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Abstract— We consider supervisor synthesis of Extended
Finite Automata that are represented using Binary Decision
Diagrams (BDDs). Peak used BDD nodes and BDD operation
count are introduced as platform independent and deterministic
metrics that quantitatively indicate the computational effort
needed to synthesize a supervisor. The use of BDD operation
count is novel with respect to expressing supervisor synthesis
effort. The (dis-)advantages of using these metrics to state of
practice metrics such as wall clock time and worst case state
space size are analyzed. The supervisor synthesis algorithm is
initiated with a certain event- and variable order. It is already
known from literature that variable order influences synthesis
performance. We show that the event order is also relevant to
consider. We discuss how these orders influence the synthesis
effort and, by performing an experiment on a set of models,
we show the extent of this influence.

I. INTRODUCTION

Supervisory Control Theory (SCT) [1], [2] is a model-
based approach to control (cyber-physical) systems. Given
a plant (a model that defines all possible system behavior)
and a specification (a model that defines what behavior
is allowed), a supervisor can be computed algorithmically
(synthesized) that restricts the plant’s behavior so that it
is in accordance with the specification. Depending on the
synthesis algorithm, the supervised system has some useful
properties by construction, such as safety, nonblockingness,
controllability and maximal permissiveness. There are a
number of formal modeling frameworks on which SCT can
be applied. The framework of Extended Finite Automata
(EFA) [3] is an extension to Finite State Automata by aug-
menting them with variables, guard expressions and updates,
which enables more convenient modeling of systems.

The power of SCT has been demonstrated in literature
[4]–[8]. Despite the beneficial properties of SCT, industrial
acceptance is scarce. The exponential state space explosion
that occurs during supervisor synthesis is a major hurdle
[9]. A way to mitigate this is by symbolically representing
the EFA using Binary Decision Diagrams (BDDs) [10]–
[13]. This approach is considered state of the art to handle
industrial sized systems [14].

The synthesis complexity depends on the amount of BDD
nodes required to represent the system during synthesis [12].
It is well known that this number is largely dependent on
the variable order [15]. A contribution of this paper is
showing that in addition to the variable order, the event

order is relevant to consider for the effort that is needed
to synthesize a supervisor (supervisor synthesis effort). This
is the order in which the synthesis algorithm iterates through
the events when performing reachability/fixed point searches.
By performing supervisor synthesis to a set of models
using a large number of random variable- and event orders,
we demonstrate to what extent these orders influence the
supervisor synthesis effort.

Even when restricting ourselves to only BDD-based su-
pervisor synthesis of EFA, there is no consensus in literature
on how to express the supervisor synthesis effort. Several
metrics are used, such as: wall clock time, peak random
access memory and state space sizes [6], [8], [14], [16],
[17]. These metrics give some intuitive indication on the
supervisor synthesis effort, but there is no exact method
on how to interpret them. In this paper, we present peak
used BDD nodes and BDD operation count as deterministic,
platform independent metrics that provide a quantitative
indication of the supervisor synthesis effort. Peak used BDD
nodes has been used to express supervisor synthesis effort
[12], [16]–[18]. The contribution of BDD operation count is
novel in this context. We show the relevance of these BDD-
based metrics and compare them to state of practice metrics.

II. BDD-BASED SUPERVISOR SYNTHESIS OF EFA

A. Supervisor synthesis of EFA

We consider EFA A defined as 7-tuple

A = (L,D,Σ, E, L0, D0, Lm)

where L is the domain of locations, D=D1×...×Dp is
the domain of variables and Σ is the set of events, usu-
ally called the alphabet. L0 is the set of initial locations,
D0=D0

1×...×D0
p is the set of initial variable values and Lm

is the set of marked locations. E is a set of edges where an
edge ek ∈ E is defined as 5-tuple

ek = (lok, l
t
k, σk, g

e
k, f

e
k)

where lok and ltk are the origin and target location in L, σk is
an event in Σ, gek : D → {false, true} is the guard evaluation
function and fek : D → D is the update function that assigns
new values to the variables.

The state of the EFA specifies the automaton location and
the value of each of the variables as a pair (l, d) ∈ L×D.



Consequently the initial states are pairs (l0, d0) ∈ L0×D0

and the marked states are pairs (lm, d) ∈ Lm×D.
An edge ek is enabled if the current location is lok and

gek evaluates to true for the current variable values. Only
enabled edges can be executed. Upon execution, the state is
updated according to ltk and fek . Thus we can speak of an
origin and target state that relate to an edge.

