t)‖ .

From this inequality we can observe that the deformations are reduced in magni-
tude by reducing the temperature variations in the system. It is therefore decided
to minimise temperature variations at specific locations that are measured using
temperature sensors. This also implies that actuation must be performed in the
thermal domain and, because the main disturbance in the considered application
is a cooling load, it is therefore decided to utilise heaters.

The next step is to determine the location for and the amount of sensors and
actuators that are used for control. A common design philosophy is to place both
the sensors and actuators close to where the disturbances enter the system. The
disturbances are mainly located at the outer edge of the wafer table, which implies
that the sensors and actuators are—as depicted in figure 1.8—placed at the outer
edge as well.

Finally, it is important to mention that single-input single-output (SISO) con-
troller architectures are often considered in classical control, which implies that
each measured output y(t) is paired with a control input u(t). A typical system
design therefore has an equal amount of sensors and actuators, as can be observed
in figure 1.8 as well. However, the interaction between these SISO controllers—
which is not taken into account in the controller design—could lead to stability
issues that limit performance3. This potential loss of performance is often min-
imised by limiting the amount of sensors and actuators; and by collocating each
sensor with an actuator.

2By considering temperature variations with respect to some reference, it is essentially assumed
that there are no deformations at this temperature.

3Several techniques—such as sequential loop closing as introduced by Bernstein [1987]—have
been developed in order to reduce this loss of performance. These techniques could potentially al-
low the introduction of additional pairs of sensors and actuators as well; however, their placement
is preferably still performed according to these rules.
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SISO
ControllerHeater

Set-point
Temperature
Measurement

Repeated
8 Times

Figure 1.8: A typical SISO controller configuration that is used for classical
control.

Modelling and Controller Design

The theory regarding classical controller design is well-documented in numerous
textbooks; for example the books by Franklin et al. [2015], Åström and Murray
[2012]. For these controllers, models are utilised that accurately describe the system
behaviour for each sensor-actuator pair. One often considers transfer functions and
state-space models such as Σ (1.1) for this purpose. For the control of thermally
induced deformation with classical controllers, the aim is to minimise the measured
temperature changes as a result of the disturbances that act on the system. How-
ever, during the design of such a controller it is also important to guarantee that
sensor noise does not introduce unnecessary temperature variations, which leads to
a design trade-off.

Models are typically used in classical control to decide on an initial controller design,
while the parameters of this controller are optimised for the real system—for ex-
ample, on the basis of data from experiments. This data is typically gathered from
frequency response measurements, or by measuring impulse and step responses.
The model accuracy does therefore not completely determine the control perfor-
mance and a relatively simple model is often used for this type of controller design.

1.2.4 Optimal Control

Classical control has successfully been used in order to reduce the imaging errors
as a result of the BES from approximately 11 nm to 1.8 nm in magnitude1. For
the future, however, this accuracy should meet values below 1 nm.

Currently there are numerous factors that introduce conservatism in the controller
design. For example, it is assumed that the system behaves linearly, does not

1These numbers follow from an example system in chapter 6 and are only an indication for
the relative increase in performance.
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change over time, modelling errors are not considered and the location of illumi-
nation is not taken into account. Furthermore, the decision to consider classical
controllers implies that temperature must be controlled instead of deformations
and that the coupling between SISO controllers is not explicitly taken into ac-
count. For this reason, optimal control is regarded as a potential solution for the
future. Furthermore, changes in control can be viewed as a software update that
requires only minor adjustments in the system, which makes them preferable over
hardware changes.

Controller Design

The aim with classical controller design is to control a measured quantity. For
the considered application, however, we did see that it is not always possible to
measure all quantities of interest. One method of dealing with this limitation is to
utilise a model that describes the relation between the known quantities u(t) and
y(t) and which, in addition, describes their relation to the unknown quantities w(t)
and z(t).

Such a model can be used by a controller that, similarly to classical control design,
determines u(t) on the basis of y(t); but this time in such a way that—according
to the model—the magnitude of z(t) as a result of unknown disturbances w(t) is
reduced. In addition, it is possible to introduce a notion of optimality when this
model is described by Σ (1.1), which leads to the following well-known optimal
control problem.

Problem 1.1 Construct a stabilising optimal controller Σ?c,nc
of the form (1.2)

and of any order nc ∈ N, which is a solution to

Σ?c,nc
= arg min

nc∈N,Σc,nc

‖Σcl,nc‖

s.t. Σcl,nc is internally stable.

This optimal control problem has received a considerable amount of attention in
the second half of the 20th century and today its solution is well-known for sev-
eral norms—for example the H2 and H∞ norms2. These optimal multiple-input
multiple-output (MIMO) controllers utilise a so-called observer based architecture2,
which has the same order as the system; that is, nc = nx.

Because the solution is well known for nc = nx, Problem 1.1 is often defined in
literature without explicitly including nc as an optimisation variable. However, in
this thesis we will distinguish between optimal control problems with and without
a constraint on the controller order.

Modelling of the System

Relatively simple models are used in classical controller design to create a initial
controller, which is then optimised on the actual system. In contrast, optimal

2These norms and the controller architecture will formally be introduced in chapter 2.
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controllers are entirely based on a model of the system. It is often assumed that
the performance of such a controller is completely determined by the quality of the
model—as explained by Obinata and Anderson [2001, Ch. 1]—and optimal control
is therefore also known as model based control.

The modelling of systems is typically performed by utilising a mixture of two
philosophies; namely “first principles modelling” and “data driven modelling” as
explained by Ljung [1999]. A first principles model consists of equations that
describe the physical behaviour of a system such as Newton’s second law and the
heat equation. With data driven modelling, the system is essentially regarded as a
black box and the dynamical relations between inputs and outputs are determined
completely on the basis of data. These philosophies can, however, be mixed get the
best of both worlds. For example, data can be used to estimate certain physical
parameters (e.g. the density and thermal capacity of a material) within a first
principles model.

For the considered thermal control application, only a limited amount of informa-
tion can be gathered about the thermal disturbances w(t) and the deformations
z(t). This makes it infeasible to accurately model all relevant dynamics on the
basis of data only and it is therefore decided to construct a first principles model.
A subset of the physical parameters can, however, be estimated on the basis of
data.

In section 1.2.3 it was mentioned that the physical behaviour in the considered
application is described by coupled PDEs. For such a system, a model of the form
Σ (1.1) can be created by utilising the finite element method (FEM) or the finite
volume method (FVM), as is explained in great detail by Bathe [1996]. With both
methods, the spatial domain is discretised using a mesh as depicted in figure 1.9.
With this mesh, the entire temperature distribution and deformation profile of the
system is replaced by a finite set of temperatures and deformations that are defined
at the nodes of this mesh.

Figure 1.9: A two dimensional FEM model in which a domain is discretised by
using a mesh.

Order Reduction

In thermal control applications, much effort is made to create an accurate model
using the FEM. It is often required to use a fine mesh to achieve a sufficiently
high degree of accuracy, which leads to a high order model. For example, a two
dimensional model as depicted in figure 1.9 will typically contain 100−1, 000 states,
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while model orders in the range of 10, 000−1, 000, 000 states are no exception when
three dimensional models are considered.

Models of such high order cannot directly be used for controller synthesis, as ex-
plained by Obinata and Anderson [2001, Ch. 1]. First of all, computational hard-
ware limitations like the amount of memory available could make it infeasible to
perform the required numerical calculations. Secondly, issues with numerical con-
ditioning will potentially make the results of these calculations unreliable.

Furthermore, for several norms the solution to the optimal control Problem 1.1 is
described by a controller with nc = nx. A high order controller does require a
large number of calculations to determine u(t) on the basis of y(t), which results
in a relatively large computational time. However, the control inputs u(t) must be
produced in real-time, which therefore imposes an upper bound on the controller
order.

To bridge the gap between the original model order, the required model order for
controller synthesis and the maximum controller order for real-time implementa-
tion, model order reduction (MOR) and controller reduction (COR) techniques are
often applied—as explained in great detail by Wortelboer [1994].

In many applications, much effort is made to construct an accurate model Σ (1.1) of
(potentially large) order nx. We would therefore prefer to use the input to output
behaviour of this model for controller synthesis. With MOR, the aim is therefore
to find a new model Σ̂, which is of much lower order nx̂ � nx; and which is similar
to Σ (1.1) in terms of the input to output behaviour.

When MOR is used for low order controller design, it is essentially assumed that
a low order approximation of the original model can safely be used for controller
synthesis when both models are “similar enough” in terms of their input to output
behaviour. Likewise, a controller can be viewed as a model with input y(t) and
output u(t). Under the same assumption we can therefore also utilise any MOR

technique to find a low order approximation Σ̂c,nĉ
of a controller Σc,nc

(1.2), which
is called COR.

1.2.5 Why Optimal Control is Rarely Applied in Practice

For the considered thermal control application, current solutions rely on classical
controllers that are designed according to the method as explained in section 1.2.3.
These relatively simple SISO controllers reduce deformations and imaging errors
as a result of the BES from approximately 11 nm to 1.8 nm in magnitude1. In the
future it will be required to further reduce this value to a number below 1 nm.

In order to meet the future performance requirements, it is proposed to improve
the control solution by introducing an optimal controller that is designed according
to section 1.2.4. These MIMO controllers are based on a reduced order model of

1These numbers follow from an example system in chapter 6 and are only an indication for
the relative increase in performance.
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the system, which essentially is used to virtually control the unmeasurable defor-
mations. This solution has been investigated for the example system as well and a
performance increase of approximately 0.1 nm is achieved.

This number is much lower than expected; especially if we consider that a consid-
erable amount of time, effort and expertise is required to go from the relatively
simple classical control designs to optimal controllers. At the same time, a similar
increase in performance can be achieved by simply adding extra sensors, actuators
and by applying classical control instead. We must therefore conclude that there
exist other solutions that are more attractive when both the potential gain and
the required effort are considered; this makes these solutions financially speaking
more cost-effective. To put this into a broader perspective, similar numbers are
reported in numerous other applications—for example, the applications mentioned
at the beginning of section 1.2—and optimal control is therefore rarely applied in
practice.

1.3 Control Relevant Modelling and System
Design

The invention of optimal control originates from the desire to achieve the best
possible closed-loop performance for any given system. In section 1.2 we saw that
a substantial amount of time and effort is required to design such a controller, while
the resulting increase in performance is relatively small in practice. The industry
is primarily driven by economic gains, which implies that the cost-effectiveness of a
solution becomes an important factor when alternative solutions exist that achieve
a similar degree of improvement. In industry, this type of solution is therefore
viewed as a “nice to have” instead of a necessity.

From both an academic and industrial perspective, it is interesting to investigate
if the cost-effectiveness and performance can be improved for optimal control. In
this section we will therefore investigate whether and how the entire development
process could be improved.

1.3.1 Control Relevant System Design

In section 1.2.3 it is explained that classical control is considered first in the consid-
ered application. This control-related decision does, however, also directly impact
the design of the system itself. Namely,

• temperature is controlled instead of deformations, which implies that mea-
surements are taken and actuation is performed in the thermal domain.

• SISO controllers are considered, which implies that the sensors and actuators
are paired.

Some of these decisions could be reconsidered to improve the performance when
optimal control is introduced. For example, the deformations are controlled with
optimal control, which implies that the wafer positioning system can be used as a



1.3 Control Relevant Modelling and System Design 19

control input as well. Furthermore, for optimal control it is not required to pair
sensors and actuators.

The introduction of optimal control is therefore accompanied with additional free-
dom in the system design, which is not exploited when only the controller is re-
placed. In addition, the well-defined mathematical framework of optimal control
can be used to numerically optimise the sensor locations to further increase closed-
loop performance. Such an automated procedure will also reduce the time, effort
and expertise required for system design.

We can therefore hypothesise that there is a potential to increase the closed-loop
performance and to reduce the effort required for system design, when automated
procedures for control relevant system design are considered. It is important to
note that this hypothesis will directly lead to the research questions in section 1.4.
A metaphor will now be used to clarify why it is decided to investigate this topic.

As a metaphor, consider the problem of winning a Formula 1 race. In the thermal
application it is decided to first design a relatively simple controller, which is rep-
resented by a qualified driver that is capable of driving a car on public roads. The
system design is represented by the selection of an appropriate car for this driver.
Such a car should obviously be as fast as possible; however, not any qualified driver
will be able to drive a Formula 1 car1. For an average driver it is therefore more
appropriate to select a fast road car instead—a Lotus Elise for example. In other
words, the choice of driver does affect what car is chosen.

It is safe to assume that this combination of driver and car will not be able to
seriously compete in a Formula 1 race and a substantial improvement is therefore
required. Now, by considering optimal control without changing the system, we
are essentially hiring a talented and very expensive Formula 1 driver that will drive
the same car. This solution will absolutely improve the lap-times; however, this
combination of driver and car will still finish last in any race. At the same time, it
is likely that a similar improvement can be achieved by simply giving the original
driver some time to train and by spending some money on a slightly faster car.
The considered car does therefore also affect the choice of driver.

It could indeed happen that an average driver will eventually become good enough
to operate the Formula 1 car and even to compete in a race. In a similar fashion,
it can be argued for the thermal control application that the desired performance
could eventually be met after spending enough time and effort on the classical
controllers and on iteratively improving the system design. We can, however, also
argue that the full potential of optimal control will never be observed—and to some
degree it is overshadowed by the required effort—when the additional freedom in
the system design is not exploited. Similarly, the Formula 1 driver will simply not
be able to demonstrate all his talents in a fast road car. By considering control
relevant system design, we essentially want to assure that the car and driver are
improved together.

1As evidence for this claim, please consider the following video from Top Gear [2007].
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1.3.2 Control Relevant Modelling

In the design of an optimal controller, much effort is typically made in order to
model all system aspects with the highest possible accuracy. At the same time,
it should be accepted that a linear model with an upper bound on the state di-
mension cannot always capture all relevant system dynamics. In a similar fashion
to system design, it can therefore be hypothesised that an increase in closed-loop
performance—and a reduction of the required effort—could be achieved by better
understanding what system aspects are important to model from a control per-
spective.

For this reason, it is decided to investigate control relevant modelling as well. This
topic has the potential to increase closed-loop performance and to reduce effort
during all steps in the modelling procedure—that is, the development of the high
order model and the use of MOR in combination with COR. Let us consider the
same metaphor in order to clarify this argument.

As a metaphor, the model is represented by a simulator which is used to train
the driver. The current modelling procedures essentially aim at replicating all
aspects of driving. This includes driving in traffic, driving in snow, replacing a tyre,
replicating the noise that the car makes etcetera. In order to win a race, however,
it is mainly required to model the technical aspects of driving on a Formula 1
circuit. By investigating control relevant modelling, we essentially aim at creating
a relatively simple simulator that is capable of maximising the driver’s performance
on the circuit.

1.4 Research Questions

In section 1.2 it is mentioned that optimal controllers are considered for the con-
trol of thermally induced deformations—and several other applications—in order
to meet future performance requirements. Results, however, have shown that such
a solution is at this moment only capable of achieving a marginal improvement. In
section 1.3 it is hypothesised that the full potential of optimal control is actually
not observed because the system design, modelling procedure and controller syn-
thesis are viewed as separate problems. This hypothesis will therefore be tested in
this thesis, by investigating whether these problems can be coordinated in order to
achieve the desired performance. This leads to the main research question:

Main Research Question:

How can the system design, modelling procedure and optimal controller
synthesis be coordinated with the aim of meeting a given set of closed-loop
performance requirements?

To answer this question, it is essentially required to combine three separate fields
of research. However, it is necessary to first acquire a better understanding of the
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relation between these fields in order to address this problem. For each field we will
therefore investigate one problem, in combination with a set of research questions
that aim at bringing us closer to this main goal.

Closed-loop Optimal Actuator and Sensor Selection

For the control of thermally induced deformations, it is required to utilise temper-
ature sensors. The question of how many sensors to use and where to place them
is therefore relevant for control. Likewise, from a control perspective it is equally
interesting to investigate these questions in terms of actuators; there is, however,
less freedom in their design for the considered application.

These questions are closely related to actuator and sensor selection problems as dis-
cussed by Van de Wal and de Jager [2001]. In these problems, the allowed actuator
and sensor locations are characterised as a large set of possible control inputs and
measured outputs, respectively. The actual placement problem is hereby replaced
by selecting—from these sets—smaller subsets of control inputs and measured out-
puts. To formally define this problem, let us consider the following mathematical
operator.

For a set V = {v1, v2, · · · , vm} with elements vi ∈ Rnvi
×nw , define the following

operator that “stacks” these elements in one matrix col(V) =
(
v>1 v>2 · · · v>m

)>
.

The optimal selection problem now amounts to finding the subsets of control in-
puts and measured outputs that achieve the best closed-loop performance. This
so-called “closed-loop optimal actuator and sensor selection problem” is mathe-
matically defined as follows:

Problem 1.2 For a given system, let U = {u1, u2, · · ·uNu
} and Y =

{
y1, y2, · · · yNy

}
,

with ui ∈ Rnui and yi ∈ Rnyi , denote sets that contain all possible control inputs
and measured outputs, respectively. Furthermore, let Unu ⊆ U and Yny ⊆ Y be
subsets of cardinality nu and ny respectively; and let Σ (1.1) be a mathematical
representation of the system with u = col(Unu

) and y = col(Yny
), which after

interconnection with Σc,nc
(1.2) results in a closed-loop system Σcl,nc

(1.3).

Then, for predefined numbers nu ∈ N and ny ∈ N, find the subsets U?nu
and Y?ny

,
which are a solution to

(U?nu
,Y?ny

) = arg min
Unu⊆U
Yny⊆Y

min
nc∈N,Σc,nc

‖Σcl,nc
‖

s.t. Σcl,nc is internally stable.

This type of selection problem has received a considerable amount of attention in
literature. It is therefore relevant to investigate these existing techniques and, if
necessary, to make improvements. This leads to the first set of research questions:



22 Chapter 1. Introduction

Research Questions for the System Design:

Does a solution to Problem 1.2 exist for specific norms?
If not, how well do existing selection methods perform and can these be
improved?

Constrained Order Controller Design

In section 1.2.4 it is discussed that high order model are required for the control
of thermally induced deformations. For several norms, the solution to the optimal
control Problem 1.1 is given by a controller which is of the same order as the model
order—that is, nc = nx. In practice it may therefore not be possible to numerically
construct such a controller due to computational constraints. Furthermore, real-
time application of such a controller requires this order to be even lower. For this
reason the design of a low order controller that is optimal for the high order system,
is an important problem. This results in the “constrained order optimal control
problem”, which is mathematically defined as follows:

Problem 1.3 For a predefined order nc ∈ N, construct a stabilising optimal con-
troller Σ?c,nc

of the form (1.2), which is a solution to

Σ?c,nc
= arg min

Σc,nc

‖Σcl,nc
‖

s.t. Σcl,nc
is internally stable.

The constrained order optimal control problem is often replaced by a modelling
approach that utilises MOR and COR to construct a low order approximation of
the system and the corresponding optimal controller, respectively. It is, however,
at this moment unclear whether such an approach could provide any guarantees on
the interconnection of the low order controller with the original high order system.
This leads to the second set of research questions:

Research Questions for the Modelling Procedure:

Does a solution to Problem 1.3 exist for specific norms?
If not, how well do existing methods for constrained order controller design
perform and can an improvement be achieved?

Minimal Order Optimal Control

As mentioned above, there exist controller synthesis algorithms that, for several
norms, solve Problem 1.3 with nc = nx. For orders nc < nx, however, this remains
an open problem. As a first step towards finding such a solution, it could therefore
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be relevant to determine the smallest controller order that can be used to solve the
original optimal control Problem 1.1. This leads to the “minimal order optimal
control problem”, which is mathematically defined as:

Problem 1.4 Construct a stabilising optimal controller Σ?
c,n−c

of the form (1.2)

and of minimal order n−c ∈ N, which is a solution to

(n−c ,Σ
?
c,n−c

) = arg min
nc∈N

min
Σc,nc

‖Σcl,nc‖

s.t. Σcl,nc
is internally stable.

Before finding a solution to this problem, we must first determine whether there
could exist a controller that solves the optimal control Problem 1.1 for orders
np < nx in the first place. This leads to the final set of research questions:

Research Questions for Controller Synthesis:

Does a solution to Problem 1.4 exist for specific norms?
If so, can n−c be characterised and how is Σ?

c,n−c
constructed?

Furthermore, can this solution satisfy n−c < nx for the H2 norm1?

1.5 Outline of the Thesis

In this thesis, we will investigate Problems 1.2–1.4 and the corresponding research
questions, with the aim of bringing us closer to answering the main research ques-
tion. An overview of the chapters is now presented.

Chapter 2 introduces the mathematical notation and describes basic notions from
systems and control theory, linear matrix inequalities, H2 optimal control and
geometric control theory. The chapter can be treated as a reference; it is therefore
not required to completely read it before proceeding to the subsequent chapters.

Chapters 3–5 are concerned with Problems 1.2–1.4 and the corresponding re-
search questions, respectively. These chapters can be read individually and in any
given order, while references to chapter 2 are added where necessary. They are
self-contained in the sense that each chapter contains an introduction, an overview
of existing literature, formal problem definitions and its own (system) definitions.

Chapter 6 is used to demonstrate the results from chapters Chapters 3–5 on a
numerical model for the thermal control application. In addition, the numerical
model will directly show the importance of the main research question.

Chapter 7 contains the conclusions and future work that follow from Chapters 3–5.
The chapter is concluded by presenting the implications for industry and academia
that follow from this thesis.

1This norm will formally be introduced in chapter 2.
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Finally, it is important to note that:

• any mathematical proof is included in appendix A, if it is significant in size.
• the list of publications is included on page 247. Throughout this thesis, a

reference is added for all chapters and sections that are based on submitted
or published papers.

• the software that is used to generate all numerical results in this thesis is
available upon request.



1.5 Outline of the Thesis 25





Mathematics is the art of giving the same name to
different things.

Henri Poincare

2
Mathematical Preliminaries

Several well-known concepts from mathematics, systems and control
will be introduced in this chapter. It is assumed that all readers are

to some degree familiar with these concepts. However, existing literature
is referenced throughout for clarity and for completeness.

First, in section 2.1 the general notation and several elementary mathe-
matical concepts are introduced. This is followed by a short summary on
the basic notions from systems and control in section 2.2.

In section 2.3, the use of linear matrix inequalities (LMIs) in control is
discussed. Then, an extensive treatment of—and a full derivation for the
solution to—the H2 optimal control problem is provided in section 2.4.

The chapter is finalised in section 2.5 by introducing the main concepts
from geometric control theory. In addition, a short discussion is presented
on the relation between geometric control theory and disturbance decou-
pling.

27
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2.1 Mathematical Notation

In section 2.1, the mathematical notation is defined and a number of basic concepts
from mathematics is briefly summarised. It is assumed that all readers are—at
least, to some degree—familiar with these concepts.

2.1.1 General Notation

The following definitions are used throughout this thesis:

• N The set of non-negative integers (including 0).
• N+ The set of positive integers (excluding 0).
• R The set of real numbers.
• C The set of complex numbers that are expressed as z = a + jb, with

a, b ∈ R.
• C− The open left half complex plane, which contains all complex numbers

z = a+ jb with a < 0.
• Cg A stability domain Cg ⊆ C is a subset that is symmetric with respect

to the real axis, while Cg ∩ R is non-empty.
• ‖ · ‖ Any norm of a vector, matrix, function or system.
• Ik The identity matrix of dimension k × k.
• ek(i, j) An indicator vector of dimension k, with 0 < i ≤ j ≤ k. Entries i, · · · , j

of this vector contain a value of 1, while all other entries are 0.
• ek(i) The ith unit basis vector of dimension k, with 0 < i ≤ k. Entry i of this

vector contains a value of 1, while all other entries are 0.
• ẋ(t) The derivative of a function x(t) with respect to (time) t.
• δ(t) The Dirac function.

2.1.2 Numbers and Vectors

Consider the following definitions for any complex number z ∈ C of the form
z = a+ jb, with a, b ∈ R:

• Re(z) The real part of z is defined as Re(z) := a.
• Im(z) The imaginary part of z is defined as Im(z) := b.
• z∗ The conjugate of z is defined as z∗ := a− jb.
• |z| The modulus of z is defined as |z| :=

√
a2 + b2.

And consider the following definitions for column vectors x, y ∈ Cp with p rows:

• xi The element of x in row i.
• x> The transpose of x.
• x∗ The conjugate transpose of x.
• 〈x, y〉 The inner product between x and y is defined as 〈x, y〉 = x∗y.
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• ‖x‖k The k-norm of x is defined as

‖x‖k :=


(

p∑
i=1

|xi|k
) 1
k

for k ∈ N+,

max
i∈{1,2,··· ,p}

|xi| for k =∞.
(2.1)

2.1.3 Linear Mappings and Matrices

Every matrix A ∈ Cp×q defines a linear mapping T (A) : Cq → Cp that is typically
denoted by A. That is, we directly identify the matrix A with the mapping T (A).

Matrices

Consider the following definitions for any matrix A ∈ Cp×q with p rows and q
columns:

•Ai,j The element of A in row i and column j.1

• A> The transpose of A.
• A∗ The conjugate—or Hermitian—transpose of A.
• ker(A) The kernel of A is defined as ker(A) := {x ∈ Cq | Ax = 0}.
• im(A) The image of A is defined as

im(A) := {y ∈ Cp | y = Ax for some x ∈ Cq} .
• rank(A) The rank of A. This describes the number of independent row or

columns. For any matrix A we have that rank(A) ≤ min(p, q) and A
is called full rank if rank(A) = min(p, q).

• card(A) The cardinality of A. This describes the number of non-zero elements.

• ‖A‖k,l The (k, l)-induced-norm of A is defined as ‖A‖k,l := sup
x 6=0

‖Ax‖k
‖x‖l

.

• ‖A‖F The Frobenius norm of A is defined as ‖A‖F :=

√√√√ p∑
i=1

q∑
j=1

|Ai,j |2.

Square Matrices

Consider the following definitions for a square matrix A ∈ Cp×p with p rows and
columns:

• λ ∈ C is an eigenvalue of A if Av = λv for some v ∈ Cp.
• The vector v ∈ Cp—with ‖v‖2 = 1—is called a normalised (right) eigenvector

of A corresponding to the eigenvalue λ ∈ C if Av = λv.
• The vector w ∈ Cp—with ‖w‖2 = 1—is called a normalised left eigenvector of
A corresponding to the eigenvalue λ ∈ C if w∗A = λw∗.

• The matrix A is called Hermitian if A = A∗ and symmetric if A = A>.

1Subscripts without a comma are used to describe matrix partitions that consist of multiple
rows and columns.
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• tr(A) The trace of A is defined as tr(A) :=

p∑
i=1

Ai,i.

• det(A) The determinant of A, which is discussed in great detail by Lay and
Lay [2015, Ch. 3]. The determinant of A is non-zero if the matrix is
full rank.

• A−1 The inverse of A is a matrix that satisfies AA−1 = Ip. A is called
non-singular—or invertible—if A−1 exists. A is nonsingular if it is full
rank, or equivalently if the determinant is non-zero.

• λ(A) The spectrum of A is defined as
λ(A) := {λ ∈ C |Ax = λx for some x ∈ Cp}.

A Hermitian matrix A will satisfy λ(A) ⊂ R. Such a matrix is called positive
(or negative) definite when the eigenvalues λi ∈ λ(A) satisfy λi > 0 (or λi < 0),
which is denoted by A � 0 (or A ≺ 0). Similarly, an Hermitian matrix A is called
positive (or negative) semidefinite when the eigenvalues λi ∈ λ(A) satisfy λi ≥ 0
(or λi ≤ 0), which is denoted by A � 0 (or A � 0).

The Singular Value Decomposition

The Singular Value Decomposition (SVD)—as discussed in great detail by Antoulas
[2005, Sec. 3.2]—essentially generalises the concept of eigenvalues to non-square
matrices.

The SVD of a (potentially non-square) matrix A ∈ Cp×q of rank r is a factorisation
of the form A = USV ∗, where:

• U ∈ Cp×p is a matrix satisfying UU∗ = Ip.
• V ∈ Cq×q is a matrix satisfying V V ∗ = Iq.
• S ∈ Cp×q is a matrix with elements Si,i = σi > 0 for i ≤ r and with

zeros elsewhere.

The columns ui and vi of U and V , respectively, are called the left and right singular
vectors corresponding to the singular value σi, respectively. These vectors satisfy
Avi = σiui and we get that A =

∑r
i=1 σiviu

∗
i .

Furthermore, the singular values are ordered in the sense that σ1 ≥ σ2 ≥ · · · ≥
σr > 0. In a similar fashion to the eigenvalues of a matrix, the following set is
considered:

σ(A) :=

{
σi > 0 | A =

r∑
i=1

σiviu
∗
i

}
and σi(A) denotes the ith singular value of A.

Matrix Norms

The (k, l)-induced norm of A is called the k-induced norm if k = l. In other words
‖A‖k := ‖A‖k,k.
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For a matrix A ∈ Cp×q, the following norms are often considered:

‖A‖1 = max
1≤j≤q

p∑
i=1

|Ai,j |,

‖A‖2 = max(σ(A)),

‖A‖∞ = max
1≤i≤p

q∑
j=1

|Ai,j |.

2.1.4 Subspaces

Let us define two finite-dimensional vector spaces X and Y of dimension nx and ny,
respectively. Furthermore, let us consider the following definitions for the subspaces
R and S of the vector space X and for the linear mappings A : R → S, B : X → Y
and C : X → X :

• dim(R) The dimension of R.
• R ⊆ S R is a subspace of S. This implies that any r ∈ X which satisfies

r ∈ R, must satisfy r ∈ S as well. A strict inclusion R ⊂ S is used
if there exists at least one element in S that is not an element in R;
i.e. there exists an s ∈ S such that s /∈ R.

• R ∩ S The intersection of R and S is defined as
R∩ S := {t ∈ X | t ∈ R, t ∈ S}.

• R+ S The sum of R and S is defined as
R+ S := {t ∈ X | t = r + s for some r ∈ R, s ∈ S}.

• R ⊕ S The direct sum of R and S denotes the sum of these subspaces if R
and S are disjoint—i.e. if R∩ S = 0.

• Rc An arbitrary complement of R is a subspace Rc ⊆ X that satisfies
R⊕Rc = X .

• R⊥ The orthogonal complement of R is defined as

R⊥ := {t ∈ X | 〈r, t〉 = 0 for any r ∈ R}.
• AR A linear transformation A applied to the subspace R is defined as

AR := {s ∈ S | s = Ar for some r ∈ R}.
• A−1S 1 An inverse linear transformation A−1 applied to the subspace S is

defined as A−1S := {r ∈ R | s = Ar for some s ∈ S}.
• B|R The restriction of B to the subspace R. We say that a mapping

B : R → Y that satisfies Br = Br for any r ∈ R is the restriction of
B to R, which is denoted by B|R.

• Π(R,S) The oblique projection onto R along S, which is denoted by a linear
transformation Π(R,S) : R + S → R. For a subspace T ⊆ R + S
this linear transformation is defined as Π(R,S)T =
{r ∈ R | there exists an s ∈ S such that r = s+ t for any t ∈ T }.

The transformation is single valued—i.e. for any t ∈ T the projection
of t: Π(R,S)t is described by exactly one point—if R∩ S = 0.

1This so-called set inverse is defined for a mapping A and does not require that the corre-
sponding matrix is full rank.



32 Chapter 2. Mathematical Preliminaries

When a complement of R is used, we get that Π(R,Rc) : X → R;
and Π(R,R⊥) : X → R is called an orthogonal projection onto R.

• X mod R The quotient space X modulo R. A subspace R imposes an equiva-
lence relation between elements x1, x2 ∈ X in the sense that x1 ' x2

if x1−x2 ∈ R. The set of all equivalence classes is called the quotient
space X modulo R, which is denoted by X mod R. For any x ∈ X ,
the equivalence class is denoted by x̄ := {y | x− y ∈ R}.

• The subspace R is called invariant under C, or simply C-invariant, if CR ⊆ R.
• If R is invariant under C, we have that C|(X mod R) : X mod R → X mod R

in the sense that ȳ = Cx̄ where ȳ is the equivalence class of y = Cx for any x
in the equivalence class x̄.

Please note that subspace algebra is discussed in more detail by Basile and Marro
[1992]. Equivalence classes and modulo relations are discussed by Trentelman et al.
[2001] and more information about oblique projections is provided by Saad [2003,
2011].

Numerical Representations for Subspaces

Again, let us consider the subspace R—with nr = dim(R)—of the vector space X
with nx = dim(X ). Then the subspace R can numerically be described by a set
of vectors in Rnx that span this subspace. I.e. we say that a matrix R ∈ Rnx×nq

is an (image) representation for R if im(R) = R; it is called a minimal (image)
representation if nq = nr.

All subspace operations as described above are numerically implemented by Marro
[2018] and explained by Basile and Marro [1992, sec. 3.1]; except for the projector
Π(·, ·), which is—according to Saad [2003, Sec. 1.12]—defined as follows:

LetR1 andR2 of dimension r1 and r2, respectively, be subspaces of the vector space
R1 ⊕R2. Furthermore, let the matrices of R1 ∈ R(r1+r2)×r1 and R2 ∈ R(r1+r2)×r2

be minimal representations for the subspaces R1 and R2, respectively. Finally, let
R2p ∈ R(r1+r2)×r1 be a minimal representation for R⊥2 .

Then the projection onto R1 and along R2 is numerically described by

Π(R1,R2) = R1(R>2pR1)−1R>2p = P ∈ R(r1+r2)×(r1+r2).

Furthermore, the projection to R1 and along R2 is numerically described by

Πs(R1,R2) = R>1 R1(R>2pR1)−1R>2p = Ps ∈ Rr1×(r1+r2).

2.1.5 Functions

For any (matrix) function f : R→ Cp×q, the Lk-norm is defined as

‖f‖Lk
:=


(∫ ∞

t=−∞
‖f(t)‖kk dt

) 1
k

for k ∈ N+,

sup
t∈R
‖f(t)‖∞ for k =∞.

(2.2)
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We say that the function f is Lk-bounded if there exists a number γ > 0 such that
‖f‖Lk

≤ γ <∞.

2.1.6 Sets and Set Functions

Consider the following definitions for a set V = {v1, v2, · · · , vm}:
• card(V) The cardinality of V. This describes the number of elements in the

set; i.e. card(V) = m.
• row(V) For a set that contains elements vi ∈ Cnw×nvi with an equal amount

of rows, row(V) “joins” these elements in a matrix:
row(V) :=

(
v1 v2 · · · vm

)
.

• col(V) For a set that contains elements vi ∈ Cnvi
×nw with an equal amount

of columns, col(V) “stacks” these elements in a matrix:

col(V) :=


v1

v2

...
vm

 .

• diag(V) For a set that contains elements vi ∈ Cnvi1
×nvi2 of arbitrary dimen-

sion, diag(V) creates a block diagonal matrix with these elements on
the diagonal:

diag(V) :=


v1 0 · · · 0
0 v2 0
...

. . .
...

0 0 · · · vm

 .

Consider the following definitions for the subsets V1,V2 ⊆ V:

• V1 ⊆ V2 V1 is a subset of V2. This implies that any v ∈ V1 satisfies v ∈ V2.
A strict inclusion V1 ⊂ V2 is used if there exists at least one element
in V2 that is not an element in V1; i.e. there exists a v ∈ V2 such
that v /∈ V1.

• V1 ∩ V2 The intersection of V1 and V2 is defined as
V1 ∩ V2 := {v ∈ V | v ∈ V1 and v ∈ V2}.

• V1 ∪ V2 The union of V1 and V2 is defined as
V1 ∪ V2 := {v ∈ V | v ∈ V1 or v ∈ V2}.

• V1 \ V2 The subtraction of elements in V2 from V1 is defined as
V1 \ V2 := {v ∈ V1 | v /∈ V2}.

For a set V = {v1, v2, · · · , vm}, a set function f : 2V → R is a function that assigns
a real-valued number to each subset of V. Consider the following definitions for
such a function and subsets Vi,Vj ⊆ V:

• The function f is called monotone increasing in V if
Vi ⊆ Vj ⇒ f(Vi) ≤ f(Vj).

• The function f is called monotone decreasing in V if
Vi ⊆ Vj ⇒ f(Vi) ≥ f(Vj).
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• The function f is called submodular in V if for all subsets Vi,Vj ⊆ V we have
that

f(Vi) + f(Vj) ≥ f(Vi ∪ Vj) + f(Vi ∩ Vj).
• The function f is called supermodular in V if for all subsets Vi,Vj ⊆ V we

have that
f(Vi) + f(Vj) ≤ f(Vi ∪ Vj) + f(Vi ∩ Vj).

• The function f is called modular in V if it is both supermodular and submodular
in V. For all subsets Vi,Vj ⊆ V we therefore have that

f(Vi) + f(Vj) = f(Vi ∪ Vj) + f(Vi ∩ Vj).

2.2 Basic Notions from Systems and Control The-
ory

2.2.1 Internal and External System Descriptions

A system Σ (1.1) with two types of inputs and two types of outputs is introduced
in chapter 1. A number of notions from systems and control will now be discussed
in section 2.2, for which this distinction is not required. Therefore, let us consider
the simplified system

Σs =

{
ẋ(t) =Ax(t) +Bu(t)

y(t) =Cx(t) +Du(t),
(2.3)

with vector signals x(t), u(t) and y(t) that represent the state, input and output.
These signals assume values in finite-dimensional vector spaces X = Rnx , U = Rnu

and Y = Rny , respectively. The dynamical relation between the signals is described
by real-valued matrices A, B, C and D of appropriate dimension.

Σs (2.3) is called an internal, or state-space, system representation. We say that
such a representation is strictly proper if D = 0.

External, or input to output, system representations are often considered as well.
For example, Σs (2.3) defines a transfer function

Γs(s) =
[
C(sInx

−A)−1B +D
]

that relates the Laplace transforms U(s) and Y (s) of the signals u(t) and y(t)—
provided that x(0) = 0—by Y (s) = Γs(s)U(s).

The transfer function Γs,i,j(s) between input uj(t) and output yi(t) is often ex-
pressed as

Γs,i,j(s) = K
(s− z1)(s− z2) · · · (s− zm−1)(s− zm)

(s− p1)(s− p2) · · · (s− pn−1)(s− pn)
=
Z(s)

P (s)
,

where we assume that all common factors of Z(s) and P (s) are removed in order
to obtain polynomial functions of minimal degree—i.e. there do not exist values
i, j such that zi = pj .
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The solutions to the equation Z(s) = 0—i.e. the values s = zi for i = 1, 2, · · · ,m—
are called the zeros of Γs,i,j(s). Similarly, the solutions to the equation P (s) = 0—
i.e. the values s = pi for i = 1, 2, · · · , n—are called the poles of Γs,i,j(s).

The poles of the entire transfer function Γs(s) are simply the union of the poles
for each transfer function Γs,i,j(s) as defined above. The extension of zeros to the
entire system Γs(s) is more complicated—as explained by Bosgra et al. [2007]; it
is, however, not necessary to discuss this extension.

Finally, it is important to note that the state x(t) of Σs (2.3) is not uniquely
determined by the input to output behaviour. In other words, we can define a
non-singular state transformation T : X → X to define a new system—with the
state x̄(t) = Tx(t)—that describes the same transfer function. By applying a state
transformation T to Σs (2.3), the equivalent system

Σ̄s =

{
˙̄x(t) = Āx̄(t) + B̄u(t)

y(t) = C̄x̄(t) +Du(t),
(2.4)

with Ā = TAT−1, B̄ = TB and C̄ = CT−1 is obtained.

2.2.2 Stability

Stability is an important system property; let us now define two types of stability.

Definition 2.1 The system Σs (2.3) is “bounded-input, bounded-output (BIBO)
stable” if any L∞-bounded input signal u(t) results in an L∞-bounded output signal
y(t) for initial condition x(0) = 0.

The system Σs (2.3) is “internally stable” if the states x(t) remain L∞-bounded for
all initial conditions x(0) = x0 ∈ Rnx and for all L∞-bounded signals u(t).

It is a well-known fact that these types of stability are mathematically expressed as
requirements on the eigenvalues of A and the poles of Γs(s), for which all common
factors in the numerator and denominator polynomials are removed.

Proposition 2.2 Consider the system Σs (2.3) and the corresponding transfer
function Γs(s), for which all common factors in the numerator and denominator
polynomials are removed.

Then Σs (2.3) is BIBO stable if and only if any pole pi of Γs(s) satisfies pi ∈ C−.

Furthermore, Σs (2.3) is internally stable if and only if λ(A) ⊂ C−.

Proof: The proof is given by Trentelman et al. [2001, Sec. 3.7]. �

It is important to note that internal stability of a system is invariant under state
transformations. In other words, Σs (2.3) is internally stable if and only if Σ̄s (2.4)
is internally stable, because λ(Ā) = λ(TAT−1) = λ(A).

Finally, it might be possible to stabilise or destabilise the system Σs (2.3) with the
signal u(t). Let us therefore consider the following definition.
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Definition 2.3 For Σs (2.3), an input signal u(t) stabilises the state x0 ∈ X if
with this input signal u(t) and for x(0) = x0 we have that lim

t→∞
x(t) = 0.

Furthermore, let U(x0) denote the set of signals u(t) that stabilise x0.

2.2.3 Reachability and Observability

An internally stable system is BIBO stable. A BIBO stable system is, however,
not necessarily internally stable. For example, certain inputs u(t) could, for a
BIBO stable system, result in unbounded state trajectories x(t) as long as these
unbounded states do not affect the output y(t).

It is therefore important to determine which states are affected by the input u(t)
and what states affect the output y(t). This leads to the concepts of reachability
and observability of states, which are formally defined as follows.

Definition 2.4 For a system Σs (2.3), the state x ∈ X is called

• reachable if for x(0) = 0 there exists an input signal u(t) and a time T <∞
such that x(T ) = x.

• unobservable if for x(0) = x and u(t) = 0 we get that y(t) = 0 for t ≥ 0.

The subspaces R(A,B) ⊆ X and N (C,A) ⊆ X are the sets of all reachable and
unobservable states, respectively.

Finally, Σs (2.3) is called reachable if R(A,B) = X , observable if N (C,A) = 0
and minimal if it is both reachable and observable.

Now let us consider a state transformation Tk that partitions the state-space of
Σs (2.3) in the so-called Kalman canonical form, which is explained in more de-
tail by Polderman and Willems [1998]. In this representation the state-space is
partitioned as X = X1 ⊕ X2 ⊕ X3 ⊕ X4, with R(TkAT

−1
k , TkB) = X1 ⊕ X2 and

N (T−1
k C, TkAT

−1
k ) = X1 ⊕X3.

This implies that the states x ∈ X1 are reachable and observable, the states x ∈ X2

are reachable and unobservable, the states x ∈ X3 are not reachable and unob-
servable, while the states x ∈ X4 are not reachable and observable. With such a
partitioning, the system Σs (2.3) is described by

Σk =




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44



x1(t)

x2(t)

x3(t)

x4(t)

 +


B1

B2

0

0

u(t)

y(t) =
(

0 C2 0 C4

)
x(t) +

(
D
)
u(t).

(2.5)

The distinction between BIBO stability and internal stability becomes more in-
tuitive by considering the system Σk (2.5), which will be demonstrated in the
following proposition.
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Proposition 2.5 The system Σk (2.5) is BIBO stable if and only if λ(A22) ⊂ C−.

Furthermore, Σk (2.5) is internally stable if and only if λ(A) ⊂ C−.

Proof: Internal stability follows directly from Proposition 2.2.

For BIBO stability, let us consider the transfer function of Σk (2.5). The structure
of Σk (2.5) implies that this transfer function is described by

Γk(s) = C2(sInx2
−A22)−1B2 +D.

Therefore, the reachable and observable system

Σ2,2 =

{
ẋ2(t) = A22x(t) +B2u(t)

y(t) =C2x2(t).+ Du(t)

is equivalent to Σk (2.5) in terms of input to output behaviour. Finally, Trentelman
et al. [2001, Thm. 3.20] have shown that the eigenvalues of A22 are equal to the
poles of Γk(s), if all common factors in the numerator and denominator polynomials
are removed, which completes the proof. �

The concepts of reachability and observability are used to determine whether a
state is affected by the input u(t) and whether it can be observed in the output
y(t), respectively. It is, however, often desired to quantify how reachable or how
observable a state is. Let us consider the following definition for this purpose.

Definition 2.6 For an internally stable system Σs (2.3) and the state x ∈ Rnx

• we define the minimal energy to reach x as

ER(x) := inf
u(t)

∫ 0

t=−∞
‖u(t)‖22 dt

s.t. u(t) is L2-bounded,

lim
t→−∞

x(t) = 0 and x(0) = x.

• we define the observation energy associated with x as

EO(x) :=

∫ ∞
t=0

‖y(t)‖22 dt, with x(0) = x and u(t) = 0.

These energies can—by assuming internal stability for Σs (2.3)—be expressed in
terms of the so-called Gramians, which are discussed in great detail by Antoulas
[2005]. The reachability and observability Gramians are defined as

P(A,B) :=

∫ ∞
t=0

eAtBB>eA
>tdt, (2.6)

Q(C,A) :=

∫ ∞
t=0

eA
>tC>CeAtdt, (2.7)
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respectively. Each Gramian is dual to the other, in the sense that P(A,B) =
Q(B>, A>) and Q(C,A) = P(A>, C>).

When Σs (2.3) is internally stable, the Gramians are the unique positive semidefi-
nite solutions to the following Lyapunov equations:

P � 0 such that AP + PA> +BB> = 0, (2.8)

Q � 0 such that A>Q+QA+ C>C = 0. (2.9)

Furthermore, P � 0 if and only if Σs (2.3) is reachable, while Q � 0 if and only if
Σs (2.3) is observable.

Now, let us relate the Gramians to the energies ER and EO as defined above. If
Σs (2.3) is internally stable and reachable, the minimal energy to reach the state
x is described in terms of the reachability Gramian by

ER(x) = x>P−1x.

If the system is internally stable, the minimal observation energy associated with
x is described in terms of the observability Gramian by

EO(x) = x>Qx.

2.2.4 System norms

In chapter 1 it is mentioned that system norms are used to quantify, for example
for Σs (2.3), how much the input u(t) affects the output y(t). The H2 and H∞
norms are typically considered; these norms are discussed in great detail by Scherer
and Weiland [2015].

The H2 Norm of a System

Let us consider a formal definition for the H2 norm, which is defined for the transfer
function of a system Σs (2.3):

Definition 2.7 Let Γs(s) be the transfer function of a strictly proper—i.e. with
D = 0—BIBO stable system Σs (2.3).

Then the H2 norm (squared) for Γs(s) is defined as

‖Γs(s)‖2H2
:=

1

2π
tr

(∫ ∞
ω=−∞

Γs(jω)Γ∗s(jω)dω

)
.

The notation ‖Σs‖H2
is used to denote the H2 norm of the transfer function Γs(s).

In the frequency domain, the H2 norm is an integral over the frequency response
of a system. A time domain interpretation of the H2 norm can be obtained by
utilising Parseval’s theorem, as explained by Scherer and Weiland [2015, Sec. 2.3].



2.2 Basic Notions from Systems and Control Theory 39

In the time domain, the H2 norm of Σs (2.3) essentially describes the output energy
associated with the impulse response of the system.

Now, let us consider the impulse response matrix Φ(t) = CeAtB for the system
Σs (2.3) and for t ≥ 0—i.e. Φ(t) = 0 for t < 0. The entries Φi,j(t) of this matrix
describe the response for the ith output yi(t) of Σs (2.3), provided that x(0) = 0
and that an impulse is applied to the jth input uj(t) at t = 0, i.e. u(t) = δ(t)enu(j).

From this time domain interpretation, a direct relation can be established between
the H2 norm of Σs (2.3) and its Gramians.

Lemma 2.8 Consider a strictly proper internally stable system Σs (2.3) and let P
and Q be the Gramians as defined in (2.6) and (2.7), respectively.

Then the H2 norm of Σs (2.3) is described by

‖Σs‖2H2
=
∑
i,j

‖Φi,j(t)‖2L2
= tr

∫ ∞
t=0

B>eA
>tC>CeAtBdt

= tr

∫ ∞
t=0

CeAtBB>eA
>tC>dt

= tr(CPC>) = tr(B>QB).

Proof: The proof is given by Scherer and Weiland [2015, Sec. 3.3]. �

A similar relation can, however, also be observed if Σs (2.3) is only BIBO stable.
In order to establish this relation, an equivalent system of the form Σk (2.5) is
utilised.

Proposition 2.9 Consider a strictly proper BIBO stable system Σs (2.3) and a
state transformation Tk that is used to construct an equivalent system of the form
Σk (2.5). Furthermore, let P22,k = P(A22, Bu) and Q22,k = Q(C2, A22) denote
(partial) Gramians for Σk (2.5) as defined in (2.6) and (2.7), respectively.

Then the H2 norm of Σs (2.3) is described by

‖Σs‖2H2
= ‖Σk‖2H2

= tr(C2Pk,22C
>
2 ) = tr(B>2 Qk,22B2).

Proof: The proof can be found in appendix A.1. �

Finally, duality of the Gramians—i.e. P(A,B) = Q(B>, A>) and Q(C,A) =
P(A>, C>)—implies that the dual system

Σ>s =

{
ẋ′(t) = A>x′(t) + C>y′(t)

u′(t) =B>x′(t) +D>y′(t)
(2.10)

satisfies ‖Σs‖H2
=
∥∥Σ>s

∥∥
H2

.
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The H∞ Norm of a System

Let us now consider a formal definition for the H∞ norm, which is defined for the
transfer function of a system Σs (2.3):

Definition 2.10 Let Γs(s) be the transfer function of a BIBO stable system Σs (2.3).

Then the H∞ norm is for Γs(s) defined as

‖Γs(s)‖H∞ := sup
ω∈R

σ1(Γs(jω)).

The notation ‖Σs‖H∞ is used to denote the H∞ norm of the transfer function
Γs(s).

In the frequency domain, the H∞ norm is the peak value in the frequency response
of a system. Similarly to the H2 norm, a time domain interpretation of this norm
exists as well. In the time domain, the H∞ norm of Σs (2.3) essentially describes
the output energy associated with the “worst case” input. This interpretation is
formally described as follows.

Lemma 2.11 The H∞ norm of a BIBO stable system Σs (2.3) satisfies

‖Σs‖H∞ = sup
u(t) 6=0

‖y(t)‖L2

‖u(t)‖L2

s.t. u(t) is L2-bounded,

u(t) = 0 and x(t) = 0 for t ≤ 0.

Proof: The proof is given by Scherer and Weiland [2015, Sec. 3.3]. �

Finally, by observing that the singular values of Γs(s) are equal to the singular
values of Γ>s (s), we can also conclude that ‖Σs‖H∞ =

∥∥Σ>s
∥∥
H∞

.

2.2.5 System Properties for Control

In control it is often desired to achieve stability in combination with a certain
degree of performance; for example, the states of Σs (2.3) should converge to the
origin at some predetermined minimal convergence rate when u(t) = 0. In order
to capture a combination of stability and performance requirements, a stability
domain Cg as defined in section 2.1.1 can be considered. For a stability domain Cg
we will consider the following definitions:

Definition 2.12 Consider a stability domain Cg, a system Σs (2.3) and the cor-
responding transfer function Γs(s), for which all common factors in the numerator
and denominator polynomials are removed.

Then Σs (2.3) is “externally Cg-stable” if any pole pi of Γs(s) satisfies pi ∈ Cg.

Furthermore, Σs (2.3) is “internally Cg-stable” if

λ(A11) ∪ λ(A22) ∪ λ(A33) ∪ λ(A44) ⊆ Cg.
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This type of stability is a generalisation of the stability concepts that were in-
troduced in section 2.2.2. Namely, external C−-stability is equivalent to BIBO
stability and internal C−-stability is equivalent to internal stability.

A state feedback u(t) = Fx(t) is often considered in control problems. Applying
such a feedback to Σs (2.3), results in the closed-loop state equation

ẋ(t) =
(
A+BF

)
x(t).

Now, from a control perspective, it is important to determine whether there exists
a state feedback u(t) = Fx(t) such that this closed-loop state equation is internally
Cg-stable. This leads to the concept of Cg-stabilisability.

Definition 2.13 The pair (A,B) is Cg-stabilisable if there exists a mapping F :
X → U such that λ(A+BF ) ⊆ Cg.

Furthermore, we say that (A,B) is stabilisable if it is C−-stabilisable.

The dual problem—which is called a state observation problem—consists of finding
an appropriate mapping L : Y → X for the state equation

˙̃x(t) =
(
A+ LC

)
x̃(t).

In a dual fashion to state feedback design, the concept of Cg-detectability is now
introduced.

Definition 2.14 The pair (C,A) is Cg-detectable if there exists a mapping L :
Y → X such that λ(A+ LC) ⊆ Cg.

Furthermore, we say that (C,A) is detectable if it is C−-detectable.

It can easily be verified whether Σs (2.3) is Cg-stabilisability and Cg-detectable by
considering an equivalent system of the form Σk (2.5); this will be shown in the
following proposition.

Proposition 2.15 Consider a stability domain Cg, the system Σs (2.3) and a
state transformation Tk that is used to construct an equivalent system of the form
Σk (2.5).

Then Σs (2.3) is Cg-stabilisable if and only if λ(A33) ⊆ Cg and λ(A44) ⊆ Cg.

Furthermore, Σs (2.3) is Cg-detectable if and only if λ(A11) ⊆ Cg and λ(A33) ⊆ Cg.

Proof: The proof is given by Trentelman et al. [2001, Theorem. 3.38], when it
is observed that the unreachable eigenvalues of Σk (2.5) are described by A33 and
A44, while the unobservable eigenvalues are described by A11 and A33. �
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2.3 Linear Matrix Inequalities in Control

The concepts of Cg-stabilisabilty and Cg-detectability are introduced to estab-
lish whether there exist mappings F and L that are Cg-stabilising for the system
Σs (2.3). In this section, we will introduce two algorithms that utilise an LMI
in order to construct these stabilising mappings for stability domain C−. As ex-
plained by Henrion and Arzelier [2004], these algorithms can be extended in order
to consider a larger class of stability domains.

The following proposition will be utilised in order to construct these LMIs.

Proposition 2.16 Consider a nonsingular matrix T ∈ Rnx×nx .

Then the following properties are obtained:

• the spectrum of any matrix A ∈ Rnx×nx is invariant under similarity trans-
formations; i.e. λ(A) = λ(TAT−1).

• the definiteness of a symmetric matrix A ∈ Rnx×nx is invariant under con-
gruence transformations; i.e. A � 0 if and only if T>AT � 0.

Proof: To prove the first property, observe that for any λi ∈ λ(A) there exists
a vector x ∈ Cnx such that Ax = λix. By observing that T−1T = Inx , by left
multiplying this equation with T and by defining x̄ = Tx, we obtain TAT−1x̄ =
λix̄. Therefore, for any λi ∈ λ(A) we get that λi ∈ λ(TAT−1) and vice versa.

For the second property, it must be noted that A � 0 implies for any vector x ∈ Rnx

that x>Ax > 0. Now, let us define the transformation x = Tz in order to conclude
z>T>ATz > 0 for any vector z ∈ Rnx , which implies that T>AT � 0. The
converse statement is proven in the same way. �

Let us first establish how stability is characterised in terms of an LMI. It is explained
by Scherer and Weiland [2015, Sec. 1.4.3] that a matrix A ∈ Rnx×nx satisfies
λ(A) ⊂ C− if and only if there exists a matrix X = X> � 0 ∈ Rnx×nx such that
A>X +XA ≺ 0.

Then, let us consider the construction of a matrix F ∈ Rnu×nx that achieves
λ(A + BF ) ⊂ C−. This is—by utilising the LMI as defined above—equivalent to
finding the matrices F and X = X> � 0 such that

(A+BF )>X +X(A+BF ) ≺ 0.

This equation is, however, not linear in the variables F and X.

The problem can be converted into an equivalent LMI by applying the congruence
transformation X−1; and by defining Y = Y > = X−1 � 0 and K = FY in order
to obtain

X−1(A+BF )> + (A+BF )X−1 ≺ 0,

X−1A> +AX−1 +X−1F>B> +BFX−1 ≺ 0,

Y A> +AY +K>B> +BK ≺ 0.
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In this way, all stabilising matrices F = KY −1 are essentially characterised by
solutions to an LMI in the variables K and Y � 0.

Similarly, the construction of a matrix L ∈ Rnx×ny that achieves λ(A+LC) ⊂ C−
is equivalent to finding the matrices L and Z = Z> � 0 such that

(A+ LC)>Z + Z(A+ LC) ≺ 0.

This equation is also not linear in the variables L and Z. However, the problem
can be converted into an equivalent LMI by, again, utilising Z � 0 and by defining
J = ZL in order to obtain

A>Z + ZA+ C>J> + JC ≺ 0.

In this way, all stabilising matrices L = Z−1J are essentially characterised by
solutions to an LMI in the variables J and Z � 0.

2.4 H2 Optimal Control

The optimal control problem is defined in Problem 1.1 for an arbitrary system norm
that quantifies performance. In order to mathematically solve this type of problem,
a specific norm must be chosen; typically, the H2 and H∞ norms are considered.
These so-called H2 and H∞ optimal control problems have received a considerable
amount of attention over the past decades and their solution is well-documented
in several textbooks, such as [Saberi et al., 1995a],[Zhou et al., 1996], [Trentelman
et al., 2001] and [Bosgra et al., 2007].

A specific derivation—which is directly based on the approach taken by Trentelman
et al. [2001]—for the H2 optimal control problem will now be discussed. As a
generalisation for the system Σ (1.1) that is defined in chapter 1, let us consider
an LTI system of the form

Σf =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) =Cyx(t) +Duyu(t) +Dwyw(t)

z(t) =Czx(t) +Duzu(t) +Dwzw(t),

(2.11)

with vector signals x(t), u(t), w(t), y(t) and z(t) that represent the state, known
input, unknown disturbance, measured output and the control output, respectively.
These signals assume values in finite-dimensional vector spaces X = Rnx , U = Rnu ,
W = Rnw , Y = Rny and Z = Rnz , respectively. The dynamical relation between
the signals is described by real-valued matrices A, Bu, Bw, Cy, Cz,Duy, Dwy, Duz

and Dwz of appropriate dimension.

