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Abstract 

Popular dialogue around additive manufacturing (AM) often assumes that AM will cause a 

move from centralized to distributed manufacturing. However, distributed configurations can 

face additional hurdles to achieve economies of scale. We combine a Process-Based Cost 

Model and an optimization model to analyze the optimal location and number of 

manufacturing sites, and the tradeoffs between production, transportation and inventory costs. 

We use as a case study the commercial aviation maintenance market and a titanium jet engine 

bracket as an exemplar of a class of parts that are not flight-critical. We run our analysis for 

three different scenarios, one corresponding to the current state of the technology, and two 

which represent potential improvements in AM technology. Our results suggest that the cost-

minimizing number of manufacturing locations does not vary significantly when taking into 

account a range of plausible improvements in the technology. In this case, distributed 

manufacturing is only favorable for a set of non-critical components that can be produced on 

the same equipment with minimal certification requirements and whose annual demand is in 

the tens of thousands. Distributed manufacturing is attractive at lower volumes for 

components that require no hot isostatic pressing. 

1 Introduction 

Additive manufacturing (AM) is a family of near net shape manufacturing processes where 

digitally created three-dimensional objects can be built up by depositing material in 

successive layers. Some of the potential advantages of AM over incumbent manufacturing 

technologies include creating optimized geometries, reducing material waste, and reducing 

lead time and therefore the need to keep inventory (Gibson et al., 2010; Harris, 2011; Horn 

and Harrysson, 2012). 

Based on these claimed advantages, scholars and the popular press alike have argued that AM 

will bring manufacturing closer to markets and consumers (Ihl and Piller, 2016; Petrick and 

Simpson, 2013; The Economist, 2012). Others, however, have argued that the benefits of 

localization may be exaggerated, at least in this case, both in terms of which products may be 
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customized (Sheffi, 2013) as well as the benefits and potential. This exaggeration may be 

especially true of metal AM, which faces constraints that polymer AM does not (Bonnín 

Roca et al., 2017a). Khajavi et al (2014), in assessing a polymer component for military 

aircraft, suggest that centralized production is preferred with the current state of the 

technology, but also argue that future developments could make distributed production more 

attractive. Under such conditions, producers could pool demand across different industries to 

more easily achieve economies of scale (Khajavi and Holmstrom, 2017). 

Economic theory models the problem of factory location as one of finding a balance between 

the cost of producing a certain good, and the cost of the ‘distance’ to the market (Isard, 

1951a, 1951b; Marshall, 1890; von Thünen, 1826). On one hand, firms are incentivized to 

locate close to areas with high market potential (Harris, 1954; Lowry, 1964). Proximity to the 

market reduces transportation costs and improves access to customers and production inputs 

(P. Krugman, 1991; Pred, 1966). On the other hand, those areas tend to have increased land 

(Marshall, 1890; von Thünen, 1826) and labor (Krugman, 1997) prices, which may have an 

important impact on the manufacturing cost. Thus, new entrants need to find a balance 

between positive externalities, and congestion costs due to agglomeration (Henderson, 1974). 

Improvements in transportation infrastructure may decrease transportation costs, allowing 

firms to produce in more remote areas (North, 1955). As the number of markets increases, 

firms face additional tradeoffs in volume and competition between serving the local or global 

markets (P. R. Krugman, 1991). In those cases, the total number of factories operating might 

be determined by economies of scale and scope, which are different for each industry and 

product (Chandler and Hikino, 1994; Lösch, 1954). Both the relative difficulty of achieving 

economies of scale, and the total production cost, can be affected by geographical differences 

in input prices (Fuchs and Kirchain, 2010).  

Surveys among firm decision makers suggest that there is a wide variety of factors affecting 

firms’ location decisions beyond those affecting economic productivity (Blair and Premus, 
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1987; Rees, 1986). In the case of high-technology manufacturing plants, the top three factors 

are usually access to labor, access to good transportation, and quality of life (Rees, 1986). In 

addition, firms may want to avoid regions with stronger union movements and higher 

taxation (Bartik, 1985). The scarcity of skilled labored might be partially overcome by 

locating close to the leading universities and researchers in the field (Zucker et al., 2002). 

Access to transportation can be gained by locating close to the major highways and airports 

(Karakaya and Canel, 1998). Quality of life encompasses often less-quantifiable factors such 

as the opportunities to enjoy cultural and recreational activities, living costs, or the quality of 

the surrounding environment, among others (Salvesen and Renski, 2003). In addition, 

entrepreneurs may show a strong preference to establish their firms close to their home town 

(Figueiredo et al., 2002).  

The operations research literature seeks to optimize the design of supply chains, minimizing 

cost, maximizing profit, or minimizing time-to market across manufacturers, suppliers, 

distributors and retailers (Beamon, 1998; Melo et al., 2009). When the potential location of 

the facilities is known, discrete location problems are usually preferred over continuous 

algorithms, which are often used in macroeconomic studies (Melo et al., 2009). A particularly 

relevant application of discrete models is the uncapacitated facility location problem, where 

each of the locations presents a different location cost, and there is no upper limit to the 

production volume at each location (Fernández and Puerto, 2003; Mirchandani, 1990; 

ReVelle et al., 2008). The objective of those algorithms is primarily to minimize the cost of 

the entire supply chain (e.g. Barros et al., 1998; Marvin et al., 2013; Mina and 

Melachrinoudis, 1999). Nonetheless, the algorithms can be modified to include additional 

objectives such as balancing the capacity at each facility (Marín, 2011), maximizing the 

service area covered by the facilities (Church and ReVelle, 1974), minimizing ‘dead’ stock 

(Ishii et al., 1988), choose a production technology (Verter and Cemal Dincer, 1992) or even 

introducing environmental concerns (Wang et al., 2011). While many of these algorithms 
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offer a deterministic solution, real-life uncertainty surrounding the demand levels and 

potential supply chain disruptions call for the introduction of robustness checks and 

sensitivity analyses (Correia and Gama, 2015; Snyder, 2006). For instance, while classical 

theory suggests that the centralization of inventory is optimal under deterministic conditions, 

decentralized inventory reduces cost variance under uncertainty (Schmitt et al., 2015). A 

limitation in the treatment of the uncertainty surrounding the production costs is that it is 

usually limited to the introduction of random parameters in the equations determining the 

costs (Louveaux, 1986; Sibdari and Pyke, 2014; Wang et al., 2012), which are disconnected 

from the real-life technical drivers of such costs, key drivers of most engineering cost 

estimation techniques (Laureijs et al., 2017; Niazi et al., 2005). 

We combine a location-dependent Process-Based Cost Model (PBCM) (Field et al., 2007) of 

a metal AM (MAM) production process, with an uncapacitated facility location optimization 

model (Daskin, 2011), to analyze which configuration minimizes the total supply chain costs. 

The PBCM allows us to introduce a more thorough analysis of how uncertainty in the factors 

affecting MAM production costs changes the optimal solution, which is limited when 

following the traditional approaches in the operations research literature (Snyder, 2006). As 

an exemplar of a class of low-risk aircraft replacement parts we use the case of a titanium jet-

engine bracket in the U.S. commercial aviation spare parts as a market. We model three 

scenarios: one corresponding to the current state of the technology, one which represents the 

potential improvements in performance, and a third one that assumes a dramatic fall in 

equipment costs. Our results suggest that, even after future improvements in equipment 

performance and a substantial fall in MAM equipment costs, centralized location will likely 

remain most cost-effective due to economies of scale, unless production volumes are high or 

there is a large reduction in the need for post-processing. 