The set of events Σ is split into two disjoint subsets, Σc

and Σu, denoting controllable and uncontrollable events. We
speak of controllable and uncontrollable edges respective to
the event they are labeled with. Controllable edges can be
enforced by the supervisor, uncontrollable edges can not; The
supervisor can only disable an edge ek when σk ∈ Σc.

This paper is based on the supervisor synthesis algorithm
for EFA as presented in [19]. An EFA of the plant that
models all possible behavior and an EFA of the specification,
where all forbidden behavior of the system ends in blocking
states, are given. The algorithm produces a supervisor EFA
by iteratively strengthening guards resulting in blocking
states finally becoming unreachable. This supervisor EFA
contains all behavior of the system that is safe (blocking
states can never be reached), nonblocking (a marked state can
always be reached), controllable (only controllable edges are
restricted by the supervisor) and it is maximally permissive
(the restrictions are minimal in order to guarantee safety,
nonblockingness and controllability). A high level pseudo
code description of the algorithm is given in Algorithm 1. A
more rigorous description can be found in [19]. Flagging a
state by true , denotes adapting a predicate so that the new
predicate evaluates to true for that state.

Algorithm 1 Supervisor synthesis of EFA

Input: Plant P and specification R represented as EFA
Output: Maximally permissive nonblocking, safe and con-

trollable EFA G respective to P and satisfying R
1: Create refined EFA G that has the same behavior as P ,

where the disallowed behavior by R ends in a set of
blocking states in G

2: Create bad state predicate B: flag all blocking states of
G by true and all others by false

3: repeat Create new nonblocking predicate N : flag all
marked states of G by true and all unmarked states
by false

4: repeat Flag all states in N by true that have an
enabled edge to a state already flagged true in N

5: until N did not change
6: Flag all states in B that are currently set to false in B

by their negation in N
7: repeat Flag all states in B by true that have an

enabled uncontrollable edge to a state already
flagged true in B

8: until B did not change
9: Set guards in G to false so that all controllable edges

that lead to a state flagged true in B are disabled
10: until Guards did not change

B. CIF toolset

There are several tools that allow modelling of plants and
requirements with the ability to synthesize a supervisor. Of
the tools considered in [20], the tools Supremica [14] and
CIF [21] allow for the use of EFA. Both tools base their
EFA supervisor synthesis algorithm on the use of BDDs.
The syntheses in this paper are performed using the EFA
supervisor synthesis tool of CIF1. CIF has been used to
synthesize supervisors for industrial sized systems [4]–[6],
[22], [23]. Its EFA supervisor synthesis tool is based on
the supervisor synthesis algorithm sketched in Section II-
A, barring some minor differences that are irrelevant to our
interpretation of the algorithm. The tool is instrumented to
extract the metrics introduced in Section III.

C. Binary Decision Diagrams

Boolean functions can be used to symbolically represent
EFA [24]. An efficient manner to store and make adaptations
to Boolean functions is using BDDs [10], [11]. These are
directed acyclic graphs that contain decision nodes that all
have two child nodes which can be reached by taking a
low/0 or high/1 decision edge from the parent node. At the
bottom of the graph there are two terminal nodes representing
true and false . (Groups of) nodes represent variable values
or automata locations. When referring to BDDs here, we
consider Reduced Ordered BDDs [25] which impose some
extra restrictions, guaranteeing a canoncial form. This rep-
resentation is better suited for computer manipulation [12].
After converting the EFA to a BDD structure, the synthesis
operations are directly applied to the BDDs. When synthesis
is complete, the BDDs can be converted back to the EFA
structure. Several synthesis algorithms that employ BDDs
exist. Their efficiency usually depends on their handling of
the BDDs [12], [13], [17].

D. Variable order

Because Ordered BDDs are used, a total ordering is
imposed over the set of variables. If in the variable order
a precedes b (denoted a<b), then no path of decision edges
can exist in the BDD from the nodes representing b to a
[25]. The variable order has a major effect on the amount
of BDD nodes that are used to represent a system [15]. In
turn, it has a large influence on the efficiency of supervisor
synthesis for EFA [12], [17]. Finding the optimal variable
order is NP-hard [26], thus CIF uses the FORCE and sliding
window algorithms [27] to come up with a good order,
which makes a relatively small BDD representation more
likely. These heuristic algorithms are supplied with an initial
variable order from which variables are grouped together that
have high interaction, meaning they often appear together in
guard or update expressions. Note that these algorithms find
local optima; Providing them with different initial orders,
gives different resulting variable orders. In CIF, the default
initial variable order is an alphabetic ordering of the names
of all variables and automata locations.

