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Summary

Hybrid Modeling Technique for
Nonlinear 2D Electromagnetic Problems

Towards a Design Framework for
Variable Flux Reluctance Machines

The electric machine is a vital component in the powertrain of electric vehicles
that demands for low cost, robust structure, high speed, high torque density, etc.
Due to the concerns about possible price fluctuation and shortages in the supply
of the permanent magnets (PMs), the car manufacturers have been developing
methods for reducing rare-earth materials used in the vehicles. Hence, the re-
luctance machines, designed to be independent (or less dependent) of the PMs,
are gaining more and more attention. This thesis researches the variable flux re-
luctance machines (VFRM), which due to their cheap and robust rare-earth-free
structures, are considered to be a promising candidate for automotive applica-
tions. The VFRM is a relatively new class of electric machine that consists of a
stator with both field and armature windings and a salient rotor. The machine
electromagnetic behavior is complex, since the requirement of high torque and
power densities within a small volume leads the machine to a working condition
at saturation.

To accurately estimate the performance, numerical methods are often applied
such as finite element modeling (FEM), which are time-consuming especially for
initial sizing and topology selection, and hence, the development of an alter-
native solution is required. Aiming at reducing computation effort as well as
accurate modeling of the machine performance, a two-dimensional (2D) hybrid
modeling technique is developed in the first part of the thesis. This novel com-
putation technique combines two analytical modeling methods, spatial-harmonic-
based Fourier modeling and mesh-based magnetic equivalent circuit (MEC), into
one framework. Such combination inherits the merit of Fourier modeling which
is fast and accurate, and the characteristic of MEC which allows for the model-
ing of magnetic saturation. To make the developed method applicable to a wide
class of linear/rotary/tubular, PM/reluctance electrical machines, the computa-
tion framework is extended to the Cartesian, polar and axisymmetric coordinate
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systems with generalized expressions. In Chapter 2, the mathematical formula-
tion including saturation and motion is established, and is verified for benchmark
problems in each of the coordinate system, proving its applicability to a broad
class of electromagnetic actuators and machines.

The modeling technique is further applied to a saturated VFRM in Chapter 3,
which demonstrates the methods for machine performance analysis. Based on
the magnetic field in the airgap, the mean torque, torque waveform and torque
ripple are derived. The flux linkage, back-emf and nonlinear incremental induc-
tance including slot leakage are obtained. The iron losses are calculated using the
instantaneous magnetic field, and a fast prediction of the ac copper loss is devel-
oped. The aforementioned machine quantities show a good agreement with 2D
nonlinear FEM, and the obtained accuracy is sufficient for modeling and design
purposes. The simulation methods are applicable for other types of machines.

The second part of this thesis provides the physical understanding, design con-
siderations, optimization and realization of the VFRMs. To obtain an intensive
understanding of the machine working principle due to its multi-excited topol-
ogy, the torque production mechanism and torque components are investigated
in Chapter 4. Different topologies of the VFRMs are analyzed and are compared
on the aspects of winding factors, flux linkage and torque. Based on the com-
parison results, the design rules for the selection of pole numbers and winding
configuration are provided.

Due to its salient structure, the VFRM suffers from relatively large torque
ripples. In Chapter 5, the torque ripples are analyzed and minimized based on
the derived inductance and torque equations. Various torque ripple reduction
methods using the rotor skewing, rotor teeth non-uniformity, and harmonic in-
jection, are discussed with the verified effectiveness for both non-saturated and
saturated situations. Additionally, based on the nature of multi-excitation in
VFRMs (that the field current, armature current and commutation angle are all
controllable), the torque-speed characteristic, power factor and enhancement of
the flux-weakening capability are discussed.

The design principles from aforementioned analysis are implemented on a VFRM
in Chapter 6 for an indirect drive in the 48 V mild hybrid system, which requires
the continuous power of 5 kW, maximum power of 10 kW, peak torque of 45 Nm
and maximum speed of 18 krpm. With a strict limitation on machine outer di-
mensions, the machine geometry is optimized towards maximizing the efficiency,
whilst the winding design is performed towards maximizing the filling factor and
minimizing the ac copper loss. Furthermore, a prototype of the developed design
for the 48 V mild hybrid system is realized and presented in Chapter 7. The pre-
dicted machine performance is verified by measurements on the motor/generator
test bench.

To conclude, this thesis presents a fast and accurate hybrid modeling technique,
where the nonlinear phenomena of the soft-magnetic materials is taken into ac-
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count. This computation methodology is suitable for the analysis of nonlinear 2D
electromagnetic problems and the design of different classes of electric machines.
On the other hand, this thesis treats the detailed analysis of VFRMs with the
established design framework. A design is accomplished for the 48 V mild hybrid
system with the experimental verification that validates the predicted results.
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Introduction



2 Chapter 1: Introduction

1.1 History of the electric vehicle

The first electric vehicle appeared in the 19th century. Innovators in Hungary, the
Netherlands and the United States began with the concept of a battery-powered
vehicle and created some of the first small-scale electric cars. Up to the second
half of the 19th century, French and English inventors already built some of the
first practical electric cars [116, 122].

By the beginning of the 20th century, electric cars accounted for around a third
of the vehicles on the road, e.g., in the year 1900, about 4200 automobiles were
on the road, out of which 38% were electric, 22% were gasoline powered, and 40%
were steam powered [101]. However, due to the low gas price and the massive
facilities of gas stations, electric vehicles disappeared by 1935.

The next resurge of electric vehicles (EVs) began in the late 1960s, attributed
to the development of power electronics. The increasing price and shortage of
gasoline maintained the interest [104]. However, the vehicles produced at that
moment were still not comparable to gasoline-powered cars.

Experiencing rise and fall, the soar of the EVs finally happened in the end of the
20th century. Toyota Prius, the first mass-produced hybrid electric vehicle (HEV),
was released in Japan in 1997; and Tesla, the electric car that could go more than
200 miles on a single charge, was planned and announced in 2006. The success
in technology shows the potential for a more sustainable future [122] and spurred
other automakers to look for more efficient, more powerful and more intelligent
solutions for EVs.

1.2 Mild hybrid system

Stepped into the 21st century, there is continuously pressure coming from the
government and the public to reduce vehicle exhaust emissions. To protect the
environment, stringent regulations are proposed, e.g., European Union’s target
that to reduce CO2 emission to 95 g/km by 2021. In fact, powertrain electrifica-
tion is more and more considered as a feasible alternative to purely improve the
internal combustion engine efficiency.

During the evolution of EVs and HEVs, hybrid powertrain with regenerative re-
covery ability is recognized as one of the most effective methods to reduce CO2

emissions [13, 43, 84, 86]. A subsidiary electrical system operating at 48 V can of-
fer the advantages from hybridization to achieve fuel consumption benefit without
the complexity associated with full hybrid electric vehicles [79]. Moreover, such a
48 V mild hybrid system provides the possibility to supply relatively high output
power for electrical compressors [63], power steering, etc., which is limited by the
current 12 V electrical systems in conventional internal combustion automobiles.
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(a)

(b)

Figure 1.1: Pictures of (a) Prius [121], and (b) Tesla roadster [120].

Table 1.1: Machine types in some representative EVs [104].

EV Machine type Released year
Tesla Model 3 Permanent magnet machine 2017
Tesla Model S Induction machine 2012
Renault ZOE Synchronous brushed machine 2011
Nissan Leaf Permanent magnet machine 2010

NICE Mega City DC machine 2006

1.3 Electrical machines in powertrains

The electrical machine, the main component in the powertrains, provides traction
power by converting the electric energy from the battery into mechanical energy.
There are many considerations for the design of electrical machines in EVs and
HEVs, and one of the key choices is the machine type. Variety of machine types
are investigated for automotive applications in the literature [3, 22, 28] and some
are already commercially available. The types in the market include the DC ma-
chine, induction machine, permanent magnet machine and synchronous brushed
machine. Additionally, another type, the reluctance machine, has been proposed
but has not yet been commercially released in EVs. In Table 1.1, some of the
commercially available EVs are listed with their respective machine types [104].
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1.3.1 DC machine

The DC machine was the preferred option in variable-speed operation applica-
tions before the development of advanced power electronics, because of their well-
established technology, reliability, low cost and simple control. However, the
development of solid-state power semiconductors makes it increasingly practical
and more beneficial to use other AC machines instead of DC machines in trac-
tion applications, mainly due to their disadvantages of low power density, costly
maintenance of the coal brushes and low efficiency [104, 130].

1.3.2 Induction machine

As the most mature technology amongst various brushless motor drives, the in-
duction machine is considered as a potential candidate for the electric propulsion
of EVs and HEVs. They were already widely used in famous EV models, ow-
ing to their simple structure, reliability, ruggedness, low maintenance and low
cost. However, induction machines still face a number of drawbacks, including
lower efficiency, lower power factor, etc., in comparison with permanent magnet
synchronous machines [101, 104, 130].

1.3.3 Permanent magnet synchronous machine

The permanent magnet synchronous machines are widely used in automotive
propulsion because of their high efficiency, high torque, high power density and
ease of control [44, 91, 92]. Apart from these merits, the constant power region
of permanent magnet machines is limited by their relatively low field weakening
capability. Conventionally, d-axis armature current is introduced to counteract
the permanent magnet flux linkage. However, the machine is not efficient at high
speed due to the d-axis current, and the speed range may still be inadequate due
to the inverter limitations in terms of current and voltage ratings. Additionally,
a large d-axis current may result in the risk of permanent magnet (PM) demag-
netization, and magnets with a large coercivity have to be considered to avoid
demagnetization during field weakening [41, 101, 124, 128, 130].

1.3.4 Synchronous brushed machine

In a synchronous brushed machine, the magnetic field is generated by the coils
in the rotor that are connected to a voltage source through a slip ring. The
main advantage of this machine is the ability to vary the magnetic flux linkage
induced by the field current in the rotor, which eases high-speed operation at
constant power region [31]. Additionally, the rotor is robust compared to per-
manent magnet machines, and the temperature is only limited by the conductor
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insulation. However, the magnetizing current in the rotor contributes to extra
losses, and hence, efficiency is sacrificed in the constant torque region. Moreover,
reliability and maintenance of the mechanical slip ring is not preferred, hence,
brushless methods of transferring power to the rotor field winding are being de-
veloped [50, 80, 104, 107].

1.3.5 Reluctance machine

Expecting an increasing production of EVs and HEVs, car manufacturers have
been developing methods for reducing rare-earth materials used in vehicles [23, 51,
102], due to the concerns about possible price fluctuation and shortages in supply
in the future. Hence, reluctance machines, designed to be independent (or less
dependent) of the PMs, are gaining more and more attention [65]. There are many
types of reluctance machines, including the synchronous reluctance machine, the
switched reluctance machine, the multi-excited reluctance machine, etc.

The synchronous reluctance machine has the stator similar to induction machine,
while the rotor is designed to maximize the saliency ratio [111]. One of the
disadvantages of this machine is the low power factor, and in the literature it
is proposed to add a small amount of PM in the rotor for improvement [26, 87].
However, the risk of PM demagnetization (especially using low-energy PMs) limits
the maximum stator current. Another major concern is the speed, the ribs and
bridge areas of the rotor would fail because of the high centrifugal forces [21].

The switched reluctance machine has the advantage of a simple structure, toler-
ance of hostile operating environments, large constant-power range, large over-
load capacity and reduced price [25, 100]. However, the machine suffers from
large torque ripples, high acoustic noise, complex control (e.g., torque sharing
functions) [67], requirement of large dc-link capacitor and unconventional power
electronic circuit that has to excite phases subsequently.

To overcome the shortcomings of switched reluctance machines, three-phase multi-
excited reluctance machines are proposed [7, 115, 123]. For dc-excited types, there
are both field winding and armature windings located in the stator [97, 114].
Compared to switched reluctance machines, they are improved in the aspects of
torque ripple and power electronic circuit, because sinusoidal excitation is imple-
mented for the armature current and the utilization of a commercial three-phase
inverter can be considered [129]. Compared to the permanent magnet synchronous
machine, it benefits from the controllable flux linkage of field winding that can
enhance the speed extension capability. However, an additional circuit for the
controllable field current is needed.

Amongst various types of dc-excited reluctance machines, the variable flux re-
luctance machine is a relatively novel type in the literature. Different from the
dc-excited flux switching machine with a relatively complex winding configura-
tion, the variable flux reluctance machine has concentrated windings, which is
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beneficial to reduce the end winding length and to obtain a higher filling factor,
and is also relatively simple to manufacture. Due to the aforementioned merits,
this thesis considers the variable flux reluctance machine for further research.

1.4 Electromagnetic modeling

Since power density and efficiency need to be optimized within a given volume
and thermal constraints [81], accurate and fast modeling of the electromagnetic
performance is of major importance in electrical machine design. To obtain an
accurate magnetic field distribution for different types of machines, especially for
machines that operate under saturated conditions such as reluctance machines,
numerical models are commonly used. The geometries are discretized in finite
mesh elements. Each of the element is an independent region of the domain where
field equations are defined. The field variables are often interpolated using a first
or second order polynomial. The finite element method (FEM) is powerful but
time-consuming, since the mesh density is an essential condition for the accuracy
of solutions. To reduce the computation time, development of analytical and
semi-analytical modeling techniques is desirable [20, 52, 60].

For structures with periodicity, Fourier modeling is particularly interesting since
it is fast and accurate [36, 83]. The Maxwell equations are solved in terms of
the magnetic vector potential and the field solutions are written in the form of
a Fourier series [59]. The limitation of this method is the inability to take cir-
cumferential variations of magnetic permeability into account [53, 54]. Although
in [109, 110], the inclusion of finite permeable soft-magnetic material is success-
fully realized by expressing the permeability distribution in a region as a Fourier
series, the computation of magnetic nonlinearity is not yet reported. Moreover,
geometric details with high-permeable materials are still difficult.

To consider nonlinear material behavior, the magnetic equivalent circuit (MEC),
that incorporates the magnetic nonlinearity with an iterative solver, seems to be a
suitable method [72, 96, 105, 113]. However, it is difficult to construct flux paths
to accurately obtain field and torque solutions, and a prior knowledge of the flux
distribution is necessary. This limits the application of MEC to the electrical ma-
chine that has a flux density distribution strongly dependent on movement or the
machine that has significant leakage flux. In [119], an automated design method
using MEC is introduced for a flux switching machine. Several MEC modules
are predefined and are assembled correspondingly for different moving positions.
Although the workload involved in adapting the flux path is reduced, the coarse
construction of flux tubes still limits the accuracy, as well as the flexibility of this
method.

To further reduce the effort of constructing the flux paths as well as to increase
the accuracy, mesh-based MEC (also called mesh-based reluctance network) is
investigated [4, 14, 38]. Due to the adequate mesh, the accuracy is significantly
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improved compared to the conventional MEC, however, the dense mesh network
all over the domain reduces the advantage of computation time.

To combine the merits of fast computation from Fourier modeling and the ca-
pability of including nonlinearity from mesh-based MEC, a hybrid analytical
modeling technique (HAM) is considered in this thesis and is further devel-
oped. In this method, the regions with linear magnetic materials are modeled
using Fourier modeling, while regions with nonlinear materials are modeled using
MEC [1, 69, 88–90]. Between coupled Fourier and MEC regions, the boundary
conditions of continuous magnetic field is ensured, which leads to a set of linear
equations that solves the unknowns of the field solution.

A brief comparison between the HAM and FEM is summarized in Table 1.2. The
number of mesh elements in the HAM is significantly smaller than in the FEM
since regions with homogeneous permeability are not meshed. Additionally, for
FEM softwares, e.g., Altair Flux2D, second order element that describes behav-
ior by quadratic equations is commonly adopted, which further increases nodal
unknowns. On the other hand, the force/torque calculation of airgap region in
the HAM considers the direct semi-analytical solutions of Maxwell’s equations,
which is given by a typical number of harmonic order of 102; while the FEM uses
the virtual work method that takes the solution for the total meshed geometry.

Suitable modeling techniques are diverse for different problems, and often a trade-
off between accuracy and computation time has to be made. Considering the
calculation of machine quantities like force/torque and inductance that are related
to magnetostatic problems, the HAM, as an alternative to FEM, provides a fast
tool for research and development of a wide class of electrical machines.
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Table 1.2: Comparison between HAM and FEM.

HAM FEM
Mesh

• Mesh elements in regions where
nonlinear material exists

• Mesh elements in entire geomet-
ric domain

Node

• Single potential node in element
center

• Second order element: 6 nodes

Force/Torque calculation

• Maxwell stress tensor method

• F or T =
Nh∑
n=1

f(an, bn, cn, dn)

• Typical order of Nh: 102

• Virtual work method

•


F or T =

∂Wc

∂q

W =
Ne∑
e=1

∫
Ve

[
H∫
0

BedHe

]
dVe

• Typical order of Ne: 105

Notes:
* The mesh takes a quarter of a 12/8 switched reluctance machine as the example;
* F and T are force and torque, respectively, Nh is the harmonic order, and an, bn, cn
and dn are Fourier coefficients of field solutions;
* Wc is the co-energy, q is the displacement, B is the magnetic flux density, H is the
magnetic field strength, Ne is the total number of finite elements and Ve is the volume
of ‘e’ [17].
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1.5 Research objectives

The research objectives of the thesis are summarized in this section. There are
mainly two parts of the objectives:

Part I: Establish a generalized modeling framework and methodology
that offers accurate and relatively fast prediction for nonlinear 2D elec-
tromagnetic problems.

The sub-objectives and the thesis outline of this part are listed as the follow-
ing:

1.1 Extension of the 2D hybrid analytical modeling technique to predict the elec-
tromagnetic field in Cartesian, polar and axisymmetric coordinate systems for
a wide class of permanent magnet and reluctance machines:

• Incorporate the nonlinear magnetic materials;

• Construct the position-dependent boundary conditions that allow free mo-
tion without re-meshing;

• Incorporate the description of geometric details.

Chapter 2 presents the generalized hybrid analytical modeling technique for
the calculation of the magnetic field distribution in nonlinear 2D electromag-
netic problems. The mathematical formulations are introduced. The solution
and accuracy are discussed based on a set of benchmark examples in each of
the considered coordinate systems which are verified with FEM.

1.2 Accurate prediction of machine quantities using the hybrid analytical modeling
technique.
The hybrid analytical modeling technique is applied to a variable flux reluc-
tance machine in Chapter 3. It provides accurate predictions for the magnetic
field distribution (in the entire geometric domain), torque, torque ripple, flux
linkage, electromotive force, incremental inductances, iron losses, eddy cur-
rent, and ac copper losses.

Part II: Establish the design framework for the variable flux reluctance
machines, and realize a design for automotive 48 V mild hybrid system.

The sub-objectives and the thesis outline of this part are listed as the follow-
ing:

2.1 Description of the operating principle and design considerations of variable
flux reluctance machines:

• Obtain a physical insight of torque production mechanism;

• Understand the influences of machine topologies and configurations on
the performance, and provide suggestions for optimum design selection;
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• Investigate methods for torque ripple reduction and speed extension en-
hancement.

Chapter 4 derives the torque equation of the variable flux reluctance machine
based upon the variations in inductances to identify the various torque pro-
duction mechanisms. The selection of machine topology is investigated based
on the analysis of winding factor, influence of the number of rotor poles and
magnetic pull.
In Chapter 5, design considerations towards minimizing the torque ripples and
widening the speed range are given, which brings more insight in the relation-
ship of machine parameters and performances. The sources of torque ripples
are analyzed, and ripples are minimized by machine geometry adjustment
and harmonic injection. The influence of field current and armature current
on the torque-speed characteristic is given. The field weakening capability is
discussed and the means for improvement with proper current arrangement
is provided.

2.2 Experimental verification on a prototype design for 48 V mild hybrid system.
The prototype design of a variable flux reluctance machine for the 48 V mild
hybrid system is presented in chapter 6. The realization of the prototype is
presented in chapter 7 together with the measurement results, which verify
the predicted performances.



Part I

Hybrid modeling technique





Chapter 2

Generalized formulation

Part of the content in this chapter is published in:

J. Bao, B.L.J. Gysen and E.A. Lomonova, ’Hybrid Analytical Modeling of Sat-
urated Linear and Rotary Electrical Machines: Integration of Fourier Modeling
and Magnetic Equivalent Circuits’, IEEE Transactions on Magnetics, Vol. 54,
No. 11, pp. 1-5, 2018.
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2.1 Introduction

As the base for deriving machine performances, calculation of the magnetic field
is of major importance in the design process of electrical machines. To obtain ac-
curate magnetic field distribution for many different types of machines, especially
for devices with nonlinear magnetic materials, finite element method is commonly
used, which is powerful but time-consuming.

As a relatively fast and accurate alternative to finite element method, the hybrid
analytical modeling that integrates Fourier modeling and MEC is discussed in
this chapter for the mathematical formulation. In the last decade, some papers
have been published related to this technique. In [69, 88–90], the mesh-based
MEC is only connected to one side of the Fourier modeling. A promising result
of the magnetic field is provided in the airgap in [89] for a linear PM structure,
and cogging force/torque is precisely estimated in [90] for various electromagnetic
structures. Furthermore, material nonlinearity is shortly discussed in [90]. The
cogging force for PM machines with different slot geometries is calculated, where
saturation is considered in the stator using Newton-Raphson method. In [95],
bidirectional coupling on both sides of the MEC regions are applied, achieving
excellent matching of flux density in the overall structure with linear material
properties. In this chapter, saturation incorporated with bi-directional coupled
HAM (Fourier coupled on both sides of the MEC region), is extensively presented
and validated. The fixed-point iteration method is provided for nonlinear mag-
netic material, which gives physical insight especially in the inductance calculation
and is more robust than Newton-Raphson method [40, 47].

Additionally, in [89], the method of including motion is mentioned. Minimum
displacement step is set corresponding to the dimension of mesh elements, and
meanwhile the source vector is modified. However, the dependence of the moving
step on the mesh element is not convenient in some circumstances, especially
when the mesh size varies in the direction of motion. Therefore, it is proposed in
this chapter to directly integrate the movement into the boundary conditions that
allows free movement of MEC regions without re-constructing the mesh network.

Above all, this chapter presents the HAM in a generalized manner for the applica-
tion in Cartesian, polar and axisymmetric coordinate systems. The content first
focuses on the model formulation and description of magnetic sources, followed
by the motion-integrated boundary conditions. Afterwards, the modeling of non-
linear material is introduced, including the formulation of magnetic properties in
MEC elements and the iterative algorithm for saturation. In the end, validation
of the HAM is performed by the comparison with FEM for benchmark examples
in the considered three coordinate systems.



2.2: Assumptions 15

Table 2.1: Notation for coordinate systems.

Coordinate system Cartesian Polar Axisymmetric General
Normal y r r p

Tangential x θ z q
Longitudinal z z θ l

2.2 Assumptions

Before applying the hybrid analytical modeling technique, the following assump-
tions are made:

1. The problem is described in a 2D coordinate system;

2. Source terms (coils/permanent magnet) are invariant in the longitudinal
direction;

3. Only isotropic material properties are used;

4. The problem is quasi static.

All electromagnetic devices have three-dimensional (3D) geometries. To use a two-
dimensional (2D) modeling technique, the geometry should be invariant in one
of the directions, or the variation is negligible. This assumption is valid in many
circumstances for electric machines: for rotary machines that have relatively long
axial length compared to its radius, 3D effects are often negligible; for tubular
actuators, the axisymmetric geometry inherently leads to a 2D problem.

The modeled geometry inhibits periodicity, and only one period is considered in
HAM. To present the diverse applicability of the HAM, it is applied to the ge-
ometries in three different 2D coordinate systems, i.e., Cartesian (x, y), polar (r,
θ) and axisymmetric (r, z ). In this thesis, periodicities are respectively applied
in the x-, θ-, and z-directions. For generality of the explanations in the following
content, the normal direction is referred as the p-direction, the tangential (peri-
odicity) direction is referred as the q-direction, while the longitudinal (invariant)
direction is referred as the l -direction. A summary of the notation for coordinate
systems is listed in Table 2.1.
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2.3 Division in regions

As explained in section 2.2, periodicities are applied in the x -, θ- and z -directions
in Cartesian, polar and axisymmetric coordinate systems, therefore, regions are
divided in the y-, r - and r -directions, respectively. The regions in this thesis are
equally sized with the periodic boundaries, and the magnetic permeability in the
geometry determines the division of regions. Fourier modeling is suitable for the
regions with homogeneous permeability. For regions with varying permeability,
they are modeled using meshed MEC, that allows to have unique permeability in
each mesh element and hence, is capable to take non-homogeneous permeability
into account.

One exception is the permanent magnets positioned in non-ferromagnetic mate-
rials or air. If the permeability of the permanent magnet is close to unity, it is
possible to assign this as a Fourier region. The other exception is the current-
carrying coil bundles in a slot. They usually do not spread over the full periodic
boundaries, instead of introducing mode matching as in [54, 106], the presence of
coils implies a MEC region in this thesis.

As a summary of the rule:

• All regions share the same periodic boundaries;

• The division of regions depends on the variation of magnetic permeability
and presence of permanent magnets or coils.

An example is given for illustration with the geometry shown in Fig. 2.1(a). The
geometry in the example is divided into five regions. The permanent magnets
are buried in iron and the permeability changes significantly from ferromagnetic
material to PM, hence, the permanent magnets and their adjacent iron are de-
scribed by a MEC region that is indicated as ‘Region II: MEC region’ in the
figure. Meanwhile, the presence of coils implies a new MEC region, indicated as
‘Region IV: MEC region’. On the other hand, the airgap, the air regions above
the coils and beneath the PMs are all described as Fourier regions. However, if air
surrounds the permanent magnets instead of iron, the PM array can be modeled
as a Fourier region as shown in Fig. 2.1(b) with the label of ‘Region II: Fourier
region’.
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Region IV: MEC region

Region III: Fourier region

Region II: MEC region

Region I: Fourier region

Periodic boundaries Region V: Fourier region

(a)

Region IV: MEC region

Region III: Fourier region

Region II: Fourier region

Region I: Fourier region

Region V: Fourier regionPeriodic boundaries

(b)

Figure 2.1: The illustration of region division for two benchmark linear actuators.

2.4 Modeling of Fourier regions

For magnetostatic problem, the Maxwell equations are written as,

∇× ~H = ~J, (2.1)

∇ · ~B = 0. (2.2)

Since the divergence of ~B is zero as described in equation (2.2), the field ~B can

be written as the rotation of the magnetic vector field, ~A,

~B = ∇× ~A. (2.3)

Additionally, the magnetic flux density ~B is related to the magnetic field strength ~H
by the constitution relation,

~B = µ0

(
µr ~H + ~M0

)
, (2.4)

where ~M0 represents the magnetization vector of a permanent magnet. Substi-
tuting equations (2.3) and (2.4) into equation (2.1) gives,

∇2 ~A = −µ0

(
∇× ~M0

)
− µ0µr ~J. (2.5)

As mentioned in section 2.3, the presence of current density, ~J , indicates a MEC
region, hence, the expressions of ~J are omitted for Fourier regions. In 2D geome-
tries, the magnetization vector has both p- and q− components, therefore, only



18 Chapter 2: Generalized formulation

the l-component of the magnetic vector potential exists. The Poisson equation,
(2.5), reduces to a single equation in each coordinate system and is given by the
following,

Cartesian:

∂2Al
∂p2

+
∂2Al
∂q2

= −µ0

(
∂Mp

∂q
− ∂Mq

∂p

)
, (2.6)

Polar:

1

p

∂

∂p
p
∂Al
∂p

+
1

p2

∂2Al
∂q2

= −µ0

[
1

p

∂ (pMq)

∂p
− 1

p

∂Mp

∂q

]
, (2.7)

Axisymmetric:

1

p

∂

∂p
p
∂Al
∂p

+
∂2Al
∂q2

− 1

p2
Al = −µ0

(
∂Mp

∂q
− ∂Mq

∂p

)
. (2.8)

The solutions of equations (2.6)-(2.8) are given in Appendix A.

2.5 Modeling of MEC regions

The MEC regions are meshed to accurately obtain the magnetic field in both p-
and q-directions. In contrast to Fourier regions that formulate the magnetostatic
problem in the terms of magnetic vector potential, the magnetic field in the MEC
regions is formed by the scalar potential in the center node of each mesh element.
This section explains the meshing principle used in this thesis, the constitution
of mesh elements, and the expression of magnetic fields within the MEC regions.

2.5.1 Meshing method

It is feasible to implement conformal or non-conformal meshing in the MEC re-
gions. For a conformal meshing, there is always matching of vertices at the edge
of two adjacent mesh elements. The advantage is that no interpolation is required
at a conformal interface. In Fig. 2.2(a), an example of the conformal meshing is
illustrated. As can be seen, all the vertices of one mesh element matches with
corresponding vertices in one of the surrounding elements. In contrast, Fig. 2.2(b)
shows an example of the non-conformal meshing, where partial matching of edges
exists at the interface, e.g., between element k1 and k2. Such arrangement is able
to provide more flexibility in mesh density. However, to simplify the implemen-
tation, only conformal meshing is discussed in this thesis. Although the number
of elements in each layer is constrained to be the same, conformal meshing still
provides the freedom of variation in both widths and heights, and is possible to
make denser mesh where is needed, as shown in Fig. 2.2(c).
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(a)

k1

k2

(b)

(c)

Figure 2.2: (a) An example of the conformal meshing, (b) an example of the non-
conformal meshing, and (c) an example of the conformal meshing
with varying heights and widths.

Iron

Periodic boundaries

(a)

Iron

Periodic boundaries

1 2 L
L+ 1

q

p

(b)

Figure 2.3: (a) An example of a geometry with permeability variation, and (b)
the schematic graph of meshing for the geometry in Fig. 2.3(a).

On the other hand, the mesh is formed such that the material boundaries coincide
with the mesh element edges [93]. An example is given in Fig. 2.3(a) where the
geometry has ferromagnetic material, and the schematic graph of the meshing is
shown in Fig. 2.3(b). As illustrated, the mesh guarantees that each MEC element
contains homogeneous material.

For explanation in the subsequent content, the mesh elements are numbered fol-
lowing the rule that ascends first in the q-direction and afterwards in the p-
direction as illustrated in Fig. 2.3(b). Suppose that there are L elements in the
first layer, the second layer starts at (L+ 1) correspondingly, and the numbers of
element are the same in all the layers of a region due to the conformal meshing.

2.5.2 Constitution of MEC elements

The mesh shapes are quadrilateral in this thesis, such that the reluctances and
sources are naturally decomposed in normal and tangential directions for 2D ge-
ometries. In the geometric center of each element, a potential node, ψ, is defined,
and it forms the unknown matrix of the MEC region. To solve the values of ψ,
each MEC element should contain the information of reluctances and magnetic
sources as shown in Fig. 2.4, where ‘k’ in the superscript denotes the number-
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Figure 2.4: Reluctances and mmf sources of the element k.

ing of the element. In both positive and negative pq-directions, a reluctance and
magnetic source are assumed. The reluctance is determined by the dimensions
and permeability. The magnetic source is described by the magnetomotive force
(mmf). The derivation is divided into three categories, i.e., PM related, current
related and saturation related, which is repectively explained in sections 2.5.4,
2.5.5 and 2.8.

2.5.3 Magnetic reluctances

As depicted in Fig. 2.4, reluctances are assumed from the potential node to each
of the edges. To be more specific, <kq−, <kq+, <kp− and <kp+ are defined to cover the
space from the potential node to the edges in −q-, +q-, −p- and +p-directions,
respectively. As examples, the reluctances are given for several commonly used
shapes, i.e., rectangular shape in the Cartesian coordinate system, circular sector
shape in the polar coordinate system, and rectangular shape in the axisymmetric
coordinate system.

Rectangular-shaped element in the Cartesian coordinate system

Assume the rectangular MEC element in the Cartesian coordinate system is with
the width of lkq in q-direction, length of lkp in p-direction and depth of lkl in l-
direction. In Fig. 2.5(a), it illustrates the flux tubes assumed for the q-direction,
where each of the flux tube covers half of the element in the q-direction with the
cross section in the pl-plane. The corresponding reluctances, <kq− and <kq+, both

have a length of lkq/2 and a cross section Skpl equals to lkp l
k
l . The expression of the

reluctances is therefore [93],

<kq− = <kq+ =
lkq

2µ0µkrS
k
pl

=
lkq

2µ0µkr l
k
p l
k
l

, (2.9)
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Figure 2.5: The MEC element with a rectangular shape in the Cartesian coor-
dinate system: flux tubes and reluctances (a) in the q-direction, and
(b) in the p-direction.
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Figure 2.6: The MEC element with a circular sector shape in the polar coordinate
system: flux tubes and reluctances (a) in the q-direction, and (b) in
the p-direction.

where µkr is the relatively permeability. Similar to the reluctances in the q-
direction, two flux tubes are assumed for the p-direction as well, that are shown
in Fig. 2.5(b). The reluctances, <kp− and <kp+, both have a length of lkp/2 and a

cross section of Skql equals to lkq l
k
l , hence, the reluctances are given as,

<kp− = <kp+ =
lkp

2µ0µkrS
k
ql

=
lkp

2µ0µkr l
k
q l
k
l

. (2.10)

Circular-sector-shaped element in the polar coordinate system

Figure 2.6 shows the circular-sector-shaped element in the polar coordinate sys-
tem, where the angle remains the same, θk, along the p-direction. The radius at
the bottom and top of the element is rkb and rkt , respectively, and the depth in
the l-direction is lkl . In Fig. 2.6(a), it illustrates the flux tubes assumed for the
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q-direction, each of the flux tubes cover half of the element in the q-direction.
Therefore, the values of <kq− and <kq+ are equal, and the expression is,

<kq− = <kq+ =
θk

2µ0µkr l
k
l ln

(
rkt
rkb

) . (2.11)

For the flux tube in the p-direction, the element is divided by an arc with the
radius of the mean value of rkt and rkb , as illustrated in Fig. 2.6(b). Since the radii
are different in the top and bottom flux tubes, the analytical expressions of <kp−
and <kp+ are not the same, given as

Rkp+ =
1

µ0µkrθ
klkl

ln

(
2rkt

rkt + rkb

)
, (2.12)

Rkp− =
1

µ0µkrθ
klkl

ln

(
rkt + rkb

2rkb

)
. (2.13)

However, if the difference between rkb and rkt is small, <kp− and <kp+ are almost
equal.

Rectangular-shaped element in the axisymmetric coordinate system

In Fig. 2.7(a) and (b), the cross section of an element in 2D view for the ax-
isymmetric coordinate system is illustrated, which is similar to the one in the
Cartesian coordinate system. However, if consider such an element in 3D view as
shown in Fig. 2.7(c), Skpl is actually the circumferential surface of a cylinder for

<kq− and <kq+. The expression is consequently,

Rkq− = Rkq+ =

lkq
2

µ0µkr

(
2π
rt + rb

2

)
(rt − rb)

=
lkq

2µ0µkrπ (r2
t − r2

b )
. (2.14)

For the p-direction, the length in the l-direction are different in the top and bottom
flux tubes, therefore, <kp− and <kp+ are different, and are described as,

Rkp+ =
1

2µ0µkrπl
k
q

ln

(
2rkt

rkt + rkb

)
, (2.15)

Rkp− =
1

2µ0µkrπl
k
q

ln

(
rkt + rkb

2rkb

)
. (2.16)
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Figure 2.7: The MEC element with a rectangular shape in the axisymmetric
coordinate system: (a) flux tubes and reluctances in the q-direction,
(b) flux tubes and reluctances in the p-direction, and (c) the cross
section of an element in 3D view.
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Irregular-shaped element

If the element shapes are not defined by the aforementioned regular shapes, the
reluctances should be calculated by the general equations,

<kq− =
1

µ0µr

∫
lkq−

1

Skpl(q)
dq, (2.17)

<kq+ =
1

µ0µr

∫
lkq+

1

Skpl(q)
dq, (2.18)

<kp− =
1

µ0µr

∫
lkp−

1

Skql(p)
dp, (2.19)

<kp+ =
1

µ0µr

∫
lkp+

1

Skql(p)
dp. (2.20)

2.5.4 Permanent magnet related magnetomotive force

The mmf is used to describe the magnetic sources in the MEC region. In this
subsection, the permanent magnet related mmf source is derived. By using the
proper meshing algorithm, the description of the MEC element is limited to either
PM presence or PM absence, and the PM related mmf only exists in the elements
where the permanent magnet is located. The value of the mmf is defined by the
magnetization and element size. Since the field is described in pq-directions, the
magnetization has to be decomposed into pq-directions as well. The expression of
the mmf is,

Fkp− =
~Mk
p l
k
p−

µkr
, (2.21)

Fkp+ =
~Mk
p l
k
p+

µkr
, (2.22)

Fkq− =
~Mk
q l
k
q−

µkr
, (2.23)

Fkq+ =
~Mk
q l
k
q+

µkr
, (2.24)
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where µkr takes the exact value of the PM relatively permeability. As the potential
of a MEC element is defined to locate at the geometric center, it is often,

lkp− = lkp+ =
lkp
2
, (2.25)

lkq− = lkq+ =
lkq
2
, (2.26)

and if this holds, Fkp− = Fkp+ and Fkq− = Fkq+.