This study makes three key contributions. First, it combines three techniques that, to our 

knowledge, have not been used simultaneously before: the use of a process-based cost model 
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to link design and production choices to cost; the inclusion of location-based factors (e.g., 

volume of demand, labor costs, and land costs); a mixed-integer linear program to perform a 

supply chain optimization. Second, it explores technology-specific details that the supply 

chain or operations management literature might abstract away (e.g., the cost and nature of 

post-processing; the potential for vast improvements in AM technology). Third, it directly 

addresses an assumption that decisionmakers sometime make about AM: that it will foster the 

localization of manufacturing. Support for AM is premised on the idea that decentralized AM 

will be good for society or bring manufacturing back to places that have lost them (EC, 2017; 

WEF, 2018). Our study tests this hypothesis against technical reality. 

The paper is structured as follows. We start with general background information about the 

potential applications of additive manufacturing in the commercial aviation industry, and 

information about how regulation may affect the introduction of the technology. We then 

discuss the simulation and optimization models used in our analysis. We present our results, 

and we finish with a discussion about which circumstances may drive the decentralization of 

the manufacturing of spare parts in the aviation industry. 

2 Industrial background: additive manufacturing in commercial aviation, 

and the regulation of spare parts 

The aerospace industry is one of the main users of AM (Wohlers Associates, 2016). AM 

offers the reduction of material waste in high-value components; the optimization of 

geometries and lightweighting of components, which translates into important fuel savings 

for airlines; and the reduction of part count, through the combination of multiple components, 

which decreases inventory costs and may increase part durability (Frazier, 2014; Harris, 

2011; Morris, 2014).  

The first AM components are already flying. In 2015, the Federal Aviation Administration 

(FAA) approved the first replacement part made with AM, a cobalt-chrome case for engine 
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inlet temperature sensors, manufactured by General Electric (GE) to retrofit engines for 

Boeing 777 aircraft (GE, 2015). GE also merged twenty components into one single piece to 

produce a new fuel nozzle for its “Leading Edge Aviation Propulsion” (LEAP) engine. GE 

reports that this integration reduced production costs by a 30%, decreased weight by 25%, 

and increased durability (GE, 2014; Morris, 2014). In 2017, a Boeing supplier started to 

manufacture the first AM structural components, made of titanium, approved for use in 

commercial aviation (Arnesen, 2017). 

However, AM is a still-maturing technology with many sources of variability, and aviation is 

an industry with very stringent safety requirements. Hence, achieving a level of control over 

the AM manufacturing process, which is good enough for aviation standards and consistently 

produces components that can withstand cyclical loads, is one of the main barriers to the 

further adoption of the technology (Bonnín Roca et al., 2017b; Frazier, 2014). This variability 

is expected to decrease as the technology matures, and better process control and real-time 

monitoring systems are implemented in the next generation of equipment (Everton et al., 

2016). 

The regulatory process for spare parts is different than the process for components introduced 

in new designs. While new designs require the creation of extensive material databases and 

testing at different levels, which is very expensive and time-consuming, manufacturers of 

spare parts need only prove that the component they are producing is equivalent to the 

component approved as part of the aircraft design (FAA, 2009). The amount of testing and 

documentation required depends on the type and functionality of each component. FAA’s 

Advisory Circular 43-18 (2006) classifies components into three categories. Category 1 

components are those whose failure could deter performance to the point of preventing safe 

flight and landing. A failure in Category 2 components still allows for safe flight and landing 

but would reduce the capability of the crew to face adverse operating conditions. Category 3 

components are the least critical, and their failure affects neither the safety of the flight nor 
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the aircraft’s performance. The same advisory circular states that the fabrication of Category 

3 components “will typically result in no involvement by AIR [Aircraft Certification Service] 

unless the Flight Standards Service aviation safety inspector requests assistance”. Although it 

is a U.S. agency, the FAA is the preeminent regulator for civil aviation and its procedures are 

widely applicable.2 As such, these regulatory constraints likely apply to most jurisdictions.  

For Category 1 and 2 components, initial production runs at each manufacturing site require 

additional testing. This additional testing makes the distributed production of Category 1 and 

2 components relatively unattractive. Hence, we will focus our analysis on Category 3 

components. Once the applicant has been granted permission to produce components at a 

manufacturing site, the process to open new manufacturing plants would require much less 

paperwork and testing (Aviation Regulator, 2017). Therefore, we assume that there would not 

be large differences in the certification costs between centralized and distributed production.  

Huang et al. (2016) estimate that 250-510kg of “auxiliary” metallic components in a narrow 

body aircraft that can be feasibly replaced by lighter, 3D printed equivalents. The 

components are identified as feasibly replaceable because they have low shape complexity, 

appropriate geometric volume, and low load. They are considered auxiliary because they are 

not structural and not functional (i.e., they do not perform functions during flight). As such, 

they coincide with what the FAA defines as Category 3 components. The heaviest such 

component Huang et al. consider weighs 1kg, and the lightest is 0.06kg. Assuming 

conservatively that all such components weigh 1kg, this suggests that there are at least 250-

500 components per narrow body aircraft that could potentially be produced using AM.3 

There are nearly 7,000 commercial aircraft in operation in the United States (FAA, 2017), 

                                                
2 As Bonnín Roca et al. (2017b) note, “…there are international working groups and bilateral agreements to 
ensure that regulation and advisory materials written by other aviation authorities like the European Aviation 
Safety Agency are harmonized. In some cases, like Brazil, regulation and advisory materials are exact copies of 
those in the U.S. Interpretation will vary with the officers in each country. This said, we expect lessons learned 
from the FAA to be applicable to other regions like Canada, Europe, Japan and Brazil.” 
3 Many of these components may be of the same type. For example, there are more than 100 seat belt buckles 
per aircraft. A such, the 250 components per aircraft might fall into far fewer part types. 
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which suggests that there could be 1.75-3.5 million such components on U.S. aircraft that 

could be feasibly produced using AM without undergoing the most burdensome certification 

processes.  If we conservatively assume that 1% of these components needed to be replaced 

per year, the total market for such components for the U.S. domestic fleet alone would be 

17,500-35,000 parts per year. 

3 Methods 

As discussed above, there are several such non-critical, non-structural parts. We use a 

titanium jet engine bracket as the canonical exemplar to explore how optimal supply chain 

configurations change as process and other parameters vary. The design of the bracket was 

made publicly available by GE in an online competition, with the purpose of minimizing the 

weight of an existing bracket while meeting its original functional specifications (Kellner, 

2013). Laureijs et al (2017) used this design to demonstrate that AM is cost-competitive 

against the conventionally-manufactured design, thanks to a more than 80% weight 

reduction, from 2,033 grams down to only 372. The bracket is used during maintenance by 

airline personnel to hold the engine while it is being manipulated (Kellner, 2013). The 

component is an example of a Category 3 component, because a failure would not affect the 

safety of the flight or the performance of the aircraft.  

