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Abstract

Nowadays, information systems are widely used in various organizations
to support the execution of their business processes. Therefore, the amount of
data being stored about process executions is rapidly growing. Today’s main
innovations are intelligently exploiting the data and turning data into real value.
Process mining appears to leverage execution data to analyze the business pro-
cesses executed on information systems. Existing process mining techniques
make a fundamental assumption about processes. Process models and event
logs assume the presence of a well-defined case notion. This implies that each
event refers to a case and that the model describes the life-cycle of cases. This
assumption is consistent with case-centric information systems, e.g., Workflow
Management (WFM) systems. However, most information systems one encoun-
ters in enterprises nowadays are artifact-centric (or data-centric), e.g., Enterprise
Resource Planning (ERP) systems, which do not assume a case notion in their
business processes. Such differences lead to problems when applying existing
process mining techniques, e.g., it is difficult to identify the case notion for the
whole process, and the many-to-many relations cannot be well described. In or-
der to solve these problems, we propose a series of process mining techniques in
this thesis, such as a novel log format named eXtensible Object-Centric (XOC) to
organize the data generated by artifact-centric information systems and a novel
modeling language which combines data/object modeling languages (ER, UML,
or ORM) and declarative languages (Declare). Besides, we propose approaches
to automatically discover OCBC models from XOC logs, to check conformance
and to analyze the performance. In summary, this thesis proposes new process
mining techniques to analyze the data from artifact-centric information systems
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and the results derived by these techniques provide insights to the process own-
ers. For instance, the discovered process models present behavioral and data
perspectives to reveal the real execution of business processes. By checking
conformance, the deviating behaviors are detected. Using performance analysis
techniques, the bottlenecks are shown and highlighted in the models.
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Chapter 1
Introduction

Nowadays, information systems are widely used in various organizations to
support the execution of their business processes. Therefore, the amount of
data being stored about process executions is rapidly growing. The term “Big
Data”, which is often used to refer to the incredible growth of data, has become
a hot topic in industry and academia. Today’s main innovations are intelligently
exploiting the data and turning data into real value, rather than easily collecting
more data. In other words, data should be analyzed to discover insights for
improving existing products, processes and services.

Process mining appears to leverage execution data to analyze the business
processes executed on information systems, as shown in Figure 1.1. It provides
methods, techniques, and tools to support the design, enactment, management,
and analysis of operational business processes in enterprises. For instance, it can
discover models to show real behavior, check conformance to diagnose deviations
and analyze performance to detect bottlenecks.

Conventional process modeling and process mining techniques assume a
single case notion. Each case corresponds to an instance of the process. As a
result, each recorded event refers to precisely one case. Consequently, cases can
be viewed as a sequence of events (traces). Moreover, a process model describes
the process from the viewpoint of this case notion, i.e., it describes the life-cycle
of a case in isolation, as shown in Figure 1.2. However, the majority of processes
and systems are not that simple. Enterprise Resource Planning (ERP) systems
and Customer Relationship Management (CRM) systems are typical information
systems one encounters in enterprises nowadays, which are artifact-centric (or



2 Introduction

data-centric) and do not assume a case notion in their business processes. Such
differences lead to problems when applying existing process mining techniques
to these systems. Therefore, in this thesis, we propose a series of process mining
techniques, such as a novel log format and modeling language, to analyze data
from artifact-centric information systems.

This chapter generally shows the story-line of this thesis. Section 1.1 briefly
introduces the conventional process mining techniques. Then we clarify the
target application fields, i.e., artifact-centric information systems, and discuss
their differences from case-centric information systems in Section 1.2. Based on
the explained difference, Section 1.3 lists the problems faced by conventional
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Figure 1.1: Process mining techniques are used to analyze data generated by artifact-
centric information systems and discover insights to reflect the “health” condi-
tion of systems.
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Figure 1.2: Conventional process mining techniques assume a single case notion. They
project the 3D data onto a 2D view (i.e., flattening the 3D data) thus capturing
only one perspective from the viewpoint of this case notion.

process mining techniques. Section 1.4 provides an overview of the approaches
proposed in this thesis and explains how they contribute to solving the existing
problems. Section 1.5 presents the structure of the thesis.

1.1 Process Mining

Understanding, analyzing, and ultimately improving business processes based
on execution data is a goal of enterprises today. Process mining is a relatively
young research discipline that bridges the gap between machine learning and
data mining on the one hand and process modeling and analysis on the other
hand [136]. The aim of process mining is to automatically provide an accurate
view on how the process is executed, by using historical facts as recorded by the
information system.

Figure 1.3 shows an overview of the research area covered by process mining.
The starting point of process mining is the observed behavior of process execu-
tions, stored in so-called event logs. Based on event logs, various process mining
techniques can be employed to reveal insights. In general, these techniques can
be organized into three categories: discovery, conformance and performance
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analysis, and enhancement. The first type of process mining techniques is pro-
cess discovery, which automatically constructs a process model to describe the
real behavior using event logs. Next to process discovery, performance and
conformance analysis can be implemented to detect deviations and measure
performance. Enhancement attempts to combine the results of conformance
and performance analysis with the process model, i.e., to project the measured
results back onto the model at the right place. The insights derived by process
mining techniques, such as discovered (and enhanced) process models, detected
deviations and derived performance measurements, reflect the “health” condition
of the business processes supported by information systems (indicated by the
dotted lines in Figure 1.3). Based on the insights, proper decisions can be made
to improve the business processes.

1 process 
discovery

3 enhancement

2 conformance and 
performance analysis

 business processes supported 
by information systems

record

event log process model 
(control-flow)

deviations and 
measurements

enhanced model (control-flow,resource,etc.)

Figure 1.3: Three main types of process mining: process discovery, conformance and
performance analysis, and enhancement.

Event logs. Process mining methods typically assume that execution data
are stored in event logs. An event log consists of traces, where each trace is
a sequence of events and represents one end-to-end execution of a business
process. In a trace, each event corresponds to an operation executed in the
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process and relates to a particular process step, called an activity. Table 1.1
shows an excerpt of an example event log, containing events generated in the
order-to-cash (OTC) business process of an ERP system. Each row in the table
represents one event and each column represents an attribute of this event.
For instance, the first line represents one “create order” event, referred to by
“35654423” (i.e., event id), happening at “2017-08-11 10:33:37” and executed
by “Pete”. Table 1.1 shows two traces. For instance, the second trace with case
id “2” starts with a “create order” event, followed by a “create shipment” event
and a “create payment” event.

Case id Event id
Properties

Timestamp Activity Resource ...

1 35654423 2017-08-11 10:33:37 create order Pete ...
35654424 2017-08-14 11:36:35 create shipment Mike ...
35654425 2017-08-15 09:13:27 create invoice Sue ...
35654426 2017-08-16 14:15:31 create shipment Mike ...
35654427 2017-08-17 17:38:36 create invoice Sue ...
35654428 2017-08-21 16:26:13 create payment Pete ...

2 35654483 2017-08-13 16:28:15 create order Pete ...
35654485 2017-08-19 13:22:04 create shipment Mike ...
35654488 2017-08-26 14:53:49 create payment Sara ...

... ... ... ... ... ...

Table 1.1: A segment of an XES log.

Discovery. An ultimate goal in the field of process mining is to automatically
discover an accurate and understandable process model based solely on the data
recorded in an event log. Process models are used to describe the behavior of pro-
cesses of an organization for a wide range of objectives such as: communication
among stakeholders, process performance analysis and process improvement.
Such a process model is typically expressed in a formalism such as a Petri net or
a BPMN diagram. Figure 1.4 shows a discovered Petri net based on an event log
recording events from the OTC business process of an ERP system.

Conformance and performance analysis. Taking a process model and an
event log of the same process as input, conformance checking provides diagnostic
information and quantification of discrepancies between the observed behavior
in the log and the behavior allowed by the model discovered or manually created
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Figure 1.4: A discovered Petri net to describe the OTC business process.
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Figure 1.5: Conformance and performance analysis based on the discovered model.

(e.g., a reference model). When the event log and process model do not agree,
these discrepancies might indicate undesirable deviations, fraud, inefficiencies,
or other issues. For instance, Figure 1.5 shows that activity “create invoice” is
violated since there is no corresponding event in case 2 in Table 1.1. Through
conformance checking, events in the log are coupled to elements in the model.
Based on this, performance analysis measures the performance of a process in
terms of times and frequencies. For instance, after replaying the log on the
model, durations, service times, waiting times, resource usage, and frequent
parts can be derived and evaluated.
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Figure 1.6: Enhancement of the discovered model.

Enhancement. Enhancement techniques take both an event log and a process
model as input, to extend or improve the model with information extracted from
the event log. There are various enhancements one can perform. One type of
enhancement is repair, i.e., modifying the model based on conformance checking
results in order to better reflect the real process execution. For example, if two
activities are modeled sequentially but in reality can happen in any order, then
the model may be corrected to reflect this. Another type of enhancement is
extension, i.e., adding new perspectives to the process model or extending the
model with information based on the process context, such as frequencies, times,
resources, decision rules and performance indicators. For instance, the resource
perspective can be added to the model to indicate who executes a particular
activity, e.g., Sue executes activity “create invoice”, as shown in Figure 1.6.

1.2 Artifact-Centric Information Systems

Artifact-centric information systems are widely employed in enterprises nowa-
days, such as Enterprise Resource Planning (ERP) systems and Customer Rela-
tionship Management (CRM) systems. Therefore, in this thesis, we choose the
artifact-centric information systems as the target application domain for process
mining techniques introduced in Section 1.1.

In this section, we first position artifact-centric information systems in the
spectrum of process-aware information systems. Then some typical examples
of artifact-centric information systems are introduced. Through a comparison
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with case-centric information systems, the features of artifact-centric information
systems are present.

1.2.1 Positioning Artifact-Centric Information Systems

Business processes are central to the operations of any enterprise [23,146]. To
support business processes, an information system needs to be aware of these
processes, which is called Process-Aware Information System (PAIS) [40,133].

Some examples of PAISs are Business Process Management (BPM) systems,
WFM (Workflow Management) systems, ERP systems (SAP, Oracle, etc.), CRM
systems, rule-based systems, call center software, high-end middleware (Web-
Sphere), etc. What these systems have in common is that there exists a process
notion (not just isolated activities) present in the software (e.g., the completion
of one activity triggers the start of another activity) and that the information sys-
tem is aware of the processes it supports (e.g., collecting information about flow
times). This is very different from systems such as a e-mail program, database
management system (DBMS), text editor, or spreadsheet program. The latter
example systems can only be used to execute steps in some business process, but
are not “aware” of the processes they are used in [136].

A particular class of PAISs is driven by explicit process models, i.e., the notion
of a process model is foundational for these systems. A process model assumes
a well-defined case notation for the business process and aims to describes
the life-cycle of cases (i.e., process instances). Since these systems assume a
case notion, we classify them as case-centric information systems in this thesis.
Examples of case-centric information systems are WFM and BPM systems. WFM
primarily focuses on the automation of business processes [69,149], whereas
BPM has a broader scope: from process automation and process analysis to
process management and the organization of work [39,161].

The assumption of a single case notion in business processes is too strict
for many enterprises, which limits the usage of WFM/BPM systems. In the last
decade, ERP systems have derived stronger acceptance and deployment around
the world than WFM/BPM systems. According to Aberdeen Group’s estimates,
the spending in the BPM software sector was $2.26 billion in 2001 [22]. In
comparison, ERP systems revenue was $21.5 billion in 2000, according to the
research company International Data Corp (IDC) [77]. Besides, as predicted, the
dominant position of ERP systems will remain for the next decade.

In addition to ERP systems, there exist some similar information systems,
e.g., Customer Relationship Management (CRM) systems. These systems do not
assume a case notion for the whole business process. In this thesis, we call these
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Figure 1.7: The architecture of artifact-centric information systems.

systems artifact-centric information systems, which are another class of PAISs, as
shown in Figure 1.7 and defined as follows:

a software system that consists of multiple artifacts (or modules), each
providing a particular type of functions to manage and execute oper-
ational processes involving people, applications, and/or information
sources.

Based on the above discussion, Figure 1.8 presents the position of artifact-
centric information systems in the scope of information systems. In general,
process mining can be applied to all PAISs. Currently, most use cases for process
mining (existing application and future applications) focus on artifact-centric in-
formation systems and do not involve case-centric information systems. However,
existing process mining techniques make a fundamental assumption of a case
notion, i.e., they analyze the data from artifact-centric systems in a case-centric
manner. As a result, this mismatch may lead to some problems, that are discussed
in Section 1.3.
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Figure 1.8: Positioning artifact-centric information systems.

1.2.2 Typical Examples of Artifact-Centric Information Sys-
tems

Artifact-centric information systems have a big size of market share. Some famous
examples are offered as commercial packages from various software vendors
such as Microsoft,1 Oracle,2 Salesforce,3 and SAP.4 Next, we give more details of
artifact-centric information systems by introducing four typical examples [39].

• Enterprise Resource Planning (ERP) systems. These systems encompass
modules supporting business areas such as planning, manufacturing, sales,
accounting, financial, human resource management, project management,
inventory management and transportation [120]. In this way, an integrated
and continuously updated view of core business processes is provided using

1https://dynamics.microsoft.com/.
2https://www.oracle.com/applications/erp.
3https://www.salesforce.com.
4https://www.sap.com/products/erp.html.
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common databases maintained by a database management system. The
two most important processes that most ERP systems fully cover are the
procure-to-pay and the order-to-cash processes.

• Customer Relationship Management (CRM) systems. These systems man-
age a company’s interaction with current and potential customers. They
document the data from a range of different communication channels,
including the company’s website, telephone, email, live chat, marketing
materials and more recently, social media. By analyzing such data, the
company learns more about their target audiences and how to best cater
to their needs, ultimately driving sales growth. In addition to individual
customer relations, on a higher (aggregated) level, CRM systems also sup-
port sales and marketing activities related to products, pricing, distribution,
and campaigning. Important processes supported by CRM systems are
campaign-to-leads and lead-to-order.

• Supply Chain Management (SCM) systems. These systems enable enterprises
to source the raw materials or components needed to create a product
or service and deliver that product or service to customers. In other
words, they focus on the support of logistics operations that integrate with
suppliers and customers. On an operational level, SCM systems support
the management of transportation, inbound and outbound warehousing,
and inventory, as well as corresponding planning and calculation processes.
On a technical level, SCM systems support electronic data interchange with
suppliers and customers, as well as various tracking technologies such as
Radio-Frequency Identification (RFID) and barcode scanning. Key supply
chain processes are order-to-delivery and return-to-refund.

• Product Lifecycle Management (PLM) systems. The product lifecycle is the
series of stages that every product passes through from conception to
retirement.It can be broken into: (i) the conception and design phase, in
which the product is specified, designed, and validated; (ii) the realization
phase, in which the manufacturing system is planned and actual products
are built, assembled, and tested; and (iii) the service phase, in which
products are sold and delivered, used, maintained, and eventually disposed
of (i.e., having no new investment in new releases). PLM systems support
the various processes of the lifecycle of a product from an engineering
perspective. Important processes supported by PLM systems are idea-
to-launch and different types of order processes including built-to-order,
engineered-to-order, or assembled-to-order.

The systems explained above are the most widely employed artifact-centric
information systems in practice. Artifact-centric information systems are domain-
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specific process-aware information systems [39]. In other words, each type
provides some fixed functions to cater to a specific domain, e.g., CRM systems
focus on managing customer relations. Note that functions provided by different
types can be overlapped. For instance, ERP systems may have functions provided
by CRM, SCM and PLM, which are integrated into ERP systems. In this case,
the integrated systems can be considered as a specific module (category) of ERP
systems, e.g., ERP CRM modules.

1.2.3 Features of Artifact-Centric Information Systems

Artifact-centric information systems are different from case-centric information
systems and have their own features. In this part, we first give more details
about the modules (artifacts) comprising an artifact-centric information system
and then discuss its features through a comparison with case-centric information
systems. Since ERP is dominating in artifact-centric information systems (and
sometimes it can also refer to other artifact-centric information systems), we
use ERP to represent the artifact-centric information systems for the comparison.
Similarly, WFM is used to represent the case-centric information systems.

ERP consists of modules which provide various functions. Unlike traditional
in-house-designed company-specific systems, ERP systems integrate standard
business process modules (like “add-ons”) and support tailoring and adding
modules based on the requirements of customers, as shown in Figure 1.9(b).
These modules include manufacturing, accounting, HR, inventory management,
etc. Besides, ERP allows free flow of information between modules and supports
tracking data (transactions) across these modules. In summary, the architecture
of ERP systems facilitates transparent integration of modules, and provides flow
of information between all functions within the enterprise in a customizable and
consistently visible manner.

Each module has a hard-coded implicit process (life-cycle). The hard-coded
process means that (i) the functions (activities) provided by the module are
fixed, i.e., users cannot define new functions, and (ii) the ordering of activities
in the process is fixed, e.g., activity “validate order” can only happen after
activity “create order” (i.e., an order can only be validated after it is created).
In practice, one can customize the modules based on their needs. Additionally,
each module provides parameters for users to configure. After module selection
and parameter configuration, the business process is implicitly embedded in the
selected modules and the parameter tables [22].

Table 1.2 lists some typical modules in ERP systems [19]. For instance, the
“Order Management” category contains two modules “Order Processing” and
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“Financial Processing”. Actually, the category, e.g., “Order Management”, can
be considered as a module on a higher level. To achieve better “fit” between
the prefabricated modules and the needs of the organization, ERP systems must
be configured by selecting proper modules and setting various parameters. The
more parameters an ERP system has, the more flexibility users have in configuring
the business process.

Application Category Typical Modules

Manufacturing Management

• Material Requirements Planning
• Shop Floor Control
• Master Production Scheduling
• Bill of Materials

Order Management
• Order Processing
• Financial Processing

Project Management
• Document Control
• Project Accounting
• Gantt Charts/Project Tracking

Accounting

• Accounts Payable
• Accounts Receivable
• General Ledger
• Payroll

Table 1.2: Typical modules in ERP systems.

After introducing ERP systems, we compare them with classical WFM systems,
as shown in Figure 1.9. Indicated by Figure 1.9(a), a workflow model is designed
in a WFM system to describe the business process. Then workflow instances
are created to carry out the real transactions, that are recorded in the systems.
In contrast, ERP systems do not have an explicit workflow model and support
to customize business processes by simply selecting modules and configuring
parameters. Transactions of different modules are recorded in a central database.

Through the introduction of ERP systems and the comparison with WFM
systems, the features of ERP systems are summarized as follows:

• Artifact-centric. Different from WFM systems, which are case-centric and
focus on the control-flow, ERP systems are data-centric and focus on inte-
grating internal and external information across business functions. We can
use the analogy with programming languages to illustrate this difference.
WFM systems are like procedure-oriented programming languages which
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focus on the procedure of organizing codes to realize a goal. ERP systems
are like the object-oriented programming languages. A module of an ERP
system has functions and parameters just like a class that has methods
and parameters, and the system focuses on how to integrate the methods
provided by each class to realize a goal.

• Complex interactions. In a WFM system, the workflow model can be
executed for any number of workflow instances. Note that although many
instances can be handled in parallel, from the viewpoint of the WFM system
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Figure 1.9: WFM systems versus ERP systems.
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these instances are logically independent. In contrast, there exist complex
interactions, such as one-to-many and many-to-many relations between
instances of different artifacts. An ERP system provides a central server to
store transactions of different modules, such that different modules can
share data and interact with each other. It is possible that one instance of
an artifact corresponds to multiple instances of another artifact and vice
versa.

• Flexible constraints. In an ERP system, there is no explicit workflow model
to specify the whole business process. Often the constraints in the implicit
process are very loose (especially between different modules). In practice,
although there exists a recommended business process, one can violate the
process (if it is not hard-coded) when it is necessary. For instance, often an
invoice is sent to the customer after its corresponding order. However, in
real ERP systems such as Dolibarr, the invoice can be created anytime even
without a corresponding order.

Next, we give a concrete example to explain the features of artifact-centric
information systems. Figure 1.10 presents some events (sorted by time) of
activities involved in the order-to-cash (OTC) scenario in an ERP system Dolibarr.
These activities correspond to functions offered by different artifacts consisting
of the ERP system. More precisely, activity “create_order” is a function provided
by the “Commercial” artifact, which is used to create orders. Activities “create_-
invoice” and “create_payment” are functions of the “Financial” artifact. Activity
“create_shipment” is from the “Product” artifact.

In Figure 1.10, events of different activities are represented by squares in
different colors, e.g., the red square “create_order_1” (the first square on the
left) means a “create order” event which happened at 10:33:37 on August
11th, 2017. Edges between squares connect related events. For instance, the
edge connecting events “create_order_1” and “create_shipment_1” means that
“create_shipment_1” shipped goods ordered by “create_order_1”.

The complex relations between artifacts can be reflected by events of activi-
ties corresponding to these artifacts. For instance, there exists a many-to-many
relation between activities “create order” and “create invoice”. The “create order”
event “create_order_1” corresponds to two “create invoice” events “create_in-
voice_1” and “create_invoice_2”, and the “create invoice” event “create_invoice_-
2” is related to two “create order” events “create_order_1” and “create_order_2”.

Note that conventional case-centric process mining approaches do not work
properly on the event data shown in Figure 1.10. The XES log format can be
considered as a process mining approach to organize events for further analysis.
Here, we use it as an example to illustrate the problems. Figure 1.11 presents



16 Introduction

time

create_order_1
(2017-08-11 10:33:37)

create_order_2
(2017-08-13 16:28:15)

create_shipment_1
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Figure 1.10: Events generated by artifact-centric information systems with one-to-many
and many-to-many relations.

the XES log (with two cases o1 and o2), generated by flattening and splitting
events in Figure 1.10, based on a straightjacket case notion, i.e., “order”. Due to
one-to-many and many-to-many relations, the generation of the XES log suffers
two well-known problems: data divergence and data convergence.

Data convergence corresponds to the situation that one event refers to mul-
tiple cases. For instance, the event “create_invoice_2” is related to two orders
created by “create_order_1” and “create_order_2”. Considering “order” as the
case notion, “create_invoice_2” is duplicated and split into two cases o1 and o2.
The data convergence harms the log quality by leading to wrong frequencies
of events because of event duplication. Data divergence means that a case
is referred to by multiple events of the same activity. For instance, there are
two events (“create_invoice_2” and“create_invoice_3”) of the “create invoice”
activity and two events (“create_payment_1” and “create_payment_2”) of the
“create payment” activity in the case o2. Due to the multiple instances of the
same activity, the correspondences between different instances are misleading.
For instance, in the case o2 it is not clear if “create_payment_2” is related to
“create_invoice_2”, as it is possible that (i) “create_payment_2” only pays for
“create_invoice_3” or (ii) “create_payment_2” also pays for a part of “create_in-
voice_2” if “create_payment_1” does not pay for the whole “create_invoice_3”.

This section illustrates the features of artifact-centric information systems.
Based on a concrete example of data generated by such systems, it is revealed
that existing process mining techniques may suffer convergence and divergence
problems when dealing with these data. In next section, we will give more
details about the possible problems.
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Figure 1.11: The XES log generated by flattening and splitting events in Figure 1.10
by choosing “order” as the case notion, which confronts convergence and
divergence problems.

1.3 Challenges Encountered when Applying Process
Mining to Artifact-Centric Information Systems

Process mining contains a set of technologies, which can analyze the data
of PAISs from different angles. Existing process mining techniques make the
fundamental assumption that process models and event logs are centered around
a single case notion. However, as explained in Section 1.2.3, artifact-centric
information systems such as ERP systems do not assume case notions in their
business processes. Therefore, if we apply existing process mining techniques on
data generated by these systems, they suffer the following problems:

1. It is difficult (or impossible) to identify the case notion for the whole process.
Because of the artifact-centric nature of the data and processes, process
instances are scattered over different departments in enterprises. The case
notion varies in different departments. For instance, in the eyes of the
“sales” department, the case notion is “order”, whereas in the “delivery”
department, the case notion is “shipment”. Therefore, a global case notion
for the whole process is missing.

2. It leads to convergence and divergence problems. There often exist one-to-
many and many-to-many relations in the data generated by artifact-centric
systems. If we straightjacket such data into XES logs (cf. Table 1.1), the
original data with one-to-many and many-to-many relations is flattened as
separate traces, in which one event cannot be referred to by multiple cases.
This forced transformation compresses the data and leads to problems such
as convergence and divergence (e.g., events are duplicated and multiple
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instances of the same activity cannot be distinguished in one trace).

3. It decreases the data quality. An XES log consists of separate cases, which
are recorded in isolation. Therefore, the interactions between events
over different cases are missing. Besides, the XES format focuses on the
behavioral perspective with considering other information as attributes
attached to events. This imbalance weakens the data perspective of the
original data.

4. It is difficult to model interactions between process instances. Existing process
modeling languages consider process instances in isolation. Concepts like
lanes, pools, and message flows in conventional languages like BPMN aim
to address this. However, within each (sub)process a single instance is
modeled in isolation.

5. It is difficult to model the data-perspective and control-flow perspective in a
unified and integrated manner. Data objects can be modeled, but the more
powerful constructs present in Entity Relationship (ER) models and UML
class models, which can easily deal with many-to-many and one-to-many
relationships, cannot be expressed well in process models. For example,
cardinality constraints in the data model must influence behavior, but this
is not reflected at all in today’s process models.

6. It is difficult to detect deviations related to the data perspective. Existing
conformance checking techniques mainly detect the deviations on the
behavioral perspective. The violated constraints on the data perspective
are often ignored. Besides, some deviating behavior keep undetected using
existing approaches, since they can only be detected when taking into
consideration the data perspective.

7. Performance analysis is imprecise. Existing performance analysis usually
take XES logs as input. As mentioned above, the extracted XES logs from
data generated by artifact-centric information systems often suffer con-
vergence and divergence problems, which lead to imprecise performance
analysis.

The above problems were not addressed by existing process mining tech-
niques. This limits their usage on artifact-centric information systems. Therefore,
we propose new process mining techniques to solve these problems.
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1.4 Thesis Approach

In this thesis, we apply process mining techniques to the data generated by
artifact-centric information systems. Since the existing techniques have limi-
tations to deal with such data, we propose a series of novel process mining
techniques to solve the problems discussed in Section 1.3.

Figure 1.12 shows the overall framework proposed in this thesis [86]. In
general, the spectrum of our approaches covers all types of conventional process
mining research, i.e., extracting event logs from execution data, discovering
models from event logs, and checking conformance and analyzing performance
based on logs and models. Our major contributions include a novel log format
(with respect to XES/MXML log format) to organize data, a novel modeling
language (with respect to Petri net, BPMN, etc.) to describe business processes,
and related approaches such as model discovery, conformance checking and
performance analysis. Based on the contributions, insights are provided to
the stakeholders of business processes by analyzing data from artifact-centric
information systems.

eXtensible object-centric event log. We propose a novel log format named
eXtensible Object-Centric (XOC) to organize the data generated by artifact-centric
information systems, as shown in Figure 1.13. The main feature of the XOC
log format is that the requirement of a single case notion is removed, since
artifact-centric information systems do not have a clear case notion for the whole

various business processes

XOC logs
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OCBC modelsartifact-centric information systems
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supports/
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measurements

procure-to-pay

4.Invoice       
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order
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return-to-refund

order-to-cash
provides insights

Figure 1.12: The framework relating the approaches proposed in this thesis.
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process (addressing problem 1). In the execution of a business process on the
artifact-centric information system, each event changes the state of the system,
indicated by adding, updating or deleting records of the underlying database.
Accordingly, an XOC log is specified as a sequence of events and each event
corresponds to an object model (including rich information from the database),
describing the state of the system (addressing problem 3).
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Figure 1.13: A “graphical” representation for an XOC event log, revealing the evolution
of the state of an information system.

Event log extraction. An approach is proposed to automatically extract XOC
logs from data generated by artifact-centric information systems. Since we do
not add a forced case notion on the data in the transformation, the convergence
and divergence problems are avoided (addressing problem 2).

Object-centric behavioral constraint modeling language. By combining data/ob-
ject modeling languages (ER, UML, or ORM) and declarative languages (Declare),
a novel modeling language, named Object-Centric Behavioral Constraint (OCBC),
is proposed. More precisely, an OCBC model consists of a class model (presenting
cardinality constraints between objects), a behavioral model (presenting declara-
tive constraints between events) and so-called AOC relationships which connect
these two models by relating activities in the behavioral model to object classes
in the class model, as shown in Figure 1.14 (addressing problems 4 and 5).

Model discovery. We propose approaches to automatically discover OCBC
models from XOC logs. Since the XOC logs have events and object models, it
is possible to discover the data perspective and behavioral perspective, and the
interactions in between (addressing problems 4 and 5).

Conformance checking. Based on an XOC log and a manually designed or
discovered OCBC model, we propose a set of rules to check the conformance
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Figure 1.14: An Object-Centric Behavioral Constraint (OCBC) model example.

between them. The diagnostic results (i.e., deviations related to the behavioral
perspective, data perspective and interactions) are present in three different
views: rule view, log view and model view. Besides, metrics such as fitness,
precision and generalization are defined to quantify the degree of conformance
(addressing problem 6).

Performance analysis. By replaying an XOC log on an OCBC model, we can
get the statistics of frequencies and time, and calculate some metrics based on
the statistics. After mapping the performance result on the model, bottlenecks
can be revealed. Since the input log does not have convergence and divergence
problems, the performance result is precise (addressing problem 7).

1.5 Thesis Structure

We conclude the introduction with an outline of the thesis. This structure
organizes all techniques involved in Figure 1.12 in a logical order.

After this introduction, Chapter 2 provides the preliminaries for this thesis.
We first give the basic notations, which serve as a basis for the formal definitions
in the thesis. Then, the necessary knowledge on the data perspective, such as
data modeling languages and relational databases are introduced. Next, we
illustrate some process modeling languages (such as Petri nets, BPMN diagrams
and Declare models) and event logs.

Chapter 3 defines the notion of object-centric event data, to organize the
data generated by artifact-centric information systems. Object-centric event data
are different from case-centric event data and have their own characteristics.
Accordingly, Chapter 4 proposes a novel log format, i.e., the eXtensible Object-
Centric (XOC) log format to cater to object-centric event data.
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Chapter 5 illustrates the novel OCBC modeling language by explaining all the
involved elements. The data perspective (e.g., classes) is first explained, followed
by the behavioral perspective (e.g., activities). Then these two perspectives are
combined, resulting in an OCBC model.

Chapter 6 presents approaches to discover OCBC models from XOC logs.
Without case notions, these approaches use the data perspective to correlate
events and discover constraints. First, a basic approach is illustrated to discover
models from clean logs. Then, a robust discovery approach is proposed to deal
with noise in real life data.

Chapter 7 shows techniques to diagnose the conformance of the business
process by comparing an XOC log and an OCBC model. By taking the data
perspective into consideration, it is possible to detect and diagnose a range of
conformance problems that would have remained undetected using conventional
approaches.

Chapter 8 focuses on analyzing performance, which also takes an XOC log
and an OCBC model as input. The dot charts, column charts, and indicators are
employed to show the performance from different angles.

Chapter 9 shows a case study to link all techniques in a consistent manner
and prove that these techniques can be applied to real life data while Chapter 10
concludes the thesis and discusses the future work.



Chapter 2
Preliminaries

In this chapter, we introduce necessary preliminaries such as basic mathemat-
ical notations, data modeling languages, database systems, process modeling
languages and events logs.

2.1 Basic Notations

This section explains the basic notations of sets, multisets, functions, sequences
and tuples, which are used as a basis of definitions in this thesis. For instance,
sets are used in Definition 2.6 (e.g., P is a finite set of places), multisets are used
in Definition 2.6 (e.g., M ∈B(P ) is a multiset over P denoting the marking of the
net), functions are used in Definition 2.8 (e.g., act ∈ E →UA maps events onto
activities), sequences are used in Definition 2.9 (e.g., each case corresponds to
a trace, which is a finite sequence of events σ ∈ (UE )∗) and tuples are used in
Definition 2.6 (e.g., a Petri net is a tuple N = (P,T,F )).

Definition 2.1 (Set) A set is an unordered collection of distinct objects, which are
called elements of the set. We denote a finite set by listing its elements between
braces, e.g., a set A with elements a, b and c is denoted as A = {a,b,c} and a set B
with elements b, c and d is denoted as B = {b,c,d}.

• ∈ indicates that an element is contained by a set, e.g., for the set A, a ∈ A
whereas d 6∈ A,

• ; denotes the empty set, i.e., ;= { },
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• |X | denotes the number of elements (cardinality) of a finite set X , e.g., |A| = 3,

• X ∪Y is the union of X and Y (i.e., the set of elements that exist either in X
or Y ), e.g., A∪B = {a,b,c,d},

• X ∩Y is the intersection of X and Y (i.e., the set of elements that exist in
both X and Y ), e.g., A∩B = {b,c},

• X \ Y is the difference of X and Y (i.e., the set of elements of X that do not
exist in Y ), e.g., A \ B = {a} and B \ A = {d},

• X ⊆ Y denotes that X is a subset of Y ,

• X ⊂ Y denotes that X is a strict subset of Y , and

• P (X ) = {Y | Y ⊆ X } denotes the power set (i.e., the set of all subsets over X ),
e.g., P (A) = {;, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}.

A multiset modifies the concept of a set by allowing for multiple instances
for each of its elements. The number of instances for each element is called the
multiplicity of this element in the multiset.

Definition 2.2 (Multiset) A multiset (bag) M is a tuple M = (X ,m) where X is a
set and m : X → IN is the multiplicity function of the multiset. x ∈ M denotes that
element x is contained in the multiset M , i.e., x ∈ X and m(x) ≥ 1. B(X ) denotes the
set of all multisets over X and [ ] denotes the empty multiset.

Often, we use a compact notation for multisets. For example, we write
M = [a, a,b] or M = [a2,b] for the multiset M = ({a,b},m) with m(a) = 2 and
m(b) = 1.

A multiset adds the information of multiplicity to each element in a set.
However, it does not distinguish the order of elements. In a sequence, the
position of each element matters, which is called the rank or index of the
element.

Definition 2.3 (Sequence) A sequence σ= 〈σ1,σ2, . . . ,σn〉 is an ordered collection
of objects, which is represented by listing its elements between angled brackets.

• σi refers to the i-th element of the sequence,
• |σ| = n denotes the length of the sequence,
• 〈 〉 denotes an empty sequence,
• A∗ denotes the set of all finite sequences over a set A,
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• σ1⊕σ2 appends sequence σ2 to σ1 resulting in a sequence of length |σ1|+|σ2|,
e.g., 〈a,b〉⊕〈c,d〉 = 〈a,b,c,d〉,

• ∂set converts the sequence σ into a set {σ1,σ2, . . . ,σn}, e.g., ∂set (〈a, a,d〉) =
{a,d},

• a is an element of σ, denoted as a ∈σ, if and only if a ∈ ∂set (σ),
• ∂multiset converts the sequence σ into a multiset [σ1,σ2, . . . ,σn], e.g., ∂multiset (〈a, a,d〉)

= [a2,d ], and
• tlk (σ) gets the “tail” of the sequence σ composed of the last k elements, e.g.,

tl2(〈a, a,d〉) = 〈a,d〉.

A function is a relation that uniquely associates each element of one set with
a single element of another set. It is a many-to-one or one-to-one relation.

Definition 2.4 (Function) Let X and Y be two non-empty sets. A function f from
X to Y is a relation from X to Y , where every element of X is mapped onto an
element of Y by f , denoted as f : X → Y . It is denoted as f (x) = y that f maps an
element x ∈ X onto an element y ∈ Y . For each function f ,

• dom(f ) denotes the domain of f ,
• rng(f ) denotes the range of f ,
• f is injective if every element in the domain is uniquely mapped onto an

element in the range, i.e., ∀x, x ′ ∈ X : f (x) = f (x ′) ⇒ x = x ′,
• f is surjective if each element in the range can be obtained by applying the

function on an element from the domain, i.e., ∀y ∈ Y : ∃x ∈ X : f (x) = y , and
• f is bijective if it is both surjective and injective.

A function f can be partial, denoted as f : X 9 Y , if dom(f ) ⊆ X , i.e., not every
element in the domain has to be mapped onto an element in the range.

A function defines a unique mapping from elements of a source set to elements
of a target set, which only involves two sets. It is possible to define a mapping
between elements of multiple sets.

Definition 2.5 (Product and Tuple) Let A1, A2, . . . , An be n sets. A1 × A2 × . . .×
An = {(a1, a2, . . . , an) | a1 ∈ A1 ∧a2 ∈ A2 ∧ . . .∧an ∈ An} denotes the cartesian product
of A1, A2, . . . , An . An element t = (a1, a2, . . . , an) is a tuple.

2.2 Data Modeling

Information systems employed in organizations provide an abundance of data.
In order to describe and analyze the data structure in which these data are
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stored, many data modeling languages have been proposed. In Chapter 5 we
propose the OCBC modeling language which describes both behavioral and data
perspectives of business processes. On the data perspective, the language models
data objects by using powerful constructs (e.g., cardinality constraints) present in
entity-relationship data models and UML class diagrams, which are widely used
by conceptual data modeling languages. Therefore, in this section we introduce
these two categories of models, to lay a foundation for our modeling languages.

2.2.1 Entity-Relationship Models

The entity-relationship (ER) data model describes the data involved in a real-
world enterprise in terms of entities and their relationships. It was originally
proposed by Peter Chen in 1976 [25], and is still widely used today. In this
section, we introduce the ER model and discuss how its features allow users to
model a wide range of data [119].

E entity set
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Figure 2.1: Example symbols used in the ER notation in [128].

A conceptual data model uses concepts such as entities, attributes and re-
lationships to describe a data structure. More precisely, an entity represents a
real-world object or concept, such as an employee or a project. An entity set is
a set of entities of the same type that share the same properties, or attributes.
An attribute represents some property of interest that further describes an entity,
such as the name or salary of an employee. A relationship among two or more
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entities represents an association among the entities, for example, a works-on
relationship between an employee and a project [41]. A relationship set is a set
of relationships of the same type.

An intuitive representation of the data model is significant for the communi-
cation between domain experts who know the requirements of the application
but may not be familiar with data modeling. Note that there is no universal
standard for ER model notations, and there exist different variants of notations.
Figure 2.1 shows a particular variant in [128], and some typical notations are
explained as follows:

• An entity set is represented by a square in green.
• A relationship set is represented by a diamond-shaped symbol.
• Attributes of an entity set are shown as annotations on the square repre-

senting the entity set.
• Attributes that are part of the primary key are underlined.
• Solid lines link entity sets to relationship sets (and the shape of the end of

the line indicates the cardinality).
• A cardinality constraint can be added to the line between an entity set and

a relationship set to indicate the cardinality limits.

instructor
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name

salary

student

ID

name

tot_cred

advisor

entity set 
“instructor”

primary key

attribute

many-to-many  
relationship set “advisor” 

Figure 2.2: An ER diagram describing the relationship between instructors and students.

Consider the ER diagram in Figure 2.2, which consists of two entity sets,
“instructor” and “student” related through a binary relationship set “advisor”
[128]. The attributes associated with “instructor” are “ID”, “name” and “salary”,
and the attributes associated with “student” are “ID”, “name” and “tot_cred”.
Note that the attribute “ID” is underlined, which indicates that it is a member of
the primary key of the entity set. The undirected lines from the relationship set
“advisor” to both entity sets “instructor” and “student” indicate that an instructor
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may advise many students, and a student may have many advisors.

2.2.2 UML Class Diagrams

The Unified Modeling Language (UML) is a standard developed by the Object
Management Group (OMG) for creating specifications of various components of
a software system [11, 16, 42, 53]. It includes a set of diagrams, such as class
diagrams, use case diagrams, activity diagrams and implementation diagrams.
The class diagrams relate to data modeling and they are similar to ER diagrams.
In this part we introduce class diagrams and illustrate a few features of them.
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Figure 2.3: Symbols used in the UML class diagram notation.

In UML terminology, classes are used to describe entities and relationship
sets are referred to as associations. A class is represented by a square in orange.
Attributes of a class are shown as annotations on the square representing the
class. An association in UML is represented by a solid line connecting the classes.
The association name is adjacent to the line. Cardinality constraints are shown
on the two sides of the line depicting the association [128]. Associations are of
different types, which are explained as follows:

• Inheritance. Inheritance refers to the process of a child or sub-class taking
on the functionality of a parent or superclass. It is symbolized as a line
with a closed arrow (of a hollow triangle shape) pointing towards the
superclass. For instance, in Figure 2.3 C 1 can be a class of “car” and C 2
can be a class of “vehicle” (i.e., C 1 is the sub-class of C 2 since “car” is a
sub-class of “vehicle”).

• Aggregation. An aggregation relationship means a part-whole relationship.
More precisely, aggregation can occur when a (“whole”) class is a collection
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or container of other contained (“part”) classes, but the contained classes
do not have a strong lifecycle dependency on the container. In other words,
the contents of the container still exist when the container is destroyed. As
shown in Figure 2.3, an aggregation relationship is graphically represented
as a hollow diamond shape on the containing class with a single line that
connects it to the contained class. For instance, C 1 can be a class of “library”
and C 2 can be a class of “book”, i.e., a book is a part of the library and the
book can exist without the library.

• Composition. A composition relationship shows an “entirely made of”
relationship, i.e., a stronger version of aggregation. More precisely, compo-
sition can occur when a class is a collection or container of other contained
classes, and the contained classes have a strong lifecycle dependency on
the container. When the container is destroyed, the contents are also de-
stroyed. As shown in Figure 2.3, a composition relationship is graphically
depicted as a filled diamond shape on the containing class end of the line
that connects the contained class to the containing class. For instance, C 1
can be a class of “university” and C 2 can be a class of “department”, i.e.,
a department is a part of the university and the department cannot exist
when the university is destroyed.

The data perspective of an OCBC model refers to the idea from UML class
model. We also use the notion of classes and add attributes to classes. Differ-
ently, we only consider the binary relation with cardinality constraints, without
distinguishing the different types. We add the “always” and “eventually” types
of cardinality to strengthen the cardinalities. In future, it is possible to add new
relations, such as inheritance.

2.3 Database Systems

The data analyzed by techniques proposed in this thesis are mainly from database
systems. Therefore, in this section, we introduce database systems and discuss
the key database concepts.

A database management system (DBMS) is a generalized software system for
managing databases [41,119,128]. Database systems are designed to manage
large bodies of information. The primary goal of a DBMS is to define structures
to store and retrieve database information both conveniently and efficiently. In
addition, the database system must ensure the safety of the information stored,
despite system crashes or attempts at unauthorized access.

Database systems are widely employed by modern information systems (and
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in particular by artifact-centric information systems) to store and organize their
execution data. Some well-known examples are Oracle RDBMS (Oracle), SQL
server (Microsoft), PostgreSQL (PostgreSQL Global Development Group), DB2
(IBM) and Sybase (SAP).

2.3.1 Relational Models

Along with the development of computer techniques, information systems are
widely employed by enterprises to store and manipulate the generated data. In
early days, data were stored as files supported by file-processing systems. More
precisely, the data were stored in independent files which do not communicate
with each other. The systems which access the data use ad-hoc approaches
(i.e., application-specific codes) to extract records from and add records to the
appropriate files. This solution has a lot of problems when the data are large and
complex, which drives the need for more efficient ways to store and manipulate
data.

As an alternative to file-processing systems, databases appeared as a solution
which can more efficiently store data. The first general-purpose DBMS was
designed by Charles Bachman at General Electric in the early 1960s and was
called the Integrated Data Store. In 1970, Edgar Codd proposed the relational
data model at IBM’s San Jose Research Laboratory [27]. This proved to be a
watershed in the development of database systems: it sparked the rapid devel-
opment of several DBMSs based on the relational model. Prototype relational
database management systems were developed in pioneering research projects
at IBM and UC-Berkeley by the mid-70s [119].

Today, the relational model is still by far the most dominant data model
and is the foundation for the leading DBMS products, including IBM’s DB2
family, Informix, Oracle, Sybase, Microsoft’s Access and SQLServer, FoxBase and
Paradox. Relational database systems are ubiquitous. The SQL query language
for relational databases, developed as part of IBM’s System R project, is now
the standard query language. SQL was standardized in the late 1980s and since
decades it is the most widely used language for creating, manipulating, and
querying relational DBMSs [119].

In recent years, there has been an uptake of alternative databases, e.g.,
NoSQL databases and document oriented databases. NoSQL databases are often
very fast, do not require fixed table schemas. Examples of NoSQL systems include
MongoDB and Oracle NoSQL Database. In this thesis, we focus on relational
databases since most artifact-centric information systems are based on them.
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2.3.2 Tables

A relational database consists of a collection of tables, each of which is assigned
a unique name. Each table has multiple columns and each column has a unique
name. Besides, each table consists of rows which are used to represent both data
and the relationships among those data.

order_line

id order product quantity price

50001 30001 computer 2 1190

50002 30001 phone 3 476

50003 30002 cup 3 1

50004 30002 TV 2 952

fields 
(columns, attributes)

rows 
(records,tuples)

table name

Figure 2.4: An example table.

Figure 2.4 shows a table named “order_line”, which stores information about
details of customer orders in the OTC business process. The table has five
columns (attributes, fields): “id”, “order”, “product”, “quantity” and “price”.
Each row (tuple, record) of this table records information about an order line,
i.e., the id of the order line, the order which the order line belongs to, the name,
price and quantity of product contained by the order line. For instance, the first
row corresponds to an order line “50001” which belongs to the order “30001”. It
contains two computers whose price is “1190”.

The rows explained above are database instances at a particular moment,
which represents a state of the database. In contrast, the overall design of the
database (e.g., the columns) is called the database schema. The database schema
defines the structure of a database by assigning constraints on database instances.
Here, we introduce two types of constraints. The first type consists of domain
constraints. For each column of a table, there is a set of permitted values, called
the domain of that column. For instance, the “quantity” column in Figure 2.4
requires values of “INTEGER”. The second type consists of key constraints. A
(unique) key constraint is a statement that a set of columns of a table is a unique
identifier for a record. It is possible that there are multiple keys in a table, and
the term primary key is used to denote a candidate key that is chosen by the
database designer as the principal means of identifying records within a table.
Sometimes the information stored in a table is linked to the information stored
in another table. In this case, the foreign key can be defined in one table to
reference the primary key in another table, in order to correlate tables.
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order_line
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Figure 2.5: Primary keys and foreign keys in tables.

Figure 2.5 shows two related tables “order” and “order_line” (the records in
the “order_line” table give the details of orders). The “id” columns in “order”
table and “order_line” table have unique values and they can be considered as
the primary keys of two tables. For instance, “30001” identifies the first record in
“order” table. In order to connect records in these two tables, the “order” column
can be considered as the foreign key of “order_line” table, which references
the primary key of “order” table. For instance, the order line record “50001”
references the order record “30001”. Note that all referenced records must exist.
For instance, the order line record “50004” references an order record “30002”.
Therefore, there must exist an order record “30002” in the “order” table.