2.5.5 Current related magnetomotive force

Unlike the PM related magnetomotive force that only exists in the elements where
physically the PM is present, the current related magnetomotive force forms con-
tours within and outside the coil regions, and the distribution of mmfs has to
guarantee the fulfillment of Ampere’s law for any arbitrary contours. There are
several arrangements that can meet this law. In [89], the q-directional current re-
lated mmf is introduced for the situation of homogeneous current density within
one slot. In this section, it is extended to two current densities within one slot,
which is applicable for more situations, e.g., switched reluctance machines, flux
switching machines, variable flux reluctance machines, etc. Three distribution
methods are introduced, i.e., mmf in merely the p-direction, in merely the q-
direction, and in both pq-directions. Since the derivation of these methods are
similar, herewith only the first one is elaborated in this subsection, and the latter
two are introduced in Appendix B.

mmf in p-direction for the Cartesian coordinate system

For the method of distributing mmfs in merely the p-direction, the derivation
starts from a simple topology with a single coil bundle in one slot in the Cartesian
coordinate system, as shown in Fig. 2.8(a), where the coil has a width of wc and
a height of hc. Two typical contours are used to explain the arrangement of
mmf values, in which contour (1) encloses the whole coil region and contour (2)
encloses part of the coil. Based on Ampere’s law, the summation of the mmf in
contour (1) should satisfy∑

mmf(1) = JSc, (2.27)

where Sc is the slot area that equals to wchc. Assume the mmf sources for
contour (1) concentrate in two columns of elements within the height of hc in the
teeth as shown in Fig. 2.8(b). It indicates that the summation of mmf in the left
and right tooth should equal to JSc/2 and −JSc/2, respectively, where the sign
‘-’ implies an actual mmf opposite to the pre-defined direction.
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Figure 2.8: (a) Topology of a single coil in one slot and two representative con-
tours, (b) distribution of mmfs for paths of contour (1) in the teeth,
and (c) distribution of mmfs for paths of contour (2) in the tooth
and slot.
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Figure 2.9: Illustration of the mmf distribution: (a) for the topology of two coils
in one slot (FJ1,p = J1wchc and FJ2,p = J2wchc), and (b) the path
that partially encloses both coils.

On the other hand, the summation of the mmf sources in contour (2) should
satisfy∑

mmf(2) =

(
1

2
− q1

wc

)
JSc, (2.28)

where q1 is the distance between the slot centerline and the edge of contour (2) in
the slot. Assume the mmf sources for contour (2) are distributed in the teeth and
slot within the height of hc, as shown in Fig. 2.8(c). As derived for contour (1),
the summation of the mmfs in the tooth equals to JSc/2, consequently, the
summation of mmfs in the slot has to be q1

wc
JSc to satisfy equation (2.28). This

indicates that the mmf in the slot is linear to the value of q1 defined in Fig. 2.8.
For example, if a path lies in the slot for q1 = 0.25wc, a quarter of the coil is
enclosed, summation of mmfs at the path should be 0.25JcSc. As such, the rule
comes that the distribution of mmf has a dependence on the element location,
showing a linear relationship to the q-coordinate of the element until reaching the
slot edges.

Additionally, to obtain the mmf for a single element, the dimension of the element
itself has to be considered as well. Therefore, the mmf is given as

Fkp± =
lkp±
hc
· JSc (2.29)

when located in the tooth, and is,

F kp± =
lkp±
hc
· q1

wc
JSc (2.30)
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Table 2.2: Distribution of the current related mmf sources in the p-
direction for the example in Fig. 2.9(a).

Location Fkp± for J1 Fkq± for J1 Fkp± for J2 Fkq± for J2

Tooth
lkp±
hc
FJ1,p 0 -

lkp±
hc
FJ2,p 0

Slot
qk

wc

lkp±
hc
F1,p 0 -

qk

wc

lkp±
hc
F2,p 0

Notes: qk is the q-coordinate of element k, FJ1,p = J1wchc and
FJ2,p = J2wchc.

when located in the slot.

The aforementioned concept is applied to the topology of two coils in one slot.
Figure 2.9(a) shows the coils positioned in the slot with two different current
densities, J1 and J2. The mmf representing the left coil is arranged in the left
tooth and left half of the slot, while the mmf for the right coil is arranged in
the right tooth and slot, respectively. Having the origin at the center line of the
slot, the distribution of the mmf is illustrated in Fig. 2.9(a). The mmfs in the
left and right teeth are linear to J1Sc and −J2Sc, respectively, while in the slot,
the mmfs are also linear to the value of q-coordinate. Taking into account the
element sizes, the obtained mmf values are listed in Table 2.2.

A contour shown in Fig. 2.9(b), that partially encloses two coils simultaneously,
is used to verify the above results. The contour is defined by four vertices with
the coordinates of (q′1, p′1), (q′1, p′2), (q′2, p′1) and (q′2, p′2), marked as the red dots
in the figure. The mmf of the four edges are calculated as:

mmfC1
=
q′1
wc
J1wchc

∫ p′2

p′1

d

(
lkp±
hc

)
= q′1J1 (p′2 − p′1) , (2.31)

mmfC2 = 0, (2.32)

mmfC3
= − q

′
2

wc
J2wchc

∫ p′2

p′1

d

(
lkp±
hc

)
= −q′2J2 (p′2 − p′1) , (2.33)

mmfC4
= 0. (2.34)

The totalmmf is therefore, mmfC1
+mmfC2

−mmfC3
−mmfC4

= q′1J1 (p′2 − p′1)+
q′2J2 (p′2 − p′1) , which exactly equals to the current enclosed by this contour, stat-
ing the fulfillment of Ampere’s law.
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Figure 2.10: (a) Topology of two coils in one slot, and (b) the path that partially
encloses both coils.

mmf in the p-direction for the axisymmetric coordinate system

Since the 2D view of the region in the axisymmetric coordinate system is similar
as in the Cartesian coordinate system, the expression of the mmf is the same as
the Cartesian coordinate system.

mmf in the p-direction for the polar coordinate system

For the polar coordinate system, the surface area of coil regions follows
∫
d(qp2),

instead of
∫
d(pq) for the Cartesian coordinate system. The integration,

∫
d(qp2),

shows a linear relationship with q-coordinate and a quadratically linear relation-
ship with p-coordinate, which is reflected by the element location and element
size, respectively. This rule is explained by the geometry of two coils in a slot as
shown in Fig. 2.10(a). Assume that the slot is with an angle of 2θc, an inner and
outer radius of r1c and r2c, respectively, the distribution of mmfs is summarized
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Table 2.3: Distribution of current related mmf sources in the p-direction for
the example in Fig. 2.10(a).

Pos. Fkp+ for J1 Fkp− for J1 Fkq± for J1

Tooth
(rkt )2 − (rkm)2

r2
2c − r2

1c

FJ1,p
(rkm)2 − (rkb )2

r2
2c − r2

1c

FJ1,p 0

Slot
qk

θc

(rkt )2 − (rkm)2

r2
2c − r2

1c

F1,p
qk

θc

(rkm)2 − (rkb )2

r2
2c − r2

1c

F1,p 0

Pos. Fkp+ for J2 Fkp− for J2 Fkq± for J2

Tooth -
(rkt )2 − (rkm)2

r2
2c − r2

1c

FJ2,p -
(rkm)2 − (rkb )2

r2
2c − r2

1c

FJ2,p 0

Slot -
qk

θc

(rkt )2 − (rkm)2

r2
2c − r2

1c

F2,p -
qk

θc

(rkm)2 − (rkb )2

r2
2c − r2

1c

F2,p 0

Notes: F1,p = J1π[(r2c)
2 − (r1c)]

2θc, F2,p = J2π[(r2c)
2 − (r1c)]

2θc, r
k
t

and rkb is, respectively, the top and bottom radius of element k, and
rkm = (rkt + rkb )/2.

in Table 2.3. As listed, the values of Fkp− and Fkp+ are different since the upper
and bottom halves of an element are not symmetric as explained in section 2.5.3.
To verify the results, a path shown in Fig. 2.10(b) that partially encloses both
coils is considered. The mmfs of the four edges are calculated as:

mmfC1
= q′1J1π

∫ p′2

p′1

d
((
rkt
)2 − (rkb )2) = q′1J1π

[
(p′2)

2 − (p′1)
2
]
, (2.35)

mmfC2
= 0, (2.36)

mmfC3
= −q′2J2π

∫ p′2

p′1

d
((
rkt
)2 − (rkb )2) = −q′2J2π

[
(p′2)

2 − (p′1)
2
]
, (2.37)

mmfC4
= 0. (2.38)

As such, the total magnetomotive force is, mmfC1 +mmfC2−mmfC3−mmfC4 =

q′1J1π
[
(p′2)

2 − (p′1)
2
]
+q′2J2π

[
(p′2)

2 − (p′1)
2
]
, which exactly equals to the enclosed

current.
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Figure 2.11: Coupling of the MEC elements.

2.5.6 Magnetic field within MEC elements

After obtaining the reluctances and magnetomotive forces, the magnetostatic
problem in MEC regions is derived using the magnetic scalar potential. As men-
tioned in section 2.5.2, each MEC element has a potential node in the geometric
center. According to the Kirchoff’s law, the flux goes into the node should be
equal to the flux goes out. Assume the fluxes are predefined with the directions
shown in Fig. 2.11, the conservation of flux gives,

φkq− + φkp− − φkp+ − φkq+ = 0. (2.39)

To obtain the fluxes in equation (2.39), the coupling among MEC elements has
to be considered. For an element that is not at the boundaries of an MEC region,
it is connected to four adjacent elements that are respectively in the −q, +q, −p
and +p-directions, as shown in Fig. 2.11. Assume there are L elements in each
layer, the four adjacent elements are consequently numbered as k−1, k+1, k−L
and k + L, respectively. As a result, the fluxes in equation (2.39) are defined by
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the potential of element k and its four surroundings, that gives,

φkp− =
ψk−L − ψk + Fk−Lp+ + Fkp−

<k−Lp+ + <kp−
, (2.40)

φkp+ =
ψk − ψk+L + Fkp+ + Fk+L

p−

<kp+ + <k+L
p−

, (2.41)

φkq− =
ψk−1 − ψk + Fk−1

q+ + Fkq−
<k−1
q+ + <kq−

, (2.42)

φkq+ =
ψk − ψk+1 + Fkq+ + Fk+1

q−

<kq+ + <k+1
q−

, (2.43)

where ψk−L, ψk+L, ψk−1 and ψk+1 represent the potentials of element k − L,
k+L, k− 1 and k+ 1, respectively, and Fk−Lp± , Fk+L

p± , Fk−1
p± , Fk+1

p± , Fk−Lq± , Fk+L
q± ,

Fk−1
q± and Fk+1

q± represent the magnetomotive forces of elements k − L, k + L,
k − 1 and k + 1 in ±p- and ±q-directions, respectively.

With the obtained fluxes within an element, the magnetic flux density is calculated
by taking the mean values from the positive and negative directions, given as,

Bkq =
φkq− + φkq+

2Skpl
, (2.44)

Bkp =
φkp− + φkp+

2Skql
. (2.45)

If Skpl or Skql varies along the p- or q-directions, the linear interpolation is per-
formed.

2.5.7 Elements at the boundaries of MEC regions

Periodicity is used to describe the magnetic field for the elements at the periodic
boundaries of an MEC region. Elements located in the first column next to
the periodic boundaries, illustrated in dark gray in Fig. 2.12, are coupled to the
last column next to the periodic boundaries that are illustrated in light gray in
Fig. 2.12. This means, for element k that lies in the first column, the according
element k− 1 is assumed to locate in the last column, with the actual numbering
as k + L− 1. Similarly, for element k that lies in the last column, the according
element k+ 1 locates in the first column, with the actual numbering as k−L+ 1.
Such relationship is summarized as,

k − 1→ k + L− 1, (k in the first column), (2.46)

k + 1→ k − L+ 1, (k in the last column), (2.47)
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Figure 2.12: Illustration of element k located (a) in the first column next to the
periodic boundaries, and (b) in the last column next to the periodic
boundaries.

As a result, equations (2.42)-(2.43) become,

φkq− =
ψk+L−1 − ψk + Fk+L−1

q+ + Fkq−
<k+L−1
q+ + <kq−

, (k in the first column), (2.48)

φkq+ =
ψk − ψk−L+1 + Fkq+ + Fk−L+1

q−

<kq+ + <k−L+1
q−

, (k in the last column). (2.49)

On the other hand, if an element lies in the bottom layer of an MEC region, there
is no element k−L lies beneath, instead, the value of φkp− is obtained by the flux
density in the Fourier region below. Similarly, if an element lies in the top layer
of an MEC region, the value of φkp+ is defined by the flux density in the Fourier
region above. The detailed explanation is given in section 2.6.1.

2.6 Boundary conditions

The equations of the magnetic field within the regions are introduced in previous
sections. To solve the unknowns in the MEC and Fourier regions, boundary con-
ditions should be satisfied in both normal and tangential directions. For coupled
regions, the condition of continuous magnetic field has to be satisfied, while for
the boundaries at the edge of the domain, Neumann or Dirichlet boundary con-
ditions are applied. For illustration, the boundary conditions are defined for the
two examples in Fig. 2.1, as presented in Fig. 2.13.

In this section, the equations of the following boundary conditions are discussed
for the assumption that all the regions adopt the same coordinate system:

• Continuity between Fourier and MEC regions;

• Continuity between Fourier regions;
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Figure 2.13: The illustration of boundary conditions for two benchmark linear
actuators.
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Figure 2.14: Flux from the Fourier region for the MEC elements (a) in the bot-
tom layer, and (b) in the top layer.

• Dirichlet/Neumann boundary condition of Fourier or MEC regions;

2.6.1 Continuous boundary conditions between Fourier and
MEC regions

The magnetic field in Fourier regions and MEC regions are expressed in spatial
frequency and space domains, respectively. The field continuity are ensured by
equating normal magnetic flux density and tangential magnetic field strength.

Continuity of normal magnetic flux density

For the elements at the bottom or top boundaries of a MEC region, there are
no adjacent elements connected below or above, hence, the coupling among MEC
elements that are given by equations (2.40)-(2.41) is not valid directly due to the
lack of ψk−L and ψk+L, respectively. Consequently, it is not possible to derive
φkp− or φkp+ directly to form the flux conservation described in equation (2.39).
However, on the other side, the coupling with Fourier regions provides the extra
flux sources that can be used to describe the inward or outward flux for a MEC
element. To show this more intuitively, the flux sources from Fourier regions are
illustrated in Fig. 2.14. For the MEC elements in the bottom layer, the inward
flux is defined by the magnetic flux of the Fourier region below, while for the
MEC elements in the top layer, the top outward flux is defined by the Fourier
region above.

The magnetic flux from the Fourier region is obtained from the magnetic flux
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density and the corresponding surface area. For an element at the bottom or top
layer, the Fourier region provides a magnetic flux as,

φkp− =

∮
S

BFAb
p (q, hb)dS

k
ql, (k ∈ Z : k ∈ [1, L]), (2.50)

φkp+ =

∮
S

BFAt
p (q, hb)dS

k
ql, (k ∈ Z : k ∈ [K − L+ 1,K]), (2.51)

where hb is the p-coordinate where the coupling between Fourier and MEC regions
appears, FAb and FAt indicate the Fourier region below or above the MEC region,
L is the number of elements in one layer, and K is the total number of elements
in the region. As such, the MEC elements are numbered within the interval of [1,
L] for the bottom layer and are within [K − L+ 1, K] for the top layer.

Assume qk1 and qk0 are the q-coordinates of the left and right edges for MEC-
element k at the coupling interface, equations (2.50)-(2.51) can be rewritten as,
Cartesian:

φkp− = lkl

∫ qk1

qk0

BFAb
p (q, hb)dq, (k ∈ Z : k ∈ [1, L]),

φkp+ = lkl

∫ qk1

qk0

BFAt
p (q, hb)dq, (k ∈ Z : k ∈ [K − L+ 1,K]),

(2.52)

polar:

φkp− = lkl hb

∫ qk1

qk0

BFAb
p (q, hb)dq, (k ∈ Z : k ∈ [1, L]), (2.53)

φkp+ = lkl hb

∫ qk1

qk0

BFAt
p (q, hb)dq, (k ∈ Z : k ∈ [K − L+ 1,K]), (2.54)

axisymmetric:

φkp− = 2πhb

∫ qk1

qk0

BFAb
p (q, hb)dq, (k ∈ Z : k ∈ [1, L]),

φkp+ = 2πhb

∫ qk1

qk0

BFAt
p (q, hb)dq, (k ∈ Z : k ∈ [K − L+ 1,K]).

(2.55)

Substituting BFAb
p and BFAt

p in equations (2.52)-(2.55) by the expression of the
flux density in the Fourier region that is given by equation (A.13) in Appendix
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A, the magnetic flux is evaluated as,

φkp− =

Nh∑
n=0

{
− 1

ωn

[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
BFAb
psn (hb)Lkl

+
1

ωn

[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
BFAb
pcn (hb)Lkl

}
, (k ∈ Z : k ∈ [1, L]),

(2.56)

φkp+ =

Nh∑
n=0

{
− 1

ωn

[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
BFAt
psn (hb)Lkl

+
1

ωn

[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
BFAt
pcn (hb)Lkl

}
,

(k ∈ Z : k ∈ [K − L+ 1,K]),

(2.57)

where L
k
l is defined as,

Lkl =

 lkl , Cartesian,
hbl

k
l , polar,

2πhb, axisymmetric.
(2.58)

After defining the inward and outward magnetic flux from the Fourier region, the
continuity of normal magnetic flux density is realized by substituting φkp− or φkp+
into the flux conservation equation, this gives,

φkq− − φkq+ − φkp+ +

Nh∑
n=0

{
− 1

ωn

[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
BFAb
psn (hb)Lkl

+
1

ωn

[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
BFAb
pcn (hb)Lkl

}
= 0, (k ∈ Z : k ∈ [1, L]),

(2.59)

φkq− − φkq+ + φkp− −
Nh∑
n=0

{
− 1

ωn

[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
BFAt
psn (hb)Lkl

+
1

ωn

[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
BFAt
pcn (hb)Lkl

}
= 0,

(k ∈ Z : k ∈ [K − L+ 1,K]).

(2.60)
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Continuity of tangential magnetic field strength

Different from the boundary condition of normal continuity that converts the
magnetic field in the Fourier region into the space domain, the continuity in the
tangential direction is realized by converting the magnetic field strength in the
MEC region into the spatial frequency domain.

It is, first, assumed that the q-directional magnetic flux density and magnetization
remains constant within a MEC element, such that the value at the top or bottom
edge of an element equals to the value at the center. Accordingly, the q-directional
magnetic field strength at the element edges is represented by the value at the
center as well.

Using the constitutive relation equation (2.4), the magnetic field strength for
element k, Hk

q , can be written in terms of the value of Bkq , giving,

Hk
q =

1

µ0µkr
Bkq −

1

µkr
Mk
q . (2.61)

Substituting the expression of Bkq by equation (2.44), Hk
q is converted to,

Hk
q =

φkq− + φkq+
2µ0µkrS

k
pl

− 1

µkr
Mk
q . (2.62)

The values of Hk
q in the bottom or top MEC layers should be converted into

spatial frequency domain with the same harmonic orders as in the Fourier region.
SinceHk

q is assumed to be constant within each element, the waveform of magnetic
field strength is actually staircase-shaped in a layer. Therefore, the conversion is
derived as,

HMEC
qsn =

2

τper

∫ τper

0

Hk
q sin (ωnq)dq =

2

τper

∑
k

∫ qk1

qk0

Hk
q sin (ωnq) dq,

= − 2

ωnτper

∑
k

Hk
q

[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
, (n ∈ Z : n ∈ [1, Nh]),

(2.63)

HMEC
qcn =

2

τper

∫ τper

0

Hk
q cos (ωnq)dq =

2

τper

∑
k

∫ qk1

qk0

Hk
q cos (ωnq) dq

=
2

ωnτper

∑
k

Hk
q

[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
, (n ∈ Z : n ∈ [1, Nh]),

(2.64)

where τper is the width of periodicity. The obtained HMEC
qsn and HMEC

qcn should
be kept equal to all the corresponding harmonics of the magnetic field strength in
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Hq

q
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Staircase

Linear interpolation

MEC

Figure 2.15: Two methods, i.e., staircase shaped and linear interpolation, for
expressing H field in the q-direction.

the Fourier region. By substituting equation (2.62) into equations (2.63)-(2.64),
this gives,

1

µFAb
r µ0

BFAb
qsn −

1

µFAb
r

MFAb
qsn = − 2

ωnτper

L∑
k=1

(
φkq− + φkq+
2µ0µkrS

k
pl

− 1

µkr
Mk
q

)
[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
, (n ∈ Z : n ∈ [1, Nh]),

(2.65)

1

µFAb
r µ0

BFAb
qcn −

1

µFAb
r

MFAb
qcn =

2

ωnτper

L∑
k=1

(
φkq− + φkq+
2µ0µkrS

k
pl

− 1

µkr
Mk
q

)
[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
, (n ∈ Z : n ∈ [1, Nh]),

(2.66)

for the bottom layer, and

1

µFAt
r µ0

BFAt
qsn −

1

µFAt
r

MFAt
qsn = − 2

ωnτper

K∑
k=K−L+1

(
φkq− + φkq+
2µ0µkrS

k
pl

− 1

µkr
Mk
q

)
[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
, (n ∈ Z : n ∈ [1, Nh]),

(2.67)

1

µFAt
r µ0

BFAt
qcn −

1

µFAt
r

MFAt
qcn =

2

ωnτper

K∑
k=K−L+1

(
φkq− + φkq+
2µ0µkrS

k
pl

− 1

µkr
Mk
q

)
[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
, (n ∈ Z : n ∈ [1, Nh]),

(2.68)

for the top layer, where φkq− and φkq+ are evaluated by equations (2.42)-(2.43).

In addition to defining a staircase-shaped magnetic field strength, it is possible to
use linear interpolation, the difference is shown in Fig. 2.15. The magnetic field
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strength with the linear interpolation is written as,

Hk
q (q) =

Hk
q −Hk−1

q

qk1 − qk−1
0

2


(
q − qk−1

0 + qk−1
1

2

)
+Hk−1

q ,

(
q ∈ R : q ∈

[
qk0 ,

qk0 + qk1
2

])
,

(2.69)

Hk
q (q) =

Hk+1
q −Hk

q

qk+1
1 − qk0

2

(q − qk0 + qk1
2

)
+Hk

q ,

(
q ∈ R : q ∈

[
qk0 + qk1

2
, qk1

])
.

(2.70)

instead of equation (2.62). For MEC regions with adequate elements, the results
of using these two methods are close.

2.6.2 Continuous boundary conditions between Fourier re-
gions

Between two Fourier regions, continuity of the normal magnetic flux density and
tangential magnetic field strength gives,

Bi
p (hb, q) = Bi+1

p (hb, q) , (q ∈ R : q ∈ [0, τper]), (2.71)

H i
q (hb, q) = H i+1

q (hb, q) , (q ∈ R : q ∈ [0, τper]), (2.72)

where hb is the p-coordinate of the boundary, and i and i + 1 imply two adjacent
Fourier regions. Using the constitutive relation described in equation (2.4), the
magnetic field strength in equation (2.72) is written in terms of the magnetic flux
density,

1

µ0µi
r

Bi
q (hb, q)−

1

µi
r

M i
q (hb, q)

=
1

µ0µ
i+1
r

Bi+1
q (hb, q)−

1

µi+1
r

M i+1
q (hb, q) , (q ∈ R : q ∈ [0, τper]).

(2.73)

Since the magnetic field in Fourier regions is formulated in the spatial frequency
domain, and adjacent Fourier regions are assumed to have the same spatial fre-
quencies, the continuity defined by equations (2.71) and (2.73) implies equating
the coefficients for both sine and cosine functions. Hence, equation (2.71) is con-
verted to,

Bi
psn(hb) = Bi+1

psn(hb), (n ∈ Z : n ∈ [1, Nh]), (2.74)

Bi
pcn(hb) = Bi+1

pcn(hb), (n ∈ Z : n ∈ [1, Nh]), (2.75)
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and equation (2.73) is converted to,

1

µ0µi
r

Bi
qsn (hb)−

1

µi
r

M i
qsn (hb)

=
1

µ0µ
i+1
r

Bi+1
qsn (hb)−

1

µi+1
r

M i+1
qsn (hb) , (n ∈ Z : n ∈ [1, Nh]),

(2.76)

1

µ0µi
r

Bi
qcn (hb)−

1

µi
r

M i
qcn (hb)

=
1

µ0µ
i+1
r

Bi+1
qcn (hb)−

1

µi+1
r

M i+1
qcn (hb) , (n ∈ Z : n ∈ [1, Nh]).

(2.77)

2.6.3 Dirichlet/Neumann boundary conditions

In addition to the continuity that applies at the interface of regions, the noncon-
tinuous boundary conditions are applied at the edges of the geometric domain,
which implies that the magnetic field vanishes to zero or only tangential field ex-
ists. The implementation of noncontinuous boundary conditions are different for
Fourier and MEC regions, and are explained separately in the subsequent content.

Fourier regions

For a Fourier region with a boundary located at the edge of a geometric domain,
e.g. p → ∞, the magnetic field vanishes to zero, also known as the Dirichlet
boundary condition. Under this circumstance, both the flux density in p- and
q-directions are zero, which gives,

Bi
p = 0, (2.78)

Bi
q = 0. (2.79)

Equations (2.78)-(2.79) imply that the sum of the Fourier series is zero at p→∞,
which can be interpreted that the coefficients for sine and cosine functions are all
zero for all harmonics, this gives,

Bi
psn

∣∣
p→∞ = 0, (n ∈ Z : n ∈ [1, Nh]), (2.80)

Bi
pcn

∣∣
p→∞ = 0, (n ∈ Z : n ∈ [1, Nh]), (2.81)

Bi
qsn

∣∣
p→∞ = 0, (n ∈ Z : n ∈ [1, Nh]), (2.82)

Bi
qcn

∣∣
p→∞ = 0, (n ∈ Z : n ∈ [1, Nh]). (2.83)

Another type of non-continuous boundary condition that can be applied at the
edge of Fourier regions is the Neumann boundary condition, i.e., the tangential
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Figure 2.16: Noncontinuous boundary conditions for elements located at (a) the
bottom of the geometric domain, and (b) the top of the geometric
domain.

magnetic field strength is zero. Using the constitutive relation equation in (2.4),
this gives,

Bi
q − µ0M

i
q = 0. (2.84)

Similarly, equation (2.84) is interpreted that all the sine and cosine terms are zero,
which means,

Bi
qsn(hb)− µ0M

i
qsn(hb) = 0, (n ∈ Z : n ∈ [1, Nh]), (2.85)

Bi
qcn(hb)− µ0M

i
qcn(hb) = 0, (n ∈ Z : n ∈ [1, Nh]). (2.86)

MEC regions

For a MEC region, it is not feasible to physically have an edge that is approach-
ing p→∞, since it results in a MEC region with an infinite number of elements.
However, the zero-flux boundary condition implies that the flux is reserved within
the domain and no flux flows outside the region, therefore, a Neumann bound-
ary condition can be applied instead. Consequently, no flux exits in positive or
negative p-directions for the top or bottom layer, respectively, as illustrated in
Fig. 2.16. Using the flux conservation, the following relationship is indicated,

φkq− − φkp+ − φkq+ = 0, (k ∈ Z : k ∈ [1, L]), (2.87)

φkq− + φkp− − φkq+ = 0, (k ∈ Z : k ∈ [K − L+ 1,K]). (2.88)

Similarly, the zero-flux boundary condition for the positive or negative q-directions
are,

φkq− + φkp− − φkp+ = 0, (2.89)

φkp− − φkp+ − φkq+ = 0. (2.90)
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Figure 2.17: The schematic graph of a geometry (a) without displacement, and
(b) with a displacement of one element width.

2.7 Motion

This section illustrates the modeling of relative motion that can occur between
Fourier and MEC regions, which is a common situation in the modeling of electric
machines. For example, in a rotary machine, the rotation leads to a q-directional
displacement between the rotor (MEC region) and the airgap (Fourier region).
Generally, any motion in 2D modeling can be decomposed respectively by move-
ments in p- and q-directions. The modeling of motion in the p-direction is real-
ized by varying the value of p-coordinate of the coupling interface, i.e., hb in the
boundary conditions. The modeling of motion in the q-direction is explained in
the following.

2.7.1 Motion-integrated tangential boundary conditions

There are generally two methods to model the q-directional movement:

• Circulate the column of MEC elements while the mathematical expression
of the boundary condition in section 2.6.1 is not changed;

• Integrate motion into the boundary conditions while the network of MEC
elements remains the same.

An example is used to illustrate the principle of the first method in Fig. 2.17, where
two MEC regions are at the top and bottom of a Fourier region, respectively. The
initial position is shown in Fig. 2.17(a), and in Fig. 2.17(b) MEC region II moves
in the positive q-direction with one element width. It is equivalent to the situation
that the reluctance network of MEC region II circulates one column to the right,
i.e., column 1, 2, · · · , L − 1, L in Fig. 2.17(a) is translated to column 2, 3,
· · · , L, 1 in Fig. 2.17(b). The drawback of this method lies in the limitation of
moving distance, due to the link between displacement and element size, that the
allowable motion has to be multiple of the mesh size.
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Figure 2.18: The schematic graph of a geometry modeled in stator and mover
coordinate systems, which have a displacement of ∆q in between.

The second method directly integrates the motion into the boundary conditions.
The aim is to allow free movement of MEC regions in the q-direction without
reconstructing the MEC network. To achieve this goal, static and moving geome-
tries are separately modeled in stator and mover coordinate systems, while the
former coordinate system is defined as fixed in space and the latter one moves
in the q-direction. Still using the previous example, MEC region I and Fourier
region I are now modeled in the stator coordinate system, while MEC region II
is modeled in the mover coordinate system as illustrated in Fig. 2.18. The ori-
gins of the two coordinate systems are displaced with a distance of ∆q. For the
generality of the explanations in the following content, the terms in the stator
coordinates are written with ‘s’ in the subscript and are written with ‘m’ for the
mover coordinates.

For the tangential continuous boundary condition, the consistency of magnetic
field strength should be applied to the sets of Fourier coefficients in the same
coordinate system [6]. As Fourier region I and MEC region II adopt different co-
ordinate systems, the conversion of Fourier series from stator to mover coordinate
system for Fourier region I is required. The following steps are taken:

1. The magnetic field strength of MEC region II is expressed as sine and cosine
Fourier series, HMECII

qsn,m and HMECII
qcn,m , in the mover coordinate system by

using equations (2.63)-(2.64).

2. Fourier terms for Fourier region I are converted from the stator coordinate
system to the mover coordinate system using the relationship of q = q′+∆q.
It means for a point that is located at q′ in the mover coordinate system,
the corresponding position is (q′ + ∆q) in the stator coordinate system. As
a result, the value of magnetic field strength of Fourier region I is able to
be described as,

HFAI
q,s =

Nh∑
n=1

[
HFAI
qsn,s sin (ωn (q′ + ∆q)) +HFAI

qcn,scos (ωn (q′ + ∆q))
]
, (2.91)
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in the stator coordinate system, and is

HFAI
q,m =

Nh∑
n=1

[
HFAI
qsn,m sin (ωnq

′) +HFAI
qcn,m cos (ωnq

′)
]
, (2.92)

in the mover coordinate system. The value of magnetic field strength should
be the same regardless the coordinate systems. This leads to,

Nh∑
n=1

[
HFAI
qsn,s sin (ωn (q′ + ∆q)) +HFAI

qcn,scos (ωn (q′ + ∆q))
]

=

Nh∑
n=1

[
HFA1
qsn,m sin (ωnq

′) +HFAI
qcn,m cos (ωnq

′)
]
.

(2.93)

By equating every harmonic, equation (2.93) becomes,

HFAI
qsn,s sin (ωn (q′ + ∆q)) +HFAI

qcn,s cos (ωn (q′ + ∆q))

= HFAI
qsn,m sin (ωnq

′) +HFAI
qcn,m cos (ωnq

′) , (n ∈ Z : n ∈ [1, Nh]).
(2.94)

Since equation (2.94) is valid for any arbitrary q′, the following sets of
equations are derived,

HFAI
qsn,m = HFAI

qsn,s cos (ωn∆q)−HFAI
qcn,s sin (ωn∆q) , (2.95)

HFAI
qcn,m = HFAI

qsn,s sin (ωn∆q) +HFA1
qcn,s cos (ωn∆q) . (2.96)

3. Equality is ensured for the magnetic field strength for Fourier region I and
MEC region II in the mover coordinate system,

HFAI
qsn,m = HMECII

qsn,m , (2.97)

HFAI
qcn,m = HMECII

qcn,m . (2.98)

By using the above three steps, the tangential boundary conditions in section 2.6.1
are converted to:(

1

µFAt
r µ0

BFAt
qsn −

1

µFAt
r

MFAt
qsn

)
cos (ωn∆q)−

(
1

µFAt
r µ0

BFAt
qcn −

1

µFAt
r

MFAt
qcn

)
sin (ωn∆q) = − 2

ωnτper

K∑
k=K−L+1

(
φkq− + φkq+
2µ0µrSkpl

− 1

µkr
Mk
q

)[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
,

(n ∈ N : n ∈ [1, Nh]),

(2.99)

(
1

µFAt
r µ0

BFAt
qsn −

1

µFAt
r

MFAt
qsn

)
sin (ωn∆q) +

(
1

µFAt
r µ0

BFAt
qcn −

1

µFAt
r

MFAt
qcn

)
cos (ωn∆q) =

2

ωnτper

K∑
k=K−L+1

(
φkq− + φkq+
2µ0µrSkpl

− 1

µkr
Mk
q

)[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
,

(n ∈ N : n ∈ [1, Nh]),
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(2.100)

for the MEC region located below the Fourier region, and are(
1

µFAb
r µ0

BFAb
qsn −

1

µFAb
r

MFAb
qsn

)
cos (ωn∆q)−

(
1

µFAb
r µ0

BFAb
qcn −

1

µFAb
r

MFAb
qcn

)
sin (ωn∆q) = − 2

ωnτper

L∑
k=1

(
φkq− + φkq+
2µ0µrSkpl

− 1

µkr
Mk
q

)[
cos
(
ωnq

k
1

)
− cos

(
ωnq

k
0

)]
,

(n ∈ N : n ∈ [1, Nh]),

(2.101)

(
1

µFAb
r µ0

BFAb
qsn −

1

µFAb
r

MFAb
qsn

)
sin (ωn∆q) +

(
1

µFAb
r µ0

BFAb
qcn −

1

µFAb
r

MFAb
qcn

)
cos (ωn∆q) =

2

ωnτper

L∑
k=1

(
φkq− + φkq+
2µ0µrSkpl

− 1

µkr
Mk
q

)[
sin
(
ωnq

k
1

)
− sin

(
ωnq

k
0

)]
,

(n ∈ N : n ∈ [1, Nh]).

(2.102)

for the MEC region located at the top of the Fourier region.

2.7.2 Motion-integrated normal boundary conditions

For element k, assuming the left and right edges are located at qk0 and qk1 in the
mover coordinate system, the corresponding edges are (qk0 + ∆q) and (qk1 + ∆q) in
the stator coordinate system. Flux flows from or to the Fourier region becomes,

φkp− =

∫ qk1 +∆q

qk0 +∆q

BFAb
p (q, hb)Lkl dq, (2.103)

φkp+ =

∫ qk1 +∆q

qk0 +∆q

BFAt
p (q, hb)Lkl dq. (2.104)

Consequently, the normal boundary conditions, equations (2.59)-(2.60), are re-
written as,

φkq− − φkq+ − φkp+ +

Nh∑
n=0

{
− 1

ωn

[
cos
(
ωn
(
qk1 + ∆q

))
− cos

(
ωn
(
qk0 + ∆q

))]
BFAb
psn (hb)Lkl +

1

ωn

[
sin
(
ωn
(
qk1 + ∆q

))
− sin

(
ωn
(
qk0 + ∆q

))]
BFAb
pcn (hb)Lkl

}
= 0, (k ∈ Z : k ∈ [1, L]),

(2.105)
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Figure 2.19: B-H curve of the iron.

φkq− − φkq+ + φkp− −
Nh∑
n=0

{
− 1

ωn

[
cos
(
ωn
(
qk1 + ∆q

))
− cos

(
ωn
(
qk0 + ∆q

))]
BFAt
psn (hb)Lkl +

1

ωn

[
sin
(
ωn
(
qk1 + ∆q

))
− sin

(
ωn
(
qk0 + ∆q

))]
BFAt
pcn (hb)Lkl

}
= 0, (k ∈ Z : k ∈ [K − L+ 1,K]).

(2.106)

2.8 Modeling of nonlinear magnetic materials

The modeling of nonlinear materials is introduced in this section, and the goal is
to:

• Integrate the nonlinear B-H relationship into the expression of reluctances
and mmf sources of MEC elements;

• Use an iterative algorithm to identify the actual operating point on the B-H
curve.

Assume the soft magnetic material follows a nonlinear B-H curve that is shown
in Fig. 2.19. For a random working point C, the expression of theB-H relationship
can be locally linearized by a tangent line. By using the constitutive relation, this
gives,

HC =
BC

µ0∆µr,iron
− 1

∆µr,iron

Br,iron
µ0

, (2.107)

where ∆µr,iron is the incremental relative permeability defined by the slope of
the tangent line, and Br,iron is the remanent magnetic flux density defined by the
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intercept. The term ‘Br,iron/µ0’ in this equation is possible to be analogous to
the magnetization of a permanent magnet [12].

The orientation of such ‘magnetization’ is decomposed into pq-directions. Tak-
ing into account the fact that the ‘magnetization’ is positively correlated to the
flux density (the higher the flux density, the higher the value of Br,iron), the
Pythagorean theorem is used for the decomposition, which derives,

~Mp,iron =
Bp√

B2
p +B2

q

Br,iron
µ0

~p, (2.108)

~Mq,iron =
Bq√

B2
p +B2

q

Br,iron
µ0

~q. (2.109)

This indicates that apart from the permanent magnet and current, the nonlin-
ear B-H curve adds another mmf source to MEC elements. The values of the
‘magnetization’ in equations (2.108)-(2.109) are substituted into equations (2.21)-
(2.24) to derive the corresponding magnetomotive force, resulting in the following
expressions,

Fkp− =
~Mk
p,ironl

k
p−

∆µkr,iron
, (2.110)

Fkp+ =
~Mk
p,ironl

k
p+

∆µkr,iron
, (2.111)

Fkq− =
~Mk
q,ironl

k
q−

∆µkr,iron
, (2.112)

Fkq+ =
~Mk
q,ironl

k
q+

∆µkr,iron
. (2.113)

Additionally, the value of ∆µkr,iron is used as the relatively permeability in the
formulation of reluctances.