The geographical scope of our supply chain analysis is the 48 contiguous states in the United 

States. To represent the demand, we chose the fifty busiest airports by total departures 

handled in the USA in 2016, published by the U.S. Bureau of Transportation Statistics. We 

excluded two in Hawaii and Puerto Rico which are not in the contiguous states, ending up 

with 48 airports. These 48 airports represent approximately 83% of the total enplanements in 

the USA (Bureau of Transportation Statistics, 2017). The 48 airports are located in 45 

different counties. We assume that the demand for components at each airport is proportional 

to their share of passenger traffic. 
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Figure 1 We study the supply and demand at 48 airports in the contiguous U.S.  

Our analysis is divided into two steps. First, we build a location-dependent model for the 

production costs. The purpose of the production model is to generate a family of cost curves, 

which change according to the geographical variations in input prices; namely wages, energy 

prices, and land prices. Second, we build a cost-minimizing supply chain optimization model. 

The optimization model allows us to analyze the tradeoffs between production, transportation 

and inventory costs, for different production volumes.  

Our null hypothesis is that policymakers who hope that additive manufacturing will 

automatically make localized, distributed manufacturing attractive are right. Our alternative 

hypothesis is that centralized manufacturing is likely to be economically preferable. This is 

because most AM components need several post-processing steps which increases the capital 

needed to open a new factory. We do our best to falsify this hypothesis by making 

assumptions that strongly favor the null hypothesis. As such, in the event of uncertainty 

surrounding certain cost components, our assumptions favor distributed production (e.g. by 

increasing transportation and inventory costs or lowering barriers to open a new production 

facility). 
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3.1 Process-Based Cost Model 

To model production costs, we use Laureijs et al.’s (2017) Process-Based Cost Model 

(PBCM), specifically designed to simulate the production of MAM components. PBCM is a 

decision tool that analyzes the economics of novel manufacturing technologies and product 

designs before investing in them (Field et al., 2007); PBCM gives the flexibility to build 

‘what-if’ scenarios to estimate how modifications to certain parameters may affect production 

costs. In PBCM, the production process is divided into its constituent steps. At each step, the 

model computes the inputs (material, capital, labor, building space, energy, etc.) required to 

achieve a certain annual production volume of good (usable) parts given the specified product 

design, operational, and financial parameters. To compute the total costs, we multiply the 

inputs required at each step by their price to find the total cost of “good” parts at the specified 

annual production volume. 

Our analysis assumes one Direct Metal Laser Sintering (DMLS) system, referred to as 

DMLS1 in Laureijs et al (2017). Based on our interactions with industry, this is one of the 

most widely used systems in the manufacture of components for aerospace. We assume the 

following post-processing steps: heat treatment, wire EDM, Hot Isostatic Pressing (HIP) and 

Shot Peening. To make the cost model location-dependent, we changed input prices (wages, 

electricity prices and land prices) for each location, keeping the original production 

parameters published by Laureijs et al. fixed.  

We obtained these region-dependent input prices for the PBCM from public sources. We 

obtained the 2016 average wages in the manufacturing sector from the Bureau of Labor 

Statistics (2017), at county level. We obtained the annual-average electricity prices, at the 

state level, from the Energy Information Administration (2017). Estimating land prices was 

challenging due to the high variances in prices across neighborhoods even within the same 

county, the location of airports in different counties than the city they serve (e.g. Washington, 

D.C.) and the lack of reliable data. At the same time, we expect errors in the estimation of 
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land prices to have a small impact on our results, given the relatively low contribution of land 

prices to the final production cost. For instance, when producing 10,000 components per year 

in the baseline scenario (see Table 1 and below), the cost of land represents about 0.4% of the 

total production cost. This percentage is small when compared to labor, which at the same 

production volume represents about 7% of the cost. We estimated land prices at the county 

level by building a parabolic function to correlate the House Price Index (HPI), published at 

the county-level by the Federal Housing Finance Agency (Bogin et al., 2016), and median list 

housing prices, for 40 different cities, published on the real estate portal Zillow (see 

Appendix A).  

Table 1 Summary of the production inputs changed across the different scenarios  

Scenario Baseline  
20x build rate;  

no rejects 

20x build rate + 
1/10th machine cost;  

no rejects 
Machine price [k$] 600 600 60 
Batch size 2 4 4 
AM Build time [h] 19.50 0.98 0.98 
Total reject rate ~20% ~0% ~0% 

 

Our “Baseline” scenario (Table 1) corresponds to the state of the technology in 2016. We 

constructed two other “what-if” scenarios. Our second (“20x build rate” in  

Table 1) scenario accounts for improvements in reliability and performance which are likely 

to happen in the next decade. In this, we assumed a twenty-fold4 improvement in speed, 

doubled the batch size, and assumed that reject rates were close to zero (ideal case). We 

assumed that these improvements would be delivered without an increase in machine cost, 

but that might not always be the case. Currently, the faster systems are those which use 

multiple lasers at the same time. Multiple laser systems are currently substantially more 

                                                
4 The speed of laser-based machines currently scales roughly linearly with the number of lasers, and the fastest 
machines are four times faster than the single-laser machines that we model. (see, for example, (SLM Solutions, 
2017a)). There are, however, machines that jets of binders to produce parts that are sintered to consolidate them. 
These machines may be up to 100 times faster than current single-laser machines (Warwick, 2017).  
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expensive than single laser systems. Laureijs et al. (2017) assume that single laser systems 

cost between $500,000 and $800,000. In 2017, SLM Solutions GmbH (SLM Solutions, 

2017b) announced the sale of 10 multiple-laser systems at a price of up to EUR1.2 million 

each ($1.5 million at the EUR-USD exchange rate as of March 2018). The introduction of 

robust real-time monitoring systems and more complex algorithms to optimize the build 

process could increase the price of the newest generation of machines. At the same time, 

learning effects and an increase in market size could lower costs. The third, extreme scenario 

(“20x build rate + 1/10th machine cost” in  

Table 1) assumes machines that are not only 20 times faster, but also that such fast machines 

cost one-tenth as much as current laser-based systems. One of the companies trying to 

commercialize such systems is Desktop Metal. However, Desktop Metal machines use the so-

called Single Pass Jetting technology, which produces parts with poorer and more variable 

mechanical properties than does Direct Metal Laser Sintering (DMLS), which is the process 

we assume in our base case. Therefore, it remains to be seen under which conditions such 

low-cost systems could be used in industrial applications with stringent qualification 

procedures such as commercial aviation (Warwick, 2017). The initial price of Desktop 

Metal’s machines is $49,900 plus tax (Petch, 2017), which is indeed roughly one-tenth of the 

price of the DMLS machine assumed in our base case. The last two of these scenarios also 

assume that rejection rates are reduced to zero. 

We recognize that it is in fact unlikely that such large improvements in performance will be 

accompanied by a dramatic fall in costs. Indeed, it is also the case that a combination of high 

power and high speeds might result in a deterioration in properties such as porosity 

(Cunningham et al., 2017). Making the extreme assumption that the technology does improve 

as much as this is a reflection of our conservatism. As we note at the start of this section, our 

alternative hypothesis is that centralized manufacturing is likely to be economically 

preferable. We do our best to falsify this hypothesis by making assumptions that strongly 
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favor the null hypothesis. Assuming that machines can be made much faster without 

increasing costs is a conservative, implausible assumption and therefore represents a strong 

test of our alternative hypothesis. 