1The CIF tooling and documentation is open source and freely available
at cif.se.wtb.tue.nl

cif.se.wtb.tue.nl


E. Edge order
In lines 4 and 7 of Algorithm 1, a backwards reachability

search is performed to find edges of which the target state
is flagged true in predicate N or B, and the origin state is
not. If such an edge is found, the predicate will be adapted
on the fly; The iteration over edges does not restart, and
the new predicate will immediately be considered for the
next edge that is checked. Applying the edges in a different
order will not influence the resulting predicate when exiting
the reachability loop. However, the BDD sizes required
to represent the intermediate predicates, and the rate at
which states get flagged in the predicate may differ. The
construction of the guards in line 9 of Algorithm 1 is also
influenced by the edge order. Unlike the variable order, no
reordering algorithm is applied to the edge order in CIF.

Example: We consider the EFA of Figure 1(a). This EFA
consists out of two locations L={l0, l1} of which l1 is
marked: Lm={l1}, as indicated in Figure 1(a) by a double
circle. We have Boolean variables a and b, forming variable
space D={false, true}×{false, true}. Both variables are
initially set to false: D0={(false, false)}. Events a on and
b on can occur at l0, variables a and b will then respectively
update to true . These updates are denoted in Figure 1(a) by
the keyword ‘do’. An edge with event label continue can be
taken from origin location l0 to target location l1. This can
only happen if the guard a==b evaluates to true . The guard
is denoted by the keyword ‘if’. The reachable state space of
this EFA is displayed in Figure 1(b). The edges have been
enumerated e1 to e6. For easy reference, we use a or ¬a
to respectively denote the values a=true or a=false , same
holds for b.

l0
a=false
b=false

continue 
if a==b 

a_on  
do a=true 

b_on  
do b=true 

l1

l0 ¬a ¬b

l0 a ¬b

l0 ¬a b

l0 a b

e1e2

e3e4

e5

e6

(a) EFA  (b) State space 

l1 ¬a ¬b

l1 a b

Fig. 1: Example EFA and respective reachable state space

Let us consider the construction of the nonblocking predi-
cate N . Initially, only the marked states are flagged as true .
As our example only has two locations, a single Boolean
variable ls can be used to specify the location. We define ls
to indicate l0 and ¬ls indicates l1. The BDD representing
the initial predicate is shown in Figure 2(a). Solid decision
edges denote that the origin node evaluates to true , dashed
decision edges denote false . The square T and F vertices
represent the true and false terminal nodes.

Let us examine the case that we continue performing
backwards reachability by first considering edge e6. The
target state of this edge is part of the nonblocking predicate,
thus we can flag its origin state (ls a b) in the predicate,
resulting in the BDD of Figure 2(b). All BDDs in Figure 2

have variable order ls<a<b. A caption ‘B.w. ex; ey’ denotes
backwards reachability by first applying edge ex followed by
edge ey . Applying edge order e6; e5; e3 results in the same
nonblocking predicate as applying e6; e3; e5. The resulting
BDD is shown in Figure 2(e). However, the intermediate
BDDs to represent the predicate after applying e6; e5 or
e6; e3 use a different amount of nodes, seen when comparing
Figure 2(c) to 2(d). This illustrates how edge order can
influence the efficiency of the algorithm.

ls

a

b

T F

ls

T F

ls

a

b

T F

b

ls

b

T F

ls

a

b

T F
(a) 

Initial 
(b) 

B.w. e6 
(c) 

B.w. e6;e5 
(d) 

B.w. e6;e3 
(e) 

B.w. e6;e5;e3 
B.w. e6;e3;e5 

Fig. 2: Different BDD sizes for varying edge orders

F. Ordering granularity

Complex supervisory control models will contain many
edges. When analyzing edge orders, instead of working
with these large sets, we use a less granular approach and
group all edges with the same event label together. In the
remainder of this paper we will consequently refer to these
orders by event orders rather than edge orders. Likewise for
variable order, we will consider the variables and automata
locations as defined in the model, instead of the order of
the Boolean variables in the BDD. We also do not interleave
[15] variables with each other. This lower granularity enables
more intuitive interpretations of why less effort is required
when using a certain order compared to some other order.

