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Abstract
In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing
constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used
in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that
all timing constraints are met. The decision version of the problem, which is to check whether
the deadline constraints of tasks can be satisfied on a given number of identical processors, has
been known NP-complete in the strong sense. Several studies on this problem are based on
approximations involving resource augmentation, i.e., speeding up individual processors. This
paper studies another type of resource augmentation by allocating additional processors, a topic
that has not been explored until recently. We provide polynomial-time algorithms and analysis,
in which the approximation factors are dependent upon the input instances. Specifically, the
factors are related to the maximum ratio of the period to the relative deadline of a task in the
given task set. We also show that these algorithms unfortunately cannot achieve a constant
approximation factor for general cases. Furthermore, we prove that the problem does not admit
any asymptotic polynomial-time approximation scheme (APTAS) unless P = NP when the task
set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of
the task.
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1 Introduction

The sporadic task model has been widely adopted to model recurring executions of tasks in
real-time systems [28]. A sporadic real-time task τi is defined with a minimum inter-arrival
time Ti, its timing constraint or relative deadline Di, and its (worst-case) execution time
Ci. A sporadic task represents an infinite sequence of task instances, also called jobs, that
arrive with the minimum inter-arrival time constraint. That is, any two consecutive jobs of
task τi should be temporally separated by at least Ti. When a job of task τi arrives at time
t, the job must finish no later than its absolute deadline t+Di. According to the Liu and
Layland task model [27], the minimum inter-arrival time of a task can also be interpreted as
the period of the task.

To schedule real-time tasks on multiprocessor platforms, there have been three widely
adopted paradigms: partitioned, global, and semi-partitioned scheduling. A comprehensive
survey of multiprocessor scheduling in real-time systems can be found in [15]. In this paper,
we consider partitioned scheduling, in which tasks are statically partitioned onto processors.
This means that all the jobs of a task are executed on a specific processor, which reduces the
online scheduling overhead since each processor can schedule the sporadic tasks assigned on
it without considering the tasks on the other processors. Moreover, we consider preemptive
scheduling on each processor, i.e, a job may be preempted by another job on the processor.
For scheduling sporadic tasks on one processor, the (preemptive) earliest-deadline-first (EDF)
policy is optimal [27] in terms of meeting timing constraints, in the sense that if the task set
is schedulable then it will also be schedulable under EDF. In EDF, the job (in the ready
queue) with the earliest absolute deadline has the highest priority for execution. Alternatively,
another widely adopted scheduling paradigm is (preemptive) fixed-priority (FP) scheduling,
where all jobs released by a sporadic task have the same priority level.

The complexity of testing whether a task set can be feasibly scheduled on a uniprocessor
depends on the relations between the relative deadlines and the minimum inter-arrival times
of tasks. An input task set is said to have (1) implicit deadlines if the relative deadlines of
sporadic tasks are equal to their minimum inter-arrival times, (2) constrained deadlines if
the minimum inter-arrival times are no less than their relative deadlines, and (3) arbitrary
deadlines, otherwise.

On a uniprocessor, checking the feasibility for an implicit-deadline task set is simple
and well-known: the timing constraints are met by EDF if and only if the total utilization∑
τi∈T

Ci

Ti
is at most 100% [27]. Moreover, if every task τi on the processor is with Di ≥ Ti, it

is not difficult to see that testing whether the total utilization is less than or equal to 100% is
also a necessary and sufficient schedulability test. This can be achieved by considering a more
stringent case which sets Di to Ti for every τi. Hence, this special case of arbitrary-deadline
task sets can be reformulated to task sets with implicit deadlines without any loss of precision.
However, determining the schedulability for task sets with constrained or arbitrary deadlines
in general is much harder, due to the complex interactions between the deadlines and the
periods, and in particular is known to be coNP -hard or coNP -complete [17, 19, 18].