For each of the three scenarios, we simulated the production costs for 45 different counties 

(there are three counties which contain two large airports). The PBCM gives as an output the 

total cost for a given production volume. To obtain a relationship between the production cost 

and the production volume, we repeated the calculation in intervals of 100 units per year, 

between 1 and 10,000 units. We used these hundred data points to express the production cost 

as a linear function of the production volume, using ordinary least squares. The linear 

estimator had an R2 of 99.9% in all cases and provides two parameters (a constant and a 

slope) which we will use in our optimization model. The parameters obtained from this 

linearization can be found in Appendix C. 

3.2 Supply Chain Optimization Model 

We model the supply chain of spare parts as an uncapacitated location optimization problem 

(Daskin, 2011). We choose a discrete optimization model because the location of the 

potential sites, which correspond to the major airports and maintenance hubs are known. We 

model the problem as uncapacitated because the typical production volumes in the aviation 

aftermarket are typically low (tens or hundreds per item) (Regattieri et al., 2005), and hence 

do not require the establishment of large manufacturing plants. 

In our model, there are i potential manufacturing locations, and j demand nodes. Airline 

maintenance hubs are located at, or in the proximity of, major airports. We assume that AM 

equipment could be located at any of those major airports. Therefore, the number of potential 

manufacturing locations is the same as the number of demand nodes, which is the number of 

counties with a major airport (45). The total annual demand of components, D, is an input 

parameter to the model which allows us to analyze the effects of economies of scale on the 
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optimal supply chain configuration. We assume that the demand at each airport is 

proportional to their passenger traffic, for each level of total demand D. The local demand at 

each airport, d_j, is computed by rounding up to the nearest integer the product of D and that 

airport’s share of the passenger traffic. 

The objective of our model is to minimize the total supply chain cost, which has three 

components: production costs Cp, transportation costs Ct, and inventory costs Cs. 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐶 = 𝐶)*+,-./0+1 + 𝐶/*314)+*/3/0+1 + 𝐶01561/+*7 = 𝐶) + 𝐶/ + 𝐶4 (1) 

The decision variables of the model are q_ij and y_i. q_ij represents the quantity of 

components between factory i and the airport j. To improve the performance of the algorithm, 

q_ij has been scaled so that it has a value of 0 when there is no flow, and a value of 1 when 

the flow equals the total demand of parts D, which is a parameter of the problem. y_i is a 

binary decision variable equal to 1 when there is a factory operating at airport j, and 0 when 

there is no factory. 

The model is subject to the following constraints: first, the demand at each airport must be 

met 

 𝐷 ∗:;𝑞0=> = 𝑑=
0

∀	𝑗 (2) 

And second, the quantity of components produced at a certain factory is only larger than zero 

if the solution of the optimization problem is for a factory to exist at location i (y_i =1). 

 :(𝑞0=) − 𝑦0 ≤ 0
=

∀	𝑖 (3) 

Finally, the scaled component flows have a value between 0 and 1: 

 𝑞0= − 1	 ≤ 0	∀	𝑖, 𝑗 (4) 

 𝑞0= 	≥ 0	∀	𝑖, 𝑗 (5) 
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3.2.1 Production costs 

Production costs are computed directly from the linearization of the PBCM, as a sum of the 

production costs at each potential location. For each county i, the linearized cost curve has a 

fixed cost component, c_pf_i, and a marginal cost, c_pm_i. When the solution of the 

optimization problem is for a factory to exist at location i (y_i =1), the fixed and variable 

components of the production cost are obtained from the output of the PBCM model at that 

location. Conversely, when the optimal solution is to have no factory at a particular location i 

(y_i =0), production costs are zero.  

 𝐶) =:𝑦0 ∗ 𝑐)L0
0

+ 𝐷::𝑐)M0
∗ (𝑞0=)

=0

 (6) 

3.2.2 Transportation costs 

According to our conversations with maintenance personnel, spare parts are normally 

transported using expedited courier services such as FedEx or UPS. The price of the service 

is not linear with distance but is determined by ‘zones’. For instance, according to UPS zone 

division, sending a package from San Francisco to Dallas (2,385 km) has the same price as 

sending it to Chicago (2,984 km). On top of the transportation, spare parts are usually 

transported in special containers to avoid any damage to high-value components, and the 

sender pays for additional insurance. 

To be conservative, we decided to use a constant transportation price, which represents the 

maximum price a sender could pay to send a bracket from one factory to any airport in the 

USA. According to the UPS online freight calculator, the price of sending a $900 bracket 

from San Francisco to New York using the Next-Day Air service is about $1,500, assuming a 

package of 1kg or less. If the value of the bracket were only $300, the shipping price would 

only fall by $32. Therefore, we will use the same transportation price T = $1,500 as a 

parameter for all the three scenarios. Transportation costs are zero for those components 

manufactured at the same airport where they are demanded. 
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Transportation costs can be expressed as: 

 

𝐶/ = 𝑇 ∗ 𝐷 ∗:O:𝑞0=
=

− (𝑞00)P
0

 

(7) 

3.2.3 Inventory costs 

To obtain better insights about how airlines manage their inventory, we reached out to the 

major U.S. airlines. We conducted semi-structured interview with two managers at a major 

U.S. airline, in charge of maintenance and supply chain operations. The interview was by 

telephone and lasted approximately one hour, during which we also tried to understand which 

niches constitute the low-hanging fruit for the introduction of AM in the aircraft spares 

market. We also conducted an hour-long in-person interview with a purchasing manager at a 

major European maintenance repair and overhaul firm. We cross-validated the information 

provided by the firms with an interview with an FAA official, who explained to us some of 

the regulatory restrictions which might arise when trying to introduce AM. That interview 

also lasted one hour and was conducted on the phone. They explained that there is a lot of 

variance in the lead time of components, depending on their criticality and the age of the 

aircraft (Supply Chain Manager, 2017). For instance, it may be easier to quickly obtain 

components for out-of-production aircraft and engines than for currently-produced aircraft. 

For in-production aircraft, most components are channeled to build new aircraft to clear the 

order backlog. This reduces the availability of spare parts for in-production aircraft.  Lead 

times can be long: for non-critical components such as aircraft interiors, lead times are highly 

uncertain and may sometimes be as long as 45 or even 60 days (that is, 7-10 weeks). 

In commercial aviation, replacement parts must often be supplied and installed while an 

aircraft is at the gate between consecutive flights. Using the FAA’s data on flight arrivals and 

departures, we find that aircraft on U.S. domestic service spend a median of 63 minutes at the 

gate, and 70% of the flights stay 100 minutes or less at the airport (Figure 2). Therefore, we 
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assume that the time it would take to produce and deliver a bracket in response to customer 

demand at another location is much longer than the lead time demanded by customers.  

 

Figure 2: Percentage of flights which stay at the airport longer than a certain time. 70% of the 
flights stay 100 minutes or less at the airport, which is less than the time required to 
manufacture a component. 