Then, let us consider applying a controller of the form

Σc,nc
=

{
ẋc(t) = Jxc(t) +Ky(t)

u(t) =Mxc(t) +Ny(t)
(2.12)
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to Σf (2.11), in order to obtain the following closed-loop system:

Σf,cl,nc =

{
ẋcl(t) = Aclxcl(t) + Bclw(t)

z(t) = Cclxcl(t) + Dclw(t),
(2.13)

with

Acl =

(
A+Bu(Inu

−NDuy)−1NCy Bu(Inu
−NDuy)−1M

K(Inu
−DuyN)−1Cy J +K(Inu

−DuyN)−1DuyM

)
,

Bcl =

(
Bw +Bu(Inu −NDuy)−1NDwy

K(Inu −DuyN)−1Dwy

)
,

Ccl =
(
Cz +Duz(Inu

−NDuy)−1NCy Duz(Inu
−NDuy)−1M

)
,

Dcl = Dwz +Duz(Inu −NDuy)−1NDwy and xcl(t) =

(
x(t)
xc(t)

)
.

The mapping Duy of Σf (2.11) is a direct mapping from input u(t) to output y(t),
while the mapping N of Σc,nc

(2.12) is direct mapping from output y(t) to input
u(t). These direct mappings might result in an ill-posed closed-loop interconnection
if the matrix (Inu

− NDuy) is non-singular, because the signals u(t) and y(t) are
then not—or non-uniquely—defined for some signals w(t) and initial conditions
x(0) = x0, xc(0) = xc,0; this is explained in more detail by Trentelman et al. [2001,
Sec. 3.13]. It is therefore required that the closed-loop interconnection of Σf (2.11)
with Σc,nc

(2.12) is well-posed.

We say that this interconnection is well-posed if the signals x(t), xc(t), u(t), y(t) and
z(t) are uniquely defined for any disturbance signal w(t) and any initial condition
x(0) = x0 and xc(0) = xc,0. This is equivalent to requiring that the inverse
(Inu −NDuy)−1—or equivalently (Iny −DuyN)−1—exists.

With the H2 optimal control problem, the aim is to minimise ‖Σf,cl,nc (2.13)‖H2

by appropriate selection of the controller mappings J , K, M and N . In or-
der to solve these problems, it is required that the closed-loop interconnection
of Σf (2.11) with Σc,nc

(2.12) is well-posed, internally stable and that the norm
‖Σf,cl,nc

(2.13)‖H2/H∞
is well-defined. These requirements lead to the concept of

admissibility, which is defined as follows.

Definition 2.17 The controller Σc,nc (2.12) is called

• H∞-admissible for Σf (2.11) if for Σf,cl,nc
(2.13) we have that λ(Acl) ⊂ C−

and that (Inu −NDuy) is non-singular.
• H2-admissible for Σf (2.11) if for Σf,cl,nc (2.13) we have that λ(Acl) ⊂ C−,
Dcl = 0 and that (Inu

−NDuy) is non-singular.

For the H2 optimal control problem, let us consider the following assumption.

Assumption 2.1 It is assumed that

1a) (A,Bu) is stabilisable.
1b) (Cy, A) is detectable.
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2a)

(
A− jωInx Bu

Cz Duz

)
is full column rank for all ω ∈ R.

2b)

(
A− jωInx Bw

Cy Dwy

)
is full row rank for all ω ∈ R.

3a) Duz is full column rank.
3b) Dwy is full row rank.

Item 1 in this assumption is a necessary requirement for the existence of a stabilising
controller, item 2 is sufficient to guarantee that an optimal controller exists which
generates bounded signals, while item 3 is a technical condition that guarantees the
existence of stabilising solutions to so-called algebraic Riccati equations (AREs).
The assumption should therefore not be viewed as a restriction.

For example, the assumption that Duz is full column rank implies that all input
signals u(t) are directly visible on the control output z(t). This implies that a
bounded signal u(t) is required in order to obtain a bounded norm for Σf,cl,nc

(2.13);
as a result, an optimal controller will generate bounded input signals.

In addition, we will consider a second assumption for notational convenience. The
solution to the H2 optimal control problem will first be derived under this assump-
tion and a generalisation that does not require this assumption will be presented
afterwards.

Assumption 2.2 It is assumed that

1) D>uz
(
Cz Duz

)
=
(
0 Inu

)
.

2) Dwy

(
B>w D>wy

)
=
(
0 Iny

)
.

The following lemma shows that, without loss of generality, it can be assumed that
the matrices Duy and Dwz are equal to zero.

Lemma 2.18 Consider a system Σf (2.11) that satisfies assumption 2.1.

Then there exists an H2-admissible controller Σc,nc
(2.12) for Σf (2.11) if and

only if there exists a mapping N : Y → U such that Dcl = Dwz + Duz(Inu
−

NDuy)−1NDwy = 0.

If this mapping exists, the design of an H2-admissible controller for Σf (2.11) can
be transformed into the design of a strictly proper H2-admissible controller—i.e.
with N = 0—for a system of the form

Σ =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) =Cyx(t) +Dwyw(t)

z(t) =Czx(t) +Duzu(t),

(2.14)

which satisfies assumption 2.1 as well.

Proof: The proof can be found in appendix A.1. �

Now let us discuss the approach that is typically considered in solving the H2 opti-
mal control problem for Σ (2.14). With this approach, a strictly proper Luenberger



46 Chapter 2. Mathematical Preliminaries

observer-based controller is utilised; this controller is of the form

Σc,sp =

{
˙̃x(t) =

(
A+BuF + LCy

)
x̃(t)−Ly(t)

u(t) = Fx̃(t).
(2.15)

The design of such a controller consists of finding appropriate mappings F : X → U
and L : Y → X . Please note that the controller state x̃(t)—which is called the
observed state—is an estimate of the system state x(t).

Interconnecting Σ (2.14) with Σc,sp (2.15) yields—when a state observation error
e(t) = x(t)− x̃(t) is defined—the closed-loop system

Σcl,sp =



(
ẋ(t)

ė(t)

)
=

(
A+BuF −BuF

0 A+ LCy

)(
x(t)

e(t)

)
+

(
Bw

Bw + LDwy

)
w(t)

z(t) =
(
Cz +DuzF −DuzF

)(x(t)

e(t)

)
+
(

0
)
w(t).

(2.16)

By utilising a controller of the form Σc,sp (2.15), the optimal control problem in
Problem 1.1 is solved with a controller of order nc = nx, by appropriately selecting
the mappings F and L. The H2 optimal control problem is therefore typically
formulated in the following manner.

Problem 2.1 Construct an H2-admissible controller Σ?c,sp of the form (2.15) for
Σ (2.14), which is parametrised in the mappings F ? and L? that are a solution to

(F ?, L?) = arg min
F,L
‖Σcl,sp (2.16)‖H2

s.t. Σc,sp (2.15) is H2-admissible for Σ (2.14).

Under assumption 2.1, it is a well-known fact that the solution to this problem
is obtained by separately solving a state feedback problem—which constructs the
mapping F ?—and an estimation problem, which constructs the mapping L?. This
fact is called the separation principle, as explained by Trentelman et al. [2001,
Sec. 11.5].

To solve Problem 2.1, let us first discuss the H2 optimal state feedback problem
and, subsequently, the H2 optimal estimation problem by utilising the method that
is presented by Trentelman et al. [2001, Ch. 10-11]. The solution to these problems
is then combined in order to present a solution to the H2 optimal (measurement
feedback) control problem. Please note that each of these problems is first solved
under assumption 2.2 and a generalisation is presented afterwards.

2.4.1 State Feedback Design

The aim for H2 optimal control is to construct an input signal u(t) that—if this
norm is interpreted according to Lemma 2.8—minimises the norm ‖z(t)‖L2

of
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Σ (2.14), when an impulse is applied to each disturbance w(t). An impulse on
w(t) at time t = 0 essentially generates some initial condition x(0) = x0; this prob-
lem is therefore equivalent to minimising ‖z(t)‖L2

for a given set of specific initial
conditions.

For this reason, let us quantify the L2 (squared) performance for each initial con-
dition x(0) = x0 and input signal u(t) by

γL2
(x0, u(t)) =

∫ ∞
t=0

‖Czx(t) +Duzu(t)‖22 dt

s.t. ẋ(t) = Ax(t) +Buu(t)
x(0) = x0.

With optimal control, the aim is therefore to minimise this performance measure
by finding a suitable stabilising input signals u(t) ∈ U(x0) (stabilising input signals
are formally defined in section 2.2.2) in order to obtain the optimal L2 optimal
(squared) performance

γ?L2
(x0) = min

u∈U(x0)
γL2(x0, u(t)).

As explained by Trentelman et al. [2001, Sec. 10.2], it is expected that this optimal
performance is a quadratic function of x0; i.e. γ?L2

(x0) = x>0 Psx0 for some matrix
Ps � 0.

By assuming items 1a, 2a and 3a in assumption 2.1 and item 1 in assumption 2.2,
by exploiting the fact that limt→∞ x(t) = 0 for a stabilising input signal u(t) and
by utilising the fundamental theorem of calculus, we can obtain the expression

γL2
(x0, u(t)) = x>0 Psx0 +

∫ ∞
t=0

x(t)>C>z Czx(t) + u(t)>u(t) +
d

dt
(x(t)>Psx(t))dt.

Then, by observing that

d

dt
(x(t)>Psx(t)) = (Ax(t) +Buu(t))>Psx(t) + x(t)>Ps(Ax(t) +Buu(t)),

it can be shown that

γL2(x0, u(t)) = x>0 Psx0 +

∫ ∞
t=0

∥∥u(t) +B>u Psx(t)
∥∥2

2
dt+

∫ ∞
t=0

x(t)>Sx(t)dt, (2.17)

with S = A>Ps+PsA+C>z Cz−PsBuB>u Ps. This equation is called the completion
of squares formula.

If Ps is chosen such that S = 0, the following ARE is obtained:

A>Ps + PsA+ C>z Cz − PsBuB>u Ps = 0. (2.18)

This ARE can then be used to obtain the following well-known result.
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Lemma 2.19 Consider a system Σ (2.14) that satisfies items 1a, 2a and 3a in
assumption 2.1 and item 1 in assumption 2.2, with w(t) = 0 and an initial condition
x0 ∈ X . Furthermore, let Ps be a solution to the ARE in (2.18).

Then, the completion of squares formula in (2.17) reduces to

γL2
(x0, u(t)) = x>0 Psx0 +

∫ ∞
t=0

∥∥u(t) +B>u Psx(t)
∥∥2

2
dt

Proof: The proof is given by Trentelman et al. [2001, Chp. 10]. �

From this lemma it is directly clear that a minimum is obtained for γL2
(x0, u(t)) by

setting u(t) = −B>u Psx(t), because it sets the only term that depends on the input
signal u(t) to zero. This solution does, however, not guarantee that u(t) ∈ U(x0);
furthermore, the input signal depends on a mapping Ps that is not uniquely defined.

Trentelman et al. [2001, Lem. 10.14] did show that both of these problems are
solved by considering the unique stabilising solution P+

s to the ARE in (2.18),
which leads to the following result.

Lemma 2.20 Consider a system Σ (2.14) that satisfies items 1a, 2a and 3a in
assumption 2.1 and item 1 in assumption 2.2, with w(t) = 0 and an initial condition
x0 ∈ X .

Furthermore, let P+
s � 0 be the unique stabilising solution to the ARE in (2.18).

This positive semidefinite solution satisfies P+
s � Ps, for any real and symmetric

solution Ps to the ARE in (2.18).

Then the L2 optimal (squared) performance for x0 is described by

γ?L2
(x0) = x>0 P

+
s x0,

In addition, the optimal input can be generated with the state feedback
u(t) = −B>u P+

s x(t).

Proof: The proof is given by Trentelman et al. [2001, Lem. 10.14]. �

From this lemma, it is important to observe that the optimal input signal u(t)
for a given initial condition x(0) = x0 is generated by a static state feedback.
Furthermore, there exists a unique stabilising state feedback u(t) = F ?x(t) =
−B>u P+

s x(t) that is optimal for all initial conditions, in the sense that u?(t) =
F ? exp ((A+BuF

?)t)x0 ∈ U(x0) and γ?L2
(x0) = γL2

(x0, u
?(t)). For any initial

condition, an optimal input signal u(t) is therefore generated by the static state
feedback that is based on the unique stabilising solution to an ARE.

Let us now formulate this problem in terms of the H2 norm. An H2 optimal state
feedback essentially minimises the L2 performance for the initial conditions that
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are generated by an impulse on each disturbance w(t). Apply a state feedback
u(t) = Fx(t) to Σ (2.14) in order to obtain the closed-loop system

Σcl,F =

ẋ(t) =
(
A + BuF

)
x(t) +Bww(t)

z(t) =
(
Cz +DuzF

)
x(t).

(2.19)

Because this state feedback should stabilise Σcl,F (2.19), let us consider the follow-
ing definition for admissibility.

Definition 2.21 The state feedback u(t) = Fx(t) is called H2-admissible for Σ (2.14)
if for Σcl,F (2.19) we have that λ(A+BuF ) ⊂ C−.

Then, for an H2-admissible state feedback, the H2 (squared) performance is quan-
tified as

γH2,F (Σ (2.14), F ) = ‖Σcl,F (2.19)‖2H2
.

Furthermore, an H2-admissible state feedback is H2 optimal for Σ (2.14) if
γH2,F (Σ (2.14), F ) = γ?H2,F

(Σ (2.14)), with

γ?H2,F
(Σ (2.14)) = min

F
γH2,F (Σ (2.14), F )

s.t. u(t) = Fx(t) is H2-admissible for Σ (2.14).

In terms of H2 performance, we obtain the following result.

Theorem 2.22 Consider a state feedback u(t) = Fx(t) applied to the system
Σ (2.14) that satisfies items 1a, 2a and 3a in assumption 2.1 and item 1 in as-
sumption 2.2, which results in the closed-loop system Σcl,F (2.19).

Furthermore, let P+
s � 0 be the unique stabilising solution to the ARE in (2.18).

This positive semidefinite solution satisfies P+
s � Ps, for any real and symmetric

solution Ps to the ARE in (2.18).

Then the H2 optimal (squared) performance is described by

γ?H2,F (Σ (2.14)) = tr
(
B>wP

+
s Bw

)
.

In addition, an H2 optimal state feedback is given by u(t) = −B>u P+
s x(t).

Proof: The result follows directly from Lemma 2.20, when it is observed that
the initial conditions x0 are—for the H2 norm—generated by impulses on each
disturbance w(t). This implies that

γ?H2,F (Σ (2.14)) =

nw∑
i=1

B>w,iP
+
s Bw,i = tr

(
B>wP

+
s Bw

)
.

�

It is, however, also desired to quantify the performance of any H2-admissible feed-
back for Σ (2.14). For this purpose, let us consider the state and input trajectories
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of Σcl,F (2.19) as a result of impulses on each disturbance w(t). These trajectories
are described for t ≥ 0 by

X(t) = exp
((
A+BuF

)
t
)
Bw, U(t) = F exp

((
A+BuF

)
t
)
Bw.

In addition, it can be noted that

d

dt
X(t) = AX(T ) +BuU(t), X(0) = Bw.

Then, by assuming items 1a, 2a and 3a in assumption 2.1 and item 1 in assump-
tion 2.2, by exploiting the fact that an internally stabilising feedback implies that
lim
t→∞

X(t) = 0 and that lim
t→∞

U(t) = 0; and by utilising the fundamental theorem of

calculus, we obtain the expression

−B>wP+
s Bw =

∫∞
t=0

d
dt

(
X(t)>P+

s X(t)
)
dt

=
∫∞
t=0

(B>u P
+
s X(t) + U(t))>(B>u P

+
s X(t) + U(t))dt

−
∫∞
t=0

(CzX(t) +DuzU(t))>((CzX(t) +DuzU(t))dt.

By defining the transformed system

ΣP,s =


ẋ(t) = Ax(t) +Buu(t) + Bww(t)

y(t) = Cyx(t) +Dwyw(t)

z(t) =B>u P
+
s x(t) + u(t),

(2.20)

it can be shown that this expression is equivalent to

−tr
(
B>wP

+
s Bw

)
= γH2,F (ΣP,s (2.20), F )− γH2,F (Σ (2.14), F ),

which leads to the following main result.

Theorem 2.23 Consider a state feedback u(t) = Fx(t) applied to the system
Σ (2.14) that satisfies items 1a, 2a and 3a in assumption 2.1 and item 1 in as-
sumption 2.2, which results in the closed-loop system Σcl,F (2.19); and consider the
transformed system ΣP,s (2.20).

Furthermore, Let P+
s � 0 be the unique stabilising solution to the ARE in (2.18).

This positive semidefinite solution satisfies P+
s � Ps, for any real and symmetric

solution Ps to the ARE in (2.18). Then

• The state feedback u(t) = Fx(t) is H2-admissible for Σ (2.14) if and only if
it is H2-admissible for ΣP,s (2.20).
• For any H2-admissible state feedback we have that
γH2,F (Σ (2.14), F ) = tr

(
B>wP

+
s Bw

)
+ γH2,F (ΣP,s (2.20), F ).

• Any H2 optimal (and admissible) state feedback u(t) = F ?x(t) achieves
γH2,F (Σ (2.14), F ?) = γ?H2,F

(Σ (2.14)) = tr
(
B>wP

+
s Bw

)
.

Proof: The proof is given by Trentelman et al. [2001, Sec. 11.2]. �

To finalise the topic of H2 optimal state feedback design, let us generalise these
results by removing the assumption 2.2.
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Corollary 2.24 Consider a state feedback u(t) = Fx(t) applied to the system
Σ (2.14) that satisfies items 1a, 2a and 3a in assumption 2.1, which results in
the closed-loop system Σcl,F (2.19).

Furthermore, let P+ � 0 be the unique stabilising solution to the following ARE:

A>P +PA+C>z Cz − (PBu +C>z Duz)(D
>
uzDuz)

−1(PBu +C>z Duz)
> = 0. (2.21)

This positive semidefinite solution satisfies P+ � P , for any real and symmetric
solution P to the ARE in (2.21).

Then the H2 optimal (squared) performance is described by

γ?H2,F (Σ (2.14)) = tr
(
B>wP

+Bw
)
.

In addition, an H2 optimal state feedback is given by
u(t) = −(D>uzDuz)

−1(B>u P
+ +D>uzCz)x(t).

Proof: The proof can be found in appendix A.1. �

Furthermore, consider the transformed system

ΣP =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) = Cyx(t) +Dwyw(t)

z(t) = (D>uzDuz)
− 1

2 (B>u P
+ +D>uzCz)x(t) + (D>uzDuz)

1
2u(t).

in order to obtain the following result.

Corollary 2.25 Consider a state feedback u(t) = Fx(t) applied to the system
Σ (2.14) that satisfies items 1a, 2a and 3a in assumption 2.1, which results in the
closed-loop system Σcl,F (2.19); and consider the transformed system ΣP (2.4.1).

Furthermore, let P+ � 0 be the unique stabilising solution to the ARE in (2.21).
This positive semidefinite solution satisfies P+ � P , for any real and symmetric
solution P to the ARE in (2.21). Then

• The state feedback u(t) = Fx(t) is H2-admissible for Σ (2.14) if and only if
it is H2-admissible for ΣP (2.4.1).

• For any H2-admissible state feedback we have that
γH2,F (Σ (2.14), F ) = tr

(
B>wP

+Bw
)

+ γH2,F (ΣP (2.4.1), F ).
• Any H2 optimal (and admissible) state feedback u(t) = F ?x(t) achieves
γH2,F (Σ (2.14), F ?) = γ?H2,F

(Σ (2.14)) = tr
(
B>wP

+Bw
)
.

Proof: This is Theorem 2.23 combined with Corollary 2.24. �

2.4.2 Estimator Design

Now, let us consider the design of an estimator

Σe,ne
=

{
ẋe(t) = Jxe(t) +Ky(t) +Kuu(t)

z̃(t) =Mxe(t) +Ny(t) +Nuu(t).
(2.22)



52 Chapter 2. Mathematical Preliminaries

of order ne that produces an estimated output z̃(t) for the “to-be-estimated output”
z(t) of the system Σ (2.14). This estimator creates the signal z̃(t) by utilising the
known input u(t) and the measured output y(t).

By defining an output estimation error εz(t) = z(t) − z̃(t) and by applying this
estimator Σe,ne

(2.22) to the system Σf (2.11), we obtain the so-called error system

Σf,ε,ne =

{
ẋf,ε(t) = Af,εxf,ε(t) + Bf,εu u(t) + Bf,εw w(t)

εz(t) = Cf,εz xf,ε(t) + Df,ε
uz u(t) + Df,ε

wzw(t),
(2.23)

with

xf,ε(t) =

(
x(t)
xe(t)

)
, Af,ε =

(
A 0

KCy J

)
,

Bf,εu =

(
Bu

KDuy +Ku

)
, Bf,εw =

(
Bw

KDwy

)
,

Cf,εz =
(
Cz −NCy −M

)
, Df,ε

uz =
(
Duz −NDuy −Nu

)
,

Df,ε
wz =

(
Dwz −NDwy

)
and with the extended state-space X f,ε. The interconnection between Σe,ne

(2.22)
and Σf (2.11) is depicted in figure 2.1.

The H2 optimal estimation problem, essentially consists of appropriately selecting
the mappings J , K, Ku, M , N and Nu of Σe,ne

(2.22) with the aim of minimising—
in the H2 norm—the effect of the external signals u(t) and w(t) on the estimation
error εz(t). In a similar fashion to controller design, let us define when such an
estimator is H2-admissible.

Definition 2.26 Let N ⊆ X f,ε denote the unobservable subspace of Σf,ε,ne
(2.23)

for a given estimator Σe,ne
(2.22).

Then the estimator Σe,ne
(2.22) is called H2-admissible for Σf (2.11) if for

Σf,ε,ne (2.23) we have that Df,ε
uz = 0, Df,ε

wz = 0 and λ(Af,ε|(X f,ε mod N )) ⊂ C−.

Please note that for estimation problems it is not required that the system Σf (2.11)
is internally stable, which implies that the error system Σf,ε,ne (2.23) might not
be internally stable. Instead, stability is added to guarantee that lim

t→∞
εz(t) = 0 for

w(t) = 0 and u(t) = 0 and for any initial condition; therefore it is only required
that the observable dynamics of Σf,ε,ne

(2.23) are stable.

Furthermore, it is important to note that λ(Af,ε|(X f,ε mod N )) is well-defined,
because the unobservable subspace N satisfies Af,εN ⊆ N .

With this definition, it is possible to formally define the H2 optimal estimation
problem in the following manner.

Problem 2.2 Construct an H2-admissible estimator Σ?e,ne
of the form (2.22) for

Σ (2.14), which is a solution to

Σ?e,ne
= arg min

Σe,ne (2.22)
‖Σf,ε,ne

(2.23)‖H2

s.t. Σe,ne
(2.22) is H2-admissible for Σ (2.14).
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Σf
u(t)

y(t)
w(t) z(t)

Σe,ne

z(t)

εz(t)

Σf,ε,ne

~

+

¯

Figure 2.1: The interconnection between Σf (2.11) and Σe,ne
(2.22).

The following lemma shows for estimator design that it can also be assumed, with-
out loss of generality, that the matrices Duy and Dwz are equal to zero.

Lemma 2.27 Consider a system Σf (2.11) that satisfies items 1b, 2b and 3b in
assumption 2.1.

Then there exists an H2-admissible estimator Σe,ne (2.22) for Σf (2.11) if and only
if there exists a mapping N : Y → U such that Df,ε

wz = Dwz −NDwy = 0.

If this mapping exists, the design of an H2-admissible estimator for Σf (2.11) can
be transformed into the design of an H2-admissible estimator with N = 0, for a
system of the form Σ (2.14) that satsifies items 1b, 2b and 3b in assumption 2.1 as
well.

Proof: The proof can be found in appendix A.1. �

We can therefore solve the H2 optimal estimation problem for a system of the form
Σ (2.14) and by utilising an estimator Σe,ne (2.22) with N = 0. In addition, it
will be shown in Proposition 2.32 that any H2 optimal (and admissible) estimator
Σ?e,ne

can make the output estimation error εz(t) independent of the signal u(t);
the signal u(t) will therefore be omitted for notational convenience.

Now, let us consider an estimator Σe,ne
(2.22) with N = 0 that is applied to the

system Σ (2.14) in order to obtain an error system—without input u(t)—of the
form

Σε,ne,sp =



(
ẋ(t)

ẋe(t)

)
=

(
A 0

KCy J

)(
x(t)

xe(t)

)
+

(
Bw

KDwy

)
w(t)

εz(t) =
(
Cz −M

)( x(t)

xe(t)

)
+
(

0
)
w(t).

(2.24)

It has been shown in section 2.2.4 that the H2 norm of any system is equal to
the H2 norm of the corresponding dual system. In order to solve the H2 optimal
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estimation problem, we can therefore also consider the dual error system

Σ>ε,ne,sp =



(
ẋ′(t)

ẋ′e(t)

)
=

(
A> C>y K

>

0 J>

)(
x′(t)

x′e(t)

)
+

(
C>z
−M>

)
ε′z(t)

w′(t) =
(
B>w D>wyK

>
)(x′(t)

x′e(t)

)
+
(

0
)
ε′z(t).

(2.25)

This dual error system—for which the input u(t) is not taken into consideration—
consists the interconnection of the dual system

Σ> =


ẋ′(t) = A>x′(t) + C>y y

′(t) + C>z z
′(t)

u′(t) =B>u x
′(t) +D>uzz

′(t)

w′(t) =B>wx
′(t) +D>wyy

′(t),

(2.26)

with the dual estimator

Σ>e,ne
=


ẋ′e(t) = J>x′e(t) +M>z̃′(t)

y′(t) =K>x′e(t) + N>z̃′(t)

u′(t) =K>u x
′
e(t) + N>u z̃

′(t).

(2.27)

The dual interconnection that describes Σ>ε,ne,sp (2.25) is depicted in figure 2.2.

For an H2-admissible estimator and for u(t) = 0, the H2 (squared) performance is
quantified as

γH2,e(Σ (2.14),Σe,ne
(2.22)) = ‖Σε,ne,sp (2.24)‖2H2

=
∥∥Σ>ε,ne,sp (2.25)

∥∥2

H2
.

Furthermore, an H2-admissible estimator is H2 optimal for Σ (2.14) and u(t) = 0
if γH2,e(Σ (2.14),Σe,ne (2.22)) = γ?H2,e

(Σ (2.14)), with

γ?H2,e
(Σ (2.14)) = min

Σe,ne (2.22)
γH2,e(Σ (2.14),Σe,ne

(2.22))

s.t. Σe,ne
(2.22) is H2-admissible for Σ (2.14).

A similar approach to the state feedback design problem is now considered by
utilising the dual error system Σ>ε,ne,sp (2.25) and the dual ARE, which is given by

AQs +QsA
> +BwB

>
w −QsC>y CyQs = 0. (2.28)

In addition, it is again expected that the optimal performance is of the form
γ?H2,e

(Σ (2.14)) = tr
(
CzQ

+
s C
>
z

)
, where Q+

s is the unique stabilising solution to the

ARE in (2.28). This positive semidefinite solution satisfies Q+
s � Qs, for any real

and symmetric solution Qs to the ARE in (2.28).

In order to quantify the performance of any H2-admissible estimator for Σ (2.14),
let us consider the dual state and measured output trajectories of Σ>ε,ne,sp (2.25) as
a result of impulses on each dual disturbance ε′z(t). These trajectories are described
by (

X ′(t)
X ′e(t)

)
= exp

((
A> C>y K

>

0 J>

)
t

)(
C>z
−M>

)
, Y ′(t) = K>X ′e(t).



2.4 H2 Optimal Control 55
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Figure 2.2: The interconnection between the dual system Σ> (2.26) and the dual
estimator Σ>e,ne

(2.27).

Furthermore, it can be noted that

d

dt
X ′(t) = A>X ′(T ) + C>y Y

′(t), X ′(0) = C>z .

By assuming items 1b, 2b and 3b in assumption 2.1 and item 2 in assumption 2.2,
by utilising the fundamental theorems of calculus; and by exploiting the fact that
all observable states of Σ>ε,ne,sp (2.25) should converge to the origin and therefore

that lim
t→∞

X ′(t)>Q+
s X
′(t) = 0, we obtain the expression

−CzQ+
s C
>
z =

∫∞
t=0

d
dt

(
X ′(t)>Q+

s X
′(t)
)
dt

=
∫∞
t=0

(CyQ
+
s X
′(t) + Y ′(t))>(CyQ

+
s X
′(t) + Y ′(t))dt

−
∫∞
t=0

(B>wX
′(t) +D>wyY

′(t))>(B>wX
′(t) +D>wyY

′(t))dt.

By defining the transformed system

ΣQ,s =


ẋ(t) = Ax(t) + Buu(t) +Q+

s C
>
y w(t)

y(t) =Cyx(t) + w(t)

z(t) =Czx(t) +Duzu(t).

(2.29)

it can be shown that this expression is equivalent to

−
(
CzQ

+
s C
>
z

)
= γH2,e(ΣQ,s (2.29),Σe,ne

(2.22))− γH2,e(Σ (2.14),Σe,ne
(2.22)),

which leads to the following main result.

Theorem 2.28 Consider an estimator Σe,ne
(2.22) with N = 0 applied to the

system Σ (2.14) that satisfies items 1b, 2b and 3b in assumption 2.1 and item 2 in
assumption 2.2, which results in the error system Σε,ne,sp (2.24); and consider the
transformed system ΣQ,s (2.29).

Furthermore, let Q+
s � 0 be the unique stabilising solution to the ARE in (2.28).

This positive semidefinite solution satisfies Q+
s � Qs, for any real and symmetric

solution Qs to the ARE in (2.28). Then

• The estimator Σe,ne
(2.22) is H2-admissible for Σ (2.14) if and only if it is

H2-admissible for ΣQ,s (2.29).
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• For any H2-admissible estimator we have that
γH2,e(Σ (2.14),Σe,ne

(2.22)) = tr
(
CzQ

+
s C
>
z

)
+γH2,e(ΣQ,s (2.29),Σe,ne

(2.22)).
• Any H2 optimal (and admissible) estimator Σ?e,ne

achieves

γH2,e(Σ (2.14),Σ?e,ne
) = γ?H2,e

(Σ (2.14)) = tr
(
CzQ

+
s C
>
z

)
.

Proof: This theorem is completely dual to Theorem 2.23 and mathematically
explained above after imposing u(t) = 0 and N = 0. Lemma 2.27 and Proposi-
tion 2.32 state that these conditions do not affect optimality. �

The typical solution to the H2 optimal estimation problem utilises a Luenberger
state observer. It will now be shown that such an observer can, indeed, be con-
sidered. In addition, it will be derived how optimality can be achieved with this
observer.

Theorem 2.29 Consider an estimator Σe,ne
(2.22) with N = 0 applied to the

system Σ (2.14) that satisfies items 1b, 2b and 3b in assumption 2.1 and item 2 in
assumption 2.2, which results in the error system Σε,ne,sp (2.24).

Furthermore, let Q+
s � 0 be the unique stabilising solution to the ARE in (2.28).

This positive semidefinite solution satisfies Q+
s � Qs, for any real and symmetric

solution Qs to the ARE in (2.28).

Then the H2 optimal (squared) performance is described by

γ?H2,e(Σ (2.14)) = tr
(
CzQ

+
s C
>
z

)
.

In addition, a Luenberger state observer—with estimated output—of the form

Σo =

{
˙̃x(t) =

(
A+ LCy

)
x̃(t)−Ly(t) + Buu(t)

z̃(t) = Czx̃(t) +Duzu(t),
(2.30)

is H2 optimal for Σ (2.14) if L? = −Q+
s C
>
y .

Proof: The H2 optimal performance follows directly from Theorem 2.28.

Furthermore, is easy to show that the observer Σo (2.30) will achieve
γH2,e(ΣQ,s (2.29),Σe,ne

(2.22)) = 0, it will satisfy the stability requirement and it
will render εz(t) independent of u(t); therefore it must be H2 optimal. �

To finalise the topic of H2 optimal estimator design, let us generalise these results
by removing the assumption 2.2. Therefore, consider the transformed system

ΣQ =


ẋ(t) = Ax(t) + Buu(t) + (Q+C>y +BwD

>
wy)(DwyD

>
wy)−

1
2w(t)

y(t) =Cyx(t) + (DwyD
>
wy)

1
2w(t)

z(t) =Czx(t) +Duzu(t)
(2.31)

in order to obtain the following result.
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Corollary 2.30 Consider an estimator Σe,ne (2.22) with N = 0 applied to the
system Σ (2.14) that satisfies items 1b, 2b and 3b in assumption 2.1, which results
in the error system Σε,ne,sp (2.24); and consider the transformed system ΣQ (2.31).

Furthermore, let Q+ � 0 be the unique stabilising solution to the ARE

AQ+QA>+BwB
>
w−(QC>y +B>wDwy)(DwyD

>
wy)−1(QC>y +B>wDwy)> = 0. (2.32)

This positive semidefinite solution satisfies Q+ � Q, for any real and symmetric
solution Q to the ARE in (2.32). Then

• The estimator Σe,ne (2.22) is H2-admissible for Σ (2.14) if and only if it is
H2-admissible for ΣQ (2.31).

• For any H2-admissible estimator we have that
γH2,e(Σ (2.14),Σe,ne

(2.22)) = tr
(
CzQ

+C>z
)
+γH2,e(ΣQ (2.31),Σe,ne

(2.22)).
• Any H2 optimal (and admissible) estimator Σ?e,ne

achieves

γH2,e(Σ (2.14),Σ?e,ne
) = γ?H2,e

(Σ (2.14)) = tr
(
CzQ

+C>z
)
.

Proof: The proof can be found in appendix A.1. �

And, again, let us show that a Luenberger state observer can be considered.

Corollary 2.31 Consider an estimator Σe,ne
(2.22) with N = 0 applied to the

system Σ (2.14) that satisfies items 1b, 2b and 3b in assumption 2.1, which results
in the error system Σε,ne,sp (2.24).

Furthermore, let Q+ � 0 be the unique stabilising solution to the ARE in (2.32).
This positive semidefinite solution satisfies Q+ � Q, for any real and symmetric
solution Q to the ARE in (2.32).

Then the H2 optimal (squared) performance is described by

γ?H2,e(Σ (2.14)) = tr
(
CzQ

+C>z
)
.

In addition, a Luenberger state observer Σo (2.30) is H2 optimal for Σ (2.14) if
L? = −(Q+C>y +B>wDwy)(DwyD

>
wy)−1.

Proof: This is Theorem 2.29 combined with Corollary 2.30. �

Finally, for a state observer Σo (2.30) it can be noted that the input signal u(t)
does not affect the output estimation error εz(t) for any mapping L. It will now
be shown that a similar property holds for any estimator that is H2 optimal for
Σ (2.14), which is designed under the assumption that u(t) = 0.

Theorem 2.32 Consider a system Σ (2.14) that satisfies items 1b, 2b and 3b in
assumption 2.1.

Then, any H2-admissible estimator Σe,ne (2.22) that achieves
γH2,e(Σ (2.14),Σe,ne

(2.22)) = γ?H2,e
(Σ (2.14)) with the estimator mappings J , K,

M and N can, in addition, make εz(t) independent of u(t) by appropriate construc-
tion of the mappings Ku and Nu.

Proof: The proof can be found in appendix A.1. �
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2.4.3 Measurement Feedback Controller Design

We have seen that general H2 optimal performance—i.e. when any input signal
u(t) can be chosen in order to minimise the effect of the disturbance w(t) on the
control output z(t)—can be obtained by a state feedback u(t) = Fx(t). Such a
feedback does, however, require complete information about the state of the system.
Furthermore, it has been shown that the H2 optimal estimation problem is solved
by a Luenberger state observer of the form Σo (2.30).

At the beginning of section 2.4 a controller of the form Σc,sp (2.15) is introduced
in order to solve the H2 optimal control problem in Problem 2.1. This controller,
essentially combines the observer Σo (2.30) with the state feedback u(t) = Fx(t).
In this section, first the H2 performance of any measurement feedback controller
Σc,nc

(2.12) is characterised. Subsequently, it will be shown that a controller of
the form Σc,sp (2.15) can indeed be considered and a derivation for the H2 optimal
controller mappings F ? and L? will be presented.

In Lemma 2.18 it is established that the design of a strictly proper H2-admissible
controller Σc,nc (2.12) for a system of the form Σ (2.14) can be considered with-
out loss of generality. We can therefore consider a closed-loop system, which is
described by

Σcl,nc,sp =



(
ẋ(t)

ẋc(t)

)
=

(
A BuM

KCy J

)(
x(t)

xc(t)

)
+

(
Bw

KDwy

)
w(t)

z(t) =
(
Cz DuzM

)( x(t)

xc(t)

)
+
(

0
)
w(t).

(2.33)

For an H2-admissible controller, the H2 (squared) performance is quantified as

γH2(Σ (2.14),Σc,nc (2.12)) = ‖Σcl,nc,sp (2.33)‖2H2
.

Furthermore, an H2-admissible controller is H2 optimal for Σ (2.14) if
γH2

(Σ (2.14),Σc,nc
(2.12)) = γ?H2

(Σ (2.14)), with

γ?H2
(Σ (2.14)) = min

Σc,nc (2.12)
γH2

(Σ (2.14),Σc,nc
(2.12))

s.t. Σc,nc
(2.12) is H2-admissible for Σ (2.14).

Then, in order to quantify the performance of any strictly proper H2-admissible
controller, let us consider the state and input trajectories of Σcl,nc,sp (2.33) as a
result of impulses on each disturbance w(t). These trajectories are described by(

X(t)
Xc(t)

)
= exp

((
A BuM

KCy J>

)
t

)(
Bw

KDwy

)
, U(t) = MXc(t).

Furthermore, it can be noted that

d

dt
X(t) = AX(T ) +BuU(t), X(0) = Bw.
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Under assumptions 2.1 and 2.2, we obtain equivalently to state feedback design,
the expression

γH2
(Σ (2.14),Σc,nc

(2.12)) = tr(B>wP
+
s Bw) + γH2

(ΣP,s (2.20),Σc,nc
(2.12)),

for which P+
s is the unique stabilising solution to the ARE in (2.18).

With H2 optimal state feedback design we were able to find a solution that achieves
γH2

(ΣP,s (2.20),Σc,nc
(2.12)), which should therefore be an optimal solution. This

can, however, not be achieved with a controller of the form Σc,sp (2.15) and it is
therefore not directly clear which controller will be able to minimise this expression.
In order to overcome this problem, let us consider the dual of the closed-loop
interconnection between ΣP,s (2.20) and Σc,nc

(2.12), which is defined as follows.

Σ>cl,nc,sp,P,s =



(
ẋ′(t)

ẋ′c(t)

)
=

(
A> C>y K

>

M>B>u J>

)(
x′(t)

x′c(t)

)
+

(
P+
s Bu

M>

)
z′(t)

w′(t) =
(
B>w D>wyK

>
)(x′(t)

x′c(t)

)
+
(

0
)
z′(t).

(2.34)

Then, let us consider the dual state and measured output trajectories of this system,
as a result of disturbances on each dual disturbance z′(t). These trajectories are
described by(

X ′(t)
X ′c(t)

)
= exp

((
A> C>y K

>

M>B>u J>

)
t

)(
P+
s Bu
M>

)
, Y ′(t) = K>X ′c(t).

In addition, it can be noted that

d

dt
X ′(t) = A>X ′(T ) + C>y Y

′(t), X ′(0) = P+
s Bu.

Then, under assumptions 2.1 and 2.2, we obtain equivalently to estimator design,
the expression

γH2
(ΣP,s (2.20),Σc,nc

(2.12)) = tr(B>u P
+
s Q

+
s P

+
s Bu)

+ γH2
(ΣPQ,s (2.35),Σc,nc

(2.12)),

for which P+
s and Q+

s are the unique stabilising solutions to the AREs in (2.18)
and (2.28), respectively. Furthermore, the following transformed system is ob-
tained:

ΣPQ,s =


ẋ(t) = Ax(t) +Buu(t) +Q+

s C
>
y w(t)

y(t) = Cyx(t) + w(t)

z(t) =B>u P
+
s x(t) + u(t).

(2.35)

Finally, by inserting the expression for γH2
(ΣP,s (2.20),Σc,nc

(2.12)) in the expres-
sion for γH2

(Σ (2.14),Σc,nc
(2.12)), the following result is obtained.
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Theorem 2.33 Consider a controller Σc,nc (2.12) with N = 0 applied to the sys-
tem Σ (2.14) that satisfies assumptions 2.1 and 2.2, which results in the closed-loop
system Σcl,nc,sp (2.33); and consider the transformed system ΣPQ,s (2.35).

Furthermore, let P+
s � 0 and Q+

s � 0 be the unique stabilising solutions to the
AREs in (2.18) and (2.28), respectively. These positive semidefinite solutions sat-
isfy P+

s � Ps and Q+
s � Qs, for any real and symmetric solution Ps and Qs to the

AREs in (2.18) and (2.28), respectively. Then

• The controller Σc,nc
(2.12) is H2-admissible for Σ (2.14) if and only if it is

H2-admissible for ΣPQ,s (2.35).
• For any H2-admissible controller we have that

γH2(Σ (2.14),Σc,nc (2.12)) =

tr(B>wP
+
s Bw) + tr(B>u P

+
s Q

+
s P

+
s Bu) + γH2

(ΣPQ,s (2.35),Σc,nc
(2.12))

= tr(CzQ
+
s C
>
z ) + tr(CyQ

+
s P

+
s Q

+
s C
>
y ) + γH2

(ΣPQ,s (2.35),Σc,nc
(2.12)).

• Any H2 optimal (and admissible) controller Σ?c,nc
achieves

γH2
(Σ (2.14),Σ?c,nc

) = γ?H2
(Σ (2.14)) = tr(B>wP

+
s Bw) + tr(B>u P

+
s Q

+
s P

+
s Bu)

= tr(CzQ
+
s C
>
z ) + tr(CyQ

+
s P

+
s Q

+
s C
>
y ).

• A controller of the form Σc,sp (2.15) is H2 optimal for Σ (2.14) if
F ? = −B>u P+

s and L? = −Q+
s C
>
y .

Proof: The proof is given by Trentelman et al. [2001, Sec. 11.3]. �

To finalise the topic of H2 optimal controller design, let us generalise these results
by removing the assumption 2.2. For this purpose, consider the transformed system

ΣPQ =


ẋ(t) = Ax(t) + Buu(t) + B̃ww(t)

y(t) =Cyx(t) + (DwyD
>
wy)

1
2w(t)

z(t) = C̃zx(t) + (D>uzDuz)
1
2u(t),

(2.36)

with C̃z = (D>uzDuz)
− 1

2 (B>u P
++D>uzCz) and B̃w = (Q+C>y +BwD

>
wy)(DwyD

>
wy)−

1
2 ,

in order to obtain the following result.

Corollary 2.34 Consider a controller Σc,nc (2.12) with N = 0 applied to the sys-
tem Σ (2.14) that satisfies assumption 2.1, which results in the closed-loop system
Σcl,nc,sp (2.33); and consider the transformed system ΣPQ,s (2.35).

Furthermore, let P+ � 0 and Q+ � 0 be the unique stabilising solutions to the
AREs in (2.21) and (2.32), respectively. These positive semidefinite solutions sat-
isfy P+ � P and Q+ � Q, for any real and symmetric solution P and Q to the
AREs in (2.21) and (2.32), respectively. Then

• The controller Σc,nc
(2.12) is H2-admissible for Σ (2.14) if and only if it is

H2-admissible for ΣPQ (2.36).
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• For any H2-admissible controller we have that

γH2(Σ (2.14),Σc,nc (2.12)) =

tr(B>wP
+Bw) + tr(B>u P

+Q+P+Bu) + γH2
(ΣPQ (2.36),Σc,nc

(2.12))

= tr(CzQ
+C>z ) + tr(CyQ

+P+Q+C>y ) + γH2
(ΣPQ (2.36),Σc,nc

(2.12)).

• Any H2 optimal (and admissible) controller Σ?c,nc
achieves

γH2
(Σ (2.14),Σ?c,nc

) = γ?H2
(Σ (2.14)) = tr(B>wP

+Bw) + tr(B>u P
+Q+P+Bu)

= tr(CzQ
+C>z ) + tr(CyQ

+P+Q+C>y ).

• A controller of the form Σc,sp (2.15) is H2 optimal for Σ (2.14) if
F ? = −(D>uzDuz)

−1(B>u P
+ +D>uzCz) and

L? = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1.

Proof: This is Theorem 2.33 with the extensions as discussed in Corollaries 2.24
and 2.30. �

2.5 Geometric Control Theory

In this section, several concepts from geometric control theory and their relation
to disturbance decoupling problems are discussed. A more extensive treatment of
these concepts is provided by Wonham [1985], Basile and Marro [1992] and Trentel-
man et al. [2001].

2.5.1 Disturbance Decoupling

Let us first formally define what is meant by the term disturbance decoupling.

Definition 2.35 The system Σ (2.14) is “disturbance decoupled” if the control
output z(t) is independent of the disturbance w(t).

Geometric control theory relies heavily on invariant subspaces. We will now see that
there exists a direct relation between disturbance decoupling and these subspaces.

Lemma 2.36 Consider the system Σ (2.14) with u(t) = 0.

Then Σ (2.14) is disturbance decoupled if and only if there exists a subspace
SA ⊆ X such that im(Bw) ⊆ SA ⊆ ker(Cz) and ASA ⊆ SA.

Proof: The proof is given by Trentelman et al. [2001, Thm. 4.6]. �

Lemma 2.36 can intuitively be interpreted in the following manner. The inclusion
ASA ⊆ SA guarantees that any state trajectory starting within the subspace SA
will remain in SA when u(t) = 0 and w(t) = 0, which is graphically depicted
in figure 2.3. Combining this with im(Bw) ⊆ SA, implies that the effect of the
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disturbance w(t) on all state trajectories is restricted to the subspace SA—i.e.
only the states within this subspace are affected by the disturbance. The output
z(t) is therefore completely independent of the disturbance w(t) when these state
trajectories are not visible on the output z(t), which is implied by SA ⊆ ker(Cz).

It has been shown by Trentelman et al. [2001, Cor. 3.3] that there exists a unique
subspace, which can be used to verify whether Σ (2.14) is disturbance decoupled
with u(t) = 0.

Lemma 2.37 Consider the system Σ (2.14) with u(t) = 0.

Then there exists a unique smallest subspace SA? ⊆ X that satisfies im(Bw) ⊆ SA?
and ASA? ⊆ SA?. Specifically:

SA? = im
(
Bw ABw · · · Anx−1Bw

)
.

This subspace is the “smallest” in the sense that SA? ⊆ SA, for any subspace
SA ⊆ X that satisfies im(Bw) ⊆ SA and ASA ⊆ SA.

Proof: The proof is given by Trentelman et al. [2001, Cor. 3.3]. �

Because this specific subspace is the smallest, we can equivalently say that Σ (2.14)
is disturbance decoupled with u(t) = 0 if and only if SA? ⊆ ker(Cz).

x1

x2x3

SA
x(0)

w(t )1

Figure 2.3: A graphical representation for the properties of the subspace SA as
defined in Lemma 2.36.

2.5.2 Output-Nulling Stabilisability Subspaces

In a situation where Σ (2.14) is not disturbance decoupled with u(t) = 0, we can
consider the problem of finding a state feedback u(t) = Fx(t) for the system to
achieve disturbance decoupling and internal Cg-stability in closed-loop.
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By combining the closed-loop system Σcl,F (2.19) with Lemma 2.36, we can con-
clude that disturbance decoupling can be achieved with a state feedback u(t) =
Fx(t) if and only if there exists a pair (SA, F ) such that im(Bw) ⊆ SA ⊆ ker(Cz +
DuzF ) and (A + BuF )SA ⊆ SA. Furthermore, internal Cg-stability adds the re-
quirement that λ(A+BuF ) ⊆ Cg.

By utilising Lemma 2.37, it is possible to construct a subspace SA when the map-
ping F is given. Similarly, it is possible to construct the mapping F when the
subspace SA is given. It is, however, not obvious how to appropriately construct
the subspace SA or the mapping F without knowing the other.

In order to overcome this problem, we will now introduce controlled invariant
and Cg-stabilisability subspaces. These subspaces and the underlying concepts
are discussed in more detail by Hautus [1979]; we will, however, only consider their
mathematical characterisation.

Lemma 2.38 Consider a system Σ (2.14), the subspaces VC ,VCg ⊆ X and a sta-
bility domain Cg. Then the following statements are equivalent:

(i) VC is a controlled invariant subspace.
(ii) AVC ⊆ VC + im(Bu).

(iii) there exists a mapping F : X → U such that (A+BuF )VC ⊆ VC .

Furthermore, the following statements are equivalent:

(i) VCg is a Cg-stabilisability subspace.

(ii) for any λi ∈ λ(A) that satisfies λi /∈ Cg we have (λiInx −A)VCg + im(Bu) =

VCg + im(Bu).

(iii) there exists a mapping F : X → U such that (A + BuF )VCg ⊆ VCg and

λ((A+BuF )|VCg ) ⊆ Cg.

Proof: The proof is given by Trentelman et al. [2001, Thm. 4.2 and 4.22]. �

By considering these subspaces, we essentially obtain a characterisation for all
possible (A + BuF )-invariant subspaces. In addition, item (ii) provides a mathe-
matical description that does not depend on the mapping F . Next, we will include
the requirement that these subspaces should lie in the subspace ker(Cz +DuzF ).

Lemma 2.39 Consider a system Σ (2.14), the subspaces V,Vg ⊆ X and a stability
domain Cg. Then the following statements are equivalent:

(i) V is an output-nulling controlled invariant subspace.
(ii) AV ⊆ V + im(Bu) and CzV ⊆ im(Duz).

(iii) there exists a mapping F : X → U such that (A + BuF )V ⊆ V and (Cz +
DuzF )V = 0.

Furthermore, the following statements are equivalent:

(i) Vg is an output-nulling Cg-stabilisability subspace.
(ii) for any λi ∈ λ(A) that satisfies λi /∈ Cg we have (λiInx

− A)Vg + im(Bu) =
Vg + im(Bu) and CzVg ⊆ im(Duz).

(iii) there exists a mapping F : X → U such that (A + BuF )Vg ⊆ Vg, (Cz +
DuzF )Vg = 0 and λ((A+BuF )|Vg) ⊆ Cg.
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Proof: The proof is given by Trentelman et al. [2001, Sec. 7.3 and 7.4]. �

By utilising this lemma, we obtain a characterisation for all possible (A + BuF )-
invariant subspaces that are contained in the subspace ker(Cz + DuzF ). In ad-
dition, item (ii) provides a mathematical description that does not depend on
the mapping F . The stability requirement does, however, only guarantee that
λ((A+BuF )|Vg) ⊆ Cg can be achieved.

Remark 2.1 This stability guarantee is, however, sufficient if the system Σ (2.14)
is Cg-stabilisable. Because then, for any output-nulling Cg-stabilisability subspace
Vg we have that there exists a mapping F : X → U such that (A + BuF )Vg ⊆ Vg,
(Cz + DuzF )Vg = 0 and λ(A + BuF ) ⊆ Cg. This is explained in more detail
by Basile and Marro [1992, Prop. 4.1.16].

As a final step, we must verify whether there exists a subspace V(g) that contains the
subspace im(Bw). For this purpose, it will now be shown that there exists a unique
largest output-nulling controlled invariant—and a Cg-stabilisability—subspace.

Theorem 2.40 For a system Σ (2.14), there exists a unique largest output-nulling
controlled invariant subspace, which is called the “weakly unobservable subspace”.
This subspace is denoted by V? and it satisfies V ⊆ V?, for any output-nulling
controlled invariant subspace V.

Furthermore, there exists a unique largest output-nulling Cg-stabilisability subspace,
which is called the “Cg-stabilisable weakly unobservable subspace”. This subspace
is denoted by V?g and it satisfies Vg ⊆ V?g , for any output-nulling Cg-stabilisability
subspace Vg.

Proof: The proof is given by Trentelman et al. [2001, Sec. 7.3]. �

In this theorem, it is essentially shown that—for a Cg-stabilisable system—there
exists a unique largest subspace that—for an appropriate mapping F—satisfies
V?(g) ⊆ ker(Cz + DuzF ), (A + BuF )V?(g) ⊆ V

?
(g) and λ(A + BuF ) ⊆ C(g). The

system Σ (2.14) can therefore be disturbance decoupled (and internally stabilised
when it is Cg-stabilisable) with some state feedback u(t) = Fx(t) if and only if
im(Bw) ⊆ V?(g).

Furthermore, there exist several algorithms that can be used to numerically con-
struct the subspace V?(g) in combination with an appropriate mapping F ; these

algorithms are created by Marro [2018] and by Chen [2018].

2.5.3 Input-Containing Detectability Subspaces

In a dual fashion, we can also consider disturbance decoupled output estimation.
For this purpose, let us apply the observer Σo (2.30) to the system Σ (2.14) in order
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to obtain an error system that—with e(t) = x(t)− x̃(t) and εz(t) = z(t)− z̃(t)—is
described by

Σε,o =

{
ė(t) =

(
A+ LCy

)
e(t) +

(
Bw + LDwy

)
w(t)

εz(t) = Cz e(t).
(2.37)

The question now is, whether there exists a mapping L such that the output esti-
mation error εz(t) becomes independent of the disturbance w(t) and such that the
error system is internally Cg-stable. By combining Σε,o (2.37) with Lemma 2.36,
we can conclude that this requires the existence of a pair (SA, L) such that im(Bw+
LDwy) ⊆ SA ⊆ ker(Cz) and (A+LCy)SA ⊆ SA. Furthermore, internal Cg-stability
adds the requirement that λ(A+ LCy) ⊆ Cg.

Similarly to the state feedback problem, let us first characterise all (A + LCy)-
invariant subspaces.

Lemma 2.41 Consider a system Σ (2.14), the subspaces SC ,SCg ⊆ X and a sta-
bility domain Cg. Then the following statements are equivalent:

(i) SC is a conditioned invariant subspace.
(ii) A(SC ∩ ker(Cy)) ⊆ SC .

(iii) there exists a mapping L : Y → X such that (A+ LCy)SC ⊆ SC .

Furthermore, the following statements are equivalent:

(i) SCg is a Cg-detectability subspace.

(ii) for any λi ∈ λ(A) that satisfies λi /∈ Cg we have (A − λiInx)−1(SCg ∩
ker(Cy)) = SCg ∩ ker(Cy).

(iii) there exists a mapping L : Y → X such that (A+LCy)SCg ⊆ SCg and λ((A+

LCy)|(X mod SCg )) ⊆ Cg.

Proof: The proof is given by Trentelman et al. [2001, Thm. 5.5 and 5.11]. �

Next, we will characterise the class of conditioned invariant and Cg-detectability
subspaces that contain the subspace im(Bw + LDwy).

Lemma 2.42 Consider a system Σ (2.14), the subspaces S,Sg ⊆ X and a stability
domain Cg. Then the following statements are equivalent:

(i) S is input-containing conditioned invariant.
(ii) A(S ∩ ker(Cy)) ⊆ S and ker(Dwy) ⊆ B−1

w S.
(iii) there exists a mapping L : Y → X such that (A + LCy)S ⊆ S and im(Bw +

LDwy) ⊆ S.

Furthermore, the following statements are equivalent:

(i) Sg is an input-containing Cg-detectability subspace.
(ii) for any λi ∈ λ(A) that satisfies λi /∈ Cg we have (A−λiInx

)−1(Sg∩ker(Cy)) =
Sg ∩ ker(Cy) and ker(Dwy) ⊆ B−1

w Sg.
(iii) there exists a mapping L : Y → X such that (A + LCy)Sg ⊆ Sg, im(Bw +

LDwy) ⊆ Sg and λ((A+ LCy)|(X mod Sg)) ⊆ Cg.
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Proof: The duality to Lemma 2.39 is explained by Aling and Schumacher [1984,
Sec. 2]. �

Remark 2.2 If the system Σ (2.14) is Cg-detectable, then for any input-containing
Cg-detectability subspace Sg we have that there exists a mapping L : Y → X such
that (A + LCy)Sg ⊆ Sg, im(Bw + LDwy) ⊆ Sg and λ(A + LCy) ⊆ Cg. This is
explained in more detail by Basile and Marro [1992, Prop. 4.1.19].

Finally, it will be shown that there exists a unique smallest input-containing con-
ditioned invariant—and a Cg-detectability—subspace.

Theorem 2.43 For a system Σ (2.14), there exists a unique smallest input-contain-
ing conditioned invariant subspace, which is called the “strongly reachable sub-
space”. This subspace is denoted by S? and it satisfies S? ⊆ S, for any input-
containing conditioned invariant subspace S.

Furthermore, there exists a unique smallest input-containing Cg-detectability sub-
space, which is called the “Cg-detectable strongly reachable subspace”. This subspace
is denoted by S?g and it satisfies S?g ⊆ Sg, for any input-containing Cg-detectability
subspace Sg.

Proof: The proof is given by Trentelman et al. [2001, Sec. 8.4]. �

In this theorem, it is essentially shown that—for a Cg-detectable system—there
exists a unique smallest subspace that—for an appropriate mapping L—satisfies
im(Bw + LDwy) ⊆ S?(g), (A+ LCy)S?(g) ⊆ S

?
(g) and λ(A+ LCy) ⊆ C(g). The error

system Σε,o (2.37) can therefore be disturbance decoupled (and internally stabilised
when it is Cg-stabilisable) with some mapping L if and only if S?(g) ⊆ ker(Cz).

Furthermore, the algorithms that construct the subspace V?(g), can also be used to
construct the subspace S?(g) and to construct an appropriate mapping L.

2.5.4 (S,V)-Pairs

The final concept in this section combines Cg-stabilisability subspaces with Cg-
detectability subspaces.

Definition 2.44 Consider the system Σ (2.14) and a stability domain Cg.

Then a pair of subspaces (SCg ,VCg ) is called an (S,V)-pair if SCg ⊆ VCg , SCg is a

Cg-detectability subspace and VCg is a Cg-stabilisability subspace.

An (S,V)-pair introduces a “partial invariance” that can be achieved by the map-
ping N of the controller Σc,nc (2.12).

Proposition 2.45 Consider the system Σ (2.14), a stability domain Cg and let
(SCg ,VCg ) be an (S,V)-pair.

Then there exists a mapping N : Y → U such that (A+BuNCy)SCg ⊆ VCg .

Proof: The proof is given by Trentelman et al. [2001, Lem. 6.3]. �
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We have decommissioned natural selection and must
now look deep within ourselves and decide what we
wish to become.

Edward Osborne Wilson

3
Actuator and Sensor Selection for Control

Actuators and sensors are essential components in a control system
that have a direct impact on the performance that can be achieved

in closed-loop. The question of how many actuators or sensors to use and
where to place them is therefore important in many applications, which
closely relates to actuator and sensor selection problems such as Prob-
lem 1.2.