The saturation problem is solved iteratively using the flowchart as shown in
Fig. 2.20. First, the model is solved with initial values of ∆µr,iron and Br,iron,
which are assumed for un-saturated iron, e.g., ∆µr,iron = 2000 and Br,iron = 0.
In each iterative step, the reluctances and mmfs have to be re-calculated using
the updated ∆µr,iron, ~Mp,iron and ~Mq,iron. Values of Bp and Bq are derived by
solving the boundary conditions with the newly defined MEC elements. After-
wards, ∆µr,iron, ~Mp,iron and ~Mq,iron are updated corresponding to the newly
obtained Bp and Bq. Various global convergence conditions are applicable, e.g.,
difference of force or torque between two adjacent iterative steps is smaller than
a certain level, and this is set to be 0.2% in this thesis.

As an alternative, Newton Ralphson method, which is based on a first-order Taylor
expansion of the residual, is able to allow quadratic convergence to the solution.
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Set initial ∆µr,iron (e.g. 2000), Br,iron=0

Update ∆µr,iron, ~Mp,iron, ~Mq,iron

Check convergence condition

Postprocessing

MEC: calculate reluctances

Derive Bp, Bq

Fourier region: calculate

Solve boundary conditions

Yes

No

coefficient in Fourier terms& mmf

Figure 2.20: Flowchart of the HAM to include saturation.

This method can further accelerate the convergence, and is valuable for transient
analysis [47].

2.9 Finite element verification

To verify the hybrid analytical modeling technique, it is applied to three bench-
mark examples in Matlab for the three coordinate systems. The first example
considers a non-periodic E-core structure in the Cartesian coordinate system and
shows how the non-periodic geometry is converted into a periodic problem in the
HAM. The second example considers a 12/8 (stator/rotor pole ratio) switched
reluctance machine (SRM) in the polar coordinate system with displacement.
This verifies the incorporation of motion in the HAM. The third example models
a tubular permanent magnet machine (TPMA) in the axisymmetric coordinate
system that has both the excitation of permanent magnet and current. All three
examples use the soft magnetic material that has the nonlinear B-H curve shown
in Fig. 2.19.
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Figure 2.21: Geometry of the benchmark example in the Cartesian coordinate
system.

2.9.1 Cartesian coordinate system

The HAM is aiming for periodic geometries, however, the modeling of a non-
periodic geometry is still possible. One way is to apply Newmann boundary
conditions at the q-directional borders of the geometry. A 2D non-periodic E-
core reluctance actuator with permanent magnet shown in Fig. 2.21 is given as
an example, and the dimensions are provided in Table 2.4.

MEC regions I and II are used to model the bottom and top iron parts, respec-
tively. Fourier regions I-III are used for the air regions, where Fourier region II
models the airgap, and I and III represent the top and bottom air regions until
infinity.

Due to the fringing effect in the end of the airgap, sufficient air is included in
the model on the left and right side of the actuator. It is assumed that at the
left and right edges of the geometric domain, Neumann boundary conditions are
applicable, i.e., Hx = 0|x=0 or τper

. This is realized by setting infinite reluctances
in the −x- and +x-directions for the elements that are located next to the left
and right edges, respectively.

The flux density distribution calculated by HAM is shown in Fig. 2.22(a), while
the results obtained by FEM are shown in Fig. 2.22(b), as can be seen, the two
figures show a very good agreement. For better comparison, the magnitude of the
flux density is compared at every location for the FEM and HAM results, using,

|∆B| = |BFEM −BHAM | . (2.114)

The distribution of |∆B| is shown in Fig. 2.22(c). The overall discrepancy is small,
and most of the remaining error concentrates at the corners of the teeth. The



2.9: Finite element verification 51

(a)

(b)

(c)

Figure 2.22: Magnetic flux density distribution for the E-core structure shown in
Fig. 2.21: (a) magnitude obtained by HAM, (b) magnitude obtained
by FEM, and (c) the difference of magnitude obtained by HAM and
FEM.
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Table 2.4: Dimensions and material properties of the benchmark example in the
Cartesian coordinate system.

Parameter Description value Unit
hpm height of PM 10 mm
hy1 height of the bottom iron 6 mm
g airgap length 0.5 mm
ht1 height of the side teeth 15 mm
ht2 height of the middle tooth 2 mm
hy2 height of the top yoke 5 mm
wy1 width of the bottom iron 55 mm
wt1 width of the side tooth 10 mm
ws width of the slot 10 mm
wt2 width of the middle tooth 15 mm
τper total width 65 mm
lsk stack length 50 mm
Brem Remanence of PM 1.2 T
µr,pm Relative permeability of PM 1.05 -

agreement in flux density indicates that the representation of nonlinear material
property in MEC regions as well as the iterative algorithm for saturation both
function well.

2.9.2 Polar coordinate system

The second benchmark example is a 12/8 SRM in the polar coordinate system.
Since the periodicity is 180◦, half of the machine is modeled, as shown in Fig. 2.23.
The stator and mover are modeled by meshed MEC, while the air regions and
non-magnetic shaft are modeled as Fourier regions. The dimensions of the SRM
are listed in Table 2.5. Notice that the inner and outer tooth arcs of the rotor, αri
and αro, are not equal, such that the equations for the regular-shaped reluctances
are not valid. Instead, equations (2.17)-(2.20) are used to calculate reluctances
for the rotor.

The rotor position shown in Fig. 2.23 is the position corresponding to ∆θ = 0◦. To
verify the motion-integrated boundary conditions, it is intended to apply the HAM
to calculate the magnetic field when the rotor rotates 3◦ counterclockwise without
remshing the MEC regions. The magnetic flux density distribution obtained by
the HAM and FEM is respectively shown in Figs. 2.24(a) and (b), and as can be
seen, the results of the two methods are in good agreement. For ‘MEC region II’
in the HAM, the angles of the MEC elements vary along each column of the mesh
grid, since the rotor tooth arcs vary along the r-direction. However, in the post-
processing of FEM, evenly-distributed grids are defined to export the results.
The dimensions of the mesh grid in the HAM cannot be directly implemented
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Figure 2.23: Geometry of the benchmark example in the polar coordinate system.

Table 2.5: Dimensions and current densities of the benchmark example in the
polar coordinate system.

Parameter Description value Unit
rsh Shaft radius 20.5 mm
hry Rotor yoke height 11 mm
hrt Rotor tooth height 14 mm
g Airgap length 0.5 mm
hst Stator tooth height 14 mm
hsy Stator yoke height 10 mm
αs Stator tooth arc 16 deg.
αro Rotor tooth outer arc 18 deg.
αri Rotor tooth inner arc 26 deg.
τper Width of periodicity 180 deg.
JA Current density of phase A 10 A/mm2

JB Current density of phase B 0 A/mm2

JC Current density of phase C 0 A/mm2
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Table 2.6: Dimensions, material properties and current densities of the bench-
mark example in the axisymmetric coordinate system.

Parameter Description value Unit
hpm Height of PM 5 mm
g Airgap length 0.5 mm
ht Height of stator teeth 3 mm
hy Height of stator yoke 2 mm
wpm Magnet width 15 mm
wi Iron width 15 mm
∆m Mover position 4 mm
wt Stator teeth width 8 mm
ws Stator slot width 12 mm
τper Width of periodicity 60 mm
Brem Remanence of PM 1.2 T
µr,pm Relative permeability of PM 1.05 -
JA Current density of phase A 0 A/mm2

JB Current density of phase B 15 A/mm2

JC Current density of phase C -15 A/mm2

in the FEM, hence, |∆B| is not presented for this example. To further prove
the accuracy of HAM, the flux density in the center of the airgap is shown in
Fig. 2.24(c), and in overall, good agreement is visible. These results reveals the
validity of the method for incorporating motion in the HAM as the rotor is rotated
3 degrees counterclockwise.

2.9.3 Axisymmetric coordinate system

The third example is a tubular permanent magnet actuator in the axisymmetric
coordinate system. The machine topology is shown in Fig. 2.25 and the dimensions
are listed in Table 2.6. In this example, magnetic sources of both permanent
magnet and current exist. The magnitude of the flux density obtained by HAM,
the magnitude obtained by FEM, and the difference between HAM and FEM is
shown in Figs. 2.26(a), (b) and (c), respectively.

In general, an overall good agreement is observed in the flux density distribution,
the error again are mainly located at the edges of the teeth. On the other hand,
different methods of distributing current related mmf sources are used in the
benchmark examples, the mmf for the switched reluctance machine is arranged
merely in the q-direction, and for the tubular actuator, it is arranged in merely the
p-direction. The match of results in both examples indicates that both methods
are valid.

Furthermore, for a more detailed numerical comparison, the force/torque com-
ponents obtained by HAM and FEM are compared, and the results are listed in
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(a)

(b)

(c)

Figure 2.24: Magnetic flux density for the SRM: (a) the magnitude obtained by
HAM, (b) the magnitude obtained by FEM, and (c) normal and
tangential components in the center of the airgap.
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Figure 2.25: Geometry of the benchmark example in the axisymmetric coordi-
nate system.

(a)

(b)

(c)

Figure 2.26: Magnetic flux density for the tubular permanent magnet actuator:
(a) magnitude obtained by HAM, (b) magnitude obtained by FEM,
and (c) the difference of magnitude obtained by HAM and FEM.
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Table 2.7: The force/torque of the benchmark examples obtained by HAM and FEM.

Cartesian: Fy (N) Polar: T (Nm) Axisymmetric: Fz (N)

HAM 460.42 13.47 9.90

FEM 465.25 13.63 9.85

Difference (%) 1.04 1.17 0.51

Table 2.8: Simulation parameters of the benchmark examples using HAM and FEM.

Cartesian Polar Axisymmetric

Parameters HAM FEM HAM FEA HAM FEA

Nh 10/65/10 - 10/90/10 - 10/130/10 -

Mesh nodes 4550 27001 9360 97961 5760 17074

Total 4890 30593 9760 97961 6320 17074

Note: The values of Nh are listed sequentially for Fourier region I/Fourier re-
gion II/Fourier region III for each benchmark example. For the benchmark exam-
ples in the polar and axisymmetric coordinate systems, two sets of Fourier series,
an and cn in equations (A.22)-(A.25), are omitted for Fourier region I, while bn and
dn are omitted for Fourier region III, the reasons are given section 3.3.4.

Table 2.7. The difference are small for all the three benchmark examples.

If the model contains a lot of irregular-shaped geometric details for MEC regions,
the calculation of the reluctance network is complicated and the accuracy is lim-
ited. Additionally, for the situations when flux density changes dramatically, the
allocation of element size has to be carefully considered. For example, when sta-
tor and rotor teeth start to align in the SRM, the value of flux density varies
significantly close to the vertex of the teeth, consequently, a relatively dense mesh
is desired.

2.9.4 Simulation parameters

The results above are derived with the following simulation parameters given in
Table 2.8, with respect to the harmonic orders and total number of elements. As
can be seen, the total number of unknowns in HAM is much smaller than the
number of mesh nodes in FEM. However, to ensure the accuracy of FEM results
that perform as references, the FEM is densely meshed, even over-meshed than
required, therefore, the comparison listed in Table 2.8 is not fair enough.

To compare the computation effort of these two methods more convincingly, the
influence of unknowns or number of nodes is investigated. The forces in normal
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and tangential directions of the example in the Cartesian coordinate system, Fx
and Fy, are used as indications. In FEM, normally two or three layers of mesh
elements are included in the airgap to ensure the accuracy. Herein the reference
mesh grid in FEM is obtained when the mesh size in the airgap is kept to half the
airgap length, while in other parts, the mesh size is set to be 1 mm, as such, the
reference grid has the number of mesh nodes at ‘30593’. To reduce this number,
the element is gradually reduced in FEM while the airgap mesh size remains. In
HAM, both the mesh density and the number of harmonic order increases, such
that the value of unknowns finally reaches ‘23990’.

The relationship between the force components and the unknowns/mesh nodes
is shown in Fig. 2.27. The variation of Fy is illustrated in percentage. However,
the theoretic value of Fx is zero due to the symmetric geometry, hence, it is
illustrated in ‘Newton’ instead of percentage. As can be seen, the variation of
Fy and Fx are both higher in FEM than in HAM when the number of nodes is
smaller than 1.5×104. This is attributed to the small mesh in the airgap of FEM,
which not only contributes a lot of mesh nodes by itself, but also significantly
limits the mesh size adjacent to it. Therefore, in order to reach the same level
of nodes as in the HAM, the mesh size in the FEM increases tremendously away
from the airgap, and consequently, some are even ill-shaped as shown in Fig. 2.28.
Apart from the concerns about the number of nodes/unknowns, the sparsity of
the matrix is another argument where the HAM brings the benefit. The meshed-
MEC matrix that is built upon a single potential node within each element, is
potentially sparser than the matrix of FEM that built with second-order triangular
elements. As a result, less computational load is required for the sparse system
of HAM.

Similar analysis is also performed for a longer airgap length, i.e., g = 8 mm, and
the comparison results of Fx and Fy obtained by the HAM and FEM are shown
in Fig. 2.29(a) and (b), respectively. The mesh size of the airgap in FEM can
be relatively large in this situation, hence, does not constrain the mesh size near
the airgap anymore. On the contrary, the shortcoming of conformal meshing,
which forces the same number of mesh elements in the x-direction for all the
mesh layers, is highlighted in the HAM for such a long airgap length. To reach
a number of MEC elements as low as 2000, a coarse mesh has to be constructed
near the airgap, which reduces the accuracy.

The above comparison shows the potential of HAM for less computational in-
tensity for the geometry with a small airgap, which is normally the situation of
electric machines. Such possibility of using less numbers of elements is beneficial
for the initial sizing and optimization of the electric machine design. Moreover,
as aforementioned, the current adopted conformal meshing limits the MEC size
to some extent, hence, some parts of the structure are over-meshed, e.g., stator
yoke in the model. If non-conformal meshing is implemented in the HAM, the
essential number of MEC elements can be further reduced.
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(a)

(b)

Figure 2.27: Airgap length is 0.5 mm: (a) variation of Fy in percentage regarding
the nodes/unknowns in FEM/HAM, and (b) values of Fx in Newton
regarding the number of nodes/unknowns in FEM/HAM.

Figure 2.28: The FEM mesh grid for the E-core actuator with 0.5 mm airgap.
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(a)

(b)

Figure 2.29: Airgap length is 8 mm: (a) variation of Fy in percentage regarding
the nodes/unknowns in FEM/HAM, and (b) values of Fx in Newton
regarding the number of nodes/unknowns in FEM/HAM.
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2.10 Summary and conclusions

A 2D generalized hybrid analytical modeling technique is given for the derivation
of flux density distribution, that is capable to include nonlinear magnetic material
property. The model combines Fourier modeling, which is accurate and fast, with
meshed magnetic equivalent circuits, which have unique permeability in mesh
elements and therefore, can model local saturation.

Two-dimensional geometries are divided into regions in the normal direction, de-
pending on the variation of magnetic permeability and presence of permanent
magnets or coils. Generally, only regions with homogeneous permeability (or neg-
ligible variation of permeability) are modeled using Fourier modeling. The meshed
MEC, on the other hand, is used for regions with nonlinear materials. Within
each Fourier region, the magnetic field is derived by magnetostatic equation in
terms of the magnetic vector potential. For each MEC region, the magnetic field
is expressed by the scalar potential on the basis of reluctances and mmf sources of
MEC elements, where the current related mmf sources is emphasized to fulfill the
Ampere’s law. As such, the magnetic field is given by sets of unknown coefficients,
and the solution is derived by solving continuous and non-continuous boundary
conditions. To avoid re-meshing caused by geometric movement, the motion is
directly integrated in the boundary conditions that allows free movement in both
normal and tangential directions. Furthermore, saturation is considered by ap-
plying locally linearized B-H relationship to each MEC element, as well as the
iterative algorithms that updates the local B-H relationship each time.

The generalized HAM is applied to 2D geometries in Cartesian, polar and ax-
isymmetric coordinate systems, and is verified with FEM on three benchmark
problems in each of the coordinate systems. A very good agreement is obtained
between FEM and HAM in all the examples, that indicates a promising appli-
cation of HAM to a wide class of linear/rotary/tubular, PM/reluctance electric
machines.
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Chapter 3

Modeling of variable flux
reluctance machines

Part of the content in this chapter is published in:

J. Bao, S. R. Aleksandrov, B. L. J. Gysen and E. A. Lomonova, ‘Analysis of
variable flux reluctance machines using hybrid analytical modeling’, in Thirteenth
International Conference on Ecological Vehicles and Renewable Energies (EVER),
Monte-Carlo, 2018, pp. 1-7.



64 Chapter 3: Modeling of variable flux reluctance machines

3.1 Introduction

With the derived magnetic flux density in Chapter 2, the next step is to apply
the method to electrical machines to obtain machine quantities. In this chapter,
the variable flux reluctance machine (VFRM) is used to show the methodology
of using HAM to derive machine performances. The VFRM is an interesting
candidate for automotive applications due to its low material cost, robustness
and broad speed range, as explained in section 1.3.5.

This chapter starts with the geometry of the benchmark machine and its geometric
details that are included in the modeling, followed by the application of the HAM.
On the basis of flux density distribution, the calculation methods for the torque,
flux linkage, back-emf, inductances and losses (iron loss and ac copper loss) are
explained subsequently. The obtained results from the HAM are verified with 2D
FEM.

3.2 Geometry of the benchmark machine: 12/10
VFRM

The variable flux reluctance machine is a PM-less machine. It has three-phase
armature windings and an extra field winding both in the stator. Among differ-
ent stator-pole/rotor-pole combinations, 12/10 VFRM is a good selection as is
explained in Chapter 4. The geometry is shown in Fig. 3.1.

As the analyzed machine inhibits half periodicity in the θ-direction, the stator and
rotor are bisected, and one half of them is studied. Half of the machine geometry
can be divided into five parts, i.e.,

• The stator core, including a yoke and 6 teeth;

• The stator slots, contain 6 coils of the armature windings and field winding,
respectively;

• The airgap between the stator and rotor;

• The rotor core, including a yoke, 4 complete teeth and 2 halved teeth;

• The nonmagnetic shaft.

The dimensions and geometric parameters for these parts are defined in Table 3.1.

Neither the stator or rotor teeth have any tooth tips. The inner and outer tooth
arcs are different, indicating that the teeth and slot widths vary along the r-
direction. Each complete slot contains four coil bundles including two dc coil
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Figure 3.1: Cross section of the 12/10 VFRM.
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Table 3.1: Geometric parameters of the benchmark 12/10 VFRM.

Parameter Description value unit
rsh Shaft radius 20.5 mm
hry Rotor yoke height 11 mm
hrt Rotor teeth height 14 mm
g Airgap length 0.5 mm
hac Ac coil height 7 mm
hdc Dc coil height 7.5 mm
hsy Stator yoke height 9.5 mm
αsi Stator tooth inner arc 15 deg.
αso Stator tooth outer arc 11.4 deg.
αro Rotor tooth outer arc 14 deg.
αri Rotor tooth inner arc 24 deg.
τper Width of periodicity 180 deg.
Lsk Stack length 87.5 mm
Nac Number of turns in single ac coil ∗10 -
Ndc Number of turns in single dc coil ∗10 -

Jac,rms RMS current density of ac coils ∗10 A/mm2

Jdc Current density of dc coils ∗10 A/mm2

Notes: ∗ Current density of ac and dc coils varies when calculating torque,
back-emf and inductance, which is specified in sections 3.5, 3.6 and 3.7.
Number of turns, Nac and Ndc, are varied in section 3.8.2.

bundles and two ac coil bundles from different phases. Both the field winding and
armature windings are concentrated windings, and the predefined current flowing
directions are indicated in Fig. 3.1. The ferromagnetic material follows the B-H
curve shown in Fig. 2.19.

For the following content, it is defined that the rotation angle (in electrical de-
grees), ∆θ, is referred as zero when the rotor tooth aligns with stator tooth A2,
and is considered as the starting position for one electric revolution.

3.3 Application of the hybrid analytical modeling

3.3.1 Division in regions

The geometry is divided into five regions as indicated in Fig. 3.2: the outer air,
airgap and shaft are modeled by Fourier regions since µr is unity, while the stator
and rotor are modeled using meshed MEC due to the non-homogeneous µr.

To model rotation, the outer air, stator and airgap are modeled using the stator
coordinate system, while the rotor and shaft are modeled using the mover coor-
dinate system. During rotation, displacement appears at the boundary between
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Figure 3.2: Region division of the 12/10 VFRM.

the airgap and rotor, i.e., Fourier region II and MEC region II.

3.3.2 Meshing of MEC regions

As explained in section 2.5.1, the mesh network is arranged such that material
junctions coincide with the element edges. An example is shown in Fig. 3.3(a)
that illustrates the schematic conformal meshing for a single stator pole. Notice
that since the inner and outer tooth arcs are different in the stator and rotor, the
angle of MEC element varies accordingly along the r-direction.

The mesh grid used in reality is denser than the schematic graph to guarantee the
accuracy, and the actual mesh adopted is shown in Fig. 3.3(b). Due to the fact
that the flux concentrates at the tooth vertices when the stator and rotor teeth
start to align, the mesh size is relatively small at these positions, marked with red
circles in the figure. Additionally, the mesh grid is set to be denser approaching
the airgap.
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Figure 3.3: (a) Schematic mesh grid for a single pole in the stator, and (b) the
actual mesh grid used in the HAM.

3.3.3 Current related magnetomotive force

In Chapter 2, the rules for deriving current related magnetomotive forces are il-
lustrated. To express the current sources of VFRMs, the method introduced in
section 2.5.5 and Appendix B (with two current densities in a slot) have to be ex-
tended to allow for the situation with four current densities in a slot. This presents
the ability of HAM to tackle with different winding configurations. Although only
concentrated windings are introduced in this section, the technique can be eas-
ily adapted to distributed winding topologies by re-arranging the current density
distribution among the coil regions.

The q-directional current related mmf sources are used in this section. The mmf
is dependent on the location, and the summation of the magnetomotive forces on
any q-directional path should equal to the current enclosed by the path. To
explain the implementation of this rule in the VFRM, six categories of mmfs are
discussed with the locations indicated in Fig 3.4(a) by the red dots. The locations
are respectively:

• in the two ac coils;

• in the two dc coils;

• in the yoke above two dc coils.

First, the mmf sources in the ac coils are defined. Assume the element is located
in ac coil I with the r-coordinate rk. For an arc with radius rk passing through,
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Figure 3.4: (a) The locations of the six representative points of the q-directional
mmfs, and the enclosed area when the element is located in (b) ac
coil I, (c) dc coil I, and (d) the yoke, respectively.
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together with slot edges, it forms a contour that encloses the coil area shown in
Fig. 3.4(b) with slashes. Assuming the enclosed area is Sac,rk , the summation of
mmfs along this arc should be equal to Jac1Sac,rk . Apart from this enclosed area,
the dimension of the element itself also has to be considered. Suppose the angle
of the path at rk is θrk , the ratio between the width of element k and the path
length is θk/θrk . The mmf source of element k is therefore, θk/θrk × Jac1Sac,rk .
Considering the fact that there are mmf sources in both positive and negative
q-directions, the expression of the mmf is therefore,

Fkq± =
θk

2θrk
Jac1Sac,rk . (3.1)

Similarly, the expression of mmfs located in ac coil II are,

Fkq± =
θk

2θrk
Jac2Sac,rk . (3.2)

It has to be mentioned that the current flowing direction is interpreted by the
sign of the current density.

Second, the mmf in the dc coils is derived. For an element in dc coil I with
radius rk, again assume an arc passing through. It forms an area that includes
the entire ac coil and part of the dc coil, illustrated as the area with small squares
in Fig. 3.4(c). The expression of the mmf is therefore,

Fkq± =
θk

2θrk

(
Jac1Sac + JdcSdc,rk

)
, (3.3)

where Sac is the entire area of a single ac coil bundle and Sdc,rk is the enclosed
dc coil bundle area. The mmf in dc coil II is similarly written as,

Fkq± =
θk

2θrk

(
Jac2Sac + JdcSdc,rk

)
. (3.4)

At last, for the element located in the yoke at radius rk, both the ac and dc
coil bundles are enclosed, which is presented by the area with small triangles in
Fig 3.4(d). Hence, the expression of mmf in the yoke above dc coil I is,

F kq± =
θk

2θrk
(Jac1Sac + JdcSdc) , (3.5)

where Sdc is the entire area of a single dc coil bundle. The mmf in the yoke
above dc coil II is similarly written as,

F kq± =
θk

2θrk
(Jac2Sac + JdcSdc) . (3.6)
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Continuous boundary conditions

between MEC and Fourier regions

Dirichlet boundary conditions

Dirichlet boundary conditions
r → 0

r → ∞

Figure 3.5: Boundary conditions of the 12/10 VFRM.

3.3.4 Boundary conditions

The boundary conditions are clarified in Fig. 3.5. Continuous boundary conditions
are applied between Fourier and MEC regions. Since Fourier region II (airgap) and
MEC region II (rotor) are defined in stator and mover coordinates, respectively,
the coupling of their interface uses equations (2.99), (2.100) and (2.106). For other
interfaces, the corresponding Fourier and MEC regions are defined in the same
coordinate system, hence, equations (2.59)-(2.60) and equations (2.65)-(2.68) are
applied.

Dirichlet boundary conditions are defined at r → ∞ and r → 0 for Fourier
regions I (outer air region) and III (shaft). For r approaches to zero that happens
in Fourier region III, the term p−ωn−1 in equations (A.22)-(A.25) in Appendix A
goes to infinity, indicating that the Fourier coefficients bn and dn should be zero.
Consequently, they are not included in the unknowns. Similarly, for r → ∞
in Fourier region I, the term pωn−1 reaches infinity, accordingly, an and cn in
equations (A.22)-(A.25) in Appendix A are zero and are excluded in the unknowns
as well.
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3.3.5 Matrix formulation

As explained in section 3.3.4, two sets of Fourier coefficients are omitted in Fourier
regions I and III, respectively, hence, the unknown matrix of Fourier regions is
given as,

X =
[
bI dI aII bII cII dII aIII cIII

]T
, (3.7)

where the superscript represents the numbering of the Fourier region. The vectors
are the array of unknown coefficients that form with,

bI =
[
bI1 b

I
2 . . . bINh

]
,

dI =
[
dI

1 d
I
2 . . . dI

Nh

]
,

...

cIII =
[
cIII1 cIII2 . . . cIIINh

]
.

(3.8)

The unknowns for the MEC regions are a vector of the scalar potentials, written
as,

Ψ = [ψ1 ψ2 . . . ψK]
T
. (3.9)

The sets of boundary conditions lead to the matrix,[
Eb

EMEC

] [
X
Ψ

]
=

[
Yb

YMEC

]
. (3.10)

The matrix Eb provides the coefficients related to the unknowns in the boundary
conditions between Fourier and MEC regions; while EMEC provides the coeffi-
cients related to the unknowns in the flux conservation equation, equation (2.39),
that provides the magnetic field within the MEC regions. The matrix Yb de-
scribes the source terms in the boundary conditions between Fourier and MEC
regions; while YMEC is for the source terms in equations (2.40)-(2.43).

3.3.6 Numerical implementation

The accuracy of the model is strongly related to the number of harmonics, and
sufficient number of harmonics is essential to obtain accurate results. Especially
for Fourier region II that models the airgap region, a high order of harmonics is
generally preferred. However, the constants for Fourier coefficients, i.e., pωn−1 and
p−ωn−1, significantly increase as the order of harmonic increases for the situations
of p > 1 and p < 1, respectively. As a consequence, matrix Eb is ill-conditioned,
leading to an inaccurate result.
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To allow adequate harmonic orders, proper scaling is applied. For Fourier mod-
eling, it is realized by giving a normalization height p0, since the expression of
magnetic field in Fourier region shares the term of pωn−1 or p−ωn−1 [52],

pω
k
n−1

p
ωk

n−1
0

=

(
p

p0

)ωk
n−1

, (3.11)

p−ω
k
n−1

p
−ωk

n−1
0

=

(
p

p0

)−ωk
n−1

. (3.12)

For coupling between Fourier and MEC regions, the same scaling has to be applied
simultaneously for these two types of regions. In the polar coordinate system, it
is realized by scaling the entire geometric domain by the same scaling factor, Sf ,
in the radial direction, that makes the median value of the airgap approaches the
value of unity. As such, both the inner and outer airgap boundaries have a radius
very close to unity.

For the VFRM with dimensions listed in Table 3.1, the scaling factor is selected
by,

Sf =
1

rsh + hry + hrt + 0.5g
. (3.13)

As such, the values of p−ωn−1 and pωn−1 are reduced to the magnitude of 10−2

or 102 at the airgap coupling interfaces with a harmonic order up to 180.

Theoretically, if the mesh network in the MEC region is scaled up by Sf in the
r-direction, the values of lkp , lkq , Skpl and Skql are all scaled by Sf . This means that
the reluctance values are not changed in the non-scaled and scaled geometries
according to equations (2.17)-(2.20). To obtain the correct flux density distribu-
tion, the current related mmf has to be multiplied by Sf as well. As a result, the
obtained flux is scaled by Sf , and the resulting Bkq and Bkp in a scaled geometry
remain the same as the non-scaled geometry based on equations (2.44)-(2.45).

As the flux density distribution is the same in the scaled and non-scaled geome-
tries, the results can be directly used for deriving machine quantities, while if
Fourier coefficients are needed, e.g., in torque calculation, they have to be scaled
by ( 1

Sf )ωn−1 or ( 1
Sf )−ωn−1.
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(a)

(b)

Figure 3.6: The distribution of the flux density magnitude, |B|, obtained by (a)
HAM, and (b) FEM.

3.4 Magnetic flux density

As the basis for deriving machine performances, the flux density is presented in
this section. Two-dimensional nonlinear FEM with the same material as HAM,
is used as a reference to verify the results. The FEM is solved as a quasi-static
problem for the calculation of almost all the machine quantities, except the ac
copper loss.

The flux density distribution obtained by the HAM is shown in Fig. 3.6(a) for
the rotation angle ∆θ = 0. The results of FEM is shown in Fig. 3.6(b), an overall
agreement between HAM and FEM is observed, including the area with magnetic
saturation.

For a more intense comparison, the flux density in the center of the airgap is
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presented and compared in Fig. 3.7. The values of radial and circumferential
components are presented in Fig. 3.7(a). As can be seen, an overall very good
agreement is achieved. However, there are still remaining differences close to
the teeth vertices, that is respectively about 0.15 T and 0.2 T in the radial and
circumferential directions as shown in Fig. 3.7(b).

3.5 Torque

This section presents the derivation methods of the electromagnetic torque. It
is possible to derive the torque in saturated VFRMs by using the virtual work
method and the Maxwell stress tensor method. The virtual work method calcu-
lates the torque based on the concept of energy conversion [48, 85]. Theoretically,
the instant electromagnetic torque can be calculated by,

Tem =
∂Wc (θ)

∂θ
, (3.14)

where Wc is the co-energy in a system, defined as,

Wc =

∫
V

H∫
0

(
~Bd ~H

)
dV. (3.15)

Since the analytical expression of the magnetic field in ferromagnetic materials
is not obtained in the HAM, Wc is not analytically differentiable to the rotation
angle. As a result, the derivative of Wc has to be obtained by two field calculations
at two different rotation angles. Therefore, this method is not recommended for
the torque calculation in the HAM.

On the contrary, using the Maxwell stress tensor, T, the electromagnetic torque
can be calculated analytically at any arbitrary ∆θ. For T given as,

T =


B2
p −B2

q −B2
l

2
BpBq BpBl

BqBp
−B2

p +B2
q −B2

l

2
BqBl

BlBp BlBq
−B2

p −B2
q +B2

l

2

 , (3.16)

the force between two objects is calculated as,

~F =
1

µ

∮
S

T·d~S, (3.17)

where the surface S should encompass the object for which the force is calculated.
In rotating electrical machines, the surface S in equation (3.17) can be positioned
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(a)

(b)

Figure 3.7: Magnetic flux density in the center of the airgap: (a) radial and
circumferential components, Br and Bθ, calculated by HAM and
FEM, and (b) differences between Br and Bθ obtained by HAM and
FEM.
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in the center of the airgap, and the electromagnetic torque is,

Tem =
1

µ0

∮
S

r × T · dS. (3.18)

In a 2D geometry, the torque is expressed as,

Tem =
1

µ0

∮
S

rBrBθ · dS =
1

µ0

2π∫
0

rBrBθd (Lskrθ) =
Lskr

2

µ0

2π∫
0

BrBθdθ. (3.19)

In equation (3.19), the torque calculated by Maxwell stress tensor is written in the
integral form, and hence, is sensitive to the spatial discretization of θ. However,
since the airgap is modeled as a Fourier region in the HAM, the magnetic field has
analytical expressions. Substituting Br and Bθ by the Fourier series expressed in
equations (A.22)-(A.25) in Appendix A, the torque is derived as,

Tem =
2πLsk
µ0

Nh∑
n=1

(bncn − andn). (3.20)

As such, a continuous analytical expression based on the Fourier coefficients is
obtained, and the influence of the spatial discretization is not a concern.

To verify the torque obtained by the HAM, the torque profile for one electric
revolution is first calculated for Jdc and Jac,rms both at 10 A/mm2, as shown in
Fig. 3.8 together with the FEM results. Both the curve shape and the magni-
tude match well, a clear 6th harmonic is observed in both torque waveforms, and
the maximum discrepancy along the two curves is less than 3%. To verify the
torque for different current densities, the mean torque is shown in Fig. 3.9(a) from
2 A/mm2 to 18 A/mm2. As can be seen, the quadratic relation at low current
levels (≤ 6 A/mm2) becomes more linear with the rise of the current densities, due
to the saturation of the magnetic materials. The difference of the mean torque
obtained by HAM and FEM is depicted in Fig. 3.9(b), that shows a maximum
discrepancy less than 1.5 %. The torque ripple, Trip, is shown in Fig. 3.9(c), and
the difference compared to FEM results is presented in Fig. 3.9(d). The mismatch
of the torque ripple is less than 6% for various current densities, indicating a good
agreement between the HAM and FEM. Based on the above results, the HAM is
a suitable tool for predicting the torque profile, mean torque and torque ripple.

3.6 Flux linkage, back-emf and phase voltage

For a coil with negligible slot leakage, the calculation of the flux can be obtained by
integrating the normal (radial) component of the flux density at the inner radius
of the tooth. However, this approach cannot be directly applied to machines if the
slot leakage is significant. To calculate the flux linkage correctly, both the normal
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Figure 3.8: Electromagnetic torque, Tem, at different rotation angles, ∆θ, when
the current density is 10 A/mm2 for both field winding and armature
windings.

and tangential components of the flux density has to be considered on the four
edges of a coil bundle. The difficulty comes when judging if the flux is inward or
outward at each of the edge.

Herewith, a generalized method from another perspective is introduced, which
calculates the flux linkage by means of discretization of coils and integration of
flux from each segment. Assume a coil is filled by wires with in total Nt turns,
as shown in Fig. 3.10. For ease of explanation, the wires are numbered, first in
the ascending tangential direction, and then in the ascending normal direction.
Due to the 2D geometry, each turn is divided into two wires. To differentiate
them in the figure, the numbering is labeled with single or double primes that
indicates the positive or negative orientations (wound in the positive or negative
axial directions), respectively. Besides, the two halves of each turn are set to be
symmetric from the centerline of the slot as can be seen in the figure, that the
wire numbering ascends in opposite directions for the left and right coil bundles.

Note that the meshing in the MEC region inherently provides a network of dis-
cretizing the coil into small segments. By this, the values of wire size are prede-
fined by the MEC elements.

For a random wire turn nt, it forms an area with the wire height, hnt
, and the

distance between the corresponding two halves, wnt
, as shown in Fig. 3.10. If the

cross section of the wire itself is small enough, hnt
is negligible compared to wnt

and the flux passing through the two side edges can be ignored. It means the flux
of such a turn can be calculated by integrating the normal flux density along the
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Figure 3.9: Comparison of the electromagnetic torque at different dc and ac cur-
rent densities (Jdc and Jac,rms): (a) the mean torque (T̄em), (b)
the difference between the mean torque obtained by HAM and FEM
(∆Tem), (c) the torque ripple (Trip), and (d) the difference between
the torque ripple obtained by HAM and FEM (∆Trip).
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Figure 3.10: Discretization of a coil, assuming it is filled with wires (Nt is the
number of turns, hnt represents the height of the turn numbered
with nt, and wnt represents the distance between the left and right
halves of the turn.

bottom edge, giving the equation,

φnt
=

wnt∫
0

BrLskd(rθ). (3.21)

The flux linkage linked by all the wires are therefore given as,

Λ =

Nt∑
nt=1

wnt∫
0

BrLskd(rθ). (3.22)

This result is derived under the assumption that the coil is filled with in total Nt
turns, hence, the correct flux linkage has to be multiplied by the ratio of actual
number of turns to Nt.

Using this method, the flux linkage is estimated in one electric revolution for
phase A winding and field winding, respectively. In Fig. 3.11, the obtained results
are presented. As can be seen, the waveforms obtained from HAM and FEM
match very well with each other, that have the average discrepancies of 1.1% and
2.0% for ΛA and Λf , respectively.