We assume that brackets are produced to demand at airports where manufacturing takes place 

(y_i = 1) and that the stock held at such airports is zero. Similarly, we assume that where 

there are no manufacturing facilities (y_i = 0), demand must be supplied from stock. To 

calculate the cost of carrying this stock, we estimate its level. The average number of 

brackets that must be held in stock at any airport is a function of the demand at that airport, 

the lead time, and the re-order policies (which in turn may be determined by minimum order 

quantities). Since the lead time and demand are both variable and uncertain, demand cannot 

always be met, and the average level of stock also depends on the service level (Eppen and 

Martin, 1988).  While these data can be inferred from historical demand and purchases, doing 

so is doubly difficult in this case. One, the product we are analyzing is new: there are no 

historical data. Two, the demand for brackets is likely to change as aircraft age: the time 

series would be non-stationary. As such, we approach the problem parametrically (Van 
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Landeghem and Vanmaele, 2002). We assume that the amount of safety stock needed at those 

airports is proportional to the annual demand of components at each airport d_j, and that each 

airport carries a certain number of weeks (w) of inventory. We treat w as a parameter, and we 

vary it from one (1) to 20, although such variations do not affect our final conclusions, given 

that inventory costs are at least an order of magnitude lower than production and 

transportation costs. The annual cost of carrying inventory is the average stock level, 

multiplied by the price of the bracket p, and a factor r which encompasses overhead, damage 

and amortization costs. 

 𝐶4 =:Q𝑑= ∗
𝑤
52U 𝑝 ∗ 𝑟

=

 (8) 

We assumed a typical 25% profit margin in the aftermarket (Gallagher, 2005), which yields a 

price of approximately $1,300 for the bracket in the scenario A, and $700 for scenario B, and 

$650 for scenario C. We used r = 25% for the capital costs of inventory (de Decker, 1998). 

4 Results  

Table 2 shows the number of manufacturing locations for each scenario and production 

volume. Table 2 shows the value of each of the cost components in the supply chain model, 

for each of the cases.  

Table 2: Number of manufacturing locations for each scenario and production volume. The 
number of locations does not significantly change even taking into account potential 
improvements in MAM technology. 

Parts/year 100  1,000  10,000   25,000  50,000  100,000  
Baseline 1 1 1 4 14 26 

20x build rate;  
no rejects 

1 1 1 3 14 24 

20x build rate +  
1/10th machine 

cost; no rejects 

1 1 1 4 14 27 
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Figure 3: Components of (top) total cost and (bottom) cost per part for the optimal 
solution obtained using our mixed integer linear program. Note that per-product 
transport costs start to drop for volumes greater than 10,000 parts, as the optimal 
solution involves setting up multiple factories, which raises production costs but lowers 
transport costs. 

We can also analyze how the chosen location varies as demand increases (Table 3). At low 

production volumes, the chosen regions are the those with the lowest production costs. As 

demand increases, the optimal location of the factory moves to the airports with the highest 

demand.  
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Table 3 Relationship between location and demand: as production volumes increase, 
optimal manufacturing location moves from the one with the lowest production cost to 
others with higher demand and greater proximity to other airports 

 

To better understand the tradeoffs between production, transportation, and inventory costs, 

we decided to run additional cases at the frontier between one (1) and two (2) manufacturing 

locations (Table 4). This frontier is located between 18,000 and 19,000 components per year. 

We introduce a new constraint in the optimization model (∑ 𝑦0 = {1}0 ) to force the total 

number of manufacturing locations, so that we can analyze the differences in cost between 

the optimal solution and a suboptimal solution with only one factory. We find that, to open a 

second factory, the savings in transportation and inventory costs need to add up to slightly 

more than $2 million, which corresponds to the “fixed costs” in the production cost functions 

shown in Figure 7. 

Table 4 Components of total cost for optimal and forced solutions at a volume of ~18000 parts 
per year. We see that at ~19000 parts, the additional production costs associated with setting up 
and maintaining two factories are offset by the lower costs associated with eliminating the need 
to carry inventory at the second location. 

Production volume (D) 18,000 19,000 19,000 
No. of factories 1  1 2 
Type of solution Optimal Forced Optimal 
Production [$M] 19 20 22 
Transportation [$M] 25 26 24 
Inventory [$M] 1.1 1.1 1.0 
Total 45.4 47.9 47.8 

 

100 5000

Annual Production Volume 100 5000
Chosen Airport Southwest Florida (RSW) Atlanta (ATL)
Fixed cost [$M] 1.91 2.01
Marginal cost [$] 968 965
Share of demand [%] 0.61 7.31
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We note that, at an annual production volume of 18000 parts, increasing transport costs from 

$1500 to $1550 per part changes the optimal solution from one to two factories. Figure 4 

shows that a two-factory solution is viable at an annual volume of 10000 if transportation 

costs are assumed to be $3000. While we have assumed a constant transport cost, it is not 

difficult to imagine situations (e.g., remote airports) where such costs might be much higher. 

Our model can easily be modified to account for this fact by assigning different transport 

costs to different route pairs.  

 
Figure 4: Transport costs needed to shift the optimal solution from one to two factories 
at different production volumes. A doubling of the assumed transport cost (to $3000) 
would make a two-factory solution viable at an annual volume of 10,000 parts. 

It is possible that a firm may wish to have at least two supplying locations to make the supply 

chain robust. Our model allows us to estimate the cost of achieving this resilience (Figure 5).  
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Figure 5: Additional cost per bracket (primary y axis on the left) and total additional 
cost (secondary axis on the right) of forcing a sub-optimal, two-factory solution. 

For low volumes of total annual demand, this cost is $2 million in total and exceeds per part 

the price at which the part can be sold. The per-part premium falls rapidly as economies of 

scale start to apply, and the proportion of transport costs in the one-factory optimal solution 

starts to increase. 

5 Discussion 

From our results, we can extract two conclusions. First, that decentralization may only 

happen at volumes of tens of thousands of components per year or more. This suggests that 

the ideal situation of having low-volume, distributed production might not be economically 

optimal. Our analysis tries to show a ‘best scenario for decentralization’, and therefore the 

case for centralized production is likely stronger in real life cases. For instance, transportation 

costs could be lower when shipping over shorter distances, and we did not consider a case 

where several brackets could be shipped at the same time, which would substantially reduce 

the shipping cost. In addition, we did not consider the costs and the uncertainty surrounding 

the certification process of a new manufacturing facility, although it may be possible—in the 
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future—to virtually certify individual parts by comparing their “digital twin” to the digital 

twins of a family of parts that are known to meet specifications (Knapp et al., 2017). Finally, 

we have not considered any constraints on the availability of skilled labor at certain locations, 

or the location of quality control equipment tailored to detect the defects which are unique to 

additively-manufactured parts.  

Our second conclusion is that, under our assumptions, even significant improvements in the 

technology will not affect the optimal supply chain configuration. This contrasts with 

previous results, in the field of polymers, which suggested that the evolution of the 

technology could provoke a change in the most cost-effective supply chain configurations 

(e.g. Khajavi et al., 2014). We analyze the structure of the production costs to better 

understand why the optimal choice does not change. 

To explain this observation, Figure 6 shows a comparison of the structure of the production 

cost of each bracket, between scenarios A and B. As technology evolves, machine costs 

represent a lower portion of the total costs because machines are faster and more reliable, and 

therefore fewer machines are needed to achieve the same production volume. If a single 

machine at one location can produce enough to meet demand at multiple locations, this 

increase in capacity weakens the case for having multiple locations. Among all the input 

prices, labor represents the most important one and becomes almost as expensive as the 

equipment. This could suggest that, as technology evolves, production might move to regions 

with lower wages, in line with traditional life cycle theory (Krugman, 1979; Vernon, 1966). It 

also suggests that designing machines that either do not require skilled labor to operate, or 

which can be operated remotely, would promote distributed manufacturing. This belies the 

hope that distributed manufacturing will generate local employment. 
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Figure 6 Comparison between the cost components for each bracket in scenarios A and B, 
assuming an annual production volume of 10,000 units, and a manufacturing location close the 
airport of Phoenix, AZ. 