2.4 Process Modeling

Information systems interact not only with database systems but also with the
operational processes they support. A process can be defined as “the combination
of a set of activities within an enterprise with a structure describing their logical
order and dependence whose objective is to produce a desired result” [8]. Next
to introducing database systems in Section 2.3, we illustrate process modeling
languages in this section.

A large number of graphical process modeling languages has been proposed
to describe the business processes by means of models, which facilitate human
understanding and communication between the parties involved in the process
(managers, analysts, modelers, etc.) [102]. In this section, we first introduce
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Petri nets that are widely used in academia (especially in process mining domain)
and BPMN diagrams that are widely used in industry. Both Petri nets and BPMN
diagrams are “standards” in their own way, which are used to compare with
OCBC models in this thesis. Then we explain Declare models as the behavioral
perspective of the OCBC models refers to Declare models. At last, we give two
examples of artifact-centric models, Proclet and GSM, which are used to describe
artifact-centric information systems.

2.4.1 Petri Nets

Petri nets are the best-investigated process modeling language allowing for
the modeling of concurrency. Petri nets use a very simple notation of circles
representing places and squares representing transitions with arrows connecting
them. Although the graphical notation is intuitive and simple, Petri nets are
executable and many analysis techniques can be used to analyze them [71,73,
74,144,162].

More precisely, a Petri net is a bipartite graph consisting of places and tran-
sitions. The network structure is static, but tokens (presented by black dots)
can flow through the network, governed by the firing rule illustrated next. A
transition can represent a task and when executed it consumes one token from
each of its input places and produces a token in each of its output places. In this
way, tokens are moved between places and the state of a Petri net is determined
by the distribution of tokens over places. The distribution is referred to as the
marking, and the initial (final) marking indicates the start (end) of the process.

Definition 2.6 (Petri net) A Petri net is a tuple N = (P,T,F ) where P is a finite set
of places, T is a finite set of transitions such that P∩T =;, and F ⊆ (P×T )∪(T ×P )
is a set of directed arcs, called the flow relations. A marked Petri net is a pair
(N , M), where N = (P,T,F ) is a Petri net and M ∈B(P ) is a multiset over P denoting
the marking of the net.

A Petri net N = (P,T,F ) defines a directed graph with nodes P ∪T and edges
F . Figure 2.6 shows an example of a Petri net, which describes the OTC business
process. It can be formalized as follows: P = {p0, p1, p2, p3, p4, p5, p6, p7}, T = {a,
b,c,d ,e, t1, t2, t3} and F = {(p0, a), (a, p1), . . . , (b, p2)}. Note that t1 (t2 or t3) is a
special transition, named silent, or τ-transition, denoted by a filled black square.
A node x is an input node of another node y if and only if there is a directed arc
from x to y (i.e., (x, y) ∈ F ). For any x ∈ P ∪T , •x = {y |(y, x) ∈ F } denotes the set of
input nodes and x• = {y |(x, y) ∈ F } denotes the set of output nodes. For instance,
in Figure 2.6 •p1 = {a} and p1• = {b, t1}.
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Figure 2.6: An example of a Petri net, describing the OTC business process.

The firing rule defines the dynamic behavior of a marked Petri net. A transi-
tion t ∈ T is enabled in a marking M of net N , denoted as (N , M)[t〉 if each of its
input places •t contains at least one token. For instance, in Figure 2.6 transition
a is enabled since p0 (all of its input places) has one token, i.e., (N , [p0])[a〉.
An enabled transition t may fire, i.e., one token is removed from each of the
input places •t and one token is produced for each of the output places t•.
(N , M)[t〉(N , M ′) denotes that t is enabled in M and firing t results in the marking
M ′. For instance, in Figure 2.6, (N , [p0])[a〉(N , [p1]).

Let (N , M0) with N = (P,T,F ) be a marked Petri net. A sequence σ ∈ T ∗ is
called a firing sequence of (N , M0) if and only if, for some natural number n ∈ IN,
there exist markings M1, M2, . . . , Mn and transitions t1, t2, . . . , tn ∈ T such that σ=
〈t1, t1, . . . , tn〉 and, for all i with 0 ≤ i < n, (N , Mi )[ti+1〉 and (N , Mi )[ti+1〉(N , Mi+1).
A marking M ′ is reachable from M if there exists a σ such that (N , M)[σ〉(N , M ′).
For instance, in the Petri net in Figure 2.6, (N , [p0])[σ〉(N , [p2]) for a sequence
σ= 〈a,b〉.

Consider for example the Petri net in Figure 2.6 to understand how its
described business process is executed. The initial marking is [p0], which means
that the model starts with a token in place p0. Based on the initial marking, the
transition a is enabled. By firing transition a, the token in place p0 is consumed
and a token is produced in place p1. Of the two transitions b and t1 only one
can fire: they are in a so-called exclusive choice relation. If b is selected and fired,
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the token in p1 is consumed and the final marking [p2] is reached. Alternatively,
if t1 is selected and fired, there are tokens in places p3 and p6, i.e., the marking
is [p3, p6], which enables two parallel branches c and d . Note that c can be fired
more than once because of the loop construct involving c and a silent transaction
t2, and firing c generates one token in p4. For the bottom branch, d and e are
fired sequentially, resulting in a token in p5. The marking [p4, p5] is derived after
executing the two branches. Then the final marking [p2] is reached after firing
t3.

In the above explanation of Petri nets, transitions are identified by a single
letter, which does not give information about the real business processes repre-
sented by Petri nets. Next, we define a labeled Petri net to relate transitions to
activities, which can be derived based on the knowledge of the corresponding
business processes.

Definition 2.7 (Labeled Petri net) Let UA denote the activity alphabet and τ

denote a special (silent) label such that τ ∉ UA. A labeled Petri net is a tuple
PN = (P,T,F, l ) where (P,T,F ) is a Petri net and l ∈ T → UA ∪ {τ} is a labeling
function .

A labeled Petri net is a Petri net, in which each transition has a corresponding
activity. For instance, the Petri net in Figure 2.6 is a labeled Petri net. Function l
indicates the activity for each transition, e.g., l (a) = create order. Note that it is
possible that particular transitions are not observable. Such transitions are often
referred to as silent or invisible, and we reserve the special activity label τ for
them. For instance, transitions t1, t2 and t3 in Figure 2.6 are not observable.
Therefore, l (t1) = l (t2) = l (t3) = τ.

2.4.2 BPMN Diagrams

The Business Process Modeling Notation (BPMN) has become one of the most
widely used languages to model business processes [55]. It provides a lot of
constructs for representing in a very expressive graphical way and has enjoyed
high levels of attention in business practice. The BPMN 1.0 specification was
released in May 2004, and was adopted as a standard by the Object Management
Group (OMG) in February 2006. From then on, it has quickly become a de-
facto standard for graphical process modeling. It is widely supported by tool
vendors (e.g., Activiti, Bonita BPM, Camunda, IBM Rational System Architect,
and Signavio).

An example of a BPMN process model is shown in Figure 2.7, which describes
the OTC business process. It is similar to the Petri net in Figure 2.6, and most
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Figure 2.7: Describing the OTC business process using the BPMN notation.

constructs can easily be understood in the same way. In BPMN models, atomic
activities are called tasks, represented by rounded rectangles. Note that the
notion of composite tasks is modeled via a subprocess task, represented by a
rounded rectangle with a “+” symbol. For instance, the task c (i.e., “create
shipment”) has a subprocess, consisting of tasks “pick item”, “wrap item” and
“deliver item”. There are split and join gateways of different types: AND, XOR
and OR. The BPMN process starts with a start event (circle) and ends with an
end event (thick circle). Start events have one outgoing arc and end events have
one incoming arc. Figure 2.7 shows just a subset of all notations provided by
BPMN. Most vendors support only a small subset of BPMN in their products
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since users typically use only a few BPMN constructs. The research performed
by [166] has shown that typically less than 10 different symbols are used, while
more than 50 distinct graphical elements are available.

BPMN initially focuses its attention on the control-flow perspective, i.e.,
describing which activities are performed and the dependencies between them,
while the data perspective does not receive much attention. In order to strengthen
the data perspective of BPMN, several changes have been made from BPMN 1.2
to BPMN 2.0. In BPMN 2.0 the data can be represented in a process diagram
using the elements presented in Figure 2.8:

• Data objects. Data objects represent the information needed (data input)
or produced (data output) by the activity, that flows through a process. A
data object can be referenced by “DataObjectReference”, which is a way
to reuse one data object in the same diagram. A data object reference can

Figure 2.8: A BPMN model with data elements.
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represent a different state of the same data object at different points in the
process.

• Data stores. A data store is a means to handle persistent data. It provides
a mechanism for an activity to store information or use the information
stored. A data store can represent paper documents (a file folder, an
agenda, a notebook, etc.) or a database.

In BPMN, data storage allows for interaction between different processes as
shown in Figure 2.8, which is impossible with simple data objects, because they
can only be used within one process.

2.4.3 Declare Models

Case-centric information systems often drive their business processes based
on strict procedural process models, such as Petri nets, BPMN diagrams and
EPCs. These models are suitable for describing standardized processes in stable
environments. Because of their predictability and low complexity, these processes
are described in a “closed world” manner, i.e., explicitly representing all the
allowed behavior of the processes.

In order to deal with the fast-changing environments, artifact-centric infor-
mation systems tend to provide more flexibility and less process-related support
to match dynamic process management. Current procedural process modeling
languages and models are of imperative nature, which forces designer to over-
specify business processes. As a result, the systems based on such models suffer
frequent re-engineering to adapt to rapid changes, which lead to inefficiency in
enterprises. Besides, it also leads to complex and incomprehensible models using
the procedural languages to describe processes supported by such systems.

In order to solve the problems introduced above, [113] proposes a declara-
tive language, Declare (also called ConDec), to make a fundamental paradigm
shift for flexible process management. Declare combines a formal semantics
grounded in Linear Temporal Logic (LTL) on finite traces [142], with a graphical
representation. In essence, a Declare model is a collection of LTL rules, each
capturing a control-flow dependency between two activities [94]. In other words,
a Declare model describes a set of constraints which must be satisfied throughout
the process execution.

Declarative process modeling languages are more appropriate for artifact-
centric information systems. Note that conventional procedural modeling lan-
guages produce “closed” models, i.e., all what is not explicitly specified is for-
bidden. In contrast, declarative models describe a process in an “open world”
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manner, i.e., everything is allowed unless it is explicitly forbidden [94,95]. The
difference between procedural (imperative) and declarative modeling languages
can be understood by analogy to programming language in computer program-
ming. Imperative programming languages indicate “how to do something”,
whereas declarative programming languages indicate “what is required and let
the system determine how to achieve it”. Similarly, imperative process modeling
primarily specifies the procedure of how work has to be done, i.e., they require
all execution alternatives to be explicitly specified in the model during build-time
before the execution of the process. It often results in process models being
over-specified [112]. In contrast to imperative languages, declarative languages
do not specify the procedure a priori. Instead of determining how the process
has to work exactly, only its essential characteristics are described [114].

if A is executed at least 
once, C is executed at 

least once and vice versa

activity A can be executed 
at most once in each trace

c A B
0..1 2

activity B is executed precisely 
twice in each case

activity A is eventually 
followed by B

con1 con2

con3 con4

Figure 2.9: An example of a Declare model.

Figure 2.9 shows an example of a Declare model, which has three activities
(A, B and C) and four constraints (con1, con2, con3 and con4). For instance, the
constraint con2 between A and B requires that activity A is eventually followed
by B . The constraints do not explicitly specify the flow of the interactions
among process events. They can be understood as follows. Initially, the model
only contains activities, allowing every possible execution behavior. By adding
constraints to the model, execution alternatives are discarded step by step. For
instance, if we only have three activities without any constraints in Figure 2.9,
the activities can be executed arbitrarily often and in any order. After adding the
constraint “0..1” onto activity A, some behavior is disabled, i.e., activity A is not
allowed to happen more than once [114].

The constraints in Declare models depend on so-called templates, classified as
existence templates, relation templates, negation templates, choice templates and
branching templates. A template indicates the restriction assigned on activities
involved in the template. Next, we illustrate two typical types, i.e., relation



40 Preliminaries

templates and negation templates, which are referred to by the behavioral
perspective of OCBC models.

A Bresponded existence (A, B)

A Bco-existence(A, B)

A Bresponse(A, B)

A Bprecedence(A, B)

A Bsuccession(A, B)

Figure 2.10: Notations for the relation templates.

A relation template defines a dependency between multiple activities. Fig-
ure 2.10 only shows some examples of binary relationships (i.e., between two
activities). The responded existence template means that if activity A is executed,
activity B also has to be executed either before or after activity A. According to
the co-existence template, if one of the activities A or B happens, the other one
has to happen as well. Different from the first two templates, the other three
templates response, precedence and succession consider the ordering of activities.
Template response requires that every time activity A executes, activity B has
to be executed after it. The template precedence means that activity B can be
executed only after activity A is executed. By combining response and precedence
templates, the succession template is defined, which requires that both response
and precedence relations have to hold between the activities A and B .

A Bnot responded existence (A, B)

A Bnot co-existence(A, B)

A Bnot response(A, B)

A Bnot precedence(A, B)

A Bnot succession(A, B)

Figure 2.11: Notations for the negation templates.

Figure 2.11 presents some examples of negation templates, which are the
negated versions of the relation templates in Figure 2.10. The not responded
existence template means that if activity A happens, activity B can never happen
(neither before nor after activity A). The not co-existence template indicates that
if one of the activities A or B is executed, the other one must never be executed.
The not response template specifies that after the execution of activity A, activity
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B cannot be executed anymore. Required by the template not precedence, activity
B cannot be preceded by activity A. The not succession template combines the
not response and not precedence templates.

2.4.4 Artifact-Centric Models

Traditional languages to describe business processes, such as Petri nets, BPMN
diagrams and EPCs, are case-centric, i.e., they assume a case notion in the
process and often focus on the control-flow perspective (considering the data
perspective as an afterthought). As we mentioned, artifact-centric systems do not
assume a single case notion. Besides, such systems do not have explicit business
processes but have clear business entities such as orders and invoices. As a result,
it makes little sense (i.e., provides few insights) to only analyze the control-flow
perspective.

In order to solve the above problem, artifact-centric [14,28,65,107] (includ-
ing the work on proclets [139,140]) approaches were proposed. In this section,
we first introduce Proclet models, which appeared earlier and share the same
idea as artifacts. Then, GSM is explained as a notation to understand artifacts.
At last, we discuss the problems confronted by these approaches.

Proclet Models

Most of today’s business process modeling languages assume that a business
process can be modeled by specifying the life-cycle of a single case in isolation.
For many real-life applications this assumption is too restrictive, since business
processes in these applications cannot be captured fully using a single case
notion. As a result, the real process has to be adapted to accommodate these
languages, i.e., the control-flow of several cases is artificially squeezed into one
process definition.

For instance, in the OTC scenario, an order can include multiple order lines
(items). Accordingly, there exist two processes on two different levels, the process
executed for the whole order (e.g., sending invoices and delivering packages for
the order) and the (sub)process executed for each order line (e.g., picking and
wrapping items for each order line). Since an order can have a variable number
of order lines and the order lines are processed concurrently, it is typically not
possible to squeeze this scenario into one process definition. This is due to the
fact that, in most WFM/BPM systems, the degree of parallelism is fixed in a
process definition, i.e., it is not possible to concurrently instantiate selected parts
(i.e., sub-processes) of the whole process a variable number of times. Although
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one can instantiate sub-processes a variable number of times through iteration
or loop, it leads to the sequential execution of inherently parallel tasks.

To model the process discussed above, a framework based on proclets was
proposed in [139,140]. A proclet can be considered as a lightweight business
process (process fragment, sub-process or smaller process) equipped with a
knowledge base containing information on previous interactions. Based on this
idea, the whole process including multiple sub-processes can be described as a
proclet system, explained as follows:

• Proclet system. A proclet system consists of proclet classes and interactions
found between them.

• Proclet. A proclet class describes only one element or one perspective of the
whole business process. For instance, a proclet class can describe the life-
cycle (i.e. control-flow) of an artifact as a Petri net. Proclet instances can be
created and destroyed, and are executed according to a class specification.
At any moment a proclet instance has a state. When there is no confusion
we can simply use the term “proclet” instead of “proclet class” and/or
“proclet instance”.

• Channel. Different proclet classes can interact via channels. A channel is
the medium to send a uni-directional message, called performative, from
one proclet class to another specific proclet class or a group of proclet
classes. A channel connects two proclet classes through ports of the two
proclet classes.

• Port. There exist two types of ports, i.e., input ports for receiving messages
and output ports for sending messages. Each port has two attributes: (i)
cardinality (at the left of the comma) and (ii) multiplicity (at the right of
the comma).

• Attribute. The cardinality specifies the number of recipients of messages
exchanged via the port. The multiplicity specifies the number of messages
exchanged via the port during the lifetime of any instance of the proclet
class.

• Attribute value. A value of a cardinality could be “1” (exactly once), “?”
(zero or once), “∗” (zero or more) and “+” (once or more).

Figure 2.12(a) describes the control-flow perspective of a set of collaborative
processes in the OTC scenario. These processes can be described as two proclet
classes, order and order line, between which there is a one-to-many relationship
as indicated in Figure 2.12(b). In Figure 2.12(a), each square filled in grey
represents a proclet class, and a Petri net is employed to model the lifecycle of
the proclet class. On the edges of a proclet class, input ports (the round edge
facing inside) and output ports (the round edge facing outside) are displayed.
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Channels are represented as edges from output ports to input ports. Attributes
are shown on ports, and some examples are present in Figure 2.12(c).

order proclet

validate 
order

create 
order

update
order

skip item

check 
item

wrap
 item

pick
 item

proclet class channel input portoutput port

* , 1

* , 1

order line proclet
1 , 1

1 , ?

1 , ?1 , *

* , 1

(a) Two proclet classes describing the relation between orders and order lines.

order

order line

1

1..*

(b) Class diagram of the two proclet classes. (c) Examples of port attributes.

* , 1

1 , +

1 , ?

output port with cardinality * (zero or 
more recipients) and multiplicity 1 
(precisely one occurrence)

input port with cardinality 1 (precisely 
one recipient) and multiplicity + (at 
least one occurrence)

input port with cardinality 1 (precisely 
one recipient) and multiplicity ? (at 
most one occurrence)

attribute: 
cardinality and 

multiplicity

proclet

Figure 2.12: Example of two proclet classes: order and order line.

The semantics of proclets are illustrated next based on the two proclet classes
described using Petri Nets (i.e., WF-nets) in Figure 2.12(a). Proclet class “order”
is instantiated once per order while proclet class “order line” is instantiated for
every specific item in the order. The instance of class order first multicasts a
message to check if each item involved in the order exists in the warehouse.
Note that the cardinality of the port connected to task “create order” is denoted
as “∗”. This indicates that the order contains an arbitrary number of order lines.



44 Preliminaries

The multiplicity of the same port is denoted by the number “1”. This means that
during the lifetime of an instance of “order”, exactly one checking request is sent
via this port. For each item, it is picked if it exists, otherwise it is skipped. The
checking result is sent to the port connected to task “update order”. Note that
the multiplicities of the ports connected to tasks “pick item” and “skip item” are
“?”, since only one message is sent via one of the two ports (i.e., each port sends
no or just one message). After receiving checking result, the order is updated
(e.g., the item is removed from the order if it is out of stock). At last, the order is
validated and a message is sent for wrapping the item.

Note that for the graphical representation of proclets, a selection can be made
between multiple graphical languages, such as YAWL language, Petri Nets and
EPCs. For instance, Petri nets are used in Figure 2.12(a) and the YAWL models
are used in [100] to specify the proclets in healthcare.

GSM

Artifacts are key business-relevant entities/objects that are created, evolved, and
(typically) archived as they pass through the business operations. They combine
both the data perspective and the control-flow perspective into a holistic unit, and
serve as the basic building blocks from which models of business operations and
processes are constructed [24,28]. An artifact type contains both an information
model (the data perspective) that specifies all of the business-relevant data about
entities of that type, and a lifecycle model (the control-flow perspective) that
describes how events and activities affect the state of the artifact.

More precisely, an information model consists of data attributes and status
attributes. Data attributes are intended to hold all business-relevant data about
a given instance as it moves through the business process. Status attributes
hold information about the current status by recording update time of related
activities.

For the lifecycle model, the Guard-Stage-Milestone (GSM) meta-model [66,
67] provides a more declarative approach for modeling artifact lifecycles. It
allows a natural way for representing hierarchy and parallelism within the same
artifact and between different artifacts, and has become the most widely used
notation to describe the lifecycles. The core three components of GSM models
are, as the meta-model name suggests, stages, milestones and guards:

• Stage. A stage is a cluster of activities that might be performed for, with,
and/or by an artifact instance, in order to achieve one of the milestones
owned by that stage. A stage becomes “inactive” (or “closed”) when one of
its milestones is achieved. Intuitively, this is because the overall motivation
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for executing a stage is to achieve one of its milestones and at most one
milestone of a stage can be true at a time. Stages may be nested and
complex stages contain one or more children stages. Atomic stages cannot
have sub-stages, but are placeholders for tasks.

• Milestone. A milestone is a business-relevant operational objective (at
different levels of granularity) that can be achieved by an artifact instance.
A milestone corresponds to one alternative way that the stage might reach
completion. It may be “achieved” (and become true when considered as
a Boolean attribute) and may be “invalidated” (and become false when
considered as a Boolean attribute). This information is recorded in corre-
sponded status attribute in the information model as a Boolean attribute
that indicates if the milestone is currently achieved. Information model also
contains a status attribute that holds the timestamp when the milestone
last changes.

• Guard. They are used to control whether a stage becomes “active” (or
“open”). If a guard for a currently closed stage S becomes true (and the
parent of S is already open if S has a parent stage), then S becomes open.
There is also one special kind of guards, called bootstrapping guards, which
specify the condition when the corresponding artifact instance is to be
created (instantiated). Each artifact must have exactly one bootstrapping
guard that can be associated with some top level stage.

Besides, each guard has a form of an expression, called sentry. Strictly speaking,
a guard is a sentry. Sentries are used as guards, to control when stages open,
and to control when milestones are achieved or invalidated. A sentry consists of
a triggering event type and/or a condition.

Figure 2.13 describes a part of the OTC business process with artifact-centric
models. Here, we consider two typical artifacts, i.e., order and order line (or
item). Figure 2.13(a) presents the lifecycle models and Figure 2.13(b) shows
the information models of two artifacts. Consider the order artifact for example.
Its information model includes slots for “order ID”, “customer”, “note”, “delivery
address”, “created time”, “validated time” and “canceled time”. Its lifecycle
model includes operations such as creating the order when receiving an order
request, validating the order when all items exist in stock and cancelling the
order if items are out of stock.

Note that the lifecycle models in Figure 2.13(a) employ the GSM notation.
The rounded rectangles correspond to stages, e.g., the “processing order” stage
on the left and the “processing item” stage on the right. The squares filled in
grey represent activities or tasks, e.g., “create order”. Guards are depicted by
diamond nodes and bootstrapping guards have extra “+” symbols, e.g., “order
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(a) Lifecycle models (using GSM notation) of order and order line (item) artifacts.
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Figure 2.13: Describing the OTC business process with artifact-centric models.

request”. Milestones are shown as small circles associated with stages, e.g.,
“order validated”. Note that there exist interactions between different artifacts,
which are represented by dashed lines. For instance, the dashed line from the
milestone “order created” to the guard “order created achieved” means that
when the milestone is achieved, the guard is triggered.

Artifacts define a useful way to understand and track business operations. As
shown in Figure 2.13, after an “order request”, an instance of “order” artifact is
created and the stage “processing order” is open. Then, the guard “processing
order open” is triggered, and the activity “create order” is executed, which
achieves the “order created” milestone. Through the interaction, the guard
“order created achieved” is triggered, which creates an instance of “order line”
artifact and opens the “processing item” stage. The guard “processing item open”
is triggered and the corresponding item is checked. If the item is in stock, it is
picked which triggers the guard “item picked achieved” in the “order” artifact.
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Then the order is validated and the item is wrapped for delivery. If the item is
out of stock, the guard “out of stock achieved” in the “order” artifact is triggered,
which cancels the order.

To facilitate the application of the artifact-centric idea, a framework called
BALSA (consisting of four dimensions, i.e., Business Artifacts, Lifecycles, Services
and Associations) is proposed in [15,65], which establishes the common ground
for artifact-centric business process modeling. Employing different models and
constructs in each of the four dimensions, one can obtain different artifact-
centric business process models with differing characteristics. For instance, the
data models used for artifacts might be focused on nested name-value pairs as
in [107], nested relations or restricted Entity-Relationship schemas as in [28]. For
the lifecyle models, besides Petri nets, other notations can be employed. Finite
state machines have been traditionally used to model the individual lifecycles
of artifacts, where each state of the machine corresponds to a possible stage in
the lifecycle of an artifact. In this variant of state machines, little or nothing is
indicated about why or how an artifact might move from one stage to another,
although “guard” conditions may be attached to transitions in the machine [65].

The artifact-centric approaches have data and lifecycles attached to them,
thus relating both behavioral and data perspectives. They do not require a single
case notion for the whole business process. However, the relationships between
artifacts are not made explicit. In summary, these approaches tend to have
problems as follows:

• The data perspective (e.g., information models) presented by artifact-
centric approaches has no direct relation to the mainstream data models,
e.g., UML class models.

• Artifacts have to be identified beforehand based on domain knowledge
and within an artifact (proclet), one is still forced to pick a single case
notion. Assuming that one wants to discover the model in Figure 2.13 from
database tables, he or she has to identify the order and order line artifacts
based on some common knowledge. Without such knowledge, it is difficult
to figure out artifacts and their corresponding tables. Besides, each artifact
can involve multiple tables, and one has to choose a case notion at the
artifact level to correlate events from different tables.

2.5 Event Logs

Process mining is impossible without proper event logs, which are the main
input for most process mining techniques. An event log stores the execution
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history of a process, which can be extracted from a variety of data sources, e.g.,
enterprise information systems, business transaction logs, web servers, databases
and high-tech systems such as X-ray machines.

Table 2.1 shows an excerpt of an example data set used for traditional process
mining. The data set stores events generated in a compensation request process
in an airline. Each line in the table represents one event and each column
represents an attribute of this event. More precisely, events need to be uniquely
identified, which is achieved by assigning unique identifiers in the “Event id”
column. Each event has a corresponding activity (a special attribute), indicated
by the “Activity” column. For instance, the first line represents one “register
request” event, with id “35654423”, happening at “30-12-2010:11.02” and
executed by Pete with a cost of 50.

Case id Event id Timestamp Activity Other attributes

1 35654423 30-12-2010:11.02 register request Res:Pete, Cost:50
1 35654424 31-12-2010:10.06 examine thoroughly Res:Sue, Cost:400
1 35654425 05-01-2011:15.12 check ticket Res:Mike, Cost:100
1 35654426 06-01-2011:11.18 decide Res:Sara, Cost:200
1 35654427 07-01-2011:14.24 reject request Res:Pete, Cost:200
2 35654483 30-12-2010:11.32 register request Res:Mike, Cost:50
2 35654485 30-12-2010:12.12 check ticket Res:Mike, Cost:100
2 35654487 30-12-2010:14.16 examine casually Res:Pete, Cost:400
2 35654488 05-01-2011:11.22 decide Res:Sara, Cost:200
2 35654489 08-01-2011:12.05 pay compensation Res:Ellen, Cost:200
... ... ... ... ...

Table 2.1: A segment of “case-centric” event data with a case notion.

In the example data set, each event is associated with a case. Unfortunately,
not all information systems record events in this way (i.e., assuming a case
notion). Information about the relation between events and cases is often not
recorded in artifact-centric systems such as ERP/CRM. These systems do not
have an explicit event log [45]. In order to conform to the data both from
case-centric and artifact-centric systems, we next define a meta event log, and
the conventional event log (e.g., an XES log) can be considered as a “subclass”
of a meta event log. To recap, we assume the following general structure of a
meta event log:

• An event log consists of events.
• An event corresponds to an activity.
• An event can have some attributes.
• Events within an event log are ordered.
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Definition 2.8 (Meta Event Log) Let UE be the event universe, i.e., the set of
all possible event identifiers, UA be the activity universe, UAttr be the universe of
attribute names and UVal be the universe of attribute values. A meta event log is a
tuple L = (E ,act,attrE,¹), where

• E ⊆UE is a set of events,

• act ∈ E →UA maps events onto activities,

• attrE ∈ E → (UAttr 6→ UVal) maps events onto a partial function assigning
values to some attributes, and

• ¹ ⊆ E ×E defines a total order on events.1

The example data set is a “case-centric” data set. In other words, each event
is associated with a case, or process instance. In Table 2.1 the events are already
grouped by case and sorted chronologically. For instance, all the first five events
correspond to case “1”. The sequence of events that is recorded for a process
instance is called a trace.

Definition 2.9 (Case and Trace) Let UCas be the case universe, i.e., the set of all
possible case identifiers. Each case corresponds to a trace, which is a finite sequence
of events σ ∈ (UE )∗ such that each event appears only once, i.e., ∀1 É i < j É |σ| :
σi 6=σ j .

Table 2.1 shows two cases, i.e., “1” and “2”. Consider for example case “1”.
Its corresponding trace is 〈35654423,35654424,35654425,35654426,35654427〉. In
the remainder, a case can refer to its corresponding trace when the context is
clear.

A meta event log directly consists of events and does not have a case notion
to correlate events. For case-centric event data, we define a case-centric event
log, which adds case information in a meta event log.

Definition 2.10 (Case-Centric Event Log) A case-centric event log is a tuple
L = (E ,act,attr,¹,Cas, tra), where

• (E ,act,attr,¹) is a meta event log,

• case ∈ E →UCas maps events onto cases.
1A total order is a binary relation that is (1) antisymmetric, i.e., e1 ¹ e2 and e2 ¹ e1 implies e1 = e2,

(2) transitive, i.e., e1 ¹ e2 and e2 ¹ e3 implies e1 ¹ e3, and (3) total, i.e., e1 ¹ e2 or e2 ¹ e1.
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Compared with a meta event log, a case-centric event log adds the case
notion and maps each event to a case (identifier). The event data shown in
Table 2.1 can be easily converted into a case-centric event log. An event log is
a predefined structure for storing event data. The de facto standard for storing
case-centric event logs on disk is the XES event log format [1,157]. XES stands
for eXtensible Event Stream and is the successor of the popular MXML event log
format [152]. The XES standard stores information regarding the event log as a
whole, the traces and the events belonging to the traces.

The XES log format introduced above is commonly used in existing process
mining techniques. It forces users to pick a case notion when creating such logs,
which limits its usage on artifact-centric systems. In this thesis, we will propose a
novel log format (in Chapter 4), which follows the definition of meta event logs
and discards the case notion, to organize the data from artifact-centric systems.

2.6 Summary

In this chapter, we presented necessary preliminaries for understanding this
thesis. We started by introducing some basic mathematical notations, which
serve as the basis for the definitions in this thesis. Then two mainstream data
modeling languages were explained, which are referred to by the data perspective
of our OCBC models. Since the data targeted by this thesis are from database
tables, database systems were briefly discussed. Afterwards, a selected set of
process modeling languages were presented. Among these languages, Petri nets
and BPMN diagrams are widely used in academia and industry, respectively.
Declare models are referred to by the behavioral perspective of OCBC models.
The artifact-centric models are used to describe artifact-centric information
systems. Since event logs are taken as input for process mining techniques, we
introduced them at last.



Chapter 3
Object-Centric Event Data

As introduced in Chapter 1, this thesis proposes new process mining techniques
to discover insights from data generated by artifact-centric information systems.
Before presenting these novel techniques, the first step is to extract XOC logs
from artifact-centric information systems, since process mining takes event logs
as input.

This chapter and the next one in this thesis are focusing on the extraction
part. Figure 3.1 zooms in the extraction part in the whole framework of this
thesis and positions this chapter in the framework. More precisely, this chapter
transforms data from the database of artifact-centric information systems into
so-called object-centric event data. From the derived object-centric event data,
Chapter 4 defines and extracts XOC logs. Note that these two chapters are closely
connected, forming the extraction part.

In this chapter, we define the notion of object-centric event data, which con-
tains the data perspective, behavioral perspective and the interactions between
these two perspectives, as shown in Figure 3.2. More precisely, the data per-
spective is used to describe the data structure and data elements, the behavioral
perspective is used to describe the events in the data, and the interactions are
used to describe how events modify data elements. For instance, for a data set
generated by an artifact-centric information system, the data perspective refers
to database tables and the behavioral perspective refers to the operations on the
system which generates transactions in database tables.

This chapter is organized as follows. In Section 3.1 we explain the data
perspective. A data model is employed to describe the data structure (i.e.,
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Figure 3.1: Positioning Chapter 3 in the whole framework.

database schema) and an object model is defined to represent data elements (i.e.,
database records). Section 3.2 illustrates the behavioral perspective, consisting of
events extracted from various sources. Section 3.3 combines the data perspective
and behavioral perspective, resulting in object-centric event data. In Section 3.4,
we discuss the features of object-centric event data, and compare these with
traditional case-centric data. Section 3.5 concludes this chapter.
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three sections in this chapter, respectively.

3.1 Data Perspective

In order to discover insights from a data set generated by artifact-centric systems,
the first task is to analyze the data perspective of the data set. Here, the data
perspective refers to the data structure and data elements. More precisely, in the
context of databases, the data structure means the data schema and the data
elements means the table records.

In this section, the data perspective is divided into three parts. First, we
discuss the source to collect information related to the data perspective. Then the
data structure is described by a data model. At last, data elements are abstracted
as an object model.

3.1.1 Data Sources

Artifact-centric information systems are typically known as Enterprise Resource
Planning (ERP) and/or Customer Relationship Management (CRM) systems,
which support business functions related to sales, procurement, production,
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accounting, etc. Some well-known examples are enterprise systems from ven-
dors such as SAP (S/4HANA), Microsoft (Dynamics 365), Oracle (E-Business
Suite), and Salesforce (CRM). Besides, there are also some free and open source
alternatives such as Dolibarr and Odoo.1
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Figure 3.3: A fragment of database tables corresponding to the OTC scenario in an ERP
system Dolibarr.

These systems provide interfaces for users to operate and all the transactions
executed on the interfaces are stored in a relational database in an object-centric
manner, i.e., transactions of the same category (e.g., orders) are recorded in
the same table (e.g., the “order” table). The key feature of these systems is that
they are built on top of database technology and may contain hundreds, if not
thousands, of tables. For example, SAP has tens of thousands of tables with
information about customers, orders, deliveries, etc. Also, Hospital Information
Systems (HIS) and Product Lifecycle Management (PLM) systems have informa-

1 Dolibarr ERP/CRM is an open source (webpage-based) software package for small and medium
companies (www.dolibarr.org). It supports sales, orders, procurement, shipping, payments, contracts,
project management, etc.
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tion about many different entities scattered over a surprising number of database
tables.

Figure 3.3 shows a fragment of database tables from a real ERP system,
i.e., Dolibarr [89]. It contains nine tables, which store transactions in the OTC
(order-to-cash) business scenario. More precisely, the “order” table contains
all records related to customer orders, and each order has some order lines
in the “order_line” table. The “shipment” and “shipment_line” tables contain
information about the deliveries for orders. Each order can have some invoices
in the “invoice” table, and the correspondences between them are indicated by
the “element_relation” table. The “payment” and “payment_line” tables give
the details of payments for invoices. Each order, shipment or invoice refers to a
customer, whose information is shown in the “customer” table.

Besides, there are ten reference relations (i.e., r 1,r 2, . . . ,r 10) between tables,
which indicate the dependencies between records in different tables. For instance,
r 10 shows that the “order” column in the “order_line” table (a foreign key)
references the “id” column in the “order” table (the primary key). It indicates
that “order_line” records depend on “order” records. For instance, the first record
in the “order_line” table depends on the first record in the “order” table.

The data set shown in Figure 3.3 provides information related to the data
perspective of the business process. Next, we use this data set as an example to
illustrate how to model the data structure and data elements, respectively.

3.1.2 Data Structure

The data structure describes how data are organized and stored in databases. It
specifies the framework (backbone) of the database tables. For data modeling,
UML class models [42] and Entity-Relationship (ER) models [25] are often used
to describe the data schema of a database. Referring to them, in this part we
formalize a data model to describe the database structure.

Figure 3.4 shows the idea to abstract the data structure, i.e., tables, columns
of tables and dependencies between tables, as highlighted in the red dashed
squares. More precisely, a table is abstracted as a class, columns are abstracted
as attributes and the dependencies between tables are abstracted as relationships
between classes. By integrating them, the data structure is abstracted as a data
model.

Based on the idea, we next define classes, attributes and a function to indicate
the correspondence between them. Note that each attribute can only have one
type of values, e.g., the “creation_date” column in the “order” table in Figure 3.3



56 Object-Centric Event Data

table schema data model

order(o)

id

o1

creation_date customer

2017-08-11 10:33:37 c1

order_line(ol)

id order product quantity price

ol1 o1 computer 2 1190

o2 2017-08-13 16:28:15 c1

ol2 o1 phone 3 476

ol3 o2 cup 3 1

ol4 o2 TV 2 952

r10

order(o)

key

pk_order

column type

id CHAR

creation_date DATETIME

fk_o_c customer CHAR

order_line(ol)

key

pk_ol

column type

id CHAR

fk_ol_o order CHAR

product CHAR

quantity CHAR

price DOUBLE

r10

Figure 3.4: Abstracting the data structure (the highlighted parts, i.e., tables, columns and
dependencies) as a data model.

can only have values of “DATETIME”. Therefore, another function is defined to
give the possible values for an attribute.

Definition 3.1 (Classes and Attributes) Let UC be the universe of classes, UAttr

be the universe of attribute names, and UVal be the universe of attribute values. A
table is represented by a class c ∈UC , and a column in the table is represented by
an attribute attr ∈UAttr. Let C ⊆UC be a set of classes corresponding to all tables
in a database and Attr ⊆UAttr be a set of attribute names corresponding to columns
in all database tables.

• Function classAttr ∈C →P (Attr) gives all attribute names of a class where.
• Function val ∈ Attr → P (V ) maps each attribute name onto a set of values,

where V ⊆UVal is a set of values.
In the remainder, we use “attribute(s)” to refer to “attribute name(s)” when the
context is clear.

According to Definition 3.1, a table is abstracted as a class and the columns
of the table are abstracted as the attributes of the class, as shown in Figure 3.5.
For instance, the table “tableA” (on the left) is abstracted as the class “classA”
(on the right). Besides, the column “column1” is abstracted as the attribute
“attr1”. Function classAttr gives all attributes of a class, e.g., classAttr(classA) =
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{attr1,attr2,attr3,attr4}. Note that in a table each column may have a type which
restricts the possible values of the column. For instance, a timestamp column
can only have times, i.e., values of the type “DATETIME”. Accordingly, we define
a function val which indicates the type of attribute values for each attribute,
e.g., val(attr3) = DATETIME. Note that we focus on describing the data structure,
rather than verifying if the values satisfy the data structure. In the remainder,
we assume that the values always satisfy the requirements of the corresponding
types.
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attr2:INTEGER

attr3:DATETIME

attr4:CHAR

classA

column1:INTEGER

column2:INTEGER

column3:DATETIME

column4:CHAR(10)

tableA
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function classAttr 
gives the attributes of 

a class

Figure 3.5: Abstracting tables and columns as classes and attributes, respectively.

In relational databases, each table must have precisely one primary key. A
primary key corresponds to one or more columns whose values uniquely identify
each record in the table. Besides, each table can have a set of foreign keys. A
foreign key corresponds to one or more columns and refers to the primary key in
another table. Foreign keys build the dependency relations between tables. Next,
we define a generic format for both primary keys and foreign keys.

Definition 3.2 (Keys) Let UKN be the universe of key names. A key k = (kn,Attr) ∈
UKN ×P (UAttr) is a tuple of a key name and a set of attributes. Let UK be
the universe of keys, where any two keys cannot have the same key name, i.e.,
∀(kn,Attr), (kn′,Attr′) ∈UK : kn = kn′ ⇒ (kn,Attr) = (kn′,Attr′).

Function keyAttr ∈ K →P (Attr) gives the set of attributes of a key where K ⊇UK

is a set of keys and Attr ⊇UAttr is a set of attributes corresponding to the keys.

In the context of databases, a key is defined as a constraint spanning one or
more columns with a unique constraint name using an SQL sentence. Accordingly,
a key is specified as a combination of a unique key name and a set of attributes
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Figure 3.6: A key is a combination of a unique name and a set of attributes.

as shown in Figure 3.6. Consider for example the “order” table in Figure 3.3. Its
primary key is pk = (pk_order, {id}) where pk_order is the key name and id is an
attribute. Besides, (fk_order, {customer}) is one of its foreign keys, where fk_order
is the key name and customer is an attribute. Note that it is possible that two
keys have the same set of attributes, but two keys can never have the same key
name. For instance, the primary keys of the “order” table and “shipment” table
can have the same set of attributes, e.g., {id}, but they should be given different
key names, e.g., pk_order for “order” and pk_shipment for “shipment”. Function
keyAttr gives the attributes of a key, e.g., keyAttr(pk) = {id}. Note that the input of
keyAttr is a key (e.g., pk) rather than a key name (e.g., pk_order).

A foreign key must reference precisely one primary key to form a dependency
relation between two tables.2 Accordingly, each attribute of the foreign key
must reference one attribute of the primary key. In the following, we define two
functions to map foreign keys to primary keys on the key level and attribute
level, respectively.

Definition 3.3 (Mapping Foreign Keys to Primary Keys) Let PK ⊆UK be a set
of primary keys and FK ⊆UK be a set of foreign keys, where PK and FK are disjoint
sets (i.e., PK ∩FK =;).

• Function keyRel ∈ FK → PK maps each foreign key onto a primary key, i.e.,
specifies FK -PK reference relations.

• Function refAttr ∈ FK ×Attr 6→ Attr maps each pair of a foreign key and an
attribute (of the foreign key) onto an attribute of the corresponding primary

2One foreign key fk1 = (kn1,Attr1) can only reference one primary key. It is possible that another
foreign key fk2 = (kn2,Attr2) (referencing another primary key) uses the same attributes as fk1, and a
different key name, i.e., Attr1 = Attr2 and kn1 6= kn2. Note that this situation does not mean that one
foreign key can reference two primary keys.
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Figure 3.7: Mapping foreign keys onto primary keys on the key and attribute levels.

For a foreign key, function keyRel gives its corresponding primary key and
function refAttr shows the correspondence on the attribute level. Consider for
example the two classes “classA” and “classB” in Figure 3.7. The foreign key
of “classB” fk1 references the primary key of “classA” (indicated by r1), i.e.,
keyRel(fk1) = pk1. On the attribute level, attrB2 references attrA1 (indicated by r2)
and attrB3 references attrA2 (indicated by r3), i.e., refAttr(fk1,attrB2) = attrA1 and
refAttr(fk1,attrB3) = attrA2.

Note that each attribute of the foreign key can only reference an attribute of its
corresponding primary key (i.e., it cannot reference one of the other attributes).
In other words, for any fk ∈ FK , ∀attr ∈ keyAttr(fk) : refAttr(fk,attr) ∈ keyAttr(pk),
where pk is the primary key referenced by fk (i.e., pk = keyRel(fk)). For instance,
the attribute attrB2 of the foreign key fk1 cannot reference attrA3, as attrA3 is not
an attribute of the primary key pk1 in Figure 3.7.

Besides, it is impossible that two attributes of a foreign key reference the same
attribute of the corresponding primary key. That is, for any fk ∈ FK , ∀attr,attr′ ∈
keyAttr(fk) : refAttr(fk,attr) = refAttr(fk,attr′) =⇒ attr = attr′. For instance, the
attributes attrB2 and attrB3 of the foreign key fk1 cannot reference the same
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attribute attrA1 of the primary key pk1 in Figure 3.7.
Up to now, we have abstracted tables as classes and dependencies between

tables as references between foreign keys and primary keys. Now, we formalize
the data model, which integrates all the notions explained above, to represent
the data structure.

Definition 3.4 (Data Model) A data model is a tuple DM = (C ,Attr,classAttr, val ,
PK ,FK ,classPK ,classFK ,keyRel,keyAttr,refAttr) such that:

• C ⊆UC is a set of classes,
• Attr ⊆UAttr is a set of attribute names,
• classAttr ∈C →P (Attr) is a function mapping each class onto a set of attribute

names,
• val ∈ Attr →P (V ) is a function mapping each attribute onto a set of values,
• K ⊆UKN ×P (Attr) is a set of keys. PK is a set of primary keys and FK is a

set of foreign keys, where PK and FK are disjoint sets (i.e., PK ∩FK =;) and
K = PK ∪FK ,

• classPK ∈ C → PK is a total injective function mapping each class onto a
primary key,

• classFK ∈C →P (FK ) is a total injective function mapping each class onto a
set of foreign keys, such that for any c1,c2 ∈C : classFK (c1)∩ classFK (c2) =;,

• keyRel ∈ FK → PK is a function mapping each foreign key onto a primary key,
• keyAttr ∈ K → P (Attr) is a function mapping each key onto a set of at-

tributes, such that ∀k ∈ K : ∃c ∈C : (k ∈ {classPK (c)}∪classFK (c)∧keyAttr(k) ⊆
classAttr(c)), and

• refAttr ∈ FK ×Attr 6→ Attr is a function mapping each pair of a foreign key and
an attribute onto an attribute of the corresponding primary key, such that

– ∀fk ∈ FK : {a | (fk, a) ∈ dom(refAttr)} = keyAttr(fk)∧{a′ | ∃(fk, a) ∈ dom(refAttr) :
refAttr(fk,a) = a′} = keyAttr(keyRel(fk)), and

– ∀(fk, a) ∈ dom(refAttr) : val(refAttr(fk,a)) = val(a).
UDM is the universe of data models.

In the context of databases, a data model DM = (C ,Attr,classAttr,val,PK ,FK ,
classPK ,classFK ,keyRel,keyAttr,refAttr) describes the structure of a database (or
a part of a database involved in a particular analysis). More precisely, a class
c ∈C represents a table (i.e., C represents all tables in the database) while an
attribute attr ∈ Attr represents a column in a table (i.e., Attr represents all table
columns). Function classAttr specifies the attributes of a class and function val
indicates possible values for an attribute.

PK and FK represent all primary keys and foreign keys in the database,
respectively. PK and FK are disjoint sets as it is impossible that a key serves as
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both a primary key and a foreign key.3 Functions classPK and classFK define the
primary key and foreign keys for each class, respectively. Note that different
classes cannot have the same primary key or foreign key (indicated by the total
injective function and c1,c2 ∈C : classFK (c1)∩ classFK (c2) =;).