In this paper, we consider partitioned scheduling in homogeneous multiprocessor systems.
Deciding if an implicit-deadline task set is schedulable on multiple processors is already NP-
complete in the strong sense under partitioned scheduling. To cope with these NP-hardness
issues, one natural approach is to focus on approximation algorithms, i.e., polynomial time
algorithms that produce an approximate solution instead of an exact one. In our setting,
this translates to designing algorithms that can find a feasible schedule using either (i) faster
or (ii) additional processors. The goal, of course, is to design an algorithm that uses the
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least speeding up or as few additional processors as possible. In general, this approach
is referred to as resource augmentation and is used extensively to analyze and compare
scheduling algorithms. See for example [29] for a survey and motivation on why this is a
useful measure for evaluating the quality of scheduling algorithms in practice. However,
such a measure also has its potential pitfalls as recently studied and reported by Chen et al.
[12]. Interestingly, it turns out that there is a huge difference regarding the approximation
factors depending on whether it is possible to increase the processor speed or the number
of processors. As already discussed in [11], approximation by speeding up is known as the
multiprocessor partitioned scheduling problem, and by allocating more processors is known as
the multiprocessor partitioned packing problem. We study the latter one in this paper.

Formally, an algorithm A for the multiprocessor partitioned packing problem is said to
have an approximation factor ρ, if given any task set T, it can find a feasible partition of T
on ρM∗ processors, where M∗ is the minimum (optimal) number of processors required to
schedule T. However, it turns out that the approximation factor is not the best measure
in our setting (it is not fine-grained enough). For example, it is NP-complete to decide
if an implicit-deadline task set is schedulable on 2 processors or whether 3 processors are
necessary. Assuming P 6= NP, this rules out the possibility of any efficient algorithm with
approximation factor better than 3/2, as shown in [11]. (This lower bound is further lifted
to 2 for sporadic tasks in Section 5.) The problem with this example is that it does not
rule out the possibility of an algorithm that only needs M∗ + 1 processors. Clearly, such an
algorithm is almost as good as optimum when M∗ is large and would be very desirable.1
To get around this issue, a more refined measure is the so-called asymptotic approximation
factor. An algorithm A has an asymptotic approximation factor ρ if we can find a schedule
using at most ρM∗ + α processors, where α is a constant that does not depend on M∗. An
algorithm is called an asymptotic polynomial-time approximation scheme (APTAS) if, given
an arbitrary accuracy parameter ε > 0 as input, it finds a schedule using (1 + ε)M∗ +O(1)
processors and its running time is polynomial assuming ε is a fixed constant.

For implicit-deadline task sets, the multiprocessor partitioned scheduling problem, by
speeding up, is equivalent to the Makespan problem [21], and the multiprocessor partitioned
packing problem, by allocating more processors, is equivalent to the bin packing problem
[20]. The Makespan problem admits polynomial-time approximation schemes (PTASes), by
Hochbaum and Shmoys [22], and the bin packing problem admits asymptotic polynomial-time
approximation schemes (APTASes), by de la Vega and Lueker [16, 25].

When considering sporadic task sets with constrained or arbitrary deadlines, the problem
becomes more complicated. When adopting speeding-up for resource augmentation, the
deadline-monotonic partitioning proposed by Baruah and Fisher [3, 4] has been shown to
have a 3− 1

M speed-up factor in [10], where M is the given number of identical processors.
The studies in [2, 11, 1] provide polynomial-time approximation schemes for some special
cases when speeding-up is possible. The PTAS by Baruah [2] requires that Dmax

Dmin
, Cmax
Cmin

, Tmax
Tmin

are constants, where Dmax (Cmax and Tmax, respectively) is the maximum relative deadline
(worst-case execution time and period, respectively) in the task set and Dmin (Cmin and
Tmin, respectively) is the minimum relative deadline (worst-case execution time and period,
respectively) in the task set. It was later shown in [11, 1] that the complexity only depends
on Dmax

Dmin
. If Dmax

Dmin
is a constant, there exists a PTAS developed by Chen and Chakraborty [11],

which admits feasible task partitioning by speeding up the processors by (1 + ε). The

1 Indeed, there are (very ingenious) algorithms known for the implicit-deadline partitioning problem that
use only M∗ +O(log2 M∗) processors [25], based on the connection to the bin-packing problem.