In this chapter we will investigate a number of selection techniques for the
purpose of maximising closed-loop H2 performance with a limited number
of actuators and sensors. First, the use of several optimisation algorithms
in combination with modularity properties is investigated, which has been
an active field of research in recent years. It will, however, be shown that
the performance guarantees for these methods do not apply to closed-loop
selection problems.

Secondly, sparsity promoting controller design methods are considered.
These methods attempt to maximise closed-loop performance while simul-
taneously introducing (block) sparsity in a controller, which can equiva-
lently be interpreted as an actuator or sensor selection problem.

The chapter is finalised by analysing and comparing the performance of
these methods on a practical example.

69
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3.1 Introduction

Controllers aim to improve performance by utilising actuators to affect a system,
on the basis of available sensor information. Consequently, these actuators and
sensors are essential components in a control system that have a direct impact on
the performance that can be achieved in closed-loop. Appropriately selecting the
type and number of actuators and sensors, in combination with their placement, is
therefore important in many control applications.

As mentioned in section 1.2.3, SISO controller architectures are often considered in
classical control. For this type of control architecture, each actuator is often paired
with a sensor and typical system designs therefore contain an equal number of
actuators and sensors. A common design philosophy is to place the actuators close
to where the disturbances enter the system, while each sensor is collocated with one
actuator. Furthermore, the sensors and actuators are often placed with the aim of
reducing the interaction between the SISO controllers—e.g. each sensors is placed
far away from the other actuators in the application as discussed in section 1.2.1.

Decoupling for control is often considered in practice to further reduce this inter-
action, as explained by Wang [2006]. It is important to note that this type of
approach originates from the desire to apply classical SISO control designs to a
MIMO system.

Optimal controllers, on the other hand, can directly be designed for MIMO sys-
tems, which introduces additional freedom in the system design. For example, any
number of actuators and sensors can be used, while it is not required to pair actu-
ators with sensors or to use decoupling. This additional freedom can be utilised to
improve closed-loop performance.

In general, it is not obvious where the actuators and sensors should be placed in
order to maximise closed-loop performance. The development of an automated
procedure that is capable of producing an—in some sense—optimal actuator and
sensor configuration has therefore received a considerable amount of attention.

Existing methods can be categorised into open-loop and closed-loop methods.
Open-loop methods typically aim to improve reachability and observability proper-
ties of the system; e.g. the trace of a Gramian is maximised. Closed-loop methods,
on the other hand, aim to directly improve certain closed-loop performance mea-
sure. For a complete overview of this field of research, we refer to the survey paper
by Van de Wal and de Jager [2001].

3.1.1 H2 Optimal Actuator and Sensor Selection

In this chapter we will investigate the problem of constructing a combined actuator
and sensor configuration that—for a given number of actuators and a given number
of sensors—maximises the best achievable closed-loop H2 performance for a system.
For this problem, the starting point is an actuator-free and sensor-free system that
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is assumed to be given throughout this chapter. This system is of the from

Σwz =

{
ẋ(t) = Ax(t) + B̃ww̃(t)

z̃(t) = C̃zx(t),
(3.1)

where vector signals x(t), w̃(t) and z̃(t) represent the state, unknown disturbance
and control output, respectively. These signals assume values in finite-dimensional
vector spaces X = Rnx , W̃ = Rnw̃ and Z̃ = Rnz̃ , respectively. The dynamical
relation between the signals is described by real-valued matrices A, B̃w and C̃z of
appropriate dimension.

The construction of a combined actuator and sensor configuration amounts to the
introduction of control inputs u(t) and measured outputs y(t) for Σwz (3.1). The
construction of such a configuration is often described as a selection problem, where
small subsets of actuators and sensors are selected from sets that contain all “al-
lowed” actuators and sensors. For this purpose, let us define the sets that describe
all allowed actuators and sensors:

U = {(Bu1, Duz̃1, Duzu1), · · · , (BuNu
, Duz̃Nu

, DuzuNu
)} , (3.2)

Y =
{

(Cy1, Dw̃y1, Dwyy1), · · · , (CyNy
, Dw̃yNy

, DwyyNy
)
}
, (3.3)

with Bui ∈ Rnx×nui , Duz̃i ∈ Rnz̃×nui and Duzui ∈ Rnui
×nui for 1 ≤ i ≤ Nu; and

with Cyj ∈ Rnyj
×nx , Dw̃yj ∈ Rnyj

×nw̃ and Dwyyj ∈ R
nyj
×nyj for 1 ≤ j ≤ Ny.

The idea is that each potential measured output yi(t) is described by a triple
(Cyi, Dw̃yi, Dwyyi). The state information that can be obtained with yi(t) is de-
scribed by matrix Cyi, while the effect of the disturbance w̃(t) on yi(t) is described
by Dw̃y. Furthermore, the introduction of a sensor is often accompanied by the
introduction of an additional disturbance that directly affects yi(t)—e.g. measure-
ment noise is introduced. The effect of this disturbance on the measured output
yi(t) is described by the matrix Dwyyi .

Each potential control input ui(t) is, in a similar fashion, described by a triple
(Bui, Duz̃i, Duzui). The matrix Bui describes how the control input ui(t) affects
the system states, while the effect of this control input on the control output z̃(t)
is described by Duz̃i. Furthermore, the introduction of an actuator is—for opti-
mal control—often accompanied by the introduction of additional control outputs.
The matrix Duzui describes the effect of the control input ui(t) on those outputs.
Please note that these additional control outputs are introduced in optimal control
problems, for the purpose of limiting the control input ui(t) in magnitude.

Remark 3.1 It is important to observe that an actuator could add multiple con-
trol inputs to u(t), while a sensor can add multiple measured outputs to y(t). For
example, an inertial measurement unit is a sensor that typically describes the ori-
entation of an object in three angles, which correspond to three measured outputs.
The triples (Bui, Duz̃i, Duzui) and (Cyi, Dw̃yi, Dwyyi) are therefore described by
matrices that can contain multiple column and rows, respectively.

Then for nu, ny ∈ N , let us define the subsets of actuators and sensors Unu
⊆ U

and Yny ⊆ Y, which are of cardinality nu ≤ Nu and ny ≤ Ny, respectively. In
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addition, these subsets are described by the Cartesian products Unu = UB,nu ×
UD̃,nu

× UDu,nu
and Yny

= YC,ny
× UD̃,ny

× UDy,ny
. This in the sense that, for

example, the ith element of Unu
is described by the ith elements of UB,nu

, UD̃,nu

and UDu,nu .

Finally, let the control inputs and measured outputs be described by the subsets
Unu

⊆ U and Yny
⊆ Y, in order to obtain a system of the form

Σ(Unu
,Yny

) =

ẋ(t) = Ax(t) + row(UB,nu
)u(t) +

(
B̃w 0

)( w̃(t)

wy(t)

)

y(t) = col(YC,ny
)x(t) +

(
col(YD̃,ny

) diag(YDy,ny
)
)( w̃(t)

wy(t)

)
(
z̃(t)

zu(t)

)
=

(
C̃z

0

)
x(t) +

(
row(UD̃,nu

)

diag(UDu,nu
)

)
u(t),

(3.4)

with the additional vector signals u(t), zu(t), y(t) and wy(t) that represent the con-
trol input, additional control output, measured output and additional disturbance,
respectively. These signals assume values in finite-dimensional vector spaces U =
Rnu , Wy = Rnwy , Y = Rny and Zu = Rnzu , respectively. The dynamical relation
between the signals is described by the real-valued matrices A, Bu = row(UB,nu

),

Bw =
(
B̃w 0

)
, Cy = col(YC,ny

), Dwy =
(

col(YD̃,ny
) diag(YDy,ny

)
)

, Cz =(
C̃z
0

)
and Duz =

(
row(UD̃,nu

)

diag(UDu,nu
)

)
of appropriate dimension. Finally, the func-

tional dependence on Unu and Yny is omitted when it is clear from the context
what subsets are used to construct Σ (3.4).

It is important to note that the absence of the direct mappings Duy and Dwz can,
as established in Lemma 2.18, be assumed without loss of generality for the H2

optimal control problem. For actuator and sensor selection problems, on the other
hand, the absence of these mappings is used to avoid technical issues regarding H2-
admissibility of controllers and well-posedness of the closed-loop interconnection.

Now let us consider to apply a controller of the form

Σc,nc
=

{
ẋc(t) = Jxc(t) + Ky(t)

u(t) =Mxc(t) +Ny(t))
(3.5)

and of order nc to Σ (3.4), which results in a closed-loop interconnection that is
described by

Σcl,nc
=



(
ẋ(t)

ẋc(t)

)
=

(
A+BuNCy BuM

KCy J

)(
x(t)

xc(t)

)
+

(
Bw +BuNDwy

KDwy

)
w(t)

z(t) =
(
Cz +DuzNCy DuzM

)( x(t)

xc(t)

)
+
(
DuzNDwy

)
w(t),

(3.6)
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with w(t) =

(
w̃(t)
wy(t)

)
and z(t) =

(
z̃(t)
zu(t)

)
. This closed-loop system has an extended

state xcl,nc =

(
x(t)
xc(t)

)
and extended matrices Acl,nc , Bcl,nc

w , Ccl,nc
z and Dcl,nc

wz ,

while the extended state-space is characterised by the vector space X cl,nc .

Then, let us define the H2 (squared) performance for Σ (3.4)—with a given actuator
and sensor configuration that is characterised by the subsets Unu , Yny—and a given
H2-admissible controller as

γH2
(Σc,nc

(3.5),Unu
,Yny

) = ‖Σcl,nc
(3.6)‖2H2

. (3.7)

Furthermore, the best achievable H2 (squared) performance for Σ (3.4) with this
actuator and sensor configuration is described by

γ?H2
(Unu

,Yny
) = min

nc∈N,Σc,nc (3.5)
‖Σcl,nc

(3.6)‖2H2

s.t. Σc,nc
(3.5) is H2-admissible for Σ (3.4).

(3.8)

Remark 3.2 These performance measures are, formally speaking, a function of
Σ(Unu ,Yny ) (3.4). The notation γH2(Σ (3.4),Σc,nc (3.5),Unu ,Yny ), γ?H2

(Σ (3.4),
Unu

,Yny
) will therefore be used when it is not directly clear from the context which

system is considered.

The closed-loop H2 optimal actuator and sensor selection problem amounts to
minimising γ?H2

by appropriate selection of the subsets Unu
and Uny

of a given
cardinality. This problem is formally defined as follows.

Problem 3.1 For Σ (3.4), let U and Y be sets that contain all allowed actuators
and sensors as defined in (3.2) and (3.3), respectively. Furthermore, consider the
numbers nu ∈ N and ny ∈ N, with nu ≤ Nu and nu ≤ Ny.

Then, construct optimal subsets U?nu
⊆ U and Y?ny

⊆ Y of cardinality nu and ny,
respectively, which are a solution to

(U?nu
,Y?ny

) = arg min
Unu⊆U
Yny⊆Y

min
nc∈N,Σc,nc (3.5)

‖Σcl,nc
(3.6)‖2H2

s.t. Σc,nc (3.5) is H2-admissible for Σ (3.4).

This is a combinatorial optimisation problem that can be solved by evaluating all
possible subsets Unu

⊆ U, Yny
⊆ Y of the appropriate cardinality. Such a brute

force approach will, however, become computationally infeasible when large sets
of allowed actuators and sensors are provided. In most practical situations, it is
therefore required to take a different approach.
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3.1.2 Exploiting Modularity

Early actuator and sensor selection methods, such as the work by Morari and
Stephanopoulos [1980], aimed at creating a completely reachable and observable
system. These methods, however, interpret reachability and observability of states
in a binary sense—i.e. a state is reachable or it is not reachable—while performance
is often described by a quantitative measure such as the H2 norm. In the 1990s
it was therefore proposed by several authors—e.g. Hać and Liu [1993], Gawronski
and Lim [1996] and Georges [1995]—to utilise Gramians as a quantitative measure
for the selection of actuators and sensors.

Recently, it has been shown by Summers et al. [2016], Summers [2016] that certain
Gramian-based actuator and sensor selection problems can be solved for large sets
of allowed actuators and sensors. For example, it is shown that the observability
Gramian of a system is modular in the subset Yny

. This implies that the trace
of this Gramian for several sensors is directly characterised by the traces of the
Gramians for each individual sensor. A minimisation or maximisation of this trace
can therefore be performed by separately analysing the effect of each allowed sensor.

When reachability and observability properties of a system are optimised, it is es-
sentially assumed that the resulting actuator and sensor configuration provides a
viable—although, not necessarily optimal—solution to Problem 3.1; as explained
by Taylor et al. [2017]. It has, however, never been established that such an ap-
proach could provide any guarantees on the obtained closed-loop performance mea-
sure in (3.8).

As a first step towards closed-loop optimal selection of sensors, it is investigated
by Chamon et al. [2017] and by Singh et al. [2017] whether similar results can be
obtained for the interconnection of a system with an optimal time-varying Kalman
filter in discrete time. The results have shown that (approximate) performance
guarantees can be obtained under certain conditions. It is, however, not established
that similar guarantees can be obtained for the H2 optimal estimation or control
as described in section 2.4.

3.1.3 Sparsity Promoting Methods

In recent years, distributed control problems for networked systems have received a
considerable amount of attention. These problems essentially amount to minimising
the norm of Σcl,nc (3.6) by appropriately constructing a controller Σc,nc (3.5), while
simultaneously introducing (block) sparsity in the controller. This type of control
problem has been addressed by several authors; e.g. by Schuler et al. [2011], Lin
et al. [2013] and Wang et al. [2014].

It is observed by Vaidya and Fardad [2013], Dhingra et al. [2014] and Argha et al.
[2016] that the introduction of specific types of block sparsity in a controller, is
equivalent to an actuator and sensor selection problem. For example, the ith mea-
sured output of a system is not used by the controller Σc,nc

(3.5), if the ith column
of K in (3.5) is identically equal to zero. Similarly, the jth control input of a system
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is not used by the controller Σc,nc (3.5), if the jth row of M in (3.5) is identically
equal to zero.

By utilising these sparsity promoting controller design methods, we therefore ad-
dress Problem 3.1 directly. It is important to note that existing solutions to the
distributed control problem—and therefore to the corresponding actuator and sen-
sor selection problems—do not guarantee that an optimal solution is obtained. The
potential of these methods for the purpose of closed-loop optimal sensor selection
is, however, demonstrated by Dhingra et al. [2014] and by Liu et al. [2014].

3.1.4 Chapter Outline

In this chapter, we will investigate the problem of constructing a combined actu-
ator and sensor configuration that maximises the best achievable closed-loop H2

performance with a limited number of actuators and sensors. First, we will inves-
tigate the use of modularity and greedy algorithms in section 3.2. It will, however,
be shown that the performance guarantees for these methods do not apply to the
closed-loop selection problem.

Sparsity promoting controller design methods are considered in section 3.3. These
methods attempt to maximise closed-loop performance while simultaneously intro-
ducing (block) sparsity in a controller, which can equivalently be interpreted as an
actuator or sensor selection problem. We will extend an existing solution to address
the problem of constructing an actuator configuration that maximises closed-loop
H2 performance for a fixed sensor configuration. In addition, the dual problem
of designing an optimal sensor configuration for a fixed actuator configuration is
addressed.

The chapter is finalised by analysing and comparing the performance of these meth-
ods on a practical example in section 3.4. The conclusions and future work are
discussed in chapter 7.

3.2 Modularity and Greedy Algorithms

3.2.1 Mathematical Background

In Problem 3.1, the aim is to minimise the set function γ?H2
in (3.8) over the

arguments Unu ⊆ U, Yny ⊆ Y of a given cardinality, which could be solved by
evaluating all possible subsets. Such a brute force approach will, as mentioned
above, become computationally infeasible if large sets of allowed actuators and
sensors are provided. For this type of optimisation problem, we should therefore
aim to exploit certain structural properties of the set function to solve the problem
more efficiently, as proposed by Summers et al. [2016].

To discuss these properties, let us consider a finite set V = {v1, v2, · · · , vm} of
cardinality m ∈ N, a set function f : 2V → R and a number n ∈ N with n ≤ m to
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define the following minimisation problem:

f?n− = min
A⊆V

f(A)

s.t. card(A) = n.
(3.9)

Similarly, the maximisation problem is defined as

f?n+ = max
A⊆V

f(A)

s.t. card(A) = n.
(3.10)

A modular set function f has the property that all elements in V have an in-
dividual and independent contribution to the value of f ; this is formally de-
fined in section 2.1.6. To clarify this property, modularity of f implies that
f({v1, v2}) = f({v1}) + f({v2}) − f(∅) for any pair of elements v1, v2 ∈ V, with
v1 6= v2. A modular function can therefore be optimised by individually analysing
the contribution of each element in V, which is established in the following lemma.

Lemma 3.1 Consider a finite set V = {v1, v2, · · · , vm} of cardinality m ∈ N, a
set function f : 2V → R and a number n ∈ N with n ≤ m.

Furthermore, let f?n− be a solution to (3.9) and let Algorithm 3.1 be used to nu-
merically obtain the subset Vmn− = Modularmin(f,V, n). Finally, let f?n+ be a
solution to (3.10) and let Algorithm 3.1 be used to numerically obtain the subset
Vmn+ = Modularmin(−f,V, n).

If f is modular, then f?n− = f(Vmn−) and f?n+ = f(Vmn+).

Proof: It is proven by Summers et al. [2016] that, for any subset Vn ⊆ V, a
modular set function can be expressed as

f(Vn) = f(∅) +
∑
vi∈Vn

w(vi)

for some weight function w : V→ R.

The optimisation problem in (3.9) is therefore solved by evaluation f for each
element in V and then choosing the n elements that result in the smallest function
value, which is implemented in Algorithm 3.1. As a result, it can be concluded
that f?n− = f(Vmn−).

Finally, maximisation of f is equivalent to minimisation of −f , while it can be
observed that this change in sign does not affect modularity. This implies that
f?n+ = f(Vmn+). �

On the other hand, minimisation of a supermodular and monotone decreasing set
function—as defined in section 2.1.6—is an NP-hard problem; this is explained
by Summers et al. [2016]. In order to solve this type of problem with an upper
bound on the degree of non-optimality, a greedy search algorithm such as Algo-
rithm 3.2 can be used. This is established in the following theorem.
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Theorem 3.2 Consider a set V = {v1, v2, · · · , vm}, a set function f : 2V → R and
a number n ∈ N with n ≤ m. Furthermore, let f?n− be the solution to (3.9) and let
Algorithm 3.2 be used to numerically obtain the subset Vgn = Greedymin(f,V, n).

If f is supermodular and monotone decreasing, then

f?n− − f(Vgn)

f?n− − f(∅)
=

1

e
≈ 0.37.

Proof: The proof is given by Nemhauser et al. [1978]. �

Although it is not considered in this chapter, it is important to note that a similar
upper bound can be obtained for the maximisation problem in (3.10), when a
submodular and monotone increasing set function—as defined in section 2.1.6—
is considered. This stems from the fact that f is supermodular and monotone
decreasing if and only if −f is submodular and monotone increasing.

Algorithm 3.1 Modular Minimisation

1: procedure modularmin(f , {v1, v2, · · · , vm}, n)
2: if n ≥ m then
3: return {v1, v2, · · · , vm}
4: else
5: for i = 1, 2, · · · ,m do
6: fi = f(vi).
7: end for
8: Order the function values fi such that:
9: fi,1 ≤ fi,2 ≤ · · · ≤ fi,m

10: return {vi,1, vi,2, · · · , vi,n}
11: end if
12: end procedure

3.2.2 Control Relevant Selection on the Basis of Open-Loop
System Properties

In order to use these algorithms for “open-loop selection” of actuators and sensors,
let us consider the subsets Unu

⊆ U and Yny
⊆ Y of all allowed actuators and

sensors in (3.2) and (3.3) to define—for λ(A) ⊂ C−—the Gramians as the set
functions

P(A,Unu) :=

∫ ∞
t=0

eAtrow(UB,nu)row(UB,nu)>eA
>tdt, (3.11)

Q(Yny
, A) :=

∫ ∞
t=0

eA
>tcol(YC,ny

)>col(YC,ny
)eAtdt, (3.12)

It will now be shown that the trace of these Gramians is a modular function in U
and Y, respectively.
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Algorithm 3.2 Greedy Minimisation

1: procedure Greedymin(f , {v1, v2, · · · , vm}, n)
2: if n ≥ m then
3: return {v1, v2, · · · , vm}
4: else
5: V1 = ∅, Vc = {v1, v2, · · · , vm}
6: for i = 1, · · · , n do
7: for j = 1, · · · , card(Vc) do
8: fj = f(vcj), where vcj is the jth element in Vc.
9: end for

10: Find a value k such that fk ≤ fl for all l 6= k
11: Vi+1 = Vi ∪ vck, Vc = Vc \ vck
12: end for
13: return Vi+1

14: end if
15: end procedure

Theorem 3.3 For an internally stable system Σ (3.4)—i.e. with λ(A) ⊂ C−—let
Unu ⊆ U and Yny ⊆ Y be subsets of all allowed actuators and sensors as defined
in (3.2) and (3.3), respectively. Let P and Q be the Gramians as defined in (3.11)
and (3.12), respectively. Finally, consider the real-valued matrices C ∈ Rp×nx and
B ∈ Rnx×q.

Then the set function fu(Unu) = tr(CPC>) is modular in U.

Furthermore, the set function fy(Yny
) = tr(B>QB) is modular in Y.

Proof: The proof is given by Summers et al. [2016, Thm. 4]. �

As established in Lemma 3.1, this modularity property implies that the optimi-
sation problems in (3.9) and (3.10) can be solved efficiently for fu and fy with
Algorithm 3.1.

State Feedback Design

The question now arises whether the functions fu and fy in Theorem 3.3—which
relate to the open-loop reachability and observability properties of a system—can
be used to obtain a control relevant actuator and sensor configuration. To answer
this question, let us first consider the design of a static state feedback u(t) = Fx(t).

State feedback design is equivalent to controller design as discussed in section 3.1.1
if y(t) = x(t); i.e. Yny

= Yfull = {(Inx
, 0, 0)} is used to construct Σ (3.4). As

explained in section 2.4, in such a situation the dynamic controller Σc,nc
(3.5) can

be replaced by a static mapping u(t) = Ny(t) that for this specific situation is
denoted by u(t) = Fx(t).

Therefore, let us consider a state feedback u(t) = Fx(t) applied to Σ (3.4) for a
given subset of actuators Unu

to obtain—when y(t) is eliminated—the closed-loop
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system

Σcl,F =


ẋ(t) =

(
A + row(UB,nu)F

)
x(t) + B̃ww̃(t)(

z̃(t)

zu(t)

)
=

((
C̃z

0

)
+

(
row(UD̃,nu

)

diag(UDu,nu
)

)
F

)
x(t).

(3.13)

In addition, let us define theH2 (squared) performance for Σ (3.4)—with a given ac-
tuator configuration that is characterised by the subset Unu

—and an H2-admissible
state feedback as

γH2,F (F,Unu
) = ‖Σcl,F (3.13)‖2H2

. (3.14)

When the design of a state feedback is considered, the best achievable H2 (squared)
performance for Σ (3.4) with this actuator configuration (and Yfull = {(Inx

, 0, 0)})
is therefore described by

γ?H2,F
(Unu

) = min
F
‖Σcl,F (3.13)‖2H2

s.t. F is H2-admissible for Σ(Unu ,Yfull) (3.4).
(3.15)

Remark 3.3 These performance measures are, formally speaking, a function of
Σ(Unu

,Yfull) (3.4). The notation γH2,F (Σ (3.4), F,Unu
), γ?H2,F

(Σ (3.4),Unu
) will

therefore be used when it is not directly clear from the context which system is
considered.

The closed-loop H2 optimal actuator selection problem for state feedback amounts
design to minimising γ?H2,F

by appropriate selection of the subset Unu
of a given

cardinality. This problem is formally defined as follows.

Problem 3.2 For Σ (3.4), consider the set Yfull = {(Inx
, 0, 0)} and let U be a set

that contains all allowed actuators as defined in (3.2). Furthermore, consider the
number nu ∈ N, with nu ≤ Nu.

Then, construct an optimal subset U?nu
⊆ U of cardinality nu, which is a solution

to
U?nu

= arg min
Unu⊆U

min
F
‖Σcl,F (3.13)‖2H2

s.t. F is H2-admissible for Σ(Unu
,Yfull) (3.4).

As explained in section 3.1, it is generally claimed that improved reachability prop-
erties of a system will improve the best achievable performance γ?H2

. From this per-
spective, it can be argued that Problem 3.2 might be solved if reachability through
the control inputs u(t) is maximised for the states that are—on average—most
affected by w̃(t) and most observable in z̃(t).

For Σ (3.4), let us therefore consider the set function

fu,g(Unu
, αu) = αutr(C̃zPC̃>z ) + (1− αu)tr(B̃>wPB̃w), (3.16)

with the design parameter 0 ≤ αu ≤ 1 and where P is the reachability Gramian as
defined in (3.11).

It will first be shown that the function fu,g is modular in U.
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Proposition 3.4 For Σ (3.4), let Unu ⊆ U be a subset of all allowed actuators as
defined in (3.2) and let P be the Gramian as defined in (3.11).

Then, the function fu,g in (3.16) is modular in U for any 0 ≤ αu ≤ 1.

Proof: The proof can be found in appendix A.2. �

Since fu,g is a modular set function, the following optimisation problem can effi-
ciently be solved with Algorithm 3.1 for some pair 0 ≤ αu ≤ 1, nu ≤ Nu:

U?nu
= arg max

Unu⊆U
fu,g(Unu

, αu)

s.t. card(Unu
) = nu.

(3.17)

The solution to this optimisation problem provides an actuator configuration for
Σ (3.4). This configuration maximises a reachability trade-off for the states that
are visible on the control output z̃(t) and states that are affected by the disturbance
w̃(t).

For example, a maximisation of this function with αu = 0 corresponds to max-
imising reachability through the control input u(t), for the states that are affected
the most by the disturbance w̃(t). Similarly, a maximisation of this function with
αu = 1 corresponds to maximising reachability through the control input u(t), for
the states that are most visible in the control output z̃(t).

Let us now investigate whether maximisation of fu,g could provide a viable—
although, not necessarily optimal—solution to Problem 3.2. For this purpose,
consider the system

Σce,1 =



(
ẋ1(t)

ẋ2(t)

)
=

(
−1 0

0 −1

)(
x1(t)

x2(t)

)
+ row(UB,nu

)u(t) +

(
1 0

0 0

)(
w̃1(t)

w̃2(t)

)
z̃1(t)

z̃2(t)

zu(t)

 =

 1 0

0 10

0 0

(x1(t)

x2(t)

)
+

 row(UD̃,nu
)

diag(UDu,nu
)

u(t),

(3.18)
with two allowed actuators that are described by the set

U = {u1, u2} =

{((
1
0

)
,

(
0
0

)
, 1

)
,

((
0
1

)
,

(
0
0

)
, 1

)}
.

When we consider the value αu = 0.5, we obtain fu,g({u1} , 0.5) = 0.5 and
fu,g({u2} , 0.5) = 12.5. The solution to (3.17) for nu = 1 is therefore given by
U?1 = {u2}.

However, the best achievable closed-loop performance for Σce,1 with each actuator
is given by γ?H2,F

({u1}) = 0.41 and γ?H2,F
({u2}) = 0.5. Problem 3.2 is therefore

solved by considering the actuator {u1} instead. Furthermore, it is important to
observe that γ?H2,F

(∅) = 0.5, which implies that the actuator u2 does not improve
performance.
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From this example, we can therefore observe that the optimisation problem in (3.17)
does not necessarily solve Problem 3.2. In addition, a solution to the former prob-
lem might even contain actuators that do not improve the closed-loop performance
measure γ?H2,F

at all. It is, however, important to emphasise that the optimisation
problem in (3.17) does not necessarily produce actuator configurations with poor
closed-loop performance in a more practical situation.

Observer Design

The measured output y(t) is not taken into consideration with the state feedback
design problem as described above, which implies that γ?H2,F

is only affected by
the selected actuators. To select the sensors, we will now investigate the (dual)
estimation problem.

For this type of problem, a given actuator configuration Uf = {(Buf , Duz̃f , Duzuf )}
and a given subset of sensors Yny

we can—as discussed in section 2.4—consider a
Luenberger state observer of the form

Σo =


˙̃x(t) =

(
A+ Lcol(YC,ny

)
)
x̃(t)−Ly(t) + Bufu(t)

z̄(t) =

(
C̃z

0

)
x̃(t) +

(
Duz̃f

Duzuf

)
u(t).

(3.19)

When this observer is connected to Σ (3.4), we obtain an error system of the form

Σε,o =


ė(t) =

(
A + Lcol(YC,ny

)
)
e(t) +

(
Bw + LDwy

)( w̃(t)

wy(t)

)

εz(t) =

(
C̃z

0

)
e(t),

(3.20)

with e(t) = x(t) − x̃(t), εz(t) = z(t) − z̄(t), Bw =
(
B̃w 0

)
and Dwy =(

col(YD̃,ny
) diag(YDy,ny

)
)

. It is important to note that the control input u(t)—

and therefore the selected actuators—do not affect this error system.

In a dual fashion to state feedback design, let us define the H2 (squared) perfor-
mance for Σ (3.4)—with a given sensor configuration that is characterised by the
subset Yny

—and an H2-admissible observer as

γH2,e(Σo (3.19),Yny ) = ‖Σε,o (3.20)‖2H2
. (3.21)

With the design of an observer, the best achievable H2 (squared) performance
for Σ (3.4) with this sensor configuration (and any actuator configuration that is
described by the subset Uf ) is therefore given by

γ?H2,e
(Yny

) = min
L
‖Σε,o (3.20)‖2H2

s.t. Σo (3.19) is H2-admissible for Σ(Uf ,Yny
) (3.4).

(3.22)
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Remark 3.4 These performance measures are, formally speaking, a function of
Σ(Uf ,Yny

) (3.4). The notation γH2,e(Σ (3.4), L,Yny
), γ?H2,e

(Σ (3.4),Yny
) will

therefore be used when it is not directly clear from the context which system is
considered.

The closed-loop H2 optimal sensor selection problem for observer design amounts to
minimising γ?H2,e

by appropriate selection of the subset Yny of a given cardinality.
This problem is formally defined as follows.

Problem 3.3 For Σ (3.4), consider the set Uf = {(Buf , Duz̃f , Duzuf )} and let Y
be a set that contains all allowed sensors as defined in (3.3). Furthermore, consider
the number ny ∈ N, with ny ≤ Ny.

Then, construct an optimal subset Y?ny
⊆ Y of cardinality ny, which is a solution

to

Y?ny
= arg min

YnY
⊆Y

min
L
‖Σε,o (3.20)‖2H2

s.t. Σo (3.19) is H2-admissible for Σ(Uf ,Yny
) (3.4).

As before, it can be argued that Problem 3.3 might be solved if observability in
the measured outputs y(t) is maximised for the states that are—on average—most
affected by w̃(t) and most visiblein z̃(t).

Let us therefore consider the set function

fy,g(Yny
, αy) = αytr(C̃zQC̃>z ) + (1− αy)tr(B̃>wQB̃w), (3.23)

with the design parameter 0 ≤ αy ≤ 1 and where Q is the observability Gramian
as defined in (3.12).

It will now be shown that the function fy,g is modular in Y.

Corollary 3.5 For Σ (3.4), let Yny ⊆ Y be a subset of all allowed sensors as
defined in (3.3) and let Q be the Gramian as defined in (3.12).

Then, the function fy,g in (3.23) is modular in Y for any 0 ≤ αy ≤ 1.

Proof: This corollary is dual to Proposition 3.4. �

Therefore, the following optimisation problem can be solved efficiently with Algo-
rithm 3.1 for some pair 0 ≤ αy ≤ 1, ny ≤ Ny:

Y?ny
= arg max

Yny⊆Y
fy,g(Yny

, αy)

s.t. card(Yny ) = ny.
(3.24)

The observer design is a dual problem to state feedback design, which implies that
the conclusions for the latter—as described above—will hold for observer design as
well.
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As a consequence, the optimisation problem in (3.24) does not necessarily solve
Problem 3.3. In addition, a solution to the former problem might even contain
sensors that do not affect the closed-loop performance measure γ?H2,e

at all. It is,
again, important to emphasise that the optimisation problem in (3.24) does not
necessarily produce sensor configuration with poor closed-loop performance in a
more practical situation.

3.2.3 Directly Maximising Closed-Loop H2 Performance

In section 3.2.2 it has been shown that selection of actuators and sensors on the
basis of Gramians—which are open-loop system properties—does not provide any
guarantees with regards to the best achievable closed-loop performance. This con-
clusion emphasises the importance of the main research question in chapter 1.
Namely, it is important to take the controller into consideration during the selec-
tion of actuators and sensors—i.e. during system design.

In order to improve the best achievable closed-loop performance, let us now in-
vestigate whether the set functions γ?H2

, γ?H2,F
and γ?H2,e

satisfy similar structural
properties; for example, monotonicity as defined in section 2.1.6.

Lemma 3.6 For a system Σ (3.4), let Unu ⊆ U and Yny ⊆ Y be subsets of all
allowed actuators and sensors as defined in (3.2) and (3.3), respectively.

Then, the set function

(a) γ?H2
(Unu ,Yny ) in (3.8) is monotone decreasing in U and in Y.

(b) γ?H2,F
(Unu

) in (3.15) is monotone decreasing in U.
(c) γ?H2,e

(Yny
) in (3.22) is monotone decreasing in Y.

Proof: A proof will be given for γ?H2,F
, while a similar argument can directly be

applied to γ?H2
and γ?H2,e

.

Consider the subsets U1 ⊆ U2 ⊆ U and let ui(t) = F ?i x(t) be the H2 optimal state
feedback for Ui that achieves γ?i,F = γ?H2,F

(Ui), with i = 1, 2.

Since U1 ⊆ U2, it is proven that the function γ?H2,F
is monotone decreasing if it is

shown that γ?1,F ≥ γ?2,F . In addition, any state feedback u2(t) = F2x(t) can—after
a suitable ordering of the control inputs—be decomposed as

u2(t) =

(
u1(t)
u2e(t)

)
=

(
F1

F2e

)
x(t).

Now, we can directly conclude from an optimality argument that

γ?1,F = γH2,F

((
F ?1
0

)
,U2

)
≥ γH2,F (F ?2 ,U2) = γ?2,F ,

which completes the proof. �

These properties therefore follow directly from an optimality argument. Namely,
a controller does not have to use all sensors and actuators, a state feedback does
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not have to use all actuators and an observer does not have to use all sensors. The
addition of actuators and sensors can therefore not decrease optimal performance,
which corresponds to an increase in γ?H2,(F/e)

.

According to Theorem 3.2, a greedy algorithm such as Algorithm 3.2 can be used
to minimise these functions with explicit guarantees on the obtained result, if γ?H2

,
γ?H2,F

and γ?H2,e
are supermodular. Let us therefore investigate whether this is

indeed the case.

First, in section 2.4 it has been shown that there exist unique stabilising solutions
to the AREs for certain actuator and sensor configurations. Let us now define for
which actuator and sensor configurations these solutions exist.

Definition 3.7 For Σ (3.4), let Unu ⊆ U and Yny ⊆ Y be subsets of all allowed
actuators and sensors as defined in (3.2) and (3.3), respectively.

We then say that the subset Unu is ARE-admissible for Σ (3.4) if
• (A, row(UB,nu)) is stabilisable.

•

A− jωInx row(UB,nu)

C̃z row(UD̃,nu
)

0 diag(UDu,nu)

 is full column rank for all ω ∈ R.

•
(

row(UD̃,nu
)

diag(UDu,nu)

)
is full column rank,

Furthermore, we say that the subset Yny
is ARE-admissible for Σ (3.4) if

• (col(YC,ny
), A) is detectable.

•
(
A− jωInx

B̃w 0
col(YC,ny ) col(YD̃,ny

) diag(YDy,ny )

)
is full row rank for all ω ∈ R.

•
(

col(YD̃,ny
) diag(YDy,ny

)
)

is full row rank.

For a system Σ (3.4) and the ARE-admissible subsets Unu
and Yny

, we can now
define the AREs as the following set functions:

P (Σ (3.4),Unu) such that A>P + PA+ C>z Cz

− (PBu + C>z Duz)(D
>
uzDuz)

−1(PBu + C>z Duz)
> = 0, (3.25)

Q(Σ (3.4),Yny
) such that AQ+QA> +BwB

>
w

− (QC>y +B>wDwy)(DwyD
>
wy)−1(QC>y +B>wDwy)> = 0. (3.26)

Then, let us utilise the unique stabilising solutions P+(Σ (3.4),Unu) and
Q+(Σ (3.4),Yny

) to these AREs in order to write the optimisation problem in
Problem 3.1 as

(U?nu
,Y?ny

) = arg min
Unu⊆U
Yny⊆Y

γ?H2
(Unu

,Yny
)

s.t. Unu
,Yny

are ARE-admissible for Σ (3.4),

(3.27)

with γ?H2
(Unu

,Yny
) = tr(B>wP

+Bw) + tr(B>u P
+Q+P+Bu)

= tr(CzQ
+C>z ) + tr(CyQ

+P+Q+C>y ).



3.2 Modularity and Greedy Algorithms 85

It will now be shown that this set function is generally not supermodular and not
submodular in its arguments. To see this, we consider again a state feedback design
problem by introducing Yfull = {(Inx

, 0, 0)} in combination with ny = 1. In this
way, we can prove that γ?H2

is not supermodular and not submodular if we can
show this for the function

γ?H2
(Unu

,Yfull) = γ?H2,F (Unu
) = tr(B>wP

+Bw).

Let us therefore consider the design of a state feedback u(t) = Fx(t) for the system

Σce,2 =



(
ẋ1(t)

ẋ2(t)

)
=

(
−1 0

0 −0.01

)(
x1(t)

x2(t)

)
+ row(UB,nu

)u(t) + B̃ww̃(t)z̃1(t)

z̃2(t)

zu(t)

 =

 1 1

1 −1

0 0

(x1(t)

x2(t)

)
+

 row(UD̃,nu
)

diag(UDu,nu
)

u(t),

(3.28)
with two allowed actuators that are described by the set

U = {u1, u2} =

{((
−1
1

)
,

(
0
0

)
, 0.1

)
,

((
−1
−1

)
,

(
0
0

)
, 0.1

)}
.

Then, for B̃w =

(
1
0

)
we obtain

γ?H2,F ({u1}) = γ?H2,F ({u2}) ≈ 0.92, γ?H2,F ({u1, u2}) ≈ 0.31, γ?H2,F (∅) = 1.

This implies that the function γ?H2,F
is not supermodular, because

γ?H2,F ({u1}) + γ?H2,F ({u2}) � γ?H2,F ({u1, u2}) + γ?H2,F (∅).

Similarly, for B̃w =

(
0
1

)
we obtain

γ?H2,F ({u1}) = γ?H2,F ({u2}) ≈ 0.96, γ?H2,F ({u1, u2}) ≈ 0.32, γ?H2,F (∅) = 10.

This implies that the function γ?H2,F
is not submodular either, because

γ?H2,F ({u1}) + γ?H2,F ({u2}) � γ?H2,F ({u1, u2}) + γ?H2,F (∅).

From this example we therefore infer the following main result.

Theorem 3.8 For Σ (3.4), let Unu
⊆ U and Yny

⊆ Y be subsets of all allowed
actuators and sensors as defined in (3.2) and (3.3), respectively. Furthermore, let
these subsets be ARE-admissible for Σ (3.4).

Then, the set functions γ?H2
(Unu

,Yny
) in (3.8), γ?H2,F

(Unu
) in (3.15) and γ?H2,e

(Yny
)

in (3.22) are, in general, not supermodular and not submodular in the sets U and
Y.
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Proof: This is shown for γ?H2
and for γ?H2,F

by using the system Σce,2 (3.28) as
described above. Furthermore, the state feedback problem is dual to the estimator
design problem, which implies that the same property holds for γ?H2,e

. �

It has now been proven that the structural properties of the open-loop Gramian-
based set functions, do not hold for the closed-loop performance measures γ?H2,(F/e)

.
We can therefore conclude that closed-loop optimal selection of actuators and sen-
sors is a significantly more complicated problem that cannot be solved with Algo-
rithm 3.1.

A greedy search algorithm such as Algorithm 3.2 can be applied in practice to
find an upper bound for γ?H2,(F/e)

by appropriate selection of the actuators and
sensors. Such an approach will, however, not provide any guarantees with regards
to optimality of the obtained result,. This, because the considered closed-loop
performance measures are, in general, not supermodular.

3.3 Sparsity Promoting Controller Design

3.3.1 Mathematical Background

In recent years, sparsity promoting controller design methods have been used as
a solution to closed-loop actuator or sensor selection problems. In order to ex-
plain this approach, consider the system Σ (3.4) and the ARE-admissible sets that
contain all allowed actuators and sensors U and Y as defined in (3.2) and (3.3),
respectively.

Then, let all allowed control inputs and measured outputs be used to obtain the
system Σ(U,Y) (3.4). These control inputs and measured outputs are partitioned
according to the elements of U and Y; i.e. ui(t) ∈ Rnui and yi(t) ∈ Rnyi , where nui

and nyi are described by the ith block elements in U and Y, respectively.

By Lemma 2.18, we can for Σ(U,Y) (3.4) consider the design of a strictly proper
controller of the form

Σc,nc,sp,N =



ẋc(t) = Jxc(t) +
(
K1 · · · KNy

)
y1(t)

...

yNy (t)



u1(t)

...

uNu
(t)

 =


M1

...

MNu

xc(t),

(3.29)
with the partitioning Ki ∈ Rnc×nyi and Mi ∈ Rnui

×nc .

Since all allowed actuators and sensors are available to Σc,nc,sp,N (3.29), the selec-
tion problem is now equivalent to imposing block sparsity in the matrices K and
M . I.e. the ith actuator in U is not used by the controller if Mi is identically zero,
while the ith sensor in Y is not used by the controller if Ki is identically zero.
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To formulate the closed-loop optimal selection of actuators and sensors as a sparse
optimisation problem, let us consider the H2 (squared) performance γH2

in (3.7).
Then the optimisation problem in Problem 3.1 is equivalent to

Σ?c,nc,sp,N
= arg min

nc∈N,Σc,nc,sp,N (3.29)
γH2

(Σc,nc,sp,N (3.29),U,Y)

s.t. Σc,nc,sp,N (3.29) is H2-admissible for
Σ(U,Y) (3.4).
Nu∑
i=1

card(‖Mi‖) = nu,

Ny∑
i=1

card(‖Ki‖) = ny,

(3.30)
in the sense that (Bui, Duz̃i, Duzui) ∈ U?nu

if for Σ?c,nc,sp,N
we have that M?

i 6= 0,
while (Cyi, Dw̃yi, Dwyyi) ∈ Y?ny

if K?
i 6= 0. Please note that the cardinality of a

matrix describes the number of non-zero elements.

This is again a combinatorial optimisation problem that requires the evaluation
of all possible subsets Unu

⊆ U, Yny
⊆ Y of the appropriate cardinality. Such

an approach is, as explained before, computationally infeasible when a large sets
of allowed actuators and sensors are provided. To overcome this problem, it is
proposed by several authors—such as Dhingra et al. [2014] and Argha et al. [2016]—
to include convex approximations of the cardinality constraints in the cost function
of the optimisation problem.

In this way, a sparsity promoting controller design problem is formulated as

Σ̃?c,nc,sp,N
=

arg min
nc∈N,Σc,nc,sp,N (3.29)

γH2
(Σc,nc,sp,N (3.29),U,Y) + αu

Nu∑
i=1

‖Mi‖F + αy

Ny∑
i=1

‖Ki‖F

s.t. Σc,nc,sp,N (3.29) is H2-admissible for Σ(U,Y) (3.4),

with the design parameters αu, αy ∈ R that satisfy αu ≥ 0 and αy ≥ 0.

In this sparsity promoting problem, the non-convex constraints

Nu∑
i=1

card(‖Mi‖) = nu,

Ny∑
i=1

card(‖Ki‖) = ny

are approximated by a convex function of the form

αu

Nu∑
i=1

‖Mi‖F + αy

Ny∑
i=1

‖Ki‖F .

With such an approach, these cardinality constraints are essentially approximated
by including two L1-norm regularisation terms in the cost function. Furthermore,
αu and αy can be viewed as sparsity promoting parameters that allow a trade-
off between the best achievable closed-loop H2 performance and the number of
actuators or sensors, respectively. This is discussed in more detail by Lin et al.
[2012] and by Jovanović and Dhingra [2016].
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For example, the optimal control problem without sparsity promotion is solved if
αu = αy = 0 are considered. An increase in the value of these parameters will
reduce the number of actuators and sensors, at the cost of an increase in γ?H2

—
which corresponds to a reduction in performance.

Finally, this sparsity promoting controller design problem is formulated as an LMI
by Argha et al. [2016] and by Singh et al. [2018]. The LMI can numerically be
solved by well-known numerical optimisation tools such as Yalmip and CVX—as
developed by Löfberg [2004] and by Grant and Boyd [2014, 2008], respectively.
This type of solution that directly aims to solve Problem 3.1 does, however, not
scale well with the cardinality of U or Y and can only be considered for problems
with Nu ≤ 10 and Ny ≤ 10.

To solve this problem for larger sets, it is proposed by Dhingra et al. [2014] to utilise
the alternating direction method of multipliers (ADMM)—as introduced by Boyd
[2010]. With this type of solution, it is required to separately solve the actuator
selection problem for state feedback design in Problem 3.2 and the sensor selection
problem for estimator design in Problem 3.3; instead of the combined actuator and
sensor selection problem in Problem 3.1.

We have seen in section 3.2.2 the selection of actuators and the selection of sensors
is, indeed, independent when state feedback design and estimator design are con-
sidered. However, it will now be shown that the selection of sensors does rely on
the allowed actuators and vice versa in Problem 3.1; i.e. for a situation where we
consider measurement feedback controller design.

For this purpose, let us consider the system Σce,3(Unu
,Yny

) =

(
ẋ1(t)

ẋ2(t)

)
=

(
−1 0

0 −0.1

)(
x1(t)

x2(t)

)
+ row(UB,nu

)u(t) +

(
1 0 0

0 1 0

)w̃1(t)

w̃2(t)

wy(t)


y(t) = col(YC,ny

)

(
x1(t)

x2(t)

)
+
(

col(YD̃,ny
) diag(YDy,ny

)
)w̃1(t)

w̃2(t)

wy(t)


(
z̃1(t)

z̃2(t)

)
=

(
1 0

0 1

)(
x1(t)

x2(t)

)
+

(
row(UD̃,nu

)

diag(UDu,nu
)

)
u(t),

(3.31)
with two allowed actuators that are described by the set

U = {u1, u2} =

{((
1
0

)
,

(
0
0

)
, 1

)
,

((
0
1

)
,

(
0
0

)
, 1

)}
.

First, let us consider the selection of one actuator from the set U for a fixed sen-
sor configuration that is described by Y = Yfull = {(I2, 0, 0)}; i.e. the combined
selection problem for controller design in Problem 3.1 is replaced by the actuator
selection problem for state feedback design in Problem 3.2.

For the system without control, the values in the A matrix indicate that the state
x2(t) has the largest contribution towards the H2 norm. For state feedback design
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it is therefore easy to show that γ?H2,F
({u2}) < γ?H2,F

({u1}), which implies that
the actuator u2 should be selected when Yfull is considered.

Then, let us consider the same actuator selection problem for a different sensor
configuration that is described by Y = Y2 =

{((
1 0
)
,
(
0 0
)
, 1
)}

. For the design of
a controller of the form Σc,nc (3.5) we now obtain γ?H2

({u1} ,Y2) < γ?H2
({u2} ,Y2) =

γ?H2
(∅,Y2)—i.e. the selection of actuator u2 does not improve performance at all—

since only the state x1(t) is available through the measured output y(t). The
(other) actuator u1 should therefore be selected when the sensor configuration is
described by Y2.

We have now seen that the selection of actuators does depend on the available
sensors, if controller design is considered instead of state feedback design. In addi-
tion, an actuator configuration that is obtained for the latter problem might even
contain actuators that do not improve closed-loop performance when we synthesise
a controller. Finally, it is important to note that these conclusions will also hold
for the selection of sensors, since both selection problems are dual.

We can therefore not regard the selection of actuators and sensors as two inde-
pendent problems in Problem 3.1. As a first step towards solving this combined
selection problem, it will now be shown how the solution to Problem 3.2 can be
used to design an optimal actuator configuration in Problem 3.1 for a fixed sensor
configuration. The dual problem of designing an optimal sensor configuration for
a fixed actuator configuration is discussed thereafter.

3.3.2 Optimal Actuator Selection for a Fixed Sensor
Configuration

Actuator Selection for H2 Optimal State Feedback Design

Let us first formulate Problem 3.2 as a sparsity promoting state feedback design
problem. Please note that a solution to this problem has been developed by Dhingra
et al. [2014], which has been implemented in a toolbox by Lin et al. [2014].

For this purpose, let all allowed actuators U and Yfull = {(Inx , 0, 0)} be used to
obtain the system Σ(U,Yfull) (3.4), with the control inputs partitioned according
to the elements of U; i.e. ui(t) ∈ Rnui where nui

are described by the ith block
elements in U. For Σ(U,Yfull) (3.4) we consider the design of a state feedback that
is partitioned as

u(t) = FNx(t) =

 F1

...
FNu

x(t), (3.32)

with Fi ∈ Rnui
×nx .

As before, the selection of actuators is equivalent to the introduction of block
sparsity in FN (3.32). Therefore, let us consider the H2 squared performance
of a state feedback γH2,F in (3.14) to equivalently formulate Problem 3.2 as the
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following sparse state feedback design problem:

F ?N,F = arg min
FN

γH2,F (FN ,U)

s.t. u(t) = FNx(t) (3.32) is H2-admissible for Σ(U,Yfull) (3.4),
Nu∑
i=1

card(‖Fi‖) = nu.

(3.33)
These problems are equivalent in the sense that (Bui, Duz̃i, Duzui) ∈ U?nu

if for
F ?N,F we have that F ?i 6= 0.

In a similar fashion to (3.30), let us include convex approximations of the cardinality
constraint in the cost function to formulate a sparsity promoting state feedback
design problem as

F̃ ?N,F = arg min
FN

γH2,F (FN ,U) + αu

Nu∑
i=1

‖Fi‖F

s.t. u(t) = FNx(t) (3.32) is H2-admissible for Σ(U,Yfull) (3.4),
(3.34)

with the design parameter αu ∈ R that satisfies αu ≥ 0.

Control Relevant Actuator Selection

Now we will address the following problem of designing an optimal actuator con-
figuration in Problem 3.1 for a fixed sensor configuration.

Problem 3.4 For Σ (3.4), let U be a set that contains all allowed actuators as
defined in (3.2). Furthermore, consider a fixed sensor configuration that is described
by Yf =

{
(Cyf , Dw̃yf , Dwyyf )

}
and a number nu ∈ N with nu ≤ Nu.

Then, construct an optimal subset U?nu
⊆ U of cardinality nu, which is a solution

to

U?nu
= arg min

Unu⊆U
min

nc∈N,Σc,nc (3.5)
γH2

(Σc,nc
(3.5),Unu

,Yf )

s.t. Σc,nc
(3.5) is H2-admissible for Σ(Unu

,Yf ) (3.4).

In order to numerically solve this problem with the toolbox by Lin et al. [2014], we
will now show that Problem 3.4 can be transformed into Problem 3.2.

Theorem 3.9 For Σ (3.4), let U be a set that contains all allowed actuators
as defined in (3.2), consider a fixed ARE-admissible sensor configuration Yf ={

(Cyf , Dw̃yf , Dwyyf )
}

and a number nu ≤ Nu. Furthermore, let the unique stabil-
ising solution Q+(Σ (3.4),Yf ) � 0 to the ARE in (3.26) be used to construct—for
any sensor configuration that is described by the set Yny

—the transformed system

ΣQ(Unu
,Yny

) =
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ẋ(t) = Ax(t) + row(UB,nu
)u(t)

+
(

(Q+C>yf +BwD
>
wyf )(DwyfD

>
wyf )−

1
2 0

)( w̃(t)

wy(t)

)

y(t) = col(YC,ny
)x(t) +

(
col(YD̃,ny

) diag(YDy,ny
)
)( w̃(t)

wy(t)

)
(
z̃(t)

zu(t)

)
=

(
C̃z

0

)
x(t) +

(
row(UD̃,nu

)

diag(UDu,nu
)

)
u(t),

(3.35)

with Bw =
(
B̃w 0

)
and Dwyf =

(
Dw̃yf Dwyf

)
.

Finally, for Σ (3.4) let U?nu
be a solution to Problem 3.4 and for ΣQ (3.35) let

U?nu,F
be a solution to Problem 3.2. Then U?nu

= U?nu,F
.

Proof: The proof can be found in appendix A.2. �

It is therefore shown that solving Problem 3.4 for Σ (3.4) is equivalent to solving
Problem 3.2 for ΣQ (3.35). The solution to Problem 3.2—as developed by Dhin-
gra et al. [2014]—can therefore be used to solve Problem 3.4 by considering the
transformed system ΣQ (3.35).

3.3.3 Optimal Sensor Selection for a Fixed Actuator
Configuration

Sensor Selection for H2 Optimal Observer Design

Sensor selection for observer design is dual to actuator selection for state feedback
design. Let us therefore first formulate Problem 3.3 as a sparsity promoting ob-
server gain design problem. Again, a solution this sparsity promoting problem has
been developed by Dhingra et al. [2014] and is implemented in a toolbox by Lin
et al. [2014].

For this purpose, let a given actuator configuration Uf = {(Buf , Duz̃f , Duzuf )}
and all allowed sensors Y be used to obtain the system Σ(Uf ,Y) (3.4), with the
measured outputs partitioned according to the elements of Y; i.e. yi(t) ∈ Rnyi

where nyi are described by the ith block elements in Y.

For Σ(Uf ,Y) (3.4)—and the corresponding observer Σo (3.19)—we consider the
design of an observer gain that is partitioned as

LN =
(
L1 · · · LNy

)
, (3.36)

with Li ∈ Rnx×nyi .

As before, the selection of sensors is equivalent to the introduction of block sparsity
in LN (3.32). Therefore, let us consider the H2 squared performance for an ob-
server γH2,e in (3.21) to equivalently formulate Problem 3.3 as the following sparse
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observer gain design problem:

L?N,e = arg min
LN

γH2,e(Σo (3.19),Y)

s.t. Σo (3.19) is H2-admissible for Σ(Uf ,Y) (3.4),
Ny∑
i=1

card(‖Li‖) = ny.

(3.37)

These problems are equivalent in the sense that (Cyi, Dw̃yi, Dwyyi) ∈ Y?ny
if for

L?N,e we have that L?i 6= 0.

In a similar fashion to (3.30), let us also include convex approximations of the car-
dinality constraint in the cost function to formulate a sparsity promoting observer
gain design problem as

L̃?N,e = arg min
LN

γH2,e(Σo (3.19),Y) + αy

Ny∑
i=1

‖Li‖F

s.t. Σo (3.19) is H2-admissible for Σ(Uf ,Y) (3.4),

(3.38)

with the design parameter αy ∈ R that satisfies αy ≥ 0.

Control Relevant Sensor Selection

Finally, we will address the following problem of designing an optimal sensor con-
figuration in Problem 3.1 for a fixed actuator configuration.

Problem 3.5 For Σ (3.4), let Y be a set that contains all allowed sensors as defined
in (3.3). Furthermore, consider a fixed actuator configuration that is described by
Uf = {(Buf , Duz̃f , Duzuf )} and a number ny ∈ N with ny ≤ Ny.

Then, construct an optimal subset Y?ny
⊆ Y of cardinality ny, which is a solution

to

Y?ny
= arg min

Yny⊆Y
min

nc∈N,Σc,nc (3.5)
γH2

(Σc,nc
(3.5),Uf ,Yny

)

s.t. Σc,nc (3.5) is H2-admissible for Σ(Uf ,Yny ) (3.4).

In order to numerically solve this problem with the toolbox by Lin et al. [2014], we
will now show that Problem 3.5 can also be transformed into Problem 3.3.

Theorem 3.10 For Σ (3.4), let Y be a set that contains all allowed sensors as
defined in (3.3), consider a fixed ARE-admissible actuator configuration Uf =
{(Buf , Duz̃f , Duzuf )} and a number ny ∈ N with ny ≤ Ny. Furthermore, let
the unique stabilising solution P+(Σ (3.4),Uf ) � 0 to the ARE in (3.25) be used
to construct—for any actuator configuration that is described by the set Unu—the
transformed system

ΣP (Unu
,Yny

) =



3.4 Performance Analysis on a Practical Example 93



ẋ(t) = Ax(t) + row(UB,nu
)u(t) +

(
B̃w 0

)( w̃(t)

wy(t)

)

y(t) = col(YC,ny
)x(t) +

(
col(YD̃,ny

) diag(YDy,ny
)
)( w̃(t)

wy(t)

)
(
z̃(t)

zu(t)

)
=

(
(D>uzfDuzf )−

1
2 (B>ufP

+ +D>uzfCz)

0

)
x(t) +

(
row(UD̃,nu

)

diag(UDu,nu
)

)
u(t),

(3.39)

with Cz =

(
C̃z
0

)
and Duzf =

(
Duz̃f

Duzuf

)
.

Finally, for Σ (3.4) let Y?ny
be a solution to Problem 3.5 and for ΣP (3.39) let Y?ny,e

be a solution to Problem 3.3. Then Y?ny
= Y?ny,e.

Proof: This theorem is completely dual to Theorem 3.9. �

3.4 Performance Analysis on a Practical Example

3.4.1 Case Study

A Model for Thermal Deformation

As an example, we will aim to solve the control relevant sensor selection problem
in Problem 3.5—i.e. with a fixed actuator configuration Uf—for a model that
describes the thermally induced deformations of 5 spatially discretised domains.
These domains are isolated and attached to an infinitely stiff heat-sink of constant
temperature, as shown in figure 3.1.

The first domain—which is depicted in more detail in figure 3.2—is affected by
the thermal disturbance w̃1(t), which leads to deformations of the top surface that
are described by the control output z̃1(t). In order to minimise these deformations,
temperature in the domain can be controlled through the control input u1(t), while
there are 64 potential temperature sensor locations within the domain.