For each key, function keyAttr specifies all its corresponding attributes. Dif-
ferent keys can have the same attributes. The attributes of a key should
be contained by the attributes of the class corresponding to the key (i.e.,
∀k ∈ K : ∃c ∈C : (k ∈ {classPK (c)}∪ classFK (c)∧keyAttr(k) ⊆ classAttr(c))).

For a foreign key, keyRel indicates its corresponding primary key, and refAttr
specifies the mapping relations between the attributes of the foreign key and the
attributes of the primary key. Note that each attribute of a foreign key should be
linked to an attribute of is corresponding primary key and vice versa, required by
refAttr. In other words, for a foreign key, i.e., fk ∈ FK , (i) the possible attributes
involved in the domain of refAttr ({a | (fk, a) ∈ dom(refAttr)}) are all attributes
of the foreign key ({keyAttr(fk)}); (ii) the possible attributes returned by refAttr
({a′ | ∃(fk, a) ∈ dom(refAttr) : refAttr(fk,a) = a′}) are all attributes of the primary
key corresponding to the foreign key (keyAttr(keyRel(fk))). Besides, the two
linked attributes should have the same type of values, i.e., ∀(fk, a) ∈ dom(refAttr) :
val(refAttr(fk,a)) = val(a).

For instance, the database in Figure 3.3 can be represented by a data model
where C = {p,o, s,er,ol,sl,pl, i ,c} and Attr = {id,creation_date, . . . ,address}. Based
on the dependencies between tables (i.e., r1, r2,..., r10), we assign a name
(e.g., pk_order) to each primary key or foreign key, resulting in PK = {(pk_order,
{id}), (pk_shipment, {id}), . . . , (pk_customer, {id})} and FK = {(fk_order, {customer}),
(fk_shipment, {customer}), . . . , (fk_invoice, {customer})}. Consider for example the
class o (i.e., “order”) to understand the functions related to classes. The set
of its attributes is classAttr(o) = {id,creation_date,customer}, its primary key is
classPK (o) = (pk_order, {id}) and it has only one foreign key, i.e., classFK (o) =
{(fk_order, {customer})}. For an example attribute “creation_date”, the type of its
possible values is val(creation_date) = DATETIME. The foreign key fk = (fk_order,
{customer}) is used to explain the functions related to foreign keys. Its correspond-
ing primary key is keyRel(fk) = (pk_customer, {id}) and the set of its attributes is
keyAttr(fk) = {customer}. Besides, its attribute customer references the attribute
id, i.e., refAttr(fk,customer) = id.

Figure 3.8 presents a visualization solution for the data model explained
above. The model is depicted as a graph consisting of nodes (consisting of

3A primary key and a foreign key may have the same set of attributes. However, they are not the
same key as they have different key names.
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Figure 3.8: The data model describing the structure of the database in Figure 3.3.

smaller grids in rows and columns) and edges between nodes. More precisely,
nodes represent classes and edges represent references between foreign keys
and primary keys in the data model. For instance, the node on the top left
corresponds to the class “payment”. The first row colored in green in the node
shows the name of the class, i.e., “payment(p)” (the letter in the brackets shows
the abbreviation of the name). The next rows are divided into three columns,
i.e., “key”, “column” and “type”, which show the key names, attribute names
and value types, respectively. Note that each primary key name has a prefix of
“pk” and each foreign key name has a prefix of “fk”. For instance, “pk_order”
is the primary key and “fk_o_c” is one foreign key of the “order” table. Each
edge represents a reference relation, which has an arrow from the foreign key
(in the child table) to the primary key (in the parent table). The labels on
the edges are used to refer to the relations between foreign keys and primary
keys. For instance, r 7 refers to the relation between the foreign key “fk_pl_p” in
“payment_line” and the primary key “pk_payment” in “payment”.
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3.1.3 Data Elements

In Section 3.1.2, the data structure is abstracted as a data model. In this part, we
shift attention to data elements, that can be considered as the instances allowed
by the data structure and provide information of the real executions of business
processes.

Figure 3.9 shows the idea to abstract data elements. More precisely, an
individual record in one of the database tables is abstracted as an object, and
dependency relations among records are abstracted as object relations. By
integrating them, the data elements in the database (the highlighted parts in the
red dashed squares) are abstracted as an object model.

object model

order line

r10r10r10

order

ol1

ol2

ol3 ol4

o2

o1

r10

table records

order(o)

id

o1

creation_date customer

2017-08-11 10:33:37 c1

order_line(ol)

id order product quantity price

ol1 o1 computer 2 1190

o2 2017-08-13 16:28:15 c1

ol2 o1 phone 3 476

ol3 o2 cup 3 1

ol4 o2 TV 2 952

r10

Figure 3.9: Abstracting data elements (the highlighted parts, i.e., table records) as an
object model.

In databases, a record is an instance of a database table, which instantiates
all columns of the table. Accordingly, in the context of a data model, an object
(representing the record) is an instance of a class (representing the table), which
assigns values to all attributes of the class. Therefore, an object should have a
corresponding class and a function (assigning values to attributes), to contain all
information of a record.

Definition 3.5 (Objects) Let DM = (C ,Attr,classAttr,val,PK ,FK ,classPK ,classFK ,
keyRel,keyAttr,refAttr) be a data model and M DM = {map ∈ Attr 6→ V | ∀attr ∈
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dom(map) : map(attr) ∈ val(attr)} be the set of mappings. ODM = {(c,map) ∈ C ×
M DM | dom(map) = classAttr(c)∧∀attr ∈ keyAttr(classPK (c)) : map(attr) 6= NULL} is
the set of all possible objects of DM.

Based on a data model, Definition 3.5 gives the formalization of objects.
An object consists of a class c and a function map, where c shows the class
of the object and map instantiates all attributes of the class. As shown in
Figure 3.10, the first record in the “order” table can be formalized as an object o =
(c,map) where c = order , dom(map) = {id,creation_date,customer}, and map(id) =
o1, map(creation_date) =2017-08-11 10:33:37 and map(customer) = c1.

indicating the table

o1

order(o)

id

o1

creation_date customer

2017-08-11 10:33:37 c1

...

class:o

map

mapping each 
attribute to a 

value

a table record an object

id : o1

creation_date : 2017-08-11 10:33:37

customer : c1

Figure 3.10: Abstracting a table record as an object.

Note that it is possible that a record is added to a table only assigning
values to primary key columns (i.e., the columns corresponding to the primary
key). In other words, attributes of the primary key must be given values (i.e.,
attr ∈ keyAttr(classPK (c)) : map(attr) 6= NULL) and the other attributes may be
empty (or usually instantiated as the value “NULL” by default).

In databases, a record can reference another record through a reference
(i.e., FK-PK) relation. Accordingly, an object can be correlated to another object
through a so-called object relation. Note that one class may have multiple foreign
keys, such that objects can be correlated through different FK-PK relations. For
instance, the first record er1 in the “element_relation” table in Figure 3.3 (i)
references the record o1 in the “order” table through r8 and (ii) references the
record i1 in the “invoice” table through r3. Therefore an object relation should
have a corresponding type, indicating through which FK-PK relation two objects
are correlated.

Definition 3.6 (Class Relationships (Object Relation Types)) Let DM = (C ,Attr,
classAttr,val,PK ,FK ,classPK ,classFK ,keyRel,keyAttr,refAttr) be a data model. A
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class relationship is a tuple r = (fk,pk) ∈ FK ×PK where keyRel(fk) = pk. RDM =
{(fk,pk) ∈ FK ×PK | keyRel(fk) = pk} is the set of all possible class relationships of
DM.

Class relationships correspond to reference (FK-PK) relations between tables.
If a foreign key fk of class c (i.e., fk ∈ classFK (c)) references a primary key pk of a
class c ′ (i.e., pk = classPK (c ′)), we say that there exists a class relationship from c
to c ′. For instance, in Figure 3.8 there exists a class relationship from class “order
line” to class “order”, as the foreign key fk_ol_o of table “order_line” references
the primary key pk_order of table “order” (indicated by r10).

By using class relationships to indicate types, an object relation is defined as
a tuple of a class relationship, a source object and a target object, which means
that the source object references the target object through the class relationship.

Definition 3.7 (Object Relations) Let DM = (C ,Attr,classAttr,val,PK ,FK ,classPK ,
classFK ,keyRel,keyAttr,refAttr) be a data model. There exists an object relation
rel = (r,o,o′) ∈ RDM ×ODM ×ODM of class relationship r = (fk,pk) from object
o = (c,map) to object o′ = (c ′,map′), denoted as o

r7→ o′, if
• fk ∈ classFK (c),
• pk = classPK (c ′), and
• ∀attr ∈ keyAttr(fk) : map(attr) = map′(refAttr(fk,attr)).

RelDM is the set of all possible object relations of DM, i.e., RelDM = {(r,o,o′) ∈
RDM ×ODM ×ODM | o

r7→ o′}.

There exists an object relation of type r = (fk,pk) between an object o =
(c,map) and another object o′ = (c ′,map′), if (i) fk is one of the foreign keys of c,
(ii) pk is the primary key of c ′ and (iii) each attribute value (corresponding to
the foreign key fk) of o is equal to the corresponding attribute value of o′, i.e.,
∀attr ∈ keyAttr(fk) : map(attr) = map′(refAttr(fk,attr)).

Consider the objects in Figure 3.11 to understand how to identify the object
relations. Assume that object ol1 = (c,map) corresponds to the first record in
the “order_line” table and object o1 = (c ′,map′) corresponds to the first record
in the “order” table. As shown in the data model in Figure 3.8, there exists
a class relationship r10 connecting the foreign key fk = (fk_ol_o, {order}) of the
“order_line” table to the primary key pk = (pk_order, {id}) of the “order” table. In
other words, r10 = (fk,pk) and refAttr(fk,order) = id. For the object ol1, the value
in its attribute “order” is o1, i.e., map(order) = o1, which is equal to the value
in the attribute “id” of o1, i.e., map′(id) = o1. Therefore, there exists an object
relation (r10,ol1,o1) between ol1 and o1, i.e., ol1

r107→ o1. Similarly, we can also
derive ol2

r107→ o1
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Figure 3.11: Abstracting dependencies between records as object relations between ob-
jects.

Definition 3.8 (Extracting Object Relations) Let DM be a data model and Obj ⊆
ODM be a set of objects. extractRel ∈ P (ODM ) → P (RelDM ) is a function extract-
ing all possible object relations from a set of objects such that extractRel(Obj) =
{(r,o,o′) ∈ RDM ×Obj×Obj | o

r7→ o′}.

Definition 3.8 presents a function which extracts all possible object rela-
tions from a given set of objects. Consider for example the set of objects
Obj = {o1,ol 1,ol 2} in Figure 3.11. extractRel(Obj) = {(r 10,ol 1,o1), (r 10,ol 2,o1)}, as
ol 1

r 107→ o1 and ol 2
r 107→ o1. Specifically, with all possible objects of DM as input, the

function returns all possible object relations of DM, i.e., RelDM = extractRel(ODM ).
Up to now, we have explained objects and object relations to abstract the

records and dependencies between records in database tables. Next, we integrate
them to form a so-called object model, which describes the whole set of elements
of a database.
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Definition 3.9 (Object Model) Let DM = (C ,Attr,classAttr, val ,PK ,FK ,classPK ,
classFK ,keyRel,keyAttr,refAttr) be a data model. An object model of DM is a tuple
OM = (Obj,Rel,class,objectAttr), where

• Obj ⊆ ODM is a set of objects,
• Rel ⊆ RDM ×Obj×Obj is a set of object relations,
• class ∈ Obj → C maps objects onto classes, such that ∀o = (c,map) ∈ Obj :

class(o) = c, and
• objectAttr ∈ Obj → (UAttr 6→UVal) maps objects onto a partial function assign-

ing values to some attributes, such that ∀o = (c,map) ∈ Obj : objectAttr(o) =
map.

UOM is the universe of object models.
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Figure 3.12: An object model representing all data elements of the database in Figure 3.3.

An object model consists of a set of objects and a set of object relations
between these objects. Functions class and objectAttr are defined to easily refer
to the classes and attributes of objects. Actually, they are contained implicitly
in the objects. In the database context, an object model represents a snapshot
(i.e., a state) of the database at some point in time, i.e., objects represent records
while relations represent dependencies between records. All data elements in
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Figure 3.3 can be abstracted as the object model OM = (Obj,Rel,class,objectAttr)
in Figure 3.12. Obj consists of twenty-eight objects, e.g., o1 and ol 1, which
correspond to the first record in the “order” and “order line” tables respectively.
Rel consists of thirty-six object relations, e.g., (r 10,ol 1,o1), which indicates that
the record ol 1 references the record o1 through r 10. Consider the object o1 to
understand class and objectAttr. class(o1) = order and objectAttr(o1) = map where
map(id) = o1, map(creation_date) = 2017−08−11 10 : 33 : 37 and map(customer) =
c1.

In databases, records must have unique primary key values (i.e., the combi-
nations of values in the columns corresponding to the primary key are unique).
For instance, the two records in the “order” table in Figure 3.3 cannot have the
same value in the “id” column. Besides, if the foreign key values (i.e., values in
the columns corresponding to a foreign key) of a record are not “NULL” (i.e.,
not empty), the referenced record must exist. For instance, in the “order_line”
table, the first record ol 1 has the value o1 in the “order” column (corresponding
to a foreign key referencing the primary key of “order” table), which means that
ol 1 references another record o1. Therefore, o1 must exist in the “order” table.
Note that the foreign key values of a record may be “NULL” (i.e., empty) at some
moment, which means that the record does not yet reference a potential record.

Given a set of tables, if all records satisfy the rules explained above, the set
of tables is a possible state of the database, i.e., the records are valid for the
database structure. As a data model represents the structure of the database
and an object model represents the state of the database, we can use the object
model to check its consistency. More precisely, we can check if an object model
is valid for a data model, i.e., the state represented by the object model is a
possible state of the database represented by the data model.

Definition 3.10 (Valid Object Model) Let DM = (C ,Attr,classAttr,val,PK ,FK ,
classPK ,classFK ,keyRel,keyAttr,refAttr) be a data model and OM = (Obj,Rel,class,
objectAttr) be an object model. OM is valid for DM if and only if:

• ∀(c,map), (c,map′) ∈ Obj : (∀attr ∈ keyAttr(classPK (c)) : map(attr) = map′(attr))
⇒ map = map′, i.e., primary key values must be unique,

• ∀(c,map) ∈ Obj : ∀fk ∈ classFK (c) :
– ∀attr ∈ keyAttr(fk) : map(attr) = NULL, i.e., the foreign key values are

not instantiated, or
– ∃(c ′,map′) ∈ Obj : keyRel(fk) = classPK (c′)∧∀attr ∈ keyAttr(fk) : map(attr)

= map′(refAttr(fk,attr))), i.e., the referenced object must exist,
• Rel = extractRel(Obj), i.e., all possible object relations are contained by Rel.

An object model OM is valid if (i) each object in Obj is unique (i.e., its
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primary key values are unique), (ii) all objects referenced by other objects exist
in Obj, (iii) Rel is complete (i.e., it contains any object relation between each two
objects, in which one references the other) and not redundant (i.e., each object
relation contained by it corresponds to a reference between two objects). For
instance, the object model in Figure 3.12 is valid for the data model in Figure 3.8
as it satisfies all the rules in Definition 3.10. It is not valid if we (i) add an
object which has the same primary key values as any already existing object, (ii)
remove a referenced object, e.g., o1 (referenced by ol 1 and ol 2), or (iii) remove
any object relation (e.g., (r 10,ol 1,o1)) or add an inexistent object relation (e.g.,
(r 10, sl 1,o1)).

3.2 Behavioral Perspective

Section 3.1 introduced the data perspective of object-centric event data, i.e., data
structure (the schema of a database) and data elements (records of a database).
Essentially, object-centric event data are generated by business transactions
in information systems. In other words, transactions in these systems modify
database tables by adding, updating or deleting records, which leave time-related
footprints in various sources. The footprints can be extracted as events, which
form the behavioral perspective and provide a business process view to show
how the transactions are executed.

In this section, we illustrate the behavioral perspective of object-centric event
data in three parts. The first part discusses various event sources where events
can be extracted. Then we explain the events at the database level, i.e., database
changes, which indicate the changes of records in the database. At last, the
events on the information system level are extracted, which have more intuitive
meanings and are easier to understand for users.

3.2.1 Event Sources

Information systems (such as WFM/BPM systems, ERP/CRM systems, rule-based
systems, call center software, high-end middleware, etc.) provide a wealth
of event data, which can be explored to discover insights to reflect executed
business processes. Events may be “machine events” (e.g., an X-ray machine, an
ATM, or a baggage handling system), “organization events” (e.g., the analysis
of a blood sample in a hospital or a delivery for a customer order in a sales
company), “web events” on the Internet (e.g., web services) and “life events” on
the social media (e.g., messages on Facebook, twitter and LinkedIn).
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The term Internet of Events (IoE) was proposed in [134] to refer to all
events from various sources as shown in Figure 3.13. Typically, these sources
are composed of: (i) the Internet of Content (IoC), e.g., traditional web pages,
articles, encyclopedia like Wikipedia, YouTube, e-books and newsfeeds; (ii) the
Internet of People, e.g., interactions of people, such as e-mail, facebook, twitter,
forums, LinkedIn; (iii) the Internet of Things (IoT), e.g., things may have an
internet connection or tagged using Radio-Frequency Identification (RFID), Near
Field Communication (NFC); (iv) the Internet of Locations (IoL), e.g., data that
have a spatial dimension (geospatial attributes).

Internet of 
Content

Internet of 
People

Internet of 
Things

Internet of 
Locations

“Big 
Data” “social” “cloud” “mobility”

Internet of Events

Figure 3.13: Internet of Events (IoE): event data are generated from a variety of sources.

Process mining aims to reveal meaningful insights from event data, e.g.,
discover process models, identify bottlenecks, detect violations and anticipate
problems. In this thesis, we mainly focus on event data from artifact-centric
information systems. Note that such event data are only a small part of IoE. In
future, it is possible to exploit the possibility of applying our techniques to data
from other domains, such as social media.

All the transactions executed on artifact-centric information systems are
stored in relational database tables, in which events are recorded often in
an implicit and scattered manner. Therefore, Database Management Systems
(DBMSs) can be exploited to extract events, as explained next.
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Redo Logs

In practice, there exist various DBMSs, in which some widely used examples
are Oracle RDBMS (Oracle), SQL server (Microsoft), PostgreSQL (PostgreSQL
Global Development Group), DB2 (IBM) and Sybase (SAP). For data integrity
and recovery reasons, all of these systems have facilities to record database
changes [135].

For example, in the Oracle RDBMS environment, redo logs record the history
of database changes, which can be queried by Oracle LogMiner, a utility provided
by Oracle [135]. Besides, every Microsoft SQL Server database has a transaction
log that records all database modifications. Sybase IQ also provides a transaction
log. In this thesis, we use redo logs to refer to such logs.

Index Time Redo

1 2017-08-11 10:33:37 insert into “order” (“id”,“creation_date”,“customer”) values (“o1”,“2017-08-11
10:33:37”,“c1”)

2 2017-08-11 10:33:37 insert into “order_line” (“id”,“order”,“product”,“quantity”,“price”) values
(“ol1”,“o1”,“computer”,“2”,“1190”)

3 2017-08-11 10:33:37 insert into “order_line” (“id”,“order”,“product”,“quantity”,“price”) values
(“ol2”,“o1”,“phone”,“3”,“476”)

... ... ...

Table 3.1: A fragment of a redo log in which each line corresponds to a change in
databases.

Table 3.1 shows a segment of a redo log [49]. Each row in the redo log
corresponds to one execution of an SQL sentence in the database. For instance,
the first row records the execution of an insertion sentence which inserts a record
into the “order” table. This source of data has the potential to create a full history
of what has happened on databases [51]. In other words, it can be used to
extract events, which modify some objects (records) in tables. For instance, the
first row may correspond to one event that happened at “2017-08-11 10:33:37”,
which changes the object o1.

Change Tables

Some SAP systems provide change tables (i.e., CDHDR and CDPOS) to record
database changes as shown in Table 3.2 and Table 3.3, which can be used
to detect events [115]. CDHDR is the change head table which records all
modifications in the database. In the CDHDR table, the “CHANGENR” column
can be considered as the primary key, i.e., each change performed on the database
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OBJECTCLAS CHANGENR OBJECTID USERNAME UDATE UTIME TCODE CHANGE_IND

o 0001 0000001 USER1 2017-08-11 10:33:37 0001 I
ol 0002 0000002 USER1 2017-08-11 10:33:37 0001 I
ol 0003 0000003 USER1 2017-08-11 10:33:37 0001 I
o 0004 0000004 USER1 2017-08-13 16:28:15 0001 I
... ... ... ... ... ... ... ...

Table 3.2: A fragment of the CDHDR table.

results in an entry with a unique change id in the column. Besides, the “UDATE”
and “UTIME” columns record the time of changes and “CHANGE_IND” indicates
the type of changes, e.g., “I” means that the change inserts a record in the
database.

OBJECTCLAS CHANGENR TABNAME TABKEY FNAME VALUE_NEW VALUE_OLD

o 0001 order o1 id o1 -
o 0001 order o1 creation_date 2017-08-11 10:33:37 -
o 0001 order o1 customer c1 -
ol 0002 order_line ol1 id ol1 -
ol 0002 order_line ol1 order o1 -
ol 0002 order_line ol1 product computer -
ol 0002 order_line ol1 quantity 2 -
ol 0002 order_line ol1 price 1190 -
... ... ... ... ... ... ...

Table 3.3: A fragment of the CDPOS table.

In contrast, the CDPOS table is the item table for changes, which records
the details of each modification, i.e., what values have been changed exactly. It
also has the “CHANGENR” column which references the “CHANGENR” column
in the CDHDR table. The “TABNAME” column and “FNAME” column indicate
the table and field that are impacted by the change, respectively. The “TABKEY”
column gives the primary key value of the impacted record. The “VALUE_OLD”
column and “VALUE_NEW” column give the values for the impacted field before
the change and after the change, respectively.

Based on the CDHDR and CDPOS change tables in SAP, we can reconstruct
the full history of the database. Note that one change in the CDHDR table may
correspond to multiple records in the CDPOS table. For instance, the change
“0001” in the CDHDR table corresponds to the first three rows in the CDPOS table,
which indicate the insertion of the record o1 in the “order” table in Figure 3.3.
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Timestamp Columns

In addition to redo logs and change tables, the timestamp columns in tables (e.g.,
“creation_date” column in “order” table in Figure 3.3) can also be used to extract
events with the support of domain knowledge.

For instance, assume that we can get from the domain knowledge that each
“create order” event adds one record in the “order” table and one or more records
in the “order line” table. Then a “create order” event that happened at “2017-08-
11 10:33:37” can be extracted from the first row in the “order” table in Figure 3.3,
which inserts three records o1, ol 1 and ol 2.

In summary, the events extracted from various data sources introduced in
this section can be divided into two levels, the database level and information
system level. On the database level events refer to the database changes, and on
the information system level events refer to the operations of users on interfaces.
We explain them in the following sections.

3.2.2 Events at the Database Level

In this section, we analyze events at the database level, i.e., database changes
directly extracted from files such as redo logs and change tables. More precisely,
the analysis does not focus on a specific source of a particular DBMS. We try to
define some basic and generic definitions to formalize the events from different
sources.

As explained in Section 3.2.1, redo logs can monitor changes in the database.
In particular, we assume that we can see when a record is inserted, updated, or
deleted. Figure 3.14 shows three typical database changes. The top one indicates
that one record is inserted into the “order” table while the bottom one shows
the opposite situation, i.e., one “order” record is deleted. The middle one means
that the value of the “quantity” attribute in the record ol 1 is updated from “2” to
“4”. Clearly, changes are different in three perspectives:

• Operation types. Changes may correspond to different types of SQL sen-
tences, i.e., insertion, update and deletion. For instance, the three changes
correspond to three different types of sentences.

• Classes. Changes may impact records in different tables, i.e., impact objects
of different classes. For instance, the top change impacts the “order” table
while the middle change impacts the “order_line” table.

• Attributes. Changes may impact different attributes of records. For instance,
the middle change in Figure 3.14 only updates the value of the “quantity”
attribute. It is possible that another change updates the values of other
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order(o)

id
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creation_date customer
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creation_date customer

2017-08-11 10:33:37 c1

o2 2017-08-13 16:28:15 c1
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updateorder_line(ol)

id order

order(o)

id

o1

creation_date customer

2017-08-11 10:33:37 c1

deleteorder(o)

id

o1

creation_date customer

2017-08-11 10:33:37 c1

o2 2017-08-13 16:28:15 c2

the record o2 is 
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the value 2 is 
updated to 4

product quantity price

ol1 o1 computer 2 1190

order_line(ol)

id order product quantity price

ol1 o1 computer 4 1190

the new record 
o2 is added 

Figure 3.14: Different types of changes.

attributes.

Definition 3.11 (Change Types) Let DM = (C ,Attr,classAttr,val,PK ,FK ,classPK ,
classFK ,keyRel,keyAttr,refAttr) be a data model. CT DM = {(op,c,Attr′)} = CT DM

add ∪
CT DM

upd ∪CT DM
del is the set of change types composed of the following pairwise disjoint

sets:
• CT DM

add = {(⊕,c,Attr′) | c ∈ C ∧Attr′ ⊆ classAttr(c)∧keyAttr(classPK (c)) ⊆ Attr′}
are the change types for adding objects of DM,

• CT DM
upd = {(®,c,Attr′) | c ∈C ∧Attr′ ⊆ classAttr(c)∧keyAttr(classPK (c))∩Attr′ =

;} are the change types for updating objects of DM, and
• CT DM

del = {(ª,c,Attr′) | c ∈C ∧Attr′ =;} are the change types for deleting objects
of DM.

UCT is the universe of change types.

Based on the discussion about differences of changes, a change type is
formalized as a tuple of an operation (sentence) type op, a class c and a set of
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attributes Attr′. Note that Attr′ can only contain attributes of the class c (i.e.,
Attr′ ⊆ classAttr(c)). Besides, it should satisfy different requirements for different
operation types. If op =⊕, Attr′ must include all attributes of the primary key
(i.e., keyAttr(classPK (c)) ⊆ Attr′), as the primary key columns must be instantiated
when a record is inserted into databases. In contrast, Attr′ cannot include any
attribute of the primary key (i.e., keyAttr(classPK (c))∩Attr′ = ;) when op = ®,
since the primary key values of a record cannot be updated. If op = ª, Attr′
is an empty set as no attributes are instantiated or updated. Note that Attr′
only indicates the instantiated or updated attributes, and it is not mandatory to
contain primary key attributes for access (which is provided later).

For instance, the change types of the three changes in Figure 3.14 can be
specified as (⊕,order, {i d ,creation_date,customer}), (®,order_line, {quantity}) and
(ª,order, { }), respectively.

Each database change can be considered as an instance of a change type,
which impacts the state of a record, indicated by all attributes of the record.
More precisely, a change inserting a record means that all attributes of the record
are instantiated and assigned with values. A change updating a record means
that some attributes of the record are updated. A change deleting a record
means that all attributes of the record are inexistent. Next, we use two mapping
functions to describe the change of attributes to formalize changes.

Definition 3.12 (Changes) Let DM be a data model, CT DM = CT DM
add ∪CT DM

upd ∪
CT DM

del be the set of change types and ⊥ be the null value. CHDM = CHDM
add ∪CHDM

upd ∪
CHDM

del is the set of changes composed of the following pairwise disjoint sets:
• CHDM

add = {(⊕,c,Attr′,mapold,mapnew) | (⊕,c,Attr′) ∈ CT DM
add ∧ mapold =⊥ ∧(c,

mapnew) ∈ ODM ∧ (∀attr ∈ Attr′ : mapnew(attr) 6= NULL)∧ (∀attr ∈ classAttr(c) \
Attr′ : mapnew(attr) = NULL)},

• CHDM
upd = {(®,c,Attr′,mapold,mapnew) | (®,c,Attr′) ∈ CT DM

upd∧(c,mapold) ∈ODM∧
(c,mapnew) ∈ODM ∧ (∀attr ∈ classAttr(c) \ Attr′ : mapnew(attr) = mapold(attr))},
and

• CHDM
del = {(ª,c,Attr′,mapold,mapnew) | (ª,c,Attr′) ∈ CT DM

del ∧(c,mapold) ∈ODM∧
mapnew =⊥}.

A change (op,c,Attr′,mapold,mapnew) corresponds to an SQL sentence, i.e.,
adding, updating or deleting a record in a table. Its change type (op,c,Attr′)
indicates which table (i.e., c) the record is in, which columns (i.e., Attr′) of the
record are impacted and how the record is impacted (indicated by op, i.e., adding,
updating or deleting). The old and new mappings (i.e., mapold and mapnew)



76 Object-Centric Event Data

specify the contents of the record before and after the change, respectively. Note
that mapold and mapnew should contain all primary key values for accessing the
impacted records. (c,⊥) indicates an inexistent record in the database.

For instance, the top change in Figure 3.14 can be specified as (⊕,order, {id,
creation_date,customer},⊥,map) where map(creation_data) = 2017−08−11 10 : 33 :
37, map(id) = o1 and map(customer) = c1. Table 3.4 shows the formalization of
the three changes in Figure 3.14 (the “creation_date” attribute only presents the
date for simplicity). Note that Attr′ provides more power to produce different
change types, i.e., changes impacting different attributes in the same table can
be classified into different change types, which is not considered in [51].

Index Type Class Attributes OldMap NewMap Timestamp

1 ⊕ order
id,

creation_date,
customer

mapnull

id:ol,
creation_date:2017-08-11,

customer:c1
ts1

2 ® order_line quantity

id:oll,
order:o1,

product:computer,
quantity:2,
price:1190

id:oll,
order:o1,

product:computer,
quantity:4,
price:1190

ts2

3 ª order
id,

creation_date,
customer

id:ol,
creation_date:2017-08-11,

customer:c2
mapnull ts3

Table 3.4: A fragment of change log.

Definition 3.13 (Change Occurrence, Change Log) Let DM be a data model
and CHDM be the set of changes of DM. Let UTS be the universe of timestamps.
CODM = CHDM ×UTS is the set of all possible change occurrences of DM. A change
log CL = 〈co1,co2, ...,con〉 ∈ (CODM )∗ is a sequence of change occurrences such that
time is non-decreasing, i.e., tsi É tsj for any coi = (chi, tsi) and coj = (chj, tsj) with
1 É i < j É n.

A change occurrence co = (ch, ts) represents a change ch happening at ts. It
corresponds to one row in the redo log or CDHDR table. A change log consists of
a list of change occurrences which are sorted by timestamps such that time is
non-decreasing. Table 3.4 presents a fragment of a change log containing three
change occurrences. Note that a change log records events on the database level,
i.e., it can be considered as an event log on the database level. Next, we explain
the events at the information system level.
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3.2.3 Events at the Information System Level

In Section 3.2.2, we defined change occurrences, i.e., events at the database
level. Note that the change occurrences are atomic and they are different from
events on information systems, since one event may result in multiple change
occurrences in different tables. For instance, one click on the “create order”
button may insert one record in the “order” table and two records in the “order_-
line” table as shown in Figure 3.15. In other words, one “create order” event
results in three change occurrences. In this part, we lift events from the database
level (i.e., change occurrences) to the information system level.

order(o)

id

o1

creation_date customer

2017-08-11 10:33:37 c1

order_line(ol)

id order product quantity price

ol1 o1 computer 2 1190

create order

ol2 o1 phone 3 476interface of an 
information system

1 1

1..*

1

Figure 3.15: One event in an information system corresponds to multiple changes in
different tables.

Here, we assume that the change occurrences corresponding to one event
have the same timestamp. For instance, in Figure 3.15 the three change occur-
rences co1 = (ch1, ts1), co2 = (ch2, ts2) and co3 = (ch3, ts3) that correspond to the
“create order” event should have the same timestamp, i.e., ts1 = ts2 = ts3. Based
on this idea, events can be defined as follows, i.e., events are like change logs at
a particular time.

Definition 3.14 (Events) Let DM be a data model, CODM be the set of change
occurrences of DM. An event e = 〈co1,co2, ...,con〉 ∈ (CODM )∗ is a sequence of change
occurrences which have the same timestamp, i.e., ∀(chi, tsi), (chj, tsj) ∈ e : tsi = tsj.
E DM is the set of events of DM

As shown in Definition 3.14, an event is a sequence of change occurrences
which have the same timestamp. For instance, e = 〈((⊕,o,Attr,mapold,mapnew), ts),
((⊕,ol ,Attr′,map′

old,map′
new), ts), ((⊕,ol ,Attr′,map′′

old,map′′
new), ts)〉 is an event con-

sisting of three changes happening at ts. It corresponds to the “create order”
event in Figure 3.15. Based on the definition of events, a change log can be
transformed into a sequence of events, by grouping changes into events.
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Definition 3.15 (Transforming Change Log into Event Sequence) extractES ∈
(CODM )∗ → (E DM )∗ is a function to extract an event sequence from a change log
such that ∀CL = 〈co1,co2, ...,con〉 ∈ (CODM )∗ : extractES(CL) = 〈e1,e2, ...,em〉 where

• 〈co1,co2, . . . ,con〉 = e1 ⊕e2 ⊕ . . .⊕em ,
• ∀1 ≤ i ≤ m : ∀(ch, ts), (ch′, ts′) ∈ ei : ts = ts′, and
• ∀1 ≤ i < j ≤ m : ∀(ch, ts) ∈ ei , (ch′, ts′) ∈ e j : ts < ts′.

Change Log Event Sequence
Index Change Occurrence Index Event

1 co1 = (ch1, ts1) 1 e1 = 〈co1〉
2 co2 = (ch2, ts2)

2 e2 = 〈co2,co3,co4〉3 co3 = (ch3, ts2)
4 co4 = (ch4, ts2)
5 co5 = (ch5, ts3)

3 e3 = 〈co5,co6〉6 co6 = (ch6, ts3)

Table 3.5: Transforming a change log into an event sequence.

Function extractES transforms a change log (i.e., a change occurrence se-
quence) into an event sequence by grouping change occurrences at the same
time into an event without modifying the order of the change occurrences. For
instance, Table 3.5 shows an example of transforming a change log with six
change occurrences into an event sequence with three events. Note that it is
possible to group change occurrences based on domain knowledge instead of time,
which provides more freedom for extracting events (e.g., overlapping events).

Note that the assumption that change occurrences of the same timestamp
correspond to one event may be problematic in some situations. The assumption
is impacted by the granularity of the timestamp. In practice, it is possible that
multiple events make changes with the same timestamp. Here, we just give a
naive approach based on the assumption. More advanced approaches can be
proposed as future work. Another solution to avoid the problem is to consider
a change occurrence as an event, without distinguishing events at database or
information system levels [51,135].
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3.3 Connecting the Behavioral Perspective to the
Data Perspective

Section 3.1 introduced the data perspective of a data set, which abstracts the
data structure and data elements. Section 3.2 explained the behavioral perspec-
tive, i.e., extract and formalize events on the database level and information
system level. Note that there exist interactions between these two perspectives,
e.g., events from the behavioral perspective may modify objects from the data
perspective. In this section, we define a notion of object-centric event data to
combine these two perspectives [88].

Before integrating these two perspectives, we investigate their interactions.
Originally, the interactions are derived from the fact that database changes
impact objects. Consider for example a change occurrence ((op,c,Attr′,mapold,
mapnew), ts). It changes an object at the time ts and the two mapping functions
mapold and mapnew indicate the values of attribute of the object before and after
the change, respectively. Based on the functions, we can find the object which
is impacted by the database change. In the following, we define a function to
connect database changes to the corresponding objects.

Definition 3.16 (Relating Changes to Objects) Let DM be a data model and
co = ((op,c,Attr′,mapold,mapnew), t s) ∈ CODM be a change occurrence. Function
change ∈ CODM → ODM gives the object changed by each change occurrence, such
that change(co) = (c,map) where

• if op 6= ª, map = mapnew, or
• if op =ª, map = mapold.

Each database change from the behavioral perspective is related to an object
from the data perspective. When the change adds or updates an object, the new
(i.e., the added or updated) object is its related object. In contrast, when the
change deletes an object, the old (i.e., deleted) object is its related object. For
instance, the first change in Table 3.4 is related to the object o1 which represents
the first record in the “order” table in Figure 3.3.

Definition 3.17 (Relating Events to Objects) Let DM be a data model and E ⊆
E DM be a set of events. Function relate ∈ E →P (ODM ) gives the objects impacted by
an event e ∈ E , such that relate(e) = {change(co) | co ∈ e}.

As shown in Definition 3.14, one event may contain multiple change occur-
rences. Accordingly, one event may be related to multiple objects, since each
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change occurrence is related to one object and there may be multiple. Based on
the function change, function relate returns the objects related to each event. For
instance, the “create order” event described in Figure 3.15 is related to three
objects, o1, ol 1 and ol 2. After correlating events from the behavioral perspec-
tive to objects from the data perspective, we define object-centric event data to
combine these two perspectives.

Definition 3.18 (Object-Centric Event Data) Let DM be a data model. Object-
centric event data are represented by a tuple OCED = (OM ,ES,relate), where

• OM = (Obj,Rel,class,attrO) is a valid object model of DM extracted from
database elements (i.e., table records), representing the data perspective,

• ES = extractES(CL) is an event sequence extracted from a change log CL,
representing the behavioral perspective, and

• relate ∈ E → P (ODM ) describes the interactions between two perspectives,
where E = {e ∈ ES}.

UOCED is the universe of object-centric event data sets.

An object-centric event data set OCED = (OM ,ES,relate) integrates information
derived from database tables and other files, such as redo logs and change tables.
The object model OM describes the records and dependencies between records
in tables. It can be considered as the snapshot of the database after all operations
recorded in a change log CL. The event sequence extracted from CL describes
all operations on the database, which result in the object model OM . Function
relate builds a loose connection between the data and behavioral perspectives by
correlating events to objects. Note that the range of relate is a set Obj′ ∈P (ODM )
rather than Obj. It means that an event e can refer to an object o ∉ Obj, since e
may modify o at some point in time and then o is deleted from the database (i.e.,
OM).

Table 3.6 shows an object-centric event data set, extracted from the database
tables in Figure 3.3 and related redo logs in Table 3.1. The “Object Model”
column describes the object model OM. The “Event” column shows all events
in the event sequence ES, and the order of the events is shown in the “Index”
column, which are derived based on the timestamps in the “Timestamp” column.
Figure 3.16 provides a visualization solution for the object-centric event data
in Table 3.6. The object model OM is located at the bottom, whose objects are
depicted as grey dots and clustered in classes, e.g., o1 is of “order” class. The
event sequence E is shown on the top. For simplicity, we hide some events and
objects. The dotted lines in the middle show the interactions between events
and objects. For instance, e1 refers to objects ol 1, ol 2 and o1.
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Index Event Timestamp Related Objects Object Model
Objects Relations

1 e1 2017-08-11 10:33:37 o1,ol1,ol2 c1,c2,o1, (r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),
2 e2 2017-08-13 16:28:15 o2,ol3,ol4 ol1,ol2, o2, (r10,o2,ol3),(r10,o2,ol4),(r4,c1,s1),(r6,s1,sl1),
3 e3 2017-08-14 11:36:35 s1,sl1 ol3,ol4,s1, (r9,ol1,sl1),(r1,c1,i1),(r3,i1,er1),(r8,o1,er1),
4 e4 2017-08-15 09:13:27 i1,er1 sl1,i1,er1, (r4,c1,s2),(r6,s2,sl2),(r9,ol1,sl2),(r6,s2,sl3),
5 e5 2017-08-16 14:15:31 s2,sl2,sl3 s2,sl2,sl3, (r9,ol2,sl3),(r1,c1,i2),(r3,i2,er2),(r8,o1,er2),
6 e6 2017-08-17 17:38:36 i2,er2,er3 i2,er2,er3, (r3,i2,er3),(r8,o2,er3),(r4,c1,s3),(r6,s3,sl4),
7 e7 2017-08-19 13:22:04 s3,sl4,sl5 s3,sl4,sl5, (r9,ol3,sl4),(r6,s3,sl5),(r9,ol4,sl5),(r7,p1,pl1),
8 e8 2017-08-21 16:26:13 p1,pl1,pl2 p1,pl1,pl2, (r2,i1,pl1),(r7,p1,pl2),(r2,i2,pl2),(r1,c1,i3),
9 e9 2017-08-23 14:23:19 i3,er4 i3,er4,p2, (r3,i3,er4),(r8,o2,er4),(r7,p2,pl3),(r2,i3,pl3)

10 e10 2017-08-26 14:53:49 p2,pl3 pl3

Table 3.6: Details of an object-centric event data set.

orderorder line

ol1

ol2 o1

ol4 o2ol3 i2 i3

e1 e4 e9e2
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er1

er3

i1

invoice

interactions

er4

er2 . . .

behavioral perspective: event sequence

data perspective: object model

Figure 3.16: Object-centric event data combining data and behavioral perspectives, by
relating events in the event sequence to objects in the object model.

In object-centric event data, each event has some related objects, indicated
by the function relate. Note that it is possible that an object o related to an event
e ∈ E is not in the object model, i.e., o 6∈OM (e.g., removed objects). Consider
the next situation to understand why some objects may not exist in the object
model. For instance, a “create order” event e adds an “order” object o in a
database at time t0, i.e., o ∈ relate(e). Then a “delete order” event removes o at
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time t1 (t1 > t0). After these events, we collect data and derive an object model
OM representing the state of the database at time t2 (t2 > t1). Apparently, the
removed “order” object o is not contained by OM, i.e., o 6∈ OM.

In summary, an object-centric event data set describes the events operated on
databases and the resulting object model. The object model can be considered
as the current state of the database, i.e., at some point in time when we derive
the database tables. In the context of an XOC log, this model corresponds to the
last event in the log. In next chapter, we will reconstruct object models for each
event based on object-centric event data, resulting in an XOC log.

3.4 Features of Object-Centric Event Data

Up to now, all elements involved in object-centric event data have been illustrated.
In general, as indicated by the name “object-centric event data”, such data consist
of two perspectives, i.e., data perspective (indicated by “object”) and behavioral
perspective (indicated by “event”). Besides, there exist interactions between
these two perspectives. The structure of object-centric event data conforms to the
structure of artifact-centric information systems where (i) database techniques
are employed to store transactions as table records, (ii) events (operations on
information systems) are recorded implicitly in redo logs and change tables,
and (iii) events on information systems modify, i.e., add, update or delete table
records. In this section, we provide more details about the features of object-
centric event data from different angles.

Object-centric. Object-centric event data are extracted from various sources
related to artifact-centric information systems. Their major feature is “object-
centric”, since (i) they are generated by information systems which are artifact-
centric (or module-centric), (ii) they are stored in database tables which are
table-centric, and (iii) the data perspective serves as the backbone for the whole
data (i.e., data-centric), which are different from “case-centric” data (generated
by WFM/BPM systems) where the behavioral perspective is the main focus. In
summary, the semantics of “object-centric” is the combination of “artifact-centric”
source, “table-centric” storage and “data-centric” focus.

No case notions. Object-centric event data are generated by executing business
processes on artifact-centric information systems. Note that each system consists
of multiple artifacts and each artifact has its own case notion (artifact id) for the
life-cycle (i.e., sub-process) related to it. The object-centric event data collected
from the process often contain data from multiple artifacts, such that the whole
data set has multiple case notions. As a result, it is difficult to identify a global
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case notion for the whole data.
Events are merely changes of the object model. In BPM/WFM systems, events

are explicitly recorded in event logs. In contrast, artifact-centric information
systems employ databases to store transactions, which do not record events
explicitly. Fortunately, transactions leave footprints in various files such as
redo logs, which can be exploited to extract events. However, in this way, the
extracted events are scattered across various sources, and in many cases, there is
no well-documented information on how events are related to each other and
to the overall business process. Therefore, the derived events can only form a
weak behavioral perspective and the analysis of the behavioral perspective needs
support from the data perspective (e.g., the scattered events can be correlated
through objects from the data perspective).

Presence of one-to-many and many-to-many relationships. Often there exist
one-to-many and many-to-many relationships between different artifacts in
artifact-centric information systems. For instance, the OTC business process
supported by ERP systems involves multiple artifacts, such as order, invoice and
shipment. In the process, one order may be split into multiple shipments and one
shipment may contain products from multiple orders. As a result, there exists
a many-to-many relationship between the order artifact and shipment artifact.
Accordingly, the object-centric event data generated in the process also have
such complex relationships.

3.5 Summary

In this chapter, we defined the notion of object-centric event data, which is a
novel structure to organize the data generated by artifact-centric information
systems. It integrates the data perspective, behavioral perspective and the
interactions between these two perspectives. From the data perspective, a data
model is employed to describe database schema and an object model is defined
to represent database records. From the behavioral perspective, events at the
database level and information system level are defined to abstract the operations
on information systems. Besides, we discussed the features of object-centric
event data, and compared them with traditional case-centric data.

Conventional process mining algorithms have difficulties dealing with object-
centric event data. Consider for example many-to-many relationships. Traditional
process notations, such as BPMN, EPCs, and UML activity diagrams, model the
life cycle of one type of instances in isolation. They cannot properly describe
the many-to-many relationships between different types of instances. Besides,
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there is a lack of process mining techniques able to discover process models with
many-to-many relationships. Therefore, after introducing object-centric event
data, we propose new process mining techniques to better deal with such data in
next chapters.



Chapter 4
eXtensible Object-Centric Event
Logs

As discussed, process mining helps organizations to investigate how their business
processes are executed and how they can be improved based on event logs
extracted from information systems. The eXtensible Event Stream (XES) format
is the current event log standard, which requires a case notion to correlate events
(cf. Chapter 2). However, it has problems to deal with object-centric event data
(e.g., database tables) due to the existence of one-to-many and many-to-many
relations (cf. Chapter 3). In order to enable process mining on object-centric
event data, in this chapter, we define a novel log format, resulting in eXtensible
Object-Centric (XOC) event logs. Besides, an approach is proposed to extract
XOC logs from object-centric event data, which shows that such event logs can
indeed be extracted from today’s information systems.

Figure 4.1 positions Chapter 4 in the whole framework of the thesis. This
chapter is the second step of the extraction part (highlighted in red). It is based
on the result derived in Chapter 3. Figure 4.2 presents the difference between
object-centric event data and XOC logs. More precisely, object-centric event data
have only one object model (representing the current state of database tables)
while each event in XOC logs has a corresponding object model (representing the
state of database tables just after the event). Besides, Figure 4.2 also revels the
idea to transform object-centric event data into XOC logs. Based on the current
object model, previous object models are reconstructed for all events in XOC
logs.
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Figure 4.1: Positioning Chapter 4 in the whole framework.

This chapter is organized as follows. In Section 4.1, we motivate our approach
by discussing the challenges encountered by conventional log formats when they
are applied to object-centric event data. The XOC event logs are formally defined
in Section 4.2 and Section 4.3 presents an approach to extract XOC logs from
object-centric event data. We evaluate XOC logs by comparing them to XES logs
in Section 4.4. Section 4.5 reviews the related work while Section 4.6 concludes
this chapter.
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Figure 4.2: Transforming object-centric event data into XOC logs.