ISAAC 2018
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Table 1 Summary of the multiprocessor partitioned scheduling and packing problems, unless
P = NP, where γ = maxτi∈T

Ci
min{Ti,Di}

, λ = maxτi∈T max{ Ti
Di
, 1}, and Dmax (Dmin) is the task

set’s maximum (minimum) relative deadline. A ] marks results from this paper.

implicit deadlines constrained deadlines arbitrary deadlines arbitrary deadlines (dependent on
Dmax
Dmin

)
partitioned EDF PTAS [22] 2.6322-speed up [10] 3-speed up [10] PTAS [11] for constant Dmax

Dmin

scheduling qPTAS [1] for polynomial Dmax
Dmin

partitioned FP 7
4 [6], 1.5 [26] 2.84306 speed-up [8] 3-speed up[8]

scheduling (extended from packing)

partitioned packing APTAS [16] non-existence of APTAS] non-existence of APTAS [11]
2λ-approximation], asymptotic 2

1−γ -approximation], non-existence of (2− ε)-approximation]

approach in [11] deals with the multiprocessor partitioned scheduling problem as a vector
scheduling problem [7] by constructing (roughly) (1/ε) log Dmax

Dmin
dimensions and then applies

the PTAS of the vector scheduling problem developed by Chekuri and Khanna [7] in a
black-box manner. Bansal et al. [1] exploit the special structure of the vectors and give a
faster vector scheduling algorithm that is a quasi-polynomial-time approximation scheme
(qPTAS) even if Dmax

Dmin
is polynomially bounded.

However, augmentation by allocating additional processors, i.e., the multiprocessor
partitioned packing problem, has not been explored until recently in real-time systems.
Our previous work in [11] has initiated the study for minimizing the number of processors
for real-time tasks. While [11] mostly focuses on approximation algorithms for resource
augmentation via speeding up, it also showed that for the multiprocessor partitioned packing
problem there does not exist any APTAS for arbitrary-deadline task sets, unless P = NP.
However, the proof in [11] for the non-existence of APTAS only works when the input task
set T has exactly two types of tasks in which one type consists of tasks with relative deadline
less than or equal to its period (i.e., Di ≤ Ti for some τi in T) and another type consists of
tasks with relative deadline larger than its period (i.e., Dj > Tj for some τj in T). Therefore,
it cannot be directly applied for constrained-deadline task sets.

For the results, from the literature and also this paper, related to the multiprocessor
partitioned scheduling and packing problems, Table 1 provides a short summary.

Our Contributions. This paper studies the multiprocessor partitioned packing problem in
much more detail. On the positive side, when the ratio of the period of a constrained-deadline
task to the relative deadline of the task is at most λ = maxτi∈T max{ Ti

Di
, 1}, in Section 3, we

provide a simple polynomial-time algorithm with a 2λ-approximation factor. In Section 4,
we show that the deadline-monotonic partitioning algorithm in [3, 4] has an asymptotic

2
1−γ -approximation factor for the packing problem, where γ = maxτi∈T

Ci

min{Ti,Di} . In
particular, when γ and λ are not constant, adopting the worst-fit or best-fit strategy in the
deadline-monotonic partitioning algorithm is shown to have an Ω(N) approximation factor,
where N is the number of tasks. In contrast, from [10], it is known that both strategies have
a speed-up factor 3, when the resource augmentation is to speed up processors. We also show
that speeding up processors can be much more powerful than allocating more processors.
Specifically, in Section 5, we provide input instances, in which the only feasible schedule is to
run each task on an individual processor but the system requires only one processor with a
speed-up factor of (1 + ε), where 0 < ε < 1.

On the negative side, in Section 6, we show that there does not exist any asymptotic
polynomial-time approximation scheme (APTAS) for the multiprocessor partitioned packing
problem for task sets with constrained deadlines, unless P = NP. As there is already an
APTAS for the implicit deadline case, this together with the result in [11] gives a complete
picture of the approximability of multiprocessor partitioned packing for different types of
task sets, as shown in Table 1.
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2 System Model

2.1 Task and Platform Model
We consider a set T = {τ1, τ2, . . . , τN} of N independent sporadic real-time tasks. Each of
these tasks releases an infinite number of task instances, called jobs. A task τi is defined by
(Ci, Ti, Di), where Di is its relative deadline, Ti is its minimum inter-arrival time (period),
and Ci is its (worst-case) execution time. For a job released at time t, the next job must
be released no earlier than t+ Ti and it must finish (up to) Ci amount of execution before
the jobs absolute deadline at t+Di. The utilization of task τi is denoted by ui = Ci

Ti
. We

consider platforms with identical processors, i.e., the execution and timing property remains
no matter which processor a task is assigned to. According to the relations of the relative
deadlines and the minimum inter-arrival times of the tasks in T, the task set can be identified
to be with (1) implicit deadlines, i.e., Di = Ti ∀τi, (2) constrained deadlines, i.e., Di ≤ Ti ∀τi,
or (3) arbitrary deadlines, otherwise. The cardinality of a set X is denoted by |X|.