The PBCM makes it apparent that the economies of scale associated with the production of 

the bracket stem from post-processing, and in particular hot isostatic pressing. Figure 7 shows 

that the cost of producing brackets is dominated by the fixed cost (>$2 million), while the 

marginal cost of production is fairly small ($1000). Even large improvements in the cost and 

performance of additive manufacturing equipment do not substantially reduce the fixed costs 

associated with the bracket. We note that this result reflects a characteristic of the metal AM 

production process: the economics of other methods of manufacturing such as forging or 

CNC machining are unlikely to be immune to such a large change in the cost of the 

equipment, since they do not require such expensive post-processing. Eliminating hot-

isostatic pressing and other post-processing steps dramatically reduces the fixed costs of 

production. 

This observation also has consequences for the generalizability of our results. Our analysis is 

based on the design for our exemplar part - an engine bracket. Other parts may be smaller (or 

larger) or take a longer (shorter) time to manufacture due to greater (lesser) geometric 
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complexity. However, so long as the parts are manufactured on the same equipment, and 

undergo post-processing on the same equipment, this will only change the marginal cost of 

producing them (i.e., the slopes of the lines in Figure 7), but not the fixed cost. For moderate 

volumes, this means that the total cost of manufacturing a part is driven largely by the cost of 

the equipment needed to manufacture it, and not by minor differences in the part’s geometric 

characteristics. Since our model determines the optimal number of locations based on total 

cost, this suggests that we would obtain similar results for a range of different parts, so long 

as they were manufactured on similar equipment. 

 
Figure 7: Total cost of production (y axis, in $ million) a given volume of parts (x axis). 

For instance, at a production volume of 10,000 units, the cost of the HIP steps was still $149 

per bracket, or about 12% of the unit cost, but at a production volume of 100,000 units per 

year, that cost was down to $35 per bracket, or about 3% of the unit cost. Hence, the 

economies of scale associated with the post-processing equipment is an important barrier to 

the decentralization of additive manufacturing. Centralized production would also help 

manufacturers to share their post-processing equipment with non-MAM components, 

reducing costs even further. 
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While MAM technology is relatively immature and has a lot of room for improvements in 

cost performance, most of the technology used for post-processing is mature and costs may 

not decrease substantially. The first vacuum induction furnaces date back to the 1920s, and 

nowadays are used in a wide variety of industrial applications (Mühlbauer, 2008). Hot 

Isostatic Pressing, which is the most expensive post-processing procedure, was invented in 

1955 and fully developed as a production tool in the early 1970s (Hanes, 1979). Shot 

peening, a cold metal hardening process, was first demonstrated in 1927, and in the 1960s 

was already considered ‘a controlled mechanical process’ (Hawkinson, 1962). Current 

industrial trends to solve this issue fall into two categories. First, some manufacturers are 

trying to develop hybrid systems which combine additive and subtractive tools in the same 

machine (Flynn et al., 2016), which may eliminate the need for a separate machine to perform 

post-AM subtractive operations (e.g., milling or grinding down to achieve required tolerances 

or surface finish). However, hybrid systems do not perform heat and/or pressure treatments 

which might be needed to ensure the consistency in the mechanical properties of the 

component, especially fatigue resistance, so material and component choices might be limited 

(Flynn et al., 2016). Second, some manufacturers are trying to develop integrated systems 

where the entire production process happens, from beginning to end, including also heat 

treatments, inside the same machine (TCT, 2015). These integrated systems have the 

advantage of reducing labor costs and setup times, but also limit the possibility of sharing the 

post-processing equipment with other production lines. Further work would need to assess 

the exact tradeoffs taking place in such integration. 

It is possible that AM processes will improve up to the point at which certain components can 

be used “green”; that is, without post-processing. Figure 8 shows that distributed production 

becomes the optimal choice at much lower levels of total annual demand if no post-

processing is needed. It is also possible that the fixed cost associated with post-processing, 
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especially hot isostatic pressing, may be eliminated by outsourcing these processes to nearby 

machine shops. Green parts could be sent to these shops for hot isostatic pressing and 

returned to airline maintenance facilities either for further processing or for sale. 

 

Figure 8: Locations selected for manufacturing as total annual demand increases, 
assuming (top) full post-processing, and (bottom) no post-processing. Distributed 
manufacturing is attractive at a much lower total annual demand if no post-processing 
is needed. 

To probe the robustness of our results, we consider how changes in geometry might affect 

them. A change in geometry (e.g., component size) is likely to affect our results through a 

change in build times (Pradel et al., 2018). We compare the bracket we analyzed, and whose 

production characteristics are described in Laureijs et al (2017), to other aerospace 

components (Table 5). In addition to a number of brackets with dimensions similar to our 

example part, Huang et al. (2016) consider a seatbelt buckle, whose dimensions we then 

estimated. We also considered two aerospace components, (a hinge and a hook) whose 

dimensions were revealed to us in confidence by collaborators on another project. We then 
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estimated the build times of these components using a formula that relates machine settings 

and part dimensions to build time.5   

Table 5: Dimensions and build times for various parts. We note that the engine bracket 
we modeled has a relatively long build time, relative to the estimated build times of 
other components 

  X Y Z Build time 
  mm mm mm hours 
Seat buckle 50 70 20 3.6 
Bracket 170 89 60 19.2 
Hinge 450 20 3 0.6 
Hook 190 100 5 2.2 

 

We then ran a scenario in our PBCM and optimization models, where there was no post 

processing and where build time was assumed to be four times as long as in the base case (i.e. 

76 hours per part). This is an extreme test since a part large enough to take that long to 

manufacture would likely fill the build chamber of many metal AM machines and because 

such a long build time defeats the original goal of rapidly supplying parts in response to 

demand. We find that, with this longer build time, it is optimal to have multiple factories at a 

total annual volume of 3100 parts, compared to 3200 parts for the build time assumed in the 

baseline (i.e., 19 hours per part). This suggests that the optimal solution is insensitive to part 

geometry, and our results would likely apply to the types of parts described in Table 5. It also 

suggests that—if the need for post processing could be eliminated or reduced by a longer 

build time (e.g., by using lower power and lower speed)—both sides of that trade-off would 

favor distributed manufacturing. Table 5 also shows that the engine bracket we modeled has a 

relatively long build time and favors a distributed solution. This suggests that other 

components that might be good candidates for production via additive manufacturing 

                                                
5 We estimate build times using a heuristic formula given us by Luke Scime, a PhD student in Prof Jack Beuth’s 
lab in the Mechanical Engineering Department at Carnegie Mellon University. It is estimated as 
Build Time = (z-height / layer thickness) * [layer area/(hatch spacing * velocity) + layer spread speed] 
We assume that layer thickness is 20 microns, (hatch-spacing*velocity) is 1165mm2/second, and layer spread 
speed is 10seconds per layer. All other variables are derived from the dimensions shown in Table 5. 
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generally have shorter built times and the case for the distributed manufacturing for such 

components might be somewhat—but not substantially—weaker than for our canonical 

example. 