4.1 Challenges Encountered by Conventional Log
Formats

Process mining represents a set of techniques which are widely used to extract
insights from event data generated by information systems. The starting point
for process mining techniques is formed by event logs. The XES log format [1] is
widely employed. In general, an XES log consists of a collection of traces. A trace
describes the life-cycle of a particular case (i.e., a process instance) in terms of
the activities executed (cf. Chapter 2). Note that a case notion is mandatory for
XES logs, which is used to correlate events into traces.

However, the information systems one encounters in most organizations are
artifact-centric, such as ERP and CRM systems, which do not assume a case
notion. A common feature of these systems is that they are built on top of
database technology, i.e., they contain hundreds of tables covering customers,
orders, deliveries, etc. There exist one-to-many and many-to-many relationships
between different tables. In addition, the events generated by these systems
are often recorded implicitly, e.g., events are stored as changes in redo logs or
timestamp values in tables.

As the nature of data generated by artifact-centric information systems does
not match the constraints set by the XES format (e.g., a mandatory case notion),
the following challenges have been identified when applying the XES format to
object-centric event data:
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• It is difficult to identify the case id for the whole process. Object-centric
event data lack a single explicit definition of case notion for the end-to-end
process. On the contrary, because of the existence of multiple classes of
objects (tables) and relations (foreign keys), events in object-centric event
data can be correlated in many ways. These correlations may correspond
to different processes affecting the same data, or different views on the
same process (customer vs. provider point of view). In the case of XES, a
case notion has to be defined beforehand to proceed with the extraction,
requiring one dedicated event log for each perspective to be analyzed.

• The quality of the input data gets compromised. If we straightjacket object-
centric event data into XES logs, the input data with one-to-many and
many-to-many relations are flattened into separate traces, in which events
referred to by multiple cases are duplicated (cf. Figure 4.13). This forced
transformation introduces unnecessary redundancy and leads to problems
such as data convergence and divergence [93] (cf. Section 4.4.4).

• Interactions between process instances get lost. Traces in XES logs only
describe the evolution (i.e., lifecycle) of one type of process instance and
they are typically considered in isolation. Due to the lack of interactions
between process instances, XES logs cannot provide a whole view to
indicate the state of a system.

• The data perspective is only secondary.1 The XES format focuses on the
behavioral perspective, considering any additional information as trace or
event attributes. In this sense, the information not directly related to the
events is discarded (records, data objects, etc.), which weakens the data
perspective of the original system.

To address the problems mentioned above, we propose a novel log format
to organize object-centric event data from databases, resulting in eXtensible
Object-Centric (XOC) logs. This log format provides an evolutionary view on
databases based on the idea that a log consists of a list of events and each event
refers to an object model representing the state of the database just updated by
the event.

1The behavioral perspective refers to the control-flow of events while the data perspective refers
to data attributes.



4.2 eXtensible Object-Centric (XOC) Event Log Format 89

4.2 eXtensible Object-Centric (XOC) Event Log For-
mat

In order to solve the problems encountered by XES logs, we define a novel event
log format, i.e., XOC, to organize the object-centric event data in this section.
More precisely, we (i) explain the basic idea of the XOC format, (ii) define the
XOC format by formalization, and (iii) present a concrete XML serialization of
XOC logs.

4.2.1 Principles of Artifact-Centric Information Systems

Before diving into the concrete log format, we analyze the principles followed by
artifact-centric information systems, summed up as follows:

• events (i.e., operations) on information systems change the states of busi-
ness processes on these systems;

• the states of business processes can be reflected (or represented) by database
contents, i.e., records in database tables.

Furthermore, we use a concrete example to explain the principles. Figure 4.3
presents the evolution of states of a process along with events. The process is a
variant of the order-to-cash process, which consists of five states (or activities).
The highlighted state in red indicates the state of the process just after the
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Figure 4.3: Events change the states of (processes on) information systems.
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occurrence of the corresponding event. For instance, after the first event (“an
order was created by Jim at 15:23:45 on June 3rd, 2018”), the process is in
the “Customer order” state, which means that an order is created in the process.
Similarly, after n events, the process locates in the “Payment” state.

When the events are executed in the process, all the generated transactions
are stored in a relational database (indicated by the “SQL” cylinder in the center
of the business process in Figure 4.3). The records in the database tables reflect
the highlighted state in red. For example, after the first event that Jim created an
order at 15:23:45 on June 3rd, 2018, an “order” record is added in the “order”
table, which indicates that the process is in the state that an order is created (i.e.,
“Customer order”). Note that the state may depend on the contents of multiple
records. For instance, if there exists an “order” record in the “order” table and
a corresponding “payment” record in the “payment” table, it indicates that the
process is located in the “Payment” state.

Based on the principles explained above, the basic idea of the novel log
format, i.e., XOC, is to record operations on artifact-centric systems and the
corresponding state of the process in the system after each operation. More
precisely, an event log consists of a list of events which represents operations,
and each event corresponds to an object model which represents the state of the
process just after the execution of the event. According to this idea, we define
the XOC log format in the next section.

4.2.2 Log Definition

In general, event logs are used to record past events related to information
systems. Based on the basic idea explained in Section 4.2.1, an XOC event log is
a collection of events that belong together without assuming some case for the
whole process, i.e., they belong to some “process” where many types of objects
may interact.

Each event corresponds to an activity and may have additional attributes
such as the time at which the event took place, the resource executing the
corresponding event, the type of event (e.g., start, complete, schedule, abort),
the location of the event, or the costs of an event. Each event attribute has a
name (e.g., “age”) and a value (e.g., “49”). To model the overlapping of activities
in time one can use start and complete events.

Besides, each event corresponds to an object model and the event refers to
objects in the object model. Note that one event may refer to multiple objects
and one object may be referred to by multiple events. The objects referred to by



4.2 eXtensible Object-Centric (XOC) Event Log Format 91

an event indicate they are modified by the operation corresponding to the event.
Moreover, events are atomic and ordered. For simplicity, we assume a total order.

Definition 4.1 (eXtensible Object-Centric (XOC) Event Log) Let DM be a data
model. An event log is a tuple L = (E ,act,attrE,relate,om,¹), where

• E ⊆UE is a set of events,
• act ∈ E →UA maps events onto activities,
• attrE ∈ E → (UAttr 6→ UVal) maps events onto a partial function assigning

values to some attributes,
• relate ∈ E →P (ODM ) relates events to sets of object references,
• om ∈ E →UOM maps each event to the object model directly after the event

took place, and
• ¹ ⊆ E ×E defines a total order on events.

UL is the universe of XOC event logs.

An XOC log L = (E ,act,attrE,relate,om,¹) consists of a set of events E with
a total order defined by ¹. Each event has a corresponding activity and some
attributes, specified by the functions act and attrE, respectively. In order to relate
the behavioral perspective and the data perspective (i.e., events and objects),
each event refers to at least one object, indicated by relate. Moreover, each event
is associated with an object model indicated by om, which represents the state of
the process just after the execution of the event.

Table 4.1 presents an XOC log example. More precisely, the numbers in the
“Index” column indicate the order of events (e.g., co1 ¹ co2 and co2 ¹ cs1). In
order to refer to a specific event, the “Event” column assigns an ID to each event,
which specifies the set of events, i.e., E = {co1,co2,cs1,ci 1,cs2}. The function act
is indicated by the “Activity” column, e.g., act(co1) = create order (cf. Section 4.3
for details to derive act). Besides, each event may have additional attributes. For
example, the fourth event ci 1 has two attributes, “create time = 2017-08-15”
(we only show the date for simplicity), and “amount = 2380”. The function
relate is indicated by the “Reference” column, e.g., ci 1 refers to i 1 and er 1 (i.e.,
relate(ci 1) = {i 1,er 1}). The object model of each event is in the “Object Model”
column. For instance, om(co1) = OMco1 = (Objco1,Relco1,classco1,attrOco1) where
Objco1 = {c1,c2,o1,ol 1,ol 2} and Relco1 = {(r 5,c1,o1), (r 10,o1,ol 1), (r 10,o1,ol 2)}.
Note that each object has a unique ID, a corresponding class and additional
attributes. In the table, the class is indicated by its ID while the additional
attributes are omitted. For instance, ol 1 indicates its corresponding class is ol
(denoting “order line”). In this thesis, we refer directly to Obje , Rele , classe ,
attrOe for e ∈ E if the context is clear.
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Figure 4.4 shows a graph to present the XOC log in Table 4.1. More precisely,
the black dots at the top denote the events (the IDs of events are shown in
the center) while the cylinders at the bottom represent object models. There
are rounded rectangles in the cylinders, which cluster the objects of the same
classes. The curves between black dots and cylinders indicate the correspondence
between events and object models. The dotted lines specify the object references
for each event and the solid lines correspond to the object relations between
objects. The arrows between black dots indicate the order between events. For
instance, the event co1 is denoted by the first black dot and its corresponding
object model is represented by the first cylinder. The object model has 5 objects
of 3 classes, and 3 object relations. co1 refers to three objects highlighted in red,
i.e., o1, ol 1 and ol 2.

Figure 4.4 also illustrates the evolution of the object model. After the occur-
rence of an event, objects and object relations may have been added, updated
(i.e., the attribute values) or deleted. This log format provides an evolution view
of the process in an information system based on the idea that events of a process
executed on an information system change the state (i.e., adding, updating or
deleting records) of the underlying database.

The event log provides a snapshot of the object model after each event. This
triggers the question: Can the object model be changed in-between two sub-
sequent events? If no such changes are possible, then the object model before
an event is the same as the object model after the previous event. If we would
like to allow for updates in-between events, then these could be recorded in the
log. Events referring to some artificial activity update could be added to signal
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Figure 4.4: A “graphical” representation for the XOC log in Table 4.1, revealing the
evolution of a database.
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the updated object model. We could also explicitly add a snapshot of the object
model just before each event. In the remainder, we only consider the snapshot
OMe after each event e ∈ E . In other words, we assume that object models cannot
be changed in-between two subsequent events.

Note that Definition 4.1 calls for event logs different from the standard XES
format. XES (www.xes-standard.org), which is supported by the majority of
process mining tools, assumes a case notion (i.e., each event refers to a process
instance) and does not keep track of object models. In the next section, we
discuss the meta model of XOC logs and give a concrete XML serialization for
XOC log files.

4.2.3 XOC Log Files

In this section, we employ an XOC meta model to describe how the elements in
XOC logs (such as events, object models and attributes) are organized in concrete
XOC log files. The idea here is to refer to the existing XES meta model and file
structure [136], removing elements related to “case” and adding necessary
elements related to “object”.

Figure 4.5 shows the XOC meta model expressed in terms of a UML class
diagram. The dark rounded squares describe the backbone of an XOC log while
the light rounded squares describe additional contents (e.g., attributes). It
consists of the following classes:

• Log. An XOC log consists of any number of events (indicated by the
cardinalities on the edge between “Log” and “Event”).

• Event. Each event describes an operation on the information system and
corresponds to an object model which represents the state of the system just
after the event. Each event also refers to a set of objects (i.e., “References”)
to indicate which objects are modified by the event, and to a set of attributes
to indicate the properties of the event (e.g., activity and resource).

• Object model. One object model consists of a set of objects (i.e., “Objects”)
and a set of object relations (i.e., “Relations”). Note that the object or
relation sets can be empty. In the object model, each object relation
connects two objects.

• Attribute. The log, events, objects and object relations may have attributes.
Attributes may be nested. There are five core types: “String”, “Date”,
“Int”, “Float”, and “Boolean”. These correspond to the standard XML
types: “xs:string”, “xs:dateTime”, “xs:long”, “xs:double”, and “xs:boolean”,
respectively. For example, “2011-12-17T21:00:00.000+02:00” is a value
of type “xs:dateTime” representing nine o’clock in the evening of December

www.xes-standard.org
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17th, 2011 in timezone GMT+2. For simplicity, we use “2011-12-17
21:00:00” as format to represent time when the timezone is not necessary.

• Extension. Similar to XES, XOC does not limit the attributes to a prescribed
and fixed set. Users can declare their own attributes based on specific
needs. In order to provide semantics for such attributes, the log refers to
so-called extensions. An extension gives semantics to particular attributes.
For example, the “Time” extension defines a timestamp attribute of type
“xs:dateTime”. The “Organizational” extension defines a resource attribute
of type “xs:string”. It is possible for users to develop domain-specific or
even organization-specific extensions.

As shown in Figure 4.6, XOC declares particular attributes to be mandatory
for different elements. For example, it may be stated that each event, object and
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object relation should have an attribute “id” for reference. Besides, each event
must have a corresponding activity and each object must have a correspond-
ing class. In addition to “id”, each object relation has three other mandatory
attributes, in which the “relation” attribute indicates the relation type and the
“sourceobjectid”/“targetobjectid” attribute indicates the source/target object.
Note that the log has one mandatory attribute “format” which may have two
possible values, “total” or “update”. It indicates the format of the log file, which
is illustrated in Section 4.2.4. In addition to mandatory attributes, optional
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attributes can be defined by users for each element. For instance, “timestamp”
and “resource” can be optional attributes of events.

The XOC meta model shown in Figure 4.5 does not prescribe a concrete syntax
and many serializations are possible. Therefore, a standard XML serialization is
necessary to exchange XOC documents. Figure 4.7 shows a fragment of the XML
serialization of the XOC log of Table 4.1. The tags of the XML serialization are:

• An <extension> tag declares an extension. For each extension, a shorter
prefix is given, which is used in the attribute names. As shown in Figure 4.7,
two extensions are declared: “Concept” and “Time”. Consider the “Time”
extension as an example. It defines an attribute timestamp and uses prefix
“time”. Accordingly, the timestamp of an event is stored using the key
“time:timestamp”.

• A <global> tag defines the mandatory attributes for events, objects and
object relations. Figure 4.6 only shows the smallest set of mandatory
attributes and one can define more mandatory attributes. For instance, Fig-
ure 4.7 shows three global (mandatory) attributes for events (indicated by
the “scope”), which means each event must contain these three attributes.

• A <classifier> tag defines the classifier function for the log. For instance,
the “Activity” is defined as the classifier here.

• An <event> tag corresponds to an event, which consists of some attributes,
an object model (i.e., <model> tag) and a set of object references (i.e.,
<references> tag).

• A <references> tag corresponds to a set of object references, in which
each object (reference) (i.e., <object> tag) only contains the mandatory
attribute (i.e., “id”) for simplicity.

• A <model> tag represents an object model which consists of a set of objects
(<objects> tag) and a set of object relations (<relations> tag).

• An <object> or <relation> tag describes an object or an object relation,
respectively. Its attributes are listed in the tag. For instance, the <object>
tag in Figure 4.7 represents an object, which has two mandatory attributes
(“identity:id” and “class”) and one optional attribute (“amount”).

Each attribute of an event, object or object relation has an attribute name
(indicated by the “key” tag) and a corresponding value (indicated by the “value”
tag). The “string” or “date” tag indicates the type of the attribute.

The XOC log example in Figure 4.7 only shows one event. Normally a log has
many events. If a log file contains a large number of events, its size may be huge,
i.e., the log size increases dramatically along with the number of events and
objects. Object models may increase dramatically since an object model contains
unchanged contents of its preceding object model and new contents added by
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1 <?xml version=’’1.0’’ encoding=’’utf-8’’?>
<extension name=’’Concept’’ prefix=’’concept’’ uri=’’http://...’’/>
<extension name=’’Identity’’ prefix=’’identity’’ uri=’’http://...’’/>
<extension name=’’Time’’ prefix=’’time’’ uri=’’http://...’’/>
...

6 <global scope=’’event’’>
<string key=’’identity:id’’ value=’’id’’/>

<string key=’’concept:name’’ value=’’name’’/>
<date key=’’time:timestamp’’ value=’’2017-08-11 10:33:37’’/>

</global>
11 ...

<classifier name=’’Activity’’ keys=’’concept:name’’/>
...
<string key=’’format’’ value=’’total’’/>
<event>

16 <string key=’’identity:id’’ value=’’co1’’/>
<string key=’’concept:name’’ value=’’create order’’/>
<string key=’’time:timestamp’’ value=’’2017-08-11 10:33:37’’/>
<string key=’’org:resource’’ value=’’Jack’’/>
<model>

21 <objects>
<object>

<string key=’’identity:id’’ value=’’o1’’/>
<string key=’’class’’ value=’’order’’/>
<string key=’’amount’’ value=’’1100.5’’/>

26 </object>
...

</objects>
<relations>

<relation>
31 <string key=’’id’’ value=’’r10-o1-ol1’’/>

<string key=’’relation’’ value=’’r10’’/>
<string key=’’sourceobjectid’’ value=’’o1’’/>
<string key=’’targetobjectid’’ value=’’ol1’’/>

</relation>
36 ...

</relations>
</model>
<references>

<object>
41 <string key=’’id’’ value=’’o1’’/>

</object>
...

</references>
</event>

46 ...
</log> 
�
Figure 4.7: A fragment of the XML serialization of the XOC log of Table 4.1.
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its corresponding event, as shown in Figure 4.4. This problem can be solved by
storing only update information, which will be explained in the next section.

4.2.4 Lightweight XOC Log Files

In order to compress the log size, we employ some techniques to deal with
the growing rate of object models, resulting in lightweight logs. Clearly, it is
sufficient to just store the object references and updates in the event log. This
makes the storage format much better scalable. Lightweight logs still conform
to the XOC meta model, but are much smaller because only changes are stored.
The basic idea is that, on the one hand, we remove the redundant information
(e.g., unchanged objects) to decrease the log size; and on the other hand we
keep the necessary information to make the compressed logs (i.e., lightweight
logs) as complete as the original ones, i.e., it is possible to recover original logs
based on the compressed logs.

To distinguish the original log files and lightweight log files, we add an
attribute “format” on the log level. This attribute indicates the format used by
the log file and can have two possible values, i.e., “total” (indicating original
logs) and “update” (indicating lightweight logs). The object model in the “total”
log files represents the whole state of a system just after an event happens. In
comparison, the object model in the “update” log files represents the updated
part of the state of the system just after an event happens. Note that for an event
in the “update” log files, it is the accumulation (integration) of its corresponding
object model and all previous object models that represent the state of the system
just after the event happens.

For instance, Figure 4.8 shows an XOC log file of the “total” format, indicated
by the “format” attribute. As we can see in the second event “create_order2”, its
object model keeps two unchanged objects (“order1” and “order_line1”) and an
unchanged object relation “r10-o1-ol1” from the object model of its preceding
event “create_order1” (the omitted attributes of these objects have the same
values). The event “create_order2” only adds the object “order2” into the object
model without changing anything else in the object model.

Figure 4.9 shows a lightweight log (i.e., the “update” format) corresponding
to the log in Figure 4.8. In the lightweight log, we remove the unchanged objects
(“order1” and “order_line1”) and object relation (“o-fk_order-ol1”) from the
object model of the event “create_order2”, and keep the added object (“order2”)
remained.

Note that it is possible that an object is removed from an object model. In this
situation, a really removed object cannot be distinguished with a hidden object
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<?xml version=’’1.0’’ encoding=’’utf-8’’?>
2 ...

<string key=’’format’’ value=’’total’’/>
<event>

<string key=’’id’’ value=’’create_order1’’/>
...

7 <model>
<objects>

<object>
<string key=’’id’’ value=’’order1’’/>
...

12 </object>
<object>

<string key=’’id’’ value=’’order_line1’’/>
...

</object>
17 </objects>

<relations>
<relation>

<string key=’’id’’ value=’’r10-o1-ol1’’/>
...

22 </relation>
</relations>

</model>
...

</event>
27 <event>

<string key=’’id’’ value=’’create_order2’’/>
...
<model>

<objects>
32 <object>

<string key=’’id’’ value=’’order1’’/>
...

</object>
<object>

37 <string key=’’id’’ value=’’order_line1’’/>
...

</object>
<object>

<string key=’’id’’ value=’’order2’’/>
42 ...

</object>
</objects>
<relations>

<relation>
47 <string key=’’id’’ value=’’r10-o1-ol1’’/>

...
</relation>

</relations>
</model>

52 ...
</event>
...

</log> 
�
Figure 4.8: An XOC log of the “total” format.
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<?xml version=’’1.0’’ encoding=’’utf-8’’?>
...

<string key=’’format’’ value=’’update’’/>
4 <event>

<string key=’’id’’ value=’’create_order1’’/>
...
<model>

<objects>
9 <object>

<string key=’’id’’ value=’’order1’’/>
<string key=’’lifecycle’’ value=’’add’’/>
...

</object>
14 <object>

<string key=’’id’’ value=’’order_line1’’/>
<string key=’’lifecycle’’ value=’’add’’/>
...

</object>
19 </objects>

<relations>
<relation>

<string key=’’id’’ value=’’o-fk_order-ol1’’/>
<string key=’’lifecycle’’ value=’’add’’/>

24 ...
</relation>

</relations>
</model>
...

29 </event>
<event>

<string key=’’id’’ value=’’create_order2’’/>
...
<model>

34 <objects>
<object>

<string key=’’id’’ value=’’order2’’/>
<string key=’’lifecycle’’ value=’’add’’/>
...

39 </object>
</objects>
<relations>
</relations>

</model>
44 ...

</event>
...

</log> 
�
Figure 4.9: An XOC log of the “update” format.
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Figure 4.10: Transforming “total” object models into “update” object models.

(i.e., an unchanged object) in the lightweight logs. To solve this problem, we add
an extra mandatory attribute “lifecycle” for each object and object relation in the
lightweight log files. This attribute has three possible values, i.e., “add”, “update”,
and “delete”. It indicates the modification type of an object. By comparing two
successive object models (we refer to the former object model as OM1 and the
latter object model as OM2) of the “total” format, it is possible to infer OM2

′ (the
second object model of the “update” format). For that, the following rules are
used:

• Added objects and object relations. If an object or object relation (i.e., its id)
is only observed in OM2, we conclude that the object or object relation is
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added in OM2. We copy it in OM2
′ and add the attribute “lifecycle” with

the “add” value on it.
• Updated object and object relations. If an object or object relation is observed

in both object models, but with different attributes, we conclude that the
object or object relation is updated in OM2. We keep it in OM2

′ and add
the attribute “lifecycle” with the “update” value on it.

• Unchanged object and object relations. If an object or object relation is
observed in both object models and has the same attributes, we conclude
that the object or object relation is unchanged in OM2. It is not included in
OM2

′.
• Removed objects and object relations. If an object or object relation is only

observed in OM1, we conclude that the object or object relation is removed
in OM2. We copy it in OM2

′ and add the attribute “lifecycle” with the
“removed” value on it.

Note that if OM2 is the first object model in the log (i.e., OM1 does not exist),
all object and object relations in OM2 are considered as added objects and object
relations. In other words, we copy all objects and object relations into OM2

′,
adding the attribute “lifecycle” with the “added” value on each object and object
relation.

For instance, there exist two object models of the “total” format in Figure 4.8,
i.e., OM1 (corresponding to the event “create_order1”) and OM2 (corresponding
to the event “create_order2”). Figure 4.9 shows two corresponding object models
OM1

′ and OM2
′ (of the “update” format). Since OM1 is the first object model in

the log, its corresponding object model OM1
′ has the same objects and object

relations with an extra attribute “lifecycle” with the “added” value. For OM2,
its corresponding object model OM2

′ only has one object “order2”, since only
“order2” is added in OM2. Figure 4.10 presents the transformation mentioned
above. Obviously, for a “total” object model, i.e., OMi , its corresponding “update”
object model, i.e., OM ′

i takes less storage.

4.3 Extracting Logs from Object-Centric Event Data

In Chapter 3, we defined object-centric event data to abstract the data (e.g.,
database tables and other documents such as redo logs) generated by artifact-
centric information systems. In this section, we propose an approach to extract
XOC logs defined in Section 4.2 from object-centric event data, which enables
further process mining techniques (which take logs as input) [91].

In XOC logs, each event has a corresponding object model and a corre-
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sponding activity. Therefore, our approach basically consists of three steps: (i)
recovering the object model for each event, (ii) identifying activities, and (iii)
extracting XOC logs based on the first two steps.

4.3.1 Recovering Historical Object Models

An object-centric event data OCED = (OM ,ES,relate) set (cf. Chapter 3) has only
one object model OM which presents the last state of the process after the effects
of all previous events in ES. In other words, the object model corresponds to the
last event in ES. In XOC logs, each event has a corresponding object model to
show the state of the system just after the event. Therefore, we need to recover
the historical (previous) object model to each event.

The idea to recover previous object models is based on two elements: a
known object model and the effects of previous events on object models. For
instance, if we know an object model OM corresponding to an event e and the
effect of e on the object model, we can infer the object model preceding OM
(i.e., the object model corresponding to the event preceding e) by removing (or
inverting) the effect of e on OM.

An event corresponds to an operation on information systems, which modifies
the state of the system by modifying the corresponding database. Each event
can correspond to multiple database changes (an event consists of a sequence of
changes, cf. Chapter 3). A database change corresponds to the execution of an
SQL sentence, which is the smallest unit to modify the object model (representing
the state of a database). Note that not every SQL sentence can be executed on
the database successfully. For instance, it fails if we execute an SQL sentence
to delete an inexistent record. In other words, only SQL sentences valid for the
current state of a database can be executed successfully. Similarly, only changes
valid for an object model can modify the object model successfully.

Definition 4.2 (Valid Changes) Let DM = (C ,Attr,classAttr,val,PK ,FK ,classPK ,
classFK ,keyRel,keyAttr,refAttr) be a data model and OM = (Obj,Rel,class,attrO) ∈
VOM be a valid object model. A change (op,c,Attr′,mapold,mapnew) ∈ CHDM is
valid for OM if and only if

• op = ⊕, Ø(c ′,map) ∈ OM : c ′ = c ∧∀attr ∈ keyAttr(classPK (c)) : map(attr) =
mapnew(attr), i.e., it is impossible to add an already existing object, or

• op ∈ {®,ª}, ∃(c ′,map′
old) ∈ OM : c ′ = c ∧map′

old = mapold, i.e., it is not possible
to update or delete a non-existent object.

A change is valid if it adds an inexistent object, i.e., which has different
primary key values from any existing object, or it updates or deletes an existing
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object in the object model. A valid change for an object model means that it is
permissible in the object model. Otherwise, it will fail and the object model will
remain unchanged.

Definition 4.3 (Effect of a Change Occurrence) Let DM be a data model. OM =
(Obj,Rel,class,attrO) and OM ′ = (Obj′,Rel′,class′,attrO′) are two valid object models.
co = ((op,c,Attr′,mapol d ,mapnew ), ts) ∈ CODM is an occurrence of a valid change
for OM. OM ′ is generated after the change occurrence co on OM and denote
OM

co→ OM ′ or OM ′ co← OM if and only if
• Obj′ = {o ∈ Obj | o 6= (c,mapold)}∪ {(c,mapnew) | op 6= ª} or
• Obj = {(o ∈ Obj′ | o 6= (c,mapnew)}∪ {(c,mapold) | op 6= ⊕}.

Given a valid object model OM, a change results in a new valid object model
OM ′ by adding, updating or deleting an object in the object set Obj. The resulting
object set Obj′ contains all unchanged objects (i.e., {o ∈ Obj | o 6= (c,mapold)}) and
the added or updated new object (i.e., {(c,mapnew) | op 6= ª}). Similarly, if given
the resulting object model, we can also infer the object model before the change
(indicated by the second rule in Definition 4.3).

Note that in a valid object model, the object relation set Rel and the functions
class and attrO depend on the object set Obj. In other words, after deriving the
object set Obj′ based on Definition 4.3, we can specify Rel′, class′ and attrO′ and
then the complete object model OM ′.

Definition 4.4 (Effect of Events) Let DM be a data model and e = 〈co1,co2, . . . ,
con〉 ∈ EDM be an event. The event e results in a valid object model OMn when
starting in OM0, denoted by OM0

e→ OMn or OMn
e← OM0, if and only if there exist

valid object models OM0,OM1,...,OMn ∈ VOM such that OM0
co1→ OM1

co2→ OM2...
con→

OMn.
Similarly, an event sequence es = 〈e1,e2, ...,en〉 ∈ (EDM )∗ results in a valid object

model OMn when starting in OM0, denoted by OM0
es→ OMn or OMn

es← OM0, if
and only if there exist valid object models OM0,OM1,...,OMn ∈ VOM such that
OM0

e1→ OM1
e2→ OM2...

en→ OMn.

Based on the effect of a change on an object model, an event results in an
object model OMn through orderly accumulating the effects of all changes of the
event on the initial object model OM0. Similarly, an event sequence results in an
object model OMn through orderly accumulating the effects of all events of the
event sequence on the initial object model OM0.
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4.3.2 Identifying Activities

In an XOC log, each event has a corresponding activity to indicate the type of
operations (e.g., “create order”) on the information systems. The events in object-
centric event data are sequences of database changes, e.g., e = 〈((⊕,o,Attr,mapold,
mapnew), t s), ((⊕,ol ,Attr′,map′

old,map′
new), t s)〉. They are raw (on the database

level) and difficult to be understood by users. In this section, we identify
activities (on the information system level) and build a mapping between events
and activities to make the events more intuitive.

In order to connect events and activities, we define a notion of event type,
which builds a bridge between events and activities. The idea is that each event
corresponds to an event type and each event type has a corresponding activity
(i.e., an activity can be considered as the name of an event type).

Definition 4.5 (Cardinalities) UCard =P (IN) \ {;} defines the universe of all car-
dinalities.

A cardinality (an element of UCard) specifies a non-empty set of integers. For
instance, “1..*” is a cardinality which denotes any positive integers. Table 4.2
presents some frequently used cardinalities.

notation allowed cardinalities

1 {1}
1..k {1,2, . . . ,k}
∗ {0,1,2, . . .}

1..∗ {1,2, . . .}

Table 4.2: Some examples of frequently used shorthands for elements of UCard.

Definition 4.6 (Event Types and Activities) Let DM be a data model and CT DM

be the set of change types of DM. ET DM = {et ∈P (UCard×CT DM )\{;} | ∀(card1,ct1),
(card2,ct2) ∈ et : (ct1 = ct2 ⇒ card1 = card2)} is the set of event types of DM.

Let ET ⊆ ET DM be a set of event types specified based on domain knowledge.
Function extractA ∈ ET →UA maps an event type to its name, i.e., its corresponding
activity.

An event type is defined as a set of tuples of a cardinality and a change type,
where the cardinality describes the quantitative relation between the event type
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and the change type. One can use domain knowledge to specify event types.
For instance, based on the knowledge that a click on the “create order” button
inserts one record in the “order” table and one or more records in the “order_-
line” table, we can specify an event type named “create order”, which consists
of two change types, i.e., “insert one order record” and “insert one or more
order line records”. More precisely, the event type is denoted as {({1}, (⊕,o,Attr)),
({1..∗}, (⊕,ol ,Attr′))} which means a “create order” event adds (⊕) precisely one
({1}) record (populating the attributes in Attr) in the “order” (o) table, and
adds (⊕) at least one ({1..∗}) record (populating the attributes in Attr′) in the
“order_line” (ol) table.

Based on domain knowledge, users can specify a set of event types and the
corresponding activity for each type. In XOC logs, each event corresponds to
precisely one activity. Accordingly, each event should also correspond to precisely
one event type, since an activity can be considered as the name of an event type.
Therefore, we should guarantee that the given set of event types cannot have
multiple event types that can trigger the same event.

Definition 4.7 (Possible Events of an Event Type) Let DM be a data model.
Function possibleE ∈ ET DM →P (EDM ) returns possible events of an event type such
that possibleE(et) = {e ∈ EDM | ∀((op,c,Attr,mapold,mapnew), ts) ∈ e : (∃card ∈Ucard :
(card, (op,c,Attr)) ∈ et)∧∀(card′, (op′,c ′,Attr′)) ∈ et : |{((op′,c ′,Attr′,map′

old,map′
new),

ts′) ∈ e}| ∈ card′}.
For short, we denote possibleE(ET) = {e | ∃et ∈ ET : e ∈ possibleE(et)} for a set of

event types ET .

Each event type can trigger a set of possible events, specified by the function
possibleE. An event is a possible event of an event type if (i) the types of all
changes in the event are covered by the event type, and (ii) the cardinality of
each change type contains the number of changes (in the event) of this type.
For instance, an event with three changes e = 〈((⊕,o,Attr,mapold,mapnew), ts),
((⊕,ol ,Attr′,map′

old,map′
new), ts), ((⊕,ol ,Attr′,map′′

old,map′′
new), ts)〉 is a possible event

of the “create order” event type co = {({1}, (⊕,o,Attr)), ({1..∗}, (⊕,ol ,Attr′))}, because
(i) the types of all changes in the event e are {(⊕,o,Attr), (⊕,ol ,Attr′)}, which can
be found in co, and (ii) the number of changes of (⊕,o,Attr) and (⊕,ol ,Attr′) in e
are 1 and 2, which are contained by the cardinalities {1} and {1..∗}, respectively.

Definition 4.8 (Valid Event Type Set) Let DM be a data model. ET ⊆ ET DM is a
valid event type set if and only if ∀et,et′ ∈ ET : possibleE(et)∩possibleE(et′) =;.

An event type set is valid if no event is a possible event of two different event
types in the set. In other words, the possible events of any two event types in the
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set are disjoint. In this way, we can guarantee that each event has at most one
corresponding event type in the set.

Definition 4.9 (Extracting Event Types) Let DM be a data model. ET ⊆ ET DM is
a valid set of event types. E ⊆ possibleE(ET) is a set of possible events of ET . Function
extractET ∈ E → ET maps an event e to an event type et such that extractET(e) = et
where e ∈ possibleE(et).

Given a valid set of event types, the function extractET maps an event to an
event type in the set. Up to now, we defined all the functions to map an event
to an activity. For instance, the activity of an event e is extractA(extractET(e)). In
the next section, we extract event logs based on these functions.

4.3.3 Extracting XOC Event Logs

The input for our approach (i.e., extracting XOC logs from artifact-centric in-
formation systems) is an object-centric event data set OCED = (OM ,ES,relate),
which contains an object model OM, an event sequence ES and a function relate
relating events in ES to objects in OM. Section 4.3.1 showed how to create an
object model for each event while Section 4.3.2 identified an activity for each
event. This allows us to extract XOC event logs from object-centric event data.

Definition 4.10 (Extracting XOC Event Log) Let DM be a data model and OCED
= (OM ,ES,relate) be an OCED set. Function extractA ∈ ET → UA maps an event
type from a predefined set to an activity based on domain knowledge. Function
extractL ∈ UOCED → UL extracts an XOC event log from an OCED set such that
∀OCED ∈UOCED : extractL(OCED) = (E,act,attrE,relate,om,¹) where

• E ⊆ EDM is a set of events, where E = {e ∈ ES | ∃et ∈ ET : e ∈ possibleE(et )},
• act ∈ E →UA maps events onto activities, such that ∀e ∈ E : act(e) = extractA

(extractET(e)),
• attrE ∈ E → (UAttr 6→ UVal) maps events onto a partial function assigning

values to some attributes,
• relate ∈ E →P (ODM ) relates events to sets of objects, which is inherited from

OCED.
• om ∈ E →UOM maps each event to an object model right after the event hap-

pened, such that ∀ei ∈ E : om(ei ) = OMi where OM
ES′← OM i , ES′ = tlm−i(〈e1,

e2, . . . ,em〉) and 〈e1,e2, . . . ,em〉 = ES,2

2tlk (σ) means to get the last k elements of a sequence σ.
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• ¹ ⊆ E ×E defines a total order on events, where ¹= {(ei ,e j ) | ei ∈ E ∧ e j ∈
E ∧e j ∈ tlm−i+1(〈e1,e2, ...,em〉)} and 〈e1,e2, ...,em〉 = ES.

Given a set of event types and a corresponding activity for each type (which
can be derived based on domain knowledge), function extractL extracts an XOC
event log L = (E,act,attrE,relate,om,¹) from an OCED set OCED = (OM ,ES,relate).
Note that the event set E in L only contains the events in ES that are possible
events of an event type in the given set. This enables users to filter events based
on their needs. For instance, one can derive a customized event set E by giving a
specific set of event types.

Function act identifies an activity for an event, which is the integration of
extractET and extractA. More precisely, extractET maps an event onto an event
type and extractA maps the event type onto an activity. Events can have attributes,
indicated by attrE. For instance, the timestamp of an event can be one of its at-
tributes, e.g., for e = 〈((⊕,o,Attr,mapold,mapnew), ts), ((⊕,ol ,Attr′,map′

old,map′
new),

ts)〉, attrE(e)(timestamp) = ts. Currently, we can only automatically derive the
timestamp attribute for events. However, it is possible to add more attributes
such as resource based on more available information (e.g., change tables record
information about the users who make database changes). Function relate in L is
the same as the function relate in OCED.

Function om is used to derive the object model for each event. The idea is
that, starting from the object model OM in OCED corresponding to the last event
em in ES, we reverse the effects of event sequences on OM to get the previous
object models. More precisely, in order to obtain the object model corresponding
to one event ei , we get (i) its suffix event sequence ES′ = tlm−i (〈e1,e2, ...,em〉) (i.e.,

〈ei+1,ei+2, ...,em〉), and (ii) the object model OMi through OM
ES′← OM i .

¹ defines a total order on events. It is a set of event pairs. Each event pair
(ei ,e j ) ∈¹ indicates the order of these two events ei and e j (consistent with the
order in the event sequence). (ei ,e j ) indicates i É j , i.e., ei happens before or at
the same time of e j . It can also be denoted as ei ¹ e j .

4.4 Evaluation

Section 4.2 defined XOC event logs while Section 4.3 proposed an approach
to extract such logs from artifact-centric information systems. In this section,
we evaluate the XOC format by comparing with the XES format from different
angles.
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4.4.1 Log Generation

Following the approach in Section 4.3, we can extract XOC logs from the database
tables. There are also approaches to extract XES logs from database tables. In
order to make a fair comparison between XOC logs and XES logs, we use the
same data set for the generation of an XES log and an XOC log.

order(o)

id CHAR(10)
creation_date DATETIME
customer CHAR(10)

invoice(i)

id CHAR(10)
creation_date DATETIME
customer CHAR(10)

element_relation(er)

id CHAR(10)
order CHAR(10)
invoice CHAR(10)

1 *

1

1..*

Figure 4.11: Class diagram of a database that consists of three tables.

Figure 4.11 shows a class diagram describing a database consisting of three
tables: “order”, “element_relation” and “invoice”. These three tables consist
of the “order-to-invoice” process from the order-to-cash scenario of a real ERP
system named Dolibarr. For simplicity, we only include the important columns
for each table.

id creation_date customer amount

o1 2017-08-11 10:33:37 c1 3808
o2 2017-08-13 16:28:15 c1 1907

Table 4.3: Subset of records in the “order” table.

The “order” table contains information about orders. Table 4.3 shows the
information of two orders. Each order has a unique id, refers to a customer
and has a “create_date” attribute to indicate the creation time and an “amount”
attribute to indicate the amount of the order. For instance, the order o1 is created
at “2017-08-11 10:33:37” for customer c1 with an amount of 3808.

The “invoice” table stores all invoice information for orders. It has the same
attributes as the “order” table. For instance, Table 4.4 shows three invoice
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id creation_date customer amount

i1 2017-08-15 09:13:27 c1 2380
i2 2017-08-17 17:38:36 c1 1431
i3 2017-08-23 14:23:19 c1 1904

Table 4.4: Subset of records in the “invoice” table.

records, in which the invoice i 1 is created at “2017-08-15 09:13:27” for customer
c1 with an amount of 2380.

id order invoice amount

er1 o1 i1 2380
er2 o1 i2 1428
er3 o2 i2 3
er4 o2 i3 1904

Table 4.5: Subset of records in the “element_relation” table.

The “element_relation” table indicates the correspondence between orders
and invoices. Each record has a unique id and refers to both an order and
an invoice. Note that there may exist many-to-many relations between orders
and invoices. As shown in Table 4.5, er 1 and er 2 indicate that one order o1
corresponds to two invoices i 1 and i 2 while er 2 and er 3 indicate that one invoice
i 2 corresponds to two orders o1 and o2.

activity table timestamp column

create order order creation_date
create invoice invoice creation_date

Table 4.6: Timestamp columns in tables corresponding to activities.

Clearly the values in timestamp columns in “order” and “invoice” tables can
be considered as events related to the “order-to-invoice” process. Table 4.6 shows
the activities and corresponding timestamp columns. For instance, we map the
“creation_date” column in the “order” table to the “create order” activity, which
means each value in “creation_date” is the timestamp of a “create order” event.
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case id activity timestamp other attributes

o1 create order 2017-08-11 10:33:37 customer:c1, amount:3808
o1 create invoice 2017-08-15 09:13:27 customer:c1, amount:2380
o1 create invoice 2017-08-17 17:38:36 customer:c1, amount:1431
o2 create order 2017-08-13 16:28:15 customer:c1, amount:1907
o2 create invoice 2017-08-17 17:38:36 customer:c1, amount:1431
o2 create invoice 2017-08-23 14:23:19 customer:c1, amount:1904

Table 4.7: An XES log of events extracted from all three tables using “order” as the case
notion.

When creating an XES event log, each event needs to be associated with a
particular case. Therefore, we need to flatten the three tables into one table with
a “case id” column. However, one can choose from three types of cases: orders,
element relations, invoices. Any record in one of the three tables potentially
corresponds to a case. Assume that we are mainly interested in orders. Therefore,
each case corresponds to a record in the “order” table. Table 4.7 shows an XES
log of events extracted from all three tables using “order” as the case notion.
It flattens the original database consisting of three tables into one table with a
“case id” column. More precisely, since there are two records in the “order” table,
the derived XES log consists of two cases, i.e., o1 and o2. The flattened event log
is like a view on the complete data set. It is possible to use another way (e.g.,
considering an invoice as a case) to flatten the original database, i.e., alternative
views are possible based on users’ needs.

Based on the three tables and some extra information, such as change tables
or domain knowledge, we can extract an XOC log as shown in Table 4.8. The XOC
log has 5 events, i.e., two “create order” events and three “create invoice” events.
Each row indicates the activity, attributes, object references and object model
for an event. For instance, the fourth event is a “create invoice” event; there
is one timestamp attribute; it refers to objects i 2, er 2 and er 3; it corresponds
to an object model consisting of 7 objects (o1, o2, i 1, er 1, i 2, er 2 and er 3) and
6 object relations ((r 3, i 1,er 1), (r 8,o1,er 1), (r 3, i 2,er 2), (r 8,o1,er 2), (r 3, i 2,er 3)
and (r 8,o2,er 3)). Note that we present some contents for each object in the
bracket after the object. For instance, o1(id : o1,class : order,customer : c1,amount :
3808) means the class of o1 is “order” and it has two attributes customer : c1 and
amount : 3808. All events in the XOC logs are only adding objects in the object
model, i.e., the contents of each object do not change in the log. Therefore, we
only explicitly show the contents of added objects for each event.
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4.4.2 Log Structure

If we compare the generated XES log in Table 4.7 and XOC log in Table 4.8, it
is noticeable that the two logs organize information from the three tables in
different ways. In general, XES logs organize information in an event-centric
way while XOC logs organize information in an object-centric way.

In the XES log in Table 4.7, all information is structured based on events, i.e.,
events are first identified based on timestamp values and then the information
related to events is transformed into the activity, timestamp and other attributes
attached to each event. However, the event-centric principle is not consistent
with the features of the data from database tables, which are essentially object-
centric. In databases, all information related to an object is gathered as a record
in a table. A record can contain none to multiple events since a record can
contain any number of timestamp values. If we want to include all information
from the database tables, we have to relate each value in a record to an event and
transform the value as an attribute of the event. In this sense, the information
not directly related to events is discarded. For instance, since there are no events
(i.e., timestamp values) in the “element_relation” table, the XES log does not
explicitly contain any information from the table (some information is implicitly
contained since they are used to relate “create invoice” to “create order” events).
A value in the “amount” column indicates how much an invoice pays for an order,
which is quite useful but cannot be reflected any more.

In comparison, the XOC log in Table 4.8 is object-centric, which is more
suitable to deal with the data from database tables. In the transformation process,
each timestamp value in a record is considered as an extracted event and the
information related to the event is considered as the attributes of the event. No
matter if a record has events, all information (it is possible to only contain useful
information) in the record is abstracted as an object of a class corresponding to
the table. For instance, all records in the “element_relation” table are extracted
as objects (er 1, er 2, er 3 and er 4) in the XOC log (although there are no events in
the table), which retains the information to indicate the correspondence between
invoices and orders in terms of amount. In summary, XOC logs can contain all
information from database tables (i.e., it is possible to restore the database tables
based on XOC logs) while XES may lose important information which are not
related to events. Note that XOC logs can keep information from databases as
complete as they are, which does not mean that XOC logs should always contain
all information of a database. In real applications, a database usually involves
multiple business processes and an XOC log often only contains the information
related to the target process.
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4.4.3 Log View

In order to enable process mining, events need to be related. Therefore, event
logs need to provide a mechanism to relate events. Note that the mechanism
depends on the contents and structure of event logs, which decides the view of
process used by a process mining application, such as discovery, conformance
checking and performance analysis.

In XES logs, the case notion is employed to related cases. The case notion
is available based on the assumption that the process models behind the infor-
mation systems are flat models, which describes the life-cycle of a case of a
particular type (e.g., a compensation request). All activities in a flat process
model correspond to status changes of such a case (e.g., request submitted,
request checked and request approved). However, it is important to realize that
real-life processes are not flat. For instance, the “order-to-cash” process on ERP
systems involve multiple modules, such as order, invoice and delivery, where
there exist complex many-to-many interactions between different modules.

An XES log provides a specific view on the complete data set based on a
chosen case notion. For instance, the XES log in Table 4.7 shows the process from
the view of “order”. It flattens the database tables in an unrecoverable manner.
In other words, the process of relating events based on the chosen case notion
finishes when the XES log is generated (i.e., the event correlation is hard coded).
It is impossible to restore the original data and relate events using another case
notion based on the flat XES log. For instance, Table 4.7 shows an XES log which
relates events by choosing “order” as the case notion. Considering only the log,
we cannot restore the original “order”, “element_relation” and “invoice” tables
and relate events based on another case notion.

An XOC log does not assume a case notion to relate events. As shown in
Table 4.8, the XOC log does not have a “case id” column, which is mandatory for
an XES log in Table 4.7. In contrary, we use the “reference” and “object model”
columns to relate events. More precisely, each event refers to some objects in the
object model (indicated by the “reference” column), and objects are connected
by object relations (indicated by the “relations” column). The objects can be
considered as a bridge to relate events. For instance, if two events refer to the
same object, they are related (cf. Chapter 6). In summary, XOC logs have the
potential to relate events in a more flexible (customized) manner and provide
multiple views of the process, while XES logs relate events in a hard code manner
and provide a specific flat view.
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4.4.4 Log Quality

Event logs are the starting point for process mining techniques. From a practical
point of view, the quality of event logs is of the utmost importance for the success
of process mining. If event data are missing or cannot be trusted, the results
derived by process mining techniques are less valuable.