Domains 2–5 are directly based in this first domain, in the sense that:

• domain 2 is affected by the thermal disturbance w̃2(t), which leads to the
deformations in z̃2(t). However, the domain cannot be controlled; i.e. its
state is unreachable through u(t).

• domain 3 is affected by the thermal disturbance w̃3(t) and can be controlled
through u3(t). However, the domain does not deform; i.e. its state is unob-
servable in z̃(t).

• domain 4 is affected by the thermal disturbance w̃4(t). However, the domain
does not deform and cannot be controlled; i.e. its state is unreachable through
u(t) and unobservable in z̃(t).

• domain 5 can be controlled through u5(t), which leads to the deformations in
z̃5(t). However, the domain is not affected by the disturbance; i.e. its state
is unreachable through w̃(t).
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The combined model for these 5 domains with the fixed actuator configuration Uf
and any sensor configuration Yny

is therefore of the form

Σb(Uf ,Yny
) =


ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)

 =


A 0 0 0 0

0 A 0 0 0

0 0 A 0 0

0 0 0 A 0

0 0 0 0 A




x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

+


Bu 0 0

0 0 0

0 Bu 0

0 0 0

0 0 Bu


u1(t)

u3(t)

u5(t)



+


B̃w 0 0 0 0

0 B̃w 0 0 0

0 0 B̃w 0 0

0 0 0 B̃w 0

0 0 0 0 0




w̃1(t)

w̃2(t)

w̃3(t)

w̃4(t)

wy(t)

 w̃(t)

y(t) = col(YC,ny )x(t) +
(

col(YD̃,ny
) diag(YDy,ny

)
)( w̃(t)

wy(t)

)

z̃1(t)

z̃2(t)

z̃5(t)

zu(t)

 =


C̃z 0 0 0 0

0 C̃z 0 0 0

0 0 0 0 C̃z

0 0 0 0 0

x(t) +


0

0

0

Duzu

u(t),

(3.40)
where

x(t) = col({x1(t), x2(t), x3(t), x4(t), x5(t)}) u(t) = col({u1(t), u3(t), u5(t)})
w̃(t) = col({w̃1(t), w̃2(t), w̃3(t), w̃4(t)}) z̃(t) = col({z̃1(t), z̃2(t), z̃5(t)}).

For this model,

• the state xi(t) ∈ R100 describes the temperature at time t for 100 locations
(in a Cartesian grid) in domain i—for i = 1, · · · , 5.
• A ∈ R100×100 describes thermal conduction in each domain.
• B̃w ∈ R100×6 describes how 6 independent thermal disturbances in w̃i(t)

affect the evolution of domain i through its boundaries—for i = 1, 2, 3, 4.
• C̃z ∈ R16×100 describes how temperature variations in domain i lead to de-

formations (in the x, y-directions) at 8 locations on the top boundary of the
domain, which are described by z̃i(t)—for i = 1, 2, 5.
• Bu ∈ R100×5 describes how 5 thermal actuators in ui(t) can affect the evolu-

tion of domain i through its boundaries—for i = 1, 3, 5.
• Duzu = 0.01I15 is used to limit the signal u(t) in magnitude, when an H2

optimal controller is designed.

Remark 3.5 In order to avoid any issues with numerical conditioning, the model
is created such that input signals w̃(t) and u(t) of a given magnitude will lead to
trajectories x(t), y(t) and z̃(t) that are similar in magnitude. In addition, the

matrices Bu, B̃w, Cyij and C̃z are similar in norm.
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Figure 3.1: A visualisation of Σb (3.40).
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Figure 3.2: A more detailed depiction of domain 1.

Sensor Selection

For Σb (3.40), the set of all allowed sensors—as defined in (3.3)—is first decomposed
in terms of the individual domains such that

Y =

5⋃
i=1

Yi =

5⋃
i=1

{yi,1, · · · , yi,64} ,

where Yi is a set of cardinality 64 that contains all allowed sensors in domain i.
Each potential sensor in Yi is described by the triple yi,j = {(Cyij , 0, 0.01)}—for
i = 1, · · · , 5 and j = 1, · · · , 64—that corresponds to a temperature measurement
at a specific location in the domain. The 64 allowed sensors locations in domain
1 are depicted in figure 3.2, while 64 “equivalent” locations are considered within
domains 2–5; e.g. the sensors y1,5 and y3,5 are placed at the same location within
the corresponding domain.

Finally, configurations with a varying number of sensors ny will be created for
Σb (3.40). These configurations are created by

• solving the modular Gramian optimisation in (3.24) with Algorithm 3.1 for
αy = 1

2 .
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• considering the greedy algorithm in Algorithm 3.2, which directly aims to
find the subset Yny

that minimises γ?H2
(Uf ,Yny

) in (3.8).
• the original sparsity promoting method in (3.38)—as implemented by Lin

et al. [2014]—that aims to solve the sensor selection problem for estimator
design in Problem 3.3.

• the control relevant sparsity promoting method that aims to solve the sen-
sor selection problem for a fixed actuator configuration in Problem 3.5, by
utilising the transformed system ΣP (3.39) for Σb (3.40).

An H2 optimal controller of the form Σc,nc (3.5) is then designed for each sensor
configuration in order to determine the best achievable closed-loop H2 performance
γ?H2

. This performance measure as a function of the number of sensors ny is
shown in figure 3.3. Furthermore, the selected sensors in domain 1 are depicted in
figure 3.4.

3.4.2 Desired Behaviour

Before commenting on the results for this example, let us first establish what should
ideally be achieved from the perspective of closed-loop optimal sensor selection
with a fixed actuator configuration. I.e. we will first establish what properties are
expected for a solution to Problem 3.5.

Firstly, it should only be considered to add sensors in domain 1. Namely, domains
2 and 4 are not reachable through u(t), domain 3 is not observable in z̃(t) and
domain 5 is not reachable through w̃(t). The placement of sensors in domains 2–5
will therefore not lead to an improvement of the best achievable closed-loop H2

performance measure γ?H2
.

Secondly, a symmetric sensor configuration is expected in every domain, because
the configuration in terms of the external quantities w̃(t), u(t) and z̃(t) is symmetric
as well; this can be observed from figure 3.2.

3.4.3 Actual Performance

Modular Gramian Optimisation

The objective function fy,g in (3.23) for the modular Gramian optimisation prob-
lem in (3.24) does capture the symmetry in the problem. Therefore a symmetric
solution is obtained for an even number of sensors ny, which can be observed from
figure 3.4.

The objective function does, however, allow the placement of sensors in all do-
mains, which is undesired. In order to explain this, let us decompose any sensor
configuration with ny sensors as Yny =

⋃5
i=1Yi,ny , where Yi,ny is a subset that

contains all sensors in Yny that correspond to domain i.

Because the domains are isolated, we can also decompose the objective function
in (3.24) as fy,g(Yny

, αy) =
∑5
i=1 fi(Yi,ny

, αy), with
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fi(Yi,ny , αy) =
αytr(C̃zQ(Yi,ny

, A)C̃>z ) + (1− αy)tr(B̃>wQ(Yi,ny
, A)B̃w) for i = 1, 2

(1− αy)tr(B̃>wQ(Yi,ny
, A)B̃w) for i = 3, 4

αytr(C̃zQ(Yi,ny
, A)C̃>z ) for i = 5,

where Q is the observability Gramian as defined in (3.12).

From this decomposition it can be observed that a sensor at location j in domains
1 and 2 is favoured over the “equivalent” sensors at location j in domains 3—
5; i.e. fi({yi,k} , αy) ≥ fj({yj,k} , αy) for j = 1, 2, j = 3, 4, 5 and any k. This
does, however, not imply that sensors are never placed in domains 3–5, because
f1({y1,j} , αy) ≥ fi({yi,k} , αy), with i = 3, 4, 5, does not necessarily hold for all
j, k.

Domain 2, one the other hand, is equivalent to domain 1 in terms of the objective
function. Namely, f1({y1,j} , αy) = f2({y2,j} , αy) for any j, which implies that
the placement of a sensor in domain 1 is always accompanied by the placement
of a sensor in domain 2. In this example, at least half of the sensors is therefore
“wasted” by placement in the domains 2—5. Finally, from figure 3.3 it can be
observed that this method performs worst out of all the considered methods.

Closed-Loop Greedy Optimisation

The greedy algorithm places one sensor at a time. After each sensor is placed,
however, the improvement in closed-loop performance changes for the remaining
sensors and a symmetric sensor configuration is therefore generally speaking not
obtained. For this reason, the greedy algorithm might result in an “disorganised”
sensor configuration, as is shown in figure 3.4.

Because the closed-loop performance measure is directly taken into consideration,
the method recognises that the placement of sensors in domains 2—5 will not
improve γ?H2

(Uf ,Yny
). This algorithm will, as a direct consequence, only place

sensors in domain 1, which is as desired. In terms of closed-loop performance it
can be observed that the method performs well in comparison with the modular
Gramian optimisation technique.

Furthermore, from this example we can observe the importance of directly consid-
ering the closed-loop objective during system design. Namely, the greedy optimi-
sation technique that directly considers the actual objective performs better than
modular Gramian optimisation, which considers a different objective in order to
provide guarantees on the obtained result. This, again, emphasises the importance
of the main research question in section 1.4.

Sparsity Promotion

Finally, the sparsity promoting methods combine the closed-loop performance mea-
sure γ?H2

with a sparsity promoting term. The number of sensors can, however,
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not be chosen with these methods; instead, this number must be affected indirectly
by changing the parameter αy—in (3.38)—in magnitude. For this example, the
methods create symmetric configurations with an even amount of sensors. Config-
urations with a small number of sensors can, however, not be obtained—as shown
in figure 3.3.

The original sparsity promoting method regards domains 1 and 2 as equivalent,
because the control input u(t) is not taken into account. This method therefore
“wastes” half of the selected sensors. On the other hand, the control relevant spar-
sity promoting method will only place sensors in domain 1 and therefore requires
half the number of sensors in order to obtain the same performance. Furthermore,
the derived configuration with 4 sensors is able to achieve near-optimal perfor-
mance; that is, the performance when all sensors are selected.

For control relevant sensor selection we can therefore conclude that it is, indeed, im-
portant to take the available actuators into account. This, however, also indicates
that a substantial improvement could still be obtained by directly considering the
combined selection problem in Problem 3.1, when the actuators have to be selected
as well.
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Figure 3.3: The best achievable closed-loop H2 performance, as a function of
the number of sensors, for the sensor configurations that are generated by each
algorithm.
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Modular Gramian Optimisation

Control Relevant Sparsity PromotionOriginal Sparsity Promotion

Closed-loop Greedy Optimisation

2 sensors

4 sensors

6 sensors

10 sensors

Figure 3.4: The sensor configurations that are generated by each algorithm, which
consist of 2, 4, 6 and 10 sensors in domain 1.





Make everything as simple as possible, but not simpler.

Albert Einstein

4
Control Relevant Order Reduction

O
ver the past decades, a substantial amount of attention has been given
to the design of low order controllers that maximise performance for

a high order model. Several control relevant order reduction and direct
approaches have been developed for this purpose, which should ideally
solve the constrained order optimal control problem in Problem 1.3.

In this chapter we will first apply a number of existing order reduction
techniques, with the aim of synthesising a low order control that maximises
closed-loop H2 performance for a given high order model. The techniques
are: balanced truncation, Linear Quadratic Gaussian balanced truncation
and weighted order reduction. It will be demonstrated that none of these
methods provide any guarantees on closed-loop H2 performance; improve-
ments are therefore proposed. This investigation in combination with the
results are based on [Merks and Weiland, 2019b].

The chapter is finalised by demonstrating that the best closed-loop per-
formance is obtained by combining these techniques with a fixed order
optimisation algorithm.

101



102 Chapter 4. Control Relevant Order Reduction

4.1 Introduction

In a wide range of practical applications, the FEM or FVM is used to create models
that accurately describe a given system. For example, this type of model is consid-
ered by Thompson and Vogiatzis [2014] for thermal management, by Oyvang et al.
[2019] for the control of an air-cooled hydro-generator, by Vermeulen et al. [2005]
for groundwater flow modelling, by Jia et al. [2011] for micro-electro-mechanical
system (MEMs) design and by Candeo and Dughiero [2009] for hyperthermia treat-
ment of cancer.

It is often desired to utilise such a model for optimal control design. However, this
type of model will commonly contain well over 10, 000 states and it is recognised by
many authors—e.g. by Adegas et al. [2013], Lordejani et al. [2018], Antoulas [2005]
and Benner et al. [2015]—that this will lead to computational issues concerning
the synthesis and real-time implementation of an optimal controller.

To be more specific, the synthesis of the controller might become unreliable due to
numerical conditioning—or even infeasible due to memory constraints—when the
model order is large. In the past, this implied that models with at most 1, 000
states could be used to reliably synthesise an optimal controller. Nowadays there
exist several algorithms that can numerically construct an optimal controller for
models that contain more than 100, 000 states—as explained by Saak et al. [2019].

In addition, the computational hardware that is considered for the implementation
of a controller will directly impose an upper bound on the controller order itself.
This, because the hardware must be able to determine the desired control action in
real-time. Although the upper bound relies heavily on the type of application and
the available computational power, the controller order should typically be well
below 1, 000 states.

However, the widely-applied solutions to the H2 and H∞ optimal control problems
result in a controller that is of the same order as the model for which it is designed.
If the model order is large, real-time implementation of these controllers is therefore
not possible.

4.1.1 Constrained Order H2 Optimal Controller Design

In this chapter we will therefore investigate the problem of constructing a con-
strained order controller that maximises closed-loop H2 performance for a given
model—as defined in Problem 1.3. For this purpose, let us consider an lslsLTI
model of the form

Σ =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) =Cyx(t) +Dwyw(t)

z(t) =Czx(t) +Duzu(t),

(4.1)

with vector signals x(t), u(t), w(t), y(t) and z(t) that represent the state, known
input, unknown disturbance, measured output and the control output, respectively.
These signals assume values in finite-dimensional vector spaces X = Rnx , U = Rnu ,
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W = Rnw , Y = Rny and Z = Rnz , respectively. The dynamical relation between
the signals is described by real-valued matrices A, Bu, Bw, Cy, Cz, Dwy and Duz

of appropriate dimension.

In order to maximise closed-loop H2 performance, a controller of the form

Σc,nc
=

{
ẋc(t) = Jxc(t) +Ky(t)

u(t) =Mxc(t) +Ny(t),
(4.2)

which is of order nc, will be applied to Σ (4.1).

For the design of such a controller, we will—as mentioned in section 2.4—make the
following assumption.

Assumption 4.1 It is assumed that

1a) (A,Bu) is stabilisable.
1b) (Cy, A) is detectable.

2a)

(
A− jωInx

Bu
Cz Duz

)
is full column rank for all ω ∈ R.

2b)

(
A− jωInx

Bw
Cy Dwy

)
is full row rank for all ω ∈ R.

3a) Duz is full column rank.
3b) Dwy is full row rank.

Under this assumption, a strictly proper controller must be considered—i.e. N =
0. When such a strictly proper controller is applied to Σ (4.1), the closed-loop
interconnection is described by

Σcl,nc,sp =



(
ẋ(t)

ẋc(t)

)
=

(
A BuM

KCy J

)(
x(t)

xc(t)

)
+

(
Bw

KDwy

)
w(t)

z(t) =
(
Cz DuzM

)( x(t)

xc(t)

)
.

(4.3)

This closed-loop model has an extended state xcl,nc,sp =

(
x(t)
xc(t)

)
and extended

matrices Acl,nc,sp, Bcl,nc,sp
w , Ccl,nc,sp

z and Dcl,nc,sp
wz . Its extended state-space is

characterised by the vector space X cl,nc,sp of dimension nx + nc.

The constrained order H2 optimal control problem amounts to minimising the
norm of this closed-loop model by appropriate construction of an H2-admissible
controller Σc,nc

(4.2). The problem is formally defined as follows.

Problem 4.1 Construct an H2-admissible controller Σ?c,nc
of the form (4.2) and

of order nc ∈ N for Σ (4.1), which is a solution to

Σ?c,nc
= arg min

Σc,nc (4.2)
‖Σcl,nc,sp (4.3)‖H2

s.t. Σc,nc (4.2) is H2-admissible for Σ (4.1).
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The solution to the H2 optimal control problem as discussed in section 2.4, can be
used to solve this problem for all orders nc ≥ nx; for nc < nx it remains an open
problem. Several approaches that aim at maximising closed-loop H2 performance
with a controller of order nc < nx are, however, available. These approaches can
be categorised as MOR, COR and direct methods that correspond to paths 1–3
in figure 4.1, respectively. An excellent overview of these approaches is provided
by Obinata and Anderson [2001].

With MOR—corresponding to path 1—the high order model Σ (4.1) is first reduced

to order nr < nx, which results in a low order model Σ̂nr
. The reduced order model

Σ̂nr is then used for the design of an H2 optimal controller Σ̂?c,nr
or order nr. This

approach can be applied to extremely high order models, because the controller
itself is designed on the basis of a reduced order model.

On the other hand, with COR—corresponding to path 2—a high order H2 optimal
controller Σ?c,nx

of order nx is designed directly for the high order model Σ (4.1).
An order reduction procedure is then applied to this controller, which results in a
reduced order controller Σ̂?c,nr

.

Finally, with the direct methods—corresponding to path 3—the reduced order
controller Σ̂?c,nr

is directly designed for the high order model Σ (4.1).

Controller     
synthesis

Σ

Σn

Σc,n

Controller   
synthesis

Model order 
reduction

Controller order 
reduction

Σc,n

1

23

x

rr

*

*^^

Figure 4.1: The typical constrained order controller design approaches.

4.1.2 Order Reduction for Control

Typical model order reduction techniques aim at creating a reduced order (ap-
proximate) model that—in some sense—accurately describes the behaviour of a
given high order model; this type of order reduction will be referred to as open-
loop model order reduction. A large number of open-loop reduction techniques is
available, which have been developed for specific types of models and for specific
ranges of model orders.

For LTI models as considered in this thesis, model order reduction techniques such
as balanced truncation—which is discussed by Gugercin and Antoulas [2004]—and
moment matching—which is discussed by Ionescu and Astolfi [2011]—are often
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applied. For a more complete overview of all available model order reduction
techniques, please consider the work by Antoulas [2005] and by Schilders et al.
[2008].

A large number of authors propose to combine these model order reduction tech-
niques with optimal control design in order to construct a constrained order con-
troller that maximises closed-loop performance. To name a few, in recent years
it has been considered by Salakij et al. [2016], Picard et al. [2017], Luspay et al.
[2018], Yang et al. [2019] and by Banholzer et al. [2019]. However, the combination
of a given optimal control design with a model order reduction approach will not
result in a controller that provides any guarantees on closed-loop performance.

For example, it is shown in the famous paper by Doyle [1978] that H2 optimal
controllers do not, in general, provide any robustness guarantees. This well-known
result has led to the invention of robust and H∞ optimal control approaches. How-
ever, its implications for the combination of open-loop model order reduction with
optimal control—as first recognised by Pernebo and Silverman [1982]—are not
widely known.

To explain these implications, let Σ̂nr
be an approximation for Σ (4.1), which

is of arbitrary accuracy—i.e. the models are almost equal in terms of input to
output behaviour. Then, the result by Doyle [1978] states that an H2 optimal

controller, which is designed for Σ̂nr
, might not be stabilising when it is applied

to the original model Σ (4.1). In other words, an H2 optimal controller that is
designed on the basis of an (arbitrarily) accurate open-loop approximation could
destabilise the original model. This observation led to a search for control relevant
order reduction techniques, which can be categorised into frequency weighted and
closed-loop approaches.

Frequency weighted approaches—as discussed by Obinata and Anderson [2001], God-
dard [1995], Varga and Anderson [2001] and by Wortelboer and Bosgra [1992]—are
an extension to open-loop model order reduction. These methods utilise a weighting
function on the inputs and output of Σ (4.1) to—during model order reduction—
emphasise the frequency regions that are important from a control perspective.

It has been shown that these techniques perform well in practice. However, the
objectives for the frequency weights are often conflicting, as explained in more detail
by Obinata and Anderson [2001, Ch. 3]. For example, a frequency weight that is
designed to obtain a stable closed-loop model might severely reduce performance
and vice versa. The performance that can be obtained with type of technique is
therefore heavily reliant on the type of application and the expertise of an engineer.

Closed-loop approaches, on the other hand, consider the closed-loop interconnec-
tion between the model and a controller. Linear Quadratic Gaussian (LQG) bal-
anced truncation, as introduced by Jonckheere and Silverman [1983], was among
the first of these methods. This technique considers a full order LQG or H2 optimal
controller connected to a model, in order to determine what states of the model
and/or controller are important in the interconnection. This approach has been an
inspiration for numerous techniques; see, for example the work by Mustafa [1990],
El-Zobaidi and Jaimoukha [1998], Opmeer et al. [2005] and by Choroszucha and
Sun [2017].
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For several practical examples, it has also been shown that these closed-loop
techniques perform relatively well. Furthermore, Wortelboer [1994] created the
weighted order reduction approach, which is a combined frequency weighted and
closed-loop order reduction technique. Five years later, Wortelboer et al. [1999]
demonstrated its potential on an industrial example as well.

4.1.3 Direct Methods

Direct methods aim at avoiding the intermediate model or controller reduction
step. Instead, the low order controller is designed directly for a given high order
model.

With classical PID controller designs as mentioned in section 1.2.3, the structure
of the controller—and therefore the order—is typically fixed. The problem of op-
timising closed-loop performance with such a controller by appropriate selection
of the controller parameters, which is called controller-tuning, can therefore be re-
garded as a direct method. This problem was first addressed more than 75 years
ago by Ziegler et al. [1942]. Nevertheless, it is still relevant today and modern
approaches such as the recent work by Grimholt and Skogestad [2018], utilise a
numerical optimisation algorithm to select the controller parameters.

These controller-tuning methods are often easy to apply and therefore appealing
to industry. However, the underlying theory is developed for SISO systems, which
implies that a high order MIMO controller might still be obtained if such a PID
tuning technique is applied to all output to input channels of a MIMO system.
On the other hand, the performance of such a controller might be severely limited
when it is only considered to add a controller between certain inputs and outputs.

A second branch within the controller-tuning methods is called direct data-driven
control design, which aims at optimising the controller parameters on the basis of
data. One of these techniques is called virtual reference feedback tuning and was
introduced by Campi et al. [2002]. With this approach, the controller parame-
ters are optimised to achieve a given “desired” closed-loop transfer function. The
problem of designing an appropriate experiment for this technique has been ad-
dressed by Formentin et al. [2012b] and several other extensions, such as the work
by Formentin et al. [2012a], have been considered. A similar problem is, however,
observed for MIMO systems and it is still unclear how to appropriately select the
desired closed-loop transfer function.

The final branch of methods that will be discussed, encompasses the so-called
fixed order optimisation techniques. These techniques—as discussed in more detail
by Hol [2006] and by Hilhorst [2015]—directly formulate Problem 4.1 as a numerical
optimisation problem. It is, however, important to note that such an optimisation
problem is non-smooth and non-convex in general, which implies that only a locally
optimal controller can be found on the basis of some—often randomly chosen—
initial controller.

One of these techniques is implemented in the H∞-H2 Fixed Order Optimisation
HIFOO toolbox, which is developed by Arzelier et al. [2009, 2011]. Currently,
this toolbox can be applied to models with more than 1, 000 states. However, the
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controller can typically contain at most 20 states when a random initialisation is
chosen for the algorithm. It is important to note that recent results by Benner
et al. [2018] have reduced the computational time for HIFOO by combining the
approach with MOR.

4.1.4 Chapter Outline

In this chapter we will investigate the problem of constructing a constrained order
controller that maximises closed-loop H2 performance for a given LTI model of the
form Σ (4.1). For the purpose of designing such a controller, in section 4.2 we will
first investigate the following existing control relevant order reduction techniques:

• open-loop balanced truncation (BT) for MOR.
• open-loop balanced truncation for COR.
• Linear Quadratic Gaussian balanced truncation (LQG-BT).
• weighted order reduction (WOR).

Furthermore, the performance of these methods is analysed on a practical example.

This example will demonstrate that the considered open-loop and closed-loop order
reduction techniques do not necessarily perform well in situations where a measure-
ment feedback controller with high gain is used. The non-optimality of open-loop
order reduction methods in terms of constrained order controller design is there-
fore directly observed in a practical situation. It is, however, never shown that
closed-loop order reduction techniques are non-optimal, which will be established
in section 4.3 by means of an example.

A control relevant truncation algorithm is proposed in section 4.4 to improve the
existing open-loop and closed-loop order reduction methods. It is, in addition,
shown that this new algorithm can be used to significantly improve closed-loop H2

performance for the practical example. Especially, if it is combined with a fixed
order optimisation technique such as HIFOO, which is discussed in section 4.5

The conclusions and future work are discussed in chapter 7.

4.2 Balancing-Based Order Reduction Techniques
for Control

All order reduction techniques that are considered in this chapter are balancing-
based and consist of two steps. First, a state transformation is applied to the model
or controller that—in some sense— orders the model (or controller) states from
most important to least important. Then, a model (or controller) of reduced order
is obtained by removing the least important states. We will start by discussing
how these states are removed.
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4.2.1 Truncation and Singular Perturbation

To explain how the states of a model or controller are removed, let us consider a
model of the form

Σs =

{
ẋ(t) =Ax(t) +Bu(t)

y(t) =Cx(t) +Du(t),
(4.4)

with vector signals x(t), u(t) and y(t) that represent the state, input and output.
These signals assume values in finite-dimensional vector spaces X = Rnx , U = Rnu

and Y = Rny , respectively. The dynamical relation between the signals is described
by real-valued matrices A, B, C and D of appropriate dimension.

The states of Σs (4.4) are, as explained above, first ordered from most to least
important with balancing-based approaches. On the basis of such an ordering, we

can partition the states of Σs (4.4) as x(t) =

(
x1(t)
x2(t)

)
, where x1(t) ∈ Rnr contains

the nr most important states and x2(t) ∈ Rnx−nr the nx − nr least important
states, to obtain a partitioned model

Σs,p =



(
ẋ1(t)

ẋ2(t)

)
=

(
A11 A12

A21 A22

)(
x1(t)

x2(t)

)
+

(
B1

B2

)
u(t)

y(t) =
(
C1 C2

)(x1(t)

x2(t)

)
+ Du(t).

(4.5)

A low order (approximate) model for Σs (4.4) is then constructed by removing
the states x2(t). This can, for example, be achieved by imposing the constraint
x2(t) = 0, or by imposing the constraint ẋ2(t) = 0.

Truncation

The method of imposing x2(t) = 0 to construct a reduced order (approximate)
model is called truncation. A model of order nr is obtained with this method,
which is described in terms of the original partitioned model as

Σ̂s,nr =

{
ẋ1(t) =A11x1(t) +B1u(t)

y(t) = C1x1(t) + Du(t).
(4.6)

By utilising truncation, the transfer function of the reduced order model will match
the transfer function of the original model at s = ∞, which is illustrated in fig-
ure 4.2. In other words, let Γs(s) and Γ̂s,nr

be the transfer functions for Σs (4.4)

and Σ̂s,nr
(4.6), respectively. We then get that Γs(∞) = Γ̂s,nr

(∞).

Singular Perturbation

The second method of imposing ẋ2(t) = 0 to construct a reduced order (approxi-
mate) model is called singular perturbation. A model of order nr is—when A22 is
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nonsingular—described in terms of the original partitioned model as

Σ̂s,pert,nr
=

ẋ1(t) =
(
A11 −A12A

−1
22 A21

)
x1(t) +

(
B1 −A12A

−1
22 B2

)
u(t)

y(t) =
(
C1 − C2A

−1
22 A21

)
x1(t) +

(
D − C2A

−1
22 B2

)
u(t).

(4.7)
The transfer function of this reduced order model will, in contrast with trunca-
tion, match the transfer function of the original model at s = 0, which is, again,
illustrated in figure 4.2. In other words, let Γs(s) and Γ̂s,pert,nr be the trans-

fer functions for Σs (4.4) and Σ̂s,pert,nr
(4.7), respectively. We then get that

Γs(0) = Γ̂s,pert,nr
(0).
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Figure 4.2: The frequency response of a full order model and two reduced order
models that are obtained with truncation and singular perturbation.

Truncation for Constrained Order H2-Admissible Controller Design

Now, let us investigate how these methods can be used to construct a reduced order
controller.

With MOR for control—according to path 1 in figure 4.1—the states of a model of

the form Σ (4.1) are ordered and partitioned as x(t) =

(
x1(t)
x2(t)

)
, with x1(t) ∈ Rnr

and x2(t) ∈ Rnx−nr . A reduced order (approximate) model of order nr is therefore
in a similar fashion obtained by applying truncation or singular perturbation to
this partitioned model.
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If truncation is used, the reduced order model is mathematically described as

Σ̂nr =


ẋ1(t) =A11x1(t) + Bu1u(t) + Bw1w(t)

y(t) =Cy1x1(t) +Dwyw(t)

y(t) =Cz1x1(t) +Duzu(t).

(4.8)

Furthermore, for singular perturbation the reduced order model is—when A22 is
nonsingular—of the form

Σ̂pert,nr
=



ẋ1(t) =
(
A11 −A12A

−1
22 A21

)
x1(t) +

(
Bu1 −A12A

−1
22 Bu2

)
u(t)

+
(
Bw1 −A12A

−1
22 Bw2

)
w(t)

y(t) =
(
Cy1 − Cy2A

−1
22 A21

)
x1(t) +

(
−Cy2A

−1
22 Bu2

)
u(t)

+
(
Dwy − Cy2A

−1
22 Bw2

)
w(t)

z(t) =
(
Cz1 − Cz2A−1

22 A21

)
x1(t) +

(
Duz − Cz2A−1

22 Bu2

)
u(t)

+
(
−Cz2A−1

22 Bw2

)
w(t).

(4.9)

However, it can be shown that singular perturbation cannot, in general, be consid-
ered for the purpose of designing a reduced order H2-admissible controller for the
original model Σ (4.1).

Lemma 4.1 Consider a model Σ (4.1) that satisfies assumption 4.1 and which

contains a partitioned state x(t) =

(
x1(t)
x2(t)

)
, with x1(t) ∈ Rnr and x2(t) ∈ Rnx−nr .

Furthermore, let Σ̂pert,nr (4.9) be a reduced order (approximate) model for Σ (4.1)
that is obtained with singular perturbation.

Then, any H2-admissible controller for Σ̂pert,nr
(4.9) can only be H2-admissible for

Σ (4.1) if Cz2A
−1
22 Bw2 = 0.

Proof: An H2-admissible controller for Σ (4.1) must, under assumption 4.1,
satisfy N = 0. It therefore suffices to show that any H2-admissible controller for
Σ̂pert,nr (4.9) will only satisfy N = 0 if Cz2A

−1
22 Bw2 = 0, which follows directly

from Definition 2.17. �

For COR—according to path 2 in figure 4.1—it is important to note that a con-
troller is essentially a model of the form Σs (4.4) with input y(t) and output u(t).
The state of the controller Σc,nc

(4.2) can therefore also be ordered and parti-

tioned as xc(t) =

(
xc1(t)
xc2(t)

)
, with xc1(t) ∈ Rnr and xc2(t) ∈ Rnc−nr , to obtain a

partitioned controller

Σc,nc,p =



(
ẋc1(t)

ẋc2(t)

)
=

(
J11 J12

J21 J22

)(
xc1(t)

xc2(t)

)
+

(
K1

K2

)
y(t)

u(t) =
(
M1 M2

)(xc1(t)

xc2(t)

)
+ Ny(t).

(4.10)
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If truncation is applied to a controller, the reduced order controller is mathemati-
cally described as

Σ̂c,nr =

{
ẋc1(t) = J11xc1(t) +K1y(t)

u(t) =M1xc1(t) + Ny(t).
(4.11)

Furthermore, for singular perturbation the reduced order controller is—when J22

is nonsingular—of the form

Σ̂c,pert,nr
=

ẋc1(t) =
(
J11 − J12J

−1
22 J21

)
xc1(t) +

(
K1 − J12J

−1
22 K2

)
y(t)

u(t) =
(
M1 −M2J

−1
22 J21

)
xc1(t) +

(
N −M2J

−1
22 K2

)
y(t).

(4.12)

In a similar fashion to MOR, it can be shown for COR that singular perturbation
cannot, in general, be considered for the purpose of designing a reduced order
H2-admissible controller for the model Σ (4.1).

Lemma 4.2 Consider an H2-admissible controller Σc,nc (4.2) for the model Σ (4.1)
that satisfies assumption 4.1. Let the controller state be partitioned as

xc(t) =

(
xc1(t)
xc2(t)

)
, with xc1(t) ∈ Rnr and xc2(t) ∈ Rnc−nr .

Furthermore, let Σ̂c,pert,nr
(4.12) be a reduced order controller that is obtained with

singular perturbation.

Then, the controller Σ̂c,pert,nr (4.12) can only be H2-admissible for Σ (4.1) if
M2J

−1
22 K2 = 0.

Proof: An H2-admissible controller of the form Σc,nc (4.2) for Σ (4.1) must,

under assumption 4.1, satisfy N = 0. Similarly, Σ̂c,pert,nr
(4.12) can only be H2

admissible for Σ (4.1) if N −M2J
−1
22 K2 = 0, which completes the proof. �

Remark 4.1 For both MOR and COR, we will therefore only consider truncation
in this chapter.

4.2.2 Open-loop Balancing

An introduction to Open-Loop Balancing

Now, let us introduce a state transformation that—in some sense—orders the states
of Σs (4.4) from most important to least important. With open-loop balancing this
ordering is based on the input to output behaviour of the model, which is quantified
using the reachability and observability Gramians as introduced in section 2.2.3.
For a more complete discussion on balancing, please consider the work by Antoulas
[2005, ch. 7]
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As explained in chapter 2, the Gramians of an internally stable model Σ (4.1) are
the unique positive semidefinite solutions to the following Lyapunov equations:

P(A,B) � 0 such that AP + PA> +BB> = 0, (4.13)

Q(C,A) � 0 such that A>Q+QA+ C>C = 0. (4.14)

Furthermore, these Gramians satisfy P � 0 and Q � 0 if and only if the internally
stable model Σs (4.4) is reachable and observable, respectively.

Let us now consider a model Σs (4.4) that is internally stable, reachable and
observable—which therefore is equivalent to assuming that the Gramians are pos-
itive definite. Then there exists a state transformation x̄(t) = Tbx(t) that brings
Σs (4.4) into the so-called balanced form Σ̄b, with matrices Āb = TbAT

−1
b , B̄b =

TbB, C̄b = CT−1
b and D̄b = D. The Gramians are in this specific form equal, di-

agonal and the diagonal entries are ordered. I.e. the Gramians of Σ̄b are described
by

P̄b = Q̄b = P(Āb, B̄b) = Q(C̄b, Āb) =

σ1 · · · 0
...

. . .
...

0 · · · σnx

 ,

with ordering σ1 ≥ σ2 ≥ · · · ≥ σnx
> 0. This is discussed in more detail by An-

toulas [2005, Sec. 7.1].

The values σi are called Hankel singular values. Each Hankel singular value σi is
an indication for the relevance of the state xi(t) in terms of the input to output
behaviour of the balanced model Σ̄b. This can, for example, be observed from the
(squared) H2 norm:

∥∥Σ̄b
∥∥2

H2
= tr(C̄bP̄bC̄>b ) =

nx∑
i=1

σi
∥∥C̄bi∥∥2

2

= tr(B̄>b Q̄bB̄b) =

nx∑
i=1

σi
∥∥B̄>bi∥∥2

2
,

where B̄bi and C̄bi denote the ith row and column of B̄b and C̄b, respectively.

From this expression we can see that a state, which corresponds to a value σi of
small magnitude, will have a small contribution towards the H2 norm of the model.

Furthermore, there exists a well-known error bound when truncation is applied to
Σ̄b in order to obtain an (approximate) model Σ̂b of order nr. Specifically, the error

between Σ̄b and Σ̂b—which is denoted by Σ̄b − Σ̂b—is for distinct Hankel singular
values bounded by∥∥∥Σs (4.4)− Σ̂b

∥∥∥
H∞

=
∥∥∥Σ̄b − Σ̂b

∥∥∥
H∞
≤ 2

nx∑
i=r+1

σi,

as explained by Antoulas [2005, Thm. 7.10]. We can therefore observe that the

reduced order approximation Σ̂b will accurately describe the input to output be-
haviour of Σs (4.4) when

∑nx

i=r+1 σi is small in magnitude.
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Remark 4.2 It is important to mention that the norm
∥∥∥Σ̄b − Σ̂b

∥∥∥
H∞

is actually

bounded by twice the sum of the (not necessarily smallest) Hankel singular values
σi that correspond to the truncated states—as explained in more detail by Antoulas
[2005, Thm. 7.10]. The typical decision to truncate the states corresponding to the
smallest values σi—and to introduce the ordering σ1 ≥ σ2 ≥ · · · ≥ σnx

> 0—is
therefore a direct result of this bound.

Open-Loop Balancing of Models that are not Stable, Reachable and
Observable

Under assumption 4.1 it is not guaranteed that the model Σ (4.1) or the controller
Σc,nc

(4.2) is internally stable, reachable and observable. For this reason, let us in-
vestigate balanced truncation for a model of the form Σs (4.4) that is not internally
stable, reachable and observable.

Firstly, any state of Σs (4.4) that is not reachable or observable will have no
contribution toward the input to output behaviour of Σs (4.4)—as explained in
section 2.2.4. These states can therefore simply be removed from an open-loop
model order reduction perspective.

Secondly, the Gramians of the model Σs (4.4) are not defined when it is not in-
ternally stable. As explained by Chen et al. [2004, sec. 4.2], however, for any
unstable model there exists a state transformation Ts,u that brings Σs (4.4) into
the following form:

Σs,u =



(
ẋu(t)

ẋs(t)

)
=

(
Au 0

0 As

)(
xu(t)

xs(t)

)
+

(
Bu

Bs

)
u(t)

y(t) =
(
Cu Cs

)(xu(t)

xs(t)

)
+ Du(t) ,

(4.15)

with λ(As) ⊂ C− and λ(Au)∩C− = ∅; and with the state partitioning X = Xu⊕Xs
such that Xu = Rnx,u and Xs = Rnx,s .

Now—provided that Au has no eigenvalues on the imaginary axis—one can define
the (partial) Gramians Pu = P(−Au, Bu) and Qu = Q(Cu,−Au) as discussed
in more detail by Zhou et al. [1999] and by Antoulas [2005, sec.7.6] in order to
balance the anti-stable sub-model of Σs,u (4.15)—i.e. the triple (Au, Bu, Cu). From
a control perspective, however, it can be argued that unstable dynamics will always
require careful attention and it will therefore not be considered to truncate any state
within xu(t).

In a similar fashion, the (partial) Gramians Ps = P(As, Bs) and Qs = Q(Cs, As)
are defined for the stable sub-model of Σs,u (4.15)—i.e. for the triple (As, Bs, Cs).
Furthermore, the Gramians Ps, Qs are positive definite when the unreachable and
unobservable states are removed before the construction of Σs,u (4.15); the stable
dynamics can therefore be balanced and truncated in order to obtain a low order
approximate model.
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Open-Loop Balanced Model order Reduction for Control

A controller is essentially a model of the form Σs (4.4) with input y(t) and out-
put u(t). For the purpose of open-loop COR, we can therefore directly apply the
open-loop balanced truncation method as explained above to a controller of the
from Σc,nc

(4.2). It is, in addition, important to note that the unreachable and
unobservable states of a controller will not contribute towards the closed-loop inter-
connection. These can therefore be removed from the controller without affecting
closed-loop performance or stability.

With open-loop MOR for control, the aim is to utilise the balancing approach as
described above to construct a reduced order model for Σ (4.1). For this model,
the reachability of states is quantified by the Gramians Pw = P(A,Bw) and Pu =
P(A,Bu), while observability is quantified by the Gramians Qy = Q(Cy, A) and
Qz = Q(Cz, A).

The model Σ (4.1) is therefore only balanced when all four Gramians are equal
and diagonal. It is, however, not guaranteed that such a balanced representation
exists. At the same time it is unwise to consider only one reachability and one
observability Gramian. For example, a state that is not reachable through w(t)
might be reachable through u(t) and therefore important to create an internally
stable closed-loop interconnection.

For this reason, let us define the weighted model

Σw =


ẋ(t) = Ax(t) +

(
αiBu (1− αi)Bw

)
u′(t)

y′(t) =

(
αoCy

(1− αo)Cz

)
x(t) +

(
0 (1− αi)αoDwy

αi(1− αo)Duz

)
u′(t),

(4.16)
with input weight 0 ≤ αi ≤ 1 and output weight 0 ≤ αo ≤ 1.

Σw (4.16) is called a weighted model, because the Gramians are a (quadratically)
described in terms of the Gramians of Σ (4.1), which is shown in the following
proposition.

Proposition 4.3 Consider the weights 0 ≤ αi ≤ 1, 0 ≤ αo ≤ 1 and the weighted
model Σw (4.16).

We then get that:

P
(
A,
(
αiBu (1− αi)Bw

))
= α2

iP(A,Bu) + (1− αi)2P(A,Bw)

Q
((

αoCy
(1− αo)Cz

)
, A

)
= α2

oP(Cy, A) + (1− αo)2P(Cz, A)

Proof: This property can directly be observed from the definition of a Gramian.
For the reachability Gramian we get that
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P(A,
(
αiBu (1− αi)Bw

)
) =

∫ ∞
t=0

eAt(α2
iBuB

>
u + (1− αi)2BwB

>
w )eA

>tdt

= α2
i

∫ ∞
t=0

eAtBuB
>
u e

A>tdt+ (1− αi)2

∫ ∞
t=0

eAtBwB
>
w e

A>tdt

= α2
iP(A,Bu) + (1− αi)2P(A,Bw).

This can also be shown for the observability Gramian, when the duality property
Q(C,A) = P(A>, C>) is used. �

The reachability and observability properties of this weighted model Σw (4.16) can
now be used to sort the states of Σ (4.1) from most to least important. In other
words, the state transformation that is used to balance Σw (4.16)—for some αi and
αo—is applied to Σ (4.1). Truncation is then applied to this transformed model in

order to obtain a reduced model of the from Σ̂nr
(4.8). Finally, a reduced order

H2 optimal controller is designed for Σ̂nr (4.8), while the weights αi and αo can
be regarded as tuning parameters for the order reduction procedure.

4.2.3 Linear Quadratic Gaussian Balancing

With LQG-BT as introduced by Jonckheere and Silverman [1983], the closed-loop
interconnection between the H2 optimal controller as derived in section 2.4 and a
model of the form Σ (4.1) is considered. This strictly proper controller is described
by

Σc,sp =

{
˙̃x(t) =

(
A+BuF + LCy

)
x̃(t)− Ly(t)

u(t) = Fx̃(t),
(4.17)

with parameters F : X → U and L : Y → X .

Interconnecting Σ (4.1) with Σc,sp (4.17) yields—when a state observation error
e(t) = x(t)− x̃(t) is defined—the closed-loop model

Σcl,sp =



(
ẋ(t)

ė(t)

)
=

(
A+BuF −BuF

0 A+ LCy

)(
x(t)

e(t)

)
+

(
Bw

Bw + LDwy

)
w(t)

z(t) =
(
Cz +DuzF −DuzF

)(x(t)

e(t)

)
+
(

0
)
w(t).

(4.18)

For such a controller, the following solution to the H2 optimal control problem has
been derived in section 2.4.

Corollary 4.4 Consider a model Σ (4.1) that satisfies assumption 4.1 and let
P+ � 0 and Q+ � 0 be the unique stabilising solutions to the following AREs:

A>P + PA+ C>z Cz − (PBu + C>z Duz)(D
>
uzDuz)

−1(PBu + C>z Duz)
> = 0,

(4.19)

AQ+QA> +BwB
>
w − (QC>y +B>wDwy)(DwyD

>
wy)−1(QC>y +B>wDwy)> = 0.

(4.20)



116 Chapter 4. Control Relevant Order Reduction

Then for all nc ≥ nx, Problem 4.1 is solved by a controller of the form Σc,sp (4.17)
if the design parameters are chosen as

F = −(D>uzDuz)
−1(B>u P

+ +D>uzCz),

L = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1.

Proof: The proof can be found in section 2.4. �

Then, let us consider a model Σ (4.1) for which P+ and Q+ as defined above are
positive definite—i.e. P+ � 0 andQ+ � 0. Then there exists a state transformation
x̄(t) = TH2,bx(t) that brings Σ (4.1) into the so-called LQG, or H2, balanced form
Σ̄H2,b. In this form, the unique stabilising solutions to the AREs in (4.19) and (4.20)
are equal, diagonal and the diagonal entries are ordered. I.e. these solutions are
for Σ̄H2,b described by

P̄+
H2,b

= Q̄+
H2,b

=

µ1 · · · 0
...

. . .
...

0 · · · µnx

 ,

with ordering µ1 ≥ µ2 ≥ · · · ≥ µnx
> 0. This is discussed in more detail by Jonck-

heere and Silverman [1983].

The values µi are called LQG singular values. Each LQG singular value µi is
an indication for the relevance of the state xi(t) in closed-loop, when an H2 op-
timal controller is applied to Σ̄H2,b. To explain this, let the optimal closed-loop
interconnection of the form (4.18) be denoted by Σ?cl,sp.

Then, by observing from section 2.4 that∥∥∥Σ?cl,sp

∥∥∥2

H2

= tr(B>wP
+Bw) + tr(B>u P

+Q+P+Bu)

= tr(CzQ
+C>z ) + tr(CyQ

+P+Q+C>y ),

we can conclude for an LQG balanced model that∥∥∥Σ?cl,sp

∥∥∥2

H2

=

nx∑
i=1

µi
∥∥B̄>wi∥∥2

2
+ µ3

i

∥∥B̄>ui∥∥2

2

=

nx∑
i=1

µi
∥∥C̄zi∥∥2

2
+ µ3

i

∥∥C̄yi∥∥2

2
,

where B̄ui, B̄wi are the ith rows and C̄yi, C̄zi the ith columns of B̄u = TH2,bBu,
B̄w = TH2,bBw, C̄y = CyT

−1
H2,b

and C̄z = CzT
−1
H2,b

, respectively.

From this expression we can see that the states corresponding to the values µi that
are small in magnitude, will in general have a small contribution towards the H2

norm of Σ?cl,sp.

An interesting property for LQG-BT is that paths 1 and 2 in figure 4.1 become com-
mutative. For LQG-BT it is therefore not necessary to distinguish between MOR
and COR, because the resulting controllers are equal. This is formally established
in the following lemma.
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Lemma 4.5 Consider a model Σ (4.1) that satisfies assumption 4.1, with the fol-
lowing partitioned state and stabilising solutions to the AREs in (4.19) and (4.20):

x(t) =

(
x1(t)
x2(t)

)
, P+ =

(
P+

1 0
0 P+

2

)
, Q+ =

(
Q+

1 0
0 Q+

2

)
,

for P+
1 , Q

+
1 ∈ Rnr×nr .

Furthermore, let Σ?c,sp(Σ (4.1)) and Σ?c,sp(Σ̂nr
(4.8)) denote the H2 optimal con-

trollers of the form Σc,sp (4.17) for Σ (4.1) and the truncated model Σ̂nr
(4.8),

respectively; and let Σ̂?c,sp(Σ (4.1)) denote Σ?c,sp(Σ (4.1)) truncated to order nr.

Then

Σ?c,sp(Σ̂nr
(4.8)) = Σ̂?c,sp(Σ (4.1)).

Proof: This is proven in Jonckheere and Silverman [1983, Sec. II]. �

Remark 4.3 The stabilising solutions to the AREs in (4.19) and (4.20) are pos-
itive definite in most practical applications. Nevertheless, this is in general not
guaranteed for a given model Σ (4.1) that satisfies assumption 4.1. In order to
overcome this problem it can be considered to truncate the states corresponding to
the subspace ker(P+)+ker(Q+) before bringing the model to the LQG balanced form.
The truncation of these states does, however, not guarantee that an H2 optimal—or
an internally stabilising—controller is constructed for the original model.

4.2.4 Weighted Order Reduction

With WOR as introduced by Wortelboer [1994], the closed-loop interconnection
between any internally stabilising controller of the form Σc,nc

(4.2) and the model
Σ (4.1) is considered. For H2-admissible controller design we—in this chapter—
consider a model that satisfies assumption 4.1, which implies that a strictly proper
controller must be used and the closed-loop interconnection is therefore described
by Σcl,nc,sp (4.3).

Remark 4.4 Please note that WOR is a combined frequency weighted and closed-
loop order reduction technique. The use of frequency weights will, however, not be
considered in this chapter.

Furthermore, WOR can be used for control relevant MOR and COR corresponding
to paths 1 and 2 in figure 4.1, respectively. Both approaches will now be presented.
However, we will only investigate the performance WOR, when it is applied for the
purpose of COR.
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For any H2-admissible controller, the closed-loop model Σcl,nc,sp (4.3) admits a
pair of closed-loop Gramians

Pcl = P
((

A BuM
KCy J

)
,

(
Bw

KDwy

))
=

(
PΣ PX
P>X PΣc

)
, (4.21)

Qcl = Q
((
Cz DuzM

)
,

(
A BuM

KCy J

))
=

(
QΣ QX
Q>X QΣc

)
, (4.22)

which are partitioned according to the model and controller states x(t) and xc(t),
respectively. I.e. PΣ,QΣ ∈ Rnx×nx , PX ,QX ∈ Rnx×nc and PΣc ,QΣc ∈ Rnc×nc .

Now, let us consider a closed-loop model for which the closed-loop Gramians Pcl
and Qcl as defined above are positive definite—i.e. Pcl � 0 and Qcl � 0. Then there
exists a state transformation that brings Σcl,sp (4.18) into its balanced form—i.e.
the closed-loop Gramians are equal, diagonal and the diagonal entries are ordered.

This balancing transformation will, however, “mix” the model and controller states.
As a result, the distinction between model and controller states is lost in the bal-
anced representation of the closed-loop model. Such a transformation does there-
fore not provide specific information about the (independent) relevance of model
states or controller states in closed-loop.

For MOR and COR it is, instead, required to consider a state transformation
that—in some sense—separately orders the model states and the controller states
from most to least important; but this transformation should not “mix” model
states with controller states. For this purpose, let us consider a closed-loop state
transformation of the form(

x̄wor(t)
x̄c,wor(t)

)
=

(
TΣ 0
0 TΣc

)(
x(t)
xc(t)

)
= Twor

(
x(t)
xc(t)

)
.

Now, if PΣ � 0 and QΣ � 0, then there exists a model state transformation
x̄wor(t) = TΣx(t) that brings the partial closed-loop Gramians PΣ and QΣ into
a balanced form. Furthermore, if PΣc

� 0 and QΣc
� 0, then there exists a

controller state transformation x̄c,wor(t) = TΣc
xc(t) that brings the partial closed-

loop Gramians PΣc
and QΣc

into a balanced form.

If we therefore consider a model Σ (4.1) and an internally stabilising controller
Σc,nc

(4.2) for which the closed-loop Gramians Pcl and Qcl as defined in (4.21) and
(4.22), respectively, satisfy PΣ � 0, QΣ � 0, PΣc

� 0 and QΣc
� 0. Then there

exists a state transformation xwor(t) = Tworx
cl,nc,sp(t) that brings Σcl,nc,sp (4.3)

into the so-called WOR-balanced form Σ̄cl,wor. In this specific form, the closed-loop
Gramians Pcl and Qcl as defined in (4.21) and (4.22), respectively, are described
by

P̄wor =



σcl,1 · · · 0 ? ? ?
...

. . .
... ? ? ?

0 · · · σcl,nx ? ? ?
? ? ? σc,cl,1 · · · 0

? ? ?
...

. . .
...

? ? ? 0 · · · σc,cl,nc

 ,
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Q̄wor =



σcl,1 · · · 0 ? ? ?
...

. . .
... ? ? ?

0 · · · σcl,nx
? ? ?

? ? ? σc,cl,1 · · · 0

? ? ?
...

. . .
...

? ? ? 0 · · · σc,cl,nc

 ,

with ordering σcl,1 ≥ σcl,2 ≥ · · · ≥ σcl,nx
> 0 and σc,cl,1 ≥ σc,cl,2 ≥ · · · ≥ σc,cl,nc

>
0. The values σcl,i and σc,cl,i are called WOR model and controller singular values,
respectively. This is discussed in more detail by Wortelboer et al. [1999].

Now, we can use the state transformation x̄wor(t) = TΣx(t) to bring the model
Σ (4.1) into the WOR balanced model form Σ̄wor. Each WOR model singular
value σcl,i is—similarly to the other methods—an indication for the relevance of
the model state x̄wor,i(t) in terms of the input to output behaviour of the WOR
balanced closed-loop model Σ̄cl,wor. It is therefore proposed to truncate the model
states of Σ̄wor that correspond to the WOR singular values σcl,i that are small in
magnitude.

Similarly, we can use the state transformation x̄c,wor(t) = TΣcxc(t) to bring the
controller Σc,nc

(4.2) into the WOR balanced controller form Σ̄c,nc,wor. Each WOR
controller singular value σc,cl,i is, again, an indication for the relevance of the con-
troller state x̄c,wor,i(t) in terms of the input to output behaviour of the WOR
balanced closed-loop model Σ̄cl,wor. It is therefore proposed to truncate the con-
troller states of Σ̄c,nc,wor that correspond to the WOR singular values σc,cl,i that
are small in magnitude.

Remark 4.5 For MOR it is required that the (partial) closed-loop Gramians PΣ

and QΣ as defined in (4.21) and (4.22), respectively, are positive definite; this holds
for most practical applications. Nevertheless, it is in general not guaranteed for
an arbitrary closed-loop interconnection of a model Σ (4.1) with an H2-admissible
controller Σc,nc (4.2). In order to overcome this problem, it can be considered to
truncate the model states corresponding to the subspace ker(PΣ) + ker(QΣ) before
bringing the model to the WOR balanced form.

Similarly, for COR it is required that the (partial) closed-loop Gramians PΣc
and

QΣc
as defined in (4.21) and (4.22), respectively, are positive definite. This is,

again, in general not guaranteed for an arbitrary closed-loop interconnection of a
model Σ (4.1) with an H2-admissible controller Σc,nc (4.2). In order to overcome
this problem, it can therefore be considered to truncate the controller states corre-
sponding to the subspace ker(PΣc

) + ker(QΣc
) before bringing the controller to the

WOR balanced form.

It must, however, be observed that ker(PΣc
) * ker(Pcl)) and ker(QΣc

) * ker(Qcl)),
which implies that the truncation of these controller states may directly impact
closed-loop stability and H2 performance.
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4.2.5 Performance Analysis on a Practical Example

Let us now investigate how well these four methods perform for the purpose of
designing a constrained order H2-admissible controller.

Case Study

As an example, a model for thermal conduction of a spatially discretised one di-
mensional bar that is attached to a heat-sink of constant temperature—as depicted
in figure 4.3—will be considered. This system is modelled as

Σ1 =



ẋ(t) = Ax(t) + ρBuu(t) +
(
B̃w 0

)
w(t)

y(t) = ρCyx(t) +
(

0 Iny

)
w(t)

z(t) =

(
C̃z

0

)
x(t) +

(
0

Inu

)
u(t)

(4.23)

and satisfies assumption 4.1 for ρ 6= 0.

Σ1 (4.23) contains 200 states which represent temperatures at given locations on the
bar. The matrix A is a tri-diagonal matrix that contains values −2.5 on the main
diagonal and values 1 on the first diagonals above and below the main diagonal,
which represent thermal conductivity and heat capacity parameters.

The control input u(t) represents actuators that are capable of heating and cooling
groups of 5 elements at a time. The model contains 39 control inputs, where column
i of Bu is given by Bui = enx

(5i−2, 5i+2). Please note that enx
(i, j) is an indicator

vector as introduced in section 2.1.

The state disturbances act on a single state at a time. The model contains 99 state
disturbances, where column i of B̃w is given by B̃wi = enx(2i, 2i). Similarly, the
model contains 61 measurements where row i of Cy is given by Cyi = e>nx

(7+3i, 7+

3i). The matrix C̃z contains 130 rows of uniformly distributed random numbers in
the interval [−0.01, 0.01]. The matrices Dwy and Duz are identity matrices.

Finally, observe that the matrices Bu and Cy are multiplied by a value ρ, which can
be regarded as a tuning parameter that affects the gain of an H2 optimal controller.
For example, a small value of ρ will result in a conservative “low gain” controller,
while a large value of ρ will result in a more aggressive “high gain” controller.

A low order controller of the form Σc,nc
(4.2) will be designed for Σ1 (4.23) by

utilising open-loop BT for MOR with αi = αo = 1
2 , open-loop BT for COR, LQG-

BT and WOR. For each method, truncation will be based on the magnitude of the
corresponding singular values. Furthermore, each low order controller is applied to
the full order model Σ1 (4.23) to determine its performance, which is measured in
the H2 norm of the closed-loop interconnection.

The performance for each method as a function of the controller order is shown
in figure 4.5 at the end of this chapter for a low gain situation with ρ = 10, a
moderate gain situation with ρ = 50, a high gain situation with ρ = 200 and an
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extremely high gain situation with ρ = 3000. Please note that a star is used in the
figure to indicate that the closed-loop interconnection of the low order controller
with Σ1 (4.23) is not internally stable.

x

u 
y 

w (t) (t)
(t)

i i

i

1 xi
Figure 4.3: A visualisation of Σ1 (4.23).

Desired Behaviour

Before commenting on the results for this example, let us first establish what should
ideally be achieved from the perspective of constrained order H2 optimal controller
design. I.e. we will first establish what properties are expected for a solution to
Problem 4.1.

Firstly, it is known that H2 optimal performance is obtained when a full order
controller—i.e. with nc = 200— is considered. Secondly, the open-loop H2 norm of
Σ1 (4.23) is obtained for nc = 0, because a strictly proper controller of order zero
is simply a zero gain; i.e. u(t) = 0.

Furthermore, the closed-loop H2 norm should ideally be non-increasing when nc
increases. In other words, an optimal constrained order controller cannot contain
states that reduce performance. Truncation of additional controller states should
therefore not lead to an improvement in closed-loop performance.

Finally, an increase in ρ indicates from a control perspective, that the control
inputs u(t) can become larger in magnitude and that the signal to noise ratio
for the measured outputs y(t) is reduced in magnitude. An increase in ρ should
therefore not reduce closed-loop performance when the controller order nc is fixed.

Actual Performance

For the low gain situation with ρ = 10 it is observed that open-loop BT for COR
and WOR both show the desired behaviour; it is, however, important to emphasise
that optimality is not implied by this observation. LQG-BT shows the desired
behaviour as well, but with a slight reduction in closed-loop performance. Finally,
BT for MOR only shows the desired behaviour for low controller orders nc ≤ 35
and performs worst on average.