The phase voltage is obtained by summing the derivative of the flux linkage and
the resistive voltage. In Fig. 3.12(a), it presents the voltage of phase A at the
speed of 100 rpm. The induced back electromotive force (back-emf) is calculated
by taking the derivative of the flux linkage when the armature reaction is not
considered. The back-emf of phase A, eA, is calculated for Jdc at 10 A/mm2, and
the result is shown in Fig. 3.12(b). Compared to the FEM results, a good match
of both the waveforms and amplitudes are obtained by the HAM. The maximum
discrepancy between the HAM and FEM results is 0.7 V for vA and 0.6 V for eA,
respectively, which are both around 2%.
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Figure 3.11: Variation of the flux linkages of phase A winding (ΛA) and field
winding (Λf ) versus the rotation angle (∆θ).

3.7 Inductance

The inductances are important machine parameters, and it is necessary to predict
the inductances accurately for the control system design by taking the nonlinear
magnetic behavior into account [56]. In this section, the derivation of incremental
(dynamic) inductances is explained. Generally, in VFRMs, there are respectively
self inductances of field winding and armature windings, as well as the mutual
inductances among them. The detailed definitions are explained in section 4.2.
The derivation of the mutual inductance between the field winding and armature
windings, Mfph, is introduced as an example. This method is applicable to obtain
other inductance values.

For the incremental inductance at a certain current level i, the difference of the
flux linkage is divided by the difference of the corresponding current [58], giving
the equation,

Mfph(i) =
dΛ

di
=

Λ(i+ ∆i)− Λ(i−∆i)

2∆i

∣∣∣∣
∆i→0

. (3.23)

The value of Mfph depends on the field current and armature current simulta-
neously, herewith the value depending on the field current is derived, while the
calculation of Mfph depending on the armature current is similar. The magnitude
of ∆i has to be small enough to obtain accurate results and is set to be 0.2% of the
i value in the calculation. Assume a current density of 10 A/mm2 for both Jac,rms
and Jdc, the incremental Mfph is obtained by the HAM and FEM, respectively.
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(a)

(b)

Figure 3.12: The obtained results using HAM and FEM for the speed of 100 rpm:
(a) the voltage of phase A (vA) versus the rotation angle (∆θ) when
the current densities of the field winding and armature windings are
both 10 A/mm2, and (b) the back-emf of phase A (eA) versus ∆θ

when the current density of the field winding is 10 A/mm2.
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(a)

(b)

Figure 3.13: Incremental inductance (Mfph) versus rotation angle (∆θ) assum-
ing the current density of both field winding and armature windings
(Jac,rms and Jdc) is 10 A/mm2: (a) obtained by the conventional
method in HAM and FEM, (b) obtained by using the frozen per-
meability in HAM and the conventional method in FEM.
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The results are compared in Fig. 3.13(a) for one electric revolution, where a good
agreement between the two curves is obtained.

In addition to the aforementioned method by using equation (3.23), frozen per-
meability [49, 57] can be used to obtain the incremental inductance in the HAM.
The principle is based on the assumption that the permeability does not change
when ∆i approaches zero. The procedure is described as follows:

• Step 1: Calculation is carried out for a given current i to obtain the flux
linkage Λ(i).

• Step 2: The relative permeability in all MEC elements in Step 1 is saved.
This ensures that the magnetic saturation level remains the same.

• Step 3: Apply the previously saved permeability and ‘freeze’ the values, run
the HAM by resetting the current at (i + ∆i) to obtain the flux linkage
Λ(i+ ∆i).

• Step 4: Calculate the incremental inductance by Mf,ph(i) = Λ(i+∆i)−Λ(i)
∆i .

Since the permeability is frozen, Step 3 is a linear calculation and no iteration
is required to update the permeability. This can reduce the computation effort
compared to the conventional method that has to iterate for both current levels
at (i−∆i) and (i+ ∆i). Additionally, such linearity allows a random selection of
∆i in Step 3, that does not influence the inductance value obtained in Step 4.

To verify the concept, incremental Mfph is obtained by using the above proce-
dures and is compared with the FEM results using the conventional method, as
shown in Fig. 3.13(b). A very good match between FEM and HAM is observed.
Furthermore, the incremental Mfph is obtained at different field current levels
as shown in Fig. 3.14, and a good agreement between the two curves is again
presented, where the discrepancy is within 2.2%.

3.8 Losses

To use the modeling technique for machine design and performance prediction,
the machine losses have to be estimated. Both the methods for evaluating iron
losses and copper losses are introduced in this section.
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Figure 3.14: Comparison of the incremental inductance (Mfph) at various field
current levels (Jdc), obtained by HAM using the frozen permeability
and FEM using the conventional method (rotation angle ∆θ is set
at 180 elec. deg., and armature current density Jac,rms is fixed at
10 A/mm2).

3.8.1 Iron losses

The iron loss is separated by three contributions: the static hysteresis loss, the
classical eddy-current loss and excess loss [18, 42]. The iron loss density, pFe, is
described by,

pFe = phys + peddy + pex, (3.24)

where phys, peddy and pex is the hysteresis loss density, eddy current loss density
and excess loss density, respectively. For sinusoidal flux density waveforms, the
calculation of these three types of losses are given as,

phys = KhysB̂
αhf, (3.25)

peddy =
π2σFed

2
lam

6

(
B̂f
)2

, (3.26)

pex = Kex

(
B̂f
)1.5

, (3.27)

where Khys and Kex are the hysteresis-loss and excess-loss coefficients, respec-
tively, αh is the exponent for hysteresis loss term, σFe and dlam are the conduc-
tivity and thickness of the lamination, respectively, B̂ is the peak flux density and
f is the excitation frequency.

Frequency domain equations, (3.25)-(3.27), are particularly useful when the data
are presented in frequency terms. However, this is often not the case when time-
stepped FE analysis is undertaken. Instead, the above equations are converted to
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Table 3.2: Material-dependent constants for iron loss calculation.

Parameter Description value unit
Khys Hysteresis-loss coefficient 158.62 -
Kex Excess-loss coefficient 2.17 -
αh Exponent for hysteresis loss term 1.8
σFe Conductivity of lamination 1.69 ×106 S/m
dlam Lamination thickness 0.27 mm

a time domain using instantaneous flux density,

Phys = Khys
1

T
B̂αh , (3.28)

peddy = σFe
d2
lam

12

(
dB

dt

)2

, (3.29)

pex =
Kex

8.67

(
dB

dt

)1.5

. (3.30)

In this thesis, the material-dependent iron loss constants are provided in Table 3.2.
The values are obtained by curve fitting of the measurement data that are tested
with sinusoidal excitations at various frequencies.

In the hybrid analytical modeling, the magnetostatic flux density is described in r
and θ coordinates, hence, Br and Bθ are used in equations (3.29)-(3.30) separately
to obtain decomposed values of eddy current loss density and excess loss density,
and the final loss densities are derived by summing up the components in the two
axes [19, 39, 55, 82].

For each MEC element that representing ferromagnetic material, the loss density
is estimated. The element iron loss is calculated by multiplying the loss density
with element volume. The total iron loss is derived by summing up the loss for
every element. The obtained values are listed in Table 3.3. As compared, the
results from the HAM and FEM match well with each other, that the difference
of the total iron loss is around 1%.

3.8.2 Copper losses

The copper losses of the machine includes losses from the field winding and ar-
mature windings. Ignoring the contribution of eddy currents, the loss in each of
the winding is estimated using the equation,

Pcu,d =
J2
xVxρ

kf
, (3.31)

where x represents field winding and phase A, B, C windings, respectively, Jx
represents the RMS phase current density or mean value of the field current
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Table 3.3: The predicted iron losses of the VFRM.

HAM (W) FEM (W) Difference (%)

Rotor

Hysteresis loss 12.45 12.49 0.3
Eddy current loss 1.39 1.36 2.2

Excess loss 1.24 1.15 7.8
Total 15.08 15.00 0.5

Stator

Hysteresis loss 25.70 25.40 1.2
Eddy current loss 2.13 2.14 0.5

Excess loss 1.89 1.80 5.0
Total 29.72 29.34 1.3

Machine Total 44.80 44.34 1.0

density, kf is the filling factor, Vx is the coil volume and ρ is the copper resistivity.

However, the copper loss in reality is more than the above. The occurrence of
teeth alignment and un-alignment in VFRMs leads to a fast change of magnetic
field in the slot, especially in the stator slot openings. The wires at these locations
experience a rapid variation of flux density, hence, have high level of induced eddy
currents, which can generate extra ac copper losses [98]. For high-speed machine
or machine where efficiency is important, it is essential to have an estimation of
the magnitude of such ac loss, to achieve a proper winding layout that prevents
machine failure due to localized heating or to obtain accurate efficiency.

The eddy current and ac copper losses are difficult to calculate since they are
related to a lot of factors, such as, machine geometry, winding layout, rotation
speed, etc. It is possible to use transient time-stepped FEM that draw individual
geometries for wires and simulates the losses for each conductor [66, 99]. This
computation is very time consuming if the ac copper losses at various speeds
are desired, since a transient simulation at each rotational speed has to be per-
formed. Moreover, for each speed, the eddy currents have to be calculated until
convergence at each time step. [52] Hence, to reduce the computational effort, a
simplified calculation is done in the HAM under some certain assumptions.

Assumptions

The dynamic solution of the magnetic vector potential is governed by [61],

∇2 ~A− µσ∂
~A

∂t
= −µ~J − µ

(
∇× ~M

)
. (3.32)

However, if the speed is relatively low, the influence of eddy currents on the solu-
tion of magnetic vector potential is relatively small, consequently, the field distri-
bution is close to the situation when eddy currents are not considered. Therefore,
it is possible to use the field solution obtained from quasi-static Maxwell equations
combined with the data post-processing to estimate the ac copper losses [15].
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Calculation method in the HAM

In each coil conductor, the change of magnetic field induces an electrical field
based on Faraday’s law,

∇× ~Eeddy = −∂
~B

∂t
. (3.33)

Substituting the flux density by the expression of magnetic vector potential writ-
ten in equation (2.3), this gives,

~Eeddy = −∂
~A

∂t
−∇ϕ, (3.34)

where ϕ represents a scalar potential which describes the conservative electric
field.

Assume the function of the scalar potential ϕ is ϕ = ϕ(r, θ, z), the gradient of ϕ
is accordingly given by,

∇ϕ(r, θ, z) =
∂ϕ

∂r
i +

∂ϕ

∂θ
j +

∂ϕ

∂z
k, (3.35)

where i, j and k are the standard unit vectors in the directions of the r-, θ- and
z-coordinates. In case of 2D magnetostatic modeling, the electric field only has
a z-component. It means ∇ϕ only contains a vector in the z-direction, hence,
both terms ∂ϕ

∂r and ∂ϕ
∂θ must be zero. Consequently, the expression of ϕ is not

dependent to r- and θ-coordinates. Equation (3.35) reduces to,

∇ϕ(z) =
∂ϕ

∂z
k. (3.36)

This expression shows the position independence in the rθ-plane, hence, ∇ϕ re-
mains constant within the cross section of a wire conductor.

The electric field in equation (3.34) excites an eddy current, expressed by,

~Jeddy = σ ~Eeddy, (3.37)

where σ is the conductivity of copper. Assume a current source is used to impose
the current in the conductor, the total current density, Jtot, is decomposed by the
induced eddy current density (Jeddy) and the initial current density supplied by
the current source (Js), expressed as,

~Jtot = ~Jeddy + ~Js. (3.38)

As the current is imposed, the total current in the conductor should always be
equal to the current supplied by the current source [2], which means∫

Scond

JtotScond =

∫
Scond

JsScond, (3.39)
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where Scond is the cross section of the conductor. This gives the fact that the net
eddy current is zero,∫

Scond

JeddydScond = σ

∫
Scond

EeddydScond = 0. (3.40)

Substituting Eeddy by the expression in equation (3.34), this gives,

σ

∫
Scond

(
−∂

~Az
∂t
−∇ϕ

)
dScond = 0. (3.41)

As explained above, the value of ∇ϕ is a constant within the cross section, hence,
the value is calculated as,

∇ϕ =

∫
Scond

(
−∂ ~Az

∂t

)
dScond

Scond
. (3.42)

After obtaining the eddy current density, the ac copper loss is calculated by,

Pcu,a = ρ

∫
V

J2
totdV , (3.43)

where V is the conductor volume.

The above procedures for calculating the ac copper loss in HAM are summarized
as follows:

1. Obtain the flux density distribution at different rotation angle ∆θ;

2. Calculate the magnetic vector potential distribution Az in the stator at each
∆θ by post processing;

3. Calculate dAz

dt over the conductors;

4. Derive time instant ∇ϕ by equation (3.42);

5. Derive the induced electric field by equation (3.34);

6. Derive the induced eddy current by equation (3.37);

7. Calculate the total current density by equation (3.38);

8. Calculate the ac copper loss by equation (3.43).

To verify this method, an example is first given assuming a single conductor within
the coil. The calculation results of the magnetic vector potential, eddy current
and ac copper loss are given in the following.
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(a)

(b)

Figure 3.15: Magnetic vector potential distribution at rotation angle ∆θ=0 deg.
obtained by using (a) HAM, and (b) FEM.

Magnetic vector potential

To calculate the magnetic vector potential in the aforementioned Step 2, it is
assumed that Az is zero at the geometric infinity. With the obtained flux density
distribution in the HAM, the vector potential is calculated as,

Az =

∫ r

∞
Bθdr. (3.44)

To verify this, the result of HAM is shown in Fig. 3.15(a) for the stator, which
matches with the solution from FEM that is shown in Fig. 3.15(b).
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(a) (b)

Figure 3.16: Eddy current distribution of the coil bundle obtained by using (a)
HAM, and (b) FEM.

Eddy current

The eddy current in the HAM is calculated by the aforementioned procedures,
and the result for one coil bundle is shown in Fig. 3.16(a) at the speed of 50 rad/s.
In FEM, it is possible to extract the total current density of a coil directly, and
based on equation (3.38), the eddy current density is obtained by subtracting the
current density caused by the current source. The result of FEM is shown in
Fig. 3.16(b). As can be seen, both the pattern and magnitude of the distribution
are similar in the two figures.

Ac copper loss

Using the obtained eddy current, the ac copper loss is calculated, and curves of
the losses versus the rotation angle is presented in Fig. 3.17(a). The according
copper loss without considering the ac effect is presented as a reference. The ac
copper loss does not reduce to zero when the source current is zero due to the
presence of eddy currents.

Furthermore, the relationship between ac copper loss and rotational speed is pre-
sented in Fig. 3.17(b), and the difference between the HAM and FEM results
is shown in Fig. 3.17(c). As can be seen, the difference increases as the speed
increases, that is the consequence when the field produced by the eddy currents
becomes more dominant and the actual dynamic solution of the magnetic vector
potential deviates more and more from the quasi-static problems. Additionally,
the conductor has a large cross section, hence, the deviation starts to be significant
at a relatively low speed.

For further illustration, the ac coil area is divided into two parts, which respec-
tively represents a turn of conductor, as shown in Fig. 3.18(a). The obtained ac
copper losses for the two conductors are presented in Fig. 3.18(b) and (c), respec-
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(a)

(b)

(c)

Figure 3.17: Ac copper losses calculated by HAM and FEM for the coil with a
single conductor: (a) the ac copper losses versus the rotation angle
(∆θ) at the speed of 80 rad/s, (b) the ac copper losses at various
speeds, and (c) the difference of the ac copper losses at various
speeds.



3.8: Losses 93

r

θ

Iron ac coildc coil

Conductor 2

Conductor 1

(a)

(b)

(c) (d)

Figure 3.18: Two conductors in the ac coil: (a) the schematic graph, (b) the ac
copper losses of conductor 1 at various speeds calculated by HAM
and FEM, (c) the ac copper losses of conductor 2 at various speeds
calculated by HAM and FEM, and (d) the difference of the total
ac copper losses for the ac coil at various speeds obtained by HAM
and FEM.

tively. The ac copper loss of conductor 1 is significantly higher than conductor
2, since it is positioned near the slot opening, hence, is much more influenced by
the proximity effect. The differences of the ac copper losses obtained from HAM
and FEM is 16.4% and 4.7%, respectively, at the speed of 225 rad/s for the two
conductors. The total difference of the ac copper losses for the ac coil is shown in
Fig. 3.18(d), which shows a discrepancy of 12.5% at 225 rad/s between the HAM
and FEM results.

Such analysis in the HAM is useful as a fast assistance for winding design that can
help with the determination of the initial wire size and configurations. Although
there is difference between the HAM and FEM results, it is still much more
accurate compared to directly using the copper loss without considering any ac
effect, as can be seen in the reference curves shown in Fig. 3.17(c) and Fig. 3.18(d).
Hence, the analysis is able to provide suggestive indications.
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3.9 Efficiency and power factor

Using the machine quantities obtained in the previous sections, the efficiency and
power factor can be estimated. The efficiency is calculated by,

η =
Temωm
Pin

=
Temωm

Temωm + Pml + Pcu,a + PFe
, (3.45)

where ωm is the mechanical rotational speed in rad/s and Pml is the mechanical
loss.

The power factor is calculated by,

PF =
Pin√

P 2
in +Q2

, (3.46)

where Q is the reactive power and is estimated as,

Q =

√
m(Vrms,acIrms,ac)

2 − P 2
in, (3.47)

where Vrms,ac and Irms,ac are the RMS values of the phase voltage and current,
respectively.

3.10 Summary and conclusions

The hybrid analytical modeling that incorporates saturation is applied to a bench-
mark 12/10 variable flux reluctance machine, which has both field and armature
windings in the stator. The modeling allows geometric details, e.g., different tooth
arcs in the slot opening and slot bottom. Meanwhile, the geometry of four coil
bundles in a slot is successfully implemented.

On the basis of analytical expression of the magnetic field in the airgap, the
torque is calculated using Maxwell stress tensor. The torque waveform, mean
torque and torque ripple are estimated accurately. On the other hand, using
the obtained magnetic field distribution in the stator, the flux linkage is derived
considering the slot leakage. The phase voltage and back-emf are calculated by
taking the derivative of the flux linkage. The incremental inductance is obtained
by calculating the change of flux linkage over a small variation of current and by
using the concept of frozen permeability, as a result, the dependence of inductance
over rotor position/current level is estimated accurately.

The methods for loss prediction including the iron loss and copper loss are pro-
vided. The iron loss is derived based on the Bertotti equation, and each of the
loss component, i.e., the hysteresis loss, classical eddy current loss and excess loss
are estimated. The ac copper loss is derived by post-processing the magnetic
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field output from the HAM, and sequentially through the estimation of magnetic
vector potential, electric field and eddy current. The result has a good agreement
with FEM at relatively low speed, when the influence of the magnetic field caused
by the eddy currents is not significant compared to the original field caused by
the current source.

The content in this section extends the application of the hybrid analytical mod-
eling to intensive analysis of the VFRM, and the above methods are valid for
analyzing other types of machines.
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4.1 Introduction

The design of VFRMs starts from the selection of machine topology. The sta-
tor/rotor pole combination, and its influence on the winding configuration and
machine performances, is investigated in this chapter. This requires an exten-
sive understanding of the working principle as is discussed first. Afterwards, the
winding configurations and the winding factors of fundamental and harmonics
are summarized for different topologies. The influence of the number of rotor
poles on the unbalanced magnetic pull, flux linkage and electromagnetic torque
is investigated, which provides arguments for the selection of pole numbers.

4.2 Operating principles

As explained in section 3.2, the VFRM consists of a concentrated field winding
and armature windings together with a salient rotor. The field current creates
a Ps-pole mmf and is modulated by the Pr-pole rotor. Simultaneously, it cou-
ples with the rotating field generated by the ac armature mmf and produces
electromagnetic torque.

To understand the machine operating principle, the instantaneous torque is de-
rived using the virtual work method [37, 85, 125],

Tem =
dWele

dθ
− dWmag

dθ
, (4.1)

where θ is the virtual displacement in mechanical degree, Wele is the electric en-
ergy and Wmag is the magnetic energy. The derivation of the electric energy,
magnetic energy and electromagnetic torque is explained in the following subsec-
tions.

4.2.1 Electric energy

In a non-saturated VFRM, the flux linkage of each phase can be separated as,

Λa = Λfa + Λaa + Λba + Λca, (4.2)

Λb = Λfb + Λbb + Λab + Λcb, (4.3)

Λc = Λfc + Λcc + Λac + Λbc, (4.4)

Λf = Λff + Λaf + Λbf + Λcf , (4.5)

where the subscripts a, b, c and f represent phase A, B, C and field winding,
respectively, and the notation Λij represents the flux linkage in winding j caused
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i

Λ

ia

Laia

Λ(ia)

Figure 4.1: The Λ-i diagram of a system with a single winding that is excited to
a current level of ia (La is the self inductance of this single winding).

by the excitation of winding i. The expression of these flux linkages are given as,
Λfa
Λfb
Λfc
Λaf
Λbf
Λcf

 =


Mfaif
Mfbif
Mfcif
Mfaia
Mfbib
Mfcic

 ,


Λba
Λca
Λab
Λcb
Λac
Λbc

 =


Mabib
Mcaic
Mabia
Mbcic
Mcaia
Mbcib

 ,


Λaa
Λbb
Λcc
Λff

 =


Laaia
Lbbib
Lccic
Lff if

 , (4.6)

where Mfa, Mfb and Mfc are the mutual inductances between the field winding
and armature windings, Mab, Mbc and Mca are the mutual inductances between
the armature windings, Lff , Laa, Lbb and Lcc are the self inductances of the
field winding and armature windings, respectively, and ia, ib, ic and if are the
instantaneous currents of phase A, B, C and field winding, respectively.

During rotation, the electric energy provided to the machine is calculate as [118],

Wele =

∫
iadΛa +

∫
ibdΛb +

∫
icdΛc +

∫
ifdΛf . (4.7)

4.2.2 Magnetic energy

The magnetic energy is calculated using the definition: the energy stored in a
magnetic field can be calculated as the energy required to establish this field [16].
If no mechanical energy and losses are taken into account, the required energy to
establish the magnetic field in a system is the electric energy that provided to the
windings to increase the currents from 0 to a certain level.

This concept is first applied to a simple system that has a single winding with a
current level at ia. The stored magnetic energy is the electric energy provided to
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i

Mabib

Laia

Λa

ia

S1

1 . Current of winding A

2. Current of winding B

0 → ia

0 → ib

(a) Winding A.

i

Lbib

Mabia

Λb

ib

S2

(b) Winding B.

Figure 4.2: The Λ-i diagrams of a system with two windings that are excited
with the given current profile: (a) the Λ-i diagram of winding A, and
(b) the Λ-i diagram of winding B (La and Lb is the self inductance
of winding A and B, respectively, and Mab is the mutual inductance
between the two windings).

this winding to increase its current from 0 to ia, that is described as,

Wmag =

∫
eidt =

∫
dΛ

dt
idt =

Λ(ia)∫
0

idΛ, (4.8)

where Λ(ia) is the flux linkage with current ia. Assuming a linear magnetic
material, equation (4.8) is represented by the dashed area shown in Fig. 4.1.

The concept is extended to a system that has two windings with the current levels
of ia and ib, respectively. The stored magnetic energy in the system equals to
the total electric energy that increases the two currents from 0 to ia and ib. It is
worth mentioning that the calculation of such consumed energy is independent of
the current profiles. As an example, a simple current profile is defined to calculate
the stored magnetic energy: the current in winding A first increases from 0 to ia,
afterwards, the current in winding B increases from 0 to ib.

The Λ-i diagrams of the system considering this current profile are shown in
Fig. 4.2. The current in winding A is first excited, hence, the flux linkage of
winding A is increased, shown as the solid line in Fig. 4.2(a). Although at this
moment, the current of winding B remains at 0, however, due to the mutual
inductance between the two windings, the flux linkage in winding B still changes,
shown as the solid line in Fig. 4.2(b). Afterwards, the current in winding B is
increased from 0 to ib, hence, the flux linkage continues to change, shown as the
dashed line in Fig. 4.2(b). Meanwhile, due to the mutual inductance, the flux
linkage of winding A changes although its current remains at ia, shown as the
dashed line in Fig. 4.2(a). The stored magnetic energy in the system is the sum
of the two identified areas in Fig. 4.2, expressed as,

Wmag = S1 + S2 =
1

2
Lai

2
a +Mabiaib +

1

2
Lbi

2
b . (4.9)
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Mfaia

Lff if
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Mfbib

Mfcic

1. Field current 0 → if

2. Phase A current 0 → ia

3. Phase B current 0 → ib

4. Phase C current 0 → ic

i

S1

(a) Field winding.

i

Laaia

Mfaif

Λa

Mabib

Macic

S2

ia

(b) Phase A winding.

i

Mabia

Mfbif

Λb

Lbbib

MbcicS3

ib

(c) Phase B winding.

i

Macia

Mfcif

Λc

Mbcib

Lccic

ic

S4

(d) Phase C winding.

Figure 4.3: The Λ-i diagrams of the VFRM when the field current, phase A cur-
rent, phase B current and phase C current are excited subsequently:
(a) the Λ-i diagram of the field winding, (b) the Λ-i diagram of phase
A winding, (c) the Λ-i diagram of phase B winding, and (d) the Λ-i
diagram of phase C winding.
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The same concept is used to derive the stored magnetic energy in the VFRM. A
current profile is defined as: the field current is first increased from 0 to if , and
afterwards the phase currents A, B and C are increased from 0 to ia, ib and ic
subsequently. The Λ-i diagrams for this process are sketched in Fig. 4.3.

As the field current is first excited, the flux linkage of itself, Λf , is increased,
shown as the solid line in Fig. 4.3(a). Due to the mutual inductances between
the field winding and the armature windings, the flux linkages in phase A, B
and C are changed, shown as the solid lines in Fig. 4.3(b), (c) and (d). Similar
phenomena occur when the armature currents are excited. In the end, the stored
magnetic energy in the VFRM is calculated as the sum of the dashed areas in
Fig. 4.3, and the expression is,

Wmag =S1 + S2 + S3 + S4

=
1

2
if (Lff if ) + if (Mfaia +Mfbib +Mfcic) +

1

2
ia (Laaia)

+
1

2
ib (Lbbib) +

1

2
ic (Lccic) + iaibMab + iaicMca + ibicMbc.

(4.10)

Notice that such analysis provides the calculation method for the total magnetic
energy stored in a system, rather than the energy of an individual winding since
the Λ-i diagram of each winding varies with the current profiles.

4.2.3 Electromagnetic torque

The terms of dWele

dθ and
dWmag

dθ in equation (4.1) are derived as,

dWele

dθ
=
d
(∫

ia
dΛa

dθ dθ +
∫
ib
dΛb

dθ dθ +
∫
ic
dΛc

dθ dθ +
∫
if
dΛf

dθ dθ
)

dθ

=ia
dΛa
dθ

+ ib
dΛb
dθ

+ ic
dΛc
dθ

+ if
dΛf
dθ

=i2a
dLaa
dθ

+ i2b
dLbb
dθ

+ i2c
dLcc
dθ

+ i2f
dLff
dθ

+ 2if ia
dMfa

dθ
+ 2if ib

dMfb

dθ
+ 2if ic

dMfc

dθ

+ 2iaib
dMab

dθ
+ 2ibic

dMbc

dθ
+ 2iaic

dMca

dθ
,

(4.11)

and

dWmag

dθ
=

1

2
i2f
dLff
dθ

+ if ia
dMfa

dθ
+ if ib

dMfb

dθ
+ if ic

dMfc

dθ

+
1

2
i2a
dLaa
dθ

+
1

2
i2b
dLbb
dθ

+
1

2
i2c
dLcc
dθ

+ iaib
dMab

dθ
+ iaic

dMca

dθ
+ ibic

dMbc

dθ
.

(4.12)
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Consequently the torque is derived as,

Tem =

(
1

2
i2f
dLff
dθ

)
+

(
if ia

dMfa

dθ
+ if ib

dMfb

dθ
+ if ic

dMfc

dθ

)
+

(
1

2
i2a
dLaa
dθ

+
1

2
i2b
dLbb
dθ

+
1

2
i2c
dLcc
dθ

)
+

(
iaib

dMab

dθ
+ iaic

dMca

dθ
+ ibic

dMbc

dθ

)
=Tff + Tf,ph + Tl,ph + Tm,ph.

(4.13)

As such, the instantaneous electromagnetic torque, Tem, is separated into four
torque components, Tff , Tf,ph, Tl,ph and Tm,ph, that respectively represent:

• Tff - torque induced by the self inductance of the field winding;

• Tf,ph - torque induced by the mutual inductances between the field winding
and armature windings;

• Tl.ph - torque induced by the self inductances of the armature windings;

• Tm,ph - torque induced by the mutual inductances of the armature windings.

In the following content, the contribution of each torque component to the mean
torque and torque ripple is identified.

Torque induced by the self inductance of the field winding

The self inductance of the field winding is first analyzed. The flux of a dc coil
reaches the maximum when the rotor tooth aligns with the stator tooth, and
reaches minimum when at the unaligned position. Hence, a varying flux linkage
of a dc coil is obtained, as shown in Fig 4.4(a). The single dc coil contains a
fundamental flux linkage, however, the superposition of all the dc coils eliminates
the fundamental component as shown in Fig. 4.4(b). The explanation is given by
the concept of distribution factor, calculated with the equation,

kd =
sin
(
Qα
2

)
Q sin

(
α
2

) , (4.14)

where Q is the number of different phasors of coil flux and α is the electrical
angle between two adjacent phasors. For a Ps-stator-pole/Pr-rotor-pole VFRM,
define the greatest common divisor between Ps and Pr as gcd. The according two
co-prime numbers are defined by,

ps =
Ps
gcd

, (4.15)

pr =
Pr
gcd

. (4.16)
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(a) (b)

Figure 4.4: (a) The open-circuit flux linkage of a single dc coil versus the rotation
angle, and (b) the open-circuit flux linkage of the field winding versus
the rotation angle.

The value of Q in equation (4.14) for dc coil flux is ps in this case. The electric
angle between two adjacent dc coil flux phasors is described as,

α =
2π

ps
. (4.17)

The distribution factor for the fundamental dc coil phasors is calculated as,

kd,1 =
sin
(
ps
α
2

)
ps sin

(
α
2

) =
sin
(
ps · πps

)
ps sin

(
α
2

) =
sin (π)

ps sin
(
α
2

) = 0. (4.18)

This means the fundamental is canceled out, leading to a nearly constant flux
linkage of the field winding. As such, the self inductance of the field winding is
described as

Lff = Lff,0 +

∞∑
n=2

Lff,n cos(n∆θ + θff,n), (4.19)

where Lff,0 is the dc component, Lff,n is the amplitude of the nth harmonic,
and θff,n is the initial angle for the nth harmonic. The torque created by this
inductance is,

Tff =
1

2
i2f
dLff
dθ

=
1

2
Pri

2
f

dLff
d∆θ

=

∞∑
n=2

−1

2
PrnLff,n sin (n∆θ + θff,n) i2f . (4.20)

This torque component does not contribute to the mean torque, but only the
torque ripple.
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Figure 4.5: (a) The ac coils wound on the teeth with opposite dc coil orientations,
(b) the individual flux linkage of the ac coils versus the rotation angle,
and (c) the phase flux linkage versus the rotation angle.

Torque induced by the mutual inductances between the field and ar-
mature windings

The mutual inductances between the field winding and armature windings are
first analyzed in this subsection. Notice that for ac coils wound on teeth with
opposite dc coil orientations as shown in Fig. 4.5(a), the open-circuit flux linkages
have opposite values as presented in Fig. 4.5(b), and the values are either always
positive or negative. Although the waveform of a single coil shows a unipolar
characteristic, a bi-polar phase flux linkage has to be ensured by the winding
configuration, as shown in Fig. 4.5(c). This means that there is no dc component
in the mutual inductances between the field winding and armature windings, and
the expressions are given as,

Mfa =

∞∑
n=1

M̂fph,n cos (n∆θ + θfa,n) , (4.21)

Mfb =

∞∑
n=1

M̂fph,n cos

(
n∆θ + θfa,n −

2nπ

3

)
, (4.22)

Mfc =

∞∑
n=1

M̂fph,n cos

(
n∆θ + θfa,n +

2nπ

3

)
, (4.23)
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(a) (b)

Figure 4.6: The self inductance of the phase A winding (Laa) and the mutual
inductance between the phase A winding and phase B winding (Mab):
(a) variation of the inductances over the rotation angle, and (b) the
amplitude spectrum of the inductances.

where M̂fph,n is the amplitude of the nth harmonic, and θfa,n is the initial angle
for the nth harmonic in phase A winding. Assuming the armature currents are
sinusoidally commutated and are described as,

ia = Îac cos (∆θ + γ) , (4.24)

ib = Îac cos

(
∆θ −

2π

3
+ γ

)
, (4.25)

ic = Îac cos

(
∆θ +

2π

3
+ γ

)
, (4.26)

the torque induced by Mfa, Mfb and Mfc is derived as,

Tf,ph =

∞∑
n=3k−2

−3nPrM̂fph,nif Îac
2

sin [(n− 1) ∆θ + θfa,n − γ]

+

∞∑
n=3k−1

−3nPrM̂fph,nif Îac
2

sin [(n+ 1) ∆θ + θfa,n + γ], (k ∈ Z+).

(4.27)

where γ is the commutation angle and Îac is the peak value of the armature
current. In equation (4.27), the first term with n = 1 leads to a constant value,
it means the fundamental of Mfa, Mfb and Mfa contributes to the mean torque.

Torque induced by the self inductances of the armature windings

There are dc component and even harmonics in the self inductances of the ar-
mature windings as shown in Fig. 4.6, hence, the self inductances are described
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as,

Laa = Lph,0 +

∞∑
n=2k

L̂ph,n cos (n∆θ + θaa,n) , (4.28)

Lbb = Lph,0 +

∞∑
n=2k

L̂ph,n cos

(
n∆θ + θaa,n −

2nπ

3

)
, (4.29)

Lcc = Lph,0 +

∞∑
n=2k

L̂ph,n cos

(
n∆θ + θaa,n +

2nπ

3

)
, (4.30)

where Lph,0, L̂ph,n and θaa,n are respectively the dc component, amplitude of
the nth harmonic, and initial phase of the nth harmonic in Laa. Consequently,
the torque is described as,

Tl,ph =− 3

8
Pr Î

2
ac

∞∑
n=6k−2

nL̂ph,n sin [(n+ 2) ∆θ + 2γ + θaa,n]

− 3

8
Pr Î

2
ac

∞∑
n=6k−4

nL̂ph,n sin [(n− 2) ∆θ − 2γ + θaa,n]

− 3

4
Pr Î

2
ac

∞∑
n=6k

nL̂ph,n sin (n∆θ + θaa,n) , (k ∈ Z+).

(4.31)

In this torque component, the second harmonic in Laa, Lbb and Lcc contributes
to the mean torque.

Torque induced by the mutual inductances of the armature windings

There are even harmonics in the mutual inductances of armature windings as
shown in the spectrum in Fig. 4.6, hence, the inductances are described as

Mab = Mph,0 +

∞∑
n=2k

M̂ph,n cos (n∆θ + θab,n) , (4.32)

Mbc = Mph,0 +

∞∑
n=2k

M̂ph,n cos

(
n∆θ + θab,n −

2nπ

3

)
, (4.33)

Mca = Mph,0 +

∞∑
n=2k

M̂ph,n cos

(
n∆θ + θab,n +

2nπ

3

)
, (4.34)

where Mph,0, M̂ph,n and θab,n are respectively the dc component, amplitude of the
nth harmonic and initial angle of the nth harmonic in Mab. The torque induced
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by these three inductances is described as,

Tm,ph =− 3

4
Pr Î

2
ac

∞∑
n=6k−4

nM̂ph,n sin

[
(n− 2) ∆θ − 2γ +

2π

3
+ θab,n

]

− 3

4
Pr Î

2
ac

∞∑
n=6k−2

nM̂ph,n sin

[
(n+ 2) ∆θ + 2γ − 2π

3
+ θab,n

]

+
3

4
Pr Î

2
ac

∞∑
n=6k

nM̂ph,n sin (n∆θ + θab,n), (k ∈ Z+).

(4.35)

In this torque component, the second harmonic in Mab, Mbc and Mca contributes
to the mean torque.

To verify the above equations, the torque components of a 12/10 VFRM are
calculated by equations (4.20), (4.27), (4.31) and (4.35) using the inductances
obtained from 2D FEM. Meanwhile, torque components Tff , (Tl,ph+Tm,ph), Tem
and Tf,ph are calculated in the FEM by exciting merely field current, armature
current and both of them with the following steps:

1. Tff is calculated by merely applying the field current;

2. Tl,ph is the summation of torques obtained by exciting phase A, B, and C
individually;

3. The value of (Tl,ph + Tm,ph) is calculated by exciting the three-phase arma-
ture currents simultaneously;

4. Tem is simulated by exciting both the field and armature currents simulta-
neously;

5. Tf,ph is derived by subtracting (Tff + Tl,ph + Tm,ph) from Tem.

The results obtained by the equations and FEM are compared in Fig. 4.7. As it
can be seen, the results show good agreement - the difference between the values
obtained by the two methods is less than 0.6%.

As explained, the fundamental of the mutual inductances between field and ar-
mature windings, and the second harmonic in the self and mutual inductances
of the armature windings, both contribute to the mean torque. However, since
the amplitude of the second harmonic is relatively low, the contribution is mod-
est. When the commutation angle γ is 90◦, the expression of the mean torque is
summarized as,

T̄em =
3

2
PrM̂fph,1if Îac =

3

2
PrΛ̂fph,1Îac, (4.36)

where Λ̂fph,1 is the fundamental flux linkage. This expression is analogous to

PMSMs. For saturated VFRMs, the value of Λ̂fph,1 can be calculated by inte-
grating the incremental mutual inductance over current.
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(a) (b)

(c) (d)

Figure 4.7: The waveforms of torque components calculated by equations and
FEM for: (a) Tff - the torque induced by the self inductance of
the field winding, (b) Tf,ph - the torque induced by the mutual
inductances between the field winding and armature windings, (c)
(Tl,ph+Tm,ph) - the sum of the torque induced by the self inductances
of the armature windings and the torque induced by the mutual in-
ductances of the armature windings, and (d) Tem - the instantaneous
total electromagnetic torque.
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(a) (b)

Figure 4.8: The Λ-i diagrams of (a) the field winding, and (b) the armature
windings with sinusoidal currents.