In this section, the XOC and XES logs used for comparison have more ac-
tivities, i.e., “create order” (co), “create shipment” (cs), “create invoice” (ci)
and “create payment” (cp). They are extracted from the “order”, “invoice”, “ele-
ment_relation” tables and some other tables, using the same method described
in Section 4.4.1. The XOC log contains two perspectives, i.e., the behavioral
perspective (i.e., events) and the data perspective (i.e., object models) and the
events can be correlated based on the objects in the object models. In contrast,
the XES log only contains the behavioral perspective, and events from the behav-
ioral perspective are correlated by case ids. In order to make a fair comparison,
we correlate the events in the XOC log and only compare its correlated events
with the cases in the XES log. In other words, the comparison in mainly on the
behavioral perspective.

Figure 4.12 shows the correlated events (cf. Chapter 6 for details of correlat-
ing events) of the XOC log, i.e., co1, co2, cs1, ci1, cs2, ci2, cs3, cp1, ci3, cp2, which
are ordered by time. The different colors indicate the events are of different
activities, e.g., the events in red are of the “create order” (co) activity. Due to
many-to-many relations between orders and invoices (indicated by Table 4.5),
the XOC log has corresponding many-to-many relations between “create order”
and “create invoice” events. For instance, the “create order” event co1 is related
to two “create invoice” events ci1 and ci2 and the “create invoice” event ci2 is
related to two “create order” events co1 and co2. As shown in Figure 4.12, it
is clear that the XOC log is able to represent one-to-many and many-to-many
relations.

ci1
(ci) ci2

(ci)
ci3
(ci)

cs1
(cs)

cs2
(cs)

time

co1
(co)

cp2
(cp)

cp1
(cp)

co2
(co)

cs3
(cs)

Figure 4.12: The behavioral perspective of the generated XOC log.
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In contrast, Figure 4.13 presents two cases o1 and o2 of the XES log. The
log is generated by flattening and splitting events based on a straightjacket
case notion, i.e., “order”. Due to one-to-many and many-to-many relations, the
generation of the XES log suffers two well-known problems: data divergence
and data convergence. Data convergence corresponds to the situation that one
event refers to multiple cases. For instance, the event ci2 is related to two orders
created by co1 and co2. Considering “order” as the case notion, ci2 is duplicated
and split into two cases o1 and o2. The data convergence harms the log quality
by leading to wrong frequencies of events because of event duplication. Data
divergence means that a case is referred to by multiple events of the same activity.
For instance, there are two events (ci2 and ci3) of the “create invoice” activity
and two events (cp1 and cp2) of the “create payment” activity in the case o2.
Due to the multiple instances of the same activity, the correspondences between
different instances are misleading. For instance, in the case o2 we can infer that
cp1 is related to ci2 and cp2 is related to ci3. However, it is not clear if cp2 is
related to ci2, as it is possible that cp1 pays for a part of ci2 and cp2 pays for the
other part of ci2 and the whole ci3.

co1

(co) (cs)

cs1 ci1

(ci)

cs2
(cs)

ci2

(ci)

cp1

(cp)

co2

(co)

ci2
(ci)

cs3
(cs)

ci3

(ci)

cp2
(cp)

cp1

(cp)

o1

o2

Figure 4.13: The generated XES log with data convergence (ci2 is related to two cases o1
and o2) and divergence (o2 has multiple instances of ci , i.e., ci 1 and ci 2).

In summary, by removing the case notion, the XOC log can present one-to-
many and many-to-many relations as they are, and avoid the data convergence
and data divergence problems. By improving the log quality, the results derived
by later techniques are more reliable.

4.5 Related Work

Event logs serve as the input for many process mining techniques. In this section,
we review the existing event log formats and introduce some researches which
extract event logs from databases.
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4.5.1 Event Log Formats

An event log is a predefined structure for storing event data. XES is the de facto
log format for process mining. It stores information regarding the event log as
a whole, the traces and the events belonging to the traces. It is supported by
tools such as ProM and implemented by OpenXES, an open source java library
for reading, storing and writing XES logs.

The XES format cannot deal well with object-centic data (e.g., database
tables). González López de Murillas et al. [50] propose a meta model to abstract
the object-centric data and redo logs into different types of entities such as
attributes, objects, relations and events. The meta model covers both behavioral
and data perspectives and builds a bridge to connect databases with process
mining. This meta model provides all elements required in object-centric event
data. In other words, the elements involved in object-centric event data, e.g.,
events and objects, are a subset of this meta model, but organized in a different
way. This meta model is not a concrete log format, but transforms the object-
centric data into “bricks” which can constitute logs to enable process mining
techniques.

Berti [13] introduces a so-called StarStar model. It provides a multigraph vi-
sualization of the relationships between activities inferred from database events,
connected with edges that are annotated with frequency and performance infor-
mation. This model offers a simple way to identify a case notion to retrieve a
classic event log.

Our XOC log format combines the “bricks” from [50] in an object-centric
way, i.e., it focuses more on the data perspective, unlike the XES format. Objects
replace a case notion to correlate events, which makes XOC logs able to deal
with one-to-many and many-to-many relations. Moreover, by defining object
models, an XOC log reveals the evolution of a database through time.

4.5.2 Extracting Event Logs

In order to obtain event logs, researchers have proposed a number of techniques
and tools. [57] presented the ProM Import Framework (ProMimport), which was
the first tool to extract MXML event logs. A currently popular tool is XESame3,
which is used to convert databases into XES event logs [157]. van der Aalst [135]
conceptualizes a database view over event data based on the idea that events
leave footprints by changing the underlying database, which are captured by

3http://www.processmining.org/xesame/start
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redo logs of database systems. Triggered by this idea, González López de Murillas
et al. [51] propose a method to extract XES logs from databases by identifying a
specific trace id pattern. Calvanese et al. propose an approach [21] and a tool
(onprom) [20] to flexibly extract XES event logs from relational databases, by
leveraging the ontology-based data access paradigm.

In order to obtain logs from non-process-aware information systems, Pérez-
Castillo et al. [111] correlate events into process instances using similarity of
their attributes. Jans and Soffer [70] provide an overview of the decisions that
impact the quality of the event logs constructed from database data. Ingvaldsen
and Gulla [68] propose an analysis system which allows users to define events,
resources and their inter-relations to extract logs from SAP transactions. Raichel-
son and Soffer [118] address merging logs produced by disintegrated systems
that cover parts of the same process by choosing a “main” process. Artifact-
centric approaches [93,107] try to extract artifacts (i.e., business entities) and
address the possibility of many-to-many relationships between artifacts.

Compared with the existing approaches, our approach outputs object-centric
logs, i.e., XOC logs, rather than case-centric logs, i.e., XES logs. The main
advantage of object-centric logs is the new kinds of analyses that they enable.
Data-aware process model discovery [87], and new conformance checking tech-
niques [141] that exploit data relations are examples of approaches directly
applicable to XOC logs. Another important contribution is that our approach
supports the abstraction from low-level database events (like the ones obtained
in [51]) to high-level events (e.g., from the original information system).

4.6 Summary

In this chapter, we proposed a novel log format, i.e., the eXtensible Object-Centric
(XOC) log format and an approach to extract event logs of such format from
object-centric event data (i.e., database tables). The XOC format provides a
process mining view on databases. Compared with existing log formats, such as
XES, it has the following advantages:

• By removing the case notion and correlating events with objects, XOC logs
can easily deal with one-to-many and many-to-many relations, avoiding
convergence and divergence problems and displaying interactions between
different instances.

• An object in XOC logs contains as much information as its corresponding
record in the database. By extending the data perspective, XOC logs retain
the data quality.
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• The object model of an event represents a snapshot of the database just
after the event occurrence. Based on this idea, the log provides a view of
the evolution of the database, along with the operations which triggered
changes in the database.

Besides, XOC logs serve as a starting point for a new line of analysis tech-
niques. Based on experiments implemented on the generated XOC logs, it is
possible to discover Object-Centric Behavioral Constraint (OCBC) models to de-
scribe the underlying process in an object-centric manner [87] (cf. Chapter 6).
Additionally, taking an XOC log and an OCBC model as input, many deviations
which cannot be detected by existing approaches, can be revealed by new con-
formance checking techniques [141] (cf. Chapter 7). Moreover, based on an
XOC log and an OCBC model, performance analysis is also enabled to detect
bottlenecks of business processes. Note that the OCBC discovery, conformance
checking and performance analysis are just examples of potential applications
of XOC logs. It is possible to develop more techniques based on XOC logs, e.g.,
discovering other types of data-aware process models.



Chapter 5
Object-Centric Behavioral
Constraint Modeling Language

The first type of process mining is model discovery, i.e., discovering a process
model from an event log to reveal the business process executed in real trans-
actions. Chapter 2 analyzed the data generated by artifact-centric information
systems and Chapter 3 defined the XOC event log format to organize these
data for process mining techniques such as model discovery. Since the business
processes on artifact-centric systems are different from the ones on WFM/BPM
systems, conventional modeling languages fail to deal with these processes
properly. In this chapter, we propose a novel modeling language, i.e., Object-
Centric Behavioral Constraint (OCBC), to describe the processes on artifact-centric
information systems, which can be discovered from XOC logs (cf. Chapter 6).

This chapter is organized as follows. In Section 5.1, we motivate OCBC
models by discussing the challenges suffered by conventional models in terms
of business processes on artifact-centric information systems. An OCBC model
covers two perspectives of a business process, i.e., the data perspective and
behavioral perspective, which are illustrated in Section 5.2 and Section 5.3,
respectively. Section 5.4 defines OCBC models by integrating these two perspec-
tives, i.e., adding the interactions in between. We evaluate OCBC models by
comparing them with other models (such as Workflow nets and BPMN diagrams)
in terms of describing business processes in Section 5.5. Section 5.6 reviews the
related work and Section 5.7 concludes this chapter.
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5.1 Motivation for Object-Centric Behavioral Con-
straint Models

Business process modeling languages play a significant role in describing and un-
derstanding business processes from different perspectives, such as the behavioral
perspective (i.e., control-flow), data perspective and resource perspective. State-
of-the-art process modeling languages (BPMN diagrams [55], Petri nets [148],
EPCs [132], UML activity diagrams [16]) often assume a case notion in business
processes, i.e., each event is related to exactly one case identifier and one process
instance is recorded as a set of events which have the same case identifier.

However, when it comes to artifact-centric/data-centric processes supported
by CRM and ERP systems, most of the existing languages fail. More precisely,
they often force the analyst or modeler to straightjacket real-life processes from
artifact-centric systems into flat or separate models that fail to capture the
essential features. The typical reason for the failure is due to a missing case
notion in these processes. Moreover, artifact-centric systems (e.g., CRM and ERP)
support business functions related to sales, procurement, production, accounting,
etc. These systems may contain hundreds, if not thousands, of tables with
information about customers, orders, deliveries, etc. There exist one-to-many
and many-to-many relationships between entities such that it is impossible to
identify a global and unique process instance notion for all the entities, i.e., a
clear case notion is missing in such systems.

Besides, since an artifact-centric information system consists of interac-
tive modules (corresponding to different entities), the data perspective which
presents the structure (i.e., mutual relationships among entities) is key to the
system. In contrast, the behavioral perspective of the system is only an implicit
and loose business process (since the system has to deal with flexible business
processes), which can be considered as a second-class citizen. Apparently, the
essence of the artifact-centric information systems conflicts with existing model-
ing languages, which often focus on the behavioral perspective, i.e., they only
describe the lifecycles of individual instances (cases) in isolation. Although
process models may include data elements (cf. BPMN [48]), they cannot provide
a strong data perspective to describe the artifact-centric systems, since explicit
connections to real data models (e.g., an ER model [25] or a UML class model)
are rarely made.

The mismatch discussed above between process modeling languages and
the actual processes supported by artifact-centric systems becomes clear when
applying process mining to data from such systems. In summary, conventional
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business process modeling languages tend to suffer the following problems:
• It is difficult to identify a case notion for the whole process. Due to one-

to-many and many-to-many relationships between entities in business
processes, a global and unique case notion is missing. For instance, there
exists a many-to-many relationship between the “sales” and “delivery”
departments. In the eyes of the first department, the case notion is “order”,
whereas in the second one, the case notion is “shipment”. Therefore, it is
difficult to find a common case notion for these two departments.

• It is difficult to model interactions between process instances. Mainstream
business process modeling notations can only describe the lifecycle of one
type of process instance at a time, such that the interactions between
instances are missing. Consider for example BPMN. Although BPMN uses
concepts like lanes, pools, and message flows to address this problem, a
single instance is still modeled in isolation within each (sub)process.

• The data perspective is underestimated. Data elements can be modeled, but
the more powerful constructs present in ER models and UML class models
cannot be expressed well in conventional process models.

• It is difficult to model an end-to-end process in an integrated diagram. Since
there are multiple case notions, the whole process is often distributed over
multiple diagrams. Besides, a good combination of the data perspective
and behavioral (control-flow) perspective is not reflected in today’s process
models. For instance, cardinality constraints in the data model must
influence behavior, but this is missing in models such as BPMN diagrams
and data-aware Petri nets.

• A unified manner is not employed for constraints on different perspectives.
Constraints on different perspectives influence each other, e.g., cardinal-
ity constraints in the data model must influence behavior. Therefore, a
consistent constraint manner is needed to precisely describe interactions
between different perspectives.

The problems mentioned above have been around for quite some time (see for
example [154]), but were never solved satisfactorily. Artifact-centric approaches
[28, 66, 92, 107] (including the earlier work on proclets [140]) are state-of-
the-art approaches to deal with one-to-many and many-to-many relationships
and integrate data and behavioral perspectives. However, they still force one
to pick an instance notion for each artifact, although a case notion for the
whole process is not required. Moreover, the control-flow cannot be related to
an overall data model (i.e., there is no explicit data model or it is separated
from the control-flow) and interactions between different entities are not visible
(because artifacts are distributed over multiple diagrams). For other conventional
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languages like BPMN, concepts like lanes, pools, and message flows are used to
describe the interactions between instances of (sub)processes. However, within
each (sub)process a single instance is still modeled in isolation. Colored Petri
nets (CPNs) [73] and data-aware Petri nets (DPNs) [33,127] try to add a data
perspective to Petri nets, e.g., a token can have attributes and activities can
write/read data elements (variables and objects). However, the more powerful
notations used in data modeling language (e.g., a UML class model) are rarely
employed. In contrast, temporal data models try to add a behavioral perspective
by describing how data objects evolve over time, but they do not model activities
explicitly [9,52].

data 
perspective

behavioral
perspective 

interactions

modeling
3.Delivery

4.Invoice       

       

5.Payment

1.Customer
order

      2.Order
fulfilment

cardinality 
constraints

Figure 5.1: The idea of Object-Centric Behavioral Constraint (OCBC) models: describing
the data perspective and behavioral perspective of business processes as well
as their interactions in one single diagram with a unifying mechanism, i.e.,
cardinality constraints.

In order to totally (or better) solve these problems, this chapter proposes a
novel modeling language, i.e., the Object-Centric Behavioral Constraint (OCBC)
modeling language [90,138,141]. It combines ideas from declarative, constraint-
based languages like Declare [113, 143, 143], and data/object modeling tech-
niques like UML. An OCBC model covers both data and behavioral perspectives
and the interactions in between. Cardinality constraints are used as a unifying
mechanism to tackle data and behavioral dependencies, as well as their inter-
play(cf. Figure 5.1). Essentially, an OCBC model extends a class model with
a behavioral perspective. More precisely, class models (referring to UML class
models) are used to describe the data perspective of business processes since
they can easily deal with one-to-many and many-to-many relationships. This
ability is exploited to create process models that can also describe complex inter-
actions (e.g., many-to-many relationships) between different types of instances.
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Figure 5.2: An Object-Centric Behavioral Constraint (OCBC) model, which describes the
OTC process.

Classical multiple-instance problems are handled by using the data model for
event correlation. In terms of the behavioral perspective (referring to Declare
models), the declarative nature of the proposed language makes it possible to
model behavioral constraints over activities like cardinality constraints in data
models. In summary, the resulting OCBC model is able to describe processes
involving interacting instances and complex data dependencies.

Figure 5.2 shows an OCBC model example to describe the Order To Cash
(OTC) process, which is one of the most typical business processes supported by
ERP systems. The OTC process has many variants and this example is a variant
employed by Dolibarr. In general, an OCBC model consists of three parts, which
are explained as follows. The top part shows behavioral constraints (i.e., the
behavioral perspective of the process). Those constraints describe the ordering
of activities (create order, create invoice, create payment, and create shipment).
The bottom part describes the structure of entities relevant for the process (i.e.,
the data perspective), which can be read as if it was a UML class model (with six
object classes order, order line, invoice, payment, shipment, and customer). The
middle part integrates these two perspectives by relating activities, constraints,
and classes. The notation of OCBC models will be explained in more detail later.

Obviously, the process described in Figure 5.2 has one-to-many and many-
to-many relationships, and it is impossible to identify a single case notion. For
instance, one payment can cover multiple invoices and multiple payments can be
executed for a particular invoice (i.e., one payment only covers a part of the
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invoice). Besides, different types of instances are intertwined and constraints in
the class model influence the allowed behavior in the process. Therefore, the
process cannot be modeled using conventional notations (e.g., BPMN).

5.2 Modeling the Data Perspective

The data perspective of a business process describes the entities and relationships
between entities involved in the process. For example, the OTC business process
has entities, such as “customer”, “order”, “order line” and “shipment”. The rela-
tionships between entities could be, for instance: each order has a corresponding
customer; each shipment has at least one corresponding order line, etc.

In this section, we explain how to model the data perspective of a business
process. More precisely, we introduce data constraints to describe the constraints
on the data perspective first. Using classes to represent entities and class relation-
ships to represent the relations between entities, we then define a class model to
describe the data perspective. By defining valid object models of class models, i.e.,
possible instances of class models, we illustrate the semantics of class models.

5.2.1 Data Constraints

Data constraints are employed to describe the relationships between entities on
the data perspective. In data modeling languages, cardinalities are often used
to form data constraints , e.g., ER models and UML Class models may include
cardinality constraints. A cardinality is a set of integers (cf. Chapter 4), e.g., “1..∗”
denotes the set of all positive integers. The constraint indicated by a relationship
between two entities can be specified by two cardinalities. Consider for example
a relationship between entities “order” and “order line”. Each order should have
at least one order line (denoted by the cardinality “1..∗”) and each order line
should have precisely one corresponding order (denoted by the cardinality “1”).

The cardinalities are not enough to precisely describe the constraints in some
situations. For instance in Figure 5.3, each order line (e.g., ol) should be delivered
to its corresponding customer at some point in time (e.g., t). In this situation, for
an order line it is not necessary to “always” have a corresponding delivery (e.g.,
ol has no corresponding delivery before t), but it should “eventually” have a
corresponding delivery (e.g., ol has a corresponding delivery after t). Apparently,
the cardinalities on edge r1 cannot precisely describe this situation. Therefore,
we add two types of symbols (2 and ♦) onto cardinalities (cf. the cardinalities
on edge r2) to strengthen their expressive power.
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Figure 5.3: Extending cardinality with 2 (“always”) and ♦ (“eventually”) symbols.

More precisely, the cardinalities with the square symbol 2 are called “always”
cardinalities while the cardinalities with the diamond symbol ♦ are called “even-
tually” cardinalities. “always” cardinalities require cardinalities to be satisfied
always. For instance, the “always” cardinality in the constraint that an order
line should have “2 0..1” corresponding delivery, means that at any point in
time, the order line should have either zero or one corresponding delivery. In
contrast, “eventually” cardinalities require cardinalities to be satisfied eventually.
For instance, the “eventually” cardinality in the constraint that an order line
should have “♦ 1” corresponding delivery, means that from some point in time
onward, the order line should have precisely one corresponding delivery.

Definition 5.1 (Data Constraints) Let UCard be the universe of all possible cardi-
nalities. Symbols 2 and ♦ are attached before cardinalities to indicate the temporal
properties of cardinalities. 2 means the cardinality should hold at any point in
time and ♦ means the cardinality should hold from some point in time onwards.
Examples of data constraints are “2 0..1” and “♦ 1”.

notation
allowed correspondence numbers

ts t1 ... tn ... tc

2 1 {1} {1} ... {1} ... {1}
2 0..1 {0,1} {0,1} ... {0,1} ... {0,1}
2 ∗ {0,1,2, . . .} {0,1,2, . . .} ... {0,1,2, . . .} ... {0,1,2, . . .}
♦ 1 {0,1,2, . . .} {0,1,2, . . .} ... {1} ... {1}

♦ 0..1 {0,1,2, . . .} {0,1,2, . . .} ... {0,1} ... {0,1}
2 0..1 ♦ 1 {0,1} {0,1} ... {1} ... {1}
2 1 ♦ 1 {1} {1} ... {1} ... {1}

Table 5.1: Some examples of frequently used extended cardinalities.

It is possible to combine an “always” cardinality and an “eventually” cardi-
nality. A combined cardinality indicates that both the “always” cardinality and
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the “eventually” cardinality should be satisfied at the same time. Consider for
example the combined cardinality that an order line should have “2 0..1 ♦ 1” cor-
responding delivery. It means that the order line should have one corresponding
delivery from some point in time onward and either zero or one corresponding
delivery before the point in time.

Table 5.1 shows some examples of “always”, “eventually” and combined
cardinalities. ts and tc means the start and complete of a period of time. t1

corresponds to the first moment after ts and tn corresponds to some moment
between t1 and tc . We use the correspondence number to denote the number of
relationship instances a relationship has at some point in time. For instance, if
an order has three corresponding invoices at some moment, the correspondence
number is three. The allowed correspondence numbers are the numbers of
permissible relationship instances a relationship may have.

Note that an “eventually” cardinality only needs to be satisfied from some
point in time onward, e.g., tn (it is possible that tn is the last moment, i.e.,
tc). It does not take effect before tn , i.e., any (non-negative) integer is allowed
before tn . Consider for example “♦ 1” and “♦ 0..1” in Table 5.1. The allowed
correspondence numbers are {0,1,2, . . .} before tn . A combined cardinality may
have the same allowed numbers as an “always” cardinality has. In this case, the
combined cardinality can be represented by the “always” cardinality for short,
i.e., the “eventually” cardinality can be omitted. For instance, “2 1 ♦ 1” can be
simplified as “2 1”.

5.2.2 Definition of Class Models

In Chapter 3, we defined a data model to describe the structure of the data in
database tables, generated by artifact-centric information systems. More precisely,
in the context of a database, a data model basically contains classes (representing
database tables) and class relationships (representing PK-FK references among
tables). The generated data stored in databases correspond to executions of
business processes. In other words, the data perspective of a business process
is related to the database schema. In order to make it consistent, we still use
the notions classes and class relationships from the data model, but assign them
different meanings to describe the data perspective of a business process. In
contrast, in the context of a business process, a class represents an entity and a
class relationship represents the constraints between two entities.

In Section 5.2.1, we discussed the notations used to describe the data con-
straints of business processes. More precisely, notations can be viewed as a subset
of such mainstream notations, such as ER models [25], UML class models [53],
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and Object-Role Models (ORM) [60]. The only particular feature is that cardinal-
ity constraints are tagged as “always” (2) or “eventually” (♦). Based on these
notations, we define a class model to describe the data perspective of a business
process.

Definition 5.2 (Class Model) A class model is a tuple ClaM = (C,R,π1,π2,]2src,

]♦src,]2tar ,]♦tar),where
• C ∈UC is a set of classes,
• R ∈UR is a set of relationships (C ∩R =;),
• π1 ∈ R → C gives the source class of a relationship,
• π2 ∈ R → C gives the target class of a relationship,
• ]2src ∈ R →UC ar d gives the source cardinality of a relationship (the constraint

should hold at any point in time as indicated by 2),
• ]♦src ∈ R →UC ar d gives the source cardinality of a relationship (the constraint

should hold from some point onwards as indicated by ♦),
• ]2tar ∈ R →UC ar d gives the target cardinality of a relationship (the constraint

should hold at any point in time as indicated by 2), and
• ]♦tar ∈ R →UC ar d gives the target cardinality of a relationship (the constraint

should hold from some point onwards as indicated by ♦).
UClaM is the universe of class models.
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1..* 1..* 1
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r4 r5

order lineorder delivery
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Figure 5.4: An example of a class model.

Figure 5.4 depicts an example of a class model ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,

]♦tar). It has five object classes C = {order,order line,delivery,customer,product} and
five relationships R = {r1,r2,r3,r4,r5}. Relationship r1 is connecting classes order
and order line: π1(r 1) = order and π2(r 1) = order line. For the other relationships,
we have: π1(r 2) = delivery, π2(r 2) = order line, π1(r 3) = product, and π2(r 3) =
order line, etc.

The notation of combined cardinalities (as shown in Table 5.1) is used to
specify the cardinalities in Figure 5.4. ]2src(r 1) = {1}, i.e., for each object in class



130 Object-Centric Behavioral Constraint Modeling Language

order line there is always precisely one corresponding object in order. This is
indicated by the “2 1” annotation on the source side (i.e., the order side of r 1)
in Figure 5.4. ]2tar(r 1) = {1,2,3, . . .}, i.e., for each object in class order there is
always at least one corresponding object in order line. This is indicated by the
“2 1..∗” annotation on the target side (i.e., the order line side) of r 1. Not shown
are ]♦src(r 1) = {1} (“♦ 1”) and ]♦tar(r 1) = {1,2,3, . . .} (“♦ 1..∗”) as these are implied
by the “always” constraints. On the source side of r 2 in Figure 5.4, there are
two cardinality constraints: ]2src(r 2) = {0,1} and ]♦src(r 2) = {1}. This means that
eventually each order line needs to have a corresponding delivery (“♦ 1”), but
the corresponding delivery may not be created before this moment (“2 0..1”). We
only show the “eventually” (♦) cardinality constraints that are more restrictive
than the “always” (2) cardinalities in the class model. Obviously, ]♦src(r ) ⊆ ]2src(r )

and ]♦tar(r ) ⊆ ]2tar(r ) for any r ∈ R since constraints that always hold also hold
eventually.

Classes can also have attributes and therefore, in principle, the class model
should list the names and types of these attributes. We abstract class attributes
from this thesis, as well as the notions of hierarchies and subtyping, but they
could be added in a straightforward manner by referring to existing techniques.
For instance, the data model in object-relational mapping systems can adopt
hierarchies and many-to-many relationships, which are then properly flattened in
the underlying database. The data model in ontology-based data access (OBDA)
systems is at a much higher level of abstraction than the underlying database,
and the two layers come with a mapping specification indicating how queries
on the database link to classes/relationships in the data model. Note that both
such systems adopt data models that are richer than the class model introduced
above. These models can be referred to for extending our class models in future .

5.2.3 Semantics of Class Models

A class model describes the data perspective of a business process, by specifying
the possible classes and constraints between classes. In this section, we explain
the semantics of a class model in terms of its possible instances.

A data model (defined in Chapter 3) describes the structure of data generated
by executing a business process. It specifies the constraints from the instance
angle. In contrast, the class model describes the business process angle and it
specifies the constraints from the same angle. Since class models are related to
data models, e.g., they share the notions of classes and class relationships, we
also consider objects and object models as instances of classes and class models,
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respectively.
More precisely, in the context of object-centric event data, we use the term

“object” to abstract records in database tables and “object model” to represent
database states. For example, an object o = (c,map) corresponds to a record in
the c table (the values in the record are indicated by map) and an object model
OM = (Obj,Rel,class,objectAttr) corresponds to a state of the database at some
point in time. In the context of a business process, the object o is considered as
an instance of the class c and the object model OM is considered as an instance
of a class model.

A class model defines a “space” of possible object models, i.e., concrete col-
lections of objects and relations instantiating the class model. A possible object
model of a class model should satisfy some rules indicated by the constraints of
the class model. For instance, objects in the object model should be classified in
classes in the class model. Besides, the cardinalities specified in the class model
should be respected by the object model. An object model is valid for a class
model if it complies with the “always” (2) cardinalities in the class model. A
valid model is also fulfilled if the stronger “eventually” (♦) cardinality constraints
are satisfied.
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Figure 5.5: An example of an object model corresponding to the class model in Figure 5.4.
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Definition 5.3 (Valid and Fulfilled) Let ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,]♦tar) be
a class model and OM = (Obj,Rel,class,objectAttr) ∈UOM be an object model. OM
is valid for ClaM if and only if

• for any o ∈ Obj: class(o) ∈C ,
• for any (r,o1,o2) ∈ Rel: r ∈ R, class(o1) =π1(r ) and class(o2) =π2(r ),
• for any r ∈ R and o2 ∈ ∂π2(r )(Obj), we have that 1

|{o1 ∈ Obj | (r,o1,o2) ∈ Rel}| ∈ ]2src(r ), and

• for any r ∈ R and o1 ∈ ∂π1(r )(Obj), we have that

|{o2 ∈ Obj | (r,o1,o2) ∈ Rel}| ∈ ]2tar(r )

A valid object model is also fulfilled if the stronger cardinality constraints hold
(these are supposed to hold eventually):

• for any r ∈ R and o2 ∈ ∂π2(r )(Obj), we have that

|{o1 ∈ Obj | (r,o1,o2) ∈ Rel}| ∈ ]♦src(r ), and

• for any r ∈ R and o1 ∈ ∂π1(r )(Obj), we have that

|{o2 ∈ Obj | (r,o1,o2) ∈ Rel}| ∈ ]♦tar(r )

The object model in Figure 5.5 is valid for the class model in Figure 5.4. If we
would remove relation (r1,o1,ol1), the model would no longer be valid because
an order line should always have a corresponding order. Adding a relation
(r1,o2,ol1) would also destroy validity. Both changes would violate the “2 1”
constraint on the source side of r1. The object model in Figure 5.5 is not fulfilled
because the “♦ 1” constraint on the source side of r2 does not hold. Order lines
ol2 and ol4 do not (yet) have a corresponding delivery. Adding deliveries for
these order lines and adding the corresponding relations would make the model
fulfilled.

Definition 5.3 only formalizes simple cardinality constraints involving a
binary relation and abstracting from attribute values, i.e., the object model
OM is simply checked against a class model ClaM in terms of “always” and
“eventually” cardinalities. In principle, more sophisticated constraints could be
considered, e.g., constraints involving attributes or more than two classes. The
Object Constraint Language (OCL) [54] could also be used to define more refined
constraints.

1∂c(Obj) = {o ∈ Obj | class(o) = c} denotes the whole set of objects in class c.
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5.3 Modeling Behavioral Perspective

An OCBC model covers data and behavioral perspectives. It can be considered
as extending a class model (describing the data perspective) with an activity
model (describing the behavioral perspective). The class model is the backbone
of the OCBC model, which is defined in Section 5.2. In this section, we define
the activity model to describe the behavioral perspective of a business process.

5.3.1 Behavioral Constraints

In artifact-centric information systems, the behavioral perspective is quite loose
and unstructured, which enables users to deal with flexible and dynamic business
processes. For instance, after the creation of an order, one can edit, cancel or
delete the order, or create an invoice/delivery for the order. Compared with
WFM/BPM, artifact-centric information systems provide an “open” environment
to operate more freely.

More precisely, on the instance level, the behavioral perspective of a business
process is merely a collection of events without assuming some case or process
instance notion. Note that the orders between events should satisfy some rules
indicated by the process. On the model level, the behavioral perspective can be
viewed as a set of activities and a set of constraints between activities without
a clear and concrete process. For instance, a constraint may be a temporal
restriction on activities, e.g., “display order” activity can happen only after
“create order” activity happens. A constraint may also be related to a cardinality.
For instance, each “create order” event can have at most one corresponding
“delete order” event.

There exist different notations to specify the constraints between activities. In
a procedural language like Petri nets, places correspond to constraints: removing
a place may allow for more behavior and adding a place can only restrict behavior.
Compared with procedural languages like Petri nets, declarative languages are
“open” languages (if we consider procedural languages as closed languages), i.e.,
they allow anything which is not explicitly forbidden by constraints. Therefore,
they are more flexible and suitable for modeling business processes in artifact-
centric information systems.

In this section, we employ the declarative manner to model the behavioral
constraints and refer to the graphical notation inspired by Declare [143] (cf.
Chapter 2) to depict the constraints. More precisely, a declarative constraint has
a reference activity, a target activity and a constraint type which specifies the
restriction between the reference events (i.e., events of reference activity) and
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target events (i.e., events of target activity). For example, given some reference
event e, the constraint type requires that the cardinality of the set of target events
before or after the reference event lies within a particular range. Based on this
idea, a constraint type is defined as a set (corresponding to a particular range)
of pairs of integers. In each pair, the first integer indicates the allowed number
of target events before the reference event and the second integer indicates the
allowed number of target events after the reference event.

Definition 5.4 (Constraint Types) UCT = {X ⊆ IN× IN | X 6= ;} defines the uni-
verse of all possible constraint types. An element of UCT specifies a non-empty set
of pairs of integers: the first integer defines the number of target events before the
reference event and the second integer defines the number of target events after the
reference event.

constraint type formalization

response {(before,after) ∈ IN× IN | after ≥ 1}
unary-response {(before,after) ∈ IN× IN | after = 1}
non-response {(before,after) ∈ IN× IN | after = 0}
precedence {(before,after) ∈ IN× IN | before ≥ 1}

unary-precedence {(before,after) ∈ IN× IN | before = 1}
non-precedence {(before,after) ∈ IN× IN | before = 0}

co-existence {(before,after) ∈ IN× IN | before+after ≥ 1}
non-co-existence {(before,after) ∈ IN× IN | before+after = 0}

Table 5.2: Examples of constraint types (i.e., elements of UCT ). The notion is inspired by
Declare, but formalized in terms of cardinality constraints rather than LTL.

Table 5.2 shows eight examples of constraint types. The corresponding
graphical representations of the eight example constraint types are shown in
Figure 5.6. Definition 5.4 gives a general notion of constraint types. In other
words, besides the examples in Table 5.2, one can define any constraint type
that can be specified in terms of the cardinality of preceding and succeeding target
events relative to a collection of reference events.

Note that since declarative constraints are used to describe the loose con-
straints or rules in flexible business processes, the “before” and “after” in Defi-
nition 5.4 do not strictly require target events directly preceding or following
the reference event. In other words, a declarative constraint has an influence
scope (e.g., a set of events), in which the number of target events before or
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Figure 5.6: Graphical notation for the example constraint types defined in Table 5.2.

after the reference event should satisfy the constraint. In traditional process
mining notations, the scope corresponds to a case. Since we do not assume
a case notion in our approach, the scope for declarative constraints in OCBC
models is identified based on the data perspective (cf. Section 5.4.3).

Definition 5.5 (Behavioral Constraints) Let UCon be the universe of possible
constraints. Each constraint con ∈UCon has a reference activity, a target activity, a
constraint type and an influence scope.

Definition 5.5 introduces the behavioral constraints in a descriptive way. The
influence scope of a constraint is related to the data perspective, which will be
illustrated later. Therefore, in this section, we do not consider the influence
scope.

a3
(reference)

a4
(target)

con2
(ct2)

a1
(target)

a2
(reference)

con1
(ct1)

Figure 5.7: Two behavioral cardinality constraints: con1 and con2. Inspired by Declare,
the dot indicates the reference activity. The target activity is on the other side
that has no dot. The constraint type is represented by the arrows.

For instance, Figure 5.7 depicts two behavioral constraint examples con1
and con2. A constraint is represented by an edge with an arrow and a black
dot between two rectangles denoting activities. The black dot side corresponds
to the reference activity while the other side corresponds to the target activity.
The shape of the edge indicates the constraint type. Consider for example the
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constraint con1. Its reference activity is a2 (indicated by the black dot), its target
activity is a1 and its constraint type is ct1 (indicated by the shape of the edge).
For con2, its reference activity is a3, its target activity is a4 and its constraint type
is ct2.

5.3.2 Definitions of Activity Models

An activity model describes the behavioral perspective of a business process. It
can be viewed as a set of activities and a set of constraints between activities.
Since the business processes in artifact-centric information systems are quite
flexible, we defined the declarative behavioral constraints in Section 5.3.1 to
depict the constraints in these processes. In this section, we define activity
models based on declarative constraints.

Definition 5.6 (Activity Model) An activity model is a tuple ActM = (A,Con,πref ,
πtar , type), where

• A ⊆UA is a set of activities (denoted by rectangles),
• Con ⊆UCon is a set of constraints (A∩Con =;, denoted by various types of

edges),
• πref ∈ Con → A defines the reference activity of a constraint (denoted by a

black dot connecting constraint and activity),
• πtar ∈ Con → A defines the target activity of a constraint (other side of edge),

and
• type ∈ Con →UCT specifies the type of each constraint (denoted by the type of

edge).
UActM is the universe of activity models.

create 
order

pick
item

wrap
item

deliver
items

con1

con2

con3

con4
con5
con6

Figure 5.8: An example of an activity model.

An activity model ActM = (A,Con,πref ,πtar , type) contains a set of activities, i.e.,
A, and a set of constraints, i.e., Con. Each constraint corresponds to a reference
activity, a target activity and a constraint type, indicated by functions πref , πtar,
and type, respectively. For instance, Figure 5.8 shows an activity model, which
consists of four activities, i.e., A = {create order,pick item,wrap item,deliver items},
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and six constraints, i.e., C = {con1,con2, ..,con6}. Consider con1 as an example to
understand the functions. πref (con1) = create order, which means that all “create
order” events are the reference events for con1 (indicated by the black dot on
the create order side of the constraint). πtar(con1) = pick item, which means that
all “pick item” events are the target events for con1. type(con1) = {(before,after) ∈
IN× IN | after ≥ 1} (i.e., the response type indicated by the double-headed arrow
leaving the black dot). The constraint con1 means that there has to be at least
one “pick item” event after each “create order” event.

equals
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pay
con12

pick
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wrap
item

con34
equals

create 
invoice

pay
con1

pick
item

wrap
item

con3

con2

con4

Figure 5.9: An arrow with two black dots (•) can be used as a shorthand. Constraint
con12 (con34) corresponds to the conjunction of constraints con1 and con2
(resp. con3 and con4).

In an activity model, one arrow may combine two constraints as a shorthand
if these two constraints have the same edge type and inverse black dots (i.e.,
inverse reference activity and target activity). The combined constraint covers the
semantics of all its corresponding separate constraints. For example, constraint
con12 in Figure 5.9 indicates that after creating an invoice there is at least
one payment, and each payment can cover one or multiple created invoices.
The combined constraint con12 defines the same behavior of the individual
constraints con1 and con2. Similarly, constraint con34 states that after picking
an item there is precisely one event to wrap the item, and before wrapping an
item there is precisely one event of picking item. The combined constraint con34
defines the same behavior of the individual constraints con3 and con4. Besides
the constraint types present in Figure 5.9, the constraint combination can apply
to all constraint types.

Activities can also have attributes and therefore, in principle, the activity
model should list the names and types of these attributes. We abstract activity
attributes from this thesis, as well as the notions of hierarchies, but they could
be added in a straightforward manner.
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5.3.3 Semantics of Activity Models

An activity model describes the behavioral perspective of a business process,
by specifying the possible activities and constraints between activities. In this
section, we explain the semantics of an activity model in terms of the possible
instances of the activity model.

An activity model defines a “space” of possible relations (response/precedence
and cardinality) between all events in a given set. More precisely, each behavioral
constraint in the activity model specifies the allowed relations between each
reference event and its corresponding target events. In order to introduce
the semantics of behavioral constraints, we first define some notations over a
collection of ordered events as a shorthand to refer to events.

Definition 5.7 (Event Notations) Let E ⊆UE be a set of events ordered by ¹ and
related to activities through function act. For any event e ∈ E:

• �e(E) = {e ′ ∈ E | e ′ ¹ e} are the events before and including e.
• �e(E) = {e ′ ∈ E | e ¹ e ′} are the events after and including e.
• �e(E) = {e ′ ∈ E | e ′ ≺ e} are the events before e.2

• �e(E) = {e ′ ∈ E | e ≺ e ′} are the events after e.
• ∂a(E) = {e ′ ∈ E | act(e ′) = a} are the events corresponding to activity a ∈UA.

In the remainder, these notations can be used in a given set of events, without
explicitly stating that the events are ordered and have corresponding activities.

a1 a2 a3
con1 con2

Figure 5.10: An example of an activity model with two constraints.

Figure 5.10 depicts an activity model with two constraints. Given a set of
events E ⊆UE , the reference events for con1 are all a2 events, i.e., ∂a2(E). This is
indicated by the black dot connecting the con1 arrow to activity a2. Now consider
a reference event eref ∈ ∂a2(E). The single-headed arrow towards the black dot
indicates that eref should be preceded by precisely one a1 event. The a1 events
are called target events (counterpart of eref when evaluating the constraint).
Formally, constraint con1 demands that |�eref (∂a1(E))| = 1, i.e., there has to be
precisely one a1 event before eref .

2e′ ≺ e if and only if e′ ¹ e and e′ 6= e.
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The reference events for con2 are also all a2 events, i.e., ∂a2(E). Again, this is
visualized by the black dot on the a2 side of the constraint. The double-headed
arrow leaving the black dot specifies that any eref ∈ ∂a2(E) should be followed by
at least one a3 event. The target events in the context of con2 are all a3 events.
Formally, |�eref (∂a3(E))| ≥ 1, i.e., there has to be at least one a3 event after eref .

Definition 5.8 (Constraint Satisfaction) Let ActM = (A,Con,πref ,πtar , type) be
an activity model, and E ⊆UE be a set of events.

• E satisfies constraint con ∈ Con, denoted as E |= con, if and only if ∀eref ∈
∂πref (con)(E) :

(|�eref (∂πtar (con)(E))|, |�eref (∂πtar (con)(E))|) ∈ type(con).

• E satisfies ActM if and only if E satisfies each constraint con ∈ Con.

Based on the description of the two constraints in Figure 5.10, Definition 5.8
formalizes the requirements which an event set has to meet to satisfy a constraint
or an activity model. For a constraint con, its reference activity defines the
corresponding set of reference events ∂πref (con)(E). For each reference event eref ,
it is checked whether the cardinality constraint is satisfied. �eref(∂πtar (con)(E)) are
all target events before the reference event eref (named precedence target events)
and�eref(∂πtar (con)(E)) are all target events after the reference event eref (named
response target events).

Consider for example the constraint con1 in Figure 5.10 and the event set
E in Figure 5.11 (E contains only correlated events, cf. Section 5.4.3 for
how to correlate events). All a2 events are reference events (i.e., {e2,e4})
and all a1 events are target events (i.e., {e1,e5}). For the reference event e2,
its precedence target events are �e2(∂πtar (con1)(E)) = {e1} and response target
events are �e2(∂πtar (con1)(E)) = {e5}. For the reference event e4, its precedence
target events and response target events are the same as e2. Therefore, the
event set E satisfies the constraint con1, since for each reference event in E ,
(|�eref (∂πtar (con)(E))|, |�eref (∂πtar (con)(E))|) = (1,1) ∈ {(before,after) ∈ IN×IN | before = 1}
(con1 corresponding to the “unary-precedence” type, cf. Table 5.2).

For another constraint con2 in Figure 5.10, all a2 events are reference events
(i.e., {e2,e4}) and all a3 events are target events (i.e., {e3,e6,e7}). For the ref-
erence event e2, its precedence target events are �e2(∂πtar (con2)(E)) = ; and re-
sponse target events are�e2(∂πtar (con2)(E)) = {e3,e6,e7}, i.e., (|�e2(∂πtar (con)(E))|, |�e2

(∂πtar (con)(E))|) = (0,3). For the reference event e4, its precedence target events
are �e4(∂πtar (con2)(E)) = {e3} and response target events are �e4(∂πtar (con2)(E)) =
{e6,e7}, i.e., (|�e4 (∂πtar (con)(E))|, |�e4 (∂πtar (con)(E))|) = (1,2). Therefore, the event
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set E satisfies the constraint con2, since for each reference event in E , (|�eref

(∂πtar (con)(E))|, |�eref (∂πtar (con)(E))|) ∈ {(before,after) ∈ IN× IN | after ≥ 1} (con2 corre-
sponding to the “response” type, cf. Table 5.2).

E

time

e1
(a1)

e2
(a2)

e3
(a3)

e4
(a2)

e5
(a1)

e6
(a3)

e7
(a3)

e8
(a4)

Figure 5.11: An example set of events which are ordered and have corresponding activi-
ties.

To sum up, the event set E in Figure 5.11 satisfies the activity model in
Figure 5.10, since E satisfies all the constraints (i.e., con1 and con2) in the
activity model. Note that the idea of Declare models is that they allow anything
which is not explicitly forbidden by constraints. In this sense, a Declare model
allows events of any activities which are not in the model, since there are no
constraints related to them in the model. In practice, users may want to limit the
activities of events. Therefore, we add optional restriction to limit events to only
have activities contained by the activity model.

Definition 5.9 (Activity Satisfaction (Optional)) Let ActM = (A,Con,πref ,πtar ,
type) be an activity model, and E ⊆ UE be a set of events (ordered by ¹ and
related to activities through function act). E satisfies activities A if and only if
∀e ∈ E : act(e) ∈ A.

An event set E satisfies the activities A in an activity model, if the activity
of each event e can be found in A, i.e., act(e) ∈ A. For instance, the event set
E in Figure 5.11 violates the activity model ActM in Figure 5.10 in terms of
activity satisfaction, since the activity of event e8, i.e., a4, cannot be found in the
activities in ActM.

In traditional process modeling notations, a constraint is defined for one
process instance (case) in isolation. This means that the set E in Definition 5.8
refers to all events corresponding to the same case. As discussed before, the case
notion is often too rigid. There may be multiple case notions at the same time,
causing one-to-many or many-to-many relationships that cannot be handled
using traditional monolithic process models. In OCBC models, the case notion
is removed, and the set E is derived by correlating events based on the data
perspective (cf. Section 5.4.3).
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5.4 OCBC: Integration of Data and Behavioral Per-
spectives

In Section 5.2, we focused on modeling the data perspective of a business
process, by structuring entities and formalizing cardinality constraints on class
models (i.e., classical data modeling). In Section 5.3, we modeled the behavioral
perspective, i.e., control-flow modeling, and formalized behavioral constraints to
depict the restriction between each reference event and its corresponding target
events. In this section, we combine both perspectives to form a complete OCBC
model by adding the interactions between activities and classes.

5.4.1 Relating Activities to Classes

The data constraints (i.e., class relationships) connect classes in the class model
while the behavioral constraints correlate activities in the activity model. These
two types of constraints serve as a bridge to associate elements for each individual
perspective. Similarly, in order to integrate the data perspective and behavioral
perspective, we define a new type of constraints between activities and classes.