For the moderate gain situation with ρ = 50 it is observed that only open-loop BT
for COR shows the desired behaviour. WOR does show the desired behaviour for
nc ≥ 75, but does not result in an internally stable closed-loop interconnection for



122 Chapter 4. Control Relevant Order Reduction

lower orders. LQG-BT shows again a lower performance than these methods, while
BT for MOR only shows the desired behaviour for low controller orders nc ≤ 35.

Finally, the desired behaviour is not observed with any method for the (extremely)
high gain situations with ρ = 200 and ρ = 3000. In particular, the low order con-
trollers will—for most orders—actually perform worse than the open-loop situation
without controller. BT for MOR does, however, show the desired behaviour for
low controller orders nc ≤ 35.

In can therefore be concluded that existing (control relevant) MOR and COR
methods will only result in a reasonable closed-loop H2 performance for relatively
low gain situations. For high gain situations—where optimal control will actually
be able to show its potential—none of the presented methods is able to consistently
perform better than not utilising any control. The importance of the main research
question in Chapter 1 is therefore directly observed in this example.

4.3 The Non-Optimality of Closed-Loop Order
Reduction for Constrained Order Control

In section 4.2.5 it has been shown that the considered open-loop and closed-loop
order reduction techniques do not necessarily perform well in high gain situations.
The non-optimality of open-loop order reduction methods for constrained order
controller design—as explained in section 4.1.2—is therefore directly observed from
a relatively simple example. In fact, these methods may provide controllers that
perform worse than the open-loop behaviour of the model.

It is, however, never established that the use of closed-loop order reduction for
constrained order controller design is non-optimal. This non-optimality will now
be demonstrated on the following model:

Σex =



(
ẋ1(t)

ẋ2(t)

)
=

(
−0.1 0

0 −0.5

)(
x1(t)

x2(t)

)
+

(
ρ 0

0 0.05

)
u(t) +

(
1 0 0 0

0 1 0 0

)
w(t)

y(t) =

(
ρ 0

0 0.05

)(
x1(t)

x2(t)

)
+

(
0 0 1 0

0 0 0 1

)
w(t)

z(t) =


1 0

0 1

0 0

0 0


(
x1(t)

x2(t)

)
+


0 0

0 0

1 0

0 1

u(t),

(4.24)
which satisfies assumption 4.1 for ρ 6= 0.

It must be noted that Σex (4.24) consists of two decoupled single-state models in
parallel; i.e. each state has its own inputs, outputs and the states do not interact.
An H2 (or H∞) optimal controller for Σex (4.24) can therefore be described by
two decoupled controllers in parallel as well. The removal of a state from such
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a controller is, as a consequence, equivalent to leaving the corresponding state of
Σex (4.24) uncontrolled.

Figure 4.4 shows the closed-loop H2 performance as function of ρ, if

• a full order H2 optimal controller is used.
• the state x1(t) is controlled—i.e. x̃2(t) is truncated from the controller.
• the state x2(t) is controlled—i.e. x̃1(t) is truncated from the controller.
• truncation is based on the LQG singular values.
• truncation is based on the WOR singular values.

From this figure it can be observed that the optimal closed-loop performance is
almost completely achieved by only controlling state x1(t). This is according to
intuition, because the state x1(t) is much easier to control through u(t) and easier
to observe in y(t) than the state x2(t) for ρ� 0.05.

Viewed as function of ρ, the closed-loop H2 performance for a controller that is
designed with LQG-BT and WOR is shown as the red and blue lines in figure 4.4.
From this figure, it can be observed that the former only achieves near optimal
performance for ρ ≤ 0.9, while the latter achieves near optimal performance for
ρ ≤ 202. Therefore, the example clearly shows that both methods become non-
optimal when ρ is sufficiently large in magnitude.

The non-optimality of LQG-BT can directly be observed from the stabilising solu-
tions to the AREs, which are described by

P+ = Q+ =

(
1−
√

100ρ2+1

10ρ2 0

0 0.998

)
.

Thus, Σex (4.24) is an LQG balanced model, provided that the states are ordered
according to the magnitude of the diagonal entries within P+ and Q+. Now it

is easy to see that
1−
√

100ρ2+1

10ρ2 < 0.998 for ρ > 0.9, which implies that x1(t) is

truncated rather than x2(t).

For WOR it can, in a similar fashion, be observed that x1(t) is truncated for ρ > 202
when the Gramians of the closed-loop interconnection are expressed as a function
of ρ. Therefore, the magnitude of both the LQG and WOR singular values does
not—in terms of maximising closed-loop performance—determine the relevance of
states.

This example has implications that go beyond these two closed-loop order reduction
techniques. Namely, an H2 (or H∞) optimal controller will, for increasing values
of ρ, mainly aim at reducing the relevance of the state x1(t) in closed-loop. Any
closed-loop order reduction technique will therefore truncate the state x1(t) when
ρ becomes sufficiently large, while near optimal closed-loop performance can only
be achieved by controlling this state.

We can therefore conclude that the relevance of a state in closed-loop does not
determine how important the state is for control. When constrained order controller
design is considered, closed-loop order reduction techniques will therefore be non-
optimal in general.
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Figure 4.4: The H2 performance of several controllers for Σex (4.24) as a function
of ρ.

4.4 Proposed Improvements

It is now established that neither the relevance of a state in open-loop, nor in closed-
loop determines the closed-loop performance loss if such a state is truncated. In
order to overcome this problem, let us define a measure for this performance loss.

Definition 4.6 Consider an H2-admissible controller Σc,nc
(4.2) for Σ (4.1), let

Xc denote a subset of controller states—e.g. Xc = {xc1, xc3, · · · , xc9}—and let
ΣXc
c,nc

denote Σc,nc
(4.2) for which the states Xc are truncated. Furthermore, let

Σcl,nc,sp (4.3) and ΣXc

cl,nc,sp
denote the closed-loop models that are obtained by ap-

plying Σc,nc (4.2) and ΣXc
c,nc

to Σ (4.1), respectively.

Then the “H2 performance loss” due to truncation of the states Xc from Σc,nc
(4.2)
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is defined as

δH2
(Σ (4.1), Σc,nc

(4.2),Xc) =
∥∥∥ΣXc

cl,nc,sp

∥∥∥
H2

− ‖Σcl,nc,sp (4.3)‖H2
if ΣXc

c,nc
is H2-admissible for Σ (4.1)

∞ otherwise.

To maximise the closed-loop H2 performance for a given controller order, it is
desired to minimise δH2 over all subsets Xc of a given cardinality, which is a com-
binatorial optimisation problem. In section 3.2 it is explained that a greedy search
algorithm can, under certain conditions, be used to efficiently find an approximate
solution to this type of problem. Specifically, there is an upper-bound on the de-
gree of non-optimality for a solution that is obtained with a greedy search, if the
function is monotone decreasing and supermodular. In the following theorem it is
shown that δH2 does not, in general, have these properties.

Theorem 4.7 Consider an H2-admissible controller Σc,nc (4.2) for Σ (4.1) and
let Xci, Xcj be non-empty subsets of controller states. Then

(a) Xci∩Xcj = ∅; δH2
(Σ (4.1), Σc,nc

(4.2),Xci)+δH2
(Σ (4.1), Σc,nc

(4.2),Xcj)
≤ δH2

(Σ (4.1), Σc,nc
(4.2),Xci ∪ Xcj),

; δH2(Σ (4.1), Σc,nc (4.2),Xci)+δH2(Σ (4.1), Σc,nc (4.2),Xcj)
≥ δH2(Σ (4.1), Σc,nc (4.2),Xci ∪ Xcj).

(b) Xci ⊂ Xcj ; δH2
(Σ (4.1), Σc,nc

(4.2),Xci)) ≤ δH2
(Σ (4.1), Σc,nc

(4.2),Xcj).

Proof: The proof will use Σ1 (4.23) as discussed above as a counter example.

(a) Consider—for Σ1 (4.23) with ρ = 200—open-loop BT for COR and consider the
subsets of controller states {xc,i}, {xc,i+1, · · · , xc,200}. Then, the first inequality
is observed by analysing δH2 for these subsets with i = 82 and the second with
i = 81.

(ii) For Σ1 (4.23) it can also be observed that truncation of an additional state
could improve performance with all approaches. �

The loss of closed-loop H2 performance can therefore only be minimised by con-
sidering all possible subsets Xc of a given cardinality, which is computationally
infeasible for high order models. To avoid solving this computationally expensive
problem, a new truncation algorithm as described in Algorithm 4.1 is proposed.
It is, however, important to emphasise that this algorithm utilises a greedy search
and therefore does not provide explicit guarantees on optimality.

In the first phase of Algorithm 4.1, the truncation procedure as described in sec-
tion 4.2 is considered. The aim of this phase is to remove states without substan-
tially affecting closed-loop performance—i.e. δH2

should be below a given threshold
εi. Please note that for εi = 0, there will be no performance loss as a result of this
phase.

The second phase of the algorithm utilises a greedy search to reduce the perfor-
mance loss as a result of truncation. In each step of this search, the loss of H2
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performance δi is calculated for each controller state {xci} and the state corre-
sponding to the smallest loss of performance is truncated. A controller of the
desired order is therefore obtained by subsequently applying these steps.

Remark 4.6 Please note that Algorithm 4.1 is applicable to any balancing-based
order reduction technique. It is therefore assumed that all frequency weighted ex-
tensions to the considered order reduction methods can benefit from this algorithm.

Algorithm 4.1 Greedy Cost Minimisation

1: procedure Greedymin(Σ,Σc,nc
, nr, εi)

2: Perform a line search to find a smallest value k such that
3: δ(Σ,Σc,nc ,Xc0) ≤ εi for Xc0 = {xck, xck+1, · · · , xnc}
4: Σc,nc,1 = ΣXc0

c,nc

5: for i = 1, 2, · · · , np − k − nr do
6: Set ni as the order of Σc,nc,i

7: for j = 1, 2, · · · , ni do
8: δj = δH2(Σ,Σc,nc,i, {xcj})
9: end for

10: Xc = {xck}, with k such that δk ≤ δl for all l 6= k
11: Σc,nc,i+1 = ΣXc

c,nc,i

12: end for
13: return Σ̂c,nr

= Σc,nc,i+1

14: end procedure

4.4.1 Improvements for the Practical Example

Let us now investigate what improvements can be achieved with the greedy trun-
cation algorithm by applying it to the case study in section 4.2.5. First, the value
εi = 0 is considered to determine the best achievable closed-loop H2 performance
of the algorithm in combination with open-loop BT for COR, LQG-BT and WOR;
the results are shown in figure 4.6 at the end of this chapter. It is important to note
that open-loop BT for MOR is not considered; the reason for this will be explained
below.

Figure 4.6 shows that an improvement is achieved for all methods in the low,
moderate and (extremely) high gain situations. The greedy algorithm can for the
(extremely) high gain situations be used to obtain a stabilising controller of order
nc < 100 that improves the H2 performance in closed-loop, which is a substantial
improvement. Furthermore, the combined greedy algorithm with WOR show the
desired behaviour for the low, moderate and high gain situations.

This improvement in performance comes, however, at an increase in computational
time. To put this into perspective, the original truncation methods will produce
a controller of order 1 within one second, while the greedy algorithm requires
approximately 12 minutes1 of computational time.

1On a computer with an IntelR© XeonR© E5-2630 v3 (8 cores at 2.40 GHz) processor.
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It is important to note that the three investigated greedy COR algorithms require
the construction of only one H2 optimal controller. The use of such a greedy
truncation algorithm for MOR approaches, however, requires the construction an
H2 optimal controller for every evaluation of the H2 performance loss δH2

, which
severely reduces scalability. To provide a comparison, BT for MOR requires ap-
proximately 2 hours to construct a controller of order 1 for this case study.

Finally, let us verify whether the computational time of 12 minutes can be reduced
by tuning εi. For this purpose, let us consider the relative loss of performance

εi = εi,r(γol − γcl),

where γol and γcl are the H2 norm in open-loop and the optimal closed-loop H2

norm, respectively.

Then, for εi,r = 0.05 a substantial reduction in computational time can be achieved
without significantly affecting closed-loop performance—which can be observed
from figure 4.7 at the end of the chapter. This reduction in computational time is
shown in table 4.1. Furthermore, it is important to observe that the largest reduc-
tion is achieved when the original truncation procedure performs well for relatively
low controller orders; i.e. in the low and moderate gain situations.

ρ = 10 ρ = 50 ρ = 200 ρ = 3000

Open-loop BT for COR 18.9 sec. 91.6 sec. 202.0 sec. 165.0 sec.
LQG-BT 312.1 sec. 584.4 sec. 675.4 sec. 705.6 sec.

WOR 15.7 sec. 67.2 sec. 221.3 sec. 393.2 sec.

Table 4.1: The computational time of the greedy truncation algorithm in Algo-
rithm 4.1, when a controller of order 1 is constructed with εi,r = 0.05. Please note
that the average computational time with εi,r = 0 is 720 seconds. Furthermore,
these numbers are generated on a computer with an IntelR© XeonR© E5-2630 v3 (8
cores at 2.40 GHz) processor.

4.5 Fixed Order Optimisation

To finalise this chapter, it will be investigated how these order reduction techniques
perform in comparison with the existing fixed order optimisation method called
HIFOO, which is developed by Arzelier et al. [2009, 2011].

Fixed order optimisation techniques aim at directly solving the optimisation prob-
lem in Problem 4.1 for a given controller order nc. It is, however, explained by Ben-
ner et al. [2018] that such an optimisation problem is non-smooth and non-convex
for all controller orders (including nc = nx). Existing methods such as the HI-
FOO algorithm therefore iteratively optimise the matrices of some initial controller,
which implies that only a locally optimal controller can be found. For example, if
no initial controller is provided, the HIFOO algorithm will construct one locally
optimal constrained order controller on the bases of three random initial controllers
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Figure 4.8, at the end of this chapter, shows the performance of several controllers
that are created with the HIFOO algorithm. The algorithm is used five times per
controller order, such that the average performance with random initial controllers
can be determined. From the figure it can be observed that the HIFOO algorithm
performs similarly to the greedy algorithms for nc ≤ 9 in the low gain situation with
ρ = 10, while for higher orders it is not able to construct a stabilising controller.
In the moderate to extremely high gain situations with ρ ≥ 50, however, the
algorithm is only able to consistently construct a controller that performs better
than the open-loop situation for nc ≤ 5. We can therefore observe that—if no
initial controller is provided—the HIFOO algorithm does not perform better than
the greedy COR techniques that have been developed in this chapter.

The investigated MOR and COR approaches can also be used to provide an initial
controller for the HIFOO algorithm. It is now considered to use the greedy search
in combination with WOR to provide such an initial controller. The closed-loop H2

performance that is obtained with this combined method is presented in figure 4.7 at
the end of this chapter, which shows that the desired behaviour is now even obtained
in the extremely high feedback situation with ρ = 3000. This improvement in
performance comes, again, with an increase in computational time that becomes
larger as the controller order increases; this is shown in table 4.2

It can therefore be concluded that the best closed-loop H2 performance is ob-
tained by combining the greedy search with WOR; and to provide the resulting
controller as an initial controller for the HIFOO algorithm. The performance of
these combined algorithms does show the desired behaviour for all situations in
the case study (including the extremely high gain situation). It must, however, be
emphasised that closed-loop stability—or optimality of the controller—is still not
guaranteed in general.

nc = 150 nc = 100 nc = 50 nc = 20 nc = 10

HIFOO 22.1 min. 12.7 min. 9.2 min. 4.5 min. 1.8 min.

Table 4.2: The computational time of the HIFOO algorithm, when an initial
controller of order nc is optimised. Please note that these numbers are generated
on a computer with an IntelR© XeonR© E5-2630 v3 (8 cores at 2.40 GHz) processor.
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Figure 4.5: The H2 performance of low order controllers that are designed with
several MOR and COR methods for a low gain situation with ρ = 10, a moderate
gain situation with ρ = 50, a high gain situation with ρ = 200 and an extremely
high gain situation with ρ = 3000. A star is used to indicate that the low order
controller does not result in an internally stable closed-loop interconnection.
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Figure 4.6: The H2 performance of low order controllers that are designed by
using a greedy search with εi = 0 for several MOR and COR methods in a low
gain situation with ρ = 10, a moderate gain situation with ρ = 50, a high gain
situation with ρ = 200 and an extremely high gain situation with ρ = 3000. A star
is used to indicate that the low order controller does not result in an internally
stable closed-loop interconnection. To provide a comparison: the performance of
the original truncation methods as depicted in figure 4.5 is included as a dashed
line and instability is denoted by a small circle.
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Figure 4.7: The H2 performance of low order controllers that are designed by
using a greedy search with εi,r = 0.05 for several MOR and COR methods in a
low gain situation with ρ = 10, a moderate gain situation with ρ = 50, a high
gain situation with ρ = 200 and an extremely high gain situation with ρ = 3000.
In addition, the greedy search combined with WOR is used to provide an initial
controller to the HIFOO algorithm.
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Figure 4.8: The H2 performance of low order controllers that are constructed
with the HIFOO algorithm on the basis of three random initial controllers in a low
gain situation with ρ = 10, a moderate gain situation with ρ = 50, a high gain
situation with ρ = 200 and an extremely high gain situation with ρ = 3000. The
results for the greedy truncation methods as depicted in figure 4.6 are included to
provide a comparison.
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There is nothing more practical than a good theory.

Kurt Lewin

5
Minimal Order Optimal Estimation

and Control

I
n this chapter, we aim at characterising all controller orders for which
the H2 optimal control problem—as described in section 2.4—can be

solved. Such a characterisation can be used to solve the minimal order
optimal control problem in Problem 1.4 and, in addition, to partially solve
the constrained order optimal control problem in Problem 1.3.

For this purpose, the design of constrained order controllers (and estima-
tors) is first investigated for disturbance decoupling problems; the results
of this investigation are novel and are based on [Merks et al., 2019] and
[Merks and Weiland, 2019a]. Then, by utilising the well-known relation
between optimal control problems and disturbance decoupling problems,
a first step is taken towards numerically characterising these orders and,
in addition, to synthesise the corresponding constrained order H2 optimal
controller.

The approach that is considered in this chapter, essentially exploits the
non-uniqueness in the design of optimal controllers for the purpose of con-
strained order controller synthesis. Such an approach is fundamentally
different from chapter 4, where the control design is considered to be fixed.
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5.1 Introduction

The optimal control problem in Problem 1.1 has—as mentioned in section 1.2.4—
received a considerable amount of attention over the past decades. Today, its
solution is well-known for several norms. For example, the design procedure for
H2 and H∞ optimal controllers is known to most control engineers. The resulting
optimal controllers are, however, of the same order as the model that is used
in its design. The synthesis and real-time implementation of these controllers
may therefore be hampered when a model or large order is used—as discussed in
section 4.1—and for these models it is more appropriate to consider the constrained
order optimal control problem in Problem 1.3 instead.

In chapter 4 it is shown that the problem of designing constrained order H2 optimal
controllers is not solved with existing MOR or COR techniques. This implies that
an order reduction approach does not generally provide a solution to Problem 1.3
and instead of solving this problem, improvements to existing techniques are pro-
posed. Simulation results demonstrate that these improved techniques perform
well in most practical situations, although this cannot be guaranteed.

By investigating the design of constrained order controllers from a control per-
spective, a fundamentally different approach can be considered. Namely, the non-
uniqueness in the design of optimal controllers can be exploited for the purpose
of constrained order controller design, while the control design is considered to be
fixed with order reduction. Furthermore, Saberi et al. [1995a, Sec. 9.4] did show
that a reduced order H2 optimal controller—i.e. with nc < nx—can be considered
for the so-called singular H2 optimal control problem. This result can, however,
not be used for the “regular” H2 optimal control problem—that is, under assump-
tion 2.1—as discussed in this thesis.

To explain this, it must first be mentioned that the singular H2 optimal control
problem allows the existence of “noise-free measurements”—i.e. the disturbance
w(t) does not have to affect all measured outputs y(t) through the mapping Dwy.
These measurement will therefore provide direct information about certain states of
the system. And for this reason we can remove up to ny−dim(im(Dwy)) controller
states without affecting the performance of the internal state observer. However,
under assumption 2.1 it is required that dim(im(Dwy)) = ny and therefore no
states can be removed with this method.

In this chapter, we aim at characterising all controller orders for which the “regular”
H2 optimal control problem can be solved. For this purpose, the non-uniqueness
in the design of optimal controllers is exploited. Such a characterisation can po-
tentially provide a solution to the minimal order optimal control problem in Prob-
lem 1.4. Furthermore, it is important to note that the solution to this minimal order
problem is a solution to the constrained order control problem in Problem 1.3 for
all orders nr ≥ n?r .
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5.1.1 Exploiting the Non-Uniqueness in the Design
of Optimal Controllers

The H2 optimal control problem is solved in section 2.4 by utilising the unique
stabilising solutions to AREs. It is, however, observed by Iwasaki and Skelton
[1994] and by Saberi et al. [1996] that the solution to this optimal control problem
is non-unique in general.

To provide some intuition as to why this solution is non-unique, let us consider
the design of an H2 optimal state feedback u(t) = F ?x(t) as an example. In
section 2.4 we saw under assumptions 2.1 and 2.2, that the H2 optimal feedback
u(t) = −B>u P+x(t) achieves H2 optimal performance. This unique and optimal
feedback is created completely independent of the mapping Bw, which implies that
it must be optimal for any mapping Bw. Uniqueness of the solution is a result
of this specific property, while optimal performance can be obtained with a larger
class of feedbacks when a specific mapping Bw is considered.

In other words, the unique solution u(t) = −B>u P+x(t) is optimal for all mappings
Bw, while for a given mapping Bw it is, in general, possible to construct a different
state feedback u(t) = F ?x(t) that achieves H2 optimal performance as well. Non-
uniqueness can, in a similar fashion, be observed for the problem of designing H2

optimal measurement feedback controllers (or estimators).

5.1.2 Minimal Order Optimal Controller Synthesis by using
Disturbance Decoupling

It is, however, not directly obvious how this non-uniqueness can be exploited for
constrained order controller design. In this chapter we will utilise the close relation
between the H2 optimal control problem and disturbance decoupling problems—as
discussed in great detail by Saberi et al. [1995a], Stoorvogel [2000] and Trentelman
et al. [2001]—for this purpose.

This close relation can be observed from Theorem 2.33, which states that any H2

optimal controller Σ?c,nc
for the system Σ (2.14) essentially renders the H2 norm of

the interconnection between ΣPQ (2.36) and Σ?c,nc
equal to 0; this is equivalent to

achieving disturbance decoupling.

It was first observed by Schumacher [1980, Thm. 3.1] that it is possible to determine
the minimal required controller order for disturbance decoupling problems without
stability requirements. This observation was repeated by Stoorvogel and van der
Woude [1991], while mentioning that a similar result is not known when stability
requirements are included. The problem did receive some attention thereafter
from Basile and Marro [1992], Mutsaers and Weiland [2011] and Mutsaers [2012];
however, a complete solution has never been found.

From a constrained order optimal control perspective, it is therefore directly rel-
evant to consider the design of constrained order controllers for disturbance de-
coupling problems. Namely, the solution to these disturbance decoupling problems
can be used to characterise the controller orders for which H2 optimal performance
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can be achieved and, in addition, to synthesise the corresponding constrained order
controller.

5.1.3 Chapter Outline

In this chapter we will consider, again, an LTI system of the form

Σ =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) =Cyx(t) +Dwyw(t)

z(t) =Czx(t) +Duzu(t),

(5.1)

with vector signals x(t), u(t), w(t), y(t) and z(t) that represent the state, known
input, unknown disturbance, measured output and the control output, respectively.
These signals assume values in finite-dimensional vector spaces X = Rnx , U = Rnu ,
W = Rnw , Y = Rny and Z = Rnz , respectively. The dynamical relation between
the signals is described by real-valued matrices A, Bu, Bw, Cy, Cz, Dwy and Duz

of appropriate dimension.

For control problems it is often desired to achieve closed-loop stability; we will
therefore utilise the stability domain Cg—as introduced in section 2.1.1 —in this
chapter. Furthermore, we say that the system Σ (5.1) is Cg-stabilisable if the pair
(A,Bu) is Cg-stabilisable, while we say that the system Σ (5.1) is Cg-detectable if
the pair (Cy, A) is Cg-detectable.

In section 5.2 we will first consider the problem of constructing an estimator with a
constrained order that decouples the output estimation errors from the disturbances
that are acting on the system, while stabilising the underlying error dynamics. In
addition, it is investigated under what conditions, for which orders and how this
problem can numerically be solved.

Then, in section 5.3 the results from section 5.2 are extended in order to address
the problem of constructing a measurement feedback controller with a constrained
order. This controller aims at decoupling the control outputs from the disturbances
that are acting in the system, while simultaneously rendering the closed-loop system
internally stable. Furthermore, it is, again, investigated under what conditions, for
which orders and how this problem can numerically be solved.

Finally, in section 5.4 we will discuss the problem of designing H2 optimal measure-
ment feedback controllers and estimators. These problems are solved by utilising
the relation between disturbance decoupling problems and optimal control prob-
lems to directly apply the results from sections 5.3 and 5.2. In addition, an equiva-
lence is established between several properties of the optimal control problems—for
example, the separation principle—and their corresponding disturbance decoupling
problem.

The conclusions and future work are discussed in chapter 7.
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5.2 The Disturbance Decoupled Estimation
Problem with a Constrained Order Estimator1

5.2.1 Problem Definition and Section Outline

In section 5.2, let us consider the design of an estimator

Σe,ne =

{
ẋe(t) = Jxe(t) +Ky(t) +Kuu(t)

z̃(t) =Mxe(t) +Ny(t) +Nuu(t)
(5.2)

that produces an estimated output z̃(t) for the “to-be-estimated output” z(t) of
the system Σ (5.1). Any estimation problem consists of appropriately selecting
the mappings J , K, Ku, M , N and Nu of Σe,ne (5.2). Such a problem is—as
explained in section 2.4—often formulated by defining the output estimation error
εz(t) = z(t)− z̃(t) in order to obtain the error system Σε,ne

=

(
ẋ(t)

ẋe(t)

)
=

(
A 0

KCy J

)(
x(t)

xe(t)

)
+

(
Bu

Ku

)
u(t) +

(
Bw

KDwy

)
w(t)

εz(t) =
(
Cz −NCy −M

)( x(t)

xe(t)

)
+
(
Duz −Nu

)
u(t) +

(
−NDwy

)
w(t).

(5.3)

This error system has an extended state xε,ne(t) =

(
x(t)
xe(t)

)
and extended system

matrices Aε,ne , Bε,ne
u , Bε,ne

w , Cε,ne
z , Dε,ne

uz and Dε,ne
wz . Its extended state-space is

characterised by the vector space X ε,ne .

In section 5.2 we will address the problem of constructing (if it exists) an estimator
Σe,ne (5.2) with a constrained order that decouples the output estimation error
εz(t) of Σε,ne

(5.3) from the input signals u(t) and w(t). These signals are, from
an estimation perspective, both viewed as disturbances and a distinction is made
by assuming that the signal u(t) is known, while w(t) is unknown.

It is important to note that unobservable or unreachable states do not contribute
towards the input to output behaviour of Σ (5.1). These states can therefore be
disregarded when an estimation problem is considered and the following assumption
is made throughout section 5.2.

Assumption 5.1 It is assumed in section 5.2 that any state of Σ (5.1) can be
reached through the pair (u(t), w(t)) and observed in the pair (y(t), z(t)).

The main problem that will be addressed in section 5.2 is the disturbance decoupled
estimation problem with stability using a constrained order estimator (DDEPS-
CO). The DDEPS-CO cannot, in general, be solved for all systems and estimator
orders. We will therefore also investigate under which conditions the DDEPS-CO
can be solved.

1Section 5.2 is based on the journal article: R. W. H. Merks, E. M. M. Kivits and S. Weiland.
Constrained Order Observer Design for Disturbance Decoupled Output Estimation. IEEE Control
Systems Letters, 3(1):49-54, 2019. ISSN 2475-1456. doi: 10.1109/LCSYS.2018.2851539

http://dx.doi.org/10.1109/LCSYS.2018.2851539
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Definition 5.1 Consider a stability domain Cg, a number ne ∈ N and let N ⊆
X ε,ne denote the unobservable subspace of Σε,ne

(5.3) for a given estimator
Σe,ne

(5.2).

Then Σe,ne
(5.2) of order ne “solves” the DDEPS-CO for (Σ (5.1), ne, Cg) if the

output estimation error εz(t) = z(t) − ẑ(t) of Σε,ne (5.3) is independent of input
u(t) and disturbance w(t), while λ(Aε,ne |(X ε,ne mod N )) ⊆ Cg.

We say that the DDEPS-CO “can be solved” for (Σ (5.1), ne, Cg) if such an
estimator exists.

Remark 5.1 For estimation problems, stability is included to impose that lim
t→∞

εz(t)

= 0 for any initial condition. For this reason it is only required that the observable
dynamics of Σε,ne

(5.3) are stable.

Furthermore, it is important to note that λ(Aε,ne |(X ε,ne mod N )) is well-defined,
because the unobservable subspace N satisfies Aε,neN ⊆ N .

In section 5.2.2 we will first discuss the known solution to the disturbance decoupled
estimation problem with stability (DDEPS). Furthermore, an extension is added
in order to characterise all estimators Σe,ne (5.2) that can solve the problem.

This characterisation is used in section 5.2.3 to solve the DDEPS-CO. Conditions
on the estimator order are presented in section 5.2.4 and a numerical procedure to
explicitly construct a constrained order estimator is given in section 5.2.5. Finally,
an illustrative example is presented in section 5.2.6.

5.2.2 The Disturbance Decoupled Estimation Problem
with Stability

For any stability domain Cg, let Sg be an input-containing Cg-detectability sub-
space and S?g the Cg-detectable strongly reachable subspace as defined in Lemma
2.42 and Theorem 2.43, respectively.

A specific type of estimator is the so-called Luenberger state observer with esti-
mated output

Σo =

{
˙̃x(t) =

(
A+ LCy

)
x̃(t)− Ly(t) + Buu(t)

z̃(t) = Mx̃(t) +Ny(t) +Duzu(t)
(5.4)

of order nx and with design parameters L : Y → X , M : X → Z and N :
Y → Z. Consider Σ (5.1) connected to Σo (5.4), the output estimation error
εz(t) = z(t)− z̃(t) and define a state observation error e(t) = x(t)− x̃(t) to obtain
the error system

Σε =



(
ẋ(t)

ė(t)

)
=

(
A 0

0 A+ LCy

)(
x(t)

e(t)

)
+

(
Bu

0

)
u(t) +

(
Bw

Bw + LDwy

)
w(t)

εz(t) =
(
Cz −NCy −M M

)(x(t)

e(t)

)
+
(
−NDwy

)
w(t).

(5.5)



5.2 The DDEPS-CO 141

This system has an extended state xε(t) =

(
x(t)
e(t)

)
and extended system matrices

Aε, Bεu, Bεw, Cεz and Dε
uz. Its extended state-space is characterised by the vector

space X ε.

With the following proposition we will establish when Σε (5.5) can be disturbance
decoupled and that it is non-restrictive to consider Σo (5.4).

Proposition 5.2 Consider a stability domain Cg, the subspace S?g ⊆ X as defined
in Theorem 2.43 and let N ⊆ X ε,ne denote the unobservable subspace of Σε,ne (5.3)
for a given estimator Σe,ne

(5.2).

Then there exists an estimator Σe,ne
(5.2) for Σ (5.1) such that the output esti-

mation error εz(t) = z(t) − ẑ(t) of Σε,ne
(5.3) is independent of input u(t) and

disturbance w(t), while λ(Aε,ne |(X ε,ne mod N )) ⊆ Cg if and only if

S?g ∩ C−1
y im(Dwy) ⊆ ker(Cz).

When this condition is satisfied, an observer of the form Σo (5.4) can be considered
for this purpose.

Proof: The proof can be found in appendix A.3. �

The DDEPS therefore consists of finding the mappings L, M and N for Σo (5.4)
such that ε(z) of Σε (5.5) is independent of u(t) and w(t); whether this can be
achieved is strongly related to the subspace S?g . This subspace has, as a result, been
thoroughly investigated in geometric control theory—for example, by Wonham
[1985], Basile and Marro [1992] and Trentelman et al. [2001]. Furthermore, Marro
[2018] and Chen [2018] developed several algorithms that can construct a numerical
representation for this subspace.

We will, however, see in section 5.2.3 that the dimension of certain input-containing
Cg-detectability subspaces Sg determines the orders for which the DDEPS-CO can
be solved. To characterise these orders, let us therefore consider the set

Sg(Σ) = { Sg ⊆ X | Sg is as defined in Lemma 2.42,

Sg ∩ C−1
y im(Dwy) ⊆ ker(Cz)

}
,

(5.6)

for which the functional dependency on Σ is omitted when it is clear what system
is implied.

First, we will relate Proposition 5.2 to the set Sg.

Lemma 5.3 Consider a stability domain Cg and let N ⊆ Xε denote the unobserv-
able subspace of Σε (5.5) for a given observer Σo (5.4).

Then there exist mappings L : Y → X , M : X → Z and N : Y → Z such that the
output estimation error εz(t) = z(t)− ẑ(t) of Σε (5.5) is independent of input u(t)
and disturbance w(t), while λ(Aε|(X ε mod N )) ⊆ Cg if and only if Sg(Σ (5.1)) 6= ∅.
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Proof: (⇒) In Proposition 5.2 it is established that these mappings exist if
S?g ∩ C−1

y im(Dwy) ⊆ ker(Cz), which implies that S?g ∈ Sg and therefore Sg 6= ∅.

(⇐) If Sg 6= ∅, then there exists a subspace Sg ∈ Sg. By definition we have that
S?g ⊆ Sg, which implies that S?g ∈ Sg as well. This subspace will therefore satisfy
the condition in Proposition 5.2, which completes the proof. �

Lemma 5.3 actually states that Sg is non-empty if and only if S?g ∈ Sg. Σε (5.5)
can therefore be disturbance decoupled if and only if Sg is non-empty. We will now
relate the DDEPS to the entire set Sg, since such a relation is used in section 5.2.3
to characterise all orders for which the DDEPS-CO can be solved. For this purpose,
let us consider the following formal definition for the DDEPS.

Definition 5.4 Consider a stability domain Cg and let N ⊆ X ε denote the unob-
servable subspace of Σε (5.5) for a given observer Σo (5.4).

Then Σo (5.4) “solves” the DDEPS for (Σ (5.1), Sg, Cg) if the output estimation
error εz(t) = z(t) − ẑ(t) of Σε (5.5) is independent of input u(t) and disturbance
w(t), while λ(Aε|(X ε mod N )) ⊆ Cg. Furthermore, for Σε (5.5) it holds that e(t) ∈
Sg for all t ≥ 0 and for any triple (x(t), u(t), w(t)), provided that e(0) = e0 ∈ Sg.

We say that the DDEPS “can be solved” for (Σ (5.1), Sg, Cg) if such an observer
exists.

An observer can be designed for Σ (5.1) on the basis of any system that is equivalent
in terms of input to output behaviour. Let us now define a specific representation
of Σ (5.1) in order to provide an intuitive interpretation for the solution to the
DDEPS.

With a subspace Sg ∈ Sg, the state-space X of Σ (5.1) can be decomposed as

X = Sg ⊕ Sg,c, (5.7)

where Sg,c is a complement of Sg.

For a given subspace Sg ∈ Sg, let Te,g be a state transformation that transforms
Σ (5.1) into the system

ΣTe,g =



(
ẋ1(t)

ẋ2(t)

)
=

(
A11 A12

A21 A22

)(
x1(t)

x2(t)

)
+

(
Bu1

Bu2

)
u(t) +

(
Bw1

Bw2

)
w(t)

y(t) =
(
Cy1 Cy2

)
x(t) + Dwyw(t)

z(t) =
(
Cz1 Cz2

)
x(t) + Duzu(t),

(5.8)

which is compatible to the decomposition in (5.7). In other words, the state-space
X = X1 ⊕ X2 of ΣTe,g (5.8) is partitioned in such a way that X1 = Te,gSg and
X2 = Te,gSg,c.
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By applying to ΣTe,g (5.8), the observer Σo (5.4) with an identical state partitioning,
the following error system is obtained:

ΣTe,g
ε =




ẋ1(t)

ẋ2(t)

ė1(t)

ė2(t)

 =


A11 A12

A21 A22

0 0

0 0

0 0

0 0

A11 + L1Cy1 A12 + L1Cy2

A21 + L2Cy1 A22 + L2Cy2



x1(t)

x2(t)

e1(t)

e2(t)



+


Bu1

Bu2

0

0

u(t) +


Bw1

Bw2

Bw1 + L1Dwy

Bw2 + L2Dwy

w(t)

εz(t) =
(
Cz1 −NCy1 −M1 Cz2 −NCy2 −M2 M1 M2

)(x(t)

e(t)

)
−
(
NDwy

)
w(t).

(5.9)

In the following theorem we will see how the DDEPS is solved for (Σ (5.1), Sg,
Cg) by an observer Σo (5.4). The mappings L, M and N of this observer are—for

ΣTe,g (5.8)—essentially chosen such that all bold-font mappings in Σ
Te,g
ε (5.9) van-

ish and such that λ(A22 +L2Cy2) ⊆ Cg. This representation is therefore convenient
for numerical implementation, while additionally providing an intuitive interpreta-
tion for the solution to the problem.

Theorem 5.5 Consider a stability domain Cg and a subspace Sg ∈ Sg.

Then Σo (5.4) “solves” the DDEPS for (Σ (5.1), Sg, Cg) if and only if the mappings
L : Y → X , M : X → Z and N : Y → Z satisfy

(A+ LCy)Sg ⊆ Sg, im(Bw + LDwy) ⊆ Sg,
Cz −NCy −M = 0, MSg = 0, NDwy = 0,

λ((A+ LCy)|(X mod Sg)) ⊆ Cg.
(5.10)

Proof: The proof can be found in appendix A.3. �

Finally, in the following corollary we will show that the solution to the DDEPS is
indeed linked to the entire set Sg by considering Definition 5.4.

Corollary 5.6 Consider a stability domain Cg.

Then the DDEPS “can be solved” for (Σ (5.1), Sg, Cg) if and only if Sg ∈ Sg.

Proof: The proof can be found in appendix A.3. �
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5.2.3 The Disturbance Decoupled Estimation Problem
with Stability using a Constrained Order Estimator

In Corollary 5.6 it is established that the solution to the DDEPS is related to
the subspaces Sg ∈ Sg. To solve the problem for a given subspace, it is shown
in Theorem 5.5 that the mappings of the observer Σo (5.4) should satisfy (A +
LCy)Sg ⊆ Sg and MSg = 0. These two conditions actually imply that the observer
states x̃ ∈ Sg are unobservable in the observer output z̃(t), which tells us that these
estimator states can be removed.

In view of the state decomposition in (5.7), consider Πc = Π(Sg,c,Sg) to define

Ĵ = (ΠcA+ LcCy)|Sg,c, K̂ = −Lc and K̂u = ΠcBu,

which depend on the mapping Lc : Y → Sg,c.

We now claim that the reduced order observer

Σ̂o =

{
˙̃xo(t) = Ĵ x̃o(t) + K̂y(t) + K̂uu(t)

z̃(t) = M̂x̃o(t) +Ny(t) +Duzu(t).
(5.11)

of order ne = dim(X )−dim(Sg) will be able to solve the DDEPS-CO for appropriate

mappings Lc : Y → Sg,c, M̂ : Sg,c → Z and N : Y → Z; this will be established in
Theorem 5.8.

Proposition 5.7 Consider a stability domain Cg and a number ne ∈ N.

Then the DDEPS-CO “can be solved” for (Σ (5.1), ne, Cg) if there exists a subspace
Sg ∈ Sg with dim(X )− dim(Sg) = ne.

Proof: In Theorem 5.8 below it will be shown for a given subspace Sg ∈ Sg that

the reduced order observer Σ̂o (5.11) can solve this problem. �

Remark 5.2 It is important to note that an “only if” statement does not, in
general, hold for Proposition 5.7. Namely, we know that 0 ≤ dim(Sg) and such a
statement would therefore imply that an estimator of dimension ne > nx cannot
solve the DDEPS-CO. This, while any number of states that do not affect z̃(t) can
be added to an estimator without affecting the input to output behaviour of the
corresponding error system.

Proposition 5.7 states that the orders ne for which the DDEPS-CO can be solved are
related to the dimension of subspaces Sg ∈ Sg. By considering the subspace S?g ∈
Sg—which by definition satisfies dim(S?g ) ⊆ dim(Sg)—an “unnecessarily large”
estimator could therefore be created, while it is often desired to create an estimator
of minimal order. For this specific reason, the solution to the DDEPS was related
to the entire set Sg in section 5.2.2.
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Before formally solving the DDEPS-CO, consider again the equivalent system
ΣTe,g (5.8) that is created for a given subspace Sg ∈ Sg by utilising the decompo-

sition in (5.7). The reduced order observer Σ̂o (5.11) is for ΣTe,g (5.8) explicitly
described as

Σ̂Te,g
o =

{
˙̃x2(t) =

(
A22 + L2Cy2

)
x̃2(t)−L2y(t) + Bu2u(t)

z̃(t) = M2 x̃2(t) + Ny(t) +Duzu(t),
(5.12)

where x̃o(t) and Lc of Σ̂o (5.11) are described by x̃2(t) and L2 in Σ̂
Te,g
o (5.12),

respectively. Applying Σ̂
Te,g
o (5.12) to ΣTe,g (5.8) results in the error system

Σ̂Te,g
ε =



ẋ1(t)

ẋ2(t)

ė2(t)

 =

 A11 A12

A21 A22

0

0

A21 + L2Cy1 0 A22 + L2Cy2


x1(t)

x2(t)

e2(t)


+

Bu1

Bu2

0

u(t) +

 Bw1

Bw2

Bw2 + L2Dwy

w(t)

εz(t) =
(
Cz1 −NCy1 Cz2 −NCy2 −M2 M2

)(x(t)

e(t)

)
−
(
NDwy

)
w(t),

(5.13)

for which, again, a bold font is used when mappings can vanish by construction.

In the following theorem we will see how the DDEPS-CO is solved by an observer
Σ̂o (5.11). The observer mappings are, for ΣTe,g (5.8), again chosen such that all

bold-font mappings in Σ̂
Te,g
ε (5.13) vanish.

Theorem 5.8 Consider a stability domain Cg, a subspace Sg ∈ Sg with dim(Sg) =
dim(X )− ne, the decomposition in (5.7) and define Πc = Π(Sg,c,Sg).

Then Σ̂o (5.11) “solves” the DDEPS-CO for (Σ (5.1), ne, Cg) if the mappings

Lc : Y → Sg,c, M̂ : Sg,c → Z and N : Y → Z satisfy

(ΠcA+ LcCy)|Sg = 0, ΠcBw + LcDwy = 0,

(Cz −NCy)|Sg = 0, (Cz −NCy)|Sg,c − M̂ = 0,

NDwy = 0, λ((ΠcA+ LcCy)|Sg,c) ⊆ Cg.
(5.14)

Proof: The proof can be found in appendix A.3. �

5.2.4 Conditions on the Estimator Order

It is shown in Proposition 5.7 that the dimension of the subspaces Sg ∈ Sg is related
to the values ne for which the DDEPS-CO can be solved. Now let us characterise
the minimal estimator order n−e . In addition, we will see that the observer based

architecture Σ̂o (5.11) is not restrictive in terms of minimising this order.
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Theorem 5.9 Consider a stability domain Cg.

Then for a given system Σ (5.1), the minimal order for which the DDEPS-CO can
be solved is given by

n−e = min
Sg∈Sg

dim(X )− dim(Sg).

The reduced order observer Σ̂o (5.11) can be used to solve the DDEPS-CO for
(Σ (5.1), n−e , Cg).

Proof: The proof can be found in appendix A.3. �

We can therefore conclude that the minimal estimator order n−e is directly deter-
mined by the largest dimension of any subspace Sg ∈ Sg. However, it is still unclear
how small the magnitude of n−e can theoretically become.

Theorem 5.10 For any stability domain Cg we have that n−e ≥ dim(im(Cz)) −
dim(im(Cy)).

Proof: A subspace Sg ∈ Sg must satisfy dim(Sg) − dim(im(Cy)) ≤ dim(Sg ∩
ker(Cy)) ≤ dim(Sg ∩ C−1

y im(Dwy)) ≤ dim(ker(Cz)) = dim(X ) − dim(im(Cz)).
This imposes an upper bound dim(Sg) ≤ dim(X ) − dim(im(Cz)) + dim(im(Cy)),
which combined with ne = dim(X ) − dim(Sg) implies that n−e ≥ dim(im(Cz)) −
dim(im(Cy)). �

5.2.5 Numerical Construction of the Estimator

In section 2.1 it is explained that a matrix R ∈ Rnx×nr satisfying im(R) = R is a
(minimal) numerical representation for the subspace R of dimension nr. Further-
more, for this type of representation there exist numerical implementations of all
subspace operations.

A numerical procedure to solve the DDEPS(-CO) consists of the following steps:

1. determine a numerical representation for a subspace Sg ∈ Sg.
2. a state transformation Te,g is constructed on the basis of this subspace, which

transforms the system Σ (5.1) into an equivalent system ΣTe,g (5.8).
3. the system ΣTe,g (5.8) is used to solve the DDEPS or the DDEPS-CO by

construction of the appropriate observer mappings.

The toolboxes that are developed by Marro [2018] and Chen [2018] can be used to
create a matrix S?g , which numerically represents the subspace S?g . Furthermore,
by utilising subspace operations it is possible to numerically verified whether S?g ∈
Sg. A numerical procedure to construct a representation for larger dimensional
subspaces Sg ∈ Sg—or to find a largest one—does, however, not exist. For this
reason it is assumed that a minimal representation Sg for some subspace Sg ∈ Sg
is constructed.

The states of ΣTe,g (5.8) are compatible to the state decomposition in (5.7). By
utilising the subspace Sg ∈ Sg, it is possible to define the subspace Sg,c such that
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Sg ⊕ Sg,c = X ; for example, we can consider Sg,c = S⊥g . Minimal representations

for these subspaces can directly be used to transform Σ (5.1) into ΣTe,g (5.8) by
applying the state transformation

Te,g =

(
Πs(Sg,Sg,c)
Πs(Sg,c,Sg)

)
. (5.15)

Solving the DDEPS(-CO)

As mentioned before, an observer can be designed for Σ (5.1) by using any equiv-
alent system; a representation of the form ΣTe,g (5.8) can therefore be considered.
This representation is—based on a subspace Sg ∈ Sg—created using the state
transformation Te,g as defined in (5.15). The observer Σo (5.4) is for ΣTe,g (5.8)

characterised in the mappings L =

(
L1

L2

)
, M =

(
M1 M2

)
and N .

For a given subspace Sg ∈ Sg, it is established in Theorem 5.5 that the solution
to the DDEPS is characterised by the mappings L, M and N that satisfy (5.10).
For ΣTe,g (5.8) it has been shown that the first four requirements in (5.10) are

equivalent to vanishing of the bold-font mappings in Σ
Te,g
ε (5.9), which makes this

system representation convenient from a numerical perspective.

The requirements in (5.10) imply for ΣTe,g (5.8) that the mappings M1, M2 and
N should satisfy

Cz1 −NCy1 = 0, NDwy = 0, M2 = Cz2 −NCy2, M1 = 0. (5.16)

The mappings L1 and L2 should satisfy

A21 + L2Cy1 = 0, Bw2 + L2Dwy = 0, λ(A22 + L2Cy2) ⊆ Cg, L1 : Y → X1.

The mappings M and N are therefore constructed by numerically solving a set of
linear equations. It is, however, not directly clear how to numerically construct the
mapping L2, because it should satisfy a stability requirement.

It is explained in section 2.3 that—for stability domain Cg = C−—all mappings
L2 which achieve λ(A22 + L2Cy2) ⊂ C− can be characterised by an LMI; such an
LMI can numerically be solved. In this way, all stabilising mappings L2 = Z−1

2 J2

are described by the matrices J2 and Z2 � 0 that satisfy A>22Z2 +Z2A22 +C>y2J
>
2 +

J2Cy2 ≺ 0.

By expressing all conditions on L2 in terms of these matrices, we can obtain the
following equality constrained LMI:

Z2 � 0, Z2

(
A21 Bw2

)
+J2

(
Cy1 Dwy

)
= 0, A>22Z2+Z2A22+C>y2J

>
2 +J2Cy2 ≺ 0.

(5.17)

Σo (5.4)—which is defined using ΣTe,g (5.8)—therefore solves the DDEPS for
(ΣTe,g (5.8), X1, C−), when the mappings M1, M2 and N are a solution to (5.16),
when any solution to (5.17) is used to define L2 = Z−1

2 J2; and when a mapping
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L1 of appropriate dimensions is considered. Because Σ (5.1) and ΣTe,g (5.8) are
equivalent in terms of input to output behaviour—and because X1 = Te,gSg—it
can be concluded that this observer will solve the DDEPS for (Σ (5.1), Sg, C−) as
well.

Finally, let the considered subspace Sg ∈ Sg satisfy dim(Sg) = dim(X )− ne. Then

Σ̂
Te,g
o (5.12) solves the DDEPS-CO for (ΣTe,g (5.8), ne, C−)—and again (Σ (5.1),

ne, C−)—when the mappings M2 and N are a solution to (5.16) and any solution
to (5.17) is used to define L2 = Z−1

2 J2.

It is important to note for the DDEPS-CO, that the estimator order ne is directly
determined by the dimension of the subspace Sg ∈ Sg that is considered in its

design. The mappings Lc, M̂ and N , on the other hand, determine the mappings
of this constrained order estimator.

5.2.6 An Illustrative Example

An example is now presented to illustrate the design of a constrained order estima-
tor. In addition, the example is used to demonstrate that an unnecessarily large
estimator can indeed be created by utilising the subspace S?g ∈ Sg.

Consider a system that is similar to ΣTe,g (5.8), as described by

Σex,e =




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


−1 0 0 1

0.1 −2 0 1

0 −0.5−0.4 0

0 0.2 0.2 −2



x1(t)

x2(t)

x3(t)

x4(t)

 +


1 0

0 2

0 0

0 0

w(t)

y(t) =

(
0 1 0 0

0 0 1 0

)
x(t)

z(t) =
(

0 1 1 2
)
x(t).

(5.18)

For stability domain Cg = C− we have that S?g = X1 ⊕ X2 ∈ Sg and Sg = X1 ⊕
X2 ⊕X3 ∈ Sg.

A reduced order observer Σ̂o (5.11) of order 2 is constructed for Σex,e (5.18), when
the subspace S?g is used in its design. Let us consider the state decomposition

X = S?g ⊕ S?⊥g in (5.7)—i.e. with S?⊥g = X3 ⊕ X4—to create the reduced order
observer

Σ̂ex,e,o2 =



(
˙̃x3(t)
˙̃x4(t)

)
=

(
L212 − 0.4 0

L222 + 0.2 − 2

)(
x̃3(t)

x̃4(t)

)
−

(
L211 L212

L221 L222

)
y(t)

z̃(t) =
(
M21 M22

)(x̃3(t)

x̃4(t)

)
+

(
N1 N2

)
y(t).

(5.19)
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In order to solve—with this observer—the DDEPS-CO for (Σex,e (5.18), 2, C−),
we can consider N =

(
1 0

)
, M2 =

(
1 2

)
as established in (5.16) and the LMI

in (5.17) can be used to construct L2 =

(
0.5 0
−0.2 0

)
.

However, a reduced order observer Σ̂o (5.11) of order 1 is constructed when the
larger subspace Sg = X1 ⊕ X2 ⊕ X3 is considered instead. In a similar fashion, by
utilising Sg,c = S⊥g it can be shown that the observer

Σ̂ex,e,o1 =


˙̃x4(t) =−2x̃4(t) +

(
0.2 0.2

)
y(t)

z̃(t) = 2x̃4(t) +
(

1 1
)
y(t),

(5.20)

solves the DDEPS-CO for (Σex,e (5.18), 1, C−).

Let us finalise this example with a simulation for the interconnection of Σex,e (5.18)

with Σ̂ex,e,o1 (5.20), in order to demonstrate that εz(t) is indeed not affected by
w(t) and, for some initial condition, that it will converge to 0 as time progresses.

For this simulation, let the disturbances be of the form wi(t) = ci0 + ci1 sin(ωit) +
ci2η(t), where η(t) is unitary white noise; and with c10 = −c20 = 50, c11 = c21 = 20,
ω1 = 1, ω2 = 3 and c12 = c22 = 1. Then figure 5.1 shows the response of this

interconnection with initial states x(0) =
(
10 10 10 10

)>
and x̂4(0) = −30.

Time
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u
tp
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t
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z(t)
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Figure 5.1: A time response for the interconnection of Σex,e (5.18) with

Σ̂ex,e,o1 (5.20).
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5.3 The Disturbance Decoupling Problem with
Measurement Feedback using a Constrained
Order Controller1

5.3.1 Problem Definition and Section Outline

In section 5.3 we will consider the design of a measurement feedback controller

Σc,nc =

{
ẋc(t) = Jxc(t) +Ky(t)

u(t) =Mxc(t) +Ny(t)
(5.21)

that, based on the measured output y(t), produces a control input u(t) for the sys-
tem Σ (5.1). Any control problem consists of appropriately selecting the mappings
J , K, M and N of Σc,nc

(5.21) in order to achieve a given objective in closed-loop.
The closed-loop interconnection between Σ (5.1) and Σc,nc

(5.21) is mathematically
described by

Σcl,nc
=



(
ẋ(t)

ẋc(t)

)
=

(
A+BuNCy BuM

KCy J

)(
x(t)

xc(t)

)
+

(
Bw +BuNDwy

KDwy

)
w(t)

z(t) =
(
Cz +DuzNCy DuzM

)( x(t)

xc(t)

)
+
(
DuzNDwy

)
w(t).

(5.22)

This closed-loop system has an extended state xcl,nc =

(
x(t)
xc(t)

)
and extended

system matrices Acl,nc , Bcl,nc
w , Ccl,nc

z and Dcl,nc
wz . Its extended state-space is char-

acterised by the vector space X cl,nc .

In section 5.3 we will address the problem of constructing a controller Σc,nc
(5.21)

with a constrained order nc that decouples the control output z(t) of Σcl,nc
(5.22)

from the disturbance w(t), while internally stabilising Σcl,nc
(5.22). This problem

is called the disturbance decoupling problem with measurement feedback and stabil-
ity using a constrained order controller (DDPMS-CO). The DDPMS-CO can, in
general, not be solved for all systems and all controller orders. We will therefore
also investigate under which conditions the problem can be solved.

Definition 5.11 Consider a stability domain Cg and a number nc ∈ N.

Then Σc,nc (5.21) of order nc “solves” the DDPMS-CO for (Σ (5.1), nc, Cg) if
the control output z(t) of Σcl,nc (5.22) is independent of the disturbance w(t), while
λ(Acl,nc) ⊆ Cg.

We say that the DDPMS-CO “can be solved” for (Σ (5.1), nc, Cg) if such a con-
troller exists.

The problem is called the DDPM-CO when the stability domain Cg = C is consid-
ered.

1Section 5.3 is based on the (submitted) journal article: R. W. H. Merks and S. Weiland.
Constrained Order Controller Design for the Disturbance Decoupling Problem with Dynamic
Measurement Feedback and Stability. Submitted to IEEE Transactions on Automatic Control.
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The known solution to the disturbance decoupling problem with measurement feed-
back and stability (DDPMS) consists of separately solving a state feedback design
problem and an estimator design problem. To solve this problem, we will consider
the same procedure as presented in section 5.2.

In section 5.3.2 we will therefore discuss the known solution to the disturbance
decoupling problem with state feedback and stability (DDPS). This solution is
then combined with the solution to the DDEPS in order to solve the DDPMS
in section 5.3.3. In addition, an extension is added to this solution in order to
characterise all controllers Σc,nc

(5.21) that can solve the problem.

This characterisation is used in section 5.3.4 to solve the DDPM-CO—i.e. without
a closed-loop stability requirement; a solution to the DDPMS-CO is presented
thereafter in section 5.3.5. Conditions on the controller order are presented in
section 5.3.6 and a numerical procedure to explicitly construct a constrained order
controller is given in section 5.3.7. Finally, an illustrative example is presented in
section 5.3.8.

5.3.2 The Disturbance Decoupling Problem with State
Feedback and Stability

For any stability domain Cg, let Vg be an output-nulling Cg-stabilisability subspace
and V?g the Cg-stabilisable weakly unobservable subspace as defined in Lemma 2.39
and Theorem 2.40, respectively.

We will now consider the design of a state feedback u(t) = Fx(t); applying this
feedback to Σ (5.1) results in the closed-loop system

Σcl,F =

ẋ(t) =
(
A + BuF

)
x(t) +Bww(t)

z(t) =
(
Cz +DuzF

)
x(t).

(5.23)

With the following proposition we will establish when Σcl,F (5.23) can be distur-
bance decoupled.

Proposition 5.12 Consider a stability domain Cg and the subspace V?g ⊆ X as
defined in Theorem 2.40.

Then there exists a state feedback u(t) = Fx(t) for Σ (5.1) such that the control
output z(t) of Σcl,F (5.23) is independent of the disturbance w(t), while λ(A +
BuF ) ⊆ Cg if and only if Σ (5.1) is Cg-stabilisable and

im(Bw) ⊆ V?g +Bu ker(Duz).

Proof: The proof can be found in appendix A.3. �

Whether the DDPS can be solved is strongly related to the subspace V?g . This
subspace therefore has, in a similar fashion to S?g , been thoroughly investigated in
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geometric control theory and there exist algorithms that can construct a numerical
representation for this subspace. To characterise all feedbacks that can solve the
DDPS, let us consider the set

Vg(Σ) = { Vg ⊆ X | Vg is as defined in Lemma 2.39,

im(Bw) ⊆ Vg +Bu ker(Duz)} ,
(5.24)

for which the functional dependency on Σ is omitted when it is clear what system
is implied.

This set is similar to Sg, in the sense that Vg 6= ∅ if and only if V?g ∈ Vg. It is
therefore also desired to relate the DDPS to the entire set Vg. For this purpose,
let us consider the following formal definition for the DDPS.

Definition 5.13 Consider a stability domain Cg.