III. METRICS FOR COMPUTATIONAL EFFORT

Algorithms are typically judged by their space- and time
complexity [28]. We propose two metrics: peak used BDD
nodes and BDD operation count to quantitatively express
the space- and time effort required for supervisor synthesis.
These metrics have some advantages over peak random
access memory and wall clock time: First, they are determin-
istic; performing a supervisor synthesis twice with the same
input and algorithm configuration will give the exact same
result. This determinism also holds when doing the synthesis
on two different platforms, even if one is a supercomputer
and the other is a personal computer. As a result, it becomes
easier to compare results from different publications. Second,
there is no overhead in the measurement, loaded-in Java
classes and other computer processes will not influence the
measurement. After introducing these BDD-based metrics,
an elaboration on their relation to the conventional metrics
will be given in Section III-C.

We distinguish complexity from effort. Complexity regards
classes of problems, and defines the generic trend of the



(space/time) resources a computation requires for inputs of
different sizes, often expressed using ‘Big O’ notation [29].
Effort specifies the amount of resources for one particular
computation, where the complete input is considered rather
than only its size. This input includes algorithm configuration
settings and, in our case, variable- and event order.

A. Peak used BDD nodes

Due to state space explosion [9], the space complexity is
a limiting factor when applying supervisor synthesis. During
supervisor synthesis, the number of BDD nodes that are used
to describe the system generally fluctuates. The space effort
can be measured by the peak number of BDD nodes used
during synthesis [12], [28]. Since Reduced Ordered BDDs
are used, which are minimal representations, the peak used
BDD nodes is the minimal amount of BDD nodes required
to represent the predicates to solve the synthesis problem.

In CIF, BDD nodes are stored in a hash table. Each new
node is allocated to an entry in the hash table. Once the
hash table reaches a certain fill rate, garbage collection is
employed to free no longer used entries. We only count the
used BDD nodes, i.e., hash table entries that still contain rele-
vant information for the BDDs that are still in use. Garbage
collection is performed by means of a standard mark-and-
sweep algorithm. Functions from the implementation of this
algorithm in the JavaBDD library2 are reused to count the
BDD nodes that are in use.

Peak used BDD nodes is a reproducible metric; Perform-
ing a supervisor synthesis twice with the same input yields
exactly the same peak used BDD nodes. For the example in
Section II-E, the peak used BDD nodes when applying edge
order e6; e5; e3 is 6 nodes, and for e6; e3; e5 it is 5 nodes.

B. BDD operation count

The time complexity can be expressed in the number of
steps/operations of an algorithm [28]. The time complexity
of performing operations on BDDs is dependent on the
number of nodes in the BDDs. For example, performing a
Boolean operation (a⊗ b) has a worst case time complexity
O(#a×#b), where #a denotes the number of nodes in BDD
a [30]. As the supervisory synthesis is done by perform-
ing operations on BDDs, we use BDD operation count to
express the time effort of performing supervisor synthesis.
Since BDD operations (such as and, or and not) are
implemented as functions that employ structural recursion
on BDD nodes, the number of invocations of such functions
can be used to express time effort. Since the functions are
deterministic, the results are reproducible.

Generally, these functions consist of three parts. First, a
few checks are made to see whether the requested calculation
is a terminal case. Second, if it is a non-terminal case, it is
checked whether the calculation has already been performed,
and is still in the cache. Note that we do not mean hardware
cache here, but a table actively storing results of previous
calculations. If both previous cases did not occur, the func-
tion performs recursive expansion over the child nodes. For

2The JavaBDD library is available at javabdd.sourceforge.net

more details about terminal cases, cache lookup and recursive
expansion over child nodes we refer to [31].

Checking whether there is a terminal case, or looking for
a solution in the cache requires relatively little computational
effort. Thus, the time effort is mainly influenced by the third
part of the algorithm, where actual operations are applied
to the BDD [31]. Therefore, we only increase the BDD
operation count each time we reach this part of the algorithm.

C. Relevance of metrics

In order to compare the BDD-based metrics to the conven-
tional metrics, we perform a number of supervisor syntheses
and extract these metrics. The data presented in this paper is
acquired by performing supervisor syntheses to the models
shown in Table I3. The models are selected to have a wide
range of model sizes. Table I shows the worst case state
space size of the uncontrolled plant for each model, which
is the product of all location and variable domain sizes.