Consider a simple scenario (which is a fragment of a business process related
to payments for tickets booked online) to understand the constraints between
activities and classes. The scenario can be summarized as the following rules:

• Each ticket always refers to at most one payment. It is possible that the
ticket has no payment when it is booked.

• Each ticket eventually refers to precisely one payment. A ticket is valid
only when it is paid and the payment cannot be split into multiple ones.

• Each payment refers to one or more tickets. A payment can be made for
one ticket after the ticket is booked. It is possible that one payment covers
multiple tickets.

Figure 5.12(a) depicts a model to describe this scenario. The model contains
an activity “pay” and a class “ticket” and can be considered as a fragment
of a larger OCBC model which describes the whole business process. The
constraint (or relationship) between “pay” and “ticket” is specified by three
cardinalities, an “always” cardinality (corresponding to the first rule) and an
“eventually” cardinality (corresponding to the second rule) on the activity side,
and a cardinality (without 2 or ♦ symbol) on the class side (corresponding to
the third rule). A fragment of the XOC event log generated in the scenario, i.e.,
some payment events (of activity “pay”) and corresponding object models (only
with “ticket” objects), is illustrated in Figure 5.12(b). Payment event p1 refers to



142 Object-Centric Behavioral Constraint Modeling Language

t1

pay

ticket

1..*

0..1

1

t2

p1

t1 t2

t3

p23

t1 t2

t3

p3

payment event
that refers to tickets 

t2 and t3

object model directly after
the payment event (having 

three ticket objects)  

fragment of larger 
OCBC model

activity

object class

every payment 
refers to one or 

more tickets 

every ticket 
always refers to at 
most one payment

eventually every
ticket refers to precisely 

one payment

t4

(a) a fragment of a business process (b) a fragment of the corresponding XOC event log

Figure 5.12: Illustrating cardinality constraints between activities and classes.

ticket t1, event p23 refers to tickets t2 and t3, and event p3 refers to ticket t4.
These three cardinalities shown in Figure 5.12(a), i.e., “2 0..1” (every ticket

always refers to at most one payment), “♦ 1” (eventually every ticket refers to
precisely one payment), and “1..∗” (every payment refers to one or more tickets)
are consistent with the observed events and object models. For instance, the
object t2 has no corresponding payment event at the moment when p1 happens
(“2 0..1”) and from the moment when p23 happens onwards, it has precisely one
corresponding payment event (“♦ 1”). Payment events p1 and p23 refer to one
ticket (t1) and two tickets (t2 and t3), respectively, when they happen (“1..∗”).

Indicated by the discussion of the example scenario, we also use the cardinal-
ity constraints to express the restriction between activities and classes (similar
to cardinality constraints in a class model). More precisely, the constraints on
the activity side define how many events there should be for each object. Since
the object model is evolving, there are two types of constraints: constraints that
should hold at any point in time from the moment the object exists (2) and
constraints that should eventually hold (♦). In contrast, the constraint on the
class side defines how many objects there need to be for each event when the
event occurs. Since such a constraint is only for a specific moment, there is no
need to add “always” or “eventually” symbol on the constraint.

Definition 5.10 (AOC Relationships) Let A ∈ UA be a set of activities, C ∈ UC

be a set of classes. AOC ⊆ A ×C is a set of AOC relationships between Activities
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and (Object) Classes. For convenience, we define three functions to refer to the
cardinalities on the relationships.

• ]2A ∈ AOC →UCard gives the source “always” cardinality of an AOC relationship
(activity side, the constraint should hold at any point in time as indicated by
2),

• ]♦A ∈ AOC → UCard gives the source “eventually” cardinality of an AOC rela-
tionship (activity side, the constraint should hold from some point onwards
as indicated by ♦), and

• ]OC ∈ AOC →UCard gives the target cardinality of an AOC relationship (object
class side).

UAOC is the universe of AOC relationships.

The constraints between activities and classes illustrated above are defined as
AOC relationships in Definition 5.10 to distinguish with other types of constraints
or relationships. Besides, we also define three functions ]2A , ]♦A and ]OC to refer
to the three cardinalities on the relationships. For instance, there is one AOC
relation in Figure 5.12(a), i.e., AOC = {(pay, ticket)}, and ]2A ((pay, ticket)) =2 0..1,
]♦A ((pay, ticket)) =♦ 1 and ]OC ((pay, ticket)) = 1..∗.

Note that when we say the moment when an event occurs, it refers to the
moment just after the event occurs. For instance, if an object is added by an
event, we say the object exists when the event occurs (which means in reality
that the object exists just after the event occurs). We do not distinguish the
moment just before the event and the moment just after the event. As a result,
no matter if a ticket is created by an event just before a payment event or it
is created by the payment event, we consider that the ticket exists when the
payment event occurs.

5.4.2 Definition of OCBC Models

The AOC relationships between activities and classes introduced in Section 5.4.1
provide the integration needed to connect activity models to class models. Next,
we define Object-Centric Behavioral Constraint (OCBC) models, which relate
behavior and data structure, through a combination of control-flow modeling
and data/object modeling.

Definition 5.11 (Object-Centric Behavioral Constraint Model) An object-
centric behavioral constraint model is a tuple OCBCM = (ClaM ,ActM ,AOC,]2A ,]♦A ,
]OC ,crel), where

• ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,]♦tar) is a class model (Definition 5.2),
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• ActM = (A,Con,πref ,πtar , type) is an activity model (Definition 5.6),
• C , R, A and Con are pairwise disjoint (no name clashes),
• AOC ⊆ A×C is a set of AOC relationships, and ]2A , ]♦A and ]OC specify the three

cardinalities on the AOC relationships (Definition 5.10),
• crel ∈ Con → C ∪R indicates the event correlation pattern (to identify the

scope) for each behavioral constraint, satisfying the following conditions for
each con ∈ Con:

– {(πref (con),c), (πtar(con),c)} ⊆ AOC if crel(con) = c ∈ C, and
– {(πref (con),π1(r )), (πtar(con),π2(r ))} ⊆ AOC or

{(πref (con),π2(r )), (πtar(con),π1(r ))} ⊆ AOC if crel(con) = r ∈ R.
UOCBCM is the universe of OCBC models.
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Figure 5.13: An example model illustrating the main ingredients of an OCBC model.

An Object-Centric Behavioral Constraint (OCBC) model OCBCM = (ClaM ,
ActM ,AOC,]2A ,]♦A ,]OC ,crel) includes a class model ClaM (to describe objects/-
data) and an activity model ActM (to describe behavior). These two models are
related through AOC relationships AOC and functions ]2A , ]♦A , ]OC , and crel. We
use the OCBC model example in Figure 5.13 to clarify these concepts. In order
to make it easier to understand, we add a scenario on the OCBC model, e.g., a2
corresponds to the activity “wrap item” and c2 corresponds to the class “order
line”.
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In Figure 5.13, the class model ClaM includes three classes (i.e., C = {order,
order line,delivery}) and two class relationships (i.e., R = {r1,r2}). r1 specifies a
one-to-many relationship between orders and order lines, and r2 indicates that
each order line eventually has a corresponding delivery and a delivery always
contains one or multiple order lines. The activity model ActM includes three
activities (i.e., A = {create order,wrap item,deliver items}) and two behavioral con-
straints (i.e., Con = {con1,con2}). The behavioral constraint con1 means that each
“create order” event should be followed by at least one “wrap item” event, and
con2 indicates that each “wrap item” event should be followed by precisely one
“deliver items” event.

AOC relationships relate activities and classes on the model level, which
indicate the possible references between events and objects on the instance level.
For instance, AOC = {(a1,c1), (a1,c2), (a2,c2), (a3,c3)} in Figure 5.13 indicates that
a1 events may potentially refer to c1 and c2 objects, but not to c3 objects because
(a1,c3) 6∈ AOC. Note that an activity can refer to multiple classes and a class can
be referred to by multiple activities. For instance, a1 refers to both c1 and c2,
and c2 is referred to by both a1 and a2. This many-to-many relations between
activities and classes in OCBC models (on the model level) correspond to the
many-to-many relations between events and objects in XOC event logs (on the
instance level).

Each AOC relationship has an “always” cardinality and an “eventually” car-
dinality on the activity side, specified by functions ]2A and ]♦A , respectively. It
also has a cardinality on the class side, specified by function ]OC . For instance,
]2A (a2,c2) =2 0..1 (corresponding to the 2 annotation on the a2 side of the line
connecting activity a2 and class c2), which means that each order line should
be wrapped at most once. Note that an “order line” object does not need to
have a corresponding “wrap item” event when it is created. ]♦A (a2,c2) = ♦ 1
(corresponding to the ♦ annotation on the a2 side of the same line), which
means that eventually each order line should be wrapped once. ]OC (a2,c2) = 1
(corresponding to the annotation on the c2 side of the same line), which means
that each “wrap item” event precisely wraps one order line.

Function crel assigns a class c or a class relationship r to a behavioral con-
straint con, which indicates the event correlation pattern for the constraint, as
shown in Figure 5.14. In other words, crel defines the scope of each behav-
ioral constraint thereby relating reference events to corresponding target events.
crel(con) specifies how events need to be correlated (i.e., through a class c or
a class relationship r ) when evaluating constraint con. This is needed because
we do not assume a fixed case notion and different entities may interact. For
instance, in Figure 5.13 crel(con1) = c2 (indicated by the line cr1 connecting con1
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and c2) and crel(con2) = r2 (indicated by the line cr2 connecting con2 and r2). As
illustrated by Figure 5.14 we basically consider two types of event correlation
patterns: (a) crel(con) = c ∈ C, i.e., the target events are related to the reference
event through shared objects of class c, (b) crel(con) = r ∈ R, i.e., the target events
are related to the reference event through relations of type r (in any direction).
In both cases, we navigate through the object model to find target events for a
given reference event. In the next section, we will illustrate more details about
how to correlate events in the context of OCBC models.

a1 a2

c

con
a1 a2

c1 c2
r

con

(a) the reference event and target events are 
related through common objects

(b) the reference event and target events are 
related through relations in the object model

Figure 5.14: Two types of event correlation patterns for constraints: (a) crel(con) = c ∈ C
and (b) crel(con) = r ∈ R.

We have now introduced all the modeling elements used in Figure 5.13. In
OCBC models, annotations of the type “♦ ∗” and “2 ∗” are omitted from the
diagram because these impose no constraints. Also implied constraints can be
left out, e.g., “2 1..∗” implies “♦ 1..∗”.

5.4.3 Semantics of OCBC Models

An OCBC model contains a data model, an activity model and AOC relationships
in between. The semantics of data models, activity models and AOC relationships
are illustrated in Section 5.2.3, Section 5.3.3 and Section 5.4.1, respectively. In
this section, we illustrate the semantics of the OCBC model as a whole. More
precisely, since different elements (perspectives) in an OCBC model influence
each other, we focus on explaining the semantics in terms of the interactions
(i.e., the semantics added after combining the two perspectives) [126].

Note that in Section 5.3.3 the semantics of behavioral constraints in an
activity model is explained in terms of a given event set E . In traditional process
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modeling notations, the event set E refers to all events corresponding to a specific
case. However, in OCBC models, we do not assume the case notion, and the event
set E is identified based on the data perspective. More precisely, the function
cr el in an OCBC model specifies two different types of patterns to identify the
scope for each constraint. In other words, these patterns correlate target events
to each reference event, which are called event correlation patterns.

Definition 5.12 (Event Correlation Patterns) Let OCBCM = (ClaM ,ActM ,AOC,
]2A ,]♦A ,]OC ,crel) be an OCBC model, where ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,]♦tar) is a
class model and ActM = (A,Con,πref ,πtar , type) is an activity model. A correlation
pattern of OCBCM is a tuple (aref , atar ,cr) ∈ A× A×C ∪R where aref 6= atar and

• ∃c ∈ C : cr = c ∧ {(aref ,c), (atar ,c)} ⊆ AOC, or
• ∃r ∈ R : cr = r ∧ ({(aref ,π1(r )), (atar ,π2(r ))} ⊆ AOC ∨ {(aref ,π2(r )), (atar ,π1(r ))} ⊆

AOC).
UP is the universe of correlation patterns.

A correlation pattern consists of two activities (a reference activity and a
target activity) and a class or class relationship, which serves as a “bridge” to con-
nect these two activities. In an OCBC model, a behavioral constraint corresponds
to a correlation pattern which indicates how to identify the target events of each
reference event for the constraint. For instance, a constraint con corresponds to
the pattern (πref (con),πtar(con),crel(con)). As shown in Figure 5.14, the correla-
tion patterns are divided into two types based on the type of the “bridge”, i.e.,
crel(con). Next, we discuss the details about these two types of patterns and how
to correlate events based on them.

If crel(con) = c ∈ C, the constraint con corresponds to a V pattern as shown
in Figure 5.15(a), since the event correlation pattern consists of two activities
linked to a class, which looks like the letter “V”. In this situation, the target
events are related to the reference events through shared objects of c. More
precisely, let eref be a reference event for constraint con. eref refers to one or more
c objects. The target events of eref for con are those πtar(con) events referring to
(at least) one of these objects. For instance, Figure 5.15(a) shows a constraint
con where crel(con) = c, a1 is the reference activity, a2 is the target activity and
both a1 and a2 refer to the class c. Its corresponding correlation pattern is a V
pattern (a1,a2,c). Figure 5.15(b) shows the event correlation on the instance
level. For the reference event e2, which refers to objects o1 and o2 (of class c), e3
is one of its target events since e3 also refers to the object o1. Similarly, e4 is also
a target event of e2.

If crel(con) = r ∈ R, the constraint con corresponds to a U pattern as shown
in Figure 5.16(a), since the event correlation pattern consists of two activities



148 Object-Centric Behavioral Constraint Modeling Language

a1 a2

c

con

c

e2

e4

o2

o1

e3

o3 o4

assume e2 is the 
reference event we 

are interested in

e3 and e4 are the target 
events corresponding to 

reference event e2

e1
e5

a2a1

(b) the reference event and target events 
are related through shared objects

(a) V pattern: two activities refer to 
a shared class

 a2 events (target events) are related to a1 events 
(reference events) through shared c objects

Figure 5.15: Given a reference event for a constraint with crel(con) = c ∈ C we navigate to
the target events through shared object references.

linked to a class relationship, which looks like the letter “U”. In this situation,
the target events are related to the reference events through objects connected
by object relations of relationship r in the object model. More precisely, let
eref be a reference event for constraint con, which refers to a set of objects O.
O′ denotes the objects which are related to (at least) one object in O through
object relations of r. The target events of eref for con are those πtar(con) events
referring to (at least) one object in O′. Figure 5.16(a) shows a constraint con
where crel(con) = r ∈ R, a1 is the reference activity and refers to the class c1, a2
is the target activity and refers to the class c2, and c1 is related to c2 through a
class relationship r . Consider the events in Figure 5.16(b) as an example. For
the reference event e2, which refers to an object o1 (of class c1), e3 is one of its
target events since e3 refers to an object o3 (of class c2), which is connected to
o1 through an object relation of r . Similarly, e4 is also a target event of e2.

It is essential to understand that the scoping of events considered for a constraint
is done through the object model. This provides a tight integration between
behavior and structure (i.e., data). Moreover, the approach is much more general
and more expressive than classical approaches where events are correlated
through cases. Usually, classical process models (both procedural and declarative)
describe the lifecycle of a process instance (i.e., case) in isolation. This implies
that events are partitioned based on case identifiers and different cases cannot
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Figure 5.16: Given a reference event for a constraint with crel(con) = r ∈ RT , we navigate
to the target events through related objects connected by relations of r in
the object model.

share events. Hence, one-to-many and many-to-many relationships cannot
be modeled (without putting instances in separate subprocesses, artifacts or
proclets). In contrast, by removing the restriction of the case notion, an OCBC
model can express complex interactions between a variety of objects in a single
diagram.

Note that although OCBC models are suitable for modeling processes with
multiple instances, traditional single-instance modeling approaches can still be
mimicked by using an object model having one object class case and crel(con) =
case for each constraint con. Figure 5.17 sketches this situation and illustrates
that the classical view on process behavior is very limited, since complex rela-
tionships cannot be captured, and the link to data/object models is missing.

The above description illustrates the semantics of OCBC models in terms
of event correlation. Next, we explain the semantics of OCBC models in terms
of the unified cardinality constraints. In an OCBC model, data constraints
in a data model consist of cardinality constraints and “always”/“eventually”
(2/♦) symbols. The attached symbols strengthen the cardinality constraints
by indicating that they should be satisfied always or eventually. In contrast,
behavioral constraints in an activity model consist of cardinality constraints
and “before” and “after” types. The attached types strengthen the cardinality
constraints by indicating that they should be satisfied before or after reference
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Figure 5.17: An OCBC model mimicking the classical situation where behavior needs to
be straightjacketed in isolated process instances (i.e., cases).

events. The constraints of AOC relationships are similar to data constraints,
which also consist of cardinality constraints with or without “always”/“eventually”
(2/♦) symbols. Since all constraints use cardinality constraints in essence, an
OCBC model also allows us to reason about behavior and data in a unified
manner. For instance, in the OCBC model shown in Figure 5.13, adding a new
oc2 object implies the occurrence of at least one corresponding a1 event to satisfy
the cardinality constraint “♦ 1..∗”, i.e., an obligation is created.

Up to now, we have explained all the semantics of an OCBC model, i.e.,
the semantics of each part and the semantics of the interactions (e.g., event
correlations) when all parts are combined as a whole. Next, we describe a
possible execution of the process represented by the OCBC model in Figure 5.13,
based on the semantics of the OCBC model. A “create order” event can happen
at any time since there are no behavioral constraints adding precondition on
the “create order” activity. The “create order” event creates an order (aoc1) and
multiple order lines (aoc2). The order lines correspond to the order through
r1. Then each order line is wrapped once (aoc3), i.e., there are several “wrap
item” events following the “create order” event (con1). After some time, all the
order lines are delivered to the customer. On the data perspective, each “order
line” object has a corresponding “delivery” object (r2) and on the behavioral
perspective, each “wrap item” event has precisely one corresponding “deliver
items” event (con2).
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5.5 Evaluation: Modeling a Recruitment Process

In this section, we evaluate the OCBC modeling language by comparing it with
other modeling languages in terms of describing business processes. More
precisely, we use the OCBC model and some other related models to describe a
given business process, and then compare these models to see which one can
best describe the given business process.

Since the recruitment process is quite common and significant for organiza-
tions, we choose this process as the given business process to compare models.
The recruitment process covers all steps a company goes through, in order to re-
cruit a person for a job position. It often includes job planning, posting positions
online, receiving applications, interviews and selections. The process may be
very large and complex in some situations. Figure 5.18 shows an easy example
which is a part of the whole recruitment process.

Figure 5.18: A recruitment process example.

In order to make the comparison easy to understand, the given process for
modeling only involves the significant steps (e.g., applications, interviews and
employee selections), which are introduced as follows. According to a specific
need, an organization may create a position and recruit a person for the position.
People who are interested in such a position can apply for it, but need to register
first. Applications for a position are only considered in the period between
opening the position and closing the application process for the position. An
application may be followed by at most five reference checks and at most two
interviews. In the end, one person is selected and subsequently hired for the
position.

5.5.1 Modeling Using OCBC Models

First, we use the OCBC modeling language proposed in this chapter to describe
the recruitment process. Figure 5.19 shows a designed OCBC model, which



152 Object-Centric Behavioral Constraint Modeling Language

describes the data perspective of the process at the bottom, the behavioral
perspective at the top and the interactions in the middle.
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Figure 5.19: An OCBC model modeling the recruitment process.

On the data perspective, there are four classes in the OCBC model: “person”,
“application”, “position” and “employee”, which correspond to four entities in-
volved in the process. For instance, the “person” class corresponds to the people
who want to apply for the position, the “application” class corresponds to the
concrete documents submitted by people for the position, etc. The cardinal-
ity constraints in the data model, i.e., r1, r2, r3 and r4, specify the constraints
between the four classes as follows:

• r1 indicates that each person eventually applies for at least one position
(i.e., submits at least one application) and each application always refers
to precisely one person;

• r2 shows that each application always refers to precisely one position and
for every position there will eventually be at least one application;

• r3 indicates that each employee refers to precisely one application and
each application refers to at most one employee, and

• r4 means that each employee refers to precisely one position and each
position will eventually refer to one employee.
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The interactions present how activities relate to classes. More precisely, there
is a one-to-one correspondence between registrations (activity “register”) and
persons (class “person”). Activities “apply”, “check reference”, and “interview”
each refer to the class “application”. An event of activity “apply” creates one new
“application” object, which always corresponds to at most two “interview” events
and at most five “check reference” events. Activities “open pos.”, “close pos.”,
and “select” each refer to the class “position”. An event of activity “open pos.”
creates one new “position” object, which eventually corresponds to precisely one
“close pos.” event and “select” event. There is also a one-to-one correspondence
between hirings (activity “hire”) and employees (class “employee”).

The behavioral perspective of the process is defined by eight activities (“reg-
ister”, “apply”, “check reference”, “interview”, “hire”, “open pos.”, “close pos.”,
“select”) and nine behavioral constraints (con0,con1,...,con8). The details of the
constraints are as follows:

• Constraint con0 specifies that every application should be preceded by
precisely one corresponding registration (unary-precedence constraint).

• Constraint con1 specifies that every reference check should be preceded by
precisely one corresponding application (unary-precedence constraint).

• Constraint con2 specifies that every interview should be preceded by pre-
cisely one corresponding application (unary-precedence constraint).

• Constraint con3 combines a unary-response and a unary-precedence con-
straint stating that opening a position should be followed by the closing of
the application process and the closing should be preceded by the opening
of the position.

• Constraint con4 also combines a unary-response and a unary-precedence
constraint stating that the two related activities are executed in sequence.

• Constraint con5 specifies that applications for a position need to be pre-
ceded by the opening of that position.

• Constraint con6 specifies that after closing a position there should not be
any new applications for this position (non-response constraint).

• Constraint con7 specifies that every hire needs to be preceded by at least
one interview with the candidate applying for the position (precedence
constraint).

• Constraint con8 combines a unary-response and a unary-precedence con-
straint stating that the two related activities are executed in sequence.
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5.5.2 Modeling Using Declare Models

In this section, we use other models to describe the process. Since OCBC models
employ a declarative manner for the behavioral perspective, we first compare
them with Declare models.

The corresponding Declare model of an OCBC model can be considered as
the behavioral perspective of the OCBC model, i.e., the remaining part after
removing the data model and interactions (i.e., AOC relationships) from the
OCBC model. Figure 5.20 shows a Declare model which describes the same
recruitment process. Due to the lack of a data model, it is obvious that the
Declare model can not describe the data perspective, e.g., the structure of the
entities involved in the process.

register

open pos.

close pos.

selecthire

apply

check 
reference

interview

con1

con2

con3

con4

con5

con6

con7 con8

con0

Figure 5.20: A Declare model describing the recruitment process.

On the behavioral perspective, OCBC and Declare models both employ a
declarative manner. The most significant difference is that Declare models
assume a case notion (i.e., the semantics of constraints in a Declare model is
defined in the context of a case notion) while OCBC models do not. When a
process contains several artifacts/sub-processes, there often exist multiple case
notions (each one corresponding to an artifact/sub-process) and a case notion
for the whole process is not clear or inexistent. In this situation, we need to
identify a case notion for a specific constraint based on the domain knowledge
about the process to interpret the constraint and the case notion changes for
different constraints. When the domain knowledge is weak or absent, identifying
a proper case notion is difficult and the interpretation of constraints (i.e., the
semantics of constraints) could be very confusing and imprecise.

Consider for example the “unary-precedence” constraint con1 between ac-
tivities “apply” (target activity) and “check reference” (reference activity) in
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Figure 5.20. It indicates that activity “check reference” can be executed only
after a corresponding “apply” event. With the domain knowledge, we can know
that the constraint works in the context of the case of an “application”, i.e., an
application can be checked only after an “apply” event which creates the appli-
cation. In contrast, the constraint con3 (combination of a “unary-precedence”
constraint and a “unary-response” constraint) between activities “open pos.” and
“close pos.” takes effect in the context of the case of a “position”, i.e., opening
a position should be followed by the closing of the application process and the
closing should be preceded by the opening of the position. Apparently, constraint
con1 and constraint con3 are interpreted choosing different case notions in the
process, since these two constraints are in different parts (i.e., sub-processes) of
the process.

The examples (i.e., constraints con1 and con3) discussed above show that we
have to identify case notions and change case notions accordingly to interpret
constraints in different sub-processes, which is difficult in some situations. Be-
sides, we also have problems to interpret the constraints between two different
sub-processes. Consider for example the constraint con6 between activities “close
pos.” and “apply” from two different sub-processes. Even though we know
the case notions for “apply” and “close pos.” are “application” and “position”,
respectively, it is not clear which one we should choose for interpreting this
constraint.

Moreover, in real business processes, an activity can be involved in multiple
artifacts/sub-processes. For instance, the “apply” activity can (i) make an appli-
cation to a position and (ii) apply the reimbursement for the cost of attending a
interview. In this situation, the “apply” activity is involved in two artifacts/sub-
processes, i.e., it corresponds to two case notions. If we have another activity
which also has one or more case notions, it is difficult to select a proper case
notion and interpret the constraint between these two activities based on the
selected case notion.

5.5.3 Modeling Using Workflow Nets

Workflow nets (WF-nets) are commonly used to describe business processes
in academia such as the process mining domain. Therefore, we describe the
recruitment process with Workflow nets in this section.

Note that there exist one-to-many and many-to-many relationships between
different entities in the recruitment process. For instance, a person can submit
multiple applications to apply for multiple positions, and a position can be
applied by multiple persons. Therefore, there are multiple local case notions
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(each of which covers a part of the process) and a global case notion (which
covers the whole process) is inexistent. However, a Workflow net requires a
global case notion to describe the whole process, which forces one to select a
local case notion as the global one. As a result, the process is flattened by the
selected case notion. i.e., a Workflow net only shows a specific view of the case
notion.

First, we consider the most intuitive situation, where “application” is selected
as the case notion. Since one application only corresponds to precisely one
person and one position, the view of the process based on the “application” case
notion does not have multiple instances of “person” and “position”. Figure 5.21
shows the corresponding WF-net. More precisely, after a position is opened
(“open pos.”), a person can register (“register”) and then apply (“apply”) for
this position. Each application can be checked (“check reference”) several times,
and meanwhile the corresponding person can be interviewed several times
(“interview”). We use a silent/implicit transition t to form a loop to represent
the multiple executions of activity “check reference” or “interview”. After that,
the application process for the position is closed (“close pos.”) and then (i) this
application is selected (“select”) and the related person is hired (“hire”) or (ii)
this application is not selected and the related person is not hired (indicated by
the silent transition). Note that Figure 5.21 also takes into consideration the
data perspective, which contains four business objects, i.e., person, application,
position and employee. The dotted arrows between activities and business objects
indicate interactions between them. For instance, the arrow from “register” to
“person” indicates that “register” writes some information into “person”.

Next, we select the “position” as the case notion. Since multiple persons
can apply for a position (i.e., there is a one-to-many relationship between
“position” and “person”), there could be multiple registrations and applications
after opening a position. Figure 5.22 shows the WF-net selecting “position” as the
case notion. In order to describe the multiple registrations for one position, we
add a loop for the application part. With the help of the added loop, Figure 5.22
can present the one-to-many relationship between positions and applications.
However, it can not really model the parallel relation between multiple instances
of “application”. The parallel relation means that different instances can happen
at the same time (in an overlapping manner). For instance, after a registration
of one instance, another registration of a different instance can happen directly
after the first registration. However, Figure 5.22 only allows the occurrence of
another application after the first application finishes.

Figure 5.23 presents another Workflow net, which can model the parallel
relations between multiple instances of “application”. More precisely, after
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Figure 5.21: A Workflow net modeling the recruitment process selecting “application” as
the case notion.

opening the position, a mandatory registration follows. Then any activity of
“register”, “apply”, “check reference” and “interview” can happen at any order
and for any number of times (before the position is closed). However, this
Workflow net fails to describe the structure of the process precisely. For instance,
the sequential order between “apply” and “check reference”/“interview” is lost.

In summary, based on a specific case notion, a Workflow net can only describe
the recruitment process from an angle corresponding to the selected case notion.
The one-to-many and many-to-many relationships in the process are flattened in
Workflow nets. Besides, Workflow nets have problems to deal with the multiple
instances, either failing to really describe the parallel relations or resulting in
too generic structures (i.e., some constraints are lost and too much behavior is
allowed).

5.5.4 Modeling Using BPMN Diagrams

BPMN diagrams are widely used in industry. In this section, we describe the
recruitment process with BPMN diagrams. First, we use BPMN diagrams to
model this process in an artifact-centric manner. After analyzing the recruitment
process, one can find four artifacts involved in the process, i.e., person, employee,
application and position. A BPMN diagram can be used to model the sub-process
of one artifact.
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Figure 5.22: A Workflow net modeling the recruitment process selecting “position” as the
case notion.

Figure 5.23: Another Workflow net modeling the recruitment process selecting “position”
as the case notion.

Based on this idea, the whole process is split into four sub-processes. Fig-
ure 5.24 shows four BPMN models which describe the lifecycles of four artifacts
(person, position, application, and employee) in separate diagrams. Compared
with previous models, such as OCBC models, Declare models and Workflow
nets, the BPMN models are very easy to understand. After identifying the
artifacts/sub-processes based on the domain knowledge, each BPMN model
describes a sub-process (the lifecycle of an artifact) clearly. However, these
BPMN models fail to describe the one-to-many and many-to-many relationships
between different artifacts. For instance, the one-to-many relationship between
positions and applications is not shown at all in these BPMN models. In com-
parison, it can be clearly seen in the OCBC model in Figure 5.19 (i.e., the class
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Figure 5.24: Modeling the recruitment process in terms of four BPMN models, each of
which describe the lifecycle of an artifact.

relationship r2 between class “application” and class “position”). The Workflow
net in Figure 5.22 can also indicate the relationship through the loop.

Besides, the BPMN models in Figure 5.24 can not capture dependencies
between different sub-processes. Consider for example constraints con5, con6,
con7, and con8 in the OCBC model of Figure 5.19, which can not be described
by the BPMN models. More precisely, the BPMN models do not show that (i)
one can only apply if the corresponding position is opened; (ii) one can only
apply if the corresponding position is not yet closed; (iii) the person to be hired
should have registered, applied, and had at least one interview; (iv) employees
are hired after the completion of the selection process.

In order to model the interactions between different sub-processes, it is
possible to integrate all sub-processes into one single diagram by selecting a
particular case notion. Figure 5.25 describes the whole process in one BPMN
model, in which “position” is selected as the case notion and each sub-process
is described in a lane. We use the “Parallel Multiple Instance” sub-processes
to describe the one-to-many relations between “position” and “register”, and
between “position” and “application”. However, the parallel and “one-to-many”
relations between “register” and “application” is missing.

Comparing the BPMN models in Figure 5.24 with the OCBC model in Fig-
ure 5.19 reveals that modeling the lifecycles of entities separately, like in artifact-
centric approaches, is not sufficient to capture the real process. The individual
lifecycles are simple, but fail to reveal the interplay between persons, positions,
applications, and employees. The relations with the overall data model and
interactions between the different entities are no longer visible. Figure 5.25 can
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Figure 5.25: Modeling the recruitment process in terms of one BPMN model with four
lanes.

describe the interplay between entities by using lanes and “Parallel Multiple In-
stance” sub-processes. However, it depends on a case notion and the interactions
between some entities are missing.

5.5.5 Discussion of Evaluation

Table 5.4 summarizes the evaluation results explained above. The WF-net (data-
aware) refers to the complete net, i.e., with the data perspective, in Figure 5.21
while the WF-net (only control-flow) refers to the control-flow of the same net.
The BPMN diagram (artifact-centric) corresponds to Figure 5.24 and the BPMN
diagram (case-centric) corresponds to Figure 5.25.

The expressive ability means the ability to describe the business process,
which is discussed from behavioral and data perspectives as well as the interac-
tion between these two perspectives. The two WF-nets and the BPMN diagram
have strong ability to describe the behavioral perspective, since they use the
procedural manner to model the lifecycle of a selected case. In contrast, the
OCBC model and the Declare model use the declarative manner to model the
constraints between pairs of activities. The BPMN diagram (artifact-centric) de-
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language expressive ability complexity hierarchy multiple
behavioral data interaction #nodes #edges degree instances

OCBC model weak strong strong 12 30 high No strong
Declare model weak - - 8 9 low No weak

WF-net (data-aware) strong weak weak 27 34 high No weak
WF-net (only control-flow) strong - - 23 26 medium No weak

BPMN diagram (artifact-centric) weak weak weak 18 15 low No weak
BPMN diagram (case-centric) strong weak weak 18 16 low Yes weak

Table 5.3: The evaluation results.

scribes the process in terms of four artifacts, resulting in separate sub-processes,
which do not provide a complete view of the process. In terms of the other two
angles, the OCBC model is the only one having the strong power to describe the
data perspective and interactions. The Declare model and WF-net (only control-
flow) do not have the data perspective nor interactions. WF-net (data-aware),
BPMN diagram (artifact-centric) and BPMN diagram (case-centric) use business
objects, artifacts and lanes to describe the data perspective and interactions, in a
weak manner compared with the OCBC model.

Due to the extra data perspective, the OCBC model and the WF-net (data-
aware) have a higher complexity than others. In these models, the BPMN
diagram (case-centric) uses a hierarchy to simplify the process on the top level.
With the powerful data perspective, the OCBC model can better describe multiple
instances than others.

5.6 Related Work

This chapter proposed a modeling language to describe the processes on artifact-
centric information systems. It can solve the key problems faced by mainstream
process modeling notations, summarized as follows:

• it is difficult to identify a case notion for the whole process;
• it is difficult to model interactions (one-to-many and many-to-many rela-

tionships) between process instances;
• it is difficult to model the data-perspective and behavioral (control-flow)

perspective in a unified and integrated manner.
There are attempts to solve the problems mentioned above (see for example

[154]), but they fail to provide a satisfactory solution. To position the work in
existing literature on business process modeling, we discuss the related work in
this section.
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5.6.1 Process-Centric Notations Extended with Data Perspec-
tive

Over time there have been numerous attempts to take data into consideration by
adding elements onto the behavioral perspective.

Consider for example the various types of colored Petri nets, i.e., Petri nets
where tokens have attributes and values [46,47,72,74,163]. In data-aware Petri
nets (DPNs) [33, 97,127] and BPMN diagrams, activities can write/read data
elements (variables and objects). In [131], the associations between services are
modeled in a WFD-net (extending WorkFlow nets with Data), in which activities
are annotated with the data that are created, read or written by the activities.
The aforementioned approaches can describe the data perspective to some extent
but do not support explicit data modeling as can be found in ER models [25],
UML class models [53], and Object-Role Models (ORM) [60]. For instance,
places and tokens in colored Petri nets can be typed, but there is no data model
to relate entities and activities.

The first approaches that explicitly related process and data models appeared
in the 1990-ties [154,158]. For instance, the approach proposed by Kees van Hee
[154] combined (i) Petri nets, extended with time, token values and hierarchy,
(ii) a specification language that is a subset of Z, and (iii) a binary data model,
extended with complex objects.

Some languages have the ability to represent the needed data, but their
focus is on the sequencing of the activities that are carried out in the process.
DFDs (data-flow diagrams) would be one example of this. While placing high
importance on the data, the focus is on how these data move in the process,
from one activity to next, and little importance is given to their details or on the
structure of these data.

Object-aware process management, as supported by the PHILharmonicFlows
framework [26, 75, 76], provides an integrated methodology for modeling re-
quirements of process- and data-centric software systems. Key elements of the
approach are the separation of concerns (data and process can be considered
separately) and the ability to support change.

Other approaches integrating data and processes include case handling systems
[150] and product-based workflows [156]. In fact, it is impossible to list all the
different proposals described in literature.

To sum up, most process-centric languages focus on modeling the sequencing
of the activities in business processes. They try to consider the data perspective
by adding data elements, such as attributes, values, variables and objects, onto
the control-flow. However, the ability on the data perspective of these approaches
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is quite limited, e.g., only reading and writing variables. In consequence, it lacks
the richness of more powerful notations used in data modeling language (e.g., a
UML class model).

The OCBC language proposed in this chapter is different from the above
approaches, because the data-perspective and control-flow perspective are mod-
eled in a single diagram and a single unifying mechanism, namely cardinality
constraints, is used to denote all types of constraints.

5.6.2 Artifact-Centric Approaches

Artifact-centric approaches [28,66,92,107] (including the earlier work on proclets
[140]) aim to capture business processes in terms of so-called business artifacts,
i.e., key entities which drive a company’s operations and whose lifecycles and
interactions define an overall business process.

Note that the artifact-centric approaches do not limit to a specific graphical
notation. In Section 2.4.4, we introduced proclets [139,140] and GSM models
[66, 67] to model each artifact, including the lifecycle and attributes of each
artifact. In this section, we compare artifacts and OCBC models.

Artifacts have data and lifecycles attached to them, thus relating both per-
spectives. However, the relationships between artifacts are not made explicit. In
summary, these approaches tend to result in models where:

• the description of the end-to-end behavior needs to be distributed over
multiple diagrams (e.g., one process model per artifact),

• the control-flow cannot be related to an overall data model (i.e., there is
no explicit data model or it is separated from the control-flow), and

• interactions between different entities are not visible or separated (because
artifacts are distributed over multiple diagrams).

Besides, artifacts have to be identified beforehand based on domain knowledge
and within an artifact (proclet, or subprocess), one is forced to pick a single
instance notion. Moreover, cardinality constraints in the data model cannot be
exploited while specifying the intended dynamic behavior.

In comparison, OCBC models integrate the data and process perspectives bet-
ter. More precisely, these two perspectives are combined in one single diagram,
such that we can see (i) the end-to-end process, (ii) the structure of the entities
involved in the process, and (iii) all interactions between different entities and
perspectives. Besides, due to the employment of the unified cardinality con-
straints, the interactions between different parts in OCBC models are described
in a consistent manner.



164 Object-Centric Behavioral Constraint Modeling Language

language behavioral perspective data perspective interactions whole
case notion flexible attributes structure vertical horizontal unified single

ER - - Yes Yes - strong - -
UML class model - - Yes Yes - strong - -

Petri net Yes weak - - - weak - -
Declare Yes strong - - - strong - -

Colored Petri net Yes weak Yes No weak weak No Yes
BPMN Yes weak Yes No weak weak No No

Artifact-centric No strong Yes No strong strong No No
OCBC No strong No Yes strong strong Yes Yes

Table 5.4: Modeling language examples.

Table 5.4 shows a comparison of different modeling languages. In general,
we split the comparison into four dimensions, i.e., the behavioral perspective,
the data perspective, the interactions and the model as a whole. More pre-
cisely, on the behavioral perspective, we check if these languages need a case
notion (Yes/No) and compare their abilities to deal with flexible processes
(strong/weak). The ER models and UML class models cannot describe the be-
havioral perspective, indicated by the value “-”. Artifact-centric approaches
and OCBC models do not require a case notion and Declare models and OCBC
models can deal with flexible processes better. On the data perspective, only
ER models, UML class models and OCBC models are able to describe the struc-
ture of entities involved in business processes while others can only show the
attributes (representing variables, values and objects). Note that currently we
do not add attributes to the classes in OCBC models, but they could be added
in a straightforward manner in the future work. In terms of the interactions,
we define two types, the “vertical” interactions between data and behavioral
perspectives and the “horizontal” interactions between different instance types.
Both artifact-centric approaches and OCBC models have strong power to de-
scribe these two types of interactions. For the last dimension, OCBC models are
outstanding since they employ the unified cardinality constraints and an OCBC
model can be represented by a single diagram.

5.7 Summary

In this chapter, we proposed Object-Centric Behavioral Constraint (OCBC) models
as a means to graphically model control-flow and data/objects in an integrated
manner. Cardinality constraints are used to specify structure and behavior in
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a single diagram. In existing approaches, there is often a complete separation
between data/structure (e.g., a class model) and behavior (e.g., BPMN, EPCs,
or Petri nets). In OCBC models, different types of instances can interact in a
fine-grained manner and the constraints in the class model guide behavior.

This work serves as a starting point for a new line of research. A discov-
ery technique to transform an XOC log into an OCBC model is proposed in
Chapter 6. OCBC models are particularly suitable for conformance checking.
Many deviations can only be detected by considering multiple instances and con-
straints in the class model. In Chapter 7, we identify nine types of conformance
problems that can be detected using OCBC models. Besides, the performance
analysis based on OCBC models is illustrated in Chapter 8, which can show the
bottlenecks of the business processes.

end parent end child

childparent
1 1..*

1

1 1

1

r1

c1

start parent1

1

start child
c2

c3

c4

1

1

Figure 5.26: Example pattern. After starting the parent, a particular number of children
k where 1 ≤ k (as defined by r 1) need to start. After all k children ended,
the parent ends.

In fact, there are many possible avenues for future work. We also want to
identify typical behavioral patterns that involve multiple instances or interaction
between structure and behavior. Figure 5.26 shows an example pattern. Along
this line, we plan to study the effect of introducing subtyping in the data model,
a constraint present in all data modeling approaches. The interplay between
behavioral constraints and subtyping can motivate other interesting behavioral
patterns. For example, implicit choices may be introduced through subtyping.
Consider a response constraint pointing to a payment class with two subclasses
credit card payment and cash payment. Whenever the response constraint is
activated and a payment is expected, such an obligation can be fulfilled by either
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paying via cash or credit card.
Finally, we also want to investigate how the notions of consistency and con-

straint conflict/redundancy, well-known in the context of Declare [143], and the
corresponding notions of consistency and class consistency, well-known in data
models [11], can be suitably reconstructed and combined in our setting.



Chapter 6
Discovery of Object-Centric
Behavioral Constraint Models

Model discovery is the first challenging task in process mining. Up to now, we
have formed a foundation to apply model discovery to artifact-centric infor-
mation systems. More precisely, Chapter 4 defined the XOC event log format
and proposed an approach to extract such logs from the object-centric event
data (generated by artifact-centric information systems) defined in Chapter 3.
Since conventional models (such as Petri nets, BPMN diagrams) fail to deal
with the processes on artifact-centric information systems properly, Chapter 5
introduced a novel modeling language, Object-Centric Behavioral Constraint
(OCBC) modeling language, which can better describe these processes, resulting
in OCBC models.

In this chapter, we discover OCBC models which are able to describe pro-
cesses involving interacting instances and complex data dependencies. In order to
enable the discovery approach working in real-life data, we also try to propose ap-
proaches which can deal with noise, i.e., discovering precise and understandable
OCBC models from logs with infrequent events and objects.

This chapter is organized as follows. An initial approach is illustrated in
Section 6.1, which contains the discovery of class models, AOC relationships and
activity models. Section 6.2 proposes more advanced discovery approaches which
can deal with the noise in real-life data. In Section 6.3, we evaluate the model
discovery approach by comparing it with other model discovery approaches.
Section 6.4 reviews the related work while Section 6.5 concludes this chapter.
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6.1 An Initial Approach for OCBC Discovery

In this section, we illustrate an initial approach to discover OCBC models from
logs extracted from artifact-centric systems. We first discuss the input of the
approach and then illustrate the approach through three steps. More precisely,
the first step is to discover a class model, which is the backbone of the whole
OCBC model. Secondly, AOC relationships are discovered to build a bridge
leading to the behavioral perspective from the data perspective (i.e., the class
model). At last, we correlate events based on correlation patterns extracted from
the data perspective and AOC relationships, and discover the activity model to
finish the discovery of a whole OCBC model.

This approach serves as a foundation to understand the process of OCBC
model discovery. Note that it is only an initial approach, which does not consider
the noise yet, e.g., infrequent events or objects. In other words, it requires “clean”
logs and discovers constraints in a naive way. In Section 6.2, we will introduce
some more advanced approaches to deal with noise in real-life data.

6.1.1 Input for OCBC Discovery

A general model discovery approach can be considered as a function that maps
an event log L onto a model M such that the model is “representative” for the
business process which generated the event log. In other words, the input log
decides the type and quality of the discovered model. In traditional process
mining, the input for model discovery is often an XES log (it is possible to use
other sources, such as CSV file and database tables). A main feature of the
XES log is that it assumes a case notion and focuses more on the behavioral
(control-flow) perspective. Accordingly, the discovered model from the log also
has a case notion and mainly presents the behavioral perspective.

OCBC models are powerful to describe the processes on artifact-centric sys-
tems, since they (i) do not assume a case notion, (ii) contain data and behavioral
perspectives, and (iii) correlate events by the data perspective. Therefore, we
choose OCBC models as the output of our discovery approaches. Obviously,
XES logs cannot support the discovery of OCBC models, since they are flattened
(i.e., assuming case notions) and biased (i.e., focusing more on the behavioral
perspective). In contrast, XOC logs satisfy the requirements to discover OCBC
models, since in these logs, (i) data are not flattened by case notions (an XOC
log directly consists of a list of events), (ii) each event corresponds to an object
model which contains information on both data and behavioral perspectives, and
(iii) each event refers to some objects, which provide “bridges” (i.e., objects) to
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correlate events. Therefore, the discovery approaches take XOC logs as input to
discover OCBC models.

Table 6.1 presents an XOC log L = (E ,act,attrE,relate,om,¹) which corre-
sponds to the nine tables in the OTC scenario in Chapter 3. More precisely,
the numbers in the “Index” column indicate the orders between events (i.e.,
¹). The “Event” column contains all events in the log (i.e., E), and an event
is represented by an ID, e.g., co1 refers to the first event in the log. Each
event has a corresponding activity indicated by the “Activity” column (i.e., act),
e.g., the activity of co1 is co (the short name of “create order” as shown in
Table 6.3). In order to connect the behavioral and the data perspectives (i.e.,
events and objects), each event refers to at least one object indicated by the
“Reference” column (i.e., relate), e.g., ci 1 refers to i 1 and er 1. Moreover, each
event has a corresponding object model (i.e., om) consisting of objects (the
“Objects” column) and object relations (the “Relations” column) in the “Object
Model” column. For instance, the first event co1 has a corresponding object
model, which contains the set of objects {c1,c2,o1,ol 1,ol 2} and the set of object
relations {(r 5,c1,o1), (r 10,o1,ol 1), (r 10,o1,ol 2)}.

Note that each object has a corresponding class. In Table 6.1, the class of
an object is indicated by the letters in its ID for simplicity. For instance, ol 1
indicates that its corresponding class is ol (the short name of “order line” as
shown in Table 6.2). Figure 6.1 presents the log in an evolutionary view. After
the occurrence of some event, objects or object relations may be added, updated
or deleted.