While the analysis in this paper is based on an airplane component, Section 5 outlines a series 

of sensitivity analyses that show how our results might be translated to other components and 

industries. Table 6 summarizes how these sensitivity analyses allow our results to be applied 

in other contexts. 

Table 6: Summary of how changes to different parameters in our case study would 
modify the results of the analysis 

Dimension of 
generalization 

Discussion about the effect on the results 

Different components While we run a process-based cost model that was originally developed for an 
engine bracket, we note that the principal way in which the geometry of the part is 
reflected in the model is through build time and the mass of material used. 
Changing the build time would change the number of AM machines needed, and 
the marginal cost of producing each component. However, at any one location, 
adding an AM machine might cost a few hundred thousand dollars, whereas 
adding a new production location and therefore a new HIP-ing machine might cost 
a few million. 
So long as hot isostatic pressing is needed, the total cost is dominated by the cost 
of the equipment needed for it; so, there are strong economies of scale, regardless 
of the size and nature of the component 

Material and material 
cost 

Materials are an important driver of marginal cost of production. However, the 
total cost—which determines the optimal supply chain configuration—is driven by 
the fixed costs of equipment. As such, a different material would not dramatically 
alter our conclusions. 

Stringency of quality 
requirements 
and regulatory stance 

Our results generalize to regulatory environments where no direct oversight of the 
manufacturing facility is needed by the regulator, and the same equipment can be 
shared across different applications  
We also demonstrate the consequences of changes in quality requirements: if parts 
can be used "green" (i.e., without HIP-ping), then the economics of distributed 
manufacturing are more attractive. We show that if HIP-ping were not needed, it 
would be easier to justify distributed manufacturing. 

Improvements in 
machine technology / 
cost-effectiveness 

We model potential improvements in machine performance (Scenario 2), and a 
substantial decrease of machine costs (Scenario 3). Our results suggest that 
performance improvements have a smaller effect than reduction in capital 
requirements, and that the solution of the problem is dominated by the costs of 
post-processing equipment, which are already mature and not expected to fall 
substantially. 

Motivation and 
context for 
distributed 
manufacturing 

Our paper studies the case of distributed manufacturing for aircraft repair, where 
the motivation for rapid repairs in scattered locations is obvious. However, other 
industries also recognize the benefits of distributed manufacturing. For example, 
an automobile model or family of models may stay in production for a few years 
but stay in service for decades and need to be serviced or repaired in a much more 
widely dispersed set of locations than aircraft need to be. One way of providing 
service is to accept the need to carry an enormous parts inventory. However, many 
auto firms now see the benefit of eliminating much of this inventory and relying 
instead on additive manufacturing. 
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Our work has important implications for policymakers. Currently, countries around the world 

are investing hundreds of millions of taxpayers’ dollars in the development of national 

capabilities in additive manufacturing, with the objective of bringing production closer to the 

customer and creating local jobs (European Commission, 2014). However, our results suggest 

that such regionalization may not occur in industries where volumes are low, and/or where 

products have stringent specifications. Therefore, governments should analyze the potential 

of MAM in those industrial sectors where they actually hold a comparative advantage or 

focus on non-critical consumer products which may indeed benefit from the emergence of 

low-cost machinery. 
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Appendices 

Appendix A: Selected airports  

Table 7 Airports considered in our analysis. Number of enplaned passengers from Bureau of 
Transportation Statistics 

Airport IATA 3-
Letter Code 

2016 Total Enplaned 
Passengers 

Share of 
Demand 

Hartsfield-Jackson Atlanta 
International ATL 46,738,828 7.31% 

Los Angeles International LAX 36,739,546 5.75% 
Chicago O'Hare International ORD 34,807,000 5.44% 
Dallas/Fort Worth International DFW 28,892,344 4.52% 
John F. Kennedy International JFK 26,763,037 4.19% 
Denver International DEN 26,282,242 4.11% 
San Francisco International SFO 23,689,957 3.71% 
McCarran International LAS 21,245,433 3.32% 
Seattle/Tacoma International SEA 20,180,429 3.16% 
Charlotte Douglas International CLT 20,003,812 3.13% 
Phoenix Sky Harbor International PHX 19,558,474 3.06% 
Miami International MIA 19,056,337 2.98% 
Orlando International MCO 18,641,627 2.92% 
George Bush Intercontinental/Houston IAH 18,402,879 2.88% 
Newark Liberty International EWR 18,189,705 2.84% 
Minneapolis-St Paul International MSP 16,827,248 2.63% 
Logan International BOS 16,384,706 2.56% 
Detroit Metro Wayne County DTW 15,565,642 2.43% 
LaGuardia LGA 13,559,959 2.12% 
Philadelphia International PHL 13,534,364 2.12% 
Fort Lauderdale-Hollywood 
International FLL 13,002,486 2.03% 

Baltimore/Washington International 
Thurgood Marshall BWI 11,543,328 1.81% 

Ronald Reagan Washington National DCA 10,571,032 1.65% 
Chicago Midway International MDW 10,432,344 1.63% 
Salt Lake City International SLC 10,285,694 1.61% 
Washington Dulles International IAD 9,749,989 1.52% 
San Diego International SAN 9,639,689 1.51% 
Tampa International TPA 8,522,772 1.33% 
Portland International PDX 8,343,693 1.30% 
Dallas Love Field DAL 7,223,271 1.13% 
Lambert-St. Louis International STL 6,419,698 1.00% 
Nashville International BNA 6,000,123 0.94% 
William P Hobby HOU 5,929,329 0.93% 
Austin - Bergstrom International AUS 5,712,783 0.89% 
Metropolitan Oakland International OAK 5,560,309 0.87% 
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Louis Armstrong New Orleans 
International MSY 5,219,411 0.82% 

Kansas City International MCI 5,086,194 0.80% 
Raleigh-Durham International RDU 4,975,665 0.78% 
Norman Y. Mineta San Jose 
International SJC 4,918,935 0.77% 

John Wayne Airport-Orange County SNA 4,843,051 0.76% 
Sacramento International SMF 4,631,116 0.72% 
Indianapolis International IND 3,938,248 0.62% 
San Antonio International SAT 3,908,897 0.61% 
Southwest Florida International RSW 3,890,676 0.61% 
Cleveland-Hopkins International CLE 3,800,535 0.59% 
Pittsburgh International PIT 3,707,037 0.58% 
Port Columbus International CMH 3,320,485 0.52% 
General Mitchell International MKE 3,144,797 0.49% 

 

Appendix B: Input data used in the PBCM 

 

Table 8 Data used to obtain a correlation between the House Price Index and land prices. 