TABLE I: Case study models

Name Worst case state space size
Robotic swarm aggregation [32] 1.0 · 100
Robotic swarm clustering [32] 1.0 · 100
Robotic swarm segregation [32] 6.4 · 101
Robotic swarm formation [32] 8.0 · 101
Power substation system [33] 2.1 · 1010
Advanced driver
assistance system [23] 3.4 · 109

Multi agent formation [34] 1.0 · 103
Ball sorting system [35] 7.4 · 104
Production cell [36] 7.5 · 108
FESTO production line [6] 1.3 · 1028
Waterway lock [22] 6.0 · 1032
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Fig. 3: Evolution of used BDD nodes during synthesis

For a supervisor synthesis of the Waterway lock model,
Figure 3 shows how the number of used BDD nodes evolves,
as BDD operations are performed during synthesis. Intuitive-
ly, the horizontal axis represents the ever-increasing number
of operations performed as time progresses, and the vertical
axis represents the fluctuating memory usage. The metrics

3Some models are readily available at github.com/magoorden/
T-AC2018, others can be extracted from the listed references

javabdd.sourceforge.net
github.com/magoorden/T-AC2018
github.com/magoorden/T-AC2018
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Fig. 4: BDD-based metrics against conventional metrics

presented in this paper are the maxima along both axes in this
plot; the peak used BDD nodes and the final BDD operation
count.

Figures 4a and 4b show how peak random access memory
and wall clock time relate to peak used BDD nodes and
BDD operation count. A supervisor was synthesized for each
model of Table I for 100 pairs of random variable- and event
orders. Note that the heuristic variable ordering algorithms
were turned on for this test. The measurements for random
access memory and wall clock time were done separately
from the measurements of the BDD-based metrics to avoid
them from interfering. It can be seen that for small models,
peak random access memory and wall clock time can not
indicate a difference in synthesis effort, as all results of the
small models are grouped around the same result ∼ (1 · 102

MiB, 2 · 102 ms). Influences like loaded-in Java classes for
the peak random access memory and reading the input- and
writing the output file for wall clock time dominate these
metrics. The BDD-based metrics enable a distinction in effort
for the actual synthesis part of the computation.

For larger computations, a linear relation is visible be-
tween wall clock time and BDD operation count. The thresh-
old at which this relation starts, and its slope, are dependent
on the used hardware. The scattering that is seen for larger
computations in Figure 4a is a result of the manner in which
the BDD space allocation takes place; When the current table
is full, it gets doubled in size, the new free entries in this table
will have an influence on the memory, but are not measured
when counting the used BDD nodes. Also, when performing
computations that require more memory, Java (Java Virtual
Machine) will perform garbage collection in the background

to free memory. For separate measurements this will happen
at different times, which impacts the peak random access
memory, not the amount of used BDD nodes.

An advantage of wall clock time and peak random access
memory is that a user performing supervisor synthesis is
more likely to be familiar with these metrics. It gives a better
idea whether their computer is able to perform the synthesis
in an acceptable amount of time given the available memory.

The advantage of using worst case state space size of the
uncontrolled system over BDD-based metrics to indicate the
synthesis effort, is that no supervisor synthesis or reachability
computations are required to calculate this number. Figures
4c and 4d show how this state space size relates to the BDD-
based metrics. There is some general trend of a larger state
space size suggesting more supervisor synthesis effort, but
due to the high variance it is not a very accurate indicator.

IV. IMPACT OF VARIABLE- AND EVENT ORDER ON
COMPUTATIONAL EFFORT

We have presented two metrics that indicate the compu-
tational effort of a single supervisor synthesis procedure.
These metrics are fairly easy to extract when performing
a computation. However, we have to take care when making
conclusions on this synthesis effort. The variable- and event
order as introduced in Section II have an influence on the
results. This can also be seen in Figure 4, where the results
are scattered due to using different variable- and event orders.
Recall that the BDD-based metrics are deterministic, re-
performing a synthesis with the same variable- and event
orders would provide the exact same result.
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Fig. 5: Supervisor synthesis effort for all combinations of
100 event- and 100 variable orders for each model

A. Extent of order influence

We investigate to what extent the initial variable order and
event order influence the supervisor synthesis effort. For each
of the models of Table I, a supervisor has been synthesized
for all combinations of 100 random event orders and 100
random initial variable orders. The effort of performing each
synthesis is shown in Figure 5. It can be seen that there are
major differences in computational effort by using different
orders. For the FESTO production line, the highest peak
used BDD nodes is 246 times larger than the lowest peak
used BDD nodes. For BDD operations this factor is 153.
This is purely a result of changing the variable- and event
orders; all other algorithm configurations were the same
for all measurements. The results are especially surprising
when considering that the heuristic variable order algorithms
described in Section II-D are being applied to the initial
variable order.