In this paper we focus on partitioned scheduling, i.e., each task is statically assigned
to a fixed processor and all jobs of the task is executed on the assigned processor. On
each processor, the jobs related to the tasks allocated to that processor are scheduled using
preemptive earliest deadline first (EDF) scheduling. This means that at each point the job
with the shortest absolute deadline is executed, and if a new job with a shorter absolute
deadline arrives the currently executed job is preempted and the new arriving job starts
executing. A task set can be feasibly scheduled by EDF (or EDF is a feasible schedule) on a
processor if the timing constraints can be fulfilled by using EDF.

2.2 Problem Definition
Given a task set T, a feasible task partition on M identical processors is a collection of M
subsets, denoted T1,T2, . . . ,TM , such that

Tj ∩Tj′ = ∅ for all j 6= j′,
∪Mj=1Tj is equal to the input task set T, and
set Tj can meet the timing constraints by EDF scheduling on a processor j.

I Definition 1. The multiprocessor partitioned packing problem: The objective is to find a
feasible task partition on M identical processors with the minimum M .

We assume that ui ≤ 100% and Ci

Di
≤ 100% for any task τi since otherwise there cannot

be a feasible partition.

2.3 Demand Bound Function
This paper focuses on the case where the arrival times of the sporadic tasks are not specified,
i.e., they arrive according to their interarrival constraint and not according to a pre-defined
pattern. Baruah et al. [5] have shown that in this case the worst-case pattern is to release
the first job of tasks synchronously (say, at time 0 for notational brevity), and all subsequent
jobs as early as possible. Therefore, as shown in [5], the demand bound function dbf(τi, t) of
a task τi that specifies the maximum demand of task τi to be released and finished within
any time interval with length t is defined as

dbf(τi, t) = max
{

0,
⌊
t−Di

Ti

⌋
+ 1
}
× Ci. (1)

ISAAC 2018
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The exact schedulability test of EDF, to verify whether EDF can feasibly schedule the given
task set on a processor, is to check whether the summation of the demand bound functions
of all the tasks is always less than t for all t ≥ 0 [5].

3 Reduction to Bin Packing

When considering tasks with implicit deadlines, the multiprocessor partitioned packing
problem is equivalent to the bin packing problem [20]. Therefore, even though the packing
becomes more complicated when considering tasks with arbitrary or constrained deadlines,
it is pretty straightforward to handle the problem by using existing algorithms for the bin
packing problem if the maximum ratio λ of the period to the relative deadline among the
tasks, i.e., λ = maxτi∈T max{ Ti

Di
, 1}, is not too large.

For a given task set T, we can basically transform the input instance to a related task
instance T† by creating task τ †i based on task τi in T such that

T †i is Di, C†i is Ci, and D†i is Di when Ti ≥ Di for τi, and
D†i is T †i , C

†
i is Ci and T †i is Ti when Ti < Di for τi.

Now, we can adopt any greedy fitting algorithms (i.e., a task is assigned to “one” allocated
processor that is feasible; otherwise, a new processor is allocated and the task is assigned to
the newly allocated processor) for the bin packing problem by considering only the utilization
of transformed tasks in T† for the multiprocessor partitioned packing problem, as presented
in [30, Chapter 8]. The construction of T† has a time complexity of O(N), and the greedy
fitting algorithm has a time complexity of O(NM).

I Theorem 2. Any greedy fitting algorithm by considering T† for task assignment is a
2λ-approximation algorithm for the multiprocessor partitioned packing problem.

Proof. Clearly, as we only reduce the relative deadline and the periods, the timing parameters
in T† are more stringent than in T. Hence, a feasible task partition for T† on M processors
also yields a corresponding feasible task partition for T on M processors. As T† has implicit
deadlines, we know that any task subset in T† with total utilization no more than 100% can
be feasibly scheduled by EDF on a processor, and therefore the original tasks in that subset
as well. For any greedy fitting algorithms that use M processors, using the same proof as in
[30, Chapter 8], we get

∑
τi∈T†

C†
i

T †
i

> M
2 .