Then a state feedback u(t) = Fx(t) “solves” the DDPS for (Σ (5.1), Vg, Cg) if the
the control output z(t) of Σcl,F (5.23) is independent of the disturbance w(t), while
λ(A + BuF ) ⊆ Cg. Furthermore, for Σcl,F (5.23) it holds that x(t) ∈ Vg for all
t ≥ 0 and for any disturbance w(t), provided that x(0) = x0 ∈ Vg.

We say that the DDPS “can be solved” for (Σ (5.1), Vg, Cg) if such a state feedback
exists.

Remark 5.3 Similarly to the DDEPS, it can be shown that the DDPS can be
solved for (Σ (5.1), Vg, Cg) if and only if Σ (5.1) is Cg-stabilisable and Vg ∈ Vg.
Furthermore, the state feedback u(t) = Fx(t) solves the DDPS for (Σ (5.1), Vg,
Cg) if and only if (A+BuF )Vg ⊆ Vg, (Cz +DuzF )Vg = 0 and λ(A+BuF ) ⊆ Cg.

We do, however, not require a thorough discussion on these results in order to solve
the DDPMS below.

5.3.3 The Disturbance Decoupling Problem with
Measurement Feedback and Stability

For any stability domain Cg, let Sg be an input-containing Cg-detectability sub-
space and S?g the Cg-detectable strongly reachable subspace as defined in Lemma
2.42 and Theorem 2.43, respectively. Furthermore, let Vg be an output-nulling Cg-
stabilisability subspace and V?g the Cg-stabilisable weakly unobservable subspace
as defined in Lemma 2.39 and Theorem 2.40, respectively.

An observer-based control architecture will considered, which is described by

Σc =

{
˙̃x(t) =

(
A+BuF + LCy

)
x̃(t) +

(
BuN − L

)
y(t)

u(t) = F x̃(t) + N y(t),
(5.25)

of order nx and with design parameters L : Y → X , F : X → U and N : Y → U .
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When Σc (5.25) is applied to Σ (5.1)—and by considering the state observation
error e(t) = x(t)− x̃(t)—we obtain the closed-loop system Σcl =

(
ẋ(t)

ė(t)

)
=

(
A+Bu(F +NCy) −BuF

0 A+ LCy

)(
x(t)

e(t)

)
+

(
Bw +BuNDwy

Bw + LDwy

)
w(t)

z(t) =
(
Cz +Duz(F +NCy) −DuzF

)(x(t)

e(t)

)
+
(
DuzNDwy

)
w(t),

(5.26)

which has a closed-loop state xcl(t) =

(
x(t)
e(t)

)
and system matrices Acl, Bclw , Cclz

and Dcl
wz. The closed-loop state-space is characterised by the vector space X cl.

With the following proposition we will establish when Σcl (5.26) can be disturbance
decoupled and that it is non-restrictive to consider the controller Σc (5.25).

Proposition 5.14 Consider a stability domain Cg and the subspaces V?g ⊆ X ,
S?g ⊆ X as defined in Theorem 2.40 and 2.43, respectively.

Then there exists a controller Σc,nc
(5.21) for Σ (5.1) such that the control output

z(t) of Σcl (5.26) is independent of the disturbance w(t), while λ(Acl) ⊆ Cg if and
only Σ (5.1) is Cg-stabilisable, Cg-detectable and

(a) im(Bw) ⊆ V?g +Bu ker(Duz).
(b) S?g ∩ (C−1

y im(Dwy) ⊆ ker(Cz).
(c) S?g ⊆ V?g .

When this condition is satisfied, a controller of the form Σc (5.25) can be considered
for this purpose.

Proof: The proof is given by by Stoorvogel and van der Woude [1991, Thm. 2.2,
Cor. 2.3]. �

The DDPMS therefore consists of finding the mappings L, F and N for Σc,nc
(5.21)

such that z(t) of Σcl (5.26) is independent of w(t); whether this can be achieved
is—similarly to the DDPS and the DDEPS—strongly related to the subspaces S?g
and V?g . We will consider the same procedure as for the DDEPS to solve the
DDPMS. Let us therefore start by defining the set

Tg(Σ) = { (Sg,Vg) | Sg ∈ Sg(Σ), Vg ∈ Vg(Σ), Sg ⊆ Vg} (5.27)

with Sg and Vg as defined in (5.6) and (5.24) , respectively. Again, the functional
dependency on Σ is omitted when it is clear what system is implied.

First, Proposition 5.14 is related to the set Tg.

Lemma 5.15 Consider a stability domain Cg.

Then there exist mappings L : Y → X , F : X → U and N : Y → U such that
the control output z(t) of Σcl (5.26) is independent of the disturbance w(t), while
λ(Acl) ⊆ Cg if and only Σ (5.1) is Cg-stabilisable, Cg-detectable and Tg(Σ (5.1)) 6=
∅.
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Proof: (⇒) In Proposition 5.14 it is established that these mappings exist if and
only if Σ (5.1) is Cg-stabilisable, Cg-detectable and the subspaces S?g and V?g satisfy
conditions (a)-(c). This implies that (S?g ,V?g ) ∈ Tg and therefore that Tg 6= ∅.
(⇐) If Tg 6= ∅, then there exists a pair of subspaces (Sg,Vg) ∈ Tg. By definition,
we have that S?g ⊆ Sg and Vg ⊆ V?g , which implies that (S?g ,V?g ) ∈ Tg as well.
These subspaces will therefore satisfy conditions (a)-(c) in Proposition 5.14, which
combined with the fact that Σ (5.1) is Cg-stabilisable and Cg-detectable completes
the proof. �

Lemma 5.15 actually states that Tg is non-empty if and only if (S?g ,V?g ) ∈ Tg.
Σcl (5.26) can therefore be disturbance decoupled if and only if Tg is non-empty.
Closed-loop stability requires that Σ (5.1) is Cg-stabilisable and Cg-detectable as
well. We will now relate the DDPMS to the entire set Tg, which will be utilised
in sections 5.3.4 ands 5.3.5 to characterise all orders for which the problems can
be solved. For this purpose, let us consider the following formal definition for the
DDPMS.

Definition 5.16 Consider a stability domain Cg.

Then Σc (5.25) “solves” the DDPMS for (Σ (5.1), Sg, Vg, Cg) if the control out-
put z(t) of Σcl (5.26) is independent of the disturbance w(t), while λ(Acl) ⊆ Cg.
Furthermore, for Σcl (5.26) it holds for any disturbance w(t) that

(a) e(t) ∈ Sg for all t ≥ 0, provided that e(0) = e0 ∈ Sg and x(0) = x0 ∈ X .
(b) x(t) ∈ Vg for all t ≥ 0, provided that e(0) = e0 ∈ Sg and x(0) = x0 ∈ Vg.

We say that the DDPMS “can be solved” for (Σ (5.1), Sg, Vg, Cg) if such a
controller exists.

The problem is called the DDPM when the stability domain Cg = C is considered.

We can, similarly to an estimator, design a controller Σc (5.25) for Σ (5.1) by using
any equivalent system. Let us now define a specific representation of Σ (5.1) in
order to provide an intuitive interpretation for the solution to the DDPMS.

With a pair of subspaces (Sg,Vg) ∈ Tg—which by definition satisfy Sg ⊆ Vg—the
state-space X of Σ (5.1) can be decomposed as

X = Sg ⊕Xm ⊕ Vg,c, (5.28)

with Vg,c such that Vg ⊕ Vg,c = X and Xm such that Sg ⊕Xm = Vg.
For a given pair of subspaces (Sg,Vg) ∈ Tg, let Tc be a state transformation that
transforms Σ (5.1) into the system

ΣTc =



ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

A11 A12 A13

A21 A22 A23

A31 A32 A33


x1(t)

x2(t)

x3(t)

 +

Bu1

Bu2

Bu3

u(t) +

Bw1

Bw2

Bw3

w(t)

y(t) =
(
Cy1 Cy2 Cy3

)
x(t) + Dwyw(t)

z(t) =
(
Cz1 Cz2 Cz3

)
x(t) + Duzu(t),

(5.29)
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which is compatible to the decomposition in (5.28). In other words, the state-
space X = X1⊕X2⊕X3 of ΣTc (5.29) is partitioned in such a way that X1 = TcSg,
X2 = TcXm and X3 = TcVg,c.

By applying to ΣTc (5.29), the controller Σc (5.25) with an identical state parti-
tioning, the closed-loop system ΣTc

cl (B.1) is obtained. Please note that the math-
ematical description for this closed-loop system is added to appendix B.

In the following theorem we will see how the DDPMS is solved for (Σ (5.1), Sg, Vg,
Cg). The mappings L, F and N of this controller are, for ΣTc (5.29), essentially

chosen such that all bold-font mappings in ΣTc

cl (B.1) vanish and such that closed-
loop stability is achieved. This representation is therefore convenient for numerical
implementation, while additionally providing an intuitive interpretation for the
solution to the problem.

Theorem 5.17 Consider a stability domain Cg and the subspaces (Sg,Vg) ∈ Tg.

Then Σc (5.25) “solves” the DDPMS for (Σ (5.1), Sg, Vg, Cg) if and only if the
mappings L : Y → X , F : X → U and N : Y → U , which uniquely define
F̃ = F +NCy, satisfy

(A+ LCy)Sg ⊆ Sg, im(Bw + LDwy) ⊆ Sg,
(A+BuF̃ )Vg ⊆ Vg, (Cz +DuzF̃ )Vg = 0,

im(Bw +BuNDwy) ⊆ Vg, DuzNDwy = 0,

(A+BuNCy)Sg ⊆ Vg, (Cz +DuzNCy)Sg = 0,

λ(Acl) ⊆ Cg for Σcl (5.26).

(5.30)

Proof: The proof can be found in appendix A.3. �

Finally, in the following corollary we will show that the solution to the DDPMS is
indeed linked to the entire set Tg by considering Definition 5.16.

Corollary 5.18 Consider a stability domain Cg.

Then the DDPMS “can be solved” for (Σ (5.1), Sg, Vg ,Cg) if and only if Σ (5.1)
is Cg-stabilisable, Cg-detectable and (Sg,Vg) ∈ Tg.

Proof: The proof can be found in appendix A.3. �

5.3.4 The Disturbance Decoupling Problem with
Measurement Feedback using a Constrained
Order Controller

From Corollary 5.18 we can conclude that the solution to the DDPMS is related
to pairs of subspaces (Sg,Vg) ∈ Tg. Theorem 5.17 establishes conditions on the
mappings L, F and N , which will solve the problem for a given pair (Sg,Vg) ∈ Tg.
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These conditions imply—similarly to the DDEPS—that the controller states x̃ ∈ Sg
are unobservable in the output z(t), while the states x̃ ∈ Vg,c are not reachable
through w(t). This tells us that a controller of order nc = dim(Xm) = dim(Vg) −
dim(Sg) can achieve disturbance decoupling in closed-loop.

It is, however, stated by Stoorvogel and van der Woude [1991] that a controller
of this order might not be able to achieve closed-loop stability as well. We will
therefore solve the DDPM-CO first; the subscript g is omitted for notational clarity.

In view of the state decomposition in (5.28), consider Πm = Π(Xm,S ⊕ Vc) to
define

Ĵ = Πm(A|Xm +BuFm) + LmCy|Xm, K̂ = ΠmBuN − Lm, M̂ = Fm,

which depend on the mappings Lm : Y → Xm, Fm : Xm → U and N : Y → U .

We now claim that the reduced order controller

Σ̂c =

{
˙̃xm(t) = Ĵ x̃m(t) + K̂y(t)

u(t) = M̂x̃m(t) +Ny(t).
(5.31)

of order nc = dim(V)−dim(S) will be able to solve the DDPM-CO for appropriate
mappings Lm : Y → Xm, Fm : Xm → U and N : Y → U ; this will be established in
Theorem 5.20.

Proposition 5.19 Consider a number nc ∈ N.

Then the DDPM-CO “can be solved” for (Σ (5.1), nc) if there exists subspaces
(S,V) ∈ T with dim(V)− dim(S) = nc.

Proof: In Theorem 5.20 below it will be shown for a given pair of subspaces
(S,V) ∈ T that the reduced order controller Σ̂c (5.31) can solve this problem. �

In a similar fashion to Remark 5.2, it can be noted that an “only if” statement does
not hold in general for Proposition 5.19. Furthermore, by definition we get that
dim(V?) ≥ dim(V) and that dim(S?) ≤ dim(S) for any pair (S,V) ∈ T. Therefore,
by considering (S?,V?) ∈ T an “unnecessarily large” controller could be created,
while it is often desired to minimise this order. This is, again, the reason why the
solution to the DDPMS was related to the entire set Tg in section 5.3.3.

Before formally solving the DDPM-CO, let us consider the equivalent system
ΣTc (5.29) that is created for a given pair (S,V) ∈ T by utilising the decomposi-

tion in (5.28). The reduced order controller Σ̂c (5.31) is for ΣTc (5.29) explicitly
described as

Σ̂Tc
c =

{
˙̃x2(t) =

(
A22 +Bu2F2 + L2Cy2

)
x̃2(t) +

(
Bu2N − L2

)
y(t)

u(t) = F2 x̃2(t) + N y(t),
(5.32)

where x̃m(t), Lm and Fm of Σ̂c (5.31) are described by x̃2(t), L2 and F2 in

Σ̂Tc
c (5.32), respectively. Applying Σ̂Tc

c (5.32) to ΣTc (5.29) results in the closed-loop
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system Σ̂Tc

cl (B.2)—for which the mathematical description is added to appendix B.
A bold font is, again, used for mappings that can vanish by construction.

In the following theorem we will see how the DDPM-CO is solved by a controller
Σ̂c (5.31). The controller mappings are, for ΣTc (5.29), essentially chosen such that

all bold-font mappings in Σ̂Tc

cl (B.2) vanish.

Theorem 5.20 Consider a pair of subspaces (S,V) ∈ T with nc = dim(V) −
dim(S), the decomposition in (5.28) and define Πm = Π(Xm,S ⊕ Vc) and ΠV =
Π(Vc,V).

Then Σ̂c (5.31) “solves” the DDPM-CO for (Σ (5.1), nc) if the mappings Lm : Y →
Xm, Fm : Xm → U and N : Y → U , which uniquely define F̃m = Fm + NCy|Xm,
satisfy

(ΠmA+ LmCy)|S = 0, ΠmBw + LmDwy = 0,

ΠV(A|Xm +BuF̃m) = 0, Cz|Xm +DuzF̃m = 0,

ΠV(Bw +BuNDwy) = 0, DuzNDwy = 0,

ΠV(A+BuNCy)|S = 0, (Cz +DuzNCy)|S = 0.

(5.33)

Proof: The proof can be found in appendix A.3. �

5.3.5 The Disturbance Decoupling Problem with
Measurement Feedback and Stability
using a Constrained Order Controller

Stability of a closed-loop system is required in most, if not all, control problems
that are considered in practice. We should therefore consider the DDPMS-CO in
order to make this theoretical investigation relevant.

In Theorem 5.20 it is shown for the system ΣTc (5.29) that the controller mappings
L1, L3, F1 and F3 are not required to solve the DDPM-CO. It is, however, not
sufficient to only consider conditions on the mappings L2, F2 and N in order to
guarantee that both disturbance decoupling and stability can be achieved in closed-
loop by replacing T with Tg.

In order to overcome this problem, let us first characterise all controllers Σc (5.25)
that solve the DDPMS for given subspaces (Sg,Vg) ∈ Tg in terms of the mappings
L, F and N by defining

Mg(Sg,Vg) = {(L,F,N) | Σc (5.25) solves the DDPMS for (Σ (5.1), Sg, Vg, Cg)
with mappings L : Y → X , F : X → U , N : Y → U} .

The notation F ∈ Mg(Sg,Vg), (F,N) ∈ Mg(Sg,Vg) or L ∈ Mg(Sg,Vg) is used
when not all mappings are of interest.

The set Mg has some interesting properties, which will now be proven.
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Lemma 5.21 Mg(Sg,Vg) has the following properties:

(a) Mg(Sg,Vg) = ∅ if and only if (Sg,Vg) /∈ Tg.
(b) (L1, F1, N1), (L2, F2, N2) ∈Mg(Sg,Vg) implies that (L1, F2, N2) ∈Mg(Sg,Vg)

and that (L2, F1, N1) ∈Mg(Sg,Vg).

Proof: (a) follows directly from Corollary 5.18.

(b) states that the mappings L ∈ Mg(Sg,Vg) are independent of the mappings
F and N . This follows directly from Theorem 5.17, where no requirement on L
depends on F or N . �

This second property implies that the design requirements on the mapping L are
independent from the design requirements on the mappings F and N . This “sep-
aration property” holds for the solution to the DDPMS as well as the DDPM-CO.

Now, in order to provide a solution to the DDPMS-CO we can consider making
the design of L depend on the choice of F (and N). More specifically, we will
provide a solution to the DDPMS-CO by constructing an appropriate mapping L
on the basis of a given mapping F ∈ Mg(Sg,Vg). Let us define the following two
subspaces—which are used to construct an extension to Xm—for this purpose.

Definition 5.22 Consider a stability domain Cg, the subspaces (Sg,Vg) ∈ Tg, the
decomposition in (5.28) and a mapping F ∈Mg(Sg,Vg). Furthermore, let us define
AS = Π(Sg,Sg,c)A|Sg, Cy,S = Cy|Sg and FS = F |Sg.

Then the subspaces S1 and S3 of vector space X are defined as follows:

S1(Σ (5.1), Sg, Sg,c, F ) is a subspace S1 ⊆ Sg ⊆ X for which there exists a mapping
L1 : Y → Sg such that (AS+L1Cy,S)S1 ⊆ S1, λ((AS+L1Cy,S)|(Sg mod S1)) ⊆ Cg
and S1 ⊆ ker(FS).

S3(Σ (5.1), Sg, Vg,c, F ) is a subspace S3 ⊆ X for which there exists a mapping
L3 : Y → X such that (A+L3Cy)(Sg⊕S3) ⊆ Sg⊕S3, im(Bw +L3Dwy) ⊆ Sg⊕S3,
λ((A+ L3Cy)|(X mod (Sg ⊕ S3))) ⊆ Cg and S3 ⊆ ker(F |Vg,c) ⊆ Sg ⊕ Vg,c.

The subspace S1 is used to partition the subspace Sg as Sg = S1 ⊕ S1,c; the
subspace S3 is used to partition the subspace Vg,c as Vg,c = S3 ⊕S3,c. In this way,
the state-space X of Σ (5.1) is decomposed as

X = S1 ⊕ S1,c ⊕Xm ⊕ S3,c ⊕ S3. (5.34)

Furthermore, let us define Xm,g = S1,c ⊕ Xm ⊕ S3,c and the complement Xm,g,c =
S1⊕S3. For clarity, an overview of all considered subspaces is depicted in figure 5.2.

Now, let Tc,g be a state transformation that transforms Σ (5.1) into ΣTc,g (B.3),
which is compatible to the decomposition in (5.34). In other words, the state-
space of ΣTc,g (B.3) is partitioned in such a way that X1 = Tc,gS1, X2 = Tc,gS1,c,
X3 = Tc,gXm, X4 = Tc,gS3,c and X5 = Tc,gS3. Please note that the mathematical
description for this system is added to appendix B.
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Figure 5.2: An overview of the subspaces that have been defined for Σ (5.1).

In view of the state decomposition in (5.34) and the derived subspaces as depicted
in fig. 5.2, consider Πm,g = Π(Xm,g,Xm,g,c) to define

Ĵg = Πm,g(A|Xm,g +BuFm,g) + Lm,gCy|Xm,g,
K̂g = Πm,gBuN − Lm,g, M̂g = Fm,g,

which depend on the mappings Lm,g : Y → Xm,g, Fm,g : Xm,g → U and N : Y → U .

We now claim that the reduced order controller

Σ̂c,g =

{
˙̃xm,g(t) = Ĵgx̃m,g(t) + K̂gy(t)

u(t) = M̂gx̃m,g(t) + Ny(t).
(5.35)

of order nc = dim(X ) − dim(S1) − dim(S3) will be able to solve the DDPMS-CO
for appropriate mappings Lm,g : Y → Xm,g, Fm,g : Xm,g → U and N : Y → U ; this
will be established in Theorem 5.24.

Proposition 5.23 Consider a stability domain Cg and a number nc ∈ N.

Then the DDPMS-CO “can be solved” for (Σ (5.1), nc, Cg) if Σ (5.1) is Cg-
stabilisable, Cg-detectable and for some pair of subspaces (Sg,Vg) ∈ Tg and a
mapping F ∈ Mg(Sg,Vg) there exist subspaces S1 and S3—corresponding to Defi-
nition 5.22—that satisfy nc = dim(X )− dim(S1)− dim(S3).

Proof: In Theorem 5.24 below it will be shown for a given pair of subspaces S1,
S3 that the reduced order controller Σ̂c,g (5.35) can solve this problem. �

From Proposition 5.23 we can, again, observe that the orders nc for which the
DDPMS-CO can be solved are related to the dimension of subspaces S1, S3. In
order to construct a controller of small order, it is therefore desired to find subspaces
S1, S3 that are large in dimension.

Before formally solving the DDPMS-CO, let us consider again the equivalent system
ΣTc,g (B.3). The reduced order controller Σ̂c,g (5.35) is for ΣTc,g (B.3) explicitly

described as Σ̂
Tc,g
c,g (B.4). The controller state x̃m,g(t) and the mappings Lm,g

and Fm,g of Σ̂c,g (5.35) are described by

x̃12(t)
x̃2(t)
x̃31(t)

,

L12

L2

L31

 and
(
F12 F2 F31

)
in
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Σ̂
Tc,g
c,g (B.4), respectively. Applying Σ̂

Tc,g
c,g (B.4) to ΣTc,g (B.3) results in the closed-

loop system Σ̂
Tc,g

cl,g (B.5), for which a bold font is used when mappings can vanish
by construction.

The subspaces S1 and S3 are created such that F |Xm,g,c = 0 for a given F ∈
Mg(Sg,Vg). This implies for ΣTc,g (B.3) that there exists a mapping

F =
(
0 F12 F2 F31 0

)
∈Mg(X11 ⊕X12,X11 ⊕X12 ⊕X2).

In the following theorem we will see how the DDPMS-CO is solved by a controller
Σ̂c,g (5.35). The controller mappings are, for ΣTc,g (B.3), essentially chosen such

that all bold-font mappings in Σ̂
Tc,g

cl,g (B.5) vanish.

Theorem 5.24 Consider a stability domain Cg, the subspaces (Sg,Vg) ∈ Tg and
mappings (F,N) ∈ Mg(Sg,Vg). Furthermore, consider a pair of subspaces S1,
S3—corresponding to Definition 5.22—with nc = dim(X )−dim(S1)−dim(S3) and
the derived subspaces as depicted in figure 5.2.

Finally, define Πm,g = Π(Xm,g,Xm,g,c) and Πm,3 = Π(Xm ⊕ S3,c,S1,c).

Then Σ̂c,g (5.35) solves the DDPMS-CO for (Σ (5.1), nc, Cg) if Fm,g = F |Xm,g
and the mapping Lm,g : Y → Xm,g satisfies

(Πm,gA+ Lm,gCy)|S1 = 0, Πm,3(Πm,gA+ Lm,gCy)|(S3 ⊕ S1,c) = 0,

Πm,3(Πm,gBw + Lm,gDwy) = 0, λ((Πm,gA+ Lm,gCy)|Xm,g) ⊆ Cg.
(5.36)

Proof: The proof can be found in appendix A.3. �

5.3.6 Conditions on the Controller Order

It is shown in Proposition 5.19 that the dimensions of subspaces (S,V) ∈ T deter-
mine the values nc for which the DDPM-CO can be solved. Now let us characterise
the minimal controller order n−c for which the DDPM-CO can be solved. In addi-

tion, we will see that the controller architecture Σ̂c (5.31) is not restrictive in terms
of minimising the controller order.

Theorem 5.25 For a given system Σ (5.1), the minimal order for which the
DDPM-CO can be solved is given by

n−c = min
(S,V)∈T

dim(V)− dim(S).

The reduced order controller Σ̂c (5.31) can be used to solve the DDPM-CO for
(Σ (5.1), n−c ).



5.3 The DDPMS-CO 161

Proof: Stoorvogel and van der Woude [1991] state that the controller order for
this control problem is characterised in terms of subspaces (S,V) ∈ T. Therefore,
according to Schumacher [1980, Thm. 3.1] we get that

n−c = min
(S,V)∈T

dim(V)− dim(S),

which completes the first part of the proof.

Finally, in Theorem 5.20 it is demonstrated that a controller of order n−c can be
created for a given pair (S,V) ∈ T with n−c = dim(V)− dim(S), �

It is shown in Proposition 5.23 that the dimensions of subspaces S1 and S3 deter-
mine the values nc for which the DDPMS-CO can be solved. These dimensions are
dependent on the choice of Sg, Vg and on F . For this approach to the problem, let
us characterise the minimal order at which the DDPMS-CO can be solved.

Lemma 5.26 Consider a stability domain Cg and the subspaces S1 and S3—
corresponding to Definition 5.22—which are constructed on the basis of a pair
(Sg,Vg) ∈ Tg and a mapping F ∈Mg(Sg,Vg).

Then for a given system Σ (5.1), the minimal order for which the DDPMS-CO can

be solved with Σ̂
Tc,g
c,g (B.4) is given by

n−c,g = min
(Sg,Vg)∈Tg

min
F∈Mg(Sg,Vg)

min
S1, S3

dim(X )− dim(S1)− dim(S3).

Proof: In Theorem 5.24 it is demonstrated that a controller of order n−c,g can
be created for a given pair of subspaces S1 and S3 with n−c = dim(X )− dim(S1)−
dim(S3). �

In this lemma, the minimal order at which the DDPMS-CO can be solved by

utilising the controller Σ̂
Tc,g
c,g (B.4) is presented. The example in section 5.3.8 will,

however, show that the presented solution to the DDPMS-CO is restrictive in terms
of minimising n−c,g. This implies that n−c,g is not necessarily the minimal order for
which the DDPMS-CO can be solved; we do know that this minimal order is
bounded from below by n−c .

In some situations, however, the minimal controller order can be characterised for
the DDPMS-CO as well. For optimal control problems it is often assumed that
the mapping Dwy is full row rank and that the mapping Duz is full column rank.

Under these conditions, it can be shown that a controller of the form Σ̂c (5.31) can
be used to solve the DDPMS-CO and that the solution is not restrictive in terms
of minimising the controller order.

Theorem 5.27 Consider a stability domain Cg and a system Σ (5.1) for which
the mapping Dwy is full row rank and the mapping Duz is full column rank.

Then, for Σ (5.1), the minimal order for which the DDPMS-CO can be solved is
given by

n−c = min
(Sg,Vg)∈Tg

dim(Vg)− dim(Sg).
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The reduced order controller Σ̂c (5.31) can be used to solve the DDPMS-CO for
(Σ (5.1), n−c , Cg).

Proof: The proof can be found in appendix A.3. �

5.3.7 Numerical Construction of the Controller

For the construction of a constrained order controller, we will again consider nu-
merical representations for subspaces and utilise numerical implementations of all
the subspace operations—as is described in more detail in section 2.1.

A numerical procedure to solve the DDPMS-CO consists of the following steps:

1. determine numerical representations for the subspaces (Sg,Vg) ∈ Tg.
2. a state transformation Tc is—if Tg 6= ∅—constructed on the basis of these

subspaces, which transforms the system Σ (5.1) into an equivalent system
ΣTc (5.29).

3. the system ΣTc (5.29) is used to solve the DDPM, DDPMS or DDPM-CO by
construction of the appropriate controller mappings.

4. for some (F,N) ∈ Mg(Sg,Vg), numerical representations for the subspaces
S1, S3—corresponding to Definition 5.22—are determined.

5. a state transformation Tg is constructed on the basis of these subspaces, which
transforms the system ΣTc (5.29) into an equivalent system ΣTc,g (B.3).

6. the system ΣTc,g (B.3) is used to solve the DDPMS-CO by construction of
the appropriate controller mappings.

Steps 1 and 2

As explained before, the toolboxes that are developed by Marro [2018] and Chen
[2018] can be used to create numerical representations for the subspaces S?g and
V?g . In addition, by utilising subspace operations it is possible to numerically verify
whether (S?g ,V?g ) ∈ Tg. A numerical procedure to construct a representation for
other subspaces in Tg does, however, not exist. For this reason it is assumed that
a minimal representation for these subspaces is constructed.

Let us define the state transformations Tc that transforms Σ (5.1) into ΣTc (5.29).
The states of ΣTc (5.29) are compatible to the state decomposition in (5.28). By
utilising the subspaces Sg and Vg—which satisfy Sg ⊆ Vg—it is possible to define
the subspaces Xm and Vg,c such that Sg ⊕ Xm = Vg and Vg ⊕ Vg,c = X . For
example, we can consider Xm = S⊥g ∩ Vg and Vg,c = V⊥g . Minimal representations

for these subspaces can directly be used to transform Σ (5.1) into ΣTc (5.29) by
applying the state transformation

Tc =

Πs(Sg,Xm ⊕ Vg,c)
Πs(Xm,Sg ⊕ Vg,c)
Πs(Vg,c,Sg ⊕Xm)

 . (5.37)
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Step 3

Solving the DDPM(-CO): A representation of the form ΣTc (5.29) is considered
for these problems, which is created using a state transformation Tc (5.37) that is
based on a pair (S,V) ∈ T. The controller Σc (5.25) is for ΣTc (5.29) characterised

in the mappings L =

 L1

L2

L3

, F =
(
F1 F2 F3

)
and N , which uniquely define

the mapping F̃ =
(
F̃1 F̃2 F̃3

)
= F +NCy .

For a given pair of subspaces (S,V) ∈ T, it is established in Theorem 5.17 that
the solution to the DDPM is characterised in therms of the mappings L, F̃ and
N that satisfy (5.30) for Cg = C. For ΣTc (5.29) it has been shown that these

requirements are equivalent to vanishing of the bold-font mappings in ΣTc

cl (B.1),
which makes this system representation convenient from a numerical perspective.

The requirements in (5.30) imply for ΣTc (5.29) that these mappings should satisfy

A21 + L2Cy1 = 0, A31 + L3Cy1 = 0,

Bw2 + L2Dwy = 0, Bw3 + L3Dwy = 0,

L1 : Y → X1,

(5.38)

A31 +Bu3F̃1 = 0, A32 +Bu3F̃2 = 0,

Cz1 +DuzF̃1 = 0, Cz2 +DuzF̃2 = 0,

F̃3 : X3 → U ,

(5.39)

Bw3 +Bu3NDwy = 0, DuzNDwy = 0,

A31 +Bu3NCy1 = 0, Cz1 +DuzNCy1 = 0.
(5.40)

The mappings L, F̃ and N are therefore constructed by numerically solving a set
of linear equations.

Σc (5.25)—which is designed using ΣTc (5.29)—therefore solves the DDPM for
(ΣTc (5.29), X1, X1 ⊕ X2) when the mapping L satisfies (5.38), the mapping N
satisfies (5.40); and when the mapping F = F̃ − NCy is constructed with this

specific N in combination with the mapping F̃ satisfying (5.39). Because Σ (5.1)
and ΣTc (5.29) are equivalent in terms of input to output behaviour—and because
X1 = TcS and X1 ⊕ X2 = TcV—it can be concluded that this controller will solve
the DDPM for (Σ (5.1), S, V) as well.

Finally, let the considered subspaces (S,V) ∈ T satisfy dim(V) − dim(S) = nc.

Then Σ̂Tc
c (5.32) solves the DDPM-CO for (ΣTc (5.29), nc) and for (Σ (5.1), nc),

when the mappings L2, F2 = F̃2 −NCy2 and N satisfy (5.38)–(5.40).

It is important to note for the DDPM-CO, that the controller order nc is directly
determined by dimension of the subspaces (S,V) ∈ T. The mappings L, F and N ,
on the other hand, determine the mappings of this constrained order controller.

Solving the DDPMS: A representation of the form ΣTc (5.29) is also considered
for the DDPMS, which is created using a state transformation Tc (5.37) that is now
based on the different pair (Sg,Vg) ∈ Tg.
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For a given pair of subspaces (Sg,Vg) ∈ Tg, it is established in Theorem 5.17 that

the solution to the DDPMS is characterised in therms of the mappings L, F̃ and
N that satisfy (5.30). The requirements in (5.30) imply for ΣTc (5.29), that the
mappings L1, L2 and L3 should satisfy (5.38) and, in addition, should achieve

λ
(
A11 + L1Cy1

)
⊆ Cg,

(
A22 + L2Cy2 A23 + L2Cy3

A32 + L3Cy2 A33 + L3Cy3

)
⊆ Cg.

For stability domain C−, it has been shown in section 2.3 that any mapping L1

that achieves λ
(
A11 + L1Cy1

)
⊂ C− can be characterised by an LMI. In this way,

all stabilising mappings L1 = Z−1
1 J1 are described by solutions to

Z1 � 0, A>11Z1 + Z1A11 + C>y1J
>
1 + J1Cy1 ≺ 0. (5.41)

Like the solution to the DDEPS in section 5.2.5, it is easy to show that the condi-
tions on(
L2

L3

)
=

(
Z22 Z23

Z>23 Z33

)−1(
J2

J3

)
are described by solutions to(

Z22 Z23

Z>23 Z33

)
� 0,

(
A>21 A

>
31

B>w2 B
>
w3

)(
Z22 Z23

Z32 Z33

)
+

(
C>y1

D>wy

)(
J>2 J>3

)
= 0,(

A>22 A
>
32

A>23 A
>
33

)(
Z22 Z23

Z>23 Z33

)
+

(
Z22 Z23

Z>23 Z33

)(
A22 A23

A32 A33

)
+

(
J2Cy2 J2Cy3

J3Cy2 J3Cy3

)
+

(
J2Cy2 J2Cy3

J3Cy2 J3Cy3

)>
≺ 0.

(5.42)

The design of a state feedback F̃ is dual to the design of an observer gain L. The
requirements in (5.30) imply, in a similar manner, that the mappings F̃1, F̃2 and
F̃3 should satisfy (5.39) and, in addition, should achieve

λ
(
A33 +Bu3F̃3

)
⊆ Cg,

(
A11 +Bu1F̃1 A12 +Bu1F̃2

A21 +Bu2F̃1 A22 +Bu2F̃2

)
⊆ Cg.

All stabilising mappings F̃3 = K3Y
−1
3 are therefore—for stability domain C−—

described by solutions to

Y3 � 0, Y3A
>
33 +A33Y3 +K>3 B

>
u3 +Bu3K3 ≺ 0. (5.43)

The conditions on
(
F̃1 F̃2

)
=
(
K1 K2

)(Y11 Y12

Y >12 Y22

)−1

are described by solutions to

Y =

(
Y11 Y12

Y >12 Y22

)
� 0,

(
A31 A32

Cz1 Cz1

)(
Y11 Y12

Y >12 Y22

)
+

(
Bu3

Duz

)(
K1 K2

)
= 0,(

Y11 Y12

Y >12 Y22

)(
A>11 A

>
12

A>21 A
>
22

)
+

(
A11 A12

A21 A22

)(
Y11 Y12

Y >12 Y22

)
+

(
Bu1K1 Bu1K2

Bu2K1 Bu2K2

)
+

(
Bu1K1 Bu1K2

Bu2K1 Bu2K2

)>
≺ 0.

(5.44)
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Σc (5.25)—which is designed using ΣTc (5.29)—therefore solves the DDPMS for
(ΣTc (5.29), X1, X1⊕X2, C−) when the mapping L satisfies (5.41),(5.42); the map-
ping N satisfies (5.40); and when the mapping F = F̃ −NCy is constructed with

this specific N in combination with the mapping F̃ satisfying (5.43),(5.44). Because
Σ (5.1) and ΣTc (5.29) are equivalent in terms of input to output behaviour—and
because X1 = TcSg and X1 ⊕ X2 = TcVg—it can again be concluded that this
controller will solve the DDPMS for (Σ (5.1), S, V, C−) as well.

Steps 4 and 5

Similarly to step 1, it is assumed that a minimal representation is constructed for
the subspaces S1, S3—corresponding to Definition 5.22.

Then, let us define the state transformation Tc,g that transforms Σ (5.1) into
ΣTc,g (B.3). The states of ΣTc,g (B.3) are compatible to the state decomposition
in (5.34). By utilising the subspaces S1 and S3—in combination with Sg and Vg,c
as described in step 2—it is possible to define the subspaces S1,c and S3,c such that
S1 ⊕ S1,c = Sg and S3 ⊕ S3,c = Vg,c. For example, we can consider S1,c = S⊥1 ∩ Sg
and S3,c = S⊥3 ∩ Vg,c.
Minimal representation for these subspaces can be used to transform ΣTc (5.29)—
as constructed in step 2—into ΣTc,g (B.3). The structure of ΣTc (5.29), actually
implies that the minimal representations for the subspaces S1, S1,c, S3 and S3,c are
of the form

S1 =

S̄1

0
0

 , S1,c =

S̄1,c

0
0

 , S3 =

 0
0
S̄3

 , S3,c =

 0
0
S̄3,c

 .

In other words, S̄1 and S̄1,c are minimal representations for subspaces S̄1 and S̄1,c

of vector space X1. Similarly, S̄3 and S̄3,c are minimal representations for subspaces
S̄3 and S̄3,c of vector space X3. The system ΣTc (5.29) can therefore be transformed
into ΣTc,g (B.3) by utilising the state transformation

Tg =


Πs(S̄1,S̄1,c) 0 0

Πs(S̄1,c,S̄1) 0 0
0 Idim(X2) 0

0 0 Πs(S̄3,c,S̄3)

0 0 Πs(S̄3,S̄3,c)

. (5.45)

The state transformation that transforms Σ (5.1) directly into ΣTc,g (B.3) is now
given by Tc,g = TgTc.

Step 6

For the DDPMS-CO we will consider a representation of the form ΣTc (5.29), which
is created with a state transformation Tc (5.37) that is based on a pair (Sg,Vg) ∈ Tg.
In addition, a pair (Fg, Ng) ∈ Mg(Sg,Vg) is constructed; for stability domain
Cg = C− we have shown that Ng is a solution to (5.40) and that the solutions

to (5.43),(5.44) can be used to obtain Fg = F̃ −NgCy.
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With these mappings it is possible to construct a pair of subspaces S1 and S3—
corresponding to Definition 5.22. These subspaces are used to create the system
representation ΣTc,g (B.3) by applying a state transformation Tg as defined in (5.45)

to ΣTc (5.29). The constrained order controller Σ̂
Tc,g
c,g (B.4) is for ΣTc,g (B.3) char-

acterised in the mappings L12

L2

L31

,
(
F12 F2 F31

)
and N .

In Theorem 5.24 it is established that the mappings
(
F12 F2 F31

)
and N of this

controller can directly be derived from Fg and Ng. Similar to the DDPMS, it is
easy to show for stability domain C− that L12 = V −1

12 H12 is described by solutions
to

V12 � 0, A>1211V12 + Cy11H12 = 0,

A>1212V12 + V12A1212 + C>y12H
>
12 +H12Cy12 ≺ 0.

(5.46)

And that the conditions on

(
L2

L31

)
=

(
V22 V231

V >231 V3131

)−1(
H2

H31

)
are described by

solutions to

(
V22 V231

V >231 V3131

)
� 0,


A>211 A

>
3111

A>212 A
>
3112

A>232 A
>
3132

B>w2 B
>
w31

( V22 V231

V >231 V3131

)
+


C>y11

C>y12

C>y32

D>wy

(H>2 H>31

)
= 0,

(
A>22 A>312

A>231 A
>
3131

)(
V22 V231

V >231 V3131

)
+

(
V22 V231

V >231 V3131

)(
A22 A231

A312 A3131

)
+

(
H2Cy2 H2Cy31

H31Cy2 H31Cy31

)
+

(
H2Cy2 H2Cy31

H31Cy2 H31Cy31

)>
≺ 0.

(5.47)

Finally, let the subspaces S1 and S3 satisfy dim(S1) + dim(S3) = dim(X ) − nc.
Then Σ̂

Tc,g
c,g (B.4) solves the DDPMS-CO for (ΣTc,g (B.3), C−, nc), (ΣTc (5.29),

C−, nc) and (Σ (5.1), C−, nc) when the mappings Ng and Fg as defined above are
used to design the controller mappings N = Ng and

(
0 F12 F2 F31 0

)
= TgFg;

and when the mapping

 L12

L2

L31

 satisfies (5.46),(5.47).

Similarly to the DDPM-CO, it is important to note for the DDPMS-CO, that the
controller order nc is directly determined by the dimension of the subspaces S1 and
S3. The mappings Lm,g, Fm,g and N , on the other hand, determine the mappings
of this constrained order controller.

5.3.8 An Illustrative Example

An example is now presented to illustrate the design of a constrained order con-
troller. In addition, the example is used to demonstrate that the solution to the
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DDPMS-CO—as presented in section 5.3.5—is restrictive in terms of minimising
the controller order.

In this example, a system of the form ΣTc,g (B.3)—with dim(X12) = 0—is consid-
ered. The system is described by Σex,c =


ẋ11(t)

ẋ2(t)

ẋ31(t)

ẋ32(t)

 =


−10 −2 1 −2

−1 − 12 3 5

0 −6 1 −1

0 2 0 −1



x11(t)

x2(t)

x31(t)

x32(t)

 +


0 0

0 0

1 0

0 1

u(t) +


1 5

4 2

0 0

0 0

w(t)

y(t) =

(
1 0 0 0

0 0 0 8

)
x(t) +

(
−4−2

0 0

)
w(t)

z(t) =

(
0 − 8 6 4

0 −4 7 3

)
x(t) +

(
1−1

1 1

)
u(t).

(5.48)
Note that the system representation is of the form ΣTc (5.29) as well, by defining

x1(t) = x11(t) and x3(t) =

(
x31(t)
x32(t)

)
.

Solving the DDPM-CO

A controller Σ̂Tc
c (5.32) of order dim(X2) = 1 can be used to solve the DDPM-CO

for Σex,c (5.48), as explained in section 5.3.4. Applying this controller—with N = 0
as will be explained below—to Σex,c (5.48) will result in a closed-loop system of

the form Σ̂Tc

cl (B.2), which is described by Σ̂ex,c,cl =


ẋ11(t)

ẋ2(t)

ẋ31(t)

ẋ32(t)

ė2(t)

 =


− 10 −2 1 − 2

−1 −12 3 5

0 F21 − 6 1 − 1

0 F22 + 2 0 − 1

0

0

−F21

−F22

L21 − 1 0 3 8L22 + 5 −12




x11(t)

x2(t)

x31(t)

x32(t)

e2(t)



+


1 5

2 4

0 0

0 0

4 − 4L21 2 − L21

w(t)

z(t) =

(
0 F21 − F22 − 8 6 4

0 F21 + F22 − 4 7 3

F22 − F21

−F21 − F22

)(
x(t)

e2(t)

)

(5.49)

In section 5.3.7 it is explained that the reduced order controller should satisfy the
conditions on L2, F2 and N in (5.38)-(5.40). These conditions imply that Σ̂Tc

c (5.32)

solves the DDPM-CO for (Σex,c (5.48), 1) if we consider N = 0, F2 =

(
6
−2

)
and

L21 = 1, while L22 is completely free.
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Solving the DDPMS-CO

For this specific example we can observe that by choosing L22 = −1, the controller
Σ̂Tc
c (5.32) as described above will solve the DDPMS-CO for (Σex,c (5.48), C−, 1)

as well. It is, however, in general not guaranteed that a controller wich is designed
in this way will be able to solve the DDPMS-CO.

Therefore, let us solve the DDPMS-CO for stability domain Cg = C−, by utilising
the method as described in section 5.3.5 instead. With this method, an extension
is essentially added to Σ̂Tc

c (5.32) as constructed above. In order to determine this
extension, it is required to first find a mapping F ∈ Mg(X11,X11 ⊕ X2) in order
to determine the subspaces S1 and S3—corresponding to Definition 5.22. These
subspaces are then used to construct a system of the form ΣTc,g (B.3).

We can consider F =

(
0 6 −2 0
0−2 0 0

)
∈ Mg(X11,X11 ⊕ X2), S1 = X11 and S3 = X32

to conclude that Σex,c (5.48) is indeed of the form ΣTc,g (B.3). The controller

Σ̂
Tc,g
c,g (B.4) of order dim(X2) + dim(X31) = 2 can then be designed according to

section 5.3.7.

In section 5.3.7, it is established for Σ̂
Tc,g
c,g (B.4) that N = 0, F2 =

(
6−2

)>
and

F31 =
(
−2 0

)>
can be used. The mappings L2 and L31 are characterised by

solutions to (5.47) and it can easily be verified that this uniquely defines L2 =(
1 − 5

8

)
and L31 =

(
0 1

8

)
.

Applying this controller of order 2 to Σex,c (5.48), results in a stable disturbance
decoupled closed-loop system, which is described by

Σ̂ex,c,cl,g =





ẋ11(t)

ẋ2(t)

ẋ31(t)

ẋ32(t)

ė2(t)

ė31(t)


=



−10 −2 1 −2

−1 −12 3 5

0 0 −1−1

0 0 0 −1

0 0

0 0

−6 2

2 0

0 0 0 0

0 0 0 0

−12 3

−6 1





x11(t)

x2(t)

x31(t)

x32(t)

e2(t)

e31(t)


+



1 5

2 4

0 0

0 0

0 0

0 0


w(t)

z(t) =

(
0 0 4 4

0 0 5 3

−8 2

−4 2

)(
x(t)

e(t)

)
.

(5.50)

Remark 5.4 The solution to the DDPMS-CO—as described in section 5.3.5—
utilises a stabilising mapping F ∈ Mg(Sg,Vg) to construct the constrained order

controller Σ̂
Tc,g
c,g (B.4). In this example, such an approach will always result in

a controller of at least order 2. It has, however, been shown that a controller
Σ̂Tc
c (5.32) of order 1 can solve the DDPMS-CO as well. Therefore, we can conclude

that the solution to the DDPMS-CO as described in section 5.3.5 is restrictive in
terms of minimising the controller order.
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5.4 H2 Optimal Estimation and Control with a
Constrained Order

5.4.1 Problem Definition and Section Outline

In this section, the results from sections 5.2 and 5.3—that were obtained for distur-
bance decoupling problems—are applied to the more practical H2 optimal control
problem. Namely, we will aim to characterise all controller orders n?c—and to con-
struct the corresponding constrained order controller—for which the following H2

optimal control problem can be solved:

Problem 5.1 Construct an H2-admissible controller Σ?c,nc
of the form (5.21) and

of order n?c ∈ N for Σ (5.1), which is a solution to

(Σ?c,nc
, n?c) = arg min

Σc,nc , nc∈N
‖Σcl,nc

(5.22)‖H2

s.t. Σc,nc
(5.21) is H2-admissible for Σ (5.1).

A solution to the minimal order optimal control problem in Problem 1.4 can be
obtained for the H2 norm by characterising all orders n?c that can be used to achieve
H2 optimal performance in closed-loop. In addition, an answer is provided to the
corresponding research questions, while the resulting constrained order controllers
provide a solution to Problem 1.3 for these orders.

The well-known solution to the H2 optimal control problem in Problem 5.1—that
utilises a controller of order nc = nx—is derived in section 2.4. We will, again,
make the following assumption for the design of such a controller.

Assumption 5.2 It is assumed that
1a) (A,Bu) is C−-stabilisable.
1b) (Cy, A) is C−-detectable.

2a)

(
A− jωInx Bu

Cz Duz

)
is full column rank for all ω ∈ R.

2b)

(
A− jωInx Bw

Cy Dwy

)
is full row rank for all ω ∈ R.

3a) Duz is full column rank.
3b) Dwy is full row rank.

The following solution to the H2 optimal control problem is obtained under this
assumption:

Corollary 5.28 Consider a system Σ (5.1) that satisfies assumption 5.2 and let
P+ � 0 and Q+ � 0 be the unique stabilising solutions to the following AREs:

A>P + PA+ C>z Cz − (PBu + C>z Duz)(D
>
uzDuz)

−1(PBu + C>z Duz)
> = 0,

(5.51)

AQ+QA> +BwB
>
w − (QC>y +B>wDwy)(DwyD

>
wy)−1(QC>y +B>wDwy)> = 0.

(5.52)
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These positive semidefinite solutions satisfy P+ � P and Q+ � Q, for any real
and symmetric solution P and Q to the AREs in (5.51) and (5.52), respectively.

Then Problem 5.1 “can be solved” by using a controller of the form Σc (5.25)—
which is of order nx—with design parameters L : Y → X , F : X → U and
N : Y → U .

Furthermore, the controller Σc (5.25) “solves” Problem 5.1 with

L = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1,

F = −(D>uzDuz)
−1(B>u P

+ +D>uzCz),

N = 0.

Proof: The proof can be found in section 2.4. �

This solution to the H2 optimal control problem consists of separately solving a
state feedback design problem and an estimator design problem. We will therefore
first investigate the design of H2 optimal state feedbacks in section 5.4.2 and the
design of H2 optimal estimators with a constrained order in section 5.4.3. Then,
the results for these problems are combined in section 5.4.4 in order to characterise
all controller orders n?c that solve Problem 5.1.

For each of these problems, its well-known solution in section 2.4 is related to the
concepts from geometric control theory as discussed in sections 5.2 and 5.3.

5.4.2 State Feedback Design

For H2 optimal state feedback design, the stability domain Cg = C− is considered.
With this stability domain, let V− be an output-nulling C−-stabilisability subspace
and V?− the C−-stabilisable weakly unobservable subspace as defined in Lemma 2.39
and Theorem 2.40, respectively; and let V−(Σ) denote the set as defined in (5.24).

We will now discuss the design of an H2 optimal state feedback u(t) = Fx(t) for
the system Σ (5.1). Such a feedback essentially minimises, in the H2 norm, the
effect of w(t) onto z(t) for Σcl,F (5.23); the measured output y(t) of Σ (5.1) can
be disregarded for this type of control problem. For the design of an H2 optimal
feedback, the following definitions from section 2.4 are utilised.

Definition 5.29 Consider a state feedback u(t) = Fx(t) applied to the system
Σ (5.1), which results in the closed-loop system Σcl,F (5.23).

Then we say that u(t) = Fx(t) is H2-admissible for Σ (5.1) if for Σcl,F (5.23) we
have that λ(A+BuF ) ⊂ C−.

The performance of an H2-admissible state feedback is defined as

γH2,F (Σ (5.1), F ) = ‖Σcl,F (5.23)‖2H2
.
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We say that a state feedback is H2 optimal for Σ (5.1) if it is a solution to

F = arg min
F̃

γH2,F (Σ (5.1), F̃ )

s.t. u(t) = F̃ x(t) is H2-admissible for Σ (5.1).

The H2 performance of an H2 optimal state feedback u(t) = F ?x(t) for Σ (5.1) is
denoted by

γ?H2,F (Σ (5.1)) = γH2,F (Σ (5.1), F ?).

In addition, let us recite the typical solution to the H2 optimal state feedback
design problem as derived in section 2.4.

Corollary 5.30 Consider a system Σ (5.1) that satisfies items 1a, 2a and 3a in
assumption 5.2 and let P+ � 0 be the unique stabilising solution to the ARE
in (5.51). Furthermore, let Σ′ denote Σ (5.1) for which the mapping Bw :W → X
is replaced with any mapping B′w : W ′ → X . Finally, let us consider the mapping
F ? := −(D>uzDuz)

−1(B>u P
+ +D>uzCz).

Then the state feedback u(t) = F ?x(t) is H2 optimal for Σ (5.1).

Furthermore, the following statements are equivalent:

(i) u(t) = F ?x(t) is H2 optimal for Σ (5.1).
(ii) u(t) = F ?x(t) is H2 optimal for Σ′.

Proof: A proof for the first statement is provided in section 2.4.

To prove the second statement, it suffices to observe that P+ and the state feed-
back u(t) = F ?x(t) are, for both systems, created independently of Bw and B′w.
Therefore the same H2 optimal feedback is obtained for each system. �

For a system Σ (5.1) that satisfies the assumptions in Corollary 5.30, we can—by
utilising the unique stabilising solution P+—define the transformed system

ΣP =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

y(t) = Cyx(t) +Dwyw(t)

z(t) = (D>uzDuz)
− 1

2 (B>u P
+ +D>uzCz)x(t) + (D>uzDuz)

1
2u(t).

(5.53)

This transformed system will be used to transform the H2 optimal state feedback
design problem into a DDPS as discussed in section 5.3.2. For this purpose, let us
first derive some useful properties for the system ΣP (5.53).

Lemma 5.31 Consider a system Σ (5.1) that satisfies items 1a, 2a and 3a in
assumption 5.2 and let P+ � 0 be the unique stabilising solution to the ARE
in (5.51).

Then the transformed system ΣP (5.53) has the following properties:

(a) V−(ΣP (5.53)) = { V− ⊆ X | V− is as defined in Lemma 2.39 for stability
domain Cg = C−, im(Bw) ⊆ V−} .
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(b) V?− = X .
(c) the DDPS “can be solved” for ΣP (5.53).

Proof: (a) follows directly from the definition in (5.24), when it is observed that

ker((D>uzDuz)
1
2 ) = 0.

(b) In Theorem 2.40 it is established that V− ⊆ V?−, for any subspace V− for which
there exists a mapping F : X → U such that (A+BuF )V− ⊆ V−, (Cz+DuzF )V− =
0 and λ((A+BuF )|V−) ⊂ C−. By utilising F = −(D>uzDuz)

−1(B>u P
+ +D>uzCz),

it can be observed that V?− = X is indeed the largest subspace that satisfies these
requirements.

(c) The inclusion im(Bw) ⊆ X holds by definition, which implies that V?− ∈
V−(ΣP (5.53)) and therefore the DDPS can be solved. �

Now it will be shown that ΣP (5.53) can indeed be used to directly transform the
H2 optimal state feedback design problem into a disturbance decoupling problem.

Theorem 5.32 Consider a system Σ (5.1) that satisfies items 1a, 2a and 3a in
assumption 5.2, let P+ � 0 be the unique stabilising solution to the ARE in (5.51)
and consider the transformed system ΣP (5.53). Furthermore, let Σcl,P,F denote
the closed-loop interconnection of a state feedback u(t) = Fx(t) with ΣP (5.53).

Then a state feedback u(t) = Fx(t) is H2 optimal for Σ (5.1) if and only if the
state feedback u(t) = Fx(t) is H2-admissible for ΣP (5.53) and the control output
z(t) of Σcl,P,F is independent of the disturbance w(t).

Proof: The proof can be found in appendix A.3. �

A state feedback u(t) = Fx(t) is therefore H2 optimal for Σ (5.1) when it solves
the DDPS for the transformed system ΣP (5.53). Now it is interesting to establish
how the unique H2 optimal state feedback from Corollary 5.30 is characterised in
terms of the solutions to the DDPS for ΣP (5.53).

Proposition 5.33 Consider a system Σ (5.1) that satisfies items 1a, 2a and 3a in
assumption 5.2, let P+ � 0 be the unique stabilising solution to the ARE in (5.51)
and consider the transformed system ΣP (5.53). Furthermore, let Σ′ denote Σ (5.1)
for which the mapping Bw : W → X is replaced with any mapping B′w : W ′ → X
and let Σ′P be the corresponding transformed system.

Then the following statements are equivalent for a state feedback:

(i) u(t) = Fx(t) solves the DDPS for (ΣP (5.53), V?−, C−), with V?− ∈
V−(ΣP (5.53)).

(ii) u(t) = Fx(t) solves the DDPS for (Σ′P , V?−, C−), with V?− ∈ V−(Σ′P ).
(iii) F = −(D>uzDuz)

−1(B>u P
+ +D>uzCz).

Proof: The proof can be found in appendix A.3. �

It can therefore be concluded that the unique H2 optimal state feedback from
corollary 5.30 is the unique state feedback that solves the DDPS for ΣP (5.53) by
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utilising the subspace V?−. The additional property that this feedback solves both
problems for any mapping Bw, is obtained because V?− = X for ΣP (5.53).

By utilising the equivalence between H2 optimality and disturbance decoupling,
all H2 optimal state feedbacks for Σ (5.1) are essentially paired with subspaces
V− ∈ V−(ΣP (5.53)). It is, however, important to note that this pairing is not
“one to one” in general. For example, multiple subspaces could be paired with a
given H2 optimal feedback.

Such a pairing is not directly interesting for state feedback design. However, it has
been shown in section 5.3 that the controller order for the DDPMS-CO is (partially)
determined by dim(V−). A relation between the H2 optimal state feedbacks u(t) =
Fx(t) and “potential controller orders” has therefore been established, which is
exactly what we require to characterise the controller orders that can be considered
for the H2 optimal control problem.

5.4.3 Estimator Design

For H2 optimal estimator design, again the stability domain Cg = C− is consid-
ered. With this stability domain, let S− be an input-containing C−-detectability
subspace and S?− the C−-detectable strongly reachable subspace as defined in
Lemma 2.42 and Theorem 2.43, respectively; and let S−(Σ) denote the set as
defined in (5.6).

It is important to note that unobservable or unreachable states do not contribute
towards the input to output behaviour of Σ (5.1). These states can therefore be
disregarded when an estimation problem is considered and the following assumption
is made.

Assumption 5.3 For H2 optimal estimator design it is assumed that any state
of Σ (5.1) can be reached through the pair (u(t), w(t)) and observed in the pair
(y(t), z(t)).

We will now discuss the design of an H2 optimal estimator Σe,ne
(5.2) for the

system Σ (5.1). Such an estimator minimises, in the H2 norm, the effect of w(t)
and u(t) onto εz(t) for Σε,ne

(5.3). The following definitions from section 2.4 are
utilised.

Definition 5.34 Consider an estimator Σe,ne
(5.2) applied to the system Σ (5.1),

which results in the error system Σε,ne
(5.3). Furthermore, let N ⊆ X ε,ne denote

the unobservable subspace of Σε,ne
(5.3).

Then we say that Σe,ne
(5.2) is H2-admissible for Σ (5.1) if for Σε,ne

(5.3) we have
that Dε,ne

uz = 0, Dε,ne
wz = 0 and λ(Aε,ne |(X ε,ne mod N )) ⊂ C−.

The performance of an H2-admissible estimator for Σ (5.1) is defined as

γH2,e(Σ (5.1),Σe,ne
(5.2)) = ‖Σε,ne

(5.3)‖2H2
.
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We say that an estimator is H2 optimal for Σ (5.1) if it is a solution to

Σe,ne
= arg min

Σ̃e,ne , ne∈N
γH2,e(Σ (5.1), Σ̃e,ne

)

s.t. Σ̃e,ne
is H2-admissible for Σ (5.1).