The definition of XOC logs L = (E ,act,attrE,relate,om,¹) is quite general (cf.
Chapter 4). In the context of real-life data from relational databases (which is
the scope for input data of our research), some logs are not possible although
they are legal according to the definition. For instance, an event can refer to
some objects in the object universe based on the definition. However, in real
applications, an event can only refer to some existent objects, since an event
(e.g., add, update or deletion) can only operate existent objects, i.e., records
in the database. Therefore, we limit the input for our discovery approach to
sound logs which can be derived from real-life data. By doing this, we make the
discovered model interpretable in real applications.

An XOC event log is sound if it satisfies three rules explained next. In a sound
log, each event can only refer to objects which exist in its corresponding object
model or its prior object model (the first rule). This is consistent with real facts
in databases. For instance, an operation (e) can add a record (o) and the record
should exist after the operation, i.e., o exists in the object model corresponding
to e. In a different scenario, an operation (e) can also delete a record (o) and
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In- Event Acti- References Object Model
dex vity Objects Relations

1 co1 co o1,ol1,ol2 c1,c2,o1,ol1,ol2 (r5,c1,o1), (r10,o1,ol1), (r10,o1,ol2)

2 co2 co o2,ol3,ol4 c1,c2,o1,ol1,ol2,
o2,ol3,ol4

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4)

3 cs1 cs s1,ol1 c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4), (r4,c1,s1), (r6,s1,sl1), (r9,ol1,sl1)

4 ci1 ci i1,er1
c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4), (r4,c1,s1), (r6,s1,sl1), (r9,ol1,sl1), (r1,c1,i1),
(r3,i1,er1), (r8,o1,er1)

5 cs2 cs s2,ol1,ol2
c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1,s2,sl2,sl3

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4), (r4,c1,s1), (r6,s1,sl1), (r9,ol1,sl1), (r1,c1,i1),
(r3,i1,er1), (r8,o1,er1), (r4,c1,s2), (r6,s2,sl2), (r9,ol1,sl2),
(r6,s2,sl3), (r9,ol2,sl3)

6 ci2 ci i2,er2,er3

c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1,s2,sl2,sl3,
i2,er2,er3

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4), (r4,c1,s1), (r6,s1,sl1), (r9,ol1,sl1), (r1,c1,i1),
(r3,i1,er1), (r8,o1,er1), (r4,c1,s2), (r6,s2,sl2), (r9,ol1,sl2),
(r6,s2,sl3), (r9,ol2,sl3), (r1,c1,i2), (r3,i2,er2), (r8,o1,er2),
(r3,i2,er3), (r8,o2,er3)

7 cs3 cs s3,ol3,ol4

c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1,s2,sl2,sl3,
i2,er2,er3,s3,sl4,
sl5

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4), (r4,c1,s1), (r6,s1,sl1), (r9,ol1,sl1), (r1,c1,i1),
(r3,i1,er1), (r8,o1,er1), (r4,c1,s2), (r6,s2,sl2), (r9,ol1,sl2),
(r6,s2,sl3), (r9,ol2,sl3), (r1,c1,i2), (r3,i2,er2), (r8,o1,er2),
(r3,i2,er3), (r8,o2,er3), (r4,c1,s3), (r6,s3,sl4), (r9,ol3,sl4),
(r6,s3,sl5), (r9,ol4,sl5)

8 cp1 cp p1,pl1,pl2

c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1,s2,sl2,sl3,
i2,er2,er3,s3,sl4,
sl5,p1,pl1,pl2

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4),(r4,c1,s1),(r6,s1,sl1),(r9,ol1,sl1),(r1,c1,i1),
(r3,i1,er1),(r8,o1,er1),(r4,c1,s2),(r6,s2,sl2),(r9,ol1,sl2),
(r6,s2,sl3),(r9,ol2,sl3),(r1,c1,i2),(r3,i2,er2),(r8,o1,er2),
(r3,i2,er3),(r8,o2,er3),(r4,c1,s3),(r6,s3,sl4),(r9,ol3,sl4),
(r6,s3,sl5),(r9,ol4,sl5),(r7,p1,pl1),(r2,i1,pl1),(r7,p1,pl2),
(r2,i2,pl2)

9 ci3 ci i3,er4

c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1,s2,sl2,sl3,
i2,er2,er3,s3,sl4,
sl5,p1,pl1,pl2,i3,
er4

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4), (r4,c1,s1),(r6,s1,sl1),(r9,ol1,sl1),(r1,c1,i1),
(r3,i1,er1),(r8,o1,er1),(r4,c1,s2),(r6,s2,sl2),(r9,ol1,sl2),
(r6,s2,sl3),(r9,ol2,sl3),(r1,c1,i2),(r3,i2,er2),(r8,o1,er2),
(r3,i2,er3),(r8,o2,er3),(r4,c1,s3),(r6,s3,sl4),(r9,ol3,sl4),
(r6,s3,sl5),(r9,ol4,sl5),(r7,p1,pl1),(r2,i1,pl1),(r7,p1,pl2),
(r2,i2,pl2),(r1,c1,i3),(r3,i3,er4),(r8,o2,er4)

10 cp2 cp p2,pl3

c1,c2,o1,ol1,ol2,
o2,ol3,ol4,s1,sl1,
i1,er1,s2,sl2,sl3,
i2,er2,er3,s3,sl4,
sl5,p1,pl1,pl2,i3,
er4,p2,pl3

(r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2),(r10,o2,ol3),
(r10,o2,ol4),(r4,c1,s1),(r6,s1,sl1),(r9,ol1,sl1),(r1,c1,i1),
(r3,i1,er1),(r8,o1,er1),(r4,c1,s2),(r6,s2,sl2),(r9,ol1,sl2),
(r6,s2,sl3),(r9,ol2,sl3),(r1,c1,i2),(r3,i2,er2),(r8,o1,er2),
(r3,i2,er3),(r8,o2,er3),(r4,c1,s3),(r6,s3,sl4),(r9,ol3,sl4),
(r6,s3,sl5),(r9,ol4,sl5),(r7,p1,pl1),(r2,i1,pl1),(r7,p1,pl2),
(r2,i2,pl2),(r1,c1,i3),(r3,i3,er4),(r8,o2,er4),(r7,p2,pl3),
(r2,i3,pl3)

Table 6.1: An XOC log example as the input for discovery. Note that an object model can
be considered as the combination of its previous object model and some new
elements. This can be used as a trick to easily understand the log.
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Table 6.2: Classes and corresponding ob-
jects

Class Short name Objects

order o o1,o2
order line ol ol1,ol2,ol3,ol4
shipment s s1,s2,s3

shipment line sl sl1,sl2,sl3,sl4,sl5
invoice i i1,i2,i3

payment p p1,p2
payment line pl pl1,pl2,pl3

customer c c1,c2
element relation er er1,er2,er3,er4

Table 6.3: Activities and corresponding
events

Activity Short name Events

create order co co1,co2
create shipment cs cs1,cs2,cs3
create invoice ci ci1,ci2,ci3

create payment cp cp1,cp2

the record should exist just before the operation, i.e., o exists in the object model
corresponding to the event just before e. The second rule requires that each
object should always have the same class, which conforms to the approach of
extracting XOC logs from databases. In the process of extracting logs, each object
corresponds to precisely one record and the class of the object corresponds to
the table where the record locates. If an object has different classes, it means
that the object corresponds to multiple records in different tables, which violates
the approach and is impossible in the extracted logs. The last rule indicates
that object relations of the same class relationship should have the same type
of source (first) and target (second) objects.1 This rule can be explained in the
context of databases, where (i) a class relationship corresponds to some FK-PK
relationship, and the object relations of the class relationship correspond to the
instantiations of the FK-PK relationship, and (ii) the instantiations can only be
references from records in the child table (including FK) to records in the father
table (including PK). Based on the rules discussed above, we define the sound
XOC event log.

Definition 6.1 (Sound XOC Event Log) An XOC event log L = (E ,act,attrE,relate,
om,¹) is sound if and only if

• ∀e ∈ E ,o ∈ relate(e) : ∃e ′ ∈�2
e (E) : o ∈ Obje ′ , i.e., the objects referred to by an

event e exist in the object model corresponding to e or to the event prior to e
(i.e., the closet event before e), 2

• ∀e ∈ E ,o ∈ Obje ,e ′ ∈ E ,o′ ∈ Obje ′ : o = o′ ⇒ classe (o) = classe ′ (o′), i.e., objects

1In an object relation (r,o1,o2), r indicates the type of the relation, o1 is the source object and o2
is the target object.

2�n
e E gets the closest n events before or equal to e.
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cannot change classes in-between events,3

• ∀e,e ′ ∈ E : ∀(r,o1,o2) ∈ Rele , (r ′,o′
1,o′

2) ∈ Rele ′ : r = r ′ ⇒ cl asse (o1) = cl asse ′ (o′
1)

∧ cl asse (o2) = cl asse ′ (o′
2), i.e., all the first (second) objects of object relations

corresponding to the same relationship are of the same class.
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Figure 6.2: A comparison of sound and unsound event logs.

Figure 6.2 shows a comparison of a sound log and an unsound log to under-
stand the rules defined above. Figure 6.2(a) zooms in on the first two events
(co1 and co2) of the log in Figure 6.1. The object models contain objects of
three classes, such as c1 and c2 of c (denoting “customer” class), o1 and o2 of
o (denoting “order” class) and ol 1, ol 2, ol 3 and ol 4 of ol (denoting “order line”
class). There exist object relations of r 5, e.g., (r 5,c1,o1), between c objects and
o objects, and object relations of r 10, e.g., (r 10,o1,ol 1), between o objects and
ol objects. Based on the sound log, we modify some objects and object relations,
resulting in the unsound log in Figure 6.2(b).

In Figure 6.2(b), the parts violating the rules are highlighted in red. More
precisely, the event co2 refers to an object ;, which does not exist in the object
model corresponding to co2 or co1. Besides, in the first object model, object
c2 is of class c and its class changes to s in the second object model. Moreover,

3This requirement is reasonable since classes in this thesis are disjoint and do not contain
subclasses. Note that this may not be the case anymore if subclasses exist and objects can evolve
across time. For instance, assume that class “order” has two subclasses “open order” and “closed
order”. An object of class “open order” at some point in time may become a “closed order” in the
future.
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the object relations of r 5 connect c objects to o objects in the first object model.
However, there is an object relation of r 5 connecting an o object to an ol object.

The log in Table 6.1 is a sound log, since it conforms to all the rules. It will
be used as the input to illustrate the discovery approach in the next section.

6.1.2 Discovery of Class Models

An OCBC model consists of a class model, an activity model and AOC relation-
ships which connect these two models. Note that OCBC models are data/object-
centric, i.e., the data perspective is the backbone and events on the behavioral
perspective are correlated through the data perspective. Therefore, we first show
how to discover a class model which represents the data perspective.

activity model

class model

AOC 
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discovering
class model

OCBC model
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Figure 6.3: A class model is discovered based on all object models in an XOC log.

From the modeling angle, a class model defines a “space” of possible object
models. On the contrary, observed object models specify a class model from
the discovery angle. In other words, the class model can be discovered based
on all object models in an XOC log as shown in Figure 6.3. When discovering
a class model ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,]♦tar), the discovery of cardinality
functions (i.e., ]2src,]♦src,]2tar and ]♦tar) is the core task, and it depends on the result
of object correlation. Therefore, we next illustrate how to correlate objects by
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class relationships and identify related objects of a given object, which serves as
the base for discovering a class model.

Definition 6.2 (Objects Observed in Log) Let L = (E,act,attrE,relate,om,¹) be
a sound XOC event log. OL is the set of all objects in L, i.e., OL = {o | ∃e ∈ E : o ∈ Obje }.
For an event e ∈ E and an object o ∈OL \Obje , classe (o) = classe ′ (o) where e ′ ∈ E and
o ∈ Obj′e .

OL consists of all objects in a log L, which have been observed in at least
one object model corresponding to some event. Note that it is possible that
an object o ∈ OL appears in an object model and is deleted later. For an event
e ∈ E , function classe is defined (cf. Chapter 3) to give the class of an object in
the object model of event e. Since the class of an object stays the same in all
object models, we can use classe corresponding to any object model to derive
the class. If an object o does not exist in the object model (i.e., o ∈OL \ Obje ),
function classe returns the class of o in another object model which includes o
(i.e., classe (o) = classe ′ (o) where e ′ ∈ E and o ∈ Obj′e).

Definition 6.3 (Relating Objects by Class Relationship) Let L = (E,act,attrE,
relate,om,¹) be a sound XOC event log, OL be the set of all objects, and R be
a set of class relationships. Function corR ∈OL ×R ×E →P(OL) correlates objects by
a class relationship r ∈ R and returns all objects related to a given object o ∈OL at
some moment that event e ∈ E happens, such that

• if o is an object of the source class of r , i.e., o ∈ ∂π1(r )(OL),

corRsr c (o,r,e) = {o′ | (r,o,o′) ∈ Rele },

• if o is an object of the target class of r , i.e., o ∈ ∂π2(r )(OL),

corRt ar (o,r,e) = {o′ | (r,o′,o) ∈ Rele },

where corRsr c and corRt ar are two variants of corR.

Given an object o and a class relationship r , function cor R correlates objects
by r and returns all objects related to o. Note that the object model is evolving,
i.e., the related objects of o may change over time. It is necessary to indicate the
time when identifying the related objects. Here, the time is represented by an
event, which means that the time is when the event happens. For each object
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of the source class of r , i.e., o ∈ ∂π1(r )(OL), an object o′ is related to o, if (i) o′ is
connected to o through an object relation of r and (ii) o′ is the target object of
the object relation, i.e., (r,o,o′) ∈ Rele . In contrast, if an object o is of the target
class of r , o should be the target object of the object relation (i.e., (r,o′,o) ∈ Rele)
when identifying its related objects.
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Figure 6.4: Correlating objects by a class relationship r 5.

Consider the log in Table 6.1 and a class relationship r 5 as an example to
understand the object correlation, where π1(r 5) = customer and π2(r 5) = order.
As shown in Figure 6.4, c1 and c2 are objects of the source class of r 5 and
o1 and o2 are objects of the target class of r 5, which are highlighted in red.
In the object model corresponding to event co1, since only o1 is connected to
c1 by an object relation (r 5,c1,o1), we get corRsr c (c1,r 5,co1) = {o1}. Similarly,
corRsr c (c1,r 5,co2) = {o1,o2} since o1 and o2 are connected to c1 in the object
model corresponding to co2. In this way, we compute the related objects of o1,
o2, c1 and c2 at each moment and the result is shown in Table 6.4. Note that it
is possible that an object does not exist at some moment. In this situation, the
related objects of the inexistent object are denoted by “-”, e.g., o2 does not exist
in the object model corresponding to event co1.

The discovery of the class model can be done after correlating objects. More
precisely, the set of classes C is derived by integrating the classes of all objects in
object models. The set of class relationships R and corresponding functions π1

and π2 are based on the object relations (i.e., types, source objects and target
objects in object relations, respectively). The cardinality functions of a class
relationship can be derived based on correlated objects. For “always” cardinality
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object related objects corR(o,r 5,ei )
co1 co2 cs1 ci 1 cs2 ci 2 cs3 cp1 ci 3 cp2

o1 {c1} {c1} {c1} {c1} {c1} {c1} {c1} {c1} {c1} {c1}
o2 - {c1} {c1} {c1} {c1} {c1} {c1} {c1} {c1} {c1}
c1 {o1} {o1,o2} {o1,o2} {o1,o2} {o1,o2} {o1,o2} {o1,o2} {o1,o2} {o1,o2} {o1,o2}
c2 ; ; ; ; ; ; ; ; ; ;

Table 6.4: Related objects (correlated by r 5) of each order or customer object in each
object model (represented by the corresponding event ID) in Table 6.1.

functions (]2src and ]2tar), we need to check each object model (i.e., each moment)
and for “eventually” cardinality functions (]♦src and ]♦tar) we only check the last
object model (i.e., the last moment).

Definition 6.4 (Discovery of Class Models) Let L = (E,act,attrE,relate,om,¹) be
a sound XOC log. The discovered class model from L is a tuple ClaM = (C,R,π1,π2,
]2src,]♦src,]2tar ,]♦tar), where

• C is a set of object classes such that C = {c | ∃e ∈ E ,o ∈Ob je : classe (o) = c},

• R is a set of relationships such that R = {r | ∃e ∈ E : (r,o1,o2) ∈ Rele },

• π1 ∈ R →C gives the source class of a relationship such that ∀r ∈ R :π1(r ) = c1

where ∀e ∈ E : ∀(r,o1,o2) ∈ Rele : c1 = cl asse (o1),

• π2 ∈ R →C gives the target class of a relationship such that ∀r ∈ R :π2(r ) = c2

where ∀e ∈ E : ∀(r,o1,o2) ∈ Rele : c2 = cl asse (o2),

• ]äsr c ∈ R →UC ar d gives the source “always” cardinality of a relationship such
that ∀r ∈ R : ]äsr c (r ) = {n | ∃e ∈ E ,o2 ∈ ∂π2(r )(Ob je ) : n = |corRt ar (o2,r,e)|},

• ]♦sr c ∈ R → UC ar d gives the source “eventually” cardinality of a relationship
such that ∀r ∈ R : ]♦sr c (r ) = {n | ∃o2 ∈ ∂π2(r )(Ob jel ) : n = |corRt ar (o2,r,el )|},
where el is the last event in L,

• ]ät ar ∈ R →UC ar d gives the target “always” cardinality of a relationship such
that ∀r ∈ R : ]ät ar (r ) = {n | ∃e ∈ E ,o1 ∈ ∂π1(r )(Ob je ) : n = |corRsr c (o1,r,e)|}, and

• ]♦t ar ∈ R → UC ar d gives the target “eventually” cardinality of a relationship
such that ∀r ∈ R : ]♦t ar (r ) = {n | ∃o1 ∈ ∂π1(r )(Ob jel ) : n = |corRsr c (o1,r,el )|},
where el is the last event in L.
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Figure 6.5 shows a discovered class model from the example log in Table 6.1
with the algorithm in Definition 6.4. The following steps illustrate the process
of the discovery of the class model. C is learned by incorporating classes of all
objects in each object model. For instance, customer is a discovered class since
the object model of the event co1 contains an object c1 of class customer. In this
way, nine classes are discovered, i.e., C = {customer,order,order line,shipment,
shipment line, invoice,element relation,payment,payment line}. Similarly, R is de-
rived by incorporating all relationships, i.e., types of object relations in each
object model. For example, the relationship r 5 is discovered because the object
model of the event co1 contains an object relation (r5,c1,o1) of r 5. In this way,
ten class relationships are discovered, i.e., R = {r 1,r 2, ...,r 10}.
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Figure 6.5: The discovered class model from the example log in Table 6.1.

Function π1 (π2) of each relationship r can be learned by observing the class
of source (target) objects in all object relations of r . Consider for example the
relationship r 5. π1(r 5) = customer and π2(r 5) = order since there exists an object
relation (r5,c1,o1) (in the object model of the event co1), where the source object
c1 is of class customer and the target object o1 is of class order. Note that it is
enough to observe only one object relation of r 5, because the source (target)
objects in all object relations of the same relationship should have the same class
in a sound log (cf. Definition 6.1).

For each relationship r , ]2src(r ) (]2tar(r )) is specified as a set of integers, which
integrates all the numbers of related objects (correlated by r ) of each π2(r )
(π1(r )) object at each moment. Consider for example the target cardinality on
relationship r 5, i.e., ]2tar(r 5). π1(r 5) objects are customer objects c1 and c2, and
we can know the number of related objects of each customer object at each
moment according to Table 6.4. For instance, the object c1 (c2) has two (zero)
related object at the last moment represented by event cp2. By integrating the
numbers at all moments, ]2tar(r 5) = {0,1,2}. For ]♦src(r ) and ]♦tar(r ), we only need to
integrate the numbers at the last moment. Therefore, ]♦tar(r 5) = {0,2}.
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6.1.3 Discovery of AOC Relationships

In Section 6.1.2, we illustrated how to discover the data perspective, i.e., a
class model. The subsequent challenge is to discover the behavioral perspective,
i.e., behavioral constraints between activities. Different from existing discovery
approaches based on XES logs, events in XOC logs should be related through the
data perspective before discovering behavioral constraints, due to the lack of case
notions. AOC relationships relate the data and behavioral perspectives, i.e., they
provide a bridge from the discovered data perspective to the yet undiscovered
behavioral perspective. Therefore, we discover AOC relationships in this section
to enable the discovery of the behavioral perspective in the next section.
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Figure 6.6: AOC relationships are discovered based on the references between events and
objects.

From the modeling angle, AOC relationships describe the possible references
between events and objects. On the other hand, the observed references indicate
the AOC relationships from the discovery angle. In other words, the AOC
relationships can be discovered based on all references in the XOC log (i.e., the
“Reference” column in Table 6.1), as shown in Figure 6.6. When discovering AOC
relationships, the discovery of cardinality functions (i.e., ]2A , ]♦A and ]OC) is the
core task, and it depends on the correlation result involving events and objects.
For an event e in an XOC log, its related objects are easily derived by relate(e),
and these related objects are constantly referred to by e from the moment that
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e happens. In contrast, the events related to an object may change over time.
For instance, at some point in time t , only event e refers to object o. At some
moment later t ′, another event e ′ happens and also refers to o. In this situation,
the related events of o are {e} at t and {e,e ′} at t ′. Therefore, an object may
have different numbers of related events at different moments. It is necessary to
indicate the time when identifying the related events of an object. Here, the time
is represented by an event, which means the time is when the event happens.

Definition 6.5 (Correlating Events to Objects by AOC Relationship) Let L =
(E,act,attrE,relate,om,¹) be a sound XOC event log, OL be the set of all objects in
L, and AOC be a set of AOC relationships. Function corAOC ∈OL ×AOC ×E →P(E)
correlates events to objects by an AOC relationship (a,c) ∈ AOC and returns all
events related to a given object o ∈ ∂c (OL) at the moment that event e ∈ E happens,
such that

corAOC(o, (a,c),e) = {e ′ ∈�e(E) | act(e ′) = a ∧o ∈ relate(e ′)}.

Given an object o ∈ ∂c (OL) and an AOC relationship (a,c), function cor AOC
correlates events to objects by (a,c) and returns all events related to o at some
moment represented by an event e. More precisely, if an event e ′ (i) happens
before or at e (i.e., e ′ ∈�e(E)), (ii) corresponds to activity a (i.e., act(e ′) = a), and
(iii) refers to o (i.e., o ∈ relate(e ′)), it is related to o at the moment e.
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Figure 6.7: All create shipment events and corresponding object models in the example
log in Table 6.1.

Consider the log in Table 6.1 and an AOC relationship aoc7 = (create shipment,
order line) as an example to understand the correlation. In Figure 6.7, we only
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present create shipment events, i.e., cs1, cs2 and cs3, and corresponding object
models. The involved events, objects and references (between events and ob-
jects) are highlighted in red. At the moment that event cs1 happens, since only
cs1 refers to ol 1, we get corAOC(ol 1, aoc7,cs1) = {cs1}. In contrast, up to the
moment that event cs2 happens, there are two events cs1 and cs2 referring to
ol 1, and therefore corAOC(ol 1, aoc7,cs2) = {cs1,cs2}. In this way, we compute
the related events of ol 1, ol 2, ol 3 and ol 4 at each moment and the result is
shown in Table 6.5. Note that it is possible that an object does not exist at some
moment. If an object does not exist, the set of its related events is denoted by “-”,
e.g., ol 3 does not exist at the moment represented by event co1, corresponding
to the “-” in the cell of the third row and the first column.

object related events corAOC(o, aoc7,ei )
co1 co2 cs1 ci 1 cs2 ci 2 cs3 cp1 ci 3 cp2

ol 1 ; ; {cs1} {cs1} {cs1,cs2} {cs1,cs2} {cs1,cs2} {cs1,cs2} {cs1,cs2} {cs1,cs2}
ol 2 ; ; ; ; {cs2} {cs2} {cs2} {cs2} {cs2} {cs2}
ol 3 - ; ; ; ; ; {cs3} {cs3} {cs3} {cs3}
ol 4 - ; ; ; ; ; {cs3} {cs3} {cs3} {cs3}

Table 6.5: The events correlated to each order line object by aoc7 = (create shi pment ,
order line) at each moment (represented by an event) in the example log in
Table 6.1.

Definition 6.6 (Discovery of AOC Relationships) Let L = (E,act,attrE,relate,om,
¹) be a sound XOC log and OL be the set of all objects in L. AOC ⊆ UA ×UC is
a set of relationships relating activities to classes discovered from L such that
AOC = {(a,c) | ∃e ∈ E,o ∈ relate(e) : act (e) = a ∧ cl asse (o) = c}. ]2A , ]♦A and ]OC are
discovered cardinality functions for AOC where

• ]2A ∈ AOC →UCard gives the source “always” cardinality (on the activity side)
of an AOC relationship such that ∀(a,c) ∈ AOC : ]2A ((a,c)) = {n | ∃e ∈ E ,o ∈
∂c (OL) : n = |corAOC(o, (a,c),e)|},

• ]♦A ∈ AOC → UCard gives the source “eventually” cardinality (on the activity
side) of an AOC relationship such that ∀(a,c) ∈ AOC : ]♦A ((a,c)) = {n | ∃o ∈
∂c (OL) : n = |corAOC(o, (a,c),el )|}, where el is the last event in L, and

• ]OC ∈ AOC →UCard gives the target cardinality (on the class side) of an AOC
relationship such that ∀(a,c) ∈ AOC : ]OC (a,c) = {n | ∃e ∈ ∂a(E) : n = |{o ∈
∂c (relate(e))}|}

Figure 6.8 shows the discovered AOC relationships and corresponding car-
dinalities (attached on the discovered class model) from the example log in
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Table 6.1 using the algorithm in Definition 6.6. The following steps illustrate the
process of the discovery of the AOC relationships.
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Figure 6.8: The discovered AOC relationships from the example log in Table 6.1.

First, we explain how to discover AOC relationships (without cardinality
functions). If an event refers to an object, the activity of the event refers to the
class of the object. For instance, since a create shipment event cs1 refers to one
order line object ol 1, as shown in the first object model in Figure 6.7, one AOC
relationship (create shipment,order line) is discovered as aoc7 in Figure 6.8. In
this way, we derive eight AOC relationships, i.e., AOC = {aoc1, aoc2, ..., aoc8} in
Figure 6.8.

Based on the discovered AOC relationships, cardinality functions are dis-
covered based on the numbers of corresponding references between events
and objects. For each AOC relationship (a,c), its target cardinality on the
class side can be determined by incorporating numbers of references which
relate c objects to each a event. Consider for example the target cardinality
on aoc7 = (create shipment,order line). The numbers for create shipment events
cs1, cs2 and cs3 are 1, 2 and 2, respectively, as shown in Figure 6.7. Therefore,
]OC (aoc7) = {1,2} (denoted as 1..2 in Figure 6.8).

Similarly, for each AOC relationship (a,c), the “always” cardinality on the
activity side can be determined by incorporating numbers of related a events
of each c object at every moment. We still use the AOC relationship aoc7 as
an example. According to Table 6.5, the observed numbers at all moments
for order line objects ol 1, ol 2, ol 3 and ol 4 are {0,1,2}, {0,1}, {0,1} and {0,1},
respectively. By incorporating these numbers, ]2A (aoc7) = {0,1,2}. The “eventually”
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cardinality on the activity side can be derived by incorporating numbers of
related a events of each c object at the last moment, i.e., after all events happen.
According to Table 6.5, the observed numbers at the last moment for order line
objects ol 1, ol 2, ol 3 and ol 4 are 2, 1, 1 and 1, respectively. By incorporating
these numbers, ]♦A (aoc7) = {1,2}.

6.1.4 Discovery of Activity Models

Up to now, we have discovered the class model and AOC relationships. The
activity model is the last piece to complete the discovery of a whole OCBC model.
All activities are discovered in the process of the discovery of AOC relationships.
Therefore, the discovery of the activity model is to discover all possible behavioral
constraints between activities.

From the modeling angle, behavioral constraints describe the possible orders
between events. More precisely, a behavioral constraint specifies how many
target events should occur before and after each reference event within a scope.
The scope, i.e., the reference events and their target events, is identified by a
correlation pattern. From the discovery angle, we can discover a behavioral
constraint based on the observed events corresponding to a correlation pattern.
The basic idea is shown in Figure 6.9. By mapping the input log onto a correlation
pattern, the reference events and corresponding target events are identified. If
the relations (in form of numbers) between the reference events and target
events conform to the semantics of some constraint type, a constraint of this type
is discovered.

According to the idea, a correlation pattern serves as the base to discover
behavioral constraints. Therefore, before discovering behavioral constraints, we
have to identify all possible correlation patterns. Once the correlation patterns
are derived, the discovery of all constraints can be split into the discovery of
constraints for each correlation pattern. Next, we define a function to extract all
correlation patterns from the discovered class model and AOC relationships.

Definition 6.7 (Extracting Correlation Patterns) Let ClaM = (C,R,π1,π2,]2src,]♦src,

]2tar ,]♦tar) be a class model and AOC be a set of AOC relationships. Function extP ∈
UClaM ×P(UAOC ) →P(UP) maps a class model and a set of AOC relationships onto
a set of correlation patterns such that extP (ClaM ,AOC) = VPatterns∪UPatterns
where

• VPatterns = {(aref , atar ,c) | aref 6= atar ∧∃c ∈ C : {(aref ,c), (atar ,c)} ⊆ AOC}, and
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Figure 6.9: The idea of discovering behavioral constraints.

create 
payment

create 
invoice

1

create 
order

create 
shipment

1
1..2

1 1 1 1

2

1
1

1

1..2

1 1

1
1 1

1

1

1

1..2

order lineorder

customer

2element
relation

shipment
line

payment

1

1

2

0..2

payment 
line

shipmentinvoice

1

1

1

1

10,3

1

1

1

1

1

1 1

21

1..2

1 1

1..2

0..21

1

1 11..21..2

r1r2

r3

r4

r5 r6r7

r8 r9r10

0..1

1..21..2

0..3 0..3

0,3

0..2 0,2 1..2

aoc1

1

aoc2 aoc3 aoc4 aoc5 aoc6 aoc7 aoc8

0..2

1..2

create 
payment

create 
invoice

invoice

create 
order

create 
shipment

order line

payment 
line ...

r2

aoc6 aoc7

aoc1 aoc4

Figure 6.10: Extraction of event correlation patterns.

• UPatterns = {(aref , atar ,r ) | (Øc ∈C : (aref , atar ,c) ∈ VPatterns)∧aref 6= atar∧∃r ∈
R : ({(aref ,π1(r )), (atar ,π2(r ))} ⊆ AOC ∨ {(aref ,π2(r )), (atar ,π1(r ))} ⊆ AOC)}.

Correlation patterns consist of two types of patterns, i.e., V correlation
patterns and U correlation patterns. A V correlation pattern (aref , atar ,c) can
be extracted if there exist two different activities aref and atar, referring to
the same class c (i.e., c ∈ C). In contrast, a U correlation pattern (aref , atar ,r )
can be extracted if there exist two different activities aref and atar, referring
to two classes connected by a class relationship r (i.e., r ∈ R). Consider for
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example the class model ClaM and AOC relationships AOC in Figure 6.10 (on
the left). A V correlation pattern P5 = (create order,create shipment,order line) is
extracted, since activities create order and create shipment refer to the same class
order line, through two AOC relationships aoc6 and aoc7, respectively. Besides,
a U correlation pattern P1 = (create payment,create invoice,r2) is extracted, since
(i) activity create payment refers to class payment line through aoc1, (ii) activity
create invoice refers to class invoice through aoc4, and (iii) these two classes
payment line and invoice are related through the class relationship r 2. In this
method, extP(ClaM ,AOC) = {P1,P2, ...,P6} as shown in Table 6.6.

Pattern Reference activity Target activity
Intermediary

Class Class Relationship

P1 create payment create invoice - r2
P2 create invoice create payment - r2
P3 create invoice create order - r8
P4 create order create invoice - r8
P5 create order create shipment order line -
P6 create shipment create order order line -

Table 6.6: Extracted correlation patterns from the class model and AOC relationships in
Figure 6.10.

Note that in this thesis we assume that a class has a priority over a class
relationship to act as the intermediary for a correlation pattern. In other words,
for a reference activity and a target activity, if there exist both a class and
a class relationship which can be the intermediary, only the V pattern with
the class is taken into consideration by function extP. For instance, for the
reference activity create order and the target activity create shipment, there exists
a V pattern (create order,create shipment,order line) with the class order line as
the intermediary. Therefore, the U pattern (create order,create shipment,r10) is
discarded to avoid redundant patterns (a redundant pattern refers to a U pattern,
that has the same reference and target activities as an existing V pattern).
Correlation patterns always come in pairs. A pair of correlation patterns have
the same intermediary and reverse reference and target activities. For instance,
P5 and P6 are a pair of patterns.

A correlation pattern specifies a reference activity and a target activity, and
indicates the paths to correlate target events to each reference event. Given a
correlation pattern, the corresponding objects, object relations and references
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can be combined into a path to correlate events. After event correlation, each
reference event and its related target events form an instance corresponding to
the correlation pattern. More precisely, for a reference event, the set of its target
events Etar is derived as follows:

• if the correlation pattern P = (aref , atar ,cr ) is a V pattern, i.e., the correlation
“bridge” cr is a class, target events for a reference event are those atar events
(i.e., ∂atar (E)) which refer to the same object of class cr as the reference
event does, i.e., there exist some object which is referred to by both the
reference and target event (i.e., o ∈ relate(eref )∩ relate(etar)), or

• if the correlation pattern P = (aref , atar ,cr ) is a U pattern, i.e., the correlation
“bridge” cr is a class relationship, target events for a reference event are
those atar events which refer to an object which is related to another object
(through an object relation of cr ), referred to by the reference event, i.e.,
∃o1 ∈ relate(eref ),o2 ∈ relate(etar) : {(cr,o1,o2), (cr,o2,o1)}∩Rele 6= ;)}.

order line

co1

cs2

ol2

ol1

cs1

ol3 ol4

co2
cs3

create shipmentcreate order

c
2

s
2

s
1

sl
2

sl
3

sl
1

ol
1

ol
2

ol
3

ol
4

i1

er
2

o
2

o
1

c1

ci2

er
1

er
3

i2

c
2

s
2

s
1

sl
2

sl
3

sl
1

ol
1

ol
2

ol
3

ol
4

i1

er
2

o
2

o
1

c1

cs3

s
l
5

sl
4

er
1

er
3

i2 s
3

c
2

s
2

s
1

sl
2

sl
3

sl
1

ol
1

ol
2

ol
3

ol
4

i1

er
2

o
2

o
1

c1

cp1

s
l
5

sl
4

er
1

er
3

pl
2

pl
1

p1

i2 s
3

c
2

s
2

s
1

sl
2

sl
3

sl
1

ol
1

ol
2

ol
3

ol
4

i1

er
2

o
2

o
1

c1

ci3

s
l
5

sl
4

er
1

er
3

er
4

pl
2

pl
1

p1

i2

i3

s
3

c
2

s
2

s
1

sl
2

sl
3

sl
1

ol
1

ol
2

ol
3

ol
4

i1

er
2

o
2

o
1

c1

cp2

s
l
5

sl
4

er
1

er
3

er
4

pl
2

pl
3

pl
1

p2

p1

i2

i3

s
3

c
2

ol
1

ol
2

o
1

c1

co1

c
2

ol
1

ol
2

ol
3

ol
4

o
2

o
1

c1

co2

c
2

s
1

sl
1

ol
1

ol
2

ol
3

ol
4

o
2

o
1

c1

cs1

c
2

s
1

sl
1

ol
1

ol
2

ol
3

ol
4

i1

o
2

o
1

c1

ci1

er
1

c
2

s
2

s
1

sl
2

sl
3

sl
1

ol
1

ol
2

ol
3

ol
4

i1

o
2

o
1

c1

cs2

er
1

+

create
 order

create 
shipment

order line

Figure 6.11: The reference event and target events are related through common objects.

Definition 6.8 (Event Correlation and Instances) Let L = (E,act,attrE,relate,
om,¹) be a sound XOC event log and P = (aref , atar ,cr ) be a correlation pattern.
Function extI ∈UL ×UP →P(E∗) correlates events in L based on P and returns a set
of instances (i.e., event sequences), such that extI(L,P ) = {ins ∈ E∗ | (∃eref ∈ ∂aref (E) :

∂set (ins) = {eref }∪Etar)∧ (∀1 É i < j É |ins| : insi ≺ insj)} where 4

• Etar = {etar ∈ ∂atar (E) | ∃e ∈ E ,o ∈ ∂cr (Obje ) : o ∈ relate(eref )∩ relate(etar)} if P is
a V pattern, or

4For a sequence σ, e.g., ins, σi refers to the i -th element of the sequence, |σ| denotes the length
of the sequence and ∂set (σ) converts the sequence into a set.



6.1 An Initial Approach for OCBC Discovery 187

• Etar = {etar ∈ ∂atar (E) | ∃o1 ∈ relate(eref ),o2 ∈ relate(etar),e ∈ E : {(cr,o1,o2),
(cr,o2,o1)}∩Rele 6= ;)} if P is a U pattern.

For simplicity, we define ins�P = (before,after) = (|�eref (Etar)|, |�eref (Etar)|).

Next, we explain the two rules in Definition 6.8 based on the example
log in Table 6.1. Given a correlation pattern P5 = (create order,create shipment,
order line) in Table 6.6, we extract (from the example log) two reference events
co1 and co2, and three target events cs1, cs2 and cs3 as shown in Figure 6.11.
Consider the reference event co1 to understand how to derive its target events.
Since P is a V pattern and the correlation bridge is order line, we only observe
the references between objects of order line and the reference event or target
events. As shown in the “Reference” column in Table 6.1, co1 refers to objects
ol 1 and ol 2, cs1 refers to object ol 1, cs2 refers to objects ol 1 and ol 2, and cs3
refers to objects ol 3 and ol 4. Since cs1 and co1 refer to the common object ol 1,
cs1 is one target event of co1. Similarly, cs2 is also one target event of co1.
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Figure 6.12: The reference event and target events are related through object relations.

Figure 6.12 shows how to correlate events based on a U pattern. Given a U
pattern P4 = (create order,create invoice,r 8) in Table 6.6, there are two reference
events co1 and co2, and three target events ci 1, ci 2 and ci 3. The explana-
tion of correlation is still based on the reference event co1. Since P is a U
pattern and the correlation bridge is the class relationship r 8, the correlation
paths consist of the references of AOC relationships (create order,order) and
(create invoice,element relation), and the object relations of r 8. As shown in the
“Reference” column in Table 6.1, co1 refers to object o1, ci 1 refers to object er 1,
ci 2 refers to objects er 2 and er 3, and ci 3 refers to object er 4. Besides, er 1 and
er 2 are connected to o1 through object relations of r 8 as shown in the “Relations”
column. Based on the above references and object relations, ci 1 and ci 2 are the
target events of co1.
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pattern
instance shared

instance1 instance2 instance3 events

P1 〈ci 1,ci 2,cp1〉 〈ci 3,cp2〉 - -
P2 〈ci 1,cp1〉 〈ci 2,cp1〉 〈ci 3,cp2〉 cp1
P3 〈co1,ci 1〉 〈co1,co2,ci 2〉 〈co2,ci 3〉 co1, co2
P4 〈co1,ci 1,ci 2〉 〈co2,ci 2,ci 3〉 - ci 2
P5 〈co1,cs1,cs2〉 〈co2,cs3〉 - -
P6 〈co1,cs1〉 〈co1,cs2〉 〈co2,cs3〉 co1

Table 6.7: Instances for all patterns in Table 6.6.

After event correlation, related events are integrated into instances. An
instance ins is an event sequence (ins ∈ E∗). More precisely, all events in the
instance (∂set (ins)) include a reference event (eref ) and a set of target events
(Etar). Note that there are no duplicated events in one instance, i.e., any reference
or target event cannot appear more than once in one instance. Each reference
event corresponds to precisely one instance (i.e., reference events are “unique”
and one reference event cannot appear in multiple instances). In contrast,
target events may be split and replicated over multiple instances when they are
correlated to multiple reference events. For instance, the event ci 2 is correlated
to both co1 and co2 in Figure 6.12. Therefore, ci 2 is replicated over the resulting
two instances corresponding to P4 in Table 6.7.

Besides, the order of events in the instance is consistent with the order of
events in the log. Therefore, for any two events in the instance, insi (the i -
th event of the instance) and insj (the j -th event of the instance), i < j (insi

is before insj in the instance), if and only if insi ≺ insj (insi is before insj in
the log). Table 6.7 presents the instances corresponding to each correlation
pattern in Table 6.6. For instance, for the correlation pattern P5, there are two
instances 〈co1,cs1,cs2〉 and 〈co2,cs3〉, which are derived through the process in
Figure 6.11.

By relating events based on a correlation pattern, we get a set of instances,
which can be used to discover constraints corresponding to the pattern. The
semantics of a constraint is defined as a restriction on the relations between
events in a scope. On the other hand, from the discovery angle, a constraint
can be identified as a tuple of a pattern and a constraint type, i.e., (P,ct ). The
pattern P specifies the scope, i.e., the reference events and target events, and the
constraint type ct indicates the restriction on the relations between reference
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events and target events.

Definition 6.9 (Specification of Behavioral Constraints) Let P = (aref , atar ,cr )
be a correlation pattern and ct be a constraint type. A behavioral constraint
is specified as a tuple (P,ct ) ∈ UP ×UC T . Function idCon ∈ UP ×UC T → UCon

gives a constraint id referring to a constraint specification. Furthermore, function
speCon ∈ UCon → UP ×UC T gives the constraint specification corresponding to a
constraint id.

UCon (cf. Chapter 5) defines the universe of possible constraint ids, which
does not specify the constraints. In our discovery approach, a constraint is
specified as a combination of a correlation pattern and a constraint type (P,ct ),
which means that the events correlated by the correlation pattern P should follow
the restriction indicated by the constraint type ct . We define two functions
idCon and speCon to convert between constraint ids and specifications. For
instance, if a constraint id con1 corresponds to a constraint specification (P,ct ),
idCon((P,ct )) = con1 and speCon(con1) = (P,ct ). In this thesis, a constraint id is
called a constraint for simplicity, i.e., we omit the word “id” when there is no
need to distinguish the id from the specification.

Indicated by the specification of a constraint (P,ct ), a correlation pattern
P may correspond to multiple constraints of different types. As shown in Fig-
ure 6.13, instances corresponding to a pattern P are checked with a given set of
constraint types. If the relations between the reference events and target events
conform to the semantics of some constraint type, a constraint of this type is
discovered.
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Figure 6.13: The idea of discovering behavioral constraints.

Definition 6.10 (Discovery of Behavioral Constraints) Let L = (E,act,attrE,
relate,om,¹) be a sound XOC event log, P = (aref , atar ,cr ) be a correlation pattern
and CT be a set of constraint types. Function disCon ∈UL ×UP ×P(C T ) →P(UCon)
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discovers a set of behavioral constraints, such that disCon(L,P,CT) = {con | con =
idCon(P,ct )∧ ct ∈ CT ∧∀ins ∈ extI(L,P ) : ins�P ∈ ct}

Given a log L, a correlation pattern P and a set of constraint types CT ,
function disCon discovers all constraints of CT corresponding to P from L. For
instance, Figure 6.13 shows how to discover the constraints based on the pat-
tern P5 = (create order,create shipment,order line) and a set of six constraint
types from the log in Table 6.1. After event correlation, we get two instances
{〈co1,cs1,cs2〉,〈co2,cs3〉}. By checking all constraint types (i.e., the six types
shown in the middle of Figure 6.13), these two instances conform to the se-
mantics of response and non-precedence types. Therefore, two constraints are
discovered: one of response and one of non-precedence type. By using this method,
Table 6.8 presents all discovered constraints (indicated by “Yes”) for each pattern
in Table 6.6 from the log in Table 6.1. For instance, (P1,precedence) (correspond-
ing to “Yes”) is a discovered constraint while (P1,response) (corresponding to
“No”) is not.

pattern constraint type
response unary-response non-response precedence unary-precedence non-precedence

P1 No No Yes Yes No No
P2 Yes Yes No No No Yes
P3 No No Yes Yes No No
P4 Yes No No No No Yes
P5 Yes No No No No Yes
P6 No No Yes Yes Yes No

Table 6.8: Behavioral constraints discovered from the log in Table 6.1.

Definition 6.11 (Discovery of Activity Model) Let L be a sound XOC event log,
CT be a set of constraint types, ClaM be a discovered class model and AOC be a
discovered set of AOC relationships. An activity model discovered from L is a tuple
ActM = (A,Con,πref ,πtar , type), where

• A ⊆UA is the set of activities such that A = {act (e) | e ∈ E },

• Con ⊆UCon is a set of constraints such that Con = {con | con ∈ disCon(L,P,CT)∧
P ∈ extP(ClaM ,AOC)} ,

• πref ∈ Con → A defines the reference activity of a constraint such that ∀con ∈
Con :πref (con) = aref , where ((aref , atar ,cr ),ct ) = speCon(con),
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• πtar ∈ Con → A defines the target activity of a constraint such that ∀con ∈
Con :πtar(con) = atar, where ((aref , atar ,cr ),ct ) = speCon(con), and

• t y pe ∈ Con → UC T defines the type of a constraint such that ∀con ∈ Con :
t y pe(con) = ct , where ((aref , atar ,cr ),ct ) = speCon(con).

Definition 6.11 shows how to discover an activity model based on the dis-
covered class model and AOC relationships. An activity is discovered if there
is a corresponding event in the input log. Constraints are derived by (i) identi-
fying all possible correlation patterns using function extP and (ii) discovering
constraints corresponding to each pattern using function disCon. The top part
of Figure 6.14 shows a discovered activity model with four activities and eight
behavioral constraints (note that some of them are combined) from the log in
Table 6.1.

6.1.5 Integrating Discovered Parts into an OCBC Model

In the previous sections, we have explained how to discover all the elements
of an OCBC model. More precisely, Section 6.1.2 focused on discovering the
data perspective, i.e., structure of objects and cardinality constraints while
Section 6.1.3 discovered AOC relationships to build a bridge for discovering the
behavioral perspective, i.e., behavioral constraints. Section 6.1.4 introduced
how to relate events and discover behavioral constraints based on correlation
patterns. Here, we give the formal definition of discovering an OCBC model by
integrating all discovered parts.

Definition 6.12 (Discovery of OCBC Models) Let L be a sound XOC event log
and C T ⊆UC T be a set of constraint types. An OCBC model discovered from L is a
tuple OCBCM = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel), where

• ClaM is the class model discovered from L (Definition 6.4),
• AOC is the set of AOC relationships, and ]2A , ]♦A and ]OC are three cardinality

functions discovered from L (Definition 6.6),
• ActM is the activity model discovered from L (Definition 6.11), and
• crel ∈ Con → C ∪R indicates the event correlation pattern of each constraint

such that ∀con ∈ Con : crel(con) = cr , where ((aref , atar ,cr ),ct ) = speCon(con).