By definition, we know that
∑
τi∈T

Ci

Ti
≥
∑
τ†

i
∈T†

C†
i

λT †
i

> M
2λ . Therefore, any feasible

solution for T uses at least M
2λ processors and the approximation factor is hence proved. J

4 Deadline-Monotonic Partitioning under EDF Scheduling

This section presents the worst-case analysis of the deadline-monotonic partitioning strategy,
proposed by Baruah and Fisher [4, 3], for the multiprocessor partitioned packing problem.
Note that the underlying scheduling algorithm is EDF but the tasks are considered in the
deadline-monotonic (DM) order. Hence, in this section, we index the tasks accordingly from
the shortest relative deadline to the longest, i.e., Di ≤ Dj if i < j. Specifically, in the DM
partitioning, the approximate demand bound function dbf∗(τi, t) is used to approximate
Eq. (1), where

dbf∗(τi, t) =
{

0 if t < Di(
t−Di

Ti
+ 1
)
Ci otherwise. (2)
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Algorithm 1 Deadline-Monotonic Partitioning.
Input: set T of N tasks;

1: re-index (sort) tasks such that Di ≤ Dj for i < j;
2: M ← 1, T1 ← {τ1};
3: for i = 2 to N do
4: if ∃m ∈ {1, 2, . . . ,M} such that both (3) and (4) hold then
5: choose m ∈ {1, 2, . . . ,M} by preference such that both (3) and (4) hold;
6: assign τi to processor m with Tm ← Tm ∪ {τi};
7: else
8: M ←M + 1; TM ← {τi};
9: end if

10: end for
11: return feasible task partition T1,T2, . . . ,TM ;

Even though the DM partitioning algorithm in [4, 3] is designed for the multiprocessor
partitioned scheduling problem, it can be easily adapted to deal with the multiprocessor
partitioned packing problem. For completeness, we revise the algorithm in [4, 3] for the
multiprocessor partitioned packing problem and present the pseudo-code in Algorithm 1. As
discussed in [4, 3], when a task τi is considered, a processor m among the allocated processors
where both the following conditions hold

Ci +
∑

τj∈Tm

dbf∗(τj , Di) ≤ Di (3)

ui +
∑

τj∈Tm

uj ≤ 1 (4)

is selected to assign task τi, where Tm is the set of the tasks (as a subset of {τ1, τ2, . . . , τi−1}),
which have been assigned to processor m before considering τi. If there is no m where both
Eq. (3) and Eq. (4) hold, a new processor is allocated and task τi is assigned to the new
processor. The order in which the already allocated processors are considered depends on
the fitting strategy:

first-fit (FF) strategy: choosing the feasible m with the minimum index;
best-fit (BF) strategy: choosing, among the feasible processors, m with the maximum
approximate demand bound at time Di;
worst-fit (WF) strategy: choosing m with the minimum approximate demand bound at
time Di.

For a given number of processors, it has been proved in [10] that the speed-up factor of the
DM partitioning is at most 3, independent from the fitting strategy. However, if the objective
is to minimize the number of allocated processors, we will show that DM partitioning has an
approximation factor of at least N

4 (in the worst case) when the best-fit or worst-fit strategy
is adopted. We will prove this by explicitly constructing two concrete task sets with this
property. Afterwards, we show that the asymptotic approximation factor of DM partitioning
is at most 2

1−γ for packing, where γ = maxτi∈T
Ci

min{Ti,Di} .

I Theorem 3. The approximation factor of the deadline-monotonic partitioning algorithm
with the best-fit strategy is at least N

4 when N ≥ 8 and the schedulability test is based on
Eq. (3) and Eq. (4).

ISAAC 2018
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Proof. The theorem is proven by providing a task set that can be scheduled on two processors
but where Algorithm 1 when applying the best-fit strategy uses N

2 processors. Under the
assumption that K ≥ 4 is an integer, N is 2K, and H is sufficiently large, i.e., H � KK ,
such a task set can be constructed as:

Let D1 = 1, C1 = 1/K, and T1 = H.
For i = 2, 4, . . . , 2K, let Di = K

i
2−1, Ci = K

i
2−2, and Ti = Di.

For i = 3, 5, . . . , 2K − 1, let Di = K
i−1

2 , Ci = K
i−1

2 −K i−1
2 −1, and Ti = H.

The task set can be scheduled on two processors under EDF if all tasks with an odd index
are assigned to processor 1 and all tasks with an even index are assigned to processor 2. On
the other hand, the best-fit strategy assigns τi to processor

⌈
i
2
⌉
. The resulting solution uses

K processors. Details are in the Appendix in [9]. J

I Theorem 4. The approximation factor of the deadline-monotonic partitioning algo-
rithm with the worst-fit strategy is at least N

4 when the schedulability test is based on
Eq. (3) and Eq. (4).