The H2 performance of an H2 optimal estimator Σ?e,ne
for Σ (5.1) is denoted by

γ?H2,e(Σ (5.1)) = γH2,e(Σ (5.1),Σ?e,ne
).

It is important to note that the norm ‖Σε,ne (5.3)‖2H2
describes the effect of both

inputs w(t) and u(t) on the output εz(t) of Σε,ne
(5.3). Furthermore, the spec-

trum λ(Aε,ne |(X ε,ne mod N )) is well-defined, because the unobservable subspace
N satisfies Aε,neN ⊆ N .

Let us recite the typical solution to the H2 optimal estimator design problem as
derived in section 2.4.

Corollary 5.35 Consider a system Σ (5.1) that satisfies items 1b, 2b and 3b in
assumption 5.2 and let Q+ � 0 be the unique stabilising solutions to the ARE
in (5.52). Furthermore, let Σ′ denote Σ (5.1) for which the mappings Cz : X → Z
and Duz : U → Z are replaced with any pair of mappings C ′z : X → Z ′ and
D′uz : U → Z ′, respectively. Finally, let us consider the mapping L? := −(Q+C>y +

B>wDwy)(DwyD
>
wy)−1.

Then the H2 optimal estimation problem “can be solved” by using an observer of
the form

Σo =

{
˙̃x(t) =

(
A+ LCy

)
x̃(t)− Ly(t) + Buu(t)

z̃(t) = Mx̃(t) +Ny(t) +Nuu(t),
(5.54)

with design parameters L : Y → X , M : X → Z, N : R → Z and Nu : U → Z.

The observer Σo (5.54) is H2 optimal for Σ (5.1) when the mappings
L = L?, M = Cz, N = 0 and Nu = Duz are considered.

Furthermore, the following statements are equivalent when the mapping
L = L? is considered:

(i) Σo (5.54) with mappings M = Cz, N = 0 and Nu = Duz is H2 optimal for
Σ (5.1).

(ii) Σo (5.54) with mappings M = C ′z, N = 0 and Nu = D′uz is H2 optimal for
Σ′.

Proof: A proof for the first two statements is provided in section 2.4.

To prove the third statement, it suffices to note that Q+ and L? are, for both
systems, created independently of Cz, Duz, C

′
z and D′uz. Therefore the same H2

optimal observer gain L is obtained for each system. �

This corollary contains two important results. Firstly, the H2 optimal output esti-
mation problem can be transformed into an H2 optimal state observation problem.
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Secondly, there exists a unique observer gain L which is optimal for any “to be
estimated” output z(t)—that is, for any pair of mappings Cz and Duz.

For a system Σ (5.1) that satisfies the assumptions in Corollary 5.35, we can—by
utilising the unique stabilising solution Q+—define the transformed system

ΣQ =


ẋ(t) = Ax(t) + Buu(t) + (Q+C>y +BwD

>
wy)(DwyD

>
wy)−

1
2w(t)

y(t) =Cyx(t) +(DwyD
>
wy)

1
2w(t)

z(t) =Czx(t) +Duzu(t).
(5.55)

This transformed system will—similarly to ΣP (5.53)—be used to transform the
H2 optimal estimation problem into a DDEPS as discussed in section 5.2. Again,
let us first derive some useful properties for the system ΣQ (5.55).

Lemma 5.36 Consider a system Σ (5.1) that satisfies items 1b, 2b and 3b in
assumption 5.2 and let Q+ � 0 be the unique stabilising solution to the ARE
in (5.52).

Then the transformed system ΣQ (5.55) has the following properties:

(a) S−(ΣQ (5.55)) = { S− ⊆ X | S− is as defined in Lemma 2.42 for stability
domain Cg = C−, S− ⊆ ker(Cz)} .

(b) S?− = 0.
(c) the DDEPS “can be solved” for ΣQ (5.55).

Proof: (a) follows directly from the definition in (5.6), when it is observed that

im((DwyD
>
wy)

1
2 ) = Y and therefore that C−1

y im((DwyD
>
wy)

1
2 ) = X .

(b) In Theorem 2.43 it is established that S?− ⊆ S−, for any subspace S− for which
there exists a mapping L : Y → X such that (A + LCy)S− ⊆ S−, im((Q+C>y +

BwD
>
wy)(DwyD

>
wy)−

1
2 +L(DwyD

>
wy)

1
2 ) ⊆ S− and λ((A+LCy)|(X mod S−)) ⊂ C−.

By utilising L = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1, it can be observed that S?− = 0

is indeed the smallest subspace that satisfies these requirements.

(c) The inclusion 0 ⊆ ker(Cz) holds by definition, which implies that
S?− ∈ S−(ΣQ (5.55)) and therefore the DDEPS can be solved. �

Now it will be shown that ΣQ (5.55) can indeed be used to directly transform the
H2 optimal estimation problem into a disturbance decoupling problem.

Theorem 5.37 Consider a system Σ (5.1) that satisfies items 1b, 2b and 3b in
assumption 5.2, let Q+ � 0 be the unique stabilising solution to the ARE in (5.52)
and consider the transformed system ΣQ (5.55). Furthermore, let Σε,ne,Q denote
the error system when an estimator Σe,ne

(5.2) is applied to ΣQ (5.55).

Then an estimator Σe,ne
(5.2) is H2 optimal for Σ (5.1) if and only if the estimator

Σe,ne
(5.2) is H2-admissible for ΣQ (5.55) and the output estimation error εz(t) of

Σε,ne,Q is independent of input u(t) and disturbance w(t).
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Proof: The proof can be found in appendix A.3. �

An estimator Σe,ne (5.2) is therefore H2 optimal for Σ (5.1) when it solves the
DDEPS(-CO) for the transformed system ΣQ (5.55). In a similar fashion to state
feedback design, let us establish how the unique H2 optimal observer Σo (5.54)
from Corollary 5.35 is characterised in terms of the solutions to the DDEPS for
ΣQ (5.55).

Proposition 5.38 Consider a system Σ (5.1) that satisfies items 1b, 2b and 3b in
assumption 5.2, let Q+ � 0 be the unique stabilising solution to the ARE in (5.52)
and consider the transformed system ΣQ (5.55). Furthermore, let Σ′ denote Σ (5.1)
for which the mappings Cz : X → Z and Duz : U → Z are replaced with C ′z : X →
Z ′ and D′uz : U → Z ′, respectively; and let Σ′Q be the corresponding transformed
system.

Then the following statements are equivalent for an observer:

(i) Σo (5.54) solves the DDEPS for (ΣQ (5.55), S?−, C−), with S?− ∈
S−(ΣQ (5.55)), M = Cz, N = 0 and Nu = Duz.

(ii) Σo (5.54) solves the DDEPS for (Σ′Q, S?−, C−), with S?− ∈ S−(Σ′Q), M = C ′z,
N = 0 and Nu = D′uz.

(iii) L = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1.

Proof: The proof can be found in appendix A.3. �

It can therefore be concluded that the unique H2 optimal observer Σo (5.54) from
corollary 5.35 is the unique observer that solves the DDEPS for ΣQ (5.55) by
utilising the subspace S?−. The additional property that this specific observer solves
both problems for any pair of mappings Cz and Duz is obtained because S?− = 0
for ΣQ (5.55).

By utilising the equivalence between H2 optimality and disturbance decoupling,
all H2 optimal estimators Σe,ne (5.2) for Σ (5.1) are paired with subspaces S− ∈
S−(ΣQ (5.55)). It is, again, important to note that this pairing is not “one to
one” in general. For example, multiple subspaces could be paired with a given H2

optimal estimator.

This pairing can directly be used to characterise all estimator orders for the H2

optimal estimation problem, since in section 5.2 it is established that these orders
are—for the DDEPS-CO—directly determined by dim(S−).

Therefore, one of the main results in this chapter is obtained by transforming the
H2 optimal estimation problem into the DDEPS-CO.

Theorem 5.39 Consider a system Σ (5.1) that satisfies items 1b, 2b and 3b in
assumption 5.2, let Q+ � 0 be the unique stabilising solution to the ARE in (5.52)
and consider the transformed system ΣQ (5.55).

Then there exists an estimator Σe,ne
(5.2) of order ne ∈ N that is H2 optimal

for Σ (5.1) if, for ΣQ (5.55), there exists a subspace S− ∈ S−(ΣQ (5.55)) with
dim(X )− dim(S−) = ne.
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A reduced order observer of the form Σ̂o (5.11) and of order ne can be used to solve
the H2 optimal estimation problem.

Proof: In Corollary 2.30 it is shown for any H2-admissible estimator Σe,ne
(5.2)

that γH2,e(Σ (5.1),Σe,ne
(5.2)) = tr

(
CzQ

+C>z
)

+ γH2,e(ΣQ (5.55),Σe,ne
(5.2)).

Furthermore, an H2 optimal estimator achieves γ?H2,e
(Σ (5.1)) = tr

(
CzQ

+C>z
)

in
combination with the stability requirement.

Therefore, there exists an H2 optimal estimator of order ne if the DDEPS-CO can
be solved for (ΣQ (5.55), ne, C−). The proof is concluded by applying Proposi-
tion 5.7 and Theorem 5.8 to ΣQ (5.55). �

Now, it is important to note that the inclusion S− ⊆ ker(Cy)—with S− ∈ S(ΣQ (5.55))—
is not by definition satisfied for a subspace S− 6= S?−. A reduced order observer
that is not based on S?− will therefore not be H2 optimal for all “to be estimated”
outputs z(t)—that is, for any pair of mappings Cz and Duz. Instead, the observer
will be H2 optimal for a given output z(t). This implies that the H2 optimal es-
timation problem with an estimator of order ne < nx is, in general, not a “pure”
state observation problem.

In view of the minimal order optimal control problem in Problem 1.4, it is also de-
sired to characterise the minimal order n−e for any H2 optimal estimator Σe,ne

(5.2).

Theorem 5.40 Consider a system Σ (5.1) that satisfies items 1b, 2b and 3b in
assumption 5.2, let Q+ � 0 be the unique stabilising solution to the ARE in (5.52)
and consider the transformed system ΣQ (5.55).

Then for a given system Σ (5.1), the minimal order n−e ∈ N for an estimator
Σe,ne (5.2) that solves the H2 optimal estimation problem is

n−e = min
S−∈S−(ΣQ (5.55))

dim(X )− dim(S−).

A reduced order observer of the form Σ̂o (5.11) and of order n−e can be used to solve
the H2 optimal estimation problem.

Proof: This is Theorem 5.39 combined with Theorem 5.9. �

To conclude, it has been shown that there exist estimators of a reduced order—i.e.
with ne < nx—that can solve the H2 optimal estimation problem. In addition, the
minimal estimator order n−e has been characterised and it shown that a reduced

order observer of the form Σ̂o (5.11) can be considered for this purpose. Finally,
in section 5.2.5 a numerical design procedure has been developed for these reduced
order observers.

The minimal order H2 optimal estimation problem—which is similar to the minimal
order optimal control problem in Problem 1.4—is therefore solved on a theoretical
level. However, an algorithm to construct numerical representations for subspaces
S− ∈ S−(ΣQ (5.55)) that are large in dimension does not exist, which implies that
the problem cannot be solved numerically yet.
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Remark 5.5 The unique H2 optimal observer Σo (5.54) from Corollary 5.35 is, as
explained in Proposition 5.38, related to the subspace S?− ∈ S−(ΣQ (5.55)). Because
this subspace satisfies dim(S?−) = 0, an estimator of order ne = nx must indeed be
considered.

It can happen that this observer coincidentally solves the DDEPS for some other
subspace S− ∈ S−(ΣQ (5.55)) as well. In such a situation, the observer mappings
will satisfy (A+LCy)S− ⊆ S− and MS− = 0, which implies that the observer states
x̃ ∈ S− are unobservable in z̃(t). Any MOR procedure can, when applied to this
specific observer, therefore be used to design a reduced order H2 optimal estimator.
This situation will, however, not happen in general and does not guarantee that an
H2 optimal estimator of minimal order is obtained.

5.4.4 Measurement Feedback Controller Design

The results for H2 optimal state feedback and estimator design can now be com-
bined for the purpose of H2 optimal measurement feedback controller design; let
us consider again the stability domain Cg = C−. With this stability domain, let
S− be an input-containing C−-detectability subspace and S?− the C−-detectable
strongly reachable subspace as defined in Lemma 2.42 and Theorem 2.43, respec-
tively; and let S−(Σ) denote the set as defined in (5.6). In addition, let V− be
an output-nulling C−-stabilisability subspace and V?− the C−-stabilisable weakly
unobservable subspace as defined in Lemma 2.39 and Theorem 2.40, respectively;
and let V−(Σ) denote the set as defined in (5.24).

We will now discuss the design of an H2 optimal controller Σc,nc
(5.21) for the

system Σ (5.1). Such a controller minimises, in the H2 norm, the effect of w(t)
onto z(t) for Σcl,nc

(5.22), while internally stabilising the closed-loop system. For
this type of optimal control problems, the following definitions from section 2.4 are
utilised.

Definition 5.41 Consider a controller Σc,nc
(5.21) applied to the system Σ (5.1),

which results in the closed-loop system Σcl,nc (5.22).

Then we say that Σc,nc
(5.21) is H2-admissible for Σ (5.1) if for Σcl,nc

(5.22) we
have that Dcl,nc

wz = 0 and λ(Acl,nc) ⊂ C−.

The performance of an H2-admissible controller for Σ (5.1) is defined as

γH2
(Σ (5.1),Σc,nc

(5.21)) = ‖Σcl,nc
(5.22)‖2H2

.

We say that a controller is H2 optimal for Σ (5.1) if it is a solution to

Σc,nc
= arg min

Σ̃c,nc , nc∈N
γH2

(Σ (5.1), Σ̃c,nc
)

s.t. Σ̃c,nc
is H2-admissible for Σ (5.1).

The H2 performance of an H2 optimal controller Σ?c,nc
for Σ (5.1) is denoted by

γ?H2
(Σ (5.1)) = γH2,e(Σ (5.1),Σ?c,nc

).
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The solution to theH2 optimal control problem is typically described by a controller
of the form Σc (5.25)—as is shown in Corollary 5.28. In this way, the H2 optimal
observer from Corollary 5.35 is essentially combined with the H2 optimal state
feedback from Corollary 5.30. The fact that an H2 optimal controller can, under
assumption 5.2, be obtained by separately solving an estimator and a state feedback
design problems, is called the separation principle.

Now let us consider the unique stabilising solutions P+ and Q+ to the AREs
in (5.51) and (5.52), respectively. By utilising these solutions for a system Σ (5.1),
it is possible to define the transformed system

ΣPQ =


ẋ(t) = Ax(t) + Buu(t) + B̃ww(t)

y(t) =Cyx(t) + (DwyD
>
wy)

1
2w(t)

z(t) = C̃zx(t) + (D>uzDuz)
1
2u(t),

(5.56)

with C̃z = (D>uzDuz)
− 1

2 (B>u P
++D>uzCz) and B̃w = (Q+C>y +BwD

>
wy)(DwyD

>
wy)−

1
2 .

This system can, again, be used to transform the H2 optimal control problem into
a DDPMS as discussed in section 5.3. First, let us derive some useful properties
for ΣPQ (5.56).

Lemma 5.42 Consider a system Σ (5.1) that satisfies assumption 5.2 and let
P+ � 0 and Q+ � 0 be the unique stabilising solutions to the AREs in (5.51)
and (5.52), respectively.

Then the transformed system ΣPQ (5.56) has the following properties:

(a) T−(ΣPQ (5.56)) =
{ (S−,V−) ⊆ X | S− and V− are as defined in Lemmas 2.42 and 2.39,

respectively, for stability domain Cg = C−,
S− ⊆ ker(C̃z), im(B̃w) ⊆ V−, AS− ⊆ V−

}
.

(b) (S?−,V?−) = (0,X ).
(c) the DDPMS “can be solved” for ΣPQ (5.56).
(d) S− ⊆ V− for any pair of subspaces (S−,V−) ∈ T−(ΣPQ (5.56)).

Proof: The proof can be found in appendix A.3. �

It will now be shown that ΣPQ (5.56) can indeed be used to transform the H2

optimal control problem into a disturbance decoupling problem.

Theorem 5.43 Consider a system Σ (5.1) that satisfies assumption 5.2, let P+ �
0 and Q+ � 0 be the unique stabilising solutions to the AREs in (5.51) and (5.52),
respectively; and consider the transformed system ΣPQ (5.56). Furthermore, let
Σcl,PQ denote the closed-loop interconnection of a controller Σc,nc

(5.21) with
ΣPQ (5.56).

Then a controller Σc,nc
(5.21) is H2 optimal for Σ (5.1) if and only if the controller

Σc,nc
(5.21) is H2-admissible for ΣPQ (5.56) and the control output z(t) of Σcl,PQ

is independent of the disturbance w(t).
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Proof: The proof can be found in appendix A.3. �

A controller Σc,nc (5.21) is therefore H2 optimal for Σ (5.1) when it solves the
DDPMS(-CO) for the transformed system ΣPQ (5.56). In a similar fashion to the
other problems, let us now establish how the unique H2 optimal controller Σc (5.25)
from Corollary 5.28 is characterised in terms of the solutions to the DDPMS for
ΣPQ (5.56).

Proposition 5.44 Consider a system Σ (5.1) that satisfies assumption 5.2, let
P+ � 0 and Q+ � 0 be the unique stabilising solutions to the AREs in (5.51)
and (5.52), respectively; and consider the transformed system ΣPQ (5.56).

Then the following statements are equivalent for a controller:

(i) Σc (5.25) solves the DDPMS for (ΣPQ (5.56), S?−, V?−, C−), with (S?−,V?−) ∈
V−(ΣPQ (5.56)).

(ii) L = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1, F = −(D>uzDuz)

−1(B>u P
+ +D>uzCz)

and N = 0.

Proof: (i) ⇒ (ii): By observing that S?− = 0 and V?− = X , the requirements
in (5.30) on the mappings L, F and N to solve the DDPMS for (ΣQ (5.55), S?−,

C−) are—among others—im((Q+C>y +BwD
>
wy)(DwyD

>
wy)−

1
2 +L(DwyD

>
wy)

1
2 ) ⊆ 0,

((D>uzDuz)
− 1

2 (B>u P
++D>uzCz)+(D>uzDuz)

1
2F )X = 0 and (D>uzDuz)

1
2N(DwyD

>
wy)

1
2

= 0. These conditions uniquely define the mappings in (ii), while the other require-
ments are satisfied as well.

(ii) ⇒ (i): By observing that S?− = 0 and V?− = X , it is easy to show for the given
mappings that the requirements in (5.30) are satisfied, which completes the proof.

�

It can therefore be concluded that the unique H2 optimal controller Σc (5.25) from
corollary 5.28 is the unique controller that solves the DDPMS for ΣPQ (5.56) by
utilising the subspaces S?− and V?−.

The design of the mappings L and F is directly related to the subspaces S− and
V−, respectively. The additional property that these mappings can be designed
independently—which is called the separation principle—is obtained because S?− =
0 and V?− = X for ΣPQ (5.56). The inclusion AS?− ⊆ V?−, which imposes a relation
between these subspaces, is therefore by definition satisfied.

All H2 optimal controllers Σc (5.25) for Σ (5.1) are therefore paired with subspaces
(S−,V−) ∈ T−(ΣPQ (5.56)); it is, again, important to note that this pairing is
not “one to one” in general. Similarly to the estimation problem, this pairing can
directly be used to characterise all controller orders for the H2 optimal control
problem.

This will now be used to solve one of the main problems that is addressed in this
chapter.

Theorem 5.45 Consider a system Σ (5.1) that satisfies assumption 5.2, let P+ �
0 and Q+ � 0 be the unique stabilising solutions to the AREs in (5.51) and (5.52),
respectively; and consider the transformed system ΣPQ (5.56).
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Then there exists a controller Σc,nc (5.21) of order nc ∈ N that is H2 optimal for
Σ (5.1) if, for ΣPQ (5.56), there exist subspaces (S−,V−) ∈ T−(ΣPQ (5.56)) with
dim(V−)− dim(S−) = nc.

A reduced order controller of the form Σ̂c (5.31) and of order nc can be used to
solve the H2 optimal control problem.

Proof: In Corollary 2.34 it is shown for any H2-admissible controller Σc,nc (5.21)
that γH2

(Σ (5.1),Σc,nc
(5.21)) = tr(B>wP

+
r Bw) + tr(B>u P

+
r Q

+
r P

+
r Bu)

+ γH2
(ΣPQ (5.56),Σc,nc

(5.21)).
Furthermore, an H2 optimal controller achieves closed-loop stability in combination
with γ?H2

(Σ (5.1)) = tr(B>wP
+
r Bw) + tr(B>u P

+
r Q

+
r P

+
r Bu).

Therefore, there exists an H2 optimal controller of order ne if the DDPMS-CO
can be solved for (ΣPQ (5.56), ne, C−). The proof is concluded by applying
Proposition 5.19 to ΣPQ (5.56) and by considering the extension as introduced in
Theorem 5.27. �

The design of the mappings Lm and Fm of the reduced order controller Σ̂c (5.31)
is directly related to the subspaces S− and V−, respectively. Now it is important
to note that the inclusion AS− ⊆ V− is not by definition satisfied for the subspaces
S− 6= S?− and V− 6= V?−—with (S−,V−) ∈ T−(ΣPQ (5.56)). These mappings can
therefore not be designed independently, which implies that the separation principle
does, in general, not hold for the H2 optimal control problem with a controller of
order nc < nx.

Finally, in view of the minimal order optimal control problem in Problem 1.4, it
is also desired to characterise the minimal order n−c for any H2 optimal controller
Σc,nc

(5.21).

Theorem 5.46 Consider a system Σ (5.1) that satisfies assumption 5.2, let P+ �
0 and Q+ � 0 be the unique stabilising solutions to the AREs in (5.51) and (5.52),
respectively; and consider the transformed system ΣPQ (5.56).

Then for a given system Σ (5.1), the minimal order n−c ∈ N for a controller
Σc,nc (5.21) that solves the H2 optimal control problem is

n−c = min
(S−,V−)∈T−(ΣPQ (5.56))

dim(V−)− dim(S−).

A reduced order controller of the form Σ̂c (5.31) and of order n−c can be used to
solve the H2 optimal control problem.

Proof: This is Theorem 5.45 combined with Theorem 5.27. �

To conclude the main contribution of this section: It has been shown that there
exist controllers of a reduced order—i.e. with nc < nx—that can solve the H2

optimal control problem. In addition, the minimal controller order n−c has been

characterised and it shown that a reduced order controller Σ̂c (5.31) can be con-
sidered for this purpose. Finally, in section 5.3.7 a numerical design procedure has
been developed for these reduced order controllers.
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The minimal orderH2 optimal control problem in Problem 1.4 is therefore solved on
a theoretical level. However, an algorithm to construct numerical representations
for subspaces (S−,V−) ∈ T−(ΣPQ (5.56)) that result in a controller of low order
does not exist, which implies that the problem cannot be solved numerically yet.

Remark 5.6 Similarly to the estimation problem, the unique H2 optimal controller
Σc (5.25) from Corollary 5.28 is, as explained in Proposition 5.44, related to the
subspace (S?−,V?−) ∈ T−(ΣPQ (5.56)). Because these subspaces satisfy dim(V?−) −
dim(S?−) = nx, a controller of order nc = nx must indeed be considered.

It can happen that this controller coincidentally solves the DDPMS for some other
subspaces (S−,V−) ∈ T−(ΣPQ (5.56)) as well. In that situation it can be shown—
by interpreting the controller as a system with input y(t) and output u(t)—that the
controller states x̃ ∈ S− are unobservable in u(t). Any MOR procedure can, when
applied to this specific controller, therefore be used to design a reduced order H2

optimal controller. This situation will, however, not happen in general and it is
not observed that the subspace V− implies that additional controller states can be
removed. Therefore, it is not guaranteed that an H2 optimal controller of minimal
order is obtained.
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Results from industry are often normalised for reasons
of confidentiality. Mathematicians, on the other hand,
normalise for convenience.

Hans Zwart

6
Results for a Thermal Control Application

I
n this chapter we investigate the potential of coordinating the system
design, the modelling procedure and controller synthesis on a practical

example. For this purpose, we will consider a number of improvements for
the application as described in section 1.2.1. A numerical model is first
introduced in section 6.1, for which the design of a classical controller and
an H2 optimal controller is described in section 6.2.

In section 6.3 it will be shown that a substantial improvement in perfor-
mance can be achieved if H2 optimal control is considered in combination
with multiple improvements to the system. Finally, the design of a con-
strained order controller is discussed in section 6.4.
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6.1 The Control of Thermally Induced
Deformations

6.1.1 A Model for the Thermally Induced Deformations
of a Wafer

In this chapter we will utilise a FEM model that describes the thermally induced
deformation of a wafer surface. The model is graphically depicted in figure 6.1 and
consists of the following three components:

• A thermally isolated and infinitely stiff domain—i.e. it does not affect thermal
aspects in the other domains and does not deform—which is used to infer
boundary conditions within the model.

• A wafer table consisting of the material SiSiC, which contains a cooling chan-
nel. This table is mechanically connected to the stiff domain with a “thin elas-
tic layer”. This layer essentially consists of an infinite number of springs with
a combined spring constant per unit area of 3 · 1010 N

m3 in the x, y-directions

and 2.5 · 1011 N
m3 in the z-direction. The cooling channel is modelled as a

heat flux to constant (room) temperature, with a heat transfer coefficient of
1 · 104 W

Km2 .
• A silicon wafer that is clamped onto the wafer table. This clamping is me-

chanically described by a thin elastic layer with 1.8 · 1012 N
m3 in the x, y, z-

direction and thermally by a resistive layer with a heat transfer coefficient of
2500 W

Km2 .

Thermally isolated

stiff domain

Wafer table

Cooling channel

Wafer

Figure 6.1: A graphical depiction of the FEM model that is used to describe the
thermally induced deformation of the wafer surface.
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The system is affected by a disturbance that supplies heat to and removes heat
from the wafer table through the outer (cylindrical) surface. This disturbance is
modelled as 40 individual disturbance signals in w̃(t) that are equally distributed
over this outer surface. I.e. each disturbance has a “surface” that covers a fraction
of 1

40 of the wafer table perimeter, as shown in figure 6.2.

To compensate for this disturbance, 10 heaters that can generate 0–6 W are at-
tached to the same surface. In a similar fashion to the disturbance, these heaters
are modelled as 10 individual control input signals in u(t) that are equally dis-
tributed over the outer (cylindrical) surface of the wafer table. I.e. each heater has
a “surface” that covers a fraction of 1

10 of the wafer table perimeter.

An equal number of temperature sensors is collocated with the heaters. These
are located at the bottom surface of the wafer table and are modelled as 10 mea-
sured outputs in y(t). Finally, the deformation of any location on the wafer surface
is described by a displacement vector with three components; i.e. in the x, y, z-
directions. In this example we will, however, ignore the displacements in the z-
direction. The planar deformations (in the x, y-directions) at 756 locations on the
wafer surface are therefore modelled as 1512 control outputs in z̃(t).

The location 

of illumination

u1

w1

y1

w2

u2
y2

~
~

One field

x

y
θ

The Wafer Table

Figure 6.2: A top view of the wafer (and wafer table), in combination with
the signals of interest and the overlay errors that are caused by wafer surface
deformations.
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By constructing a FEM model with COMSOL Multiphysics [2019], we obtain a
state-space model of the form

Σwt,ol =


ẋ(t) = Ax(t) +Buu(t) + B̃ww̃(t)

y(t) =Cyx(t)

z̃(t) = C̃zx(t),

(6.1)

which refers to the open-loop wafer table model and where

• the state x(t) ∈ R1940 describes the temperature variation (with respect to
room temperature) at time t for specific locations in the wafer and the wafer
table.

• A ∈ R1940×1940—with λ(A) ⊆ C−—describes thermal conduction in the wafer
and the wafer table.

• Bu ∈ R1940×10 describes how 10 heaters in u(t) affect the evolution of tem-
perature in the wafer and wafer table through the outer (cylindrical) surface
of the wafer table.

• B̃w ∈ R1940×40 describes how 40 independent thermal disturbances in w̃(t)
affect the evolution of temperature in the wafer and wafer table through the
outer (cylindrical) surface of the wafer table.

• Cy ∈ R10×1940 represents the mapping from temperature (with respect to
room temperature) to the 10 measured outputs in y(t).

• C̃z ∈ R1512×1940 describes how temperature variations (with respect to room
temperature) lead to planar wafer surface deformations; i.e. in the x, y-
directions. It is therefore assumed that the system is without deformations,
if it is at (uniform) room temperature. The deformations at 756 locations
on the wafer surface are modelled as 1512 control outputs in z̃(t). E.g. for
location i on this surface, the displacement in the x-direction is described by
z̃i(t) and the displacement in the y-direction by z̃i+756(t).

6.1.2 Overlay Errors

The deformation of a wafer surface is, as explained in section 1.2.1, closely related
to undesired imaging errors. To explain this relation, it must first be observed
from figure 6.2 that the so-called fields on the wafer surface are—with a scanning
motion—illuminated by a thin slit of light. Imaging errors are therefore caused
by the deformations at a given location on the wafer surface, when this specific
location is illuminated. The deformations at any location on the wafer surface
are essentially “sampled” by this spatially varying location of illumination. The
blue arrows in figure 6.2 indicate the direction and the magnitude of these sampled
deformations, when they are projected in the x, y-directions.

In order to minimise overlay errors—as introduced in section 1.1.4—at all locations
on the wafer surface, it is therefore desired to reduce these sampled deformations
in magnitude. For reasons of simplicity, we will consider sampled deformations as
actual overlay errors in this chapter.
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6.1.3 The Thermal Disturbance

Inside the BES—as introduced in section 1.2.1—a disturbance is created due to the
evaporation of water, which can be regarded as a constant cooling load. However,
if during operation the location of illumination is sufficiently close to the edge of
the wafer, water that is warmer than the wafer table will enter this BES. The
thermal disturbance therefore becomes a heating load at specific time instances
and locations around the wafer edge.

To simulate the overlay errors as a result of this disturbance, a relatively sim-
ple model is created for this disturbance. The model describes a cooling load of
constant magnitude that, if the location of illumination is within 5 cm of the distur-
bance location as shown in figure 6.2, becomes a heating load of equal magnitude.
These disturbance signals are mathematically described as

w̃i(t) =


ci for all t ≥ 0 at which the location of illumination

is within 5 cm of “the location” of disturbance w̃i

−ci otherwise,

(6.2)

where ci ≥ 0 is the magnitude of the disturbance in Watt. Please note that
a positive value for w̃(t) corresponds to a heating load, while a negative value
corresponds to cooling. Finally, to create variation among the different disturbance
signals, the magnitude is given by a function of the form

ci = 0.28 + 0.08 sin

(
(i− 1)π

10

)
for i = 1, · · · , 40. (6.3)

6.1.4 Performance Measures

We will aim to reduce the overlay errors as a result of this disturbance, by inves-
tigating several system configurations and controller designs. The performance of
these solutions is quantified with two measures.

The H2 optimal control problem has extensively been investigated throughout this
thesis. The first performance measure is therefore the H2 norm—between the
signals w̃(t) and z̃(t)—for the closed-loop interconnection of Σwt,ol (6.1) and several
types of controllers that are specified below.

The second performance measure is the worst-case overlay error—which closely
relates to actual machine performance—that is described by the largest length of
any arrow in figure 6.2. In order to determine this error, a “simulation experiment”
is performed with the disturbance w̃ as described by (6.2) and (6.3), while the input
signal u(t) is generated by a given controller.

This simulation study is first initialised with the constant cooling disturbance w̃(t)
as described by (6.2) and (6.3), such that the model is close to an equilibrium
state at t = 0—i.e. ẋ(0) ≈ 0. A specific illumination trajectory is then applied,
which affects the disturbance signal w̃(t) and which is used to determine the sam-
pled overlay errors. Finally, the worst-case overlay error is given by the sampled
deformation of largest magnitude.



190 Chapter 6. Results for a Thermal Control Application

6.2 Controller Design

If no controller is applied to Σwt,ol (6.1)—i.e. for u(t) = 0—a worst-case overlay
error of 11.38 nm and an H2 norm of 73.33 is obtained. In section 1.2.5 it is
explained that this worst-case overlay error should, in the future, be reduced to
a value below 1 nm. For this reason, we will now consider the design of classical
controllers and H2 optimal controllers for Σwt,ol (6.1). The closed-loop performance
for these controllers is compared at the end of this section.

6.2.1 Classical Control

First, let us consider the design of a classical controller that aims to minimise
the magnitude of the measured temperature variations y(t) (with respect to room
temperature) by generating an appropriate input signal u(t). With this type of
control, the construction of a MIMO controller is often replaced by the design of
multiple SISO controllers that independently determine each input signal.

To be more specific, a classical controller is synthesised under the assumption that
the input ui(t) does not (significantly) affect the measured outputs yj(t), for i 6= j.
This means that 10 collocated SISO controllers are developed, which control ui(t)
on the basis of yi(t), for i = 1, · · · , 10.

For this application, let us consider the design of a relatively simple PI-controller
for each heater-sensor pair. Specifically, the ith measured output yi(t) determines
the input ui(t) with the following SISO controller:

Σci,PI =

{
ẋci(t) = 0xci(t) + 1yi(t)

ui(t) =KIxci(t) +KP yi(t).

The integral term KI ∈ R of this controller is used to ensure that the measured
output y(t) converges to zero for any constant (cooling) disturbance. The propor-
tional term KP ∈ R, on the other hand, is used to compensate for variations in the
disturbance signal.

Next, let us apply these 10 SISO controllers to Σwt,ol (6.1) with the aim of finding
the parameters KI and KP that minimise the worst-case overlay error in the sim-
ulation experiment as described in section 6.1.4. The values Ki = 5 and KP = 20
are obtained after a number of iterations, which result in a worst-case overlay error
of 1.82 nm and a closed-loop H2 norm of 57.44.

It is important to emphasise that a relatively simple controller is used and that not
much effort is made to optimise the parameters of this controller. Nevertheless,
the worst-case overlay error is reduced in magnitude by more than a factor of 5.

6.2.2 H2 Optimal State Feedback

Secondly, let us construct an H2 optimal state feedback of the form u(t) = Fx(t)
that determines the control input u(t) on the basis of the system state x(t). The
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method as described in section 2.4 cannot be used to design such a state feedback
for Σwt,ol (6.1), because the system does not contain a positive definite mapping
Duz. In most practical situations, however, the mapping Duz does not relate to
the physical behaviour of a system. Instead, it is introduced as a tuning parameter
that limits the magnitude of the control input u(t).

An H2 optimal state feedback is therefore designed for the system

Σwt,F =


ẋ(t) = Ax(t) + Buu(t) +

(
B̃w 0

)
w(t)

z(t) =

(
C̃z

0

)
x(t) +

(
0

ρuI10

)
u(t),

(6.4)

with parameter ρu ∈ R.

The value of ρu is optimised in an iterative fashion, with the aim of minimising
the worst-case overlay error for the original system Σwt,ol (6.1)1, in the simulation
experiment as described in section 6.1.4. After a number of iterations we obtain
the value ρu = 1, which results in a worst-case overlay error of 1.72 nm and a
closed-loop H2 norm of 21.32.

6.2.3 H2 Optimal Control

Finally, let us construct an H2 optimal controller according to the method as
described in section 2.4. The design of such a controller does—similarly to H2

optimal state feedback design—require the introduction of two positive definite
mappings Dwy and Duz, which are regarded as tuning parameters for the controller.

For the design of an H2 optimal controller, let us consider the system

Σwt =



ẋ(t) = Ax(t) + Buu(t) +
(
B̃w 0

)
w(t)

y(t) = Cyx(t) +
(

0 ρyI10

)
w(t)

z(t) =

(
C̃z

0

)
x(t) +

(
0

ρuI10

)
u(t),

(6.5)

with parameters ρu, ρy ∈ R.

An H2 optimal controller is essentially an H2 optimal observer that can be tuned
with the parameter ρy, which is combined with an H2 optimal state feedback that
can be tuned with the parameter ρu. The value ρu = 1 that is obtained for the H2

optimal state feedback design problem as described above, will therefore be used.

To determine the parameter ρy, we will consider the design of an H2 optimal
controller Σ?c—of the form 2.18—on the basis of Σwt (6.5) with ρu = 1. The value
of ρy is also optimised in an iterative fashion, with the aim of minimising the worst-
case overlay error for Σwt,ol (6.1) in the same simulation experiment. The value
ρy = 0.1 is obtained in an iterative fashion, which results in a worst-case overlay
error of 5.06 nm and a closed-loop H2 norm of 54.74.

1It is important to note that the optimal control action is therefore designed for a similar, yet
different, system.
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6.2.4 Closed-Loop Performance

The closed-loop performance measures as introduced in section 6.1.4 are presented
in table 6.1, for each type of controller as described above. The performance
without control—i.e. for u(t) = 0—is included as a reference.

If compared to a situation without control, the classical controller is able to slightly
reduce the H2 norm from a value of 77.33 to 57.44. A much larger improvement
is observed for the worst-case overlay error, which is reduced in magnitude from
11.38 nm to 1.82 nm. In terms of the overlay we can therefore observe that a
significant improvement is achieved with a relatively simple type of controller.

An H2 optimal state feedback is—in comparison with the classical controller—able
to significantly improve H2 performance, while only a marginal improvement is
achieved in terms of overlay. This type of controller does, however, require exact
state knowledge and can therefore not be applied in practice.

When an H2 optimal measurement feed controller is considered, a slight improve-
ment in H2 performance is achieved in comparison with the classical controller. If
the worst-case overlay error is considered, it must be concluded that the classical
controller performs significantly better.

This large difference in overlay performance—as depicted in figure 6.3—is a result
of the considered disturbance signal. Namely, the H2 optimal controller minimises
deformations for an impulse on the disturbance w̃(t), while a step input is a better
description for the disturbance signal in (6.2) and (6.3). The controller—which
essentially contains an observer—is therefore not able to accurately observe the
system state, which significantly reduces the performance in terms of overlay.

H2 norm Worst-case overlay error

No controller 73.33 11.38 nm
Classical Control 57.44 1.82 nm

H2 optimal state feedback 21.32 1.72 nm
H2 optimal control 54.74 5.06 nm

Table 6.1: The performance that is obtained for Σwt,ol (6.1) with each type of
controller.
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1.0 nm

Classical Control

5.0 nm

H2 Optimal Control

Figure 6.3: A graphical depiction of the overlay errors that are obtained with
classical control and H2 optimal control.

6.3 Improved System Design

It is observed in section 6.2.3 that the introduction of H2 optimal state feedback
and H2 optimal control does not result in a significant reduction of the worst-case
overlay error. We will now consider several system improvements to overcome this
problem. The closed-loop performance for several closed-loop configurations—with
and without an improved system design—are presented at the end of this section.

6.3.1 Utilising the Wafer Positioning System

First, let us introduce the positioning system that is used to correctly align the
wafer surface with respect to the location of illumination. This system essentially
aims to follow a given reference on the position (x, y) and orientation θ of the
wafer—as depicted with the black meandering pattern in figure 6.2.

With this system, we can compensate for the effect that wafer surface deformations
have on wafer alignment. For example, a deformation in the positive x-direction
implies that an alignment correction should be applied in the negative x-direction.

Wafer alignment cannot be included in the design of a classical controller, because
temperature is controlled instead of the actual deformations. With H2 optimal
state feedback and control, on the other hand, it is possible to include the heaters
as well as alignment. This, because the controller aims to directly minimise the
deformations.
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For this reason, let us add the wafer alignment set-points in the x, y, θ-directions
to Σwt,ol (6.1) in order to obtain a system of the form

Σwt,ps,ol =



ẋ(t) = Ax(t) +
(
Bu 0

)( u(t)

ups(t)

)
+ B̃ww̃(t)

y(t) =Cyx(t)

z̃e(t) = C̃zx(t) +
(

0 D̃uz

)( u(t)

ups(t)

)
,

(6.6)

where the set-points for wafer alignment are given by ups(t) ∈ R3. The matrix

D̃uz ∈ R1512×3 describes how these set-points influence the wafer surface position-
ing. I.e. the position error of the wafer surface z̃e(t)—with respect to the location
of illumination—is determined by the combined effect of the thermally induced
deformations and the adjustments in alignment.

It could now be considered to design a controller for Σwt,ps,ol (6.6) that aims to
minimise the average position error z̃e(t), which relates to the entire wafer surface.
In order to reduce overlay errors, however, we should align the wafer such that the
position error is specifically reduced at the location of illumination.

Remark 6.1 It is important to note that this type of “moving objective” will re-
quire the design of a time-varying controller. The design of such a controller is
beyond the scope of this thesis and will therefore not directly be considered.

Instead, the location of illumination is (indirectly) taken into account by assuming
that the 81 fields in figure 6.2 can be aligned independently. In other words, two
“virtual” translational control inputs corresponding to the x, y-directions and one
“virtual” rotational input that corresponds to the θ-direction are added for each
field. For example, the three virtual control inputs for the “highlighted” field in
figure 6.2 are visualised in figure 6.4.

For the design of an H2 optimal controller, we will therefore consider a system of
the form

Σwt,ps,v =



ẋ(t) = Ax(t) +
(

Bu 0
)( u(t)

ups,v(t)

)
+
(
B̃w 0

)
w(t)

y(t) = Cyx(t) +
(

0 ρyI10

)
w(t)

z(t) =

C̃z0
0

x(t) +

 0 D̃uz,v

ρuI10 0

0 ρupsI243

( u(t)

ups,v(t)

)
,

(6.7)
with parameters ρu, ρps,v, ρy ∈ R that are used as tuning parameters for the
H2 optimal controller. The virtual set-points for wafer alignment are given by
ups,v(t) ∈ R243, while the matrix D̃uz,v ∈ R1512×243 describes how these virtual
set-points influence the virtual position error of the wafer surface.



6.3 Improved System Design 195

x-direction y-direction θ-direction

Figure 6.4: A graphical depiction of the alignment directions that, for the high-
lighted field in figure 6.2, correspond to the three virtual set-points of the position-
ing system.

An H2 optimal controller for Σwt,ps,v (6.7) will generate the 10 optimal heater
control inputs u(t) in combination with the 243 virtual set-points ups,v(t). To
apply these inputs to Σwt,ps,ol (6.6), we will utilise an input selector function

ups = S(t)ups,v ∈ R3

that selects—from the 243 virtual set-points—the 3 set-points corresponding to the
field that is actively illuminated at a given moment in time. This input selector
function is essentially a time-varying matrix multiplication.

A time-varying controller is therefore applied to Σwt,ps,ol (6.6), which implies that
the closed-loop interconnection is not described by an LTI system; formally speak-
ing the H2 norm is therefore not defined for this interconnection. As a consequence,
we will only quantify closed-loop performance using the worst-case overlay error as
a result of the wafer surface position error z̃e(t).

To be more specific, the time-varying controller in combination with wafer align-
ment is used in the simulation study as described in section 6.1.4, in order to cal-
culate the sampled wafer positioning errors that determine the worst-case overlay
error.

In a similar fashion to section 6.2, we will first optimise the parameters ρu and
ρps,v by designing an H2 optimal state feedback(

u(t)
ups,v(t)

)
=

(
F

Fps,v

)
x(t)

on the basis of Σwt,ps,v (6.7). The optimal value for these parameters should
minimise the worst-case overlay error for Σwt,ps,ol (6.6), when the time-varying
state feedback (

u(t)
ups(t)

)
=

(
I10 0
0 S(t)

)(
F

Fps,v

)
x(t)

is used. After a number of iterations we obtain the values ρu =
√

0.3 and ρps,v =√
0.1, which results in a worst-case overlay error of 0.42 nm.

To determine the parameter ρy, we then consider the design of an H2 optimal con-
troller Σ?c—of the form 2.18—for Σwt,ps,v (6.7). This controller should, again, min-
imise the worst-case overlay error for Σwt,ps,ol (6.6) when the input selector function
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is applied to this controller; i.e. we introduce the function ups(t) = S(t)ups,v(t)
in order to obtain a time-varying controller. The value ρy = 0.1 is obtained in
an iterative fashion, which results in a worst-case overlay error of 3.45 nm for
Σwt,ps,ol (6.6).

In terms of overlay, it must therefore still be concluded that the relatively simple
classical controller performs significantly better than an H2 optimal controller.

6.3.2 Optimising the Sensor Configuration

Next, let us optimise the sensor configuration of Σwt,ps,v (6.7) by following the
sensor selection procedure in chapter 3. The mesh-nodes of the FEM model—i.e.
the intersections as depicted in figure 6.1—at the bottom surface of the wafer table
will be used as “allowed sensor locations”. In other words, the set that contains all
allowed sensors as defined in (3.3) is of the form

Y = {y1, · · · , y351} ,

where each potential sensor in Y is described by the triple yi = {(Cyi, 0, 0.01)}—
for i = 1, · · · , 351—that corresponds to a temperature measurement at a specific
location on the bottom surface of the wafer table. These locations are depicted in
figure 6.5.

For the optimal selection of sensors, we will consider the actuator configuration as
described in section 6.3.1 to be fixed. It is therefore desired to numerically solve the
closed-loop H2 optimal sensor selection problem for a fixed actuator configuration
in Problem 3.5.

In section 3.3.3 it is explained how this problem can numerically be solved with
the toolbox by Lin et al. [2014], which treats it as a sparsity promoting observer
design problem. To provide a comparison, the problem is numerically solved with
the greedy optimisation algorithm in Algorithm 3.2 as well. The resulting config-
urations for ny = 40—i.e. we utilise 40 sensors—are depicted in figure 6.5.

Both algorithms place the 40 sensors around the outer (cylindrical) surface of the
wafer table, which is where heat is exchanged by the thermal disturbances and
(heater) control inputs. It is important to note that the sparsity promoting method
places all sensors as close as possible to this outer surface, while the greedy search
algorithm places some sensors slightly inwards.

To compare the closed-loop performance that can be achieved with these sensor
configurations, let us now design an H2 optimal controller Σ?c of the form 2.18.
This controller is, again, constructed on the basis of Σwt,ps,v (6.7); for which the
sensors are now replaced by the new sensor configurations as depicted in figure 6.5.

With the approach as explained in section 6.3.1, we optimise the parameters
ρu, ρps,v and ρy such that the worst-case overlay error is minimised for both sensor
configurations. The values ρu =

√
0.3, ρps,v =

√
0.1 and ρy = 0.01 are obtained

in an iterative fashion, which result in a worst-case overlay error of 0.4 nm for the
sparsity promoting method and a worst-case overlay error of 0.85 nm for the greedy
search algorithm.
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For this example, it can therefore be concluded that the sparsity promoting method
performs significantly better than the greedy search algorithm. In addition, by
comparing the sensor locations in figure 6.5, it must be emphasised that the worst-
case overlay error is severely affected by only slight changes in the placement of
sensors. This demonstrates how important it is to correctly place the temperature
sensors in this type of application.

Allowed Sensor Locations

Selected Sensors with a Greedy Search

Selected Sensors with Sparsity Promotion

Figure 6.5: A graphical depiction of the allowed sensor locations at the bot-
tom of the wafer table, in combination with 40 sensors that—for a fixed actuator
configuration—are selected by the greedy search algorithm and the sparsity pro-
moting method.

6.3.3 Closed-Loop Performance

To conclude this section, let us compare the worst-case overlay error as introduced
in section 6.1.4 for several closed-loop configurations. An overview of these errors
is provided in table 6.2.

If compared to a situation without control, we have seen that a classical controller is
able to reduce the worst-case overlay error from 11.38 nm to 1.82 nm in magnitude.
A significant improvement in closed-loop performance can therefore be achieved
with a relatively simple controller and without adjusting the system design.

To further improve this performance, a configuration with 40 heaters and 40 collo-
cated temperature sensors can be considered in combination with classical control
design. The introduction of these heaters and sensors does, however, not signifi-
cantly reduce the overlay errors—as is shown in figure 6.6. Namely, the worst-case
overlay error is only reduced to 1.77 nm, which indicates that the addition of
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heaters and temperature sensors does not significantly improve closed-loop perfor-
mance when classical control is considered.

Because the addition of sensors and actuators does not significantly improve closed-
loop performance with classical control, it can be considered to optimise the con-
troller instead. As explained above, the worst-case overlay error is not reduced with
either H2 optimal state feedback or H2 optimal controller design if the system de-
sign is not adjusted. It has, however, been shown that the worst-case overlay error
can (significantly) be reduced when improvements to the system and the controller
are introduced together.

Namely, the worst-case overlay error is reduced to a value of 0.4 nm by H2 optimal
control, if the set-points for the positioning system are utilised and the sensor
configuration is optimised—the resulting overlay errors are depicted in figure 6.6.
Furthermore, it can be observed from table 6.2 that both changes must be made to
the system design in order to achieve this improvement.

From this example, we can therefore conclude that a significant improvement in
closed-loop is not achieved by separately optimising the controller or the system
design. Instead, a significant improvement in closed-loop performance is only ob-
tained by a joint optimisation of both aspects. This conclusion therefore emphasises
the importance coordinating the system design and controller synthesis in indus-
trial applications, which directly relates to the main research question in chapter 1.

Worst-case overlay error

No control 11.38 nm
Classical Control without alignment, 1.82 nm

with 10 sensors and 10 actuators
Classical Control without alignment, 1.77 nm

with 40 sensors and 40 actuators
H2 optimal state feedback 1.72 nm

without alignment and with 10 actuators
H2 optimal state feedback 0.42 nm

with alignment and 10 actuators
H2 optimal control without alignment, 5.06 nm

with 10 sensors and 10 actuators
H2 optimal control without alignment, 1.67 nm

with 40 sensors and 10 actuators
H2 optimal control with alignment, 3.45 nm

10 sensors and 10 actuators
H2 optimal control with alignment, 0.40 nm

40 sensors and 10 actuators

Table 6.2: The performance that is obtained for several closed-loop configurations.
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1.0 nm

Classical Control with

40 Sensors and 40 Actuators

1.0 nm

H2 Optimal Control with

Alignment and 40 Sensors

Figure 6.6: A graphical depiction of the overlay errors that are obtained if ad-
ditional actuators and sensors are combined with classical control and H2 optimal
control.

6.4 Constrained Order Controller Design

In section 6.3 it has been shown that a full order H2 optimal controller—i.e. with
1940 states—can significantly reduce the worst-case overlay error in this example,
when the set-points for the positioning system are utilised and the sensor configura-
tion of the system is optimised. For real-time implementation in practice, however,
such a high order controller cannot be used due to computational limitations.

To finalise this chapter, we therefore consider the design of a constrained order
controller for the system with alignment, 40 temperature sensors and 10 heaters.
In chapter 4 it is demonstrated that existing order reduction techniques can perform
well in most practical situations; although this is not guaranteed in general. For
this reason, we will only use the proposed improvements from section 4.4, if the
original techniques result in a significant loss of closed-loop performance.

First, we utilise open-loop BT for COR as discussed in section 4.2.2. To be
more specific, a full order H2 optimal controller Σ?c is designed on the basis of
Σwt,ps,v (6.7). Open-loop BT is then applied to this controller, which results in a

low order controller Σ̂?c .

The low order controller Σ̂?c is connected with Σwt,ps,v (6.7) in order to quantify

closed-loop H2 performance. In addition, the low order controller Σ̂?c is—by taking
into account the time-varying aspect as described in section 6.3.1—connected to
Σwt,ps,ol (6.6) in order to quantify closed-loop performance in terms of the worst-
case overlay error.
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Both performance measures as a function of the controller order, are shown in fig-
ure 6.7. From this figure it can be observed that a controller with 50 states is almost
completely able to achieve optimal closed-loop H2 performance. Furthermore, only
20 states are required to achieve optimal performance in terms of overlay. For the
considered model we can therefore utilise a controller of order 20, which is designed
by applying BT for COR to a full order H2 optimal controller; that is, without
considering the proposed improvement in section 4.4.

Finally, it is important to note that the considered model is only of order 1940,
while models that contain over 50, 000 states are no exception in practice. To
design a controller of sufficiently low order for those models, it might be necessary
to consider the proposed improvements from section 4.4.
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Figure 6.7: The closed-loop H2 performance of low order controllers that are
constructed for Σwt,ps,v (6.7), with open-loop BT for COR.
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To succeed, jump as quickly at opportunities as you
do at conclusions.

Benjamin Franklin

7
To Conclude this Thesis

I
n chapter 1 it is hypothesised that potential closed-loop performance is
compromised by separating the system design, modelling procedure and

controller synthesis. This hypothesis led to the main research question of
how to coordinate these three aspects, with the aim of meeting a set of
closed-loop performance requirements.

In order to address this question, it is proposed to investigate three prob-
lems for the purpose of acquiring a better understanding of the relation
between these aspects. Each problem is paired with a set of research ques-
tions that are investigated in chapters 3–5. The results for these problems
are illustrated on a practical example in chapter 6.

We will now present the conclusions and future work for each problem.
These conclusions are, in addition, related to the main research question
and a set of future research directions is proposed. The chapter is finalised
by presenting the implications of this thesis for industry and academia.

203
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7.1 Conclusions and Future Work

7.1.1 Closed-loop Optimal Actuator and Sensor Selection

The closed-loop optimal actuator and sensor selection problem in Problem 1.2 is—
together with the corresponding set of research questions—investigated in chap-
ter 3. This problem amounts to maximising closed-loop performance by selection
of a limited number of actuators and a limited number of sensors.

In the past, a considerable amount of attention has been given to a variety of
actuator and sensor selection problems. These problems are often formulated as a
combinatorial optimisation problem, which can be solved by evaluating all possible
subsets of actuators and sensors of a given cardinality. Such a brute force approach
will quickly become computationally infeasible when large sets of allowed actuators
and sensors are provided.

Several set functions that relate to open-loop system properties, such as the trace
of the reachability and observability Gramians, are monotone increasing and (sub)-
modular in the sets of allowed actuators and sensors. Recently, it has been shown
that a modular or greedy search algorithm can be used to efficiently solve actuator
and sensor selection problems with an upper bound on the degree of non-optimality,
if this type of objective function is considered.

It is shown in chapter 3 that the selection of actuators and sensors, which is based
on the trace of the reachability and observability Gramians, does not provide any
guarantees with regards to the closed-loop performance measure γ?H2

as defined
in (3.8). Furthermore, it is proven that the function γ?H2

is not supermodular and
not submodular in general, which implies that a greedy search algorithm cannot be
used to optimise this objective function with a bounded degree of non-optimality.
The results that were obtained for several open-loop system measures do therefore
not carry over to the considered closed-loop performance measure, which implies
that a different solution must be considered.

In recent years, much attention has been given to sparsity promoting controller
design methods, which can be used in solving closed-loop optimal actuator and
sensor selection problems. To consider this type of solution for large sets of allowed
actuators and sensors, it is proposed by Dhingra et al. [2014] to separately solve
an actuator selection problem that does not depend on the selected sensors; and a
sensor selection problem that does not depend on the selected actuators.

For the example system Σce,3 (3.31) it is, however, shown that the optimal selection
of actuators is dependent on the available sensors. Furthermore, because the ac-
tuator selection and sensor selection problems are—in a well-defined sense—dual,
it can be concluded that the optimal selection of sensors depends on the available
actuators as well. To optimise the best achievable H2 (squared) performance γ?H2

,
these problems can therefore not be viewed as independent. For this reason, an
extension is proposed that considers the optimal selection of actuators for a fixed
sensor configuration. In addition, the dual problem of designing an optimal sensor
configuration for a fixed actuator configuration is discussed.
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Finally, the importance of directly optimising the closed-loop performance measure
γ?H2

is observed for the example system Σb that is discussed in section 3.4. Namely,
it is shown that the best closed-loop performance is achieved with the closed-
loop greedy search algorithm and the improved sparsity promoting method that
selects the sensors for a fixed actuator configuration. It is, however, important to
emphasise that these methods do not provide explicit guarantees on optimality of
the obtained result.

From the perspective of the main research question we can conclude that the best
performance is indeed obtained, if the optimal closed-loop performance measure
γ?H2

—and therefore also the use of an H2 optimal controller—is explicitly taken
into consideration with the selection of actuators and sensors. It should, however,
be acknowledged that a further investigation into closed-loop optimal selection
of actuators and sensors is still required. In terms of future work, the following
research directions are proposed:

• We derived conclusions on closed-loop optimal selection of actuators for a
fixed sensor configuration and on closed-loop optimal selection of sensors for
a fixed actuator configuration. The combined optimal sensor and actuator
selection problem is, however, largely open and is left for future research.

• Several methods for the closed-loop optimal selection of actuators and sensors
have been developed. To further improve these methods, it is proposed to first
acquire a better understanding of what type and combination of actuators
and sensors will lead to the best closed-loop performance. A fundamental
investigation into the design of actuators and sensors is therefore regarded as
particularly useful.

7.1.2 Constrained Order Controller Design

The constrained order optimal control problem in Problem 1.3 is—together with the
corresponding set of research questions—investigated in chapter 4. This problem
amounts to maximising closed-loop performance with a controller of fixed order.
Such a problem is often replaced in practice by combining full order optimal control
design with model order reduction (MOR) and controller order reduction (COR)
approaches.

It is known that explicit guarantees on stability and closed-loop performance cannot
be obtained with (frequency weighted) open-loop order reduction techniques. In
chapter 4 it is shown—by utilising the example model Σex (4.24)—that the (closed-
loop) Linear Quadratic Gaussian (LQG) balanced reduction and Weighted Order
Reduction (WOR) techniques do not provide any explicit guarantees on stability
and closed-loop performance either. We can therefore conclude, on a theoretical
level, that the open-loop, LQG and WOR balanced reduction techniques do not
provide a solution to Problem 1.3. These methods might, however, still perform
well in practice.

For the example model Σ1 (4.23) it is shown that the open-loop, LQG and WOR
balanced reduction techniques perform well when a “low gain” controller is con-
sidered. For a “high gain” controller, on the other hand, it is shown that all of
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the considered reduction techniques might result in a constrained order controller,
which performs worse than not utilising any control at all. In addition, for each
technique it is observed that

• a high gain controller can, after reduction, perform worse than a low gain
controller that is reduced to the same order.

• for a given constrained order controller, truncation of additional states might
lead to an improved closed-loop H2 performance.

Furthermore, it is shown that the magnitude of the Hankel, LQG and WOR singular
values—which are related to each type of balancing—does not determine the loss of
closed-loop H2 performance as a result of truncating the corresponding (controller)
state. Closed-loop H2 performance is therefore not optimised by truncating states
that coincide with singular values of small magnitude.