The torque production mechanism can also be explained by the energy conversion
loops. The bi-polar phase flux linkage distinguishes VFRMs from other uni-
polar reluctance machines, e.g., SRM, variable reluctance machine (SRM with an
auxiliary dc winding) [8], etc. On one hand, the flux linkage of the field winding
ideally moves along the line that is perpendicular to the i-axis, and does not form
any loop for an electric period, as presented in Fig. 4.8(a). On the other hand, the
Λ-i diagram of the armature windings is similar to PMSMs which forms enlosed
ellipse areas as presented in Fig. 4.8(b). From the energy conversion theory,
only the ellipse areas in Fig. 4.8(b) represent the mechanical work done by the
electromagnetic torque in an electric period, while the line in Fig. 4.8(a) does
not. Moreover, the shape of the ellipse varies by the ratio of the field current to
armature current, resulting in different values of the mean torque. The influence
of the current arrangement on the electromagnetic torque is further discussed in
Chapter 5.

4.3 Winding factor

As derived in equation (4.36), the torque is strongly linked to the value of Λ̂fph,1,
which can be expressed by,

Λ̂fph,1 = kw
Ps
m

Λ̂fcoil,1, (4.37)

where kw is the winding factor, m is the number of phases, and Λ̂fcoil,1 is the
fundamental flux linkage of a single phase coil. Hence, the winding factor is
an important factor that determines the torque production. In this section, the
dependency of the number of poles on the winding factors is introduced. The
result is used as one of the bases for the selection of the number of poles in
section 4.6.
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Table 4.1: Feasible stator-rotor pole combinations for three-phase
VFRMs (m=3).

Ps Pr

6 2, 4, 5, 7, 8, ...

12 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, ...

18 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, ...

...

4.3.1 Pole combinations

There are a lot of stator and rotor pole combinations for VFRMs. In [76], the
basic rule is given for feasible rotor pole numbers for a 6-stator-pole topology,
described as,

Pr 6= km, (k ∈ Z+), (4.38)

where m is the number of phases. The value of Pr is possible to be odd or even
number, leading to stator pole/rotor pole topologies of 6/4, 6/5, 6/7 and 6/8, etc.

This rule is extended to VFRMs with more stator poles. Since the field winding
in the stator generates the field, the number of stator poles, Ps, must be an even
number to build equal ‘north’ and ‘south’ poles. In addition, Ps also equals to the
number of ac coils, hence, should be the multiple of number of phases, m. This
gives the condition of,

Ps = 2n1m, (n1 ∈ Z+). (4.39)

Additionally, the m phases are balanced, hence, the selection of rotor pole should
satisfy the following equation [77],

ps
m

= n2, (n2 ∈ Z+), (4.40)

where ps is the parameter derived by equation (4.15). The possible pole combi-
nations for three-phase VFRMs are listed in Table 4.1.
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4.3.2 Winding configurations

To calculate the winding factor, the winding configuration is first investigated. As
shown in Fig. 4.9 that illustrates 6, 12, and 18-stator-pole VFRMs, the adjacent
ac coils are always wound on the teeth where dc coils have different orientations.
In section 4.2 Fig. 4.5, it shows that such an arrangement leads to opposite flux
polarities. Therefore, the electric angle between coil i and coil 1 is given as,

αc,i = 2π
Pri

Ps
− π (i is an even number), (4.41)

αc,i = 2π
Pri

Ps
(i is an odd number), (4.42)

where the second term on the right side of equation (4.41) describes the reverse
of flux polarity. Therefore, the electric angle between two adjacent coils is,

αc =
2πPr
Ps
− π. (4.43)

For example, for a 6/4 VFRM, disregarding the reversed flux polarity caused by
the dc coils, the electric angle between coils 1 and 2 in Fig. 4.9(a) is 2π · 46 = 240◦.
However, when considering the reversed flux polarity, the electric angle is actually
240◦-180◦ = 60◦. As such, the original phasor diagram of a 6/4 VFRM is shown in
Fig. 4.10(a), which assumes the ac coils are connected in the same orientation. To
determine groups of phase vectors, the angular displacement should be minimized,
hence, coils 2, 4 and 6 should be backward-connected, as shown in Fig. 4.10(b).
For ease of distinction, the coils with the same orientation as coil 1 are indicated
as forward-connected coils, while the coils with a different orientation as coil 1
are indicated as backward-connected coils and are shown with a prime in the
numbering.

4.3.3 Distribution factor

The distribution factor of the fundamental component is able to be calculated
using equation (4.14). The derivation of Q and α in the equation is divided into
three situations based on the value of ps.

Values of ps for three-phase VFRMs

For stator-rotor pole combinations listed in Table 4.1, the values of ps are listed
in Table 4.2. As explained in section 4.3.1, the values of ps must be multiples
of the number of phases m, hence, ps is distinguished by its ratio to m, and are
divided into three categories:
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(a) (b)

(c)

Figure 4.9: Various VFRM stators with (a) 6 poles, (b) 12 poles, and (c) 18
poles.
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1
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(a)

1, 4’

3, 6’

2’, 5

A

C

B

(b)

Figure 4.10: The 6/4 VFRM: (a) the original phasor diagram of the flux link-
age assuming all the coils are in the same orientation, and (b) the
winding configurations.

Table 4.2: Values of ps (defined in equation (4.15)) for various three-phase
VFRMs.

Pr 2 4 5 7 8

ps 3 3 6 6 3

(a) The number of stator poles, Ps, is 6.

Pr 2 4 5 7 8 10 11 13 14 16

ps 6 3 12 12 3 6 12 12 6 3

(b) The number of stator poles, Ps, is 12.

Pr 2 4 5 6 7 8 10 11 12 13 14 15 16 19 20

ps 9 9 18 3 18 9 9 18 3 18 9 6 9 18 9

(c) The number of stator poles, Ps, is 18.
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• ps/2m is an odd number, e.g., ps = 6, 18;

• ps/2m is an even number, e.g., ps = 12;

• ps/m is an odd number, e.g., ps = 3, 9.

Each of these three situations is discussed individually.

ps/2m is an odd number

For an arbitrary coil i and an according coil numbered as (i+ ps/2), the original
phase angle between them is,

αc,i+ps/2 − αc,i =αc ·
ps
2

=

(
2π
Pr
Ps
− π

)
ps
2

= 2π
Pr
Ps

ps
2
− ps

2
π

=πpr −
ps
2
π =

(
pr −

ps
2

)
π,

(4.44)

where pr is defined in equation (4.16). For m = 3, if ps/2m is an odd number,
it means ps is an even number and ps/2 is an odd number. Since pr and ps are
co-prime numbers, pr must be an odd number. Hence, (pr − ps/2) must be an
even number and the result of equation (4.44) is equivalent to,

αc,i+ps/2 − αc,i = 0. (4.45)

This indicates that these two coil phasors are in phase with each other.

Two examples, 12/10 VFRM (ps/2m = 1) and 18/11 VFRM (ps/2m = 3), are
provided. For the 12/10 VFRM, coil i and the according coil (i+ 3) are in phase
as indicated in Fig. 4.11(a), that coils 1 and 4, 2 and 5, 3 and 6 align with each
other. For the 18/11 VFRM, coil i and the according coil (i + 9) are in phase
as indicated in Fig. 4.11(b), that the phasors of coils 1 and 10, 2 and 11, ..., are
aligned. It gives the fact that coil i and coil (i+ ps/2) must be connected in the
same orientation.

In total ps/2 phasors are evenly distributed in one revolution, hence, the original
phase angle between two adjacent phasors is,

αph =
2π
ps
2

=
4π

ps
. (4.46)

On the other hand, ps/2 phasors are divided by m phases, hence, the value of Q
is,

Q =
ps
2m

. (4.47)

If ps/2m = 1, e.g., in 12/10 VFRM, all the coils are forward-connected, Q = 1
and the distribution factor is 1. If ps/2m > 1, e.g., in 18/11 VFRM, there
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1, 4, 7, 10

2, 5, 8, 11

3, 6, 9, 12

αph = 2π/3

(a)

1, 10

2, 11

3, 12
4. 13

6, 15

7, 16 8, 17

9, 18

5, 14

αph = 2π/9

(b)

Figure 4.11: The original phasor diagrams of the flux linkage assuming all the
coils are in the same orientation for: (a) the 12/10 VFRM (ps/2m =
1), and (b) the 18/11 VFRM (ps/2m = 3).

1, 10

2’, 11’

3, 12
4, 13

6, 15

7, 16

8’, 17’

9, 18

5’, 14’

α
A

C

B

Figure 4.12: The winding configurations of the 18/11 VFRM.

is a backward-connected coil between two forward-connected coils as shown in
Fig. 4.12, hence, the value of α for equation (4.14) is given by,

α =
αph
2

=
2π

ps
. (4.48)
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(b)

Figure 4.13: The 12/11 VFRM (ps/2m = 2): (a) the original phasor diagram of
the flux linkage assuming all the coils are in the same orientation,
and (b) the winding configurations.

ps/2m is an even number

The original phase angle between coil i and coil (i + ps/2) is again described by
equation (4.44). If ps/2m is an even number, ps and ps/2 are both even numbers.
Since ps and pr are co-prime numbers, pr must be an odd number. Consequently,
(pr − ps/2) is an odd number, and the result of equation (4.44) is equivalent to,

αc,i+ps/2 − αc,i = π. (4.49)

This indicates that these two coil phasors are out of phase. An example is given
for the 12/11 VFRM in Fig. 4.13(a), as can be seen, since ps/2 = 6, coils 1 and
7, 2 and 8,..., are out of phase.

In total ps phasors are evenly distribued in one revolution, hence, the phase angle
between two adjacent phasors is,

αph =
2π

ps
. (4.50)

The winding configuration should ensure that any arbitrary coil i and coil (i +
ps/2) are with different orientations, as shown in Fig. 4.13(b). As the phasors of
the backward-connected coils are in phase with the forward-connected coils, the
total number of different phasors is ps/2. These ps/2 phasors are divided by m
phases, giving the value of Q as,

Q =
ps
2m

. (4.51)

In addition, the value of α for equation (4.14) is,

α = αph =
2π

ps
, (4.52)
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Figure 4.14: The 18/20 VFRM: (a) the original phasor diagram of the flux link-
age assuming all the coils are in the same orientation, and (b) the
winding configurations (ps/m = 3).

as can been in Fig. 4.13. The expressions of Q and α in equations (4.51) and
(4.52) are the same as (4.47) and (4.48) that are derived when ps/2m is an odd
number. Hence, these two situations can be combined under the condition that
ps/m is an even number.

ps/m is an odd number

If ps/m is an odd number, the original phase angle between coil i and coil (i+ps)
is calculated as,

αc,i+ps − αc,i =αcps =

(
2π
Pr
Ps
− π

)
ps = 2π

Pr
Ps
ps − psπ

=2πpr − psπ = (2pr − ps)π
(4.53)

Since ps is an odd number, the value of (2pr − ps) must be an odd number and
equation (4.53) is equivalent to,

αc,i+ps − αc,i = π. (4.54)

Hence, the original phasors of coil i and coil (i + ps) are out of phase. Two
examples are given in Fig. 4.10(a) and Fig. 4.14(a) that shows the original phasor
diagrams of 6/4 and 18/20 VFRMs, respectively. For the 6/4 VFRM, ps = 3,
hence, coils 1 and 4, 2 and 5, 3 and 6 are out of phase. Similar as in the 18/20
VFRM, ps = 9, hence, coils 1 and 10, 2 and 11, 3 and 12... are out of phase.

In total 2ps phasors are evenly distributed in one revolution, hence, the phase
angle between two adjacent phasors is,

αph =
π

ps
. (4.55)
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Table 4.3: Values of Q and α for equation (4.14).

ps/m Q α

1 or 2 1 -

odd number > 1 ps/m π/ps

even number > 2 ps/2m 2π/ps

Table 4.4: The distribution factor of fundamental flux linkage/back-emf for vari-
ous VFRMs.

Pr

Ps 2 4 5 7 8 10 11 13 14

6 1 1 1 1 1 1 1 1 1

12 1 1 0.966 0.966 1 1 0.966 0.966 1

18 0.960 0.960 0.960 0.960 0.96 0.96 0.960 0.960 0.960

The winding configuration should ensure that any arbitrary coil i and coil (i+ps)
are with different orientations, as shown in Fig. 4.10(b) and Fig. 4.14(b). Since the
phasors of the backward-connected coils are in phase with the forward-connected
coils, the total number of different phasors is ps. These ps phasors are divided by
m phases, giving the value of Q as,

Q =
ps
m
. (4.56)

If ps/m = 1, e.g., in 6/4 VFRM, Q = 1 and the distribution factor is 1. If
ps/m > 1, e.g., in 18/20 VFRM, the value of α is,

α = αph =
π

ps
, (4.57)

as can be seen in Fig. 4.14.

The values of Q and α are summarized in Table 4.3, and the distribution factor
of fundamental is given in Table 4.4.

4.3.4 Harmonic cancellation of distribution factor

For a harmonic order n, the distribution factor is calculated as [30, 68],

kdn =
sin
(
nQα2

)
Q sin

(
nα2
) . (4.58)
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However, this equation cannot be directly applied to VFRMs, since the phase
angle may flip for higher harmonics, and consequently, the electric angle between
two adjacent phasors are not directly given by nα. To perform a thorough anal-
ysis, the higher harmonics are analyzed for three types of stator pole/rotor pole
combinations, similar to subsection 4.3.3.

Based on equations (4.41)-(4.42) that give the phase angle for the fundamental
component, the original phase angle between coil i and coil 1 for the nth harmonic
is expressed as,

αcn,i = 2π
Pri

Ps
n− π (i is an even number), (4.59)

αcn,i = 2π
Pri

Ps
n (i is an odd number). (4.60)

The original phase angle between two adjacent coils is therefore calculated as,

αcn =
2πPr
Ps

n− π, (4.61)

where the term π represents the reversed flux polarity caused by the dc coil
orientation.

ps/2m is an odd number

For the situation ps/2m is an odd number, coil i and coil (i+ps/2) are connected
in the same orientation as discussed in section 4.3.3. For the nth harmonic, the
phase angle between coil i and coil (i+ ps/2) is calculated as,

αcn,i+ps/2 − αcn,i =αcn ·
ps
2

=

(
2π
Pr
Ps
n− π

)
ps
2

= 2π
Pr
Ps

ps
2
n− ps

2
π

=πnpr −
ps
2
π =

(
npr −

ps
2

)
π.

(4.62)

Since pr and ps/2 are both odd numbers if ps/2m is an odd number as explained
in section 4.3.3, the following relationship is deduced,

αcn,i+ps/2 − αcn,i =

{
0 (n is an odd number)
π (n is an even number)

. (4.63)

Equation (4.63) indicates that for even harmonics, the two phasors of coil i and
coil (i+ps/2) are out of phase, hence the even harmonics are canceled out, and the
distribution factor is 0. On the contrary, the odd harmonics of these two phasors
are in phase with each other. If ps/2m = 1, as Q = 1, the distribution factor
is 1 for all odd harmonics. If ps/2m > 1, the phase angle between two adjacent
phasors is nα and the distribution factor can be calculated using equation (4.58).
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ps/2m is an even number

If ps/2m is an even number, coil i and coil (i + ps/2) are connected in different
orientations as explained in section 4.3.3. For the nth harmonic, the phase angle
between coil i and coil (i+ ps/2) is calculated as,

αcn,i+ps/2 − αcn,i = αcn ·
ps
2

+ π =
(
npr −

ps
2

)
π + π, (4.64)

where the term +π indicates the different orientations. Since pr is an odd number
and ps/2 is an even number if ps/2m is an even number, the same expression as
equation (4.63) is deduced. This means the even harmonics are canceled out such
that the distribution factor is 0; while for the odd harmonics, equation (4.58) can
be used. As such, the condition, ps/2m is an even number, can be combined with
the previous condition, ps/2m is an odd number, to the condition that ps/m is
an even number.

ps/m is an odd number

If ps/m is an odd number, coil i and coil (i + ps) are connected in different
orientations as explained in section 4.3.3. For the nth harmonic, the phase angle
between coil i and coil (i+ ps) is calculated as,

αcn,i+ps − αcn,i =αcn · ps + π =

(
2π
Pr
Ps
n− π

)
ps + π

= (2npr − ps + 1)π.

(4.65)

Since ps is an odd number, equation (4.65) leads to,

αcn,i+ps/2 − αcn,i = 0. (4.66)

For all the harmonics, the phasors of coil i and coil (i+ps) are in phase with each
other. For ps/m = 1, as Q = 1, the distribution is 1 for all the harmonics. If
ps/m > 1, the adjacent phase angle is nα for the odd harmonics.

However, for even harmonics, the situation is more complicated since the phase
angle is flipped for every other phasors as explained in [117]. An example is shown
in Fig. 4.15 for the second and third harmonics in the 18/20 VFRM, where the
second harmonic of the phasors of coil 5 and coil 14 are flipped. To show it more
clearly, the phasor diagrams of even harmonics is summarized in Fig. 4.16. The
phasors are divided into two groups, the phase angle between adjacent phasors
is 2nα, while the number of phasors in the two groups are (Q+1)/2 and (Q-
1)/2, respectively. Since the centerline of these two groups are out of phase, the
magnitude of the resultant phasor is calculated by [117],∣∣∣~Λres∣∣∣ =

(
Q+ 1

2
kdn,group1 −

Q− 1

2
kdn,group2

) ∣∣∣~Λ∣∣∣ , (4.67)
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Figure 4.15: The phasor diagrams of the flux linkage for the 18/20 VFRM: (a)
the second harmonic, and (b) the third harmonic.

Table 4.5: Expressions for calculating distribution factors of harmonics.

ps/m Odd harmonics Even harmonics Topology examples

1 1 1 6/2, 6/4, 12/8

2 1 0 6/5, 12/2, 12/10

Odd number > 1 equation (4.58) equation (4.70) 18/8, 18/14, 18/20

Even number > 2 equation (4.58) 0 12/5, 12/7, 18/11

where
∣∣∣~Λ∣∣∣ is the magnitude of a single phasor. Using equation (4.58) to calculate

kdn,group1 and kdn,group2, it gives,

kdn,group1 =
sin
(
nQ+1

2 α
)

Q+1
2 sin (nα)

, (4.68)

kdn,group2 =
sin
(
nQ−1

2 α
)

Q−1
2 sin (nα)

. (4.69)

The distribution factor is therefore deduced as,

kdn =

∣∣∣~Λres∣∣∣
Q
∣∣∣~Λ∣∣∣ =

sin
(
nQ+1

2 α
)

Q sin (nα)
−

sin
(
nQ−1

2 α
)

Q sin (nα)
. (4.70)

The equations for calculating distribution factors for different harmonics are sum-
marized in Table 4.5, together with some topology examples for each situation.
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Figure 4.16: The phasor diagrams of the VFRMs with ps/m as an odd number
higher than one: (a) fundamental component, and (b) even har-
monics. [117]

4.3.5 Pitch factor

The pitch factor is defined as: the ratio of resultant flux linkage/back-emf of
the two coil bundles to twice the flux linkage/back-emf of one coil bundle. For
concentrated windings, the electric angle between the two coil bundles is,

β =
2πPr
Ps

. (4.71)

The pitch factor is calculated as,

kp = cos

(
β

2

)
. (4.72)

For higher harmonic order n, the pitch factor is calculated by [117],

kpn = cos

(
n
β

2

)
. (4.73)

Disregarding the skew factor, the winding factor is calculated by,

kwn = kdnkpn. (4.74)

As a summary, the distribution factor and pitch factor are listed in Appendix C
for various VFRMs.
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4.4 Influence of the number of rotor poles

In the previous section, the winding factor is calculated. However, based on
equation (4.37), to predict the flux linkage Λ̂fph,1, not only the winding factor

has to be derived, but also the flux linkage of the coil itself, Λ̂fcoil,1, has to be
considered. Assuming the harmonics are ignored, the flux linkage of a single coil
is represented as,

Λfcoil,1 =
(Λfcoil,max − Λfcoil,min)

2
cos (∆θ) +

Λfcoil,max + Λfcoil,min

2
, (4.75)

where Λfcoil,max and Λfcoil,min are the maximum and minimum values, respec-
tively. The magnitude of fundamental is therefore,

Λ̂fcoil,1 =
Λfcoil,max − Λfcoil,min

2
. (4.76)

For VFRMs with the same number of stator poles (Ps) and the same winding
factor, the number of rotor poles (Pr) is divided into three situations, i.e., Ps ≈ Pr
(e.g., 12/10 topology), Ps � Pr (e.g., 12/22 topology), and Ps � Pr (e.g., 12/2
topology). In the following content, the term (Λfcoil,max −Λfcoil,min) is analyzed
for these three situations.

Flux linkage in VFRMs with Pr ≈ Ps

The flux linkage is strongly influenced by the teeth widths. If the teeth widths
are too large, it leads to the relationship of,

wts > (τr − wtr), (4.77)

where wts, wtr and τr represents respectively the stator tooth width, rotor tooth
width and rotor pole pitch. There is continuously overlapping area between the
stator tooth and rotor tooth as shown in Fig. 4.17, and consequently, the flux
variation between the aligned and unaligned positions is small. On the other
hand, if the teeth widths are too small, the alignment area is small as shown in
Fig. 4.18(a) and Fig. 4.18(b), which leads to a small (Λfcoil,max − Λfcoil,min) as
well.

The relationship among (Λfcoil,max − Λfcoil,min) and teeth widths is shown in
Fig. 4.19(a) for a 12/10 VFRM. The teeth width in the figure is described using
the terms kts and ktr that represent the ratios of stator/rotor tooth width to
stator/rotor slot pitch, respectively. The dashed lines indicate the situations of
wts = τr − wtr, small wtr and small wts, respectively. The value of (Λfcoil,max −
Λfcoil,min) is maximized when ktr is around 0.45 and kts is 0.5. At this moment,
wtr is approximate to wts and is close to half of the stator slot pitch.
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Figure 4.17: The fraction of a 12/10 VFRM with the relationship of wts > (τr −
wtr) (a) at the unaligned position, and (b) at the aligned position.
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Figure 4.18: The fraction of a 12/10 VFRM at the aligned position: (a) with a
small rotor tooth width, and (b) with a small stator tooth width.
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(a)

(b)

(c)

Figure 4.19: The values of coil flux linkage (Λfcoil,max − Λfcoil,min) by varying
stator and rotor teeth widths in (a) 12/10 VFRM, (b) 12/22 VFRM,
and (c) 12/2 VFRM (kts and ktr are the ratios of the stator/rotor
tooth width to stator/rotor slot pitch.
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Figure 4.20: The flux paths at the aligned position for the fraction of (a) a 12/22
VFRM, and (b) a 12/2 VFRM.

Flux linkage in VFRMs with Ps � Pr

The analysis for this situation is similar to Pr ≈ Ps. The relationship among
(Λfcoil,max − Λfcoil,min) and teeth widths is calculated for a 12/22 VFRM, in
which the dimensions are the same as the previous 12/10 VFRM except the teeth
widths. The result is shown in Fig. 4.19(b). The value of (Λfcoil,max−Λfcoil,min)
is maximized when ktr is around 0.45 and kts is 0.23. Since Ps � Pr, for relatively
small kts, the stator tooth width is already comparable to rotor tooth width.

Additionally, the flux path at the aligned position for the topology of Ps � Pr
is different from the topology of Pr ≈ Ps. For a 12/10 VFRM, the flux passes
through adjacent rotor teeth as shown in Fig. 4.17(b), while for a 12/22 VFRM,
it passes through every other rotor tooth as shown in Fig. 4.20(a), which means
the middle tooth is ‘obsolete’ at the aligned position.

Flux linkage in VFRMs with Ps � Pr

The relationship among (Λfcoil,max − Λfcoil,min) and teeth widths is shown in
Fig. 4.19(c) for a 12/2 VFRM. Due to the lack of rotor teeth, there is intrinsically
no alignment area at the unaligned position for almost all combinations of teeth
widths. The condition of wts < τr − wrt is satisfied for almost all values of wts.
Therefore, this condition is not indicated in the figure.

Additionally, the flux path at the aligned position for the topology of Ps � Pr is
different from the previous situations. There is no other rotor tooth that the flux
can go through, it has to enter and leave the same rotor tooth surface as shown
in Fig. 4.20(b). Hence, the rotor tooth width is preferred to be much larger
than the stator tooth width. However, such a large rotor tooth width maintains
a continuous overlapping area for a wide range of rotation angle, that leads to
abundance of harmonics as can be seen in Fig. 4.21(a).
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(a) (b)

Figure 4.21: Comparison of 12/2, 12/10 and 12/22 VFRMs: (a) the flux linkage
of a single coil versus the rotation angle (∆θ), and (b) the mean
electromagnetic torque.

Influence of the number of rotor poles on the mean torque

In addition to the influence on the coil flux linkage, the number of rotor poles, Pr,
has a direct effect on the torque based on equation (4.36). The mean torque is es-
timated with the teeth widths that provide the maximum (Λfcoil,max−Λfcoil,min)
for the three VFRMs, and the result is shown in Fig. 4.21(b). The torque in
the 12/2 VFRM is much lower than the other two, therefore, the topology with
Ps � Pr is not preferred. The torque of a 12/22 VFRM may be slightly higher
than the 12/10 VFRM at a relatively low current density, however, the machine
soon starts to saturate and the torque becomes much lower than 12/10 VFRM for
a higher current density. This is due to small teeth widths in the 12/22 VFRM
that lead to a relatively high flux density. Moreover, having more rotor poles
means higher electric frequency that requires a higher switching frequency of the
power electronic circuit. Therefore, the topology of Pr ≈ Ps is preferred.

4.5 Unbalanced magnetic pull

There is unbalanced magnetic pull for topologies with an odd number of rotor
poles [75]. Force is derived in x- and y-directions by FEM for the 6/5 VFRM,
and the results are shown in Fig. 4.22. As can be seen, the unbalanced magnetic
pull (UMP) is over 2×103 N with a current density of 5 A/mm2 for both the
field current and armature current, and this value rises with an increasing current
density. Such a high UMP leads to an additional bearing wear and may generate
loud acoustic noise. Therefore, the odd number of rotor poles is not recommended.
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(a) (b)

Figure 4.22: Unbalanced magnetic pull of a 6/5 VFRM: (a) the force in the
x-direction versus the rotation angle, and (b) the force in the y-
direction versus the rotation angle.

4.6 Selection of stator and rotor poles

The previous sections provide the arguments in the aspects of fundamental wind-
ing factors, harmonic cancellation, torque comparison, etc. Taking the unbalanced
magnetic pull into account, the odd number of rotor poles is not desired. Hence,
topologies such as 6/5, 6/7,... are out of consideration. According to section 4.4,
it is beneficial for the torque production to select topologies with similar values of
Ps and Pr. Therefore, topologies such as 6/4, 12/8, 12/10, 24/20... are preferred.

On the other hand, based on section 4.3, for VFRMs with ps/m equals to an even
number, e.g., 12/10, 24/20 topologies, the even harmonics are canceled out in the
back-emf. This is beneficial for torque ripple reduction, hence, is more suitable
for applications that requires minimization of torque ripple and acoustics.

For the application of 48 V mild hybrid traction, the rotational speed is extended
to around 18 krpm as introduced in Chapter 6. This is a relatively high speed,
and a smaller number of rotor poles is more preferable. At 18 krpm, the electric
frequency of a 12/10 VFRM is 3000 Hz, and this is doubled for a 24/20 topology.
For the same hardware of power electronics, suppose the machine drives operate at
the same switching frequency, the total harmonic distortion (THD) in the current
of the 24/20 VFRM is higher than the 12/10 VFRM. To reduce the THD, the
switching frequency of the 24/20 VFRM has to be increased, consequently, the
switching loss rises. As such, the 12/10 VFRM is selected for further research.
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4.7 Summary and conclusions

The research in this chapter aims for the topology selection, which requires an
extensive understanding of the machine operating principle. The electromagnetic
torque production mechanism is introduced based on the analysis of four kinds
of inductances: the self inductance of the field winding, the mutual inductances
between field winding and armature windings, the self inductances of the armature
windings and the mutual inductances of the armature windings. Each type of the
inductance induces a torque component, and the contributions to the mean torque
and torque ripples are analyzed individually. It is found that the fundamental of
the mutual inductances between the field winding and the armature windings,
mainly contributes to the mean torque.

The winding factors for different numbers of stator and rotor poles are math-
ematically analyzed, and provide the fact that with a proper selection of pole
numbers, the even harmonics in the back-emf/flux linkage can be canceled out.
Additionally, the dependence of flux path, flux linkage and torque on the num-
ber of rotor poles is analyzed. The result suggests a maximized torque for the
situation when the number of rotor poles is close to the number of stator poles.
Moreover, the magnetic pull is analyzed for an odd number of rotor poles, which
shows a large magnitude. The selection rule of the VFRM topology is given based
on the aforementioned aspects, and the 12/10 VFRM is the final choice.
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5.1 Introduction

In this chapter, the analysis towards minimizing the torque ripples, widening the
speed range and deriving the scaling laws is presented for the 12/10 VFRM, which
gives more insight into the relationship of machine geometry and performance.
The torque ripples are analyzed based on the inductances and torque equations
derived in Chapter 4, and are minimized by machine geometry adjustment and
harmonic injection. In addition, the dq-reference frame of VFRMs is introduced.
The influence of dc and ac currents on the torque-speed characteristic is given,
and the enhancement of speed extension capability is achieved by proper current
arrangement. Additionally, the scaling laws are summarized for torque production
in both non-saturated and saturated VFRMs.

5.2 Torque ripple minimization

A drawback of VFRMs is the presence of a relatively high torque ripple due to
its doubly salient structure [10, 11]. To reduce the torque ripples, the sources
of the torque ripples are first analyzed. The dominant harmonics are analyzed
for each of the four torque components obtained in section 4.2.3, i.e., Tff , Tf,ph,
Tl,ph and Tm,ph. The normalized amplitude spectrum of the torque components
is presented for a 12/10 VFRM, as shown in Fig. 5.1.

For the field winding, the winding factor is zero except for the harmonics with the
integer multiple of 6. Consequently, Tff contains a large torque ripple at these
harmonic orders based on equation (4.20), and this can be seen in Fig. 5.1.

For the mutual inductances between the field winding and armature windings,
the distribution factors of the even harmonics are all zero as explained in sec-
tion 4.3.4, hence, the torque ripple contains only even harmonics according to
equation (4.27). Moreover, among the odd harmonics of the mutual inductance,
the 5th harmonic dominates, hence, a relatively large 6th harmonic is induced in
Tf,ph, as presented in Fig. 5.1.

For the other two torque components that are respectively induced by the self and
mutual inductances of the armature windings, Tl,ph and Tm,ph, the 6th harmonic
also dominates. However, the contributions are modest compared to Tff and
Tf,ph as can be seen in Fig. 5.1, where the magnitudes of the 6th harmonic are
significantly smaller. One of the reasons is that the 6th harmonic in Tl,ph or Tm,ph
is contributed by the 4th, 6th and 8th harmonics of the inductances, however, the
contributions from these three harmonics counteract with each other to some
extent.

As a summary, the 6th harmonic dominates in the torque ripple of a 12/10 VFRM,
and is mainly contributed by Tff and Tf,ph. In the following content, three torque
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Figure 5.1: Normalized amplitude spectrum of the torque components for a non-
saturated 12/10 VFRM.

ripple reduction approaches, i.e., rotor skewing, rotor teeth non-uniformity and
harmonic injection, are investigated to eliminate Tff and Tf,ph for both non-
saturated and saturated VFRMs.

5.2.1 Rotor skewing

Skewing is one of the most effective solutions that is widely used in other types
of machines [103]. Compared with continuous skewing, stepped rotor skewing is
often applied as a more practical alternative that simplifies the manufacturing
process and reduces cost [29, 46]. The analysis in this subsection merely focuses
on the geometry with two modules, since the working principle is the same for
more modules.

The geometry of a step-skewed rotor with two modules is shown in Fig. 5.2(a).
The individual laminations of the front and rear modules are aligned, however,
between the two modules, there is a skewing angle, θsk. Assume the front half of
the machine generates a back-emf of

Efront = Ê sin(Prωmt), (5.1)

where ωm is the mechanical rotational speed. The back-emf of the rear half of
the machine is accordingly

Erear = Ê sin(Prωmt+ Prθsk). (5.2)
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Figure 5.2: (a) The 3D geometry of a step-skewed rotor with two modules for the
12/10 VFRM, and (b) the rotor position when the armature current
is zero to maximize the mean torque.

The resultant back-emf is therefore

Etot = 2Ê sin

(
Prωmt+

Prθsk
2

)
cos

(
Prθsk

2

)
. (5.3)

The armature current should be in phase with the back-emf in equation (5.3) to
reach the maximum mean torque. It means the sinusoidal current reaches zero
when the centerline of the two modules aligns with the stator tooth, as shown
in Fig. 5.2(b). As such, the ratio of the mean torque in a skewed machine to the
mean torque in an un-skewed machine is

T̄ ′em
T̄em

= cos

(
Prθsk

2

)
. (5.4)

Effect of the method for non-saturated machines

First the influence of skewing is analyzed in a non-saturated machine. To simplify
the simulation, the two modules are represented by two 2D un-skewed machines
whose rotors are relatively displaced by θsk, [24]. The 3D effect, i.e., the axial
interaction between adjacent step-skewed rotor modules [70], is not considered.

As explained above, the 6th harmonic dominates in both Tff and Tf,ph. In an
un-skewed machine, they are described as,

Tff,6 = −3L̂ff,6Pri
2
f sin(6∆θ + θff,6), (5.5)
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(a) (b)

Figure 5.3: (a) Spectrum of Tff when θsk = 3◦ and (b) spectrum of Tf,ph when
θsk = 3.6◦.

Tf,ph,6 =− 15

2
PrM̂fph,5if Îac cos (6∆θ + θfa,5)

+
21

2
PrM̂fph,7if Îac cos (6∆θ + θfa,7)

≈ −15

2
PrM̂fph,5if Îac cos (6∆θ + θfa,5) ,

(5.6)

based on equations (4.20) and (4.27) assuming γ = 90◦. Since the magnitude of
M̂fph,7 is significantly smaller than M̂fph,5, the influence of M̂fph,7 is ignored in
equation (5.6).

In a skewed machine, equations (5.5) and (5.6) become,

T ′ff,6 =− 3

2
L̂ff,6Pri

2
f [sin (6∆θ + θff,6 − 3Prθsk)

+ sin (6∆θ + θff,6 + 3Prθsk)] ,
(5.7)

T ′f,ph,6 ≈−
15PrM̂fph,5if Îac

4
[cos (6∆θ + θfph,5 − 2.5Prθsk)

+ cos (6∆θ + θfph,5 + 2.5Prθsk)] .

(5.8)

According to equations (5.7) and (5.8), Tff,6 and Tf,ph,6 can be canceled out
when θsk = 3◦ and 3.6◦, respectively. This is verified by the spectra presented
in Fig. 5.3, which show the elimination of Tff,6 and Tf,ph,6 with a properly se-
lected θsk.

For VFRMs with different geometric dimensions or currents, the contributions of
Tff,6 and Tf,ph,6 vary, therefore, the optimum skewing angle is different. If Tff,6
dominates in an un-skewed structure, it is preferred to make θsk close to 3◦, such
that Tff,6 is eliminated. An example is given for the VFRM with the geometries
and dimensions presented in Fig. 5.4 and Table 5.1. For the rotor tooth outer arc
(αro) at 14.5◦, the relationship between the torque ripple and skewing angle is
shown in Fig. 5.5(a), where the optimum skewing angle is 3◦. If αro is changed
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Table 5.1: The dimensions of a 12/10 VFRM which is the benchmark example
for analyzing torque ripple reduction and field weakening capability.

Symbol Description Value Unit
Rso Outer diameter 70 mm
Lsk Stack length 87.5 mm
Rro Rotor outer diameter 42 mm
Rsh Shaft diameter 17 mm
hsy Stator yoke height 7.5 mm
hry Rotor yoke height 13 mm
αsi Stator tooth inner arc 15 deg.
αso Stator tooth outer arc 15 deg.
α∗ro Rotor tooth outer arc 15 deg.
αri Rotor tooth inner arc 21 deg.
Ndc Number of turns per dc coil 40 -
N∗ac Number of turns per ac coil 10 -

Notes: α∗ro is varied to 14.5◦, 16◦ and 17◦ for rotor skewing in section 5.2.1
and rotor teeth non-uniformity in section 5.2.2. N∗ac is set to be 6 in section 5.3
for analyzing field weakening.

to 16◦, the contribution from Tf,ph,6 is comparable to Tff,6. The relationship
between the skewing angle and the torque ripple changes, as shown in Fig. 5.5(a).
For αro at 17◦, Tf,ph,6 becomes dominant, the optimum skewing angle moves
closer to 3.6◦. However, due to the existence of other remained small harmonic
contents, e.g., Mfph,7, Lff,12, etc., the optimum skewing angle deviates from 3.6◦,
as shown in Fig. 5.5(a) with the dotted line.

Additionally, the relationship between the mean torque and θsk is shown in
Fig. 5.6(a). The analytical result by using equation (5.4) is in agreement with the
FEM result.

Effect of the method for saturated machines

Saturation changes both the magnitudes and phases of inductances. Therefore,
the relationship between the torque components may alter significantly between
non-saturated and saturated machines. Accordingly, the relationship between the
torque ripple and skewing angle changes. Such effect can be seen in the comparison
in Fig. 5.5(a) and (b) for αro = 16◦. On the other hand, saturation almost does
not change the relationship between the average torque and skewing angle, as can
be seen in the comparison between Fig. 5.6(a) and (b). Above all, the method of
stepped rotor skewing works effectively for torque ripple reduction in both non-
saturated and saturated VFRMs. Moreover, if more modules are used, the torque
ripple can be further reduced [73].
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Figure 5.4: The geometry of a 12/10 VFRM which is the benchmark example
for analyzing torque ripple reduction and field weakening capability.