Proof. The proof is very similar to the proof of Theorem 3, considering the task set:
Let D1 = 1, C1 = 1, and T1 = H.
For i = 2, 4, . . . , 2K, let Di = K

i
2 , Ci = K

i
2−1, and Ti = Di.

For i = 3, 5, . . . , 2K − 1, let Di = K
i−1

2 , Ci = K
i−1

2 −K i−1
2 −1, and Ti = H.

Odd tasks are assigned to processor 1 and even tasks to processor 2 the task set is schedulable
while τi is assigned to processor

⌈
i
2
⌉
using the worst-fit strategy. Details are in the Appendix

in [9]. J

I Theorem 5. The DM partitioning algorithm is an asymptotic 2
1−γ -approximation algorithm

for the multiprocessor partitioned packing problem, when γ = maxτi∈T
Ci

min{Ti,Di} and γ < 1.

Proof. We consider the task τl which is the task that is responsible for the last processor
that is allocated by Algorithm 1. The other processors are categorized into two disjoint sets
M1 and M2, depending on whether Eq. (3) or Eq. (4) is violated when Algorithm 1 tries to
assign τl (if both conditions are violated, the processor is in M1). The two sets are considered
individually and the maximum number of processors in both sets is determined based on
the minimum utilization for each of the processors. Afterwards, a necessary condition for
the amount of processors that is at least needed for a feasible solution is provided and the
relation between the two values proves the theorem. Details can be found in the Appendix
in [9]. J

5 Hardness of Approximations

It has been shown in [11, 2] that a PTAS exists for augmenting the resources by speeding up.
A straightforward question is to see whether such PTASes will be helpful for bounding the
lower or upper bounds for multiprocessor partitioned packing. Unfortunately, the following
theorem shows that using speeding up to get a lower bound for the number of required
processors is not useful.

I Theorem 6. There exists a set of input instances, in which the number of allocated
processors is up to N , while the task set can be feasibly scheduled by EDF with a speed-up
factor (1 + ε) on a processor, where 0 < ε < 1.

Proof. We provide a set of input instances, with the property described in the statement:
Let D1 = 1, C1 = 1, and T1 = (1+ε)N−2

εN−1 .
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For any i = 2, 3, . . . , N , let Di = (1+ε)i−2

εi−1 , Ci = Di, and Ti = (1+ε)N−2

εN−1 .
Since Ci = Di for any task τi, assigning any two tasks on the same processor is infeasible
without speeding up. Therefore, the only feasible processor allocation is N processors and to
assign each task individually on one processor. However, by speeding up the system by a
factor 1 + ε, the tasks can be feasibly scheduled on one processor due to

∑N
i=1

dbf(τi,t)
1+ε ≤ t

for any t > 0. A proof is in the Appendix in [9]. Hence, the gap between these two types of
resource augmentation is up to N . J

Moreover, the following theorem shows the inapproximability for a factor 2 without
adopting asymptotic approximation.

I Theorem 7. For any ε > 0, there is no polynomial-time approximation algorithm with
an approximation factor of 2− ε for the multiprocessor partitioned packing problem, unless
P = NP.

Proof. Suppose that there exists such a polynomial-time algorithm A with approximation
factor 2− ε. A can be used to decide if a task set T is schedulable on a uniprocessor, which
would contradict the coNP-hardness [17] of this problem. Indeed, we simply run A on
the input instance. If A returns a feasible schedule using one processor, we already have a
uniprocessor schedule. On the other hand, if A requires at least two processors, then we
know that any optimum solution needs ≥

⌈
2

2−ε

⌉
= 2 processors, implying that the task set

T is not schedulable on a uniprocessor. J

6 Non-Existence of APTAS for Constrained Deadlines

We now show that there is no APTAS when considering constrained-deadline task sets, unless
P = NP. The proof is based on an L-reduction (informally an approximation preserving
reduction) from a special case of the vector packing problem, i.e., the 2D dominated vector
packing problem.