Figure 5 also shows that measuring both peak used BDD
nodes and BDD operation count is relevant. It would be
difficult to distinguish the computational effort between some
of the syntheses, if only one of the metrics was used. For
example, if we only measured the peak used BDD nodes,
we would not see much difference for the efforts of the Ball
sorting system and Multi agent formation. Additionally con-
sidering the BDD operation count enables us to differentiate
between the efforts.

Figure 6 shows the peak used BDD nodes for all syntheses
of the FESTO production line model. Darker squares indicate
a higher amount of peak used BDD nodes. All variable- and
event orders were given an index. A row shows the peak used
BDD nodes of all syntheses that were performed with the

Fig. 6: Peak used BDD nodes for all supervisor syntheses of
FESTO production line

same event order and varying variable orders, and a column
shows the same for a fixed variable order with varying event
orders. In Figure 6, we see rows and columns where the
elements are similarly colored, indicating that variable order
and event order both have a reasonable impact on the peak
used BDD nodes for this particular model. There are other
models where only the elements in columns are similarly
colored, indicating that the variable order mainly influences
their synthesis effort. We observe similar results for the BDD
operation count.

If we define the peak used BDD nodes for a certain model
as a deterministic function f(ov,i, oe,j), where ov,i is the
i′th sample random variable order and oe,j the j′th sample
random event order, the global sample mean [37] of the peak
used BDD nodes µG(f) is given by Equation 1.

µG(f) =
1

N ·M

N∑
i=1

M∑
j=1

f(ov,i, oe,j) (1)

where N and M respectively are the total number of sampled
variable- and event orders. For our experiment, N = M =
100 for each model.

The global (unbiased) sample variance [37] of the peak
used BDD nodes σ2

G(f) is given by Equation 2.

σ2
G(f) =

1

N ·M − 1

N∑
i=1

M∑
j=1

(
f(ov,i, oe,j)− µG(f)

)2
(2)

The sample variance σ2
v,i(f) of the peak used BDD nodes

for the event orders tested with a particular variable order
ov,i, is given by Equation 3.

σ2
v,i(f) =

1

M − 1

M∑
j=1

(
f(ov,i, oe,j)− µv,i(f)

)2
(3)

where µv,i(f) = 1
M

∑M
j=1 f(ov,i, oe,j) is the mean peak

used BDD nodes of the event orders tested with variable



TABLE II: Sample means and variances of all models

Name µG(f) σ2
G(f) σ2

v(f) σ2
e(f) µG(g) σ2

G(g) σ2
v(g) σ2

e(g)
Robotic swarm aggregation 1.4 · 102 1.3 · 102 3.9 · 101 4.0 · 10−2 4.1 · 102 1.1 · 103 9.9 · 101 1.2 · 103
Robotic swarm clustering 4.8 · 102 9.2 · 102 3.1 · 102 1.3 · 100 1.8 · 103 1.5 · 104 7.0 · 102 1.5 · 104
Robotic swarm segregation 8.1 · 102 3.5 · 103 4.1 · 102 4.9 · 105 1.4 · 104 2.9 · 106 3.4 · 103 2.7 · 106
Robotic swarm formation 2.6 · 103 6.5 · 104 8.2 · 103 8.1 · 106 3.3 · 104 3.3 · 107 6.1 · 104 2.8 · 107
Power substation system 8.4 · 103 5.8 · 104 2.0 · 104 4.7 · 107 1.3 · 105 6.6 · 107 4.8 · 104 3.6 · 107
Advanced driver
assistance system 7.9 · 103 1.4 · 106 6.6 · 105 1.2 · 1010 3.1 · 105 1.6 · 1010 9.4 · 105 7.6 · 109