(a) (b)

Figure 5.5: Ratio of the torque ripples between a skewed machine (T ′rip) with
rotor skewing and an un-skewed machine (Trip) for different rotor
tooth outer arcs (αro): (a) the machine is not saturated, and (b) the
machine is saturated.
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(a) (b)

Figure 5.6: Ratio of the mean torques between a skewed machine (T ′em) with
rotor skewing and an un-skewed machine (Tem) for the rotor tooth
outer arc at 16◦: (a) the machine is not saturated, and (b) the ma-
chine is saturated.

5.2.2 Rotor teeth non-uniformity

The working principle of rotor skewing is to generate opposing torque ripple in
different modules, therefore to reduce the resultant torque ripple. In this subsec-
tion, a method with a different working principle is analyzed. The geometry is
shown in Fig. 5.7, where every other rotor tooth is skewed and the skewing angle
remains the same along the stack length [24].

The flux of one coil still reaches maximum when a rotor tooth aligns with the
corresponding stator tooth, and reaches minimum when they un-align. With
a skewing angle of θsk2, the flux of two coils is shown in Fig. 5.7(b). As can
be seen, the fundamental frequency of the flux of a single coil is half of the
electric frequency. However, the sum of the two has the same period as an un-
skewed structure. By properly tuning θsk2, the harmonics in the resultant flux
are attenuated.

Effect of the method for non-saturated machines

Similar to the analysis in section 5.2.1, this method is analyzed for different values
of rotor tooth outer arc as well. The selection of θsk2 should consider the rela-
tionship between torque components. Based on 2D FEM, the influence of θsk2

on L̂ff,6 and M̂fph,5 is given in Fig. 5.8, where L̂ff,6 and M̂fph,5 are minimized
with θsk2 = 2.9◦ and θsk2 = 3.6◦, respectively. As a result, for dominant Tff,6,
the optimum skewing angle is close to θsk2 = 2.9◦, as shown for αro = 14.5◦ in
Fig. 5.9(a). For αro = 16◦ when Tff,6 is comparable to Tf,ph,6, the optimum value
of θsk2 moves to 3.1◦. For αro = 17◦, the relationship between the torque ripple
and skewing angle changes, as Tf,ph,6 is much more dominant than Tff,6. Due to
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Figure 5.7: (a) The geometry of a rotor with non-uniformly distributed teeth,
and (b) flux waveforms of coil A1 and A2 and the resultant flux of
the two coils.

the contribution from other small harmonic contents, the optimum skewing angle
is 3.8◦, although the inductance M̂fph,5 is eliminated at 3.6◦. Additionally, the
ratio of the mean torque in a skewed machine to the mean torque in an un-skewed
machine is shown in Fig. 5.10(a).

Effect of the method for saturated machines

If the machine is saturated, the influence of θsk2 on the torque ripples and the
mean torque is shown in Figs. 5.9(b) and 5.10(b), respectively. As a result, the
torque ripples are affected significantly by saturation while the mean torque is
not.

Above all, the selection of the skewing angle is of crucial importance for torque
ripple reduction. The effect of the rotor skewing and rotor teeth non-uniformity
is similar in both non-saturated and saturated machines. The torque ripple is
reduced at least 50% for different situations with a mean torque reduction no
more than 5%. The final selection of the skewing angle should consider the torque
ripples at different torque levels as well as the influence on the mean torque.



142 Chapter 5: Design considerations

(a) (b)

Figure 5.8: Ratio of the inductances between a skewed machine with rotor teeth
non-uniformity and an un-skewed machine: (a) the amplitude of the
6th harmonic in the self inductance of the field winding (L̂ff,6), and
(b) the amplitude of the 5th harmonic in the mutual inductance be-
tween the field winding and armature windings (M̂fph,5).

(a) (b)

Figure 5.9: Ratio of the torque ripples between a skewed machine (T ′rip) with
rotor teeth non-uniformity and an un-skewed machine (Trip) for dif-
ferent rotor tooth outer arcs (αro): (a) the machine is not saturated,
and (b) the machine is saturated.
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(a) (b)

Figure 5.10: Ratio of the mean torques between a skewed machine (T ′em) with
rotor teeth non-uniformity and an un-skewed machine (Tem) for
rotor tooth outer arc (αro) at 16◦: (a) the machine is not saturated,
and (b) the machine is saturated.

5.2.3 Harmonic current injection

In this subsection, the method of harmonic injection is discussed for torque ripple
reduction. The method is categorized in armature current injection and field
current injection for both non-saturated and saturated machines. Results are
compared in the aspects of torque ripple and mean torque for these two injection
approaches.

Armature current harmonic injection for non-saturated VFRMs

Harmonic injection into armature current is first analyzed for the situation of a
non-saturated machine. As aforementioned, M̂fph,5 dominates, hence, the previ-
ous torque expression of Tf,ph in equation (4.13), is simplified to,

Tf,ph ≈− Prif iaM̂fph,1 sin (∆θ + θfa,1)− 5Prif iaM̂fph,5 sin (5∆θ + θfa,5)

− Prif ibM̂fph,1 sin

(
∆θ + θfa,1 −

2π

3

)
− 5Prif ibM̂fph,5 sin

(
5∆θ + θfa,5 +

2π

3

)
− Prif icM̂fph,1 sin

(
∆θ + θfa,1 +

2π

3

)
− 5Prif icM̂fph,5 sin

(
5∆θ + θfa,5 −

2π

3

)
.

(5.9)
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Suppose a 5th harmonic is injected into the armature currents that is written as,

ia = Îac cos (∆θ + γ) + Îac,5 cos (5∆θ + γ5) , (5.10)

ib = Îac cos

(
∆θ −

2

3
π + γ

)
+ Îac,5 cos

(
5∆θ + γ5 − 5× 2π

3

)
, (5.11)

ic = Îac cos

(
∆θ +

2

3
π + γ

)
+ Îac,5 cos

(
5∆θ + γ5 + 5× 2π

3

)
, (5.12)

where Îac,5 and γ5 are the amplitude and phase angle of the 5th harmonic of the
armature currents, respectively. The difference of Tf,ph with and without the
harmonic injection is derived as,

∆Tf,ph ≈−
3PrifM̂fph,1Îac,5

2
sin (6∆θ + θfa,1 + γ5)

+
15PrifM̂fph,5Îac,5

2
sin (γ5 − θfa,5) .

(5.13)

The first and second terms in equation (5.13) represent the torque ripple and
mean torque induced by the armature current harmonic injection, respectively.

To eliminate the 6th harmonic in the torque ripple, the torque ripple caused by
the injected harmonic current should counteract the original torque ripple, hence,
the following condition should be satisfied,

−3

2
PrM̂fph,1if Îac,5 sin (6∆θ + γ5 + θfa,1) + Tff,6 + Tf,ph,6 = 0. (5.14)

Note that the influence of harmonic injection on Tl,ph or Tm,ph is not consid-
ered, since these two torque components are significantly smaller as previously
explained.

The benchmark example given in Table 5.1 is used to verify the analysis. Using
equation (5.14), it is calculated that the amplitude and phase angle of the injected
harmonic current should be around 1.5 A and 20◦ respectively. On the other hand,
the FEM result is presented in Fig. 5.11(a), which shows the dependence of the
torque ripple on the values of Îac5 and γ5. The torque ripple is mostly reduced
by 87% at Îac5 = 1.5 A (around 10% of Îac) and γ5 = 20◦ as expected.

Additionally, the mean torque almost does not change based on equation (5.13).
Since the values of Îac,5 and M̂f,ph5 are much smaller than Îac and M̂fph,1, the
second term in equation (5.13) is significantly smaller than the original mean value
of Tf,ph given in equation (4.36). This is verified by the FEM result presented
in Fig. 5.11(b), that the mean torque varies less than 0.3% with and without har-
monic injection. Above all, the torque ripple is decreased by 87% using armature
current harmonic injection while the mean torque is not reduced.
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(a) (b)

Figure 5.11: The influences of the amplitude (Îac,5) and phase angle (γ5) of the
armature harmonic current on: (a) the ratio of the torque ripple
with harmonic injection (T ′rip) to the torque ripple without har-
monic injection (Trip), and (b) the ratio of the mean torque with
harmonic injection (T̄ ′em) to the mean torque without harmonic in-
jection (T̄em).

Field current harmonic injection for non-saturated VFRMs

Injecting harmonics into the field current is investigated in this subsection. The
current with the nth harmonic is described as,

if = If,0 + Îf,ncos (n∆θ + γn) , (5.15)

where Îf,n and γn are the amplitude and phase angle of the nth harmonic of the
field current, respectively. The differences of Tf,ph and Tff with and without
harmonic injection are approximately,

∆Tf,ph ≈−
3Pr Îf,nÎacM̂fph,1

4
sin [n∆θ + θfa,1 + γn − γ]

+
3Pr Îf,nÎacM̂fph,1

4
sin [n∆θ − θfa,1 + γn + γ]

− 15Pr Îf,nÎacM̂fph,5

4
sin [(n+ 6) ∆θ + θfa,5 + γn + γ]

+
15Pr Îf,nÎacM̂fph,5

4
sin [(n− 6) ∆θ − θfa,5 + γn − γ] ,

(5.16)
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∆Tff ≈−
3

2
Pr Î

2
f,nL̂ff,6 sin(6∆θ + θff,n)

+
3

4
Pr Î

2
f,nL̂ff,6 sin [(2n− 6) ∆θ − θff,n + 2γn]

− 3PrIf0Îf,nL̂ff,6 sin [(n+ 6) ∆θ + θff,n + γn]

− 3

4
Pr Î

2
f,nL̂ff,6 sin [(2n+ 6) ∆θ + θff,n + 2γn]

+ 3PrIf0Îf,nL̂ff,6 sin [(n− 6) ∆θ − θff,n + γn] .

(5.17)

To eliminate the 6th torque ripple, a 6th harmonic should be injected in the field
current. In equation (5.16), the first and second terms represent the change in the
6th harmonic of the torque ripple, the third term indicates the change in the 12th

harmonic of the torque ripple, and the fourth term gives the change in the mean
torque; while in equation (5.17), the first and second terms represent the change
in the 6th harmonic of the torque ripple, the third and fourth terms indicate
respectively the change in the 12th and 18th harmonics of the torque ripple, and
the fifth term gives the change in the mean torque.

The change in the 6th harmonic of the torque ripple should counteract the original
ripples, giving the condition of,

3Pr Îf,6ÎacM̂fph,1

4
cos [6∆θ + θfa,1 + γ6]

+
3Pr Îf,6ÎacM̂fph,1

4
cos [6∆θ − θfa,1 + γ6]

+
3

4
Pr Î

2
f,6L̂ff,6 sin [6∆θ − θff,6 + 2γ6]

− 3

2
Pr Î

2
f,6L̂ff,6 sin(6∆θ + θff,6) + Tf,ph,6 + Tff,6 = 0,

(5.18)

assuming γ = 90◦. To investigate the effectiveness of the field harmonic injec-
tion, the same benchmark example listed in Table 5.1 is used. The torque ripple
reduction with respect to the amplitude and phase angle of the field harmonic
current is shown in Fig. 5.12(a). The torque ripple reaches its minimum with
Îf,6 = 1.1 A and γ6 = -70◦. This minimum value is slightly higher than the value
using armature current harmonic injection. It is caused by the extra 12th and
18th harmonics of torque ripple expressed in equations (5.16) and (5.17). Such
effect is presented in Fig. 5.13, where the 12th and 18th harmonics are compared
for the two injection methods. On the other hand, the mean torque is reduced by
0.8% at the point of Îf,6 = 1.1 A and γ6 = −70◦, as can be seen in Fig. 5.12(b).

It is worth mentioning that a relatively large harmonic in the field current may
require a high voltage for the field winding, which is expressed by,

∆u ≈ 6Lff,0Îf,6 sin (6∆θ + γ6)ωrPr, (5.19)
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(a) (b)

Figure 5.12: The influences of the amplitude (Îf,6) and phase angle (γ6) of the
field harmonic current on: (a) the ratio of the torque ripple (T ′rip)
with harmonic injection to the torque ripple (Trip) without har-
monic injection, and (b) the ratio of the mean torque with har-
monic injection (T̄ ′em) to the mean torque without harmonic injec-
tion (T̄em).

Figure 5.13: The comparison of the amplitude spectra of the torque for armature
current harmonic injection and field current harmonic injection.
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(a) (b)

Figure 5.14: The ratio of the torque ripple with harmonic injection (T ′rip) to the
torque ripple without harmonic injection (Trip) for different ampli-
tudes (Îac,5, Îf,6) and phase angles (γ5, γ6) of the harmonic currents:
(a) by using armature current harmonic injection, and (b) by using
field current harmonic injection.

where ∆u represents the induced voltage by field current harmonic injection.
Since the dc component of the inductance, Lff,0, is relatively large, when Îf,6
is 1.1 A, the amplitude of ∆u reaches 170 V at 3000 rpm, hence, must be taken
into account. For armature current harmonic injection, the increase of voltage is
much more limited as the magnitude of M̂fph,n is much smaller compared to Lff,0.

Influence of saturation

The effectiveness of the aforementioned two injection methods is discussed in this
subsection for a saturated machine. The torque ripple and mean torque are calcu-
lated. Parameters, i.e. amplitudes and phase angles of injected currents, are swept
to seek the optimum values. The obtained results are presented in Figure 5.14
and Figure 5.15. As it can seen in Figure 5.14, armature current harmonic injec-
tion reduces the torque ripple up to 80%, while field current harmonic injection
only reduces it up to 49% [71]. Meanwhile, at the point with minimum torque
ripple, the mean torque is reduced by 0.2% and 2.8% respectively by using arma-
ture current injection and field current injection. In this sense, armature current
harmonic injection has a better performance.

As a summary, the rotor skewing, rotor teeth non-uniformity and harmonic injec-
tion are effective for torque ripple reduction, and these methods are possible to
be combined for even better results.
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(a) (b)

Figure 5.15: The ratio of the mean torque with harmonic injection (T ′em) to the
mean torque without harmonic injection (Tem) for different ampli-
tudes (Îac,5, Îf,6) and phase angles (γ5, γ6) of the harmonic currents:
(a) by using armature current harmonic injection, and (b) by using
field current harmonic injection.

5.3 Field weakening capability

The arrangement of field current and armature current influences significantly the
working envelope of a VFRM. The effect on the knee point in the torque-speed
curve and the speed extension capability is discussed in this section.

5.3.1 DQ-reference frame

Generally, the dq-reference frame is desired in control to have the system vari-
ables as constants and to use standard PI regulators. The dq current errors are dc
instead of sinusoidal ac signals, hence, the control bandwidth can be significantly
lower. [68] In PMSMs, the dq-reference frame based on rotor frame is recom-
mended in the dynamic modeling. The d-axis is defined as the centerline of the
rotor magnetic poles, while the q-axis is defined half pole pitch shifted from the
d-axis. The d-axis points to the peak airgap magnetic field created by the rotor
while the q-axis always points to the zero field.

However, the characteristic of the airgap rotating magnetic field in VFRMs is
different from PMSMs. In [127], the open-circuit airgap radial field harmonics
and armature reaction airgap radial field harmonics are presented for a 12/10 flux
switching machine. Similar calculation is performed for the 12/10 VFRM, and
the predicted rotating field using FEM is presented in Figs. 5.16 and 5.17. Based
on Fig. 5.16(b), different harmonics of the open-circuit airgap rotating field have
different rotating speeds, e.g., the 6th harmonic is a static field, the 4th harmonic
rotates with the electric frequency while the frequency of the 24th harmonic is
tripled. In addition, the armature reaction rotating field is synchronous to the
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Figure 5.16: Harmonics of the open-circuit air-gap radial magnetic field: (a) the
amplitude at rotation angle ∆θ = 0◦, and (b) the relationship be-
tween the phase angles and ∆θ of several harmonics.

open-circuit magnetic field as presented in Fig. 5.16(b) and Fig. 5.17(b). However,
there is not a clear fundamental rotating magnetic field in the VFRM as can be
seen in Figs. 5.16(a) and 5.17(a), where the harmonics with the order of 4, 6...
dominate in the open-circuit or armature reaction airgap magnetic field. Hence,
the definition of dq-axes for PMSMs can not be directly applied to VFRMs.

This thesis uses the concept explained in [117], which uses the open-circuit flux
linkage waveform, to define dq-axes. The flux linkage of a phase reaches the peak
values when the centerline of a stator tooth aligns with the centerline of a rotor
tooth or between the centerlines of two adjacent rotor teeth. These two lines are
defined as the positive and negative d-axes as indicated in Fig. 5.18. Accordingly,
the q-axes are located in the middle between two adjacent d-axes.

The dq-axes inductance is calculated as,

Ld =
3

2
Lph,0 +

3

2
L̂ph,2,

Lq =
3

2
Lph,0 −

3

2
L̂ph,2,

(5.20)

where Lph,0 and L̂ph,2 is the dc component and amplitude of the 2nd harmonic
of the self inductance, respectively, as explained in section 4.2.3. As shown in
Fig. 4.6, the magnitude of the 2nd harmonic, L̂ph,2, is relatively small, around
0.9% of the dc component Lph,0. Therefore, the saliency ratio of the VFRM is
small. The expressions of voltage and torque in dq-axes are similar to PMSMs,
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Figure 5.17: Harmonics of the air-gap radial magnetic field generated by arma-
ture currents: (a) the amplitude at rotation angle ∆θ = 0◦, and
(b) the relationship between the phase angles and ∆θ of several
harmonics.
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Figure 5.18: The dq-axes indicated for a 12/10 VFRM.
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which are given as,

Ud = ωeLqIq, (5.21)

Uq =
(
M̂fph,1if − LdId

)
ωe, (5.22)

T̄em =
3

2
Pr

[
M̂fph,1ifIq + (Ld − Lq) IdIq

]
, (5.23)

Iq = Îac sin(γ), (5.24)

Id = Îac cos(γ). (5.25)

The voltage drop on the phase resistance is neglected in the equations. For the
48 V mild hybrid system explained in Chapter 6, the machine has to operate at
a high speed with a relatively low source voltage, hence, the number of turns of
the armature windings is small. This leads to a relatively small resistance value,
as mentioned in section 7.4, and hence, the resistive voltage is low, and is ignored
in the following analysis for speed extension capability.

5.3.2 Torque-speed characteristic

To reach a theoretical infinite speed, Ud/ω and Uq/ω should approach zero, this
is satisfied when,

Ud
ω
→ 0⇒ Iq → 0, (5.26)

Uq
ω
→ 0⇒ M̂f,ph1if = LdId. (5.27)

This means,

sin(γ)→ 0, (5.28)

M̂fph,turnNacNdcif = Ld,turnN
2
acId ≈ Ld,turnN2

acÎac, (5.29)

where M̂fph,turn and Ld,turn are respectively the values of M̂fph,1 and Ld for a
single turn, while Ndc and Nac are respectively the number of turns for the field
winding and armature windings. By rewriting equation (5.29), it is concluded
that when,

F̂ac
Fdc

=
M̂fph,turn

Ld,turn
, (5.30)

the speed can approach infinity in theory, where F̂ac and Fdc are respectively the
peak mmf of the armature current and mmf of the field current,

F̂ac = NacÎac, (5.31)

Fdc = Ndcif . (5.32)
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Hence, the speed extension capability is strongly dependent on the current.

A factor, Kfw, is defined to describe such relationship [108],

Kfw =
F̂ac
Fdc

Ld,turn

M̂fph,turn

. (5.33)

Based on equation (5.30), if Kfw is unity, the field weakening capability is max-
imized. In PM machines, e.g., PM flux switching machines, the excitation field
built by PMs can be significantly high while Ld,turn is much more limited, the field
weakening capability may be inferior since Kfw is much smaller than unity [56].
However, in VFRMs, the control freedom of both armature current and field cur-
rent offers the freedom of tuning Kfw. In the following content, the influence of
current on maximum continuous torque, base speed and field weakening capability
is explained.

Maximum continuous torque

In the constant torque region of the working envelope, the relationship between
the mean torque and mmf is derived by re-writing equation (5.23), which gives,

T̄em =
3

2
PrM̂fph,1if Îac =

3

2
Pr

(
M̂fph,turnNdcNac

)
if Îac

=
3

2
PrM̂fph,turnFdcF̂ac.

(5.34)

To ensure equal thermal loading in all the windings, the maximum continuous
RMS current densities, Jmax, are considered to be equal for the field and armature
windings. As such, the values of F̂ac and Fdc are varied by assigning different slot
areas for field and armature windings. Equation (5.34) is converted to,

T̄em =
3
√

2

2
PrM̂fph,turnJ

2
maxSdcSac

=
3
√

2

2
PrM̂fph,turnJ

2
maxSdc

(
Sslot

2
− Sdc

)
,

(5.35)

where Sdc, Sac and Sslot represent the areas of the dc coil bundle, ac coil bundle
and a single slot, respectively. The maximum value of equation (5.35) is reached
when Sdc = Sac = Sslot/4, or in other words, F̂ac =

√
2Fdc. Such relationship is

verified by the curve shown in Fig. 5.19(a).
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(a) (b)

Figure 5.19: (a) Dependence of the maximum continuous torque (T̄em) on the
ratio between the mmfs of armature and field windings (F̂ac/Fdc),
and (b) dependence of the base speed (nb) on F̂ac/Fdc, (Sdc and
Sac in the x-label are slot areas assigned for dc and ac coil bundles,
respectively).

Base speed for continuous operation

The expression of the base speed in rpm is,

nb =
Us√(

M̂fph,1if

)2

+
(
Lq Îac

)2

60

2πPr

=

60Us

2πPrNacJmaxSslot√(
M̂fph,turn

Sdc

Sslot

)2

+ L2
q,turn

(
1
2 −

Sdc

Sslot

)2
,

(5.36)

where Us is the dc source voltage level. The base speed reaches the maximum
when the derivative of the denominator of equation (5.36) reaches zero, that is

Sdc
Sslot

=
L2
q,turn

2M̂2
fph,turn + 2L2

q,turn

. (5.37)

Such relationship is verified by the given VFRM in Table 5.1. Using equa-
tion (5.36), the maximum nb is reached when Sdc = 0.84(Sdc + Sac) or in other
word (F̂ac = 0.27Fac), and it matches the 2D FEM result shown in Fig. 5.19(b).
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(a) (b)

Figure 5.20: (a) Dependence of the torque-speed curves on the mmfs of the field
winding (Fdc) and armature winding (F̂ac), and (b) dependence of
the normalized power-speed curves on Fdc and F̂ac, (Kfw is the
factor defined in equation (5.33)).

Torque-speed characteristics by varying commutation angle

The field weakening is realized by varying the commutation angle from 90◦ to
170◦ in this subsection, while the current densities of armature windings and field
winding are fixed, i.e. at Jmax. This means Kfw is kept fixed in the entire speed
range. In Fig. 5.20, it shows the FEM results of torque-speed curves for different
F̂ac/Fdc and the corresponding normalized power-speed curves. The unit power
value is specified as the multiple of the knee speed and knee torque for each
situation, while the unit speed value is specified at the knee speed of the solid
line in Fig. 5.20(a). As can be seen, for the situations when Kfw is far away from
unity, the field weakening capability is very poor, e.g., when Kfw = 0.59, the
power drops by 72% when the speed is less than twice extended. However, when
Kfw is close to unity, the rotational speed is extended by at least 7 times with a
power drop of 9%.

Expansion of torque-speed working envelope

In the above analysis, the factor Kfw is fixed for the entire speed range at the
value of nominal working point. However, to meet the requirement of nominal
torque or speed, the value of Kfw in a lot of circumstances is far from unity,

e.g., the maximum continuous torque is reached when F̂ac =
√

2Fdc such that
Kfw = 2.3. Hence, merely varying commutation angle is not sufficient for speed
extension.

In this case, the flexibility of controlling both armature current and field current
in VFRMs provides the opportunity for adjusting Kfw such that the working
envelope can be extended [9]. To show the effectiveness of tuning Kfw dynami-
cally, two examples are given for Kfw < 1 and Kfw > 1 at the nominal working



156 Chapter 5: Design considerations

point. For better distinction in the following content, the value of Kfw at the
nominal working point is denoted as Kfw,nom, while the adjusted Kfw is denoted
as Kfw,adj .

For the situation that Kfw,nom is smaller than unity, the field current should be
reduced to tune Kfw in the speed extension region. An example is given for the

situation of F̂ac = 0.35Fdc, Kfw,nom = 0.59. The current density of the field
current is adjusted to be 0.59 times of the original value to make Kfw equal
to unity. The torque-speed curves are presented in Fig. 5.21(a) for the current
arrangements with Kfw,nom = 0.59 and adjusted Kfw,adj = 1 respectively. As it
can be seen, the two curves intersect at a speed around 6 krpm.

To maximize the working envelope, for a speed smaller than 6 krpm, the currents
are arranged to keep Kfw at Kfw,nom, while for a speed higher than 6 krpm, it is
desired to tune Kfw to unity. The result for such current arrangement is shown in
Fig. 5.21(e). Compared to the original normalized power shown as the solid line
in Fig. 5.21(c), the power in Fig. 5.21(e) is significantly increased at high speed.

For the situation that Kfw,nom is higher than unity, the armature current should
be reduced to tune Kfw. As an example, the effect of tuning Kfw is analyzed for

the situation of F̂ac = 0.94Fdc, Kfw,nom = 1.57. The torque-speed curves and
normalized power-speed curves are presented in Figs. 5.21(b) and (d), respectively.
The improved power-speed curve is shown in Figs. 5.21(f), where the working
envelope is largely extended comparing to the original power-speed curve shown
in Fig. 5.21(d).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: (a) Torque-speed curves for Kfw,nom=0.59 and Kfw,adj=1, (b)
torque-speed curves for Kfw,nom = 1.57 and Kfw,adj = 1, (c) nor-
malized power-speed curves for Kfw,nom = 0.59 and Kfw,adj =
1, (d) normalized power-speed curves for Kfw,nom = 0.59 and
Kfw,adj = 1, (e) normalized power-speed curve after improvement
with Kfw,nom = 0.59, and (f) normalized power-speed curve after
improvement with Kfw,nom = 1.57 (Kfw,nom is the value of factor
Kfw at the nominal working point, Kfw,adj is the adjusted Kfw for
speed extension).
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Figure 5.22: Dependence of the power factor on the ratio between the mmfs of
armature and field windings (F̂ac/Fdc).

5.4 Power factor

The power factor (PF ) of VFRMs is strongly influenced by the current arrange-
ment. Based on equations (5.21)-(5.22), the power factor in the constant torque
region is,

PF =
Uq√

U2
q + U2

d

=
M̂fph,1ifωe

ωe

√(
M̂fph,1if

)2

+ (LqIq)
2

=
M̂fph,turnNdcNacif√(

M̂fph,turnNdcNacif

)2

+
(
Lq,turnN2

acÎac

)2

=
M̂fph,turnNdcif√(

M̂fph,turnNdcif

)2

+
(
Lq,turnNacÎac

)2

=
M̂fph,turnFdc√(

M̂fph,turnFdc
)2

+
(
Lq,turnF̂ac

)2
=

M̂fph,turn√(
M̂fph,turn

)2

+
(
Lq,turn

F̂ac

Fdc

)2
.

(5.38)

Hence, it is desired to have a smaller F̂ac/Fdc to reach a higher power factor, and
such relationship is shown in Fig. 5.22 for the VFRM with the dimensions listed
in Table 5.1.
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5.5 Scaling of outer dimensions

Giving the torque level of an existing design, the initial outer dimensions of a new
design can be determined using a scaling law [112], which gives a rough prediction
of torque with respect to the outer diameter and stack length. The result of the
analysis in this section is used in Chapter 6 for initial sizing of a design.

The expression of the scaling law is written as,

T̄em ∼ Dn1
soL

n2

sk , (5.39)

where Dso is the stator outer diameter, n1 and n2 are the exponents of the outer
diameter and stack length, respectively.

To derive the values of n1 and n2, the dimensions of the VFRM are radially scaled
and axially scaled, respectively. Before starting the analysis, an assumption is
made that the thermal condition keeps the same. Assuming the heat transfer
mainly occurs on the outer surface area, the convective heat transfer is calculated
as,

Q = hcπDsoLsk(Tsurf − Tamb), (5.40)

where hc is the heat transfer coefficient, Tsurf and Tamb are the machine sur-
face temperature and coolant temperature, respectively. Using the expression in
equation (3.31), the current density is derived as,

J =

√
hcπDsoLsk(Tsurf − Tamb)kf

Vcoilρ
. (5.41)

Assuming hc, Tsurf , Tamb and kf are invariant, the relationship between the
current density and the machine outer dimensions is written as,

J ∼
√
DsoLsk
Vcoil

. (5.42)

This gives the pre-condition for the following content. For ease of distinction, the
parameters for the radial-scaled, axial-scaled and un-scaled VFRMs are written
with the subscripts of r, a and u, respectively.

Radial scaling

The assumptions of radial scaling are:

• the rotor inner diameter, Dri, stator inner and outer diameters, Dsi and
Dso are all scaled by a factor of Xsf,r;
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Figure 5.23: A simple MEC for part of the VFRM at the aligned position.

• the airgap length and tooth arcs remain fixed.

The coil volume under such conditions has the relationship of Vcoil,r = X2
sf,rVcoil,u,

hence, the current density is calculated as,

Jr
Ju

=

√
Dso,r

Dso,u
·

√
Vcoil,u
Vcoil,r

·

√
Lsk,r
Lsk,u

=
√
Xsf,r ·

√
1

X2
sf,r

· 1 =

√
1

Xsf,r
, (5.43)

when the end windings are neglected.

For a non-saturated VFRM, based on equation (4.36), the torque is expressed as

T̄em =
3

2
PrΛ̂fph,1Îac =

3

2
Prφ̂fph,1NacÎac =

3

2
Prφ̂fph,1ĴacSac, (5.44)

where Sac is the area of the ac coil bundle. To investigate the relation of φ̂f,ph1

with respect to outer dimensions, a simple MEC is drawn in Fig. 5.23 when the
field winding is excited. The mmf of the dc coil in the figure is linear to the
current density, Jdc, and the dc coil bundle area, Sdc. The permeances of the iron
parts are neglected, and the permeance of the airgap is linear to the tooth arc
length. Therefore, the flux has the following relation,

φ̂f,ph1 is proportional to JdcSdcDsiαsi, (5.45)

where αsi is the angle of the stator tooth inner arc. With the definitions of radial
scaling, the coil areas have the relation of,

Sdc,r
Sdc,u

= X2
sf,r. (5.46)

Substituting equations (5.43) and (5.46) into equation (5.45) gives,

φ̂fph,1,r

φ̂fph,1,u
=
Jdc,r
Jdc,u

· Sdc,r
Sdc,u

· Dsi,r

Dsi,u
=

√
1

Xsf,r
·X2

sf,r ·Xsf,r = X2.5
sf,r. (5.47)
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(a) (b)

(c) (d)

Figure 5.24: (a) The ratio of the mean torque with radial scaling (T̄em,r) to the
mean torque without scaling (Tem,u) for a non-saturated VFRM
(Xsf,r is the radial scaling factor), (b) the ratio of T̄em,r to Tem,u
for a saturated VFRM, (c) the variation of n1 in equation (5.39) as
the current density increases, and (d) the variation of incremental
relative permeability in un-scaled and radially-scaled VFRMs.

Replacing φ̂fph,1 in equation (5.44) with (5.47), it is deduced that,

T̄em,r
T̄em,u

=
φ̂f,ph1,r

φ̂f,ph1,u

· Ĵac,r
Ĵac,u

· Sac,r
Sac,u

= X2.5
sf,r ·

√
1

Xsf,r
·X2

sf,r = X4
sf,r ∼ D4

so, (5.48)

suggesting that the torque production of the VFRM is proportional to D4
so. This

is verified by the curve shown in Fig. 5.24(a), which provides the relationship
between torque and radial scaling factor. As can be seen, the result obtained by
equation (5.48) matches with the FEM results.

In a saturated VFRM, the contribution of the iron permeance is not negligible and
the MEC is much more complex than shown in Fig. 5.23, hence, the expression
of φ̂fph,1 is not derived by MEC. Assuming the relative permeability in the iron
reaches unity and the flux density in the stator tooth reaches the saturation
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level, Bsat. The flux is expressed as,

φ̂fph,1 =

∫
S

BdS = BsatDsi cos
(αsi

2

)
Lsk. (5.49)

Since Dsi is linear to Xsf,r and αsi remains constant, equation (5.49) leads to,

φ̂fph,1 is proportional to Xsf,r. (5.50)

Substituting equation (5.50) into (5.44) gives,

T̄em,r
T̄em,u

=
φ̂fph,1,r

φ̂fph,1,u
· Ĵac,r
Ĵac,u

· Sac,r
Sac,u

= Xsf,r ·

√
1

Xsf,r
·X2

sf,r = X2.5
sf,r, (5.51)

meaning that the torque production is proportional to D2.5
so . The curve of torque

versus radial scaling factor shown in Fig. 5.24(b) verifies this relationship.

To further investigate the value of n1 in addition to the above two situations, the
current density is varied for VFRMs with two different radial scaling factors. The
value of T̄em,r/T̄em,u is calculated, and n1 is derived as,

n1 = logXsf,r

(
T̄em,r
T̄em,u

)
. (5.52)

The variation of n1 is drawn in Fig. 5.24(c). As presented, in both curves, n1

starts from 4, gradually reduces due to the local saturation and finally reaches 2.5
when the incremental µr reaches unity in the flux path. It is worth mentioning
that increasing the radius potentially increases the magnetic flux density in the
VFRMs. Such phenomena is illustrated in Fig. 5.24(d), where the incremental
relative permeability is compared for un-scaled and scaled VFRMs. As can be
seen, the value of incremental µr becomes much smaller in a scaled-up VFRM
at some certain range. This tends to decrease the value of T̄em,r/T̄em,u and
consequently, n1 drops to a level less than 2.5 at this range.

Axial scaling

The definition of axial scaling is that the radial dimensions remain constant while
the stack length is scaled by a factor of Xsf,a. Based on equation (5.42), the
current density does not change, and the torque has the relation of,

T̄em,r
T̄em,u

= Xsf,a. (5.53)

This indicates that the torque is linear to the stack length.
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For two VFRMs with the same volume but different outer diameters and stack
lengths, the torque is compared as,

T̄em2

T̄em1
=

(
Dso2

Dso1

)n1
(
Lsk2

Lsk1

)
=

(
Dso2

Dso1

)n1−2(
D2
so2Lsk2

D2
so1Lsk1

)
=

(
Dso2

Dso1

)n1−2

.

(5.54)

According to Fig. 5.24(c), n1 is larger than 2. Hence, T̄em2/T̄em1 > 1 if Dso2 >
Dso1, and vice versa. It indicates that a wider VFRM is more preferred from the
torque point of view. However, this conclusion does not take the influence of end
windings into account.

5.6 Summary and conclusions

The high level of torque ripples is a disadvantage of VFRMs. In this chapter,
three different reduction methods using rotor skewing, rotor teeth non-uniformity
and harmonic injection in field or armature currents are analyzed individually.
The effectiveness of these methods is verified in non-saturated and saturated ma-
chines. The analysis of torque ripple shows significant contributions from Tff,6
and Tf,ph,6. For the methods of skewing and rotor teeth non-uniformity, the re-
lationship between the torque ripple components strongly influences the selection
of the skewing angle. In addition, saturation has a significant impact on the re-
lationship between torque ripple reduction and skewing angle, while the average
torque is almost not affected. Above all, the effectiveness of the rotor skewing
with two rotor modules and the rotor teeth non-uniformity is similar, that the
torque ripple is at least reduced by 50% with no more than 5% average torque
reduction. Regarding armature current/field current harmonic injection, both of
them are able to significantly reduce the torque ripple for a non-saturated ma-
chine, while for a saturated machine, the performance of field current harmonic
injection is degraded. As such, harmonic injection into armature current is recom-
mended, which is able to reduce 80% of the torque ripple in both non-saturated
and saturated machines without reduction of the average torque.

The dependency of the torque-speed curves on the mangetomotive forces of dc
current and ac current is analyzed. To maximize the constant power region, a
unity Kfw is desired. For the situation with Kfw differs from unity, it is possible
to adjust the field current or armature current to tune the value of Kfw. The
effectiveness of such current adjustment is verified for two examples, and the result
of 2D FEM shows that the speed is capable to be extended by 6 times the base
speed in the constant power region. Furthermore, the dependency of the power
factor on currents is also investigated. Generally, a lower ratio of ac current to dc
current is beneficial for increasing the power factor.
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The scaling laws including radial scaling and axial scaling are analyzed, which can
give a prediction of torque with respect to the outer diameter and stack length.
The result shows that the mean torque is more dependent on the diameter than
the stack length for both non-saturated and saturated situations.
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6.1 Introduction

The design and optimization of a 12/10 VFRM for 48 V mild hybrid system
is elaborated in this chapter. Given the initial sizing, the optimization of the
lamination geometry is performed using the coordinate descent method. The
winding design is discussed explicitly considering the ac copper losses. Finally,
the parameters of the prototype and the predicted performances are provided.

6.2 Machine requirements

The electric vehicles normally require a constant torque region at low speed for
starting or climbing hill, and a constant power region for higher speed [62, 91, 92].
The torque-speed characteristic for the 48 V mild hybrid application is shown in
Fig. 6.1. The continuous operating power is 5 kW with a maximum continu-
ous torque of 16 Nm at 3000 rpm. The maximum speed should be extended
to 18000 rpm. The transient overload peak torque and peak power is 45 Nm
and 10 kW, and the duration time is 10 seconds. The power factor should be
larger than 0.7 and the peak line current is limited to 500 A considering the drive
constraints.