6.1 The 2D Dominated Vector Packing Problem
The vector packing problem is defined as follows:

I Definition 8. The vector packing problem: Given a set V of vectors [v1, v2, . . . , vN ] with
d dimensions, in which 1 ≥ vi,j ≥ 0 is the value for vector vi in the j-th dimension, the
problem is to partition V into M parts V1, . . . ,VM such that M is minimized and each
part Vm is feasible in the sense that

∑
vi∈Vm

vi,j ≤ 1 for all 1 ≤ j ≤ d. That is, for each
dimension j, the sum of the j-th coordinates of the vectors in Vm is at most 1.

We say that a subset V′ of V can be feasibly packed in a bin if
∑
vi∈V′ vi,j ≤ 1 for all

j-th dimensions. Note that for d = 1 this is precisely the bin-packing problem. The vector
packing problem does not admit any polynomial-time asymptotic approximation scheme
even in the case of d = 2 dimensions, unless P = NP [31].

Specifically, the proof in [11] for the non-existence of APTAS for task sets with arbitrary
deadlines comes from an L-reduction from the 2-dimensional vector packing problem as
follows: For a vector vi in V, a task τi is created with Di = 1, Ci = vi,2, and Ti = vi,2

vi,1
.

However, a trivial extension from [11] to constrained deadlines does not work, since for the
transformation of the task set we need to assume that vi,1 ≤ vi,2 for any vi ∈ V so that
Ti ≥ 1 = Di for every reduced task τi. This becomes problematic, as one dimension in
the vectors in such input instances for the two-dimensional vector packing problem can be
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totally ignored, and the input instance becomes a special case equivalent to the traditional
bin-packing problem, which admits an APTAS. We will show that the hardness is equivalent
to a special case of the two-dimensional vector packing problem, called the two-dimensional
dominated vector packing (2D-DVP) problem, in Section 6.2.

I Definition 9. The two-dimensional dominated vector packing (2D-DVP) problem is a
special case of the two-dimensional vector packing problem with following conditions for each
vector vi ∈ V:

vi,1 > 0, and
if vi,2 6= 0, then vi,1 is dominated by vi,2, i.e., vi,2 > vi,1.

Moreover, we further assume that vi,1 and vi,2 are rational numbers for every vi ∈ V.

Here, some tasks are created with implicit deadlines (based on vector vi if vi,2 is 0) and
some tasks with strictly constrained deadlines (based on vector vi if vi,2 is not 0). However,
the 2D-DVP problem is a special case of the two-dimensional vector packing problem, and
the implication for vi,2 > vi,1 when vi,2 6= 0 does not hold in the proof in [31]. We note, that
the proof for the non-existence of an APTAS for the two-dimensional vector packing problem
in [31] is erroneous. However, the result still holds. Details are in the Appendix in [9].
Therefore, we will provide a proper L-reduction in Section 6.3 to show the non-existence
of APTAS for the multiprocessor partitioned packing problem for tasks with constrained
deadlines.

6.2 2D-DVP Problem and Packing Problem

We now show that the packing problem is at least as hard as the 2D-DVP problem from a
complexity point of view. For vector vi with vi,2 > vi,1, we create a corresponding task τi
with

Di = 1, Ci = vi,2, Ti = vi,2
vi,1

.

Clearly, Di < Ti for such tasks. Let H be a common multiple, not necessary the least, of
the periods Ti of the tasks constructed above. By the assumption that all the values in the
2D-DVP problem are rational numbers and vi,1 > 0 for every vector vi, we know that H
exists and can be calculated in O(N). For vector vi with vi,2 = 0, we create a corresponding
implicit-deadline task τi with

Ti = Di = H, Ci = vi,1Ti.

The following lemma shows the related schedulability condition.

I Lemma 10. Suppose that the set Tm of tasks assigned on a processor consists of (1)
strictly constrained-deadline tasks, denoted by T<

m, with a common relative deadline 1 = D

and (2) implicit-deadline tasks, i.e., Tm \ T<
m, in which the period is a common integer

multiple H of the periods of the strictly constrained-deadline tasks. EDF schedule is feasible
for the set Tm of tasks on a processor if and only if∑

τi∈T<
m

Ci ≤ 1 and
∑
τi∈Tm

ui ≤ 1.
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Proof.
Only If. This is straightforward as the task set cannot meet the timing constraint when∑