Multi agent formation 2.6 · 104 2.4 · 107 6.8 · 101 7.4 · 109 1.2 · 106 2.1 · 1011 2.5 · 107 2.1 · 1011
Ball sorting system 1.7 · 104 1.9 · 107 2.3 · 105 1.5 · 1013 1.8 · 107 2.5 · 1014 1.9 · 107 2.4 · 1014
Production cell 5.2 · 104 8.8 · 108 4.2 · 105 2.6 · 1014 1.4 · 108 1.0 · 1016 8.8 · 108 1.0 · 1016
FESTO production line 6.2 · 105 4.8 · 1011 3.8 · 1011 4.6 · 1015 9.0 · 107 6.3 · 1015 3.4 · 1011 4.2 · 1015
Waterway lock 7.6 · 105 4.0 · 1011 2.6 · 1011 1.0 · 1017 6.8 · 108 1.9 · 1017 2.8 · 1011 1.3 · 1017

order ov,i. The mean sample variance for fixed variable
orders σ2

v(f) is computed by Equation 4.

σ2
v(f) =

1

N

N∑
i=1

σ2
v,i(f) (4)

Equations 3 and 4 can analogously be applied to compute
the sample variance of peak used BDD nodes for variable
orders tested with particular event orders σ2

e,j(f), and the
mean sample variance for fixed event orders σ2

e(f). Likewise,
we can define a function g(ov,i, oe,j) for the BDD operation
count of a model and apply above computations to this.

When relating these characteristics to what we see in
Figure 6, a low mean sample variance for fixed variable
orders σ2

v(f) would indicate a similar amount of peak used
BDD nodes for a given variable order. This would be visible
in Figure 6, as elements located in the same column would
be similarly colored. This would indicate that the variable
order mainly influences the peak used BDD nodes, and the
event order has little influence.

For each model, the global sample mean µG, global
sample variance σ2

G, mean sample variance for fixed variable
orders σ2

v and mean sample variance for fixed event orders σ2
e

are given for peak used BDD nodes (f) and BDD operation
count (g) in Table II. For most of the models, the mean
sample variance for fixed variable orders is smaller than the
mean sample variance for fixed event orders. This indicates
that the variable order has a larger influence on the supervisor
synthesis effort than the event order. However, the mean
variance for fixed variable orders is large enough that the
event order is still of considerable influence to the supervisor
synthesis effort.

Models that require a relatively large amount of supervisor
synthesis effort, also have a relatively large variance in
effort. This would also be observed if we were to normalize
the variance to the mean values of the models (σ2/µ).
This indicates that applying a good variable- and event
order becomes more beneficial when considering models that
require more supervisor synthesis effort.

V. CONCLUSIONS

We have introduced peak used BDD nodes and BDD
operation count as metrics that express computational effort
of BDD-based supervisor synthesis of EFA. Unlike wall
clock time and peak random access memory, the BDD-based
metrics are platform independent, deterministic and include
no overhead in their measurements. It has been shown that
worst case state space size is not an effective indicator for
supervisor synthesis effort.

We have shown why and how variable- and event orders
influence the supervisor synthesis effort. We performed su-
pervisor synthesis using a large set of random variable- and
event orders on 11 models of different sizes. This experiment
has shown that the choice of variable- and event orders can
influence the supervisor synthesis effort by multiple orders
of magnitude. The variable order has a larger impact on the
supervisor synthesis effort than the event order, but both
influences are considerable. The influence of the variable-
and event orders increases when considering models that
require more supervisor synthesis effort.

Because the BDD-based metrics allow for effective in-
dication of effort for small-scale models, the research can
be continued by investigating whether conclusions made
by applying certain modeling- or abstraction techniques on
small-scale models convert well when implementing them
on large-scale models. If this is the case, the BDD-metrics
can be used on toy examples to investigate these techniques,
instead of being constrained to using large-scale examples.

The current variable reordering algorithms leave some
room for improvement. Different methods are to be re-
searched. The metrics presented in the paper can be used for
this, as it allows for more precise performance comparisons
and comparisons on small-scale models. The same holds for
finding some heuristic ordering algorithm for the events. The
lower granularity orders as presented in this paper, i.e., model
variable- and event order instead of Boolean variable- and
edge order, can be used to more easily create an intuition on
distinguishing good orders from bad orders.

The modeling tool Supremica has a BDD-based supervisor
synthesis algorithm for EFA that is similar to CIF’s. It can
be researched whether the conclusions made in this paper,



based on experiments in CIF, also apply to Supremica. It
would be interesting to know which of these tools is able to
synthesize supervisors with less effort.
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