For this reason, minimisation of the closed-loop performance loss as a result of trun-
cating controller states must be regarded as a combinatorial optimisation problem.
Such a problem can, as explained above, be solved by evaluating all possible subsets
of controller states Xc that are of a given cardinality. This brute force approach
will, however, be computationally infeasible for models of high order.

To improve closed-loop performance, while simultaneously taking computational
feasibility into account, we propose to utilise a greedy search algorithm instead.
It is important to emphasise that such an algorithm does not provide explicit
guarantees on stability and closed-loop performance. Nevertheless, a significant
improvement in closed-loop H2 performance is achieved in comparison with several
techniques that have been advocated in literature.

Finally, fixed order optimisation techniques such as H∞-H2 Fixed Order Optimi-
sation (HIFOO) have received a considerable amount of attention in recent years.
For the example model Σ1 (4.23) it is shown that HIFOO does—by itself—not
perform better than the investigated order reduction techniques. The performance
of HIFOO can, however, be improved significantly by providing a suitable initial
controller to the algorithm. The best closed-loop performance is, as a consequence,
achieved when the (improved) order reduction techniques are used for the purpose
of providing an initial controller to HIFOO.

In terms of the main research question, an important conclusion can be drawn
if the results from chapter 4 are combined with chapter 5. Namely, it is shown
in section 5.4.4 that a constraint on the controller order must explicitly be taken
into account during the design of an H2 optimal controller. A solution to the
constrained order control problem is therefore not obtained by successively—and
independently—solving a full order controller design problem and an order reduc-
tion problem.

Nevertheless, it is shown in chapters 4 and 6 that an order reduction approach will
typically perform well in practical situations, which implies that these methods
still deserve a further investigation. In terms of future work, the following research
directions can be considered:

• We have mainly focussed on improving closed-loop H2 performance by the
design of an appropriate constrained order controller. Conclusions that have
been drawn for this norm, do not immediately carry over to other performance
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measures. An investigation on the use of MOR and COR approaches with the
aim of improving closed-loop H∞ performance is considered to be particularly
relevant.

• It has been shown that the open-loop, LQG and WOR balanced reduction
techniques do not—in terms of constrained order controller design—provide
explicit guarantees on stability and closed-loop performance. These tech-
niques are all based on projections of the state variable to lower dimensional
manifolds (through truncation). It is an interesting research direction to
investigate whether different reduction techniques and different system rep-
resentations exist that will provide explicit guarantees with regards to con-
strained order controller design.

7.1.3 Minimal Order Optimal Control

The minimal order optimal control problem in Problem 1.4 is—together with the
corresponding set of research questions—investigated in chapter 5. This problem
amounts to constructing an optimal controller of minimal order.

It was first observed by Schumacher [1980, Thm. 3.1] that all required controller
orders can be characterised for disturbance decoupling problems without stability
requirements. In chapter 5, a characterisation for these orders has been derived
for disturbance decoupling problems with stability requirements. In addition, a
geometrical characterisation of the minimal required controller order is derived for
a system of the form Σ (5.1), if the mapping Dwy is full row rank and the mapping
Duz is full column rank.

We have considered an entirely geometric approach in the characterisation of this
minimal required controller order. Namely, it has been shown that specific pairs of
subspaces (Sg,Vg) ∈ Tg—as defined in (5.27)—play a crucial role in understanding
the relation between disturbance decoupling and the minimal required controller
order.

There exists an elegant relation between disturbance decoupling problems with
stability requirements and H2 optimal control. By utilising this relation, a charac-
terisation of the minimal required controller order n−c has been derived for the H2

optimal control problem.

Specifically, it is known that—under assumption 5.2—a controller is H2 optimal
for a system if and only if it solves a disturbance decoupling problem (with internal
stability) for the transformed system ΣPQ (5.56). As a consequence, theH2 optimal
controller of minimal order is characterised by the minimal order controller that
achieves disturbance decoupling for this transformed system. This leads to one
of the main conclusions: H2 optimal controllers may have a lower order than the
system they control; i.e. the inequality n−c < nx can, in general, be satisfied.

In addition, a geometrical characterisation of the minimal required estimator order
is derived for the disturbance decoupled estimation problem with stability. For this
problem, it has been shown that the subspaces Sg ∈ Sg—as defined in (5.6)—can be
used to establish a direct relation between disturbance decoupling and the minimal
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required estimator order. There also exists a relation between disturbance decou-
pled estimation problems with stability requirements and H2 optimal estimation.
By utilising this relation, a characterisation of the minimal required estimator or-
der n−e has been derived for the H2 optimal estimation problem. An H2 optimal
estimator may therefore also have a lower order than the system for which it is
designed; i.e. the inequality n−e < nx can, in general, be satisfied.

The proposed minimal order controller design approach essentially combines con-
troller design with a modelling point of view. To be more specific, the optimal
controller is designed such that certain states of the closed-loop system become
unreachable or unobservable. Several controller states can, as a consequence, be
truncated without affecting closed-loop performance. We can therefore conclude
that it is, indeed, relevant to coordinate modelling with controller design, which
emphasises the importance of the main research question.

In terms of future work, the following research directions can be considered:

• It has been shown that the subspaces (Sg,Vg) ∈ Tg play a crucial role in the
construction of a minimal order H2 optimal controller. The development of
an algorithm, which can numerically construct a pair of subspaces (Sg,Vg) ∈
Tg that result in a controller of small—or potentially even minimal—order,
should therefore be considered for future research.

• The relation between H2 optimal controllers and controllers that achieve dis-
turbance decoupling with internal stability has been used to solve the mini-
mal order H2 optimal control problem. An interesting generalisation can be
achieved by utilising the known relation between H∞ optimal control prob-
lems and (almost) disturbance decoupling problems with internal stability.
In doing so, the geometric results as described above would enable a charac-
terisation of the minimal required controller order for H∞ optimal control.

• A solution to the minimal order optimal control problem can essentially be
viewed as a partial solution to the constrained order control problem in Prob-
lem 1.3. I.e. a solution to the former problem can be used to synthesise con-
strained order optimal controllers that are of order n−c or larger. A complete
geometrical characterisation for the (more general) constrained order optimal
control problem is left for future research.

7.1.4 Future Research Directions

The three problems that are discussed above, have been investigated with the aim
of coordinating the system design, modelling procedure and controller synthesis.
Aside from these three problems, a wide range of potential future research directions
can be considered from the perspective of this larger objective. Let us now discuss
a number of directions that are worth investigating.

Firstly, it would be interesting to combine the problems in this thesis. For example,
Problem 1.2 can be combined with Problem 1.3 in order to maximise closed-loop
performance with a constrained order controller, by selection of a limited number
of actuators and a limited number of sensors.
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Secondly, the methods as described in chapters 3 and 4 resulted in the formula-
tion of combinatorial optimisation problems, for which no computationally efficient
solution that provides guarantees on the obtained result has been found yet. A fur-
ther investigation into the field of combinatorial optimisation can therefore be of
benefit to the main research question.

Furthermore, from the perspective of improving the system design, it would be
especially interesting to research the effect (or sensitivity) of physical system pa-
rameters on the best achievable closed-loop performance. From a modelling point
of view, the problem of estimating these parameters can be cast in the context
of closed-loop performance; rather than the more common open-loop performance
measures.

Finally, we have assumed throughout this entire thesis that high order linear and
time-invariant models are able to accurately describe a given system. This as-
sumption does not hold in most practical situations, which implies that model
errors should be taken into account as well. Incorporating robustness in the de-
sign of constrained order controllers, or in the selection of actuators and sensors,
is a completely open—and absolutely important—problem that is left for future
research.

7.2 Implications for Industry and Academia

The example in chapter 6 provides convincing evidence for our claim that the
system design, modelling procedure and controller synthesis should be coordinated
in order to maximise closed-loop performance in industrial applications. This thesis
does, however, not present a case closed; nor was it ever intended to. Instead, it
will hopefully become a starting point for a number of research projects that will
be of benefit to both industry and academia.

7.2.1 Industry

The complexity of industrial high-tech systems, the corresponding models and the
considered control approaches is progressively increasing over time, in order to
meet the ever-increasing requirements on performance. Large-scale experiments
and investigations on actuator and sensor placement are typically performed to
optimise the system design, while model order reduction is, for example, inves-
tigated to handle model complexity. To maximise performance, the results from
these investigations are then combined with (model based) control design.

To optimise closed-loop performance in these applications, improvements are there-
fore successively—and iteratively—made to each aspect of the control system. The
disadvantage of regarding these aspects as independent is clearly illustrated in this
thesis; even for methods that have been geared towards solving control-relevant
order reduction or actuator and sensor selection problems.

For example, in chapter 6 it is observed that a significant improvement in per-
formance can only be achieved if additional actuators, sensors and H2 optimal
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control are introduced together. This, while an increase in the number of actuators
and sensors does—when classical control is considered—not result in a significant
improvement in closed-loop performance. Similarly, an improvement cannot be ob-
tained when H2 optimal control is considered without the introduction of additional
actuators and sensors.

Regarding the design of a control system, the implications of this thesis are therefore
as much for the technical aspects of the design as for the decision making process.
Namely, the best achievable closed-loop performance may never be observed if
these three aspects are individually, and extensively, investigated in an iterative
fashion. The design choices during any step of development should therefore be
coordinated and geared towards improvement of a given (collective) closed-loop
performance measure.

7.2.2 Academia

Over the past decades, a significant amount of effort has been made in academia to
optimise the (aforementioned) individual aspects of a control system. For example,
several optimal control designs and modelling approaches have been developed.
A number of examples is presented in this thesis, which demonstrate that these
techniques do not necessarily perform well in terms of a combined closed-loop
performance measure.

For example, much attention is given to the design of an accurate low order ap-
proximate model for a given high order system. It is, however, observed that a
controller might not stabilise the system if it is based on an approximate model
of arbitrary accuracy. Closed-loop stability can therefore not be guaranteed when
model order reduction is used during control design; no matter how accurate the
model becomes.

In this thesis, it has therefore been demonstrated that the (individual) optimisation
of each aspect in a control system may, in the long run, not lead to substantial
improvements for industrial applications. The coordination of these aspects does
therefore provide academia with a number of interesting, and relevant, problems
for the future.
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The modern king has become a vermiform appendix:
useless when quiet; when obtrusive, in danger of re-
moval.

Austin O’Malley

A
Mathematical Proofs
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A.1 Proofs for Chapter 2

Proof for Proposition 2.9:

The structure of Σk (2.5) implies—if we, for now, do not consider internal stability—
that its Gramians are of the form

Pk =


P11,k P12,k 0 0
P21,k P22,k 0 0

0 0 0 0
0 0 0 0

 , Qk =


0 0 0 0
0 Q22,k 0 Q24,k

0 0 0 0
0 Q42,k 0 Q44,k

 .

Furthermore, this structure implies that the norm of Σk (2.5) is described by

‖Σk (2.5)‖2H2
= tr(C2Pk,22C

>
2 ) = tr(B>2 Qk,22B2).

The complete Gramians are, however, only defined for internally stable systems.
In order to complete this proof, we must therefore show that the partial Gramians
Pk,22 and Qk,22 are indeed defined when Σs (2.3) is BIBO stable.

The structure of Σk (2.5) also implies that P22,k and Q22,k are only determined
by the matrix partitions (A22, B2) and (C2, A22), respectively. These (partial)
Gramians are therefore defined when the system

Σ2,2 =

{
ẋ2(t) =A22x(t) +B2u(t)

y(t) =C2x2(t)

is internally stable, which requires that λ(A22) ⊆ C−. This is indeed guaranteed,
because Σs (2.3) is BIBO stable. �

Proof for Lemma 2.18:

The procedure as discussed in this proof is visualised in figure A.1. In this figure,
Σc,nc,f denotes the controller for Σf (2.11), which can directly be derived from the
controller Σc,nc,sp that is designed for Σnew as defined below.

H2-admissibility requires that there exists a controller Σc,nc
(2.12) such that the

closed-loop system Σf,cl,nc (2.13) is internally stable, well-posed and such that
Dcl = 0. The existence a mapping N such that Dwz+Duz(Inu−NDuy)−1NDwy =
0 does only not imply that internal stability can be achieved. This condition will
therefore be sufficient and necessary if it is shown that internal stability can, by
definition, be achieved independent of the mapping N .

In order to prove this, consider the mapping Ñ = −(Inu − NDuy)−1N , which
depends on the mapping N as defined above. It is easy to show that (Inu

−
NDuy)−1 = (Inu

− ÑDuy), which implies that (Inu
− ÑDuy) is non-singular and

that N = −(Inu − ÑDuy)−1Ñ .

By utilising this mapping, it is possible to consider a new input signal u(t) =
−(Inu

−ÑDuy)−1Ñy(t)+(Inu
−ÑDuy)−1unew(t) and a new output signal ynew(t) =
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(Iny −DuyÑ)−1y(t)− (Iny −DuyÑ)−1Duyunew(t) in order to obtain the system

Σnew =


ẋ(t) =

(
A−BuÑCy

)
x(t) + Buunew(t) +

(
Bw −BuÑDwy

)
w(t)

ynew(t) = Cyx(t) + Dwyw(t)

z(t) =
(
Cz −DuzÑCy

)
x(t) +Duzunew(t),

which is similar in form to Σ (2.14); furthermore, it is easy to show that it satisfies
assumption 2.1 as well. Because this system has no direct mapping from w(t) to
z(t), a strictly proper controller must under assumption 2.1 indeed be considered
for Σnew.

Finally, assumption 2.1 implies for Σnew that there exist mappings F and L such
that

(
A+Bu(F − ÑCy)

)
⊆ C− and (A+ (L−BuÑ)Cy) ⊆ C−. This implies that

the controller Σc,nc,sp can achieve internal stability for Σnew and indeed that this
is independent of the mapping N . �

Σfu(t) y(t)

w(t) z(t)

Σc,n ,spc

Σc,n ,fc

+
¯

(In - NDuy)-1
u ~

+
¯

N~

Duy

Σnew

(In - DuyN)-1
y ~

unew(t) ynew(t)

Figure A.1: A block scheme that visualises the proof for Lemma 2.18.

Proof for Corollary 2.24:

The aim is to design a state feedback u(t) = Fux(t) for Σ (2.14), which does not
satisfy assumption 2.2. We can define a new input signal v(t) that relates to the
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original input as u(t) = Fax(t) + Gav(t), with Fa = −(D>uzDuz)
−1D>uzCz and

Ga = −(D>uzDuz)
1
2 . By considering the input signal v(t), we obtain the system

Σv =

ẋ(t) =
(
A + BuFa

)
x(t) + BuGau(t) +Bww(t)

z(t) =
(
Cz +DuzFs

)
x(t) +DuzGau(t).

A state feedback v(t) = Fvx(t) is now designed for Σv, which implies that the feed-
back Fu for Σ (2.14) is parametrised as Fu = Fa +GaFv. By observing that Ga is
full rank, it can be concluded that this specific parametrisation is non-restrictive—
i.e. any mapping Fu can be created through Fv. The design of Fu for Σ (2.14)
can therefore be replaced by the design of Fv for Σv. The reason for designing Fv
instead, is that Σv does satisfy items 1a, 2a and 3a in assumption 2.1 and item 1
in assumption 2.2; therefore the results that were obtained with these assumptions
can directly be used to design Fv.

The ARE in (2.18) for Σv is equal to the ARE in (2.21). Furthermore, an H2

optimal state feedback for Σv is given by v(t) = −GaB>u P+x(t). This implies that
an optimal state feedback for Σ (2.14) is given by u(t) = −G2

a(B>u P
+ + D>uzCz),

which is the presented state feedback. �

Proof for Lemma 2.27:

The procedure as discussed in this proof is visualised in figure A.2. In this figure,
Σe,ne,f denotes the estimator for Σf (2.11), which can directly be derived from the
estimator Σe,ne,sp that is designed for a system of the form Σ′new as defined below.

By considering J = A+LCy, K = −L, M = Cz −NCy and e(t) = x(t)− xe(t) we
obtain the error system Σε,o = ė(t) =

(
A+ LCy

)
e(t) +

(
Bu + LDuy −Ku

)
u(t) +

(
Bw + LDwy

)
w(t)

εz(t) =
(
Cz −NCy

)
e(t) +

(
Duz −NDuy −Nu

)
u(t) +

(
Dwz −NDwy

)
w(t).

(A.1)

For this system, there always exists a mapping Nu such that Duz,ε = 0. Under
assumption 2.1, there also exists a mapping L such that λ(A+ LCy) ⊆ C−, which
implies that the stability requirement can also be met. Therefore, the existence of
a mapping N such that Dwz,ε = 0 is a sufficient and necessary condition on the
existence of an H2-admissible estimator for Σf (2.11).

With the mapping N such that Dwz − NDwy = 0, let us define the new outputs
ynew(t) = y(t)−Duyu(t) and znew = z(t)−Nynew(t) to obtain the system

Σ′new =


ẋ(t) = Ax(t) + Buu(t) + Bww(t)

ynew(t) = Cyx(t) +Dwyw(t)

znew(t) =
(
Cz −NCy

)
x(t) +Duzu(t).
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Σ′new is indeed similar in form to Σ (2.14) and it satisfies items 1b, 2b and 3b
in assumption 2.1. Finally, with these assumptions an H2-admissible estimator
Σe,ne,sp for Σ′new must utilise the mapping N = 0. �

Σf
u(t) y(t)

w(t)
z(t)

Σe,n ,spe

εz(t)

Σe,n ,fe

z(t)~

+

¯N

Duy

Σnew

N
ynew(t)

΄
znew(t)

znew(t)~

+

+

¯

Figure A.2: A block scheme that visualises the proof for Lemma 2.27.

Proof for Corollary 2.30:

The aim is to design an estimator Σe,ne
(2.22) for Σ (2.14), which does not satisfy

assumption 2.2. The estimation problem is essentially transformed into a control
problem by considering the dual system Σ> (2.26), for which an appropriate dual
input signal y′(t) must be created with the dual estimator Σ>e,ne

(2.27). We can
define a new dual input v′(t) which relates to the original dual input as y′(t) =

L>a x(t) +H>a v
′(t); with La = −BwD>wy(DwyD

>
wy)−1 and Ha = −(DwyD

>
wy)

1
2 . By

observing that Ha is full rank, it can be concluded that any signal y′(t) can be
created through v′(t). Therefore the design of a a dual estimator Σ>e,ne,v for

Σ>v =


ẋ′(t) =

(
A + LaCy

)>
x′(t) + C>y H

>
a y
′(t) +C>z z

′(t)

w′(t) =
(
Bw + LaDwy

)>
x′(t) +D>wyH

>
a y
′(t),

can be considered instead—again, when the input u(t) is omitted. It is easy to
show that Σv does satisfy items 1b, 2b and 3b in assumption 2.1 and item 2 in
assumption 2.2; therefore the results that were obtained with these assumptions
can directly be used to design Σe,ne,v.

The ARE in (2.28) for Σv is equal to the ARE in (2.32), which completes the first
part of the proof.

Then consider the dual state and dual input trajectories for the interconnection
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between Σ>v and Σ>e,ne,v as a result of impulses on each dual disturbance ε′z(t) as:

(
X ′(t)
X ′e(t)

)
= e

(
(A+LaCy)> C>y H

>
a K

>

0 J>

)
t
(
C>z
−M>

)
, V ′(t) = K>X ′e(t)

to—by using Y ′(t) = L>aX
′(t) +H>a V

′(t)—obtain CzQ
+C>z =∫∞

t=0
d
dt

(
X ′(t)>Q+X ′(t)

)
dt

=
∫∞
t=0

[
(DwyD

>
wy)−

1
2 (CyQ

+ +DwyB
>
w )X ′(t) + (DwyD

>
wy)

1
2Y ′(t)

]>[
(DwyD

>
wy)−

1
2 (CyQ

+ +DwyB
>
w )X ′(t) + (DwyD

>
wy)

1
2Y ′(t)

]
dt

−
∫∞
t=0

(B>wX
′(t) +D>wyY

′(t))>(B>wX
′(t) +D>wyY

′(t))dt.

This, by observing the similarity to Theorem 2.28, completes the proof. �

Proof for Proposition 2.32:

An external input signal u(t) can equivalently be interpreted as a disturbance that
affect the system, but which is directly available to the estimator through y(t). In
this way, an extended disturbance and measurement

wext(t) =

(
w(t)
u(t)

)
, yext(t) =

(
y(t)
u(t)

)
can be defined in order to obtain an extended system

Σext =



ẋ(t) = Ax(t) +
(
Bw Bu

)
wext(t)

yext(t) =

(
Cy

0

)
x(t) +

(
Dwy 0

0 Inu

)
wext(t)

z(t) = Czx(t) +
(

0 Duz

)
wext(t).

For this system, the extended estimator

Σe,ne,ext =

ẋe(t) = Jxe(t) +
(
K Ku

)
yext(t)

z̃(t) =Mxe(t) +
(
N Nu

)
yext(t).

is designed. An H2-admissible estimator for Σext satisfies N = 0 and Nu = Duz,
while the mappings J , K, M and Mu are designed to obtain the H2 optimal
performance γ?H2,e

(Σ (2.14)).

Now, it is easy to show that the ARE in (2.32) for Σext is equal to the ARE in (2.32)
for Σ (2.14). The latter of which was derived by assuming that u(t) = 0 and
therefore no conditions were imposed on the mapping Ku. Because γ?H2,e

(Σ (2.14))
does not change by considering an input signal u(t) 6= 0, it can be concluded that
εz(t) can, in addition, be made independent of u(t) by the appropriate selection of
Ku. �
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A.2 Proofs for Chapter 3

Proof for Proposition 3.4:

As established in Theorem 3.3, the function fu,g is a weighted sum of two modular
functions. It must therefore be shown that the weighted sum of modular functions
is modular.

For this purpose, let us consider the set functions fs, f1, f2 : 2card(V ) → R and the
parameters α1, α2 ∈ R to define fs = α1f1 + α2f2. Furthermore, let the functions
f1 and f2 be modular. This implies—according to section 2.1.6—for the subsets
Vj ,Vk ⊆ V that

fi(Vj) + fi(Vk) = fi(Vj ∪ Vk) + fi(Vj ∩ Vk), where i = 1, 2.

We therefore get that

fs(Vj) + fs(Vk) =α1f1(Vj) + α1f1(Vk) + α2f2(Vj) + α2f2(Vk)

=α1f1(Vj ∪ Vk) + α1f1(Vj ∩ Vk) + α2f2(Vj ∪ Vk)

+ α2f2(Vj ∩ Vk)

= fs(Vj ∪ Vk) + fs(Vj ∩ Vk),

which implies that fs is indeed modular. �

Proof for Theorem 3.9:

In section 2.4 it is shown for an ARE-admissible subset Yf that

γ?H2
(Σ (3.4),Unu

,Yf ) = tr(CzQ
+C>z ) + γ?H2

(ΣQ (3.35),Unu
,Yft),

where Yft =
{(
Cyf , (DwyfD

>
wyf )

1
2 , 0
)}

is a transformed sensor configuration.

Minimising the set function γ?H2
(Σ (3.4),Unu

,Yf ) is therefore equivalent to min-
imising γ?H2

(ΣQ (3.35),Unu
,Yft). Furthermore, we can conclude that U?nu

= U?nu,F

if it is proven that γ?H2
(ΣQ (3.35),Unu ,Yft) = γ?H2,F

(ΣQ (3.35),Unu). In other
words, it is proven that both problems have the same solution if the objective
functions are equal.

To prove this equivalence, let us consider any subset Unu ⊆ U—and the correspond-
ing matrices as defined for Σ (3.4)—in combination with Yft in order to construct
a controller of the form

Σc,sp =

{
˙̃x(t) =

(
A+BuF + LfCyf

)
x̃(t)−Lfyf (t)

u(t) = Fx̃(t).

Then, let us apply this controller to ΣQ (3.35)—and to which the same actuators
are added—in order to obtain the closed-loop system

ΣQ,cl,sp =



(
ẋ(t)

ė(t)

)
=

(
A+BuF −BuF

0 A+ LfCyf

)(
x(t)

e(t)

)
+

(
B̄w

B̄w + LfD
1
2

y,f

)
w(t)

z(t) =
(
Cz +DuzF −DuzF

)(x(t)

e(t)

)
+
(

0
)
w(t),
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with e(t) = x(t) − x̃(t), B̄w = (Q+C>yf + BwD
>
wyf )(DwyfD

>
wyf )−

1
2 and Dy,f =(

Dw̃yf Dwyf

) (
Dw̃yf Dwyf

)>
.

The best achievable H2 (squared) performance with this type of controller is de-
scribed as

γ?H2
(ΣQ (3.35),Unu ,Yft) = min

F,Lf

‖ΣQ,cl,sp‖2H2

s.t. λ(A+BuF ) ⊂ C−, λ(A+ LfCyf ) ⊂ C−.

Then for any subspace Unu we can observe that the optimal observer gain is given
by L?f = (Q+C>yf + BwD

>
wyf )(DwyfD

>
wyf )−1. Namely, L?f will make the state

observation errors e(t) independent of the disturbance w(t), which implies that
e(t) has no contribution towards the norm of ΣQ,cl,sp.

Because λ(A+ L?fCyf ) ⊂ C− as well, we can therefore observe that

γ?H2
(ΣQ (3.35),Unu

,Yft) = min
F
‖ΣQ,cl,F ‖2H2

s.t. λ(A+BuF ) ⊂ C−,

with

ΣQ,cl,F =

ẋ(t) =
(
A + BuF

)
x(t) + B̄ww(t)

z(t) =
(
Cz +DuzF

)
x(t).

Finally, by observing that this expression is equivalent to (3.15), it can indeed con-
cluded that γ?H2

(ΣQ (3.35),Unu
,Yft) = γ?H2,F

(ΣQ (3.35),Unu
), which completes

the proof. �

A.3 Proofs for Chapter 5

Proof for Proposition 5.2:

The problem of designing an estimator Σe,ne
(5.2) for the system Σ (5.1) is equiv-

alent to the problem of designing a controller

Σ′c,nc
=

ẋc(t) = Jxc(t) +
(
K Ku

)
y′(t)

u′(t) =Mxc(t) +
(
N Nu

)
y′(t)

(A.2)

for the system

Σ′ =



ẋ(t) = A x(t) +
(
Bw Bu

)
w′(t)

y′(t) =

(
Cy

0

)
x(t) +

(
Dwy 0

0 Inu

)
w′(t)

z′(t) = Czx(t)− Inzu
′(t) +

(
0 Duz

)
w′(t).

(A.3)
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Namely, if we consider εz(t) of Σε,ne (5.3) and z′(t) of the closed-loop interconnec-
tion of Σ′ (A.3) with Σ′c,nc

(A.2), then it is easy to show that εz(t) = z′(t) for any

pair (w(t), u(t)) by observing that w′(t) =

(
w(t)
u(t)

)
.

Stoorvogel and van der Woude [1991, Thm. 2.2] did show that the closed-loop
interconnection of Σ′ (A.3) with Σ′c,nc

(A.2) can be disturbance decoupled and be
made internally Cg-stable if and only if λ(A) ⊆ Cg, (Cy, A) is Cg-detectable and

(a) im
(
Bw Bu

)
⊆ V?g .

(b) S?g ∩
(
Cy
0

)−1

im

(
Dwy 0

0 Inu

)
⊆ ker(Cz).

(c) S?g ⊆ V?g .

For Σ′ (A.3) it can be observed that V?g = X ; condition (a) and (c) are therefore by
construction satisfied for Σ′ (A.3). In addition, it can be observed that condition
(b) is equivalent to S?g ∩ C−1

y im(Dwy) ⊆ ker(Cz).

Then, it must be noted that—unlike the problem as investigated by Stoorvogel
and van der Woude [1991, Thm. 2.2]—internal stability is not required for the
DDEPS. In Theorem 5.5 it will be shown that it is sufficient and necessary to
consider the subspace S?g , while it is not required that λ(A) ⊆ Cg and that (Cy, A)
is Cg-detectable.

Finally, in Theorem 5.5 it will be shown that an observer of the form Σo (5.4) can
indeed be considered. �

Proof for Theorem 5.5:

An observer can be designed for Σ (5.1) by using any equivalent system; a repre-
sentation of the form ΣTe,g (5.8) can therefore be considered. Applying Σo (5.4) to

ΣTe,g (5.8) results in the error system Σ
Te,g
ε (5.9).

In the proof of Proposition 5.2 it is shown that the design of an estimator Σe,ne (5.2)
for the system Σ (5.1) is equivalent to the problem of designing a controller
Σ′c,nc

(A.2) for the system Σ′ (A.3). Stoorvogel and van der Woude [1991, Thm. 2.2
and Cor. 2.3] did show for this latter problem that there exists a mapping N such
that (Cz +NCy)Sg = 0 and NDwy = 0.

(⇐) In (5.10), the requirements on L can by construction be met for a subspace

Sg ∈ Sg. These requirements imply for Σ
Te,g
ε (5.9) that there exists a mapping L2

such that the mappings in bold font vanish within Aε and Bεw and that λ(A22 +
L2Cy2) ⊆ Cg. For example, the requirement (A + LCy)Sg ⊆ Sg is for ΣTe,g (5.8)
described as (A + LCy)X1 ⊆ X1, which implies that A21 + L2Cy1 = 0. The other
requirements can be interpreted in a similar fashion

The mapping N can—as explained above—by construction satisfy Cz1−NCy1 = 0
and NDwy = 0. All requirements on N and M are therefore met by additionally

considering M1 = 0 and M2 = Cz2 −NCy2, which implies for Σ
Te,g
ε (5.9) that all

mappings in bold font have vanished.

For Σ
Te,g
ε (5.9) we can now see that the states x(t) and state observation errors e1(t)

are reachable through w(t) and unobservable in εz(t). e2(t) is observable in εz(t)
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on the other hand, but not reachable through w(t). This implies for the original
system Σ (5.1) that e(t) ∈ Sg for all t ≥ 0 and for any triple (x(t), u(t), w(t)),
provided that e(0) = e0 ∈ Sg and that εz(t) is independent of u(t) and w(t).
Finally, only e2(t) is observable in εz(t) and the stability requirement is met by
imposing λ(A22 + L2Cy2) ⊆ Cg.

(⇒) Stability and the requirement that e(t) ∈ Sg for all t ≥ 0 and for any triple

(x(t), u(t), w(t)), provided that e(0) = e0 ∈ Sg, implies for Σ
Te,g
ε (5.9) that the

mappings in bold font vanish within Aε and Bεw and that (A22 + L2Cy2) ⊆ Cg.

Now, the states observation errors e1(t) and, under assumption 5.1, all states x(t)
are reachable through u(t) and w(t). εz(t) can therefore only become independent
of these signals when the remaining mappings in bold font vanish as well.

Making these mappings vanish—in combination with λ(A22 + L2Cy2) ⊆ Cg—is
equivalent to the requirements in (5.10), which completes the proof. �

Proof for Corollary 5.6:

(⇒) The problem can be solved when there exist mappings L, M and N such that
all conditions in Definition 5.4 are met.

First, the requirement that e(t) ∈ Sg for all t ≥ 0 and for any triple (x(t), u(t), w(t)),
provided that e(0) = e0 ∈ Sg, implies that (A + LCy)Sg ⊆ Sg and that im(Bw +
LDwy) ⊆ Sg.

Then in order to make εz(t) independent of u(t) and w(t) it is required that all
states xε(t) of Σε (5.5), which are reachable through u(t) and w(t), should be
unobservable in εz(t). In addition, there cannot be a direct mapping from w(t) to
εz(t). Under assumption 5.1 this implies that Cz −NCy −M = 0, MSg = 0 and
NDwy = 0. Finally, only the state observation errors e(t) ∈ (X mod Sg) will be
observable in εz(t), which requires that λ((A+ LCy)|(X mod Sg)) ⊆ Cg.

In order to meet the requirements on L, an input-containing Cg-detectability sub-
space Sg must be considered. The requirements on M and N can be solved when
there exists a mapping N such that (Cz + NCy)|Sg = 0 and that NDwy = 0.
Stoorvogel and van der Woude [1991, Cor. 2.3] did show that these requirements
are equivalent to requiring that Sg ∈ Sg.

(⇐) In Theorem 5.5 it is shown for a subspace Sg ∈ Sg, that there exists an observer
that solves the DDEPS for (Σ (5.1), Sg, Cg). �

Proof for Theorem 5.8:

An observer can be designed for Σ (5.1) by using any equivalent system; a repre-

sentation of the form ΣTe,g (5.8) can therefore be considered. Applying Σ̂
Te,g
o (5.12)

to ΣTe,g (5.8) results in the error system Σ̂
Te,g
ε (5.13).

Similar to the proof of Theorem 5.5, it can be shown that the conditions in (5.14)

imply for Σ̂
Te,g
ε (5.13) that the bold-font mappings vanish and that λ(A22+L2Cy2) ⊆

Cg. This causes x1(t), x2(t) to be reachable through u(t), w(t) and unobservable
in εz(t). The state observation error e2(t) is not reachable through w(t), but it is
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observable in εz(t). The stability requirement is met because and λ(A22+L2Cy2) ⊆
Cg. Finally, εz(t) is not affected by w(t) with a direct mappings, which implies

that εz(t) is independent of w(t). Σ̂o (5.11) therefore solves the DDEPS-CO for
(Σ (5.1), ne, Cg). �

Proof for Theorem 5.9:

In the proof of Proposition 5.2 it is shown that the design of an estimator Σe,ne
(5.2)

for Σ (5.1) is equivalent to the problem of designing a controller Σ′c,nc
(A.2) for

Σ′ (A.3). Stoorvogel and van der Woude [1991] state that the controller order for
this control problem is characterised by the subspaces Sg and Vg that satisfy

(a) im
(
Bw Bu

)
⊆ Vg.

(b) Sg ∩ C−1
y im(Dwy) ⊆ ker(Cz).

(c) Sg ⊆ Vg.

For Σ′ (A.3), we get under assumption 5.1 that only the subspace Vg = X can
satisfy requirement (a), while any subspace Sg ∈ Sg can be considered. Therefore,
according to Schumacher [1980, Thm. 3.1] we get that

n?e,g = min
Sg∈Sg,Vg=X

dim(Vg)− dim(Sg),

which completes the first part of the proof.

Finally, in Theorem 5.8 it is demonstrated that an estimator of order n?e can solve
the problem for a given subspace Sg ∈ Sg with n?e = dim(X )− dim(Sg). �

Proof for Proposition 5.12:

The problem of designing a state feedback u(t) = Fx(t) for the system Σ (5.1) is
equivalent to the problem of designing a controller

Σ′′c,nc
=

{
ẋc(t) = Jxc(t) +Ky′′(t)

u(t) =Mxc(t) +Ny′′(t)
(A.4)

for the system

Σ′′ =


ẋ(t) = Ax(t) + Buu(t) +Bww(t)

y′′(t) = Inx
x(t)

z(t) = Czx(t) +Duzu(t).

(A.5)

Namely, the state feedback design problem is equivalent to an output feedback
design problem when all states are available as measured output.

Stoorvogel and van der Woude [1991, Thm. 2.2] did show that the closed-loop
interconnection of Σ′′ (A.5) with Σ′′c,nc

(A.4) can be disturbance decoupled and in-
ternally stabilised if and only if (A,Bu) is Cg-stabilisable, (Inx

, A) is Cg-detectable
and

(a) im(Bw) ⊆ V?g +Bu ker(Duz).
(b) S?g ∩ im(0) ⊆ ker(Cz).
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(c) S?g ⊆ V?g .

For Σ′′ (A.5), it is easy to show that S?g = im(Bw) and therefore that conditions
(b) and (c) are by construction satisfied for Σ′′ (A.5). Finally, the pair (Inx

, A) is
by definition Cg-detectable for any stability domain Cg. �

Proof for Theorem 5.17:

A controller can be designed for Σ (5.1) by utilising any equivalent system; a rep-
resentation of the form ΣTc (5.29) can therefore be considered. Applying Σc (5.25)
to ΣTc (5.29) results in the closed-loop system ΣTc

cl (B.1). Note that all mappings
in bold-font can vanish by construction, which will be used throughout the proof.

(⇐) The first 6 requirements of (5.30)—in combination with F = F̃ − NCy—

imply for ΣTc

cl (B.1) that the mappings in bold-font vanish, except for −Bu3F1

and −DuzF1. For example, the requirement (A + LCy)Sg ⊆ Sg is for ΣTc (5.29)
described as (A + LCy)X1 ⊆ X1, which implies that A21 + L2Cy1 = 0 and A31 +
L3Cy1 = 0. The other 5 requirements can be interpreted in a similar fashion.

The inclusion (A + BuNCy)Sg ⊆ Vg implies that A31 + Bu3NCy1 = 0, which
combined with A31 +Bu3(F1 +NCy1) = 0 implies that −Bu3F1 = 0. In a similar
fashion (Cz +DuzNCy)Sg = 0 implies that −DuzF1 = 0.

The conditions in (5.30) therefore imply for ΣTc

cl (B.1) that all mappings in bold-
font will vanish and, therefore, that conditions (a) and (b) in Definition 5.16 are
satisfied. It can also be concluded that all states and state observation errors of
ΣTc

cl (B.1), which are reachable through w(t) are unobservable in z(t). Finally, the
DDPMS is fully solved by imposing the last requirement in (5.30): λ(Acl) ⊆ Cg,
which by construction of the subspaces Sg and Vg can be achieved in combination
with the other requirements.

(⇒) Conditions (a) and (b) in Definition 5.16 imply for ΣTc

cl (B.1) that the mappings
in bold-font within Acl and Bclw vanish. The states x1(t), x2(t) and observation
error e1(t) are therefore reachable through w(t). Therefore, z(t) can only become
independent of w(t) when the remaining mappings in bold-font vanish as well.

Making these mappings vanish—in combination with closed-loop stability—is equiv-
alent to the requirements in (5.30), which completes the proof. �

Proof for Corollary 5.18:

(⇒) In Proposition 5.14 it is shown that the problem can be solved when there
exists mappings L, F and N , which uniquely define F̃ = F + NCy, such that all
conditions in Definition 5.16 are satisfied.

First, λ(Acl) ⊆ Cg for Σcl (5.26), requires that Σ (5.1) is Cg-stabilisable and Cg-
detectable. Conditions (a) and (b) in Definition 5.16 imply that

(A+ LCy)Sg ⊆ Sg, im(Bw + LDwy) ⊆ Sg,
(A+BuF̃ )Vg ⊆ Vg, im(Bw +BuNDwy) ⊆ Vg, (A+BuNCy)Sg ⊆ Vg.

Then, in order to make z(t) independent of w(t) it is required that all states xcl(t)
of Σcl (5.26) that are reachable through w(t) should be unobservable in z(t), while
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there cannot be a direct mapping from w(t) to z(t). This implies the remaining
conditions in (5.30). Finally, it is shown in [Stoorvogel and van der Woude, 1991,
Thm. 2.2] that these conditions can only be satisfied when (Sg,Vg) ∈ Tg.

(⇐) In Theorem 5.17 it is shown that for a Cg-stabilisable and Cg-detectable
system combined with a pair (Sg,Vg) ∈ Tg, there exists a controller that solves the
DDPMS for (Σ (5.1), Sg, Vg, Cg) and therefore the problem can be solved. �

Proof for Theorem 5.20:

A controller can be designed for Σ (5.1) by utilising any equivalent system; a repre-

sentation of the form ΣTc (5.29) can therefore be considered. Applying Σ̂Tc
c (5.32)

to ΣTc (5.29) results in a closed-loop system Σ̂Tc

cl (B.2). Note that all mappings in
bold-font can vanish by construction, which will be used throughout the proof.

The conditions in (5.33) imply for Σ̂Tc

cl (B.2) that the bold-font mappings vanish.
This causes x1(t) and x2(t) to be reachable through w(t) and unobservable in z(t).
Furthermore, x3(t) and e2(t) are observable in z(t) and not reachable through w(t).
Finally, w(t) does not affect z(t) with a direct mapping, which implies that z(t) is

independent of w(t). Σ̂c (5.31) therefore solves the DDPM-CO for (Σ (5.1), nc). �

Proof for Theorem 5.24:

A controller can be designed for Σ (5.1) by utilising any equivalent system, which is
created with a state transformation Tc,g that transforms Σ (5.1) into ΣTc,g (B.3);
a representation of the form ΣTc,g (B.3) can therefore be considered. Applying

Σ̂
Tc,g
c,g (B.4) to ΣTc,g (B.3) results in a closed-loop system Σ̂

Tc,g

cl,g (B.5).

The use of (F,N) ∈Mg(Sg,Vg) implies that Tc,gF =
(
0 F12 F2 F31 0

)
. We

therefore get that Fm,g =
(
F12 F2 F31

)
. Inserting this mapping into Σ̂

Tc,g

cl,g (B.5)
implies that all mappings in bold-font that depend on F and N vanish. Further-
more, with these mappings we get that

λ

A1111 +Bu11NCy11 A1112 +Bu11F̃12 A112 +Bu11F̃2

A1211 +Bu12NCy11 A1212 +Bu12F̃12 A122 +Bu12F̃2

A211 +Bu2NCy11 A212 +Bu2F̃12 A22 +Bu2F̃2

 ⊆ Cg,
λ

(
A3131 +Bu31F̃31 A3132 +Bu31NCy32

A3231 +Bu32F̃31 A3232 +Bu32NCy32

)
⊆ Cg,

for F̃12 = F12 +NCy12, F̃2 = F2 +NCy2 and F̃31 = F31 +NCy31.

The use of subspaces S1 and S3 implies for Σ̂
Tc,g

cl,g (B.5) that also all mappings in
bold-font which depend on L can vanish by construction, while rendering the closed-
loop system stable. The remaining requirements in (5.36) achieve this vanishing,
together with

λ

A1212 + L12Cy12 A122 + L12Cy2 A1231 + L12Cy31

0 A22 + L2Cy2 A231 + L2Cy31

0 A312 + L31Cy2 A3131 + L31Cy31

 ⊆ Cg.
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Inserting these mappings into Σ̂
Tc,g

cl,g (B.5) causes x11(t), x12(t), x2(t) and e12(t)
to be reachable through w(t), while they are unobservable in z(t). Furthermore,
x31(t), x32(t), e2(t) and x31(t) are observable in z(t), but not reachable through
w(t). w(t) does not affect z(t) with a direct mapping, which implies that z(t) is

independent of w(t). Finally, observe that Σ̂
Tc,g

cl,g (B.5) is Cg-stable as well, which

implies that Σ̂c,g (5.35) solves the DDPMS-CO for (Σ (5.1), nc, Cg). �

Proof for Theorem 5.27:

We will use the solution to the DDPM as a starting point for the proof. A controller
can be designed for Σ (5.1) by utilising any equivalent system; a representation of
the form ΣTc (5.29) can therefore be considered for a given pair (S,V) ∈ T. Let
us first apply a full order controller Σc (5.25) to ΣTc (5.29), which results in the
closed-loop system ΣTc

cl (B.1). Note that the solution to the DDPM requires that
all mappings in bold-font vanish.

With the conditions on Dwy and Duz, it can be shown that this is the case if and
only if F1 = 0, L3 = 0 and N = 0. For these specific mappings, the requirements
λ((A+BuF )|V) ⊆ Cg and λ((A+ LCy)|(X mod S)) ⊆ Cg are equivalent to

λ

(
A11 A12 +Bu1F2

A21 A22 +Bu2F2

)
⊆ Cg, λ

(
A22 + L2Cy2 A23 + L2Cy3

A32 A33

)
⊆ Cg.

The minimal controller order is characterised in Theorem 5.25 for the DDPM-CO
(i.e. without closed-loop stability) on the basis of the subspaces (S,V) ∈ T. Now,

let a reduced order controller Σ̂Tc
c (5.32) be applied to ΣTc (5.29), which results in

the closed-loop system Σ̂Tc

cl (B.2).

The conditions on Dwy and Duz imply that N = 0 and −Bu3F2 = A32. The

inclusion of stability for Σ̂Tc

cl (B.2) is, as a consequence, equivalent to additionally
requiring for (S,V) ∈ T that λ((A+BuF )|V) ⊆ Cg and λ((A+LCy)|(X mod S)) ⊆
Cg, which is equivalent to the condition (S,V) ∈ Tg.

The minimal controller order is therefore characterised for the DDPMS-CO by
considering the subspaces (Sg,Vg) ∈ Tg in Theorem 5.25, which completes the
proof. �

Proof for Theorem 5.32:

In Corollary 2.25 it is shown for a given H2-admissible state feedback u(t) = Fx(t)
that

γH2,F (Σ (5.1), F ) = tr
(
B>wP

+Bw
)

+ γH2,F (ΣP (5.53), F ).

Furthermore, an H2 optimal feedback achieves γ?H2,F
(Σ (5.1)) = tr

(
B>wP

+Bw
)
.

(⇒) An H2 optimal state feedback u(t) = Fx(t) for Σ (5.1) will therefore achieve
λ(A + BuF ) ⊂ C− and γH2,F (ΣP (5.53), F ) = 0. These conditions directly imply
that the state feedback u(t) = Fx(t) is H2-admissible for ΣP (5.53) and that Σcl,P,F
is disturbance decoupled.
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(⇐) An H2-admissible state feedback u(t) = Fx(t) for ΣP (5.53) that achieves
disturbance decoupling on Σcl,P,F obtains γH2,F (ΣP (5.53), F ) = 0 and λ(A +
BuF ) ⊂ C−. This implies—as explained at the beginning of the proof—that the
state feedback must be H2 optimal for Σ (5.1). �

Proof for Proposition 5.33:

(i) ⇔ (ii): It has been established for both systems that V?− = X , which by defini-
tion satisfies im(Bw) ⊆ X and im(B′w) ⊆ X ; this implies that X ∈ V−(ΣP (5.53))
and that X ∈ V−(Σ′P ). Finally, the requirements on F to solve the DDPS with
this subspace are equivalent for both systems, because they are independent of Bw
and B′w.

(i)⇒ (iii): By observing that V?− = X , the requirements on the mapping F to solve

the DDPS for (ΣP (5.53), V?−, C−) are (A+BuF )X ⊆ X , ((D>uzDuz)
− 1

2 (B>u P
+ +

D>uzCz) + (D>uzDuz)
1
2F )X = 0 and λ(A + BuF ) ⊂ C−. The second requirement

uniquely defines F = −(D>uzDuz)
−1(B>u P

++D>uzCz), while the other requirements
are satisfied with this state feedback as well.

(iii) ⇒ (i): By observing that V?− = X , it is easy to show for the given mapping

F that the requirements (A + BuF )X ⊆ X , ((D>uzDuz)
− 1

2 (B>u P
+ + D>uzCz) +

(D>uzDuz)
1
2F )X = 0 and λ(A + BuF ) ⊂ C− are satisfied, which completes the

proof. �

Proof for Theorem 5.37:

It easy to show that an estimator Σe,ne
(5.2) is H2-admissible for Σ (5.1) if and

only if it is H2-admissible for ΣQ (5.55).

In Corollary 2.30 it is shown for a given H2-admissible estimator Σe,ne
(5.2) that

γH2,e(Σ (5.1),Σe,ne (5.2)) = tr
(
CzQ

+C>z
)

+ γH2,e(ΣQ (5.55),Σe,ne (5.2)).

Furthermore, an H2 optimal estimator achieves γ?H2,e
(Σ (5.1)) = tr

(
CzQ

+C>z
)

in
combination with the stability requirement.

(⇒) An H2 optimal estimator Σe,ne (5.2) for Σ (5.1) will therefore achieve
γH2,e(ΣQ (5.55),Σe,ne (5.2)) = 0. This condition implies that Σε,ne,Q is distur-
bance decoupled, while the estimator must be H2-admissible for ΣQ (5.55).

(⇐) An H2-admissible estimator Σe,ne (5.2) for ΣQ (5.55) that achieves distur-
bance decoupling on Σε,ne,Q obtains γH2,e(ΣQ (5.55),Σe,ne (5.2)) = 0 and is H2-
admissible for Σ (5.1). This implies—as explained at the beginning of the proof—
that the estimator must be H2 optimal for Σ (5.1). �

Proof for Proposition 5.38:

(i)⇔ (ii): It has been established for both systems that S?− = 0, which by definition
satisfies 0 ⊆ ker(Cz) and 0 ⊆ ker(C ′z); this implies that 0 ∈ S−(ΣQ (5.55)) and that
0 ∈ S−(Σ′Q). Finally, the requirements on L to solve the DDEPS with this subspace
are equivalent for both systems, because they are independent of Cz, Duz, C

′
z and

D′uz.
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(i) ⇒ (iii): By observing that S?− = 0, the requirements on the mapping L to
solve the DDEPS for (ΣQ (5.55), S?−, C−) are (A + LCy)0 ⊆ 0, ((Q+C>y +

BwD
>
wy)(DwyD

>
wy)−

1
2 + L(DwyD

>
wy)

1
2 ) ⊆ 0 and λ(A + LCy) ⊂ C−. The sec-

ond requirement uniquely defines L = −(Q+C>y +B>wDwy)(DwyD
>
wy)−1, while the

other requirements are satisfied with this observer gain L as well.

(iii) ⇒ (i): By observing that S?− = 0, it is easy to show for the given mapping

L that the requirements (A + LCy)0 ⊆ 0, ((Q+C>y + BwD
>
wy)(DwyD

>
wy)−

1
2 +

L(DwyD
>
wy)

1
2 ) ⊆ 0 and λ(A+LCy) ⊂ C− are satisfied, which completes the proof.

�

Proof for Lemma 5.42:

(a) It has been proven by Stoorvogel and van der Woude [1991, Cor 2.4] that the
conditions im(Bw) ⊆ V−+Bu ker(Duz), S−∩C−1

y im(Dwy) ⊆ ker(Cz) and S− ⊆ V−
are replaced by S− ⊆ ker(Cz), im(Bw) ⊆ V− and AS− ⊆ V−, when a controller
Σc (5.25) with N = 0 is considered.

Assumption 5.2 implies for ΣPQ (5.56) that (D>uzDuz)
1
2N(DwyD

>
wy)

1
2 = 0 if and

only if N = 0. A controller with N = 0 must therefore be considered for the
DDPMS, which implies that the set in (5.27) is indeed described by T−(ΣPQ (5.56))
as defined above.

(b) and (c) follow directly from Lemmas 5.31 and 5.36, when it is observed that
A0 ⊆ X

(c) It has been shown by Saberi et al. [1995b, Sec. 3.2] that the conditions S− ⊆
ker(C̃z) and AS− ⊆ V− imply that S− ⊆ V−. �

Proof for Theorem 5.43:

It easy to show that a controller Σc,nc
(5.21) is H2-admissible for Σ (5.1) if and

only if it is H2-admissible for ΣPQ (5.56).

In Corollary 2.34 it is shown for a given H2-admissible controller Σc,nc (5.21) that
γH2(Σ (5.1),Σc,nc (5.21)) = tr(B>wP

+
r Bw) + tr(B>u P

+
r Q

+
r P

+
r Bu)

+ γH2
(ΣPQ (5.56),Σc,nc

(5.21)).
Furthermore, an H2 optimal controller achieves closed-loop stability in combination
with γ?H2

(Σ (5.1)) = tr(B>wP
+
r Bw) + tr(B>u P

+
r Q

+
r P

+
r Bu).

(⇒) An H2 optimal controller for Σ (5.1) will therefore achieve γH2(ΣPQ (5.56),
Σc,nc

(5.21)) = 0. This condition implies that Σcl,PQ is disturbance decoupled,
while the controller must be H2-admissible for ΣPQ (5.56).

(⇐) An H2-admissible controller Σc,nc (5.21) for ΣPQ (5.56) that achieves distur-
bance decoupling on Σcl,PQ obtains γH2(ΣPQ (5.56),
Σc,nc

(5.21)) = 0 and is H2-admissible for Σ (5.1). This implies—as explained at
the beginning of the proof—that the controller must be H2 optimal for Σ (5.1). �
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J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB.
In Conference on Robotics and Automation, pages 284–289, New Orleans, LA,
USA, 2004. IEEE. doi: 10.1109/CACSD.2004.1393890.

S. N. Lordejani, B. Besselink, M. Abbasi, G.-O. Kaasa, W. Schilders, and N. van de
Wouw. Model Order Reduction for Managed Pressure Drilling Systems based
on a Model with Local Nonlinearities. IFAC-PapersOnLine, 51(8):50–55, 2018.
ISSN 24058963. doi: 10.1016/j.ifacol.2018.06.354.

T. Luspay, T. Peni, and B. Vanek. Control Oriented Reduced Order Modeling of
a Flexible Winged Aircraft. In Aerospace Conference, pages 1–9, Big Sky, MT,
USA, 2018. IEEE. ISBN 978-1-5386-2014-4. doi: 10.1109/AERO.2018.8396496.

C. Mack. Fundamental Principles of Optical Lithography. John Wiley & Sons,
2007. ISBN 9780470723876. doi: 10.1002/9780470723876.

C. A. Mack and B. J. Lin. Understanding Focus Effects in Submictron Optical
Lithography. In Symposium on Microlithography, pages 135–148, Santa Clara,
CA, USA, 1988. SPIE. doi: 10.1117/12.968408.

G. Marro. Geometric Approach, 2018. URL http://www3.deis.unibo.it/Staff/

FullProf/GiovanniMarro/geometric.htm. [May 9, 2018].

H. Megens. Overlay. Technical report, ASML, Veldhoven, the Netherlands,
2007. URL https://staticwww.asml.com/doclib/productandservices/

images/asml_overlay_images_fall07.pdf.

N. Mehrabi. Dynamics and Model-Based Control of Electric Power Steering Sys-
tems. Ph.d. dissertation, University of Waterloo, 2014. URL https://uwspace.

uwaterloo.ca/handle/10012/8887.

R. W. H. Merks and S. Weiland. Constrained Order Controller Design for the Dis-
turbance Decoupling Problem with Dynamic Measurement Feedback and Stabil-
ity. submitted to IEEE Transactions on Automatic Control, 2019a.

http://people.ece.umn.edu/~mihailo/software/lqrsp/index.html
http://dx.doi.org/10.1109/TPWRS.2015.2480005
http://dx.doi.org/10.1109/ISIT.2014.6875309
https://books.google.nl/books?id=nHFoQgAACAAJ
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1016/j.ifacol.2018.06.354
http://dx.doi.org/10.1109/AERO.2018.8396496
http://dx.doi.org/10.1002/9780470723876
http://dx.doi.org/10.1117/12.968408
http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm
http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm
https://staticwww.asml.com/doclib/productandservices/images/asml_overlay_images_fall07.pdf
https://staticwww.asml.com/doclib/productandservices/images/asml_overlay_images_fall07.pdf
https://uwspace.uwaterloo.ca/handle/10012/8887
https://uwspace.uwaterloo.ca/handle/10012/8887


241

R. W. H. Merks and S. Weiland. On the Non-Optimality of Linear Quadratic Gaus-
sian Balanced Truncation for Constrained Order Controller Design. In European
Control Conference, Napels, Italy, 2019b. IEEE.

R. W. H. Merks, E. M. M. Kivits, and S. Weiland. Constrained Order Observer
Design for Disturbance Decoupled Output Estimation. IEEE Control Systems
Letters, 3(1):49–54, 2019. ISSN 2475-1456. doi: 10.1109/LCSYS.2018.2851539.

G. E. Moore. Cramming More Components Onto Integrated Circuits. IEEE
Solid-State Circuits Society Newsletter, 38(8):114–117, 1965. doi: 10.1109/N-
SSC.2006.4785860.

G. E. Moore. Progress in Digital Integrated Electronics. In International Elec-
tron Device Meeting, pages 11–13, Washington D.C., USA, 1975. IEEE. doi:
10.1109/N-SSC.2006.4804410.

M. Morari and G. Stephanopoulos. Studies in the Synthesis of Control Structures
for Chemical Processes: Part II: Structural Aspects and the Synthesis of Alter-
native Feasible Control Schemes. Advancements in Chemical Engineering, 26(2):
232–246, 1980. ISSN 0001-1541. doi: 10.1002/aic.690260206.

D. Mustafa. Reduced-Order Robust Controllers: H∞-Balanced Truncation and
Optimal Projection. In Conference on Decision and Control, pages 488–493
vol.2, Honolulu, HI, USA, 1990. IEEE. doi: 10.1109/CDC.1990.203646.

M. Mutsaers. Control Relevant Model Reduction and Controller Synthesis for Com-
plex Dynamical Systems. Ph.d. dissertation, Eindhoven University of Technology,
2012. URL https://pure.tue.nl/ws/files/3694274/734624.pdf.

M. Mutsaers and S. Weiland. A Model Reduction Scheme with Preserved Optimal
Performance. In Conference on Decision and Control and European Control
Conference, pages 7176–7181, Orlando, FL, USA, 2011. IEEE. ISBN 978-1-
61284-801-3. doi: 10.1109/CDC.2011.6161379.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of Approximations
for Maximizing Submodular Set Functions—I. Mathematical Programming, 14
(1):265–294, 1978. ISSN 0025-5610. doi: 10.1007/BF01588971.

G. Obinata and B. D. O. Anderson. Model Reduction for Control System Design.
Springer, 2001. ISBN 978-1-4471-1078-1. doi: 10.1007/978-1-4471-0283-0.

M. Opmeer, F. Wubs, and S. van Mourik. Model Reduction for Controller Design
for Infinite-Dimensional Systems: Theory and an Example. In Conference on
Decision and Control, pages 2469–2474, Seville, Spain, 2005. IEEE. ISBN 0-
7803-9567-0. doi: 10.1109/CDC.2005.1582533.

T. Oyvang, J. K. Noland, G. J. Hegglid, and B. Lie. Online Model-Based Thermal
Prediction for Flexible Control of an Air-Cooled Hydrogenerator. IEEE Trans-
actions on Industrial Electronics, 66(8):6311–6320, 2019. ISSN 0278-0046. doi:
10.1109/TIE.2018.2875637.

http://dx.doi.org/10.1109/LCSYS.2018.2851539
http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/N-SSC.2006.4804410
http://dx.doi.org/10.1109/N-SSC.2006.4804410
http://dx.doi.org/10.1002/aic.690260206
http://dx.doi.org/10.1109/CDC.1990.203646
https://pure.tue.nl/ws/files/3694274/734624.pdf
http://dx.doi.org/10.1109/CDC.2011.6161379
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/978-1-4471-0283-0
http://dx.doi.org/10.1109/CDC.2005.1582533
http://dx.doi.org/10.1109/TIE.2018.2875637
http://dx.doi.org/10.1109/TIE.2018.2875637


242 Bibliography

L. Pernebo and L. Silverman. Model Reduction via Balanced State Space Rep-
resentations. IEEE Transactions on Automatic Control, 27(2):382–387, 1982.
ISSN 0018-9286. doi: 10.1109/TAC.1982.1102945.
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