A compact design is required in automotive applications, the total dimension of
the machine is considered to be within a length of 175 mm and a diameter of
165 mm. Subtracting the space occupied by the cooling jacket, housing, end
windings, bearings, electronics, etc., the stack length is given for 87.5 mm and
the outer diameter is 140 mm. The machine is assumed to work under water
cooling with a coolant temperature of 65◦C. The above design requirements are
summarized in Table 6.1.

Figure 6.1: Torque-speed characteristic of the VFRM for automotive 48 V mild
hybrid system.
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Table 6.1: Machine requirements for automotive 48 V mild hybrid system.

Parameter Description value Unit
Pnom Continuous power 5 kW
Ppeak Peak power 10 kW
Tnom Maximum continuous torque 16 Nm
Tpeak Peak torque 45 Nm
nnom Continuous speed at Tnom for 5 kW 3000 rpm
nmax Maximum speed for 5 kW 18000 rpm
Dso Stator outer diameter 140 mm
Lsk Stack length 87.5 mm
Tamb Coolant temperature 65 ◦C

6.3 Selection of the soft magnetic material

The selection of the soft magnetic material strongly influences the machine per-
formance. The requirements of large peak torque and maximum speed as well
as the desire of high efficiency require a lamination steel with a high saturation
flux density and low iron losses. The characteristics of three electrical steel grades
from Cogent, i.e., NO20, NO27 and NO30 [33], are shown in Fig. 6.2, respectively.
These steels are designed to improve the performance of energy efficient applica-
tions by reducing iron losses to a minimum at high magnetization frequencies,
which results in highly efficient solutions for applications such as high speed ro-
tational motors and generators for hybrid and full electric vehicles [32]. The flux
density provided by the datasheet is up to 1.8 T, where the relatively permeabil-
ity is 20, 17 and 18 for the three steels, respectively. Electrical steel NO20 has
higher µr in the B-H curve as shown in Fig. 6.2(a) and less iron loss density at
higher frequency as shown in Fig. 6.2(c), however, due to its higher price, it is not
considered for the design. Moreover, taking into account that NO27 has less iron
loss density compared to NO30 as shown in Fig. 6.2(b) and Fig. 6.2(c), it is the
final choice for the machine. The B-H curve of NO27 is extended until µr = 1 by
using the curve fitting tool in software Altair Flux2D, and the final B-H curve is
shown in Fig. 6.2(d).

6.4 Initial sizing

6.4.1 Outer dimensions

In section 5.5, the scaling laws are given for the relation between the torque and
stator outer dimensions. The equations are used to verify the feasibility of using
a 12/10 VFRM to reach the peak torque requirement.
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Figure 6.2: Comparison of Cogent electrical steel grades NO20, NO27 and NO30:
(a) B-H curves in datasheet, (b) iron loss density at 50 Hz in
datasheet, (c) iron loss density at 400 Hz in datasheet, and (d) ex-
tended B-H curve of NO27 up to µr = 1.
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(a) (b)

(c)

Figure 6.3: (a) The relationship between the mean torque and split ratio with
the same mmf (normalized torque is defined at split ratio = 0.6),
(b) the relationship between the torque and split ratio with the same
copper loss, and (c) the relationship between the torque and split
ratio as the copper loss increases.

It has been reported a 12/10 VFRM designed for EV traction applications in [78,
131]. The machine is able to reach a peak torque of 150 Nm with an outer diameter
of 265 mm and a stack length of 50.8 mm. It means that for a VFRM with the
outer dimensions listed in Table 6.1 (Dso = 140 mm and Lsk =87.5 mm), it can
reach 52 Nm based on equations (5.51) and (5.53), which exceeds the limit of
45 Nm. Although the cooling capability and thermal condition are not provided
in the literature, it still verifies the feasibility to some extent.

6.4.2 Split ratio

The analysis of split ratio (SR), which is defined as the ratio of rotor outer radius
to stator outer radius, determines the initial rotor outer diameter, Dro. A higher
split ratio means a larger airgap area, hence, with the same mmf , the torque
increases with the split ratio as can be seen in Fig. 6.3(a). On the other hand,
the coil area varies as split ratio changes, and based on equation (5.42), the mmf
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should be,

F = JScoil ∼
√
DsoLsk
Vcoil

Scoil =
√
DsoScoil, (6.1)

to keep the same copper loss. Hence, if the split ratio increases, Scoil decreases,
and mmf decreases accordingly.

The influence from both the airgap area and mmf leads to a relationship between
the torque and split ratio shown in Fig. 6.3(b). With the increase of split ratio, the
torque increases first since the airgap area plays a more important role, hereafter,
the torque decreases since the influence of mmf becomes more dominant.

Additionally, saturation influences the relationship between torque and split ratio
as well. As shown in Fig. 6.3(c), the optimum split ratio gradually increases as the
saturation level increases. This is because a higher split ratio helps to decrease
the flux density due to the smaller mmf and larger tooth width. Hence, for a high
peak torque level, a relatively high split ratio is suggested for initial sizing. The
split ratio taken in [78] is 0.68. Considering the fact that the reachable torque is
52 Nm by scaling this design, which is slightly higher than the required 45 Nm
peak torque, the initial split ratio for the prototype design is set to be 0.65.

6.4.3 Stator and rotor tooth widths

The straight tooth shape is used for initial sizing, where the two side lines of
the tooth are in parallel. As analyzed in section 4.4, when the rotor tooth outer
arc, αro, and the stator tooth inner arc, αsi, are close to half of the slot pitch,
the highest amplitude of coil flux linkage is reached. Simultaneously, based on
equation (6.1), the stator tooth arc affects the slot area and furthermore the
mmf . Considering these factors, the relationship between torque and tooth arcs
is illustrated in Fig. 6.4. The maximum normalized torque is reached within the
middle circle, hence, the initial size of the tooth arcs is selected within this region.

6.5 Optimization

6.5.1 Objective

The optimization goal is to maximize the efficiency at the maximum continuous
torque, Tnom, with the speed of nnom listed in Table 6.1. The efficiency, ηnom, is
expressed as,

ηnom =
Tnomωnom

Tnomωnom + Pcu + PFe
, (6.2)



6.5: Optimization 171

Figure 6.4: The relationship among the normalized mean torque (T̄em), stator
tooth inner arc (αsi), and rotor tooth outer arc (αro).

where ωnom is the speed in rad/s at nnom, Pcu is the copper loss, PFe is the iron
loss, and mechanical losses are not included.

6.5.2 Algorithm

For the optimization of lamination geometry, coordinate descent method is per-
formed, which successively minimizes the objective along coordinate directions to
find the minimum of a function. At each iteration, the algorithm determines a co-
ordinate via minimizing the cost function, while other coordinates are fixed [126].

The cost function in this optimization is defined as maximizing the value of ηnom,
or in other words, minimizing the losses, (Pcu +PFe). The coordinate vectors are
the parameters involved in the optimization, i.e., split ratio (SR), ratio between
the mmfs of armature and field windings (F̂ac/Fdc), stator yoke height (hsy),
rotor yoke height (hry), stator tooth inner arc (αsi), rotor tooth inner arc (αri)
and rotor tooth outer arc (αro). The flowchart of the optimization procedure is
shown in Fig. 6.5.

The sequence of the coordinate vectors is determined by a sensitivity analysis
shown in Fig. 6.6, which presents the change of torque level versus dimensions.
The analysis is performed with a constant copper loss. This is because the cal-
culation shows that the copper loss is much more dominant than the iron loss at
the maximum continuous torque, and if the influence of iron loss is disregarded,
the torque calculation under a certain copper loss directly gives an indication on
the efficiency based on equation (6.2).

As can be seen in Fig. 6.6, the torque is most sensitive to the split ratio, and is
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Figure 6.5: Optimization flowchart.
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more sensitive to F̂ac/Fdc, stator tooth inner arc, rotor tooth outer arc and stator
yoke height than to the rotor tooth inner arc and rotor yoke height. The reason
is that the rotor tooth inner arc and rotor yoke height only influence part of the
flux tube, while other parameters directly affect the teeth alignment area, mmf
sources or both of them. Consequently, the sequence of the coordinate vectors is
chosen to start with the split ratio, followed by F̂ac/Fdc, αsi, αro, hsy, and finally
αri and hry. As such, the variable vector of the optimization problem is,

x = [SR F̂ac/Fdc αsi αro hsy αri hry]. (6.3)

The objective and constraints of the coordinate descent method is expressed as,

min(Pcu + PFe)

subject to

g1(x) = T̄em − Tnom = 0,

g2(x) = Tpeak − T̄em,p ≤ 0,

g3(x) = Dso − 70 = 0,

g4(x) = Lsk − 87.5 = 0,

g5(x) = SR ·Dso + g + hsy −Dso < 0,

g6(x) = Dsh + hry − SR ·Dso < 0,

g7(x) = αsi < 30◦,

g8(x) = αro < 36◦,

g9(x) = αri < 36◦,

g10(x) = cos(φ)− 0.7 ≤ 0,

g11(x) = Vf,max − 48 ≤ 0,

g12(x) = Vph,max − 48 ≤ 0,

(6.4)

where T̄em,p is the achievable peak torque, Dsh is the shaft diameter provided
by the manufacturer, Vph,max is the maximum phase voltage and Vf,max is the
maximum field winding voltage which should both not exceed the specified dc bus
voltage.

After the coordinate descent method is performed for the seven parameters in the
variable vector for one cycle, the cost function is reduced. However, since param-
eters interact with each other, this cycle has to be iterated until the convergence
is obtained within a certain level, e.g., 0.2%.
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(a) (b)

Figure 6.6: Sensitivity analysis: relationship between the normalized torque
(T̄em) and normalized dimensions for (a) split ratio (SR), ratio be-
tween the mmfs of armature and field windings (F̂ac/Fdc), stator
yoke height (hsy) and rotor yoke height (hry), and (b) rotor tooth
outer arc (αro), rotor tooth inner arc (αri) and stator tooth inner
arc (αsi).

6.5.3 Stator geometry adjustment

As the copper loss is significantly higher than the iron loss at the working point
of 16 Nm 3000 rpm, the filling factor is crucial for the efficiency. Therefore,
rectangular wires are recommended since normally a higher filling factor can be
achieved compared to using round wires. The stator geometry, accordingly, is
adjusted as shown in Fig. 6.7(a). Compared to the conventional geometry shown
in Fig. 6.7(b), it is beneficial for improving the filling factor without torque re-
duction. To explain this, the torque comparison of these two stator geometries
is presented in Fig. 6.8(a). As can be seen, the torque of the adjusted geometry
is the same as the conventional geometry at hsy = 1.13hsy,c. At the moment,
the slot areas of the two geometries are almost the same as shown in Fig. 6.8(b).
However, for the adjusted stator that has a straight line instead of an arc in the
conventional stator, the actual available space for the coil is larger. Moreover, it
is beneficial for the heat conduction since the coil can be directly attached to the
yoke without a gap in between.

6.5.4 3D effect

To obtain the copper losses, assumptions are required for the coil temperature
and filling factor at the beginning of the algorithm, as indicated in the first step
in Fig. 6.5. The initial assumption of filling factor is validated after the winding
design is performed, and the coil temperature at the continuous working mode is
validated by a 2D static thermal FEM.

The end-effect is estimated by an increase in the resistance/copper loss by the
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hsy

(a)

hsy,c

(b)

Figure 6.7: The geometries of (a) the adjusted stator with a yoke height of hsy,
and (b) the conventional stator with a yoke height of hsy,c.

(a) (b)

Figure 6.8: Comparison of the adjusted stator geometry shown in Fig. 6.7(a) with
the conventional stator geometry shown in Fig. 6.7(b): (a) the ratio
of the mean torques between the adjusted stator (T̄em) and the con-
ventional stator (T̄em,c), and (b) the ratio of the slot areas between
the adjusted stator (Sslot) and the conventional stator (Sslot,c), (con-
ventional stator yoke height hsy,c = 7.5 mm, and T̄em,c = 16 Nm).
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lcc

Figure 6.9: Illustration of lcc in equation (6.5), the distance between the center
of two coil bundles, for end winding calculation.

expression,

Pcu,end
Pcu,0

=
rend
r0

=
πlcc + 2Lsk + lz

2Lsk
, (6.5)

where Pcu,end, Pcu,0, rend and r0 are the copper losses and resistances with and
without end-effect, respectively, lcc is the distance between the center of two coil
bundles as shown in Fig. 6.9, and lz represents a small additional spacing in the
axial direction.

On the other hand, considering the 3D effect ratio and stacking factor, the required
peak torque in the optimization, Tpeak in inequality constraint (6.4), is set to be
49 Nm, which is higher than the required 45 Nm. The 3D effect ratio is defined as
the ratio of the torque obtained by 3D FEM to the torque obtained by 2D FEM,
and is estimated to be 95% at the peak torque based on a comparison between
2D and 3D FEM results of the VFRM.

With the initial assumptions of kf = 0.6 and Tcoil = 150◦C, the obtained dimen-
sions after the optimization are listed in Table 6.2, together with the magneto-
motive forces for respectively the maximum continuous torque and peak torque,
which is a decisive factor for the winding design discussed in section 6.6.
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Table 6.2: Machine dimensions and mmf after optimization.

Symbol Description Value Unit
Dso Outer diameter 140 mm
Lsk Stack length 87.5 mm
SR Rotor outer radius/stator inner radius 0.65 -
αsi Stator tooth inner arc 15.5 deg.
αro Rotor tooth outer arc 11.5 deg.
αri Rotor tooth inner arc 27 deg.
hsy Stator yoke height 8.6 mm
hry Rotor yoke height 20.5 mm
Fdc,nom mmf of dc coil at Tnom 598 A· turns

F̂ac,nom Peak mmf of ac coil at Tnom 507 A· turns
Fdc,peak mmf of dc coil at Tpeak 1550 A· turns

F̂ac,peak Peak mmf of ac coil at Tpeak 1426 A· turns

6.6 Winding design

The winding design aims for maximizing the filling factor, simplifying manufac-
turing and achieving low ac copper losses. In this section, the selection of number
of turns, coil connection topology, winding method and wire dimensions are dis-
cussed.

6.6.1 Coil connections

The number of turns is related to the voltage per turn and coil connection topol-
ogy. There are several ways to connect the ac coils, i.e., in series or in paral-
lel, star-connected or delta-connected. Four connection topologies are shown in
Fig. 6.10. Based on section 4.3, the even harmonics of coil A1 and coil A2 are out
of phase in the 12/10 VFRM, such that these two coils should always be connected
in series to obtain a more sinusoidal back-emf. The maximum voltage for the sum
of coil A1 and coil A2 is 4.8 V/turn at the working point of 16 Nm 3000 rpm. With
the limitation of bus voltage, the number of turns for each connection topology
is calculated using,

Nac =

⌊
48

Vph,max

⌋
, delta connection, (6.6)

Nac =

⌊
48

Vph,max ×
√

3

⌋
, star connection, (6.7)

and the results are list in Table 6.3.

As the peak line current is constrained to 500 A, the allowed mmf per ac coil is
limited, which is 1443 A·turns for topologies (a) and (b), and is only 1000 A·turns
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Figure 6.10: The connection topologies for ac coils: (a) delta connection with
coils connected in series, (b) delta connection with coils connected
in parallel, (c) star connection with coils connected in series, and
(d) star connection with coils connected in parallel.

Table 6.3: Number of turns per phase coil.

Connection topology Number of turns
(a) delta/in series 5

(b) delta/in parallel 10
(c) star/in series 2

(d) stat/in parallel 5
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Figure 6.11: (a) Sketch of an edge-wound coil, and (b) sketch of a helical-wound
coil (hw and ww are respectively the width and height of the wire).

and 1250 A·turns for topologies (c) and (d). As a consequence, the mmf of the
latter two topologies is smaller than the value of F̂ac,peak listed in Table 6.2, hence,
are not able to fulfill the peak torque requirement and are not selected.

Similarly, the limit of number of turns per dc coil is respectively 20 by connecting
all dc coils in series and is 40 by paralleling two branches. The final number of
turns are determined by the wire dimensions, the placement of conductors, etc.,
which will be explained in the next section.

6.6.2 Coil design

For simplicity of prototyping, same wire dimensions are used for the ac coils and
dc coils. Two winding methods are considered, i.e., edge-wound coil and helical-
wound coil, for which the sketches are shown in Fig. 6.11. The wires are wound
neatly next to each other. For the edge-wound coil, the coil is wound on the edge,
while the helical-wound coil is wound on the flat side which allows paralleling
placement, e.g., in Fig. 6.11(b), the (n+ 1)th turn is wound continuously next to
the nth turn.

The choice of wire dimension, number of turns, filling factor and wiring layout
are provided for the two methods, as shown in Table 6.4 and Fig. 6.12. The ac
copper losses at 3000 rpm and 18000 rpm are calculated by 2D transient FEM.

In both winding methods, the ac coils are more affected by the ac effect compared
to the dc coils as can be seen in Table 6.5, since they are located closer to the
slot opening where the leakage flux varies more significantly. On the other hand,
the helical-wound coil is less influenced by the proximity effect, and the induced
eddy current is lower than the edge-wound coil. A comparison of the current
density distribution between the two winding methods are presented in Fig. 6.13
for 3000 rpm and 18000 rpm, respectively, where the maximum current density
in the helical-wound coil is lower at both speeds. Such effect can also be seen in
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Figure 6.12: Schematic graph of (a) edge-wound coils with Nac = 5 and Ndc = 6,
and (b) helical-wound coils with Nac = 10 and Ndc = 14 (Nac and
Ndc are the numbers of turns per ac and dc coils, respectively).

Table 6.4: Information of the edge-wound coil and helical-wound coil in the design.

Description Edge-wound Helical-wound
Nac Number of turns per ac coil 5 10
Ndc Number of turns per dc coil 6 14

hw (mm) Height of wire 1.25 1.5
ww (mm) Width of wire 5.6 2.24
∗Sw (mm2) Cross section of wire 6.785 3.145

kf filling factor 0.57 0.58

Notes: ∗ Nominal cross-section area listed in international standard CEI IEC 60317-
0-2.
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Table 6.5: The ratio of copper losses considering ac effect to the copper losses
without considering ac effect.

Nominal (W) Max. speed (W)
16 Nm @ 3 krpm 2.7 Nm @ 18 krpm

Edge-wound
ac coil 109.8% 292.3%
dc coil 100.2% 101.1%

Helical-wound
ac coil 104.9% 262.4%
dc coil 100.1% 101.2%

Table 6.6: The ac copper loss of a single ac/dc coil by using different winding
methods (Tcoil = 150◦C).

Nominal (W) Max. speed (W)
16 Nm @ 3 krpm 2.7 Nm @ 18 krpm

Edge-wound
ac coil 25.6 W 50.1 W
dc coil 54.6 W 55.1 W
total 80.2 W 105.2 W

Helical-wound
ac coil 26.4 W 48.5 W
dc coil 50.4 W 51.0 W
total 76.8 W 99.5 W

Table 6.5, where the helical-wound coils have lower ratios of copper losses between
considering and not considering ac effect. Hence, the ac copper loss is lower in the
helical-wound coil as listed in Table 6.6. As a result, the winding design shown
in Fig. 6.12(b) that is with the helical-wound coil, is selected, and a filling factor
of 0.58 is reached, which is close to the initial assumption (kf=0.6) given for the
lamination geometry optimization in section 6.5.

A static thermal analysis is performed in 2D FEM, assuming 0.2 mm slot liners,
0.1 mm glue (between slot liner and lamination), Grade 1 wire insulation, and
epoxy filled in the slot, respectively with the thermal conductivity of 0.3 W/mK,
0.2 W/mK, 0.1 W/mK and 1 W/mK. The obtained ac copper losses are set
to be evenly distributed in the wires. A convective heat transfer coefficient of
1000 W/Km2 is set at the machine outer surface to account for the water cooling.
The analysis shows that the maximum temperature of the dc coils and ac coils
are 148◦C and 151◦C, respectively, with the losses estimated for the working
point of 16 Nm 3000 rpm. This is within the temperature limit of F or H NEMA
insulation class. Additionally, the transient thermal analysis shows a temperature
rise from 65◦C (coolant temperature) up to 141◦C and 156◦C for the dc and ac
coils, respectively, after 10 seconds of operating at the peak torque.

With the above lamination geometry and winding design, the obtained efficiency
is 83% at 16 Nm 3000 rpm. The efficiency map is presented in Fig. 6.14 assuming
150◦C wire temperature, where the maximum efficiency of 90% is reached around
1 Nm 12000 rpm. The efficiency is relatively high at the low torque level and
the field weakening region, since both the field current and armature current are
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(a)

(b)

(c)

(d)

Figure 6.13: Current density distribution of (a) helical-wound coils at 3 krpm,
(b) edge-wound coils at 3 krpm, (c) helical-wound coils at 18 krpm,
and (d) edge-wound coils at 18 krpm.



6.6: Winding design 183

0.8

0.
8

0.
8

0.8 0.8 0.8

0.82

0.82

0.
82

0.82

0.82 0.82 0.82

0.84

0.84

0.
84

0.
84

0.84 0.84 0.84

0.86

0.86

0.86

0.86

0.
86

0.86 0.86

0.88

0.88

0.88

0.88

0.88 0.88
0.90.9

Figure 6.14: The efficiency map.

controllable. The efficiency drops at higher torque level, since the torque/current
ratio decreases due to the saturation.

The mechanical losses are not included in the efficiency calculation as mentioned
in section 6.5. To make a rough prediction, the windage loss is estimated using
the empirical equation in [27], which is derived for an SRM that also has a salient
rotor structure similar to the VFRM. With a rotor diameter of 75 mm and an
airgap length of 0.3 mm, the windage loss is estimated to be around 20 W at
18000 rpm. Although the parameters and dimensions are not the same in the
designed VFRM, it still gives an indication about the magnitude of the losses.
However, due to the rotor saliency, the air flows inside the machine is complex,
and detailed analysis is not discussed in this thesis.

6.6.3 Integrated-coil topology

The field winding and armature winding are separated in the previous geometries.
In this subsection, the winding topology of integrated field and armature windings
is introduced for copper loss reduction [132], in which the coil current is the
superposition of the field current and armature current. If the mmf in the VFRM
with the integrated-coil topology is assumed to be the same as with the separate-
coil topology, the current density of a coil is defined as,

Jint = ±2JdcSdc
Sslot

+
Ĵac (Sslot − 2Sdc)

Sslot
sin (ωet) , (6.8)
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where Sdc, Sac and Sslot are the areas of a dc coil bundle, an ac coil bundle and
a single slot, respectively.

The copper loss of the separate-coil topology is given as,

Pcu,sep = 24
J2
dcSdcLsk
kf

+ 24
Ĵ2
ac

2 SacLsk

kf

= 24
J2
dcSdcLsk
kf

+ 6
Ĵ2
ac (Sslot − 2Sdc)Lsk

kf
,

(6.9)

while for the integrated-coil topology, it is expressed as,

Pcu,int =
1

2π

2π∫
0

12
J2
intSslotLsk

kf
d (ωet)

=
6SslotLsk
πkf

2π∫
0

[
±2JdcSdc

Sslot
+
Ĵac (Sslot − 2Sdc)

Sslot
sin (ωet)

]2

d (ωet)

=
24J2

dcSdcLsk
kf

2Sdc
Sslot

+
6Ĵ2
ac (Sslot − 2Sdc)Lsk

kf

(Sslot − 2Sdc)

Sslot
.

(6.10)

The value of Pcu,int is smaller than the value of Pcu,sep since 2Sdc/Sslot < 1 and
(Sslot − 2Sdc)/Sslot < 1.

This gives the fact that by using the integrated-coil topology, the copper loss is
always smaller than using the separate-coil topology. An example is given for
the VFRM operating at 16 Nm, where the copper losses of coils are shown in
Fig. 6.15(a) and (b) assuming a filling factor of 0.6 for both topologies. The
total copper loss for the separate-coil topology is 830 W, while is 480 W for the
integrated-coil topology, such that a reduction of 40% is reached.

Although the integrated-coil topology brings a lot of benefit from the efficiency
point of view, it may bring the challenges into the power electronic circuit due
to the biased dc current and increased peak current, which must be taken into
account in implementation. The feasibility of using this method for the specific
48 V mild hybrid application is analyzed.

In the separate-coil topology, coil A1 (or A3) and coil A2 (or A4) are wound
together with dc coils that have different polarities as shown in Fig. 6.16(a),
hence, if coil A1 (or A3) and the according dc coil are integrated, the new current
is expressed as

i′a1 = Îac cos(θe + γ) + if , (6.11)

while the integrated current of coil A2 (or A4) and the according dc coil is ex-
pressed as,

i′a2 = Îac cos(θe + γ)− if . (6.12)
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(a) (b)

Figure 6.15: (a) Copper losses of a single dc coil, a single ac coil, and the sum of
the two in the separate-coil topology, and (b) copper loss of a single
coil in the integrated-coil topology.
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Figure 6.16: Coils of phase A in (a) the separate-coil topology, and (b) the
integrated-coil topology.
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Figure 6.17: Phase coil connection topologies: (a) delta connection, and (b) star
connection.

Figure 6.18: Coil voltage of a single turn for the integrated-coil topology.

Consequently, coil A′1 and coil A′2 (or coil A′3 and coil A′4) in the integrated-coil
topology shown in Fig. 6.16(b) cannot be connected in series, since their currents
are different. The possible coil connection topologies are shown in Fig. 6.17.

The peak line current for these two coil connections are checked. The number of
turns has to be determined first. For this, the voltage per turn is calculated, as
shown in Fig. 6.18. Different from the separate-coil topology in which the even
harmonics are eliminated by connecting coil A1 and coil A2 in series, large even
harmonics are observed in the voltage waveform of the integrated-coil topology.
The maximum voltage for the sum of coil A′1 and coil A′3 (or the sum of coil
A′2 and coil A′4) is around 6.7 V/turn at the working point 16 Nm 3000 rpm.
Therefore, the number of turns should not exceed 7 and 4 for delta connection
and star connection, respectively.
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The peak line current for the integrated-coil topology, is calculated as,

Î ′l =
Fdc,peak + F̂ac,peak

7
×
√

3× 2, delta connection (6.13)

Î ′l =
Fdc,peak + F̂ac,peak

4
× 2, star connection (6.14)

where Fdc,peak and F̂ac,peak in the equation are the mmfs at the peak torque

derived for the separate-coil topology. The value of Î ′l exceeds 1000 A for both
connection topologies, because:

• dc-biased current intrinsically increases the peak current level;

• dc-biased voltage leads to a lower number of turns.

As a result, the integrated-coil topology is not suitable for this application.

6.7 Final design

The obtained design is evaluated with the benchmark examples that are also
designed for automotive 48 V systems. Two different types of electrical machines
are selected as the benchmarks, one is a rare-earth PMSM in literature and the
other one is an SRM in market. The machine characteristics are listed in Table 6.7.
As can be seen, without the usage of the permanent magnet, the VFRM achieves
a lower power level and efficiency compared to the PMSM. While compared to
the commercial SRM, the VFRM achieves a 11% higher continuous power and
a 12.5% higher peak power with a roughly equal system size and a comparable
efficiency.

The design obtained in sections 6.5 and 6.6 is based on the assumption of using
rectangular wires with Grade 1 insulation (thickness is 0.085 mm). However,
during the manufacturing process, the bondable Grade 1 wires were not available,
hence, it is considered to use Grade 2 insulation (thickness is 0.145 mm) for the
prototype. Consequently, the area of the stator slot has to be slightly increased to
fit new coil dimensions. The final design for the prototype is listed in Table 6.8.
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Table 6.7: The comparison between the designed VFRM and the benchmark electrical
machines.

Machine type VFRM
Rare-earth PMSM SRM CPT
in Literature [45] SpeedStart [34]

3Machine Dimension 140 × 87.5 144 × 60 -
1System Dimension 4165 × 175 - 170 × 185

Cooling Water
Water ethylene

Engine coolant
glycol

2Continuous power 5 kW - 4.5 kW
2Peak power 10 kW 10 second 14 kW 5 second 8 kW

Efficiency
Maximum 90%

Maximum > 90% 1Rated 85%
Rated 83%

Notes:
1includes integrated electronics;
2in motoring mode.
3outer diameter (mm) × axial length (mm)
4from the design requirement in section 6.2

Table 6.8: Final prototype dimensions and parameters.

Symbol Description Value Unit
Dso Stator outer diameter 140 mm
Lsk Stack length 87.5 mm
Dro Rotor outer diameter 90.8 mm
Dsh Shaft diameter 21 mm
αsi Stator tooth inner arc 14.6 deg.
αro Rotor tooth outer arc 11.5 deg.
αri Rotor tooth inner arc 27 deg.
hsy Stator yoke height 8.6 mm
hry Rotor yoke height 20.5 mm
Nac Number of turns per ac coil 10 -
Ndc Number of turns per dc coil 14 -
hw Height of wire 1.5 mm
ww Width of wire 2.24 mm
kf Filling factor 0.55 -
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6.8 Summary and conclusions

In this chapter, the design and optimization of a variable flux reluctance machine
are presented. This machine is designed for automotive 48 V mild hybrid sys-
tem, which requires 5 kW continuous power, 16 Nm continuous torque, 18 krpm
maximum speed, 10 kW peak power and 45 Nm peak torque.

The lamination geometry is optimized using the coordinate descent method. To
determine the optimization sequence, a sensitivity analysis is performed for the
relation between the torque and dimensions. The shape of the stator slot is
adjusted to allow higher filling factor and better heat conduction. The winding
design is performed for the selection of coil connection topology, wire dimensions
and winding method. The helical-wound coil with rectangular wires is chosen
due to its relatively low ac copper loss and high filling factor. The feasibility of
implementing integrated-coil topology is discussed, however, due to the limitation
of drive current, this is not considered for this specific application.
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7.1 Introduction

This chapter presents the experimental verification of the variable flux reluctance
machine designed in Chapter 6 for the 48 V mild hybrid system. The realization
of the prototype is introduced together with the test setup. Photos of the machine
itself and the setup are both presented. The resistance and inductance values are
provided, and back-emf waveforms, torque and coil temperature are measured
and are compared with FEM results.

7.2 Realization of the prototype

To verify the predicted results for the final design in Chapter 6, a prototype is
realized. The stator lamination stack is shown in Fig. 7.1(a) and (b), the coils
wound with rectangular wires are shown in Fig. 7.1(c), the stator stack with dc
coils is shown in Fig. 7.1(d), and the stator stack with dc and ac coils is shown in
Fig. 7.1(e), where the white cylinder in the center is part of the potting tool. The
complete stator is potted with a two component epoxy for mechanical fixation of
the coils and for improving the thermal conductivity from the coils to the cooling
jacket via the stator lamination. Kapton insulation tape is applied to the stator
lamination stack as an additional insulation layer and to protect the rectangular
wire from damaging during assembly. The stator assembly after potting is shown
in Fig. 7.2(a), the rotor is shown in Fig. 7.2(b) and the complete machine with
the cooling jacket is shown in Fig. 7.2(c). The red cables in Fig. 7.2(a) and (c)
are the outward motor cables of the field winding and armature windings, while
the green wires are thermocouples, which are attached to the windings and stator
stack. For ease of stator assembly, the field winding and three-phase armature
windings are both separated into two sets, as illustrated in Fig. 7.3. Therefore,
there are in total ten motor cables as shown in Fig. 7.2(a).

7.3 Test setup

A machine test setup, Kistler [64], is used to test the prototype. It consists of
an induction machine, a three-phase inverter, voltage/current sensors, a controller
and a computer, as shown in Fig. 7.4. Using the integrated software, the induction
machine is able to run in motor or generator mode with a specified speed or torque.
The shaft of the prototype is mechanically attached to the shaft of the induction
machine. A torque sensor is installed between the two axles.

Although the Kistler setup itself provides speed readings, an extra incremental
encoder is attached to the prototype to further measure the position and speed
using a separate dSpace system (CP1104) and Matlab Simulink platform. Addi-
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(a) (b)

 

 

(c)

(d)
(e)

Figure 7.1: Variable flux reluctance machine: (a) the side view of the stator
lamination stack, (b) the top view of the stator lamination stack,
(c) the coils wound with rectangular wires, (d) the stator lamination
stack with dc coils, and (e) the stator lamination stack with dc and
ac coils.
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(a)
(b)

(c)

Figure 7.2: Variable flux reluctance machine: (a) the stator assembly after pot-
ting, (b) the rotor, and (c) the complete machine with the cooling
jacket.
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Figure 7.4: The schematic graph of the test setup.
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Load machine Torque sensor Prototype EncoderdSpace

Figure 7.5: The complete Kistler setup, VFRM and dSpace system.

tionally, the voltage and current of both the field winding and armature windings
are recorded simultaneously. The temperatures measured by the thermocouples
are obtained using an Aligent data acquisition system and instantaneous results
are recorded on the computer. A photo of the setup is shown in Fig. 7.5.

7.4 Resistances and inductances

The resistances and inductances are first measured using a four point measure-
ment before the stator is assembled with the rotor to ensure that the realization
of the stator coils and their interconnection is correct. As the phase coils are
delta-connected, the resistance of each phase is respectively,

Rph,I =
3

2
Rll,I, (7.1)

Rph,II =
3

2
Rll,II, (7.2)

in the two sets, where Rll,I and Rll,II are the average line to line resistances
between each two of the terminals, which are given by,

Rll,I =
∑

i,j=1,2,3
i6=j

RTi,Tj

3
, (7.3)

Rll,II =
∑

i,j=4,5,6
i6=j

RTi,Tj

3
. (7.4)
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Table 7.1: Measured resistances between terminals at room temperature 20◦C.

Terminal Measured (mΩ)

Armature winding I
T1, T2 19.1
T2, T3 19.1
T3, T1 18.8

Armature winding II
T4, T5 18.9
T5, T6 19.4
T6, T4 18.6

Field winding I T7, T8 117.1
Field winding II T9, T10 116.9

Table 7.2: Measured phase resistances and field winding resistances at room tem-
perature 20◦C.

Symbol Measured Predicted Disprepancy
(mΩ) (mΩ)

Armature winding I Rph,I 28.5 26.4 8.0%
Armature winding II Rph,II 28.5 26.4 8.0%

Field winding I Rdc,I 117.1 112.4 4.2%
Field winding II Rdc,II 116.9 112.4 4.0%

The measured resistances between the respective terminals are listed in Table 7.1.
As can be seen, the resistances are almost the same for the two sets, and are
balanced for the three phases. The corresponding phase resistances and field
winding resistances are listed in Table 7.2, which have a discrepancy of around
8% and 4% respectively compared to the predicted results. Taking into account
the tolerances of the wire width and thickness (±0.03 mm based on IEC 60317-
0-2), the predicted results can be increased up to 3.5%, and the discrepancies
between the measured and predicted resistances become approximately 4.3% and
0.7%, respectively, under this circumstance.

The inductances are measured using an LCR meter which supplies 1 V at 100 Hz.
The measured inductance values between each two of the terminals are provided
in Table 7.3. Again, the phase inductance is calculated as,

Lph,I =
3

2
Lll,I, (7.5)

Lph,II =
3

2
Lll,II, (7.6)

for the two sets, respectively, where Lll,I and Lll,II are the average inductances
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Table 7.3: Measured inductances between terminals.

Terminal Measured (µH)

Armature winding I
T1, T2 34.7
T2, T3 34.7
T3, T1 34.6

Armature winding II
T4, T5 34.2
T5, T6 34.8
T6, T4 34.3

Field winding I T7, T8 640.6
Field winding II T9, T10 639.3

Table 7.4: Measured phase inductances and field winding inductances.

Symbol Measured Predicted Discrepancy
(µH) (µH)

Armature winding I Lph,I 52.1 50.8 2.6%
Armature winding II Lph,II 51.6 50.8 1.6%

Field winding I Ldc,I 640.6 673.9 4.9%
Field winding II Ldc,II 639.3 673.9 5.1%

between each two of the terminals, which are given by,

Lll,I =
∑

i,j=1,2,3
i6=j

LTi,Tj

3
, (7.7)

Lll,II =
∑

i,j=4,5,6
i6=j

LTi,Tj

3
. (7.8)

The corresponding inductance values are listed in Table 7.4, and are compared
with the predicted results that are obtained by 3D FEM. The error of the induc-
tances is no larger than 5.1%.

7.5 Back-emf waveform

The phase back-emf of the prototype is measured when the prototype is driven
by the induction machine at the Kistler setup. The measured waveform of each
phase is shown in Fig. 7.6. As can be seen, the voltage levels between the two
winding sets are similar, and each phase has a 120◦ phase shift as expected. The
voltage waveform is compared with the predicted results obtained from 2D FEM,
as shown in Fig. 7.7. The harmonic content of the waveforms is analyzed, and the
result is shown in Fig. 7.8. Both the measurement and the FEM result contain a
dominant 5th harmonic.
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Figure 7.6: The waveforms of the back-emf at 3000 rpm with field current if =
10 A (nominal at 43 A aiming for 16 Nm).

Figure 7.7: The comparison between measurement and 2D FEM result for the
back-emf waveform at 3000 rpm with field current if = 10 A and
if = 43 A (nominal if = 43 A).
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Figure 7.8: The comparison between measurement and 2D FEM result for the
harmonic contents in the back-emf at 3000 rpm with field current
if = 10 A and if = 43 A (nominal if = 43 A).

Figure 7.9: The EMF constant at various field currents.
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Figure 7.10: The circuit for torque measurements, where the prototype is con-
nected with a three-phase delta-connected load.

Additionally, the back-emf is measured at different speeds and different field cur-
rent levels. The EMF constant is calculated, and the result is shown in Fig. 7.9
along with the comparison with FEM. Taking into account the stacking factor
of 96% provided by the manufacturer, the discrepancy between the measurement
and FEM result is 6.2% with the nominal field current of 43 A.