τi∈T<
m

Ci

D > 1 or
∑
τi∈Tm

ui > 1.
If. If

∑
τi∈T<

m

Ci

D ≤ 1 and
∑
τi∈Tm

ui ≤ 1, we know that when t < D, then
∑
τi∈Tm

dbf(τi, t)
= 0. When D ≤ t < H, we have∑

τi∈Tm

dbf(τi, t) =
∑

τi∈T<
m

(⌊
t−D
Ti

⌋
+ 1
)
× Ci ≤

∑
τi∈T<

m

(
t−D
Ti

+ 1
)
× Ci

≤
∑

τi∈T<
m

Ci + (t−D)ui ≤ D + (t−D) = t. (5)

Moreover, with
∑
τi∈Tm

ui ≤ 1, we know that when t = H∑
τi∈Tm

dbf(τi, H) =
∑

τi∈T<
m

(⌊
H −D
Ti

⌋
+ 1
)
× Ci +

∑
τi∈Tm\T<

m

H

Ti
Ci

=1
∑

τi∈T<
m

H

Ti
Ci +

∑
τi∈Tm\T<

m

H

Ti
Ci = H

( ∑
τi∈Tm

ui

)
≤ H,

where =1 comes from the fact that H
Ti

is an integer for any τi in T<
m and Ti > D > 0 so

that
⌊
H−D
Ti

⌋
+ 1 is equal to H

Ti
.

For any value t > H, the value of
∑
τi∈Tm

dbf(τi, t) is equal to∑
τi∈Tm

dbf(τi, t−H) +
∑
τi∈Tm

dbf(τi, H). Therefore, we know that if
∑
τi∈T<

m

Ci

D ≤
1 and

∑
τi∈Tm

ui ≤ 1, the task set Tm can be feasibly scheduled by EDF. J

I Theorem 11. If there does not exist any APTAS for the 2D-DVP problem, unless P = NP,
there also does not exist any APTAS for the multiprocessor partitioned packing problem with
constrained-deadline task sets.

Proof. Clearly, the reduction in this section from the 2D-DVP problem to the multiprocessor
partitioned packing problem with constrained deadlines is in polynomial time.

For a task subset T′ of T, suppose that V(T′) is the set of the corresponding vectors that
are used to create the task subset T′. By Lemma 10, the subset Tm of the constructed tasks
can be feasibly scheduled by EDF on a processor if and only if

∑
τi∈T<

m
Ci =

∑
τi∈V(Tm) vi,2 ≤

1 and
∑
τi∈Tm

ui =
∑
τi∈V(Tm) vi,1 ≤ 1.

Therefore, it is clear that the above reduction is a perfect approximation preserving
reduction. That is, an algorithm with a ρ (asymptotic) approximation factor for the
multiprocessor partitioned packing problem can easily lead to a ρ (asymptotic) approximation
factor for the 2D-DVP problem. J

6.3 Hardness of the 2D-DVP problem
Based on Theorem 11, we are going to show that there does not exist APTAS for the 2D-DVP
problem, which also proves the non-existence of APTAS for the multiprocessor partitioned
packing problem with constrained deadlines.

I Theorem 12. There does not exist any APTAS for the 2D-DVP problem, unless P = NP.

Proof. This is proved by an L-reduction, following a similar strategy in [31] by constructing
an L-reduction from the Maximum Bounded 3-Dimensional Matching (MAX-3-DM), which
is MAX SNP-complete [24]. Details are in the Appendix in [9], where a short comment
regarding an erroneous observation in [31] is also provided. J
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The following theorem results from Theorems 11 and 12.

I Theorem 13. There does not exist any APTAS for the multiprocessor partitioned packing
problem for constrained-deadline task sets, unless P = NP.

7 Concluding Remarks

This paper studies the partitioned multiprocessor packing problem to minimize the number
of processors needed for multiprocessor partitioned scheduling. Interestingly, there turns out
to be a huge difference (technically) in whether one is allowed faster processors or additional
processors. Our results are summarized in Table 1. For general cases, the upper bound
and lower bound for the first-fit strategy in the deadline-monotonic partitioning algorithm
are both open. The focus of this paper is the multiprocessor partitioned packing problem.
If global scheduling is allowed, in which a job can be executed on different processors, the
problem of minimizing the number of processors has been also recently studied in a more
general setting by Chen et al. [14, 13] and Im et al. [23]. They do not explore any periodicity
of the job arrival patterns. Among them, the state-of-the-art online competitive algorithm
has an approximation factor (more precisely, competitive factor) of O(log logM) by Im et
al. [23]. These results are unfortunately not applicable for the multiprocessor partitioned
packing problem since the jobs of a sporadic task may be executed on different processors.
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