State City Housing Price Index Median list price from Zillow 
[$/sq ft] 

Alabama Montgomery 244.45 67 
Arizona Phoenix 567.53 153 
Arkansas Little Rock 416.31 100 
California Sacramento 800.97 206 
Colorado Denver 1083.75 346 
Connecticut Hartford 494.76 95 
Delaware Dover 266.61 106 
Florida Tallahassee 437.35 119 
Georgia Atlanta 551.35 229 
Idaho Boise 562.37 158 
Indiana Indianapolis 395.29 84 
Iowa Des Moines 422.99 115 
Kansas Topeka 327.85 80 
Kentucky Frankfort 222.65 103 
Louisiana Baton Rouge 425.52 130 
Maine Augusta 212.51 93 
Maryland Annapolis 687.43 261 
Massachusetts Boston 1039.82 650 
Minnesota Saint Paul 524.98 181 
Mississippi Jackson 291.84 72 
Missouri Jefferson City 264.4 96 
Montana Helena 520.52 153 



39 
 

Nebraska Lincoln 436.59 150 
New Hampshire Concord 335.78 145 
New Jersey Trenton 625.11 47 
New Mexico Santa Fe 683.82 234 
New York Albany 477.32 114 
North Carolina Raleigh 521.72 144 
Ohio Columbus 432.79 104 
Oklahoma Oklahoma City 439.06 100 
Oregon Salem 651.16 155 
Pennsylvania Harrisburg 407.26 44 
Rhode Island Providence 620.13 165 
South Carolina Columbia 385.14 84 
Tennessee Nashville 686.04 184 
Texas Austin 815.76 216 
Utah Salt Lake City 698.96 268 
Washington Olympia 652.52 163 
Wisconsin Madison 584.15 179 
Wyoming Cheyenne 572.68 160 
Quadratic estimator: Land price = 0.0006x2 - 0.266x + 122.13 
R² = 0.7166 
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Table 9 Input prices used in the PBCM 

 Inputs 
Airport(s) Electricity Price  

[c$/kWh] 
Wages  

[$/h] 
 Land Price  

[$/m2]  
PHX 6.26 35.13                         1,770  
SFO 12.17 66.55                       15,170  
OAK 12.17 45.13                       11,320  
SJC 12.17 92.95                       17,490  
SMF 12.17 32.10                         3,160  
LAX 12.17 32.18                         7,720  
SNA 12.17 34.95                         7,470  
SAN 12.17 39.45                         5,740  
DEN 7.4 26.93                         5,800  
TPA 8.22 26.80                         1,610  
RSW 8.22 23.33                         1,300  
MCO 8.22 32.65                         1,780  
MIA 8.22 24.43                         2,450  
FLL 8.22 26.30                         1,320  
ATL 5.87 31.15                         1,000  
ORD, MDW 6.67 31.25                         1,480  
IND 6.86 37.25                         1,190  
MSY 5.41 32.18                         1,990  
BWI 8.53 52.35                         2,400  
BOS 13.54 39.38                         5,320  
DTW 7.02 34.25                         1,190  
MSP 7.02 35.60                         1,930  
MCI 6.44 25.80                         1,160  
STL 6.44 25.88                         1,420  
LAS 6.75 25.95                         1,380  
EWR 10.64 28.20                         3,630  
JFK, LGA 6.31 24.03                         5,040  
CLT 6.51 33.13                         1,650  
RDU 6.51 54.23                         1,580  
CMH 7.02 28.30                         1,290  
CLE 7.02 29.28                         1,070  
PDX 5.97 26.38                         5,950  
PIT 7.2 30.60                         1,350  
PHL 7.2 38.75                         1,490  
BNA 6.17 28.35                         2,390  
SAT 5.59 27.50                         1,320  
AUS 5.59 45.48                         3,280  
DFW 5.59 36.40                         1,330  
DAL 5.59 36.80                         1,460  
IAH,HOU 5.59 29.10                         1,410  
SLC 6.17 29.90                         2,470  
IAD 6.95 45.83                         1,950  



41 
 

DCA 6.95 28.68                         3,240  
SEA 4.35 40.38                         7,400  
MKE 7.58 31.70                         1,240  
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Appendix C: Output of the PBCM, used as an input for the optimization algorithm 

Table 10 Parameters obtained after the linearization of the production cost curves 

 LinearizedCostCurve 
ScenarioA 

LinearizedCostCurve 
ScenarioB 

LinearizedCostCurve 
ScenarioC 

Airport(s) Constant[$] Slope[$/unit] Constant[$] Slope[
$/unit] 

Constant[
$] 

Slope[$/
unit] 

PHX 2,080,472 972 2,168,635 308 2,057,658 295 
SFO 2,791,424 1,075 2,909,221 330 2,798,244 317 

OAK 2,414,361 1,043 2,517,753 323 2,406,777 311 
SJC 3,206,847 1,104 3,339,727 337 3,228,750 324 

SMF 2,066,740 995 2,154,962 317 2,043,986 304 
LAX 2,160,432 1,017 2,253,709 319 2,142,732 306 
SNA 2,194,005 1,018 2,288,321 319 2,177,344 307 
SAN 2,221,557 1,013 2,316,100 320 2,205,124 307 
DEN 2,048,056 989 2,136,758 309 2,025,781 297 
TPA 1,961,197 972 2,045,223 309 1,934,246 296 

RSW 1,906,410 968 1,988,445 308 1,877,469 295 
MCO 2,046,095 977 2,133,076 310 2,022,099 298 
MIA 1,945,025 974 2,028,842 309 1,917,866 296 
FLL 1,948,342 970 2,031,812 309 1,920,835 296 
ATL 2,009,346 965 2,094,776 306 1,983,799 293 

ORD,MDW 2,020,472 969 2,106,470 308 1,995,494 295 
IND 2,098,361 973 2,186,892 309 2,075,915 296 

MSY 2,043,871 968 2,130,887 306 2,019,910 293 
BWI 2,333,518 994 2,430,529 316 2,319,553 303 
BOS 2,212,074 1,015 2,306,115 322 2,195,138 309 

DTW 2,056,535 971 2,143,641 309 2,032,665 296 
MSP 2,090,409 976 2,178,971 309 2,067,994 297 
MCI 1,938,018 964 2,021,083 306 1,910,107 293 
STL 1,944,317 965 2,027,703 306 1,916,726 293 
LAS 1,944,645 966 2,028,025 306 1,917,048 294 

EWR 2,021,890 990 2,108,792 314 1,997,815 301 
JFK,LGA 1,992,289 980 2,078,794 307 1,967,817 294 

CLT 2,050,094 971 2,137,172 308 2,026,196 295 
RDU 2,342,967 985 2,439,979 313 2,329,003 300 
CMH 1,975,436 968 2,059,822 307 1,948,845 295 
CLE 1,984,714 967 2,069,328 308 1,958,351 295 
PDX 2,043,508 985 2,132,129 307 2,021,153 294 

PIT 2,008,819 970 2,094,365 308 1,983,388 295 
PHL 2,125,277 976 2,214,841 310 2,103,865 297 
BNA 1,998,598 970 2,084,231 306 1,973,254 294 
SAT 1,965,046 963 2,049,104 305 1,938,128 292 
AUS 2,255,466 984 2,350,205 310 2,239,229 297 
DFW 2,089,330 969 2,177,619 307 2,066,643 294 
DAL 2,097,527 970 2,186,149 307 2,075,172 294 
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IAH,HOU 1,989,215 964 2,074,133 305 1,963,157 293 
SLC 2,021,814 972 2,108,269 307 1,997,292 294 
IAD 2,233,420 982 2,326,856 312 2,215,880 299 

DCA 2,020,356 977 2,107,069 308 1,996,093 295 
SEA 2,268,243 996 2,365,116 309 2,254,140 296 

MKE 2,022,043 972 2,107,993 309 1,997,017 296 
 