Such difference can be caused by the mechanical tolerances and magnetic material
property. The back-emf is sensitive to the dimensions. The tolerances of the stator
inner diameter and rotor outer diameter are (+0.035mm, 0) and (0, -0.035 mm),
respectively. If both the tolerances are at their extremes, the airgap length is
increased by 0.035 mm. With such tolerances, the corresponding predicted EMF
constant is shown in Fig. 7.9 with the solid line, where the discrepancy with the
measurement result is 2% at the nominal current. Moreover, if µr is overestimated
in the prediction, the EMF constant in reality is lower than expected. As an
example, assuming the B-H curve of NO27 shown in Fig. 6.2(d) is replaced by
the B-H curve shown in Fig. 2.19, the predicted EMF constant is reduced by 5.6%.

7.6 Torque-current performance

Since machine control is not implemented for the prototype, the VFRM is oper-
ated in generating mode during the test of torque performance, while the load
machine at the Kister setup is operated in motoring mode at fixed rotor speeds.
The prototype is connected to a balanced three-phase delta-connected load, as
presented in Fig. 7.10. In the tests, two different balanced loads are used, where
the measured resistance and inductance values are listed in Table 7.5.

The torque is measured with various field currents and speeds, and the measure-
ment results are calculated using the measured torque deducted by the friction
and windage torque which is obtained in a no-load test. In 2D FEM, the same
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Table 7.5: The resistance and inductance values of the two balanced
loads at room temperature 20◦C.

Numbering of loads Resistance (Ω) Inductance (µH)

I 0.89 25.81

II 0.66 34.60

Notes: The inductances in the table are the values measured at 500 Hz

(which is the electric frequency of the prototype at 3000 rpm). The

measured inductances vary little at low frequencies, less than 4% as the

frequency changes from 300 Hz - 600 Hz.

Table 7.6: Maximum and average discrepancies between measurement and 2D FEM
results (obtained by the torques shown in Fig. 7.14).

Field current, if , (A) 5 10 15 20 25 30 35 40 43

Maximum discrepancy (%) 71.3 8.0 5.1 4.1 4.3 3.6 4.7 3.8 3.0

Average discrepancy (%) 33.6 3.5 2.4 1.8 2.8 2.8 2.7 2.5 2.1

circuit as in Fig. 7.10 is defined. The measurement and predicted results with
the two loads are presented in Fig. 7.11 and Fig. 7.12, respectively. To show the
influence of mechanical tolerance on the torque performance, the predicted results
with (0.5 mm + 0.035 mm) airgap length are also shown in the figures.

During the tests, the phase currents flowing in the windings are related to the
induced voltage. As presented in section 7.5, the measured back-emf is slightly
smaller than the predicted values, consequently, the phase currents in the mea-
surement are smaller than the values in FEM. This can be seen in Fig. 7.13, which
shows the comparison of the current waveforms.

To compare the predicted and measured torque more fairly, an FEA is performed
with the fundamental phase currents that have the amplitudes calculated from
measurement results. The obtained torque is presented in Fig. 7.14, which shows
the dependency of the mean torque on current levels. Using the values in Fig. 7.14,
the average and maximum discrepancies between the measurement and FEM
results are calculated, as listed in Table 7.6. Generally, the measurement shows
a good agreement with the prediction, except for the situation when the field
current is 5 A. The reason is that the torque is less than 0.08 Nm for if = 5 A,
and the torque measurement is not accurate enough for such a low torque level.
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(a) (b)

(c) (d)

Figure 7.11: The comparison between measurement and FEM results of the
torque performance when the prototype is connected with load I:
(a) at 2000 rpm, (b) at 2500 rpm, (c) at 3000 rpm, and (d) at
3500 rpm.
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(a) (b)

(c) (d)

Figure 7.12: The comparison between measurement and FEM results of the
torque performance when the prototype is connected with load II:
(a) at 2000 rpm, (b) at 2500 rpm, (c) at 3000 rpm, and (d) at
3500 rpm.

(a) (b)

Figure 7.13: The current waveforms of the line current (il in Fig. 7.10) obtained
by measurement and 2D FEM (airgap = 0.5 mm) with a field cur-
rent at 43 A and a speed of 3000 rpm, assuming: (a) the machine
is connected with load I, and (b) the machine is connected with
load II.
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(a)

(b)

Figure 7.14: Comparison between measurement and 2D FEM results (airgap =
0.5 mm) with respect to various field currents (if ) and phase cur-
rents (Îac): (a) the measured results and the predicted torque that
is calculated with Îac obtained in the torque measurements with
load I, and (b) the measured results and the predicted torque that
is calculated with Îac obtained in the torque measurements with
load II.
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Figure 7.15: The measured coil temperature with different coolant volumetric
flow rates.

7.7 Thermal evaluation

To verify the thermal model made in 2D FEM during the design process, thermal
measurements are performed, and the results are discussed in this section. As
mentioned in section 7.2, there are thermal couples attached to the stator lami-
nation stack and coils. In the test setup, two additional thermal couples are used
to measure the temperature of the inward and outward flow of the coolant.

A dc current is applied to the field winding during measurements, while the ro-
tor is fixed. Hence, the heat source is only the copper loss, Pcu, which can be
obtained by multiplying the measured voltage and current. The temperatures of
the thermal couples are recorded until a steady state is reached. An example is
given in Fig. 7.15, which shows the transient behavior of the coil temperature
with two different coolant flow rates. As can be seen, the steady-state temper-
ature decreases little, about 1.6◦C, as the volumetric flow rate increases from
5.5 liter/minute to 6.5 liter/minute. This can be attributed to the relatively high
convection caused by the large flow rate, such that the heat transfer appears to
be more limited by the conduction from the inner part to the outer surface, and
consequently, a further increase of flow rate does not influence significantly on the
inner temperature of the machine.

In 2D FEM, the same coolant temperature and copper loss as in the measurement
are applied, while the value of heat transfer coefficient is estimated by,

hc =
Pcu

Aout (Tst − Tcl)
, (7.9)

where Aout is the area of the outer surface, Tst and Tcl is the stator and coolant
temperature, respectively. The calculated hc is over 1300 W/Km2.
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Figure 7.16: The steady-state coil temperature obtained by measurement (with
the flow rate at 5.5 liter/minute) and 2D FEM.

The predicted and measured relationships between the copper loss and steady-
state coil temperature are shown in Fig. 7.16. As can be seen, the measured
temperature is smaller than the maximum temperature obtained in FEM, which
can be attributed to the location of the thermal couple and the simplified 2D
modeling:

• The thermal couple may be not positioned at the hottest spot of the coils;

• The heat generated by the end winding and the coil sections in the stator
stack are accumulated, and are assumed to be distributed within the stack
length in the 2D thermal model.

The above results validate the FE thermal model, that the mean discrepancy
between the measured coil temperature and the maximum temperature obtained
by FEM is around 10.9%.

However, the temperature shown in Fig. 7.16 is much lower than the estimated
value mentioned in section 6.6.2, which is around 150◦C. This is because: the slot
liners are not used in the prototype, the coolant temperature is around 20◦C in
the measurement while is set at 65◦C for the design; the heat sources are different
between measurements and design, as the rotor is fixed and all the copper losses
are produced by the dc coils during the tests.
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7.8 Summary and conclusions

A prototype has been realized and tested. A setup is built with the Kistler
setup that can drive the prototype with specified speeds. The voltage, current,
temperature, position and speed are recorded instantaneously. The measured
resistances and inductances of field winding and armature windings all match
with the predicted results. The open-circuit back-emf waveforms are measured
with different field currents, and the harmonic content and EMF constant are
calculated. The torque is measured in the generating mode with various current
levels. Additionally, thermal tests are performed to measure the steady-state coil
temperature to validate the thermal FE model. The measured back-emf, mean
torque and temperature all present a good agreement with FEM results.
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This thesis discusses a novel hybrid analytical modeling technique for nonlinear
2D electromagnetic problems, and the design framework of the variable flux re-
luctance machines. The research objectives are given in two parts in section 1.5:

1. Establish a generalized 2D modeling framework and methodology that of-
fers accurate and relatively fast prediction for nonlinear 2D electromagnetic
problems;

2. Establish the design framework for the variable flux reluctance machines,
and realize a design for automotive 48 V mild hybrid system.

In this chapter, the conclusions are provided regarding the fulfillment of the re-
search objectives: In Part I, the achievement of the generalized modeling tech-
nique for nonlinear 2D electromagnetic problems is discussed. The implemen-
tation to various benchmark examples shows its broad applicability to different
classes of electrical machines. In Part II, it researches, designs, optimizes, and
realizes the variable flux reluctance machine as a candidate for automotive appli-
cations due to the characteristics of robust structure, wide speed range and low
material cost.

8.1 Conclusions of Part I

8.1.1 Generalized hybrid analytical modeling technique

To reduce the computation effort involved in solving electromagnetic problems, a
2D hybrid analytical modeling technique is developed as an alternative to numer-
ical methods, which allows to model nonlinear problems with combined Fourier
modeling and mesh-based magnetic equivalent circuit. Fourier modeling that de-
scribes periodic electromagnetic problems by spatial harmonic expressions is fast
and accurate; while magnetic equivalent circuit allows to model the variation of
relative permeability and hence can incorporate nonlinear magnetic materials.

Electromagnetic problems in 2D coordinate systems are decomposed into orthog-
onal axes. All the regions share the same periodic boundaries in the tangential
direction. In the Fourier regions, the magnetic field is derived in terms of the
magnetic vector potential and is expressed by Fourier series. The MEC regions
are meshed, and the magnetic field in each element is expressed by the mag-
netic scalar potential at the center node. Permanent magnet related and current
related magnetic sources are described by magnetomotive forces, where the ex-
pression of current related sources shows the dependency on the element positions
and element sizes to fulfill the Ampere’s law.

The unknown coefficients in the Fourier/MEC regions are solved by a set of linear
equations which satisfy the boundary conditions between the regions. Motion is
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integrated in the boundary conditions that allows for a free movement without
re-meshing of the MEC regions. To incorporate magnetic nonlinearity, a locally
linearized B-H relationship is applied that provides relative permeability and
extra mmf sources for each MEC element. An iterative algorithm is performed
to update the local B-H relationship until convergence is reached.

The validity of the generalized formulation is verified with 2D FEM for a bench-
mark problem in every coordinate system, i.e., a linear E-core actuator, a rotary
switched reluctance machine and a tubular permanent magnet machine. The ver-
satility of this HAM allows the application to a large class of electromagnetic
devices, and the concept of this HAM brings a significant benefit on computa-
tion effort especially for the devices with a relatively small airgap, e.g., in doubly
salient reluctance machines, permanent magnet machines, etc.

8.1.2 Modeling of variable flux reluctance machines

The developed HAM has been applied to a 12/10 variable flux reluctance machine.
The generalized equation for the calculation of reluctances in meshed MEC pro-
vides the freedom of varying tooth arcs. The results of HAM have been validated
against calculations obtained from 2D FEM.

The HAM provides an accurate solution of magnetic field in the airgap as well as
in the iron parts. The Maxwell stress tensor is used to calculate the torque, and
a very good agreement is reached for the torque profile which includes position
dependency and saturation. An accuracy within 1.5% is obtained for the mean
torque and is within 6% for the torque ripple. Furthermore, accurate calculation
methods for the back-emf, phase voltage and inductances are provided, which
give an accuracy within 3%. Finally, iron loss and ac copper loss are calculated.
The obtained iron loss is within the accuracy of 1% considering the contribution
of hysteresis loss, classical eddy-current loss and excess loss. The ac copper loss
is calculated assuming an imposed current in the conductor. The eddy current
distribution is estimated using the magnetic vector potential obtained from quasi-
static Maxwell equations. The discrepancy of the ac copper loss obtained from
HAM and FEM is around 12.5%, however, it increases as the speed increases,
since the dynamic solution of the vector potential is not taken into account.
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8.2 Conclusions of Part II

8.2.1 Topologies and configurations of variable flux reluc-
tance machines

Operating principle

For the design of variable flux reluctance machines, which is a relatively new class
of electrical machines, an insight into the physical phenomena is required. In this
thesis, the torque equations are derived using the energy conversion theory and
the virtual work method. The torque components induced by the self inductance
of the field winding, mutual inductances between the field winding and arma-
ture windings, and the self inductances and mutual inductances of the armature
windings are analyzed individually. The result shows that the mean torque is
contributed by the mutual inductances between the field winding and armature
windings as well as the second harmonic of the self and mutual inductances of the
armature windings. A torque equation is derived which is analogous to permanent
magnet synchronous machines.

Selection of preferable topologies

There are a lot of combinations of the numbers of stator poles and rotor poles
for three-phase VFRMs, and the rules of feasible combinations are summarized.
Considering the equal number of ‘north’ and ‘south’ poles created by the field
winding and the balance of three phase armature windings, the number of stator
poles, Ps, must be the multiples of 6. Further, the number of rotor poles, Pr, has
to ensure that ps/3 is integer (ps is a number defined as Ps/gcd, where gcd is the
common divisor between Ps and Pr).

To select preferable topologies, the winding factor, harmonic cancellation in back-
emf, influence of the number of rotor poles on torque production, and magnetic
pull are analyzed. The machine topologies of VFRMs influence significantly on
the open-circuit phase flux linkages, and the winding factor, as a quantitative
indication, is mathematically derived for the fundamental and higher harmonics.
It has been found that when ps/3 is an even number, the even harmonics of the
back-emf are canceled out, which is beneficial for the torque ripple reduction, such
as in the topologies of 6/5, 6/7, 12/2, 12/10, 12/14, etc. For topologies with the
same winding factors, three different situations are analyzed, respectively with
the conditions that, the number of rotor poles is much larger, or approximate to,
or much smaller than the number of stator poles. The analysis shows that for the
number of rotor poles much larger/smaller than the stator poles, the redundancy
or lack of rotor poles limit the teeth widths or variation of the alignment area
between stator and rotor teeth, hence lower the torque production. Consequently,
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it is preferred for the numbers of stator poles and rotor poles close to each other,
such as the topologies of 6/5, 6/7, 12/10, etc. Finally, considering the significant
unbalanced magnetic pull in the topologies with odd number of rotor poles, the
12/10 topology is selected.

8.2.2 Design considerations

Torque ripple reduction

Due to the doubly salient structure, one of the drawbacks of the VFRMs is the
large torque ripple. Three methods for torque ripple reduction, i.e., rotor skewing,
rotor teeth non-uniformity and harmonic injection, are proposed and investigated
based upon the analysis on the sources of torque ripples. The 6th harmonic
dominates in the torque ripple of 12/10 VFRMs, which is mainly contributed by
the 6th harmonic in the self inductance of the field winding and the 5th harmonic
of the mutual inductances between the field winding and armature windings.

The methods of skewing or rotor teeth non-uniformity are capable to eliminate
these two torque ripple sources by properly selecting the skewing angle. The
effectiveness of these two methods is verified for both non-saturated and saturated
machines, showing that the torque ripple is reduced by 50% with no more than
5% average torque reduction. The result of skewing is derived by analyzing a
two-module structure, however, by increasing the number of modules, the torque
ripple can be further reduced.

The effectiveness of harmonic current injections is analyzed individually for the
field winding and armature windings, which requires a 6th harmonic in the field
current and a 5th harmonic in the armature current, respectively. The armature
current harmonic injection reduces 80% of the torque ripple in both non-saturated
and saturated machines without reduction of the average torque. The field current
harmonic injection creates extra 12th and 18th harmonics in the torque ripple in
spite of the elimination of the 6th harmonic. Additionally, due to the large self
inductance of the field winding, harmonics in the field current significantly increase
the induced voltage. As such, the armature current harmonic injection is more
effective than the field current harmonic injection, hence, is more preferred.
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Torque-speed characteristic

To analyze the torque-speed characteristic of VFRMs, the dq-reference frame is
introduced, which defines the d-axis at the centerlines of the rotor teeth and in
the middle of two rotor teeth centerlines, and the q-axis in the middle of two
adjacent d-axes. The relationship among the magnetomotive forces of field and
armature windings and torque-speed characteristics is analyzed. A factor Kfw

is defined to indicate the field weakening capability, and a unity Kfw is desired
to maximize the constant power region. It is possible to reduce the field current
(for inital Kfw < 1) or armature current (for initial Kfw > 1) to adjust the
value of Kfw. The effectiveness of such current arrangement is verified for two
examples, and the speed is capable to be extended by 6 times the base speed in the
constant power region based on the FEM results. Apart from the torque-speed
curve, the current arrangement influences the power factor as well, i.e., a higher
magnetomotive force of the field winding is beneficial to increase the power factor.

8.2.3 Design of the VFRM for 48 V mild hybrid system

A variable flux reluctance machine has been designed and optimized for the appli-
cation of 48 V mild hybrid system due to its robust structure, wide speed range
and low material cost. Giving the requirements of torque-speed characteristic,
the optimization has been performed for efficiency maximization at the operating
point of 16 Nm 3000 rpm with the specified outer dimensions, cooling capability
and voltage/current limits. Several design choices are made: 1. To achieve a
higher copper filling factor, the stator geometry is adjusted and rectangular wires
are used; 2. The three phases are delta-connected considering the voltage and cur-
rent limitations; 3. The helical-wound coils are selected considering the ac copper
loss; 4. The implementation of an integrated-coil topology is not considered due
to the limitation of drive current. The final design achieves a maximum efficiency
of 90% in the efficiency map whilst the mechanical losses are not considered.

8.2.4 Experimental verification

To verify the working concept and machine design, a prototype has been realized
and experimentally validated. A test setup has been built to drive the prototype
at specified speeds, together with voltage/current/speed/position/temperature
sensoring and recording. The measured back-emf waveforms show a good agree-
ment with the FEM results. The EMF constant is measured for different current
levels, and has shown a discrepancy of 6% compared to the FEM result, which
can be caused by the mechanical tolerances, differences in magnetic properties,
etc. The torque-current performance is measured at different current levels, the
results match with the 2D FEM results. Additionally, thermal measurements are
performed that validate the static FE thermal model.
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8.3 Thesis contributions

The main contributions and output of the thesis are summarized as:

Part I: Hybrid modeling technique

• The development of a generalized hybrid analytical modeling tech-
nique for nonlinear 2D electromagnetic problems.
A generalized framework based upon the combination of Fourier modeling
and MEC is developed. This hybrid technique combines the non-meshed
solution of the Fourier regions to describe the magnetic field in the airgap
(or other regions with homogeneous permeability) together with the ben-
efits of the MEC model to include nonlinear material characteristics and
geometric details (such as slotting). This technique provides a fast and ac-
curate tool for nonlinear 2D electromagnetic problems in three coordinate
systems which is validated by FEM on three benchmarks problems, proving
its applicability to a broad class of electromagnetic actuators and machines.

• The application of the hybrid analytical modeling technique to
the variable flux reluctance machine.
The developed modeling technique is applied to a variable flux reluctance
machine that is generally a novel class of machine which due to the absence
of permanent magnets and wide speed range, is a suitable candidate for au-
tomotive powertrains. Due to its doubly salient structure, multi-excitation,
nonlinear behavior and large torque ripples, a fast and accurate modeling
technique is required for design and optimization of this machine. The de-
veloped modeling technique in this thesis provides the necessary accuracy
to calculate the torque profile including the torque ripple, back-emf and
inductance waveforms and ac losses in both saturated and non-saturated
conditions. This technique provides an alternative to finite element analysis
and allows for the fast development of this new class of machine.

Part II: Variable flux reluctance machines

• Design considerations of variable flux reluctance machines.
This thesis provides design considerations for variable flux reluctance ma-
chines. The working principle and different torque components due to its
multi-excited topology are analyzed, and design rules are provided for the
selection of pole numbers and winding configurations. Since this type of
machine suffers from a relatively large torque ripple due to its salient struc-
ture, three different methods for minimization of torque ripple are analyzed
and are compared on their effectiveness. The method of rotor skewing, ro-
tor teeth non-uniformity, and harmonic current injection provide means of
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minimizing the torque ripple and noise level. Additionally, the multi-excited
topology provides a wide speed range by a proper control of the field current,
armature current, and commutation angle.

• The design of a variable flux reluctance machine for a 48 V auto-
motive powertrain.
In this thesis, a variable flux reluctance machine is developed and optimized
for a 48 V automotive powertrain. The presented machine topology has a
12/10 configuration with concentrated winding topology for both the field
and armature windings. The efficiency is maximized at the operating point
of 3000 rpm and 16 Nm whilst achieving a peak torque of 45 Nm and a speed
extension up to 18000 rpm. By applying rectangular wire technology, the
copper filling factor is maximized and by proper coil design, the ac losses
are minimized. The final design achieves an efficiency of 83% at 16 Nm
3000 rpm, and a maximum efficiency of 90% in the working envelope.

• Prototype realization and experimental verification of the devel-
oped variable flux reluctance machine.
A prototype of the developed design for a 48 V automotive powertrain is re-
alized which verifies that the maximized copper filling factor can be achieved
with a relatively simple manufacturing concept. Additionally, the perfor-
mance of the machine is verified by static and dynamic measurements on a
motor/generator test bench. The measured back-emf is within 6% accuracy
compared to the predictions where the discrepancy can be attributed to tol-
erances in manufacturing and material properties. By means of successful
realization and experimental verification, it is proven that this new class of
machine can be a suitable candidate for an automotive powertrain.

8.4 Recommendations

To improve and to extend the hybrid analytical modeling technique, the following
recommendations are made:

• Implementation of nonlinear 3D problems. In literature [93, 94], the imple-
mentation of HAM for 3D geometries with linear magnetic materials has
been reported, showing the significant gain of calculation time for complex
systems. Since the advantage of 3D HAM compared to FEM is significant,
the development of this technique to solve 3D nonlinear electromagnetic
problems has great research potential.

• Implementation of a dynamic solution for eddy current calculation. The
eddy current in this thesis is obtained by simplifying the Maxwell equations
into quasi-static problems, which results in a relatively large discrepancy
of the ac copper loss calculation to the actual solution as the frequency
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increases. Hence, taking into account the dynamic solution of magnetic
vector potential is recommended for more accurate results.

• Application of different meshing algorithms. The implementation of con-
formal meshing constraints the element sizes in the tangential direction,
and hence limits the reduction of computation effort. On the other hand,
the quadrilateral element shape is not convenient for small geometric details,
e.g., tooth tips. To further reduce the number of mesh elements and to make
the mesh shape more flexible, more advanced meshing algorithms have to
be applied, e.g., non-conformal meshing, triangular shaped elements, etc.

• Integration of Fourier modeling with other modeling techniques. The Fourier
modeling is integrated with MEC in this thesis, however, this concept is
feasible for the integration with other modeling techniques, e.g., finite ele-
ment method, spectral element method [15, 35] (where high order Legendre-
Gauss-Lobatto polynomials are applied to increase the accuracy of the re-
sults with respect to FEM), etc.

To further implement the variable flux reluctance machine for automotive appli-
cations, the following recommendations are made:

• The development of a control algorithm for VFRMs. An inverter is designed
and built for the developed VFRM, further measurement can be conducted
using vector oriented control or model predictive control to measure the
working envelope and efficiency. Moreover, the VFRM offers the freedom
to control the magnitudes of the field current and armature current as well
as the commutation angle. The development of a control algorithm for
efficiency maximization in the field weakening region is recommended. In
literature, a control algorithm of a dc-excited flux switching machine has
been described [5], the research can be extended for VFRMs that takes the
ac losses into account.

• Vibro-acoustic modeling and optimization. For automotive applications,
the acoustic noise is an important factor. In literature [74], the vibration
and noise of a 6/4 VFRM is investigated. Compared to the SRM with
the same stator/rotor combination and load condition, the VFRM shows a
reduced noise level. It is recommended to perform a comprehensive study
that characterizes the vibro-acoustic response of the 12/10 VFRM for noise
reduction.
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Appendix A

Magnetic field solutions in Fourier
regions

The source terms in Fourier regions are expressed in Fourier series, that are given
by,

Mp(q) = Mp0 +

∞∑
n=1

(Mpsn sin(ωnq) +Mpcn cos(ωnq)), (A.1)

Mq(q) = Mq0 +

∞∑
n=1

(Mqsn sin(ωnq) +Mqcn cos(ωnq)), (A.2)

where Mp0, Mpsn, Mpcn, Mq0, Mqsn and Mqcn are derived by Fourier theory with
the equations of,

Mp0 =
1

τp

∫ τp

0

Mp(q)dq, (A.3)

Mpsn =
2

τp

∫ τp

0

Mp(q) sin(ωnq)dq, (A.4)

Mpcn =
2

τp

∫ τp

0

Mp(q) cos(ωnq)dq, (A.5)

Mq0 =
1

τp

∫ τp

0

Mq(q)dq, (A.6)

Mqsn =
2

τp

∫ τp

0

Mq(q) sin(ωnq)dq, (A.7)

Mqcn =
2

τp

∫ τp

0

Mq(q) cos(ωnq)dq. (A.8)
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The term ωn represents the spatial frequency and is defined as,

ωn =
2nπ

τper
, (A.9)

where τper is the tangential width of the periodicity. Since the magnetization in
the Poisson equation is expressed as Fourier series, the solution of magnetic vector
potential is accordingly written as superposition of harmonic components,

Al(p, q) =

∞∑
n=1

Aln(p, q). (A.10)

where Aln is the component of the nth harmonic. Since the Poisson equation
is solved by using the separation of variables, the solution of Aln is given by a
multiplication of two functions, one is dependent on the q-direction, and the other
one is dependent on the p-direction,

Aln(p, q) = Pn(p)Qn(q) + Sn(x, y). (A.11)

The first term on the right side of equation (A.11) represents the general solution
of the Laplace equation, while the second term is determined by the source terms.
As mentioned above, Al is aimed to be expressed in Fourier series, Qn(q) is
therefore given in a combination of sine and cosine functions, and consequently,
Pn(p) is defined in a way such that the Poisson equation is satisfied. As a result,
the solution of magnetic vector potential is able to be written as,

Al(p, q) =

Nh∑
n=1

(Alsn(p) sin(ωnq) +Alcn(p) cos(ωnq)) +Al0(p), (A.12)

where n is the harmonic counter and Nh is the total number of harmonics taken
into account. Correspondingly, the expressions of flux density can be written as,

Bp(p, q) =

Nh∑
n=1

(Bpsn(p) sin(ωnq) +Bpcn(p) cos(ωnq)), (A.13)

Bq(p, q) =

Nh∑
n=1

(Bqsn(p) sin(ωnq) +Bqcn(p) cos(ωnq)) +Bq0(p). (A.14)

In this thesis, the situation for a non-periodic region with an average source term
of Mq is not considered, therefore, the term Bq0 in equation (A.14) is supposed
to be zero. The expressions of Bpsn, Bpcn, Bqsn and Bqcn are given by sets of
Fourier coefficients, denoted as an, bn, cn and dn, written as [52],

Cartesian:

Bpsn = ane
ωnp + bne

−ωnp + Gpsn, (A.15)

Bpcn = −cneωnp − dne−ωnp + Gpcn, (A.16)

Bqsn = cne
ωnp − dne−ωnp, (A.17)

Bqcn = ane
ωnp − bne−ωnp, (A.18)

(A.19)
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where the terms Gpsn and Gpcn are contributed by the magnetization and are
given as,

Gpsn = µ0Mpsn, (A.20)

Gpcn = µ0Mpcn. (A.21)

Polar:

Bpsn = anp
ωn−1 + bnp

−ωn−1 + Gpsn, (A.22)

Bpcn = −cnpωn−1 − dnp−ωn−1 + Gpcn, (A.23)

Bqsn = cnp
ωn−1 − dnp−ωn−1 + Gqsn, (A.24)

Bqcn = anp
ωn−1 − bnp−ωn−1 + Gqcn, (A.25)

where Gpsnand Gpcn are given as,

Gpsn =


−µ0

Mpsn−Mqcn

2 ln (p) , ωn = 1,

µ0
4Mpsn−2Mqcn

3 , ωn = 2,

µ0ωn
ωnMpsn−Mqcn

(ωn)2−1
, else,

(A.26)

Gpcn =


−µ0

Mpcn+Mqsn

2 ln (p) , ωn = 1,

µ0
4Mpcn+2Mqsn

3 , ωn = 2,

µ0ωn
ωnMpcn+Mqsn

(ωn)2−1
, else,

(A.27)

Gqsn =


µ0

Mpcn+Mqsn

2 [1 + ln (p)] , ωn = 1,

−µ0
2Mpcn+Mqsn

3 , ωn = 2,

−µ0
ωnMpcn−Mqsn

(ωn)2−1
, else,

(A.28)

Gqsn =


−µ0

Mpsn−Mqcn

2 [1 + ln (p)] , ωn = 1,

µ0
2Mpsn−Mqcn

3 , ωn = 2,

µ0
ωnMpsn−Mqcn

(ωn)2−1
, else.

(A.29)

Axisymmetric:

Bpsn = anI1(ωnp) + bnK1 (ωnp) + Gpsn, (A.30)

Bpcn = −cnI1(ωnp)− dnK1 (ωnp) + Gpcn, (A.31)

Bqsn = cnI0(ωnp)− dnK0 (ωnp) + Gqsn, (A.32)

Bqcn = anI0(ωnp)− bnK0 (ωnp) + Gqcn, (A.33)

where Gpsn, Gpcn, Gqsn and Gqcn are given as,

Gpsn = µ0MpsnXpn(p), (A.34)

Gpcn = µ0MpcnXpn(p), (A.35)

Gqsn = µ0MpcnXqn(p), (A.36)

Gqcn = −µ0MpsnXqn(p), (A.37)
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while Xpn and Xqn are defined as,

Xpn(p) = K1 (ωnp)

∫ ωnp

ωnp0

p′I1(p′)dp′ − I1 (ωnp)

∫ ωnp

ωnp0

p′K1(p′)dp′, (A.38)

Xqn(p) = K0 (ωnp)

∫ ωnp

ωnp0

p′I1(p′)dp′ + I0 (ωnp)

∫ ωnp

ωnp0

p′K1(p′)dp′, (A.39)

where p0 is the inner radius of the region.



Appendix B

Distribution of magnetomotive
force in q- or pq-directions

Magnetomotive force merely in q-direction

Similar concept for the mmfs in the p-direction (explained in section 2.5.5), can
be used to derive the mmfs in the q-direction. Starting from a simple exam-
ple, i.e., a single coil in the slot, two contours are used to derive the mmfs, as
shown in Fig. B.1(a). The summation of the mmf in contour (1) should satisfy∑
mmf(1) = JSc (where Sc = wchc). Assume the mmf sources for contour (1)

only distribute in the path shown in Fig. B.1(b), which is a row of elements within
the width of wc in the yoke. Consequently, the summation of mmfs in the yoke
should be JSc.

On the other hand, the mmf sources in contour (2) should satisfy
∑
mmf(2) =

(1− p1
hc

)JSc. Assume that themmfs are allocated in the paths in the yoke and slot,
as shown in Fig. B.1(c). With the mmfs in the yoke equal to JSc, the summation
of the mmf in the slot is accordingly p1

hc
·JSc. Therefore, the distribution of mmf

shows a linear relationship to the p-coordinate of the element before reaching the
coil edges. This can also be interpreted as: the summation of mmfs on the path
equals to the enclosed current in the area formed by the path itself and the slot
edges. Additionally, considering the element size, the mmf in the yoke is derived
as,

Fkq± =
lkq±
wc
· JSc, (B.1)

for the yoke, and is,

Fkq± =
lkq±
wc
· p1

hc
JSc, (B.2)
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Coutour (1)

wc

hc

Contour (2)

p1

(a)

wc

hc

(b)

wc

hc

(c)

Figure B.1: Topology of a single coil in one slot (a) two representative contours,
(b) distribution of mmfs for the path of contour (1) in the yoke,
and (c) distribution of mmfs for paths of contour (2) in the yoke
and slot.
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J1 J2

hc

wc wc

Figure B.2: Magnetomotive forces in the q-direction for the topology of two coil
bundles in a single slot in the Cartesian coordinate system.

Table B.1: Distribution of current related mmf sources in the q-
direction for the example in Fig. B.2.

Pos. Fkp± for J1 Fkq± for J1 Fkp± for J2 Fkq± for J2

Yoke 0
lkq±
wc
FJ1,p 0

lkq±
wc
FJ2,p

Slot 0
pk

hc

lkq±
wc
FJ1,p 0

pk

hc

lkq±
wc
FJ2,p

Notes: FJ1,p = J1wchc and FJ2,p = J2wchc.

for the slot. This concept is used to derive the mmfs for the structure shown in
Fig. B.2, which has two coil bundles in a single slot, and the obtained mmfs are
listed in Table B.1.

The derivation of mmfs in the axisymmetric coordinate system is similar to the
Cartesian coordinate system, hence, is not repeated here. For the polar coordinate
system, assume a path in q-direction passing through an element that forms an
area together with the slot edges. Again, the summation of mmfs on this path
should be equal to the current enclosed by the area. Since the area is quadratically
linear to the p-coordinate, the expression of mmf shows a quadratic dependence
on the position in p-direction. The mmfs are derived for the example shown
in Fig. B.3, that has two coil bundles in a slot. The values are listed in Table B.2,
where the term (pk)2 indicates the quadratic relation.
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θcθc

J2J1

r2c

r1c

Figure B.3: Magnetomotive forces in the q-direction for the topology of two coil
bundles in a single slot in the polar coordinate system.

Table B.2: Distribution of current related mmf sources in the q-direction for the example
in Fig. B.3.

Pos. Fkp± for J1 Fkq± for J1 Fkp± for J2 Fkq± for J2

Yoke 0
θk

2θc
FJ1,p 0

θk

2θc
FJ2,p

Slot 0
θk

2θc

(pk)2 − (rk1c)
2

r2
2c − r2

1c

F1,p 0
θk

2θc

(pk)2 − (rk1c)
2

r2
2c − r2

1c

F2,p

Notes: F1,p = J1π[(r2c)
2−(r1c)]

2θc, F2,p = J2π[(r2c)
2−(r1c)]

2θc, θ
k is the dimension

of element k in q-direction.
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Magnetomotive force in both p and q-directions

It is feasible to distribute mmfs in both p- and q-directions in the teeth, yoke
and slot. However, to ensure that the total mmfs are as the same value as in the
above arrangements, Fkp± and Fkq± should be halved compared to those values
when mmfs are only arranged in p- or q directions, respectively. The mmfs in
the yoke or tooth only have respectively the excitation in the q- or p-directions,
while both terms are assumed in the slot. However, considering the complexity
of this method compared to the other two, it is not recommended.



230 Chapter B: Distribution of magnetomotive force in q- or pq-directions



Appendix C

Distribution factor and pitch
factor of VFRMs

Table C.1: Distribution factor of 6-stator-pole VFRMs.

Number of rotor poles

n 2 4 5 7 8 10 11 13 14

1 1 1 1 1 1 1 1 1 1

2 1 1 0 0 1 1 0 0 1

3 1 1 1 1 1 1 1 1 1

4 1 1 0 0 1 1 0 0 1

5 1 1 1 1 1 1 1 1 1

6 1 1 0 0 1 1 0 0 1

Notes: n is the harmonic order.
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Table C.2: Distribution factor of 12-stator-pole VFRMs.

Number of rotor poles

n 2 4 5 7 8 10 11 13 14

1 1 1 0.966 0.966 1 1 0.966 0.966 1

2 0 1 0 0 1 0 0 0 0

3 1 1 0.707 0.707 1 1 0.707 0.707 1

4 0 1 0 0 1 0 0 0 0

5 1 1 0.259 0.259 1 1 0.259 0.259 1

6 0 1 0 0 1 0 0 0 0

Notes: n is the harmonic order.

Table C.3: Distribution factor of 18-stator-pole VFRMs.

Pr

n 2 4 5 7 8 10 11 13 14

1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

2 0.177 0.177 0 0 0.177 0.177 0 0 0.177

3 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667

4 -0.218 -0.218 0 0 0 -0.218 0 0 -0.218

5 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218

6 -0.667 -0.667 0 0 -0.667 -0.667 0 0 -0.667

Notes: n is the harmonic order.

Table C.4: Pitch factor of 6-stator-pole VFRMs.

Pr

n 2 4 5 7 8 10 11 13 14

1 0.5 -0.5 -0.866 -0.866 -0.5 0.5 0.866 0.866 0.5

2 -0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5

3 -1 1 0 0 1 -1 0 0 -1

4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

5 0.5 -0.5 0.866 0.866 -0.5 0.5 -0.866 -0.866 0.5

6 1 1 -1 -1 1 1 -1 -1 1

Notes: n is the harmonic order.
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Table C.5: Pitch factor of 12-stator-pole VFRMs.

Pr

n 2 4 5 7 8 10 11 13 14

1 0.866 0.5 0.259 -0.259 -0.5 -0.866 -0.966 -0.966 -0.866

2 0.5 -0.5 -0.866 -0.866 -0.5 0.5 0.866 0.866 0.5

3 0 -1 -0.707 0.707 1 0 -0.707 -0.707 0

4 -0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5

5 -0.866 0.5 0.966 -0.966 -0.5 0.866 -0.259 -0.259 0.866

6 -1 1 0 0 1 -1 0 0 -1

Notes: n is the harmonic order.

Table C.6: Pitch factor of 18-stator-pole VFRMs.

Pr

n 2 4 5 7 8 10 11 13 14

1 0.94 0.766 0.643 0.342 0.174 -0.174 -0.342 -0.643 -0.766

2 0.766 0.174 -0.174 -0.766 -0.94 -0.94 -0.766 -0.174 0.174

3 0.5 -0.5 -0.866 -0.866 -0.5 0.5 0.866 0.866 0.5

4 0.174 -0.94 -0.94 0.174 0.766 0.766 0.174 -0.94 -0.94

5 -0.174 -0.94 -0.342 0.985 0.766 -0.766 -0.985 0.342 0.94

6 -0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5

Notes: n is the harmonic order.
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