Figure 6.14 shows a discovered OCBC model from the example log in Ta-
ble 6.1, which describes the data perspective, behavioral perspective and the
interplay between them in a single diagram. It clearly reveals the involved
classes, activities and constraints in the OTC scenario from which the example
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Figure 6.14: The discovered OCBC model from the motivating example, omitting the
“eventually” cardinalities which are indicated by their corresponding “always”
cardinalities.

log is generated. More precisely, the nine classes and ten class relationships
make up the backbone of the OCBC model, i.e., the data perspective. They
indicate the types of involved objects and restrictions which are followed by
objects in the real transactions. The activity model contains eight (some of them
combined) behavioral constraints (i.e., con1,...,con8) which specify the temporal
restrictions on behavioral perspective. Between the class model and the activity
model, eight AOC relationships (i.e., aoc1,...,aoc8) relate these two perspectives.

Note that the input log for discovery approach may only cover a segment of
the whole data involved in a business process. In other words, the discovered
model may be overfitting, especially in terms of the cardinality constraints. For
instance, in the real business process, one order can have multiple order lines.
In the example log, we only observe two orders, each of them corresponding to
precisely two order lines. Therefore, the discovered cardinality is “2”, which can
not be true if we observe more data. In order to generalize the discovered model,
we can expand the discovered cardinalities. Note that the expansion increases the
generalization, but decreases the precision of the model. An extreme solution is to
expand all cardinalities as “*”, which results in a general but underfitting model.
In order to make a balance, we import some normalized cardinalities in data
modeling languages and generalize the discovered cardinalities as normalized
ones.

Definition 6.13 (Normalization of Cardinalities) Let {0}, {1}, {0,1}, {0,1, ...} and
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{1,2, ...} (denoted as 0, 1, 0..1, ∗ and 1..∗, respectively in the graph) be five normal-
ized cardinalities. Any discovered cardinality card can be normalized as one of these
cardinalities as follows:

• {0} if card = {0}, or
• {1} if card = {1}, or
• {0,1} if card = {0,1}, or
• {0,1, ...} if 0 ∈ card∧∃n ∈ card : n > 1, or
• {1,2, ...} if 0 6∈ card∧∃n ∈ card : n > 1.

Table 6.9 shows some examples of normalization of cardinalities. For in-
stance, the cardinality “1..2” on the relation r 7 is normalized as “1..∗”, since the
cardinality contains a number larger than one (i.e., 2) and do not contain zero.

relation cardinality notation in model normalized cardinality normalized notation

aoc2 {1} 1 {1} 1
r7 {1,2} 1..2 {1,2,...} 1..∗
r2 {0,1} 0..1 {0,1} 0..1
r8 {0,1,2} 0..2 {0,1,...} ∗
r8 {2} 2 {1,2,...} 1..∗
r1 {0,1,2,3} 0..3 {0,1,...} ∗
r1 {0,3} 0,3 {0,1,...} ∗

Table 6.9: Some examples of normalization of cardinalities.

Note that in this section, we focus on discovering models from “clean” logs
without any noise. However, the basic discovery algorithm can be easily extended
to deal with noise by setting thresholds. For instance, in the discovery of AOC
relationship in Definition 6.6, the basic algorithm discovers an AOC relationship
(a,c) between the activity a and the class c, if there exists “at least one” a event
which refers to a c object. It is possible to set a threshold on the number of a
events referring to c objects. In other words, we can replace “at least one” with a
number (e.g., 10, indicating 10 a events) or a ratio (e.g., 20%, indicating 20%
of all events).

6.2 Advanced Discovery Techniques to Deal with
Noise

Model discovery techniques take an event log as input and return a model to
reveal the real business process where the log is generated. The quality of the
input log decides if the discovered model can really represent the real business
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process. In other words, to discover a representative model, the event log should
contain a representative sample of data. A sample may be not suitable due to
problems from two perspectives: (i) it has “too little data” to cover various events
and objects in the process; (ii) it has “too much data” with events or objects
unrelated to the target process. In process mining, the first perspective refers to
the “incompleteness” problem while the second perspective refers to the “noise”
problem.

The “incompleteness” is touched a little in Section 6.1.5, where we generalize
cardinalities by expanding discovered cardinalities to normalized ones. In this
section, we focus on dealing with the “noise” problem, which is significant in
process mining and should be faced by any applicable discovery algorithm. Note
that the noise here refers to the infrequent events or objects rather than the
incorrect logging, since we assume all the data in logs are correctly recorded.

The approach in Section 6.1 cannot deal with noise and it mainly suffers
two problems when facing noise. First, the noise may contain a variety of
infrequent events or objects unrelated to the target business process, which makes
the discovered models too complex (i.e., too many entities and constraints).
Besides, the discovered constraints are not precise, since the approach forces the
constraints to allow the occurrence of noise. In order to solve these problems,
we next introduce some more advanced approaches to deal with noise in logs by
(i) simplifying complex discovered models, (ii) discovering precise behavioral
constraints and (ii) discovering precise cardinality constraints.

6.2.1 Simplification of OCBC Models

The approach in Section 6.1 is sensitive to noise, e.g., one object of an infrequent
class leads to the discovery of the “noise” class. As a result, the noise makes
the useful insights hiding in the discovered complex model. In this section, we
give solutions to simplify OCBC models, i.e., filtering the unnecessary entities
and constraints corresponding to the infrequent events or objects, to make the
insights outstanding.

Definition 6.14 (Support) Let L = (E ,act,attrE,relate,om,¹) be a sound XOC
event log, M = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel) be the discovered OCBC model
where ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,]♦tar) is the class model and ActM = (A,Con,
πref ,πtar , type) is the activity model. El eM =C ∪R∪A∪AOC∪Con is the set of all el-
ements in the model. Function suppor t ∈ EleM → [0,1] maps an element ele ∈ EleM

to a value between 0 and 1. The function has five versions to calculate the support
of different types of elements.
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The support of a class is defined as the fraction of objects of the class in all
objects, i.e., for each c ∈C ,

supportC(c) = |{o | ∃e ∈ E : (o ∈ Obje ∧ classe (o) = c)}|
|{o | ∃e ∈ E : o ∈ Obje }| .

The support of a class relationship is defined as the fraction of object relations
corresponding to the relationship in all object relations, i.e., for each r ∈ R,

supportR(r) = |{(r,o1,o2) | ∃e ∈ E : (r,o1,o2) ∈ Rele }|
|{rel | ∃e ∈ E : rel ∈ Rele }| .

The support of an activity is defined as the fraction of events of the activity in
all events, i.e., for each a ∈ A,

supportA(a) = |{e ∈ E | act(e) = a}|
|E | .

The support of an AOC relationship is defined as the fraction of references
corresponding to the relationship in all references, i.e., for each aoc = (a,c) ∈ AOC,

supportAOC(aoc) = |{(e,o) | e ∈ E ∧o ∈ relate(e)∧act(e) = a ∧ classe (o) = c}|
|{(e,o) | e ∈ E ∧o ∈ relate(e)}| .

The support of a behavioral constraint is defined as the fraction of instances
(of P) which consist with the constraint, in instances of all patterns, i.e., for each
con ∈ Con,

supportCon(con) = |{ins ∈ extI(L,P ) | ins�P ∈ type(con)}|∑
P ′∈extP(ClaM ,AOC) |extI(L,P ′)|

where P = (πref (con),πtar(con),crel(con)) is the corresponding pattern of con.

Consider the log in Table 6.1 and the model in Figure 6.14 to understand how
to compute the support of different elements. For instance, supportC(order) =
2/28 since there are two order objects and twenty-eight objects in total. supportR
(r 10) = 4/36 since there are four object relations of r 10 and thirty-six object
relations in total. supportA(create order) = 2/10 since there are two create order
events and ten events in total. supportAOC(aoc5) = 2/26 since there are two
references of aoc5 (between create order events and order objects) and twenty-
six references in total. supportCon(con2) = 3/15 since there are three consistent
instances of P2 (corresponding pattern of con2) and fifteen instances in total as
shown in Table 6.7.
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Note that the support in Definition 6.14 is a relative support, i.e., a frac-
tion between 0 and 1. It is possible to compute an absolute support by only
considering the numerator of each formula, e.g., supportC(c) = |{o | ∃e ∈ E : (o ∈
Obje ∧classe (o) = c)}| for a class c. Table 6.10 presents the support of all classes in
Figure 6.14, i.e., the “Instance number” column shows the absolute support and
the “Support” column shows the relative support. One can specify a threshold for
support to filter out any element whose support is below the threshold. In this
way, we can simplify the complex OCBC model discovered in the environment
with noise.

Class Instance number Support Rdel AOCdel Condel

payment 2 2/28 r7 aoc2 -
payment line 3 3/28 r7,r2 aoc1 con1,con2,con3

element relation 4 4/28 r3,r8 aoc3 con4,con5
invoice 3 3/28 r1,r3 aoc4 con1,con2,con3
order 2 2/28 r8,r10 aoc5 con4,con5

customer 2 2/28 r1,r4,r5 - -
order line 4 4/28 r9,r10 aoc6,aoc7 con6,con7,con8

shipment line 5 5/28 r6,r9 - -
shipment 3 3/28 r4,r6 aoc8 -

Table 6.10: Support and related elements of classes.

Definition 6.15 (Filtering Infrequent Elements in OCBC Model) Let L be a
sound XOC event log, M be the discovered OCBC model and El eM = C ∪R ∪ A ∪
AOC ∪Con be the set of all elements in the model. Let τ be a threshold. An element
in the model ele ∈ EleM is filtered out, if its corresponding support is below the
threshold, i.e., support(el e) < τ and all its related elements are removed too as
follows:

• if ele = cdel ∈ C , the related elements are Rdel = {r ∈ R | π1(r ) = c ∨π2(r ) =
c}, AOCdel = {(a,cdel) ∈ AOC} and Condel = {con ∈ Con | crel(con) = cdel ∨
crel(con) ∈ Rdel},

• if ele = rdel ∈ R, the related elements are Condel = {con ∈ Con | crel(con) = rdel},
• if ele = adel ∈ A, the related elements are AOCdel = {(adel,c) ∈ AOC} and

Condel = {con ∈ Con |πref (con) = adel ∨πtar(con) = adel},
• if ele = (a,c)del ∈ AOC, the related elements are Condel = {con ∈ Con | (πref (con)

= a∨πtar(con) = a)∧(crel(con) = c∨π1(crel(con)) = c∨π2(crel(con)) = c)}, and
• if ele = condel ∈ Con, there are no related elements.

Note that in the process of discovering an OCBC model, the elements are
discovered in the order: C , R, A, AOC and Con. As a result, the latter discovery
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may depend on the former discovery result. For instance, the discovery of class
relationships depends on the discovered classes. Therefore, when an element
ele is filtered out, all its related elements (i.e., elements discovered based on ele)
should be removed too. Based on the type of ele, Definition 6.15 gives five rules
to specify the related elements.

If ele is a class cdel, the related elements consist of (i) all class relationships
connected to the class (Rdel), (ii) all AOC relationships connected to the class
(AOCdel), and (iii) all behavioral constraints which correlate events by cdel or a
class relationship which will be removed (Condel). If ele is a class relationship
rdel, the related elements only consist of behavioral constraints which corre-
late events by rdel. If ele is an activity adel, the related elements contain AOC
relationships which are related to the activity (AOCdel = {(adel,c) ∈ AOC}) and
behavioral constraints which have the activity as reference or target activity
(πref (con) = adel ∨πtar(con) = adel). If ele is an AOC relationship (a,c)del, any be-
havioral constraint con which is connected to a (i.e., πref (con) = a∨πtar(con) = a),
and correlate events by c (i.e., crel(con) = c) or a class relationship connected
to c (i.e., π1(crel(con)) = c ∨π2(crel(con)) = c) will be removed too. Since the
constraints are the last elements to be discovered, removing a constraint will not
influence anything else.

element
relation

shipment
line1..*

*1
1 r9

create 
payment

create 
invoice

create 
order

create 
shipment

*

1..*

1 1

1..*

1 1 1..*

1..*

order line

c6
c7
c8

aoc3 aoc6 aoc7

Figure 6.15: Filtering elements in an OCBC model based on support.

For instance, for the class payment in Figure 6.14, its related elements are
r 7 and aoc2 since they are connected to payment. It has no related behavioral
constraints since it is not involved in any correlation pattern. Table 6.10 presents
the related elements of all classes in Figure 6.14. Based on the support and
related elements in Table 6.10, one can set a threshold to filter classes. For
instance, given a threshold 3.5/28, the classes payment, payment line, invoice,
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order, customer and shipment, and their related elements are removed, resulting
in the model in Figure 6.15. Note that it is also possible to set a different
threshold for each type of elements. The rules in Definition 6.15 still hold in
these situations.

6.2.2 Discovery of Precise Behavioral Constraints

In Section 6.2.1, we proposed an approach to simplify the complex models,
which deals with the noise problem on the simplicity perspective. Besides the
simplicity perspective, the noise may force the constraints to be general enough
to allow its occurrence, resulting in imprecise constraints. In this section, we
illustrate how to filter noise and discover precise behavioral constraints, i.e.,
dealing with the noise problem on the imprecision perspective.

A constraint is defined in the context of a correlation pattern. It indicates the
restriction on the reference events and target events in instances correlated by
the pattern. In the discovery process (using the initial approach in Section 6.1),
the observed instances decide the discovered constraints, i.e., if all instances
(corresponding to the correlation pattern) satisfy the semantics of some constraint
type, a constraint of this type is discovered. The requirement that all instances
satisfy the semantics is too strict in an environment with noise, since an infrequent
behavior, which is only a violation of a constraint type, may ruin the discovery
of the corresponding constraint. Therefore, it is necessary to propose a robust
discovery approach of behavioral constraints, which can still discover a constraint
event if some noise violates the constraint.

The basic idea is to filter the noise according to a threshold, and discover
constraints based on the behavior without noise as shown in Figure 6.16. In this
way, the discovered constraints are precise, i.e., they do not allow the occurrence
of noise. In this chapter, the noise in terms of behavioral constraints refers to
infrequent instances. We define the types (i.e., variants) of instances and count
the frequency of each type to identify the noise. If the frequency of a type is
below the configured threshold, the instances of the type are considered as noise
and filtered out. The remaining frequent types (highlighted in black) are taken
as input to discover behavioral constraints. Next, we define a variant matrix to
represent all possible types of instances and count the frequency of each type.

Definition 6.16 (Variant Matrix) A variant matrix VCT is a set of nine disjoint
constraint types which incorporate all the possible relations between a reference event
and its target events. VCT = {(0;0), (1;0), (0;1), (1;1), (2+;0), (0;2+), (2+;1), (1;2+),
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Figure 6.16: The idea to discover precise behavioral constraints from a log with noise.

(2+;2+)} ⊆UC T . Each constraint type in the set is called a variant, e.g., (1;1) ∈VCT

is a variant.

The variant matrix contains nine different variants (cells), in the form of
three rows and three columns as shown in Figure 6.17. Each variant in the
matrix corresponds to a constraint type. For instance, (1;0) is a constraint type
which requires that the number of target events before (after) each reference
event is one (zero). (1;0) is the same as the unary-precedence constraint type
(cf. Chapter 5). (2+;0) is a constraint type which requires that the number of
target events before each reference event is larger or equal to two, and there
are no target events after each reference event. The formalization of these nine
constraint types is shown in Table 6.11.

Note that the nine variants are disjoint, i.e., ∀v, v ′ ∈VCT : v 6= v ′ ⇒ v ∩ v ′ =;.
Besides, the nine variants cover all the possible relations between a reference
event and its target events, i.e., each instance corresponds to precisely one
variant, indicated by the relations between target events and the reference event
in the instance. For example, if an instance has five target events before the
reference event and precisely one target event after the reference event, i.e.,
(5,1), it corresponds to variant (2+;1) (since (5,1) ∈ (2+;1)). Note that (5,1) is
a pair of numbers (in which the former (latter) one represents the number of
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Figure 6.17: A variant matrix is represented by a grid consisting of 3x3 cells.

target events before (after) the reference event) while (2+;1) is a set of pairs.

Definition 6.17 (Computing Variant Frequency) Let L be a sound XOC log and
P be a correlation pattern. Function freV ∈UL×UP×VCT → IN returns the frequency
that a variant is observed in a log corresponding to a pattern such that freV (L,P, v) =
|{ins | ins ∈ extI(L,P )∧ ins�P ∈ v}|.

For convenience, we define the following shorthand. freV %(L,P, v) = freV (L,P,v)∑
v∈VCT

fre(L,P,v)

provides the ratio of a variant. For V ⊆ VCT , freV (L,P,V ) = ∑
v∈V freV (L,P, v) and

freV %(L,P,V ) = ∑
v∈V freV %(L,P, v) provides the frequency and ratio of multiple

variants, respectively.

If an instance correlated by a correlation pattern P from a log L corresponds
to a variant v , i.e., ins�P ∈ v , we say that v is observed once in L. Based on this
idea, Definition 6.17 defines a function to count how many times a variant is
observed in a log corresponding to a pattern. More precisely, the frequency of a
variant is equal to the number of instances which satisfy the requirements of the
variant.

For instance, let L be the log example in Table 6.1 and P = (create order,
create shipment,order line). After event correlation, we get two instances {〈co1,
cs1,cs2〉,〈co2,cs3〉} where co1 and co2 are reference events as shown in Fig-
ure 6.18. In the first instance, there are zero and two target events before
and after the reference events, respectively, i.e., 〈co1,cs1,cs2〉�P = (0,2) ∈ (0;2+).
Therefore freV (L,P, (0;2+)) = 1 and similarly freV (L,P, (0;1)) = 1 according to the
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constraint variant formalization

(0;0) {(before,after) ∈ IN× IN | before = 0∧after = 0}
(1;0) {(before,after) ∈ IN× IN | before = 1∧after = 0}

(2+;0) {(before,after) ∈ IN× IN | before > 1∧after = 0}
(0;1) {(before,after) ∈ IN× IN | before = 0∧after = 1}
(1;1) {(before,after) ∈ IN× IN | before = 1∧after = 1}

(2+;1) {(before,after) ∈ IN× IN | before > 1∧after = 1}
(0;2+) {(before,after) ∈ IN× IN | before = 0∧after > 1}
(1;2+) {(before,after) ∈ IN× IN | before = 1∧after > 1}

(2+;2+) {(before,after) ∈ IN× IN | before > 1∧after > 1}

Table 6.11: The formalization of nine variants in the variant matrix (i.e., VCT ).
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Figure 6.18: Computing the frequency of each variant based on instances, resulting in a
frequency matrix.

second instance. Figure 6.18 shows the frequency matrix, i.e., frequencies of all
variants observed in L corresponding to the pattern P . Based on the frequency
matrix and a configured threshold, one can identify the frequent variants for
discovery.

Definition 6.18 (Frequent Variants) Let L be a sound XOC event log and P be a
correlation pattern. Vfre ⊆ VCT is the frequent variants observed in L corresponding
to P , such that for any v ∈ Vfre,

• freV (L,P, v) Ê τ for some threshold τ ∈ IN, or
• freV %(L,P, v) Ê τ for some threshold τ ∈ [0,1], or
• freV Entropy(L,P, v) Ê τ for some threshold τ ∈ [0,1], where freV Entropy(L,P, v) =

p
∑

v ′∈VCT
−p ′ log2(p ′)

log2(|VCT|) , p = freV %(L,P, v) and p ′ = freV %(L,P, v ′).
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Definition 6.18 provides three solutions to identify frequent variants by
filtering infrequent variants (i.e., noise) according to a threshold. In the first
solution, a variant is frequent if its frequency is equal to or larger than the given
threshold (i.e., an integer). Figure 6.19(a) shows an example using the first
solution to identify frequent variants. With a threshold 25, the variants (1;1) and
(2+;1) are frequent (highlighted in black) since their frequencies (40 and 35) are
above the threshold. The second solution employs a similar idea, only changing
the absolute frequency to a relative ratio.

(0;0) (1;0) (2+;0)

(0;1) (1;1) (2+;1)

(0;2+) (1;2+) (2+;2+)

4 3 2

8 40 35

2 3 3

(a) identifying frequent variants by an integer

15 15 12

8 18 15

2 12 3

25

(b) identifying frequent variants by entropy

Figure 6.19: Identify frequent variants based on a threshold.

The first solution is based on the frequency of a individual variant and the
second solution also considers the total frequency (i.e., a fraction of individual
frequency in total frequency). They have limitations in some cases, where the
frequencies of other variants should be considered when identifying if a variant
is frequent. For instance, the variant (0;1) has the same frequency (i.e., 8) in the
frequency matrices in Figure 6.19(a) and Figure 6.19(b), and the frequency sums
of all variants in these two matrices are also the same (i.e., 100). To identify
if variant (0;1) is frequent in these two different matrices, the first and second
solutions return the same result given the same threshold. Apparently, (0;1) is
relatively more frequent in the second matrix, since the frequency differences
between variants in the second matrix are smaller. In this situation, the entropy
can be used to identify the frequent variants, as shown in the third solution.

Definition 6.19 (Discovery of Behavioral Constraints by Frequent Variants)
Let L be a sound XOC event log, P be a correlation pattern and CT be a set of
constraint types. Function disCN ∈ UL ×UP ×P(C T ) → P(UCon) discovers behav-
ioral constraints from a log with noise, such that disCN(L,P,CT) = {con | con =
idCon(P,ct )∧ ct ∈ CT fre \ CT red} where
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• CT fre = {ct ∈C T | ∀v ∈ Vfre : v ⊆ ct}, where Vfre ⊆ VCT is the frequent variants
observed in the log, and

• CT red = {ct ∈C Tfre | ∃ct′ ∈ CT fre : ct′ ( ct}, which is the set of redundant con-
straint types.

If all frequent variants consist with a constraint type ct (i.e., ∀v ∈ Vfre : v ⊆ ct),
a constraint of this type is discovered, i.e., con = idCon(P,ct ). Note that it is
possible that there exist overlapping constraint types. For instance, the response
type contains the unary-response type (cf. Chapter 5), i.e., the response type
is looser. If two types are contained by CT fre and one contains the other, the
looser type is called a redundant constraint type. When discovering constraints,
redundant types are discarded. For instance, there are three constraints of unary-
response, response and co-existence types in Figure 6.20(a). After discarding
the redundant constraints, only the strictest constraint, i.e., the unary-response
constraint, remains as shown in Figure 6.20(b).

create
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create 
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order line

create
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create 
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order line

(a)  redundant constraints: con2 and con3

con1
con2
con3

con1

(b) no redundant constraints

Figure 6.20: Discarding redundant constraints.

6.2.3 Discovery of Precise Cardinality Constraints

In Section 6.2.2, we illustrate how to discover precise behavioral constraints
from a log with noise. In this section, a similar idea is used to discover precise
cardinality constraints in an environment with noise.

In an OCBC model, cardinality constraints exist on class relationships and
AOC relationships, as shown in Figure 6.21 (cf. Chapter 5). A cardinality
constraint indicates the possible correspondence between two types of instances,
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e.g., one-to-many. For instance, the cardinality constraint car d4 on the customer
side specifies a restriction on objects of order (the opposite side), i.e., each order
object corresponds to precisely one customer object. Based on the semantics of
cardinality constraints, each cardinality constraint has a reference and a target,
and the constraint specifies the allowed numbers of target instances of each
reference instance. Consider for example car d4. The reference is order and the
target is customer. Besides, cardinality constraints may be of different types, e.g.,
car d4 is of “always” type and car d3 is of “eventually” type.

The discussion above shows that there exist various cardinality constraints.
Different cardinality constraints may represent different types of restrictions
(e.g., “always” and “eventually”) on different types of instances (e.g., classes and
activities). Despite these differences, the contents of cardinality constraints (e.g.,
“0..1” and “1..∗”) are of the same essence, i.e., a set of integers. In this section, we
focus on the discovery of the contents of various cardinality constraints. More
precisely, we want to propose a generic solution to filter noise and discover the
contents in a precise manner. Based on this idea, we next define a universe of
cardinality constraints, including all types of cardinality constraints, and several
functions to specify different perspectives.

(a) cardinality constraints on  a class relationship (b) cardinality constraints on an AOC relationship
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Figure 6.21: Different types of cardinality constraints on class relationships and AOC
relationships.

Definition 6.20 (Cardinality Constraint Notations) Let UCardId be the universe
of cardinality constraints (ids), R ⊆UR be a set of class relationships, AOC ⊆UAOC

be a set of AOC relationships, A ⊆UA be a set of activities and C ⊆UC be a set of
classes.

• rCard ∈ UCardId → R ∪AOC maps each cardinality constraint onto a class
relationship or an AOC relationship where the cardinality constraint locates.

• refCard ∈UCardId → A∪C maps each cardinality constraint onto its reference,
i.e., a class or an activity.
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• tarCard ∈ UCardId → A ∪C maps each cardinality constraint onto its target,
i.e., a class or an activity.

• typeCard ∈UCardId → {ä,♦,©} maps each cardinality constraint onto a type,
where ä refers to an “always” cardinality constraint, ♦ refers to an “eventu-
ally” cardinality constraint and © refers to a cardinality constraint on the
class side of an AOC relationship.

• conCard ∈UCardId →UCard maps each cardinality constraint onto its contents,
i.e., a set of integers.

Consider the cardinality constraints in Figure 6.21 to understand the func-
tions in Definition 6.20. For car d4, rCard(car d4) = r 5, refCard(car d4) = order,
tarCard(car d4) = customer, typeCard(car d4) = ä and conCard(car d4) = {1}. For
car d7, rCard(car d7) = aoc7, refCard(car d7) = create shipment, tarCard(car d7) =
order line, typeCard(car d7) =© and conCard(car d7) = {1,2, ...}. Note that since
there is only one cardinality constraint on the class side of an AOC relationship,
the type of the constraint, i.e., the symbol ©, is omitted in the graph. conCard
gives the content of a cardinality constraint. In this thesis, we use a cardinality
to refer to a cardinality constraint (e.g., car d7) or the content of a cardinality
constraint (e.g., 1..∗) when there is no need to distinguish them.

In our approach, the discovery of cardinality constraints comes after its
corresponding class relationship or AOC relationship is discovered. In other
words, the functions rCard, refCard, tarCard, and typeCard are known. The task is
to discover the function conCard, i.e., the contents of cardinality constraints. For
instance, assume a task is to discover the “eventually” cardinality constraint on
the activity side of aoc7. For this task, we know rCard = aoc7, refCard = order line,
tarCard = create shipment, and typeCard =♦, and we need to discover conCard,
i.e., the allowed numbers of create shipment events for each order line object at
the last moment (i.e., eventually).

From the modeling angle, a cardinality constraint indicates the allowed
numbers of target instances for each reference instance. From the discovery
angle, we can integrate the observed numbers to discover conCard. More pre-
cisely, according to the type of the cardinality constraint, we use corresponding
correlation function (e.g., corR or corAOC defined in Section 6.1) to correlate
target instances to each reference instance. In the basic discovery approach, all
numbers of target instances are put into the discovered cardinality constraint,
no matter how frequent the numbers are. This method cannot deal with noise,
i.e., infrequent numbers. For instance, if each reference instance has precisely
one target instance except one reference instance has zero target instance, this
method still discovers the number zero for the cardinality constraint.
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Figure 6.22: The idea to discover precise cardinality constraints from logs with noise.

In order to discover robust cardinality constraints, we take into consideration
the frequencies of numbers. As shown in Figure 6.22, based on the correlation
result, we compute the frequency of each number. Note that a reference instance
may have any non-negative number of target instances such that the variety of
numbers may be infinite in theory. For simplicity, we set some integer intervals
to group numbers and compute the frequency of each interval. If the frequency
of an interval is below the configured threshold, the numbers in this interval
are considered as noise and filtered out. The remaining frequent intervals
(highlighted in black) are taken as input to discover cardinality constraints. Next,
we define an interval array (i.e., a set of intervals) to group numbers.

Definition 6.21 (Interval Array) An interval array ICard = {(0), (1), (2+)} ⊆UC ar d

is a set of three disjoint cardinalities, where (0) = {0}, (1) = {1} and (2+) = {2,3, ...}.
Each cardinality in the set is called an interval, e.g., (2+) ∈ ICard is an interval.

The interval array contains three cells, that correspond to three cardinalities,
as shown in Figure 6.23(a). It incorporates all possible numbers of target
instances of any reference instance, i.e., (0)∪ (1)∪ (2+) = IN. Besides, these three
intervals are disjoint, i.e., ∀i , i ′ ∈ ICard : i 6= i ′ ⇒ i ∩ i ′ =;. Note that the interval
array indicates the discovered cardinality constraints by grouping numbers. For
instance, the interval array here, i.e., {(0), (1), (2+)}, indicates that we can discover
the normalized cardinality constraints, which is explained later. Figure 6.23(b)
shows an interval array filled with numbers, and each of them indicates the
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number of observations of the corresponding interval in logs.

(0) (1) (2+) 13 57 30

(a) interval array (b) frequencies of intervals

Figure 6.23: An interval array ICard consists of three cardinalities and can be filled with
numbers, which indicate the number of observations of that interval in logs.

Based on the idea in Figure 6.22, we map the correlation result onto the
interval array to compute the frequencies of all intervals. If there exists a
reference instance such that the number of its target instances is contained
by some interval, we consider that the interval is observed once. It is easy to
compute the frequencies when discovering ♦ and © cardinality constraints, since
we only need to consider the number of the target instances of each reference
instance at a point in time, i.e., the number is fixed. In contrast, it is difficult
to compute the frequencies when discovering ä cardinality constraints, since
we have to consider the numbers of target instances at all moments (after the
reference instance is created), and the numbers may change over time.

For instance, considering that, for a certain time period, a reference instance
starts with one target instance and, after a while, it has two target instances,
we need to determine the number of target instances for this reference. In
Definition 6.22, we give a solution to deal with this situation when discovering
ä cardinality constraints.

Definition 6.22 (Identifying Normalized ä Interval Frequency) Let L = (E,act,
attrE,relate,om,¹) be a sound XOC event log and OL be the set of all objects in L.
Function freIO ∈UL×UCardId×ICard×OL → IR returns the frequency that an interval
i ∈ ICard is observed in L, in terms of a reference object o ∈OL corresponding to an
“always” cardinality constraint card ∈UCardId, such that

freIO(L,card, i,o) = |{e | ∃e ∈ E : o ∈ Obje ∧|cor(o,r,e) ∈ i |}|
|{e | ∃e ∈ E : o ∈ Obje}| .

where r = rCard(card) and cor is (i) the function corR if r ∈ R or (ii) the function
corAOC if r ∈ AOC .
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In the correlation result derived based on a cardinality constraint car d and
a log L, a reference instance may have different numbers of target instances
over time. Definition 6.22 gives a solution to compute the frequency that each
interval is observed in terms of such a reference instance. More precisely, the
frequency of i in terms of an object o is the ratio of moments, when the number
of target instances is contained by i , to all moments when o exists. Since ä
cardinality constraints locate on a class relationship or an AOC relationship, we
choose the corresponding function to identify the target instances, i.e., corR for a
class relationship or corAOC for an AOC relationship.

Object Number of target instances |cor (o,r,ei )| frequency freIO
co1 co2 cs1 ci 1 cs2 ci 2 cs3 cp1 ci 3 cp2 (0) (1) (2+)

o1 1 1 1 1 1 1 1 1 1 1 0 1 0
o2 - 1 1 1 1 1 1 1 1 1 0 1 0
c1 1 2 2 2 2 2 2 2 2 2 0 1/10 9/10
c2 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 6.12: The numbers of target instances of each order or customer object at each
moment (represented by an event) and frequencies of each interval for an
object.

Consider the “always” cardinality constraint car d1 in Figure 6.21 and the
example log L in Table 6.1 to understand how to compute the interval frequencies
in terms of an object. The reference instances of car d1 are objects c1 and
c2. The numbers of target instances of c1 or c2 at all moments are shown
in Table 6.12. L has ten moments corresponding to ten events. c1 has one
target instance at the moment that co1 happens and two target instances at
all other moments. We do not observe that c1 has no target instances at any
moment. Therefore, freIO(L,card1, (0),c1) = 0, freIO(L,card1, (1),c1) = 1/10 and
freIO(L,card1, (2+),c1) = 9/10.

Definition 6.23 (Computing Interval Frequency) Let L = (E,act,attrE,relate,om,
¹) be a sound XOC event log and card be a cardinality constraint. Function
freI ∈ UL ×UCardId × ICard → IR returns the frequency that an interval i ∈ ICard is
observed in a log L ∈UL corresponding to a cardinality constraint card ∈UCardId,
such that

• if card is an “always” cardinality constraint, i.e., typeCard(card) =ä,

freI(L,car d , i ) = ∑
o∈∂c (OL )

freIO(L,car d , i ,o)
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where c = refCard(card) is the reference, or
• if card is an “eventually” cardinality constraint, i.e., typeCard(card) =♦,

freI(L,car d , i ) = |{o ∈ ∂c (OL) | |cor(o,r,el )| ∈ i }|

where c = refCard(card) is the reference, r = rCard(card) is the relationship,
el is the last event in L and cor is (i) the function corR if r ∈ R or (ii) the
function corAOC if r ∈ AOC , or

• if card is a © cardinality constraint, i.e., typeCard(card) =©,

freI(L,car d , i ) = |{e ∈ ∂a(E) | |{o ∈ ∂c (relate(e))}| ∈ i }|

where a = refCard(card) is the reference and c = tarCard(card) is the target.

In order to discover a cardinality constraint car d from a log L, we map L
onto the interval array and compute the frequency of each interval based on Def-
inition 6.23. More precisely, for an “always” cardinality constraint, the frequency
of an interval i is the sum of a set of values, in which each one is the frequency
that i is observed for a reference instance. For instance, freI(L,card1, (0)) = 1,
since freIO(L,card1, (0),c1) = 0 and freIO(L,card1, (0),c2) = 1 based on the values in
Table 6.12. Similarly, freI(L,card1, (1)) = 1/10 and freI(L,card1, (2)) = 9/10.

For an “eventually” cardinality constraint, the reference is a class c. The
frequency of an interval i is the number of c objects, in which one object has n
(i.e., |cor(o,r,el )|) target instances at the last moment (i.e., el ) and n ∈ i . Note
that since an “eventually” cardinality constraint locates on a class relationship or
an AOC relationship, we choose a corresponding function to identify the target
instances, i.e., corR for a class relationship or corAOC for an AOC relationship.

If a cardinality constraint is of type ©, the reference is an activity a and the
target is a class c. The frequency of an interval i is the number of a events (i.e.,
e ∈ ∂a(E)), in which one event refers to n (i.e., |{o ∈ ∂c (relate(e))}|) objects of c
and n ∈ i .

Definition 6.24 (Frequent Intervals) Let L = (E,act,attrE,relate,om,¹) be a so-
und XOC event log and card be the cardinality constraint. Let Ifre be the frequent
intervals, such that for any i ∈ Ifre,

• freI(L,car d , i ) Ê τ for some threshold τ ∈ IR, or
• freI%(L,car d , i ) Ê τ for some threshold τ ∈ [0,1], where freI%(L,car d , i ) =

freI(L,car d ,i )∑
i ′∈ICard

freI(L,car d ,i ′) provides the ratio of an interval i ∈ ICard, or
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• freIEntropy(L,car d , i ) Ê τ for some threshold τ ∈ [0,1], where freIEntropy(L,car d ,

i ) = p
∑

i ′∈ICard
−p ′ log2(p ′)

log2(|ICard |) , p = freI%(L,car d , i ) and p ′ = freI%(L,car d , i ′).

Definition 6.24 provides three solutions to identify frequent intervals by
filtering infrequent intervals, i.e., noise, based on a threshold. According to the
first solution, an interval is frequent if its frequency is equal to or larger than the
given threshold (i.e., an integer). Figure 6.24 shows an example using the first
solution to identify frequent intervals. With a threshold 1, the intervals (0), (1)
and (2+) are frequent (highlighted in black). In this case, we do not really filter
noise, since an interval is frequent only if it is observed. With a threshold 25,
the intervals (1) and (2+) are frequent since their frequencies (57 and 30) are
above the threshold. Similar to the method for identifying frequent variants in
Section 6.2.2, it is also possible to filter noise based on a relative ratio or entropy.

25

1

35

threshold (e.g., 1, 25, or 35)

13 57 30

(0) (1) (2+)

(0) (1) (2+)

(0) (1) (2+)

frequencies of intervals

Figure 6.24: Identifying frequent intervals (colored in black) based on thresholds.

Definition 6.25 (Discovery of Precise Cardinalities by Frequent Intervals) Let
{0}, {1}, {0,1}, {0,1, ...} and {1,2, ...} (denoted as 0, 1, 0..1, ∗ and 1..∗, respectively in
the graph) be five normalized cardinalities. card is the cardinality constraint to be
discovered and Ifre is its corresponding frequent intervals. The content of card, i.e.,
conCard(card), is discovered as

• {0} if Ifre = {(0)}, or
• {1} if Ifre = {(1)}, or
• {0,1} if Ifre = {(0), (1)}, or
• {1,2, ...} if (0) 6∈ Ifre ∧ (2+) ∈ Ifre, or
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• {0,1, ...} if Ifre ⊇ {(0), (2+)}.
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Figure 6.25: Discovery of normalized cardinalities by frequent intervals.

Definition 6.25 and Figure 6.25 show how to transform frequent intervals
to normalized cardinalities by enumeration. Note that if there are no frequent
intervals, which indicates that the threshold is configured too high, there are no
corresponding normalized cardinalities.

6.3 Evaluation

In this section, we evaluate the OCBC model discovery approaches by comparing
them with other model discovery approaches in terms of the same data from a
business process. More precisely, we first extract event logs, i.e., XOC logs and
XES logs, from the data generated in the OTC scenario of a real ERP system
Dolibarr. Then different approaches are employed to discover various models
from event logs. At last, we compare those discovered models and evaluate the
ability of OCBC models to capture the real operational processes.

6.3.1 Business Process

The OTC (order-to-cash) business process is a typical and significant scenario in
enterprises. It is supported by ERP systems, e.g., Dolibarr, an open source ERP
system for small and medium enterprises. The OTC business process covers a
range of operations from creating orders to paying bills on the behavioral (i.e.,
control-flow) perspective. Besides, operations may add, update or delete objects,
e.g., records in database tables and documents in disks, on the data perspective.
For simplicity, we choose four important activities, i.e., “create order”, “create
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shipment”, “create invoice” and “create payment” to represent the possible types
of operations, and four classes, i.e., “order”, “shipment”, “invoice” and “payment”
to represent the possible types of objects, in the process. Moreover, there exist
various interactions or relationships between different entities in the process.
Here, we classify them into three types, i.e., relationships (i) between classes,
(ii) between activities and (iii) between classes and activities.

create
order

create 
shipment

create 
payment

create 
invoice

1

1..*

1..*

1..*
1..* 1

order

invoice payment

shipment

11

22 33
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88

99 10

Figure 6.26: An informal model to describe the OTC business process.

Figure 6.26 employs an informal notation to describe the business process.
The edges with single arrows indicate the temporal orders between activities
while the cardinalities on edges indicate the restriction on the correspondences
(e.g., one-to-many and many-to-many) between activities. For instance, edge
3 means that each “create payment” event must occur after its corresponding

“create invoice” event, while the cardinalities on the edge means that each “create
invoice” event corresponds to precisely one “create payment” event and each
“create payment” event corresponds to one or more “create invoice” events. Dot-
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ted lines are employed to show the relationships between classes. For instance,
edge 5 refers to the relationship between “order” and “invoice”. The interac-
tions between the behavioral perspective and data perspective are denoted by
edges with double arrows. For instance, “create invoice” interacts with “invoice”
through edge 9 .

Based on the data generated in the process described above, we extract XOC
logs based on the approach in Chapter 4, resulting in the log in Table 6.1 (only
a segment of the log is shown). In contrast, the method in [136] is used to
extract XES logs, considering the order id as the case id. In order to make the
comparison easier to understand, we only consider a segment of the whole logs
for discovering models. For instance, Figure 6.27 shows two cases case1 and
case2 in the XES log.
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Figure 6.27: A segment of the extracted XES log.

Note that the generated XES log has (i) convergence problems, e.g., ci 2 is
contained by two cases as if it is executed twice though it is performed only once
in Dolibarr, and (ii) divergence problems, e.g., in case case2 “create payment”
has two instances cp1 and cp2 which cannot be distinguished in the case, though
they are performed on different documents in the Dolibarr (i.e., cp1 is on ci 2
and cp2 is on ci 3).

6.3.2 Comparison of Discovered Models

Based on the generated XOC log, we can discover an OCBC model as shown in
Figure 6.14. Next, we discover other models such as Petri nets, BPMN diagrams,
Declare models and directly follow graphs. Then all the models are compared by
checking which model can best describe the OTC business process.

Figure 6.28 displays a discovered data Petri net based on the approach
in [33,83]. On the behavioral perspective, the discovered Petri net has a lot of
implicit transitions and loops. It is not precise and allows for behavior which
is not possible in the real business process. For instance, the “create shipment”
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activity can be skipped in the discovered Petri net, which violates the real process
in its statement that each “create order” should be followed by at least one
“create shipment” event. Besides, the many-to-many relationship between “create
order” and “create invoice” in the process is transformed into a one-to-many
relationship. On the data perspective, some variables and guards are discovered,
which present the conditions to trigger transitions. The dotted line shows the
interactions between activities and variables.

Amount == “2380”

create order

create shipment

create invoice

create payment

F

Amount == “1431”

Amount != “2380”

true

true

true

true

Amount != “1431”

Amount 

Figure 6.28: A data Petri net discovered by Inductive Miner (behavioral perspective) and
Decision-Tree Miner (data perspective).

Figure 6.29 presents a discovered BPMN model using the approach in [30].
The model is not precise, e.g., the sub-process is a “flower” model involving
activities “create payment” and “create invoice”, which can happen at any order
for any number of times. This approach only discovers the behavioral perspective
with hierarchies, and we do not find any existing work which can automatically
discover the data perspective. However, it is possible to manually add variables,
data objects and data stores (onto the discovered model) to describe the data
perspective based on expert knowledge.

A discovered data-aware Declare model [94] is shown in Figure 6.30(a). For
simplicity, we limit the discovered constraint types to the set of “response”, “not
response”, “precedence” and “not precedence”. Declare models use a declarative
way to express the constraints between any pair of activities [95]. For instance,
the constraint con1 between “create invoice” and “create payment” indicates
that each “create invoice” event should be followed by a “create payment” event
and each “create payment” event should be preceded by a “create invoice” event.
The real business process indicates that “create payment” events cannot occur
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Figure 6.29: A model in the BPMN notation discovered by BPMN Miner.

before corresponding “create invoice” events. However, a negative constraint
(con2) needed to describe this rule is not discovered, since in case2, the “create
payment” event cp1 is wrongly related to its subsequent “create invoice” event
ci 3 (the divergence problem, cf. Chapter 4). Besides, existing constraint types in
Declare models do not have a constraint type like con3 to restrict the cardinality
between “create invoice” events and “create payment” events, which is required
in the business process. The discovered data perspective consists of guards on
constraints, which specify the situations when constraints are enabled.

A DFG presents the directly-follow relations between any pair of activities and
possibly also shows the corresponding frequencies. Indicated by Figure 6.30(b),
“create invoice” activity happens 4 times which violates the reality, i.e., 3 times
(the convergence problem, cf. Chapter 4). Moreover, the DFG shows that a
“create payment” event is directly followed by a “create invoice” event once,
which also violates the rule in the real business process.

In comparison, our OCBC model shown in Figure 6.14 has stronger power
to describe the real business process. On the behavioral perspective, since
the XOC log has no convergence and divergence problems (multiple instances
can be distinguished when we relate events based on correlation patterns, cf.
Section 6.1.4), all constraints are correctly discovered. Besides, with the support
of a class model and AOC relations, the cardinality constraints (e.g., one-to-many
and many-to-many relationships) between activities can also be clearly described.
Moreover, the data perspective is powerfully described with a class model. In
the future, it is possible to discover the attributes of classes and activities, and
guards (used in data Petri net) for constraints.
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Figure 6.30: Two models discovered by Declare Miner and Disco.

6.4 Related Work

A process discovery technique takes an event log as an input and produces
a model without using any a priori information. The model reveals how the
business process is executed in reality. Currently, there exist approaches and
tools in academia and industry to discover various imperative and declarative
models. In this section, we discuss the related approaches.

6.4.1 Classical Process Discovery Techniques

Typically the focus of process discovery techniques is on the control-flow aspect
of a process. The α-algorithm [149] is the first approach to discover a process
model (a Petri net) from an event log to show the control-flow perspective. After
that, various approaches such as heuristic mining [159,160], fuzzy mining [58],
region-based mining [12,151], genetic process mining [18,36], and inductive
mining [80–82, 84] are proposed. The approaches discover different types of
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models, such as Petri nets, BPMN diagrams and Declare models. These discovered
models reveal insights of business processes from different angles. One of the
existing state-of-the-art techniques is the visual inductive miner, which always
returns a sound process model and is able to handle large and noisy event logs.
Nevertheless, the miner can ensure (if desired) perfect fitness. Results can be
converted to Petri nets, EPCs, state charts and BPMN models. Moreover, the
visual inductive miner supports bottleneck analysis, replay animation and outlier
detection.

There are also some data-aware process mining discovery techniques to
discover models with data. [33,124] extend the control-flow perspective with the
data perspective (e.g., read and write operations, decision points and transition
guards) using standard data mining techniques. [99] proposes the Data-aware
Heuristic Miner (DHM), a process discovery approach which uses the data
attributes to distinguish infrequent paths from random noise by classification
techniques. Data perspective and control-flow perspective of the process are
discovered together. DHM is robust against random noise to some degree, and
reveals data-driven decisions. These data-aware techniques can discover the data
perspective to some extent, but they cannot discover a strong data perspective
with the more powerful constructs (e.g., cardinality constraints) used in ER
models and UML class models. Besides, they are still considered as case-centric,
since they correlate events based on case notions.

6.4.2 Declarative Process Discovery Techniques

Besides discovering imperative models discussed above, there exist approaches in
[94–96,121,122] (e.g., Declare Miner/Declare Maps Miner) which can discover
Declare models, i.e., declarative constraints representing the actual behavior of
a process as recorded in an event log.

Based on some a priori knowledge, [95] enables the selection of a list of
Declare templates for the discovery task, and the approach returns a model only
containing constraints (i.e., instantiations) of the selected templates. In this way,
discovered constraints are the most interesting from the domain point of view,
thus reducing the complexity of the resulting models. In order to deal with noise,
one can specify thresholds for two parameters minimum support and alpha. For
instance, the parameter minimum support decides the percentage of traces in
which a constraint (to be discovered) must be satisfied.

[121] presents an approach to discover Declare models with hierarchies.
It can reduce declarative model complexity by aggregating activities according
to inclusion and hierarchy semantic relations. The idea is to employ natural
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language processing to identify common objectives between activity labels, and
then abstracts these activities into hierarchies based on Wordnet2.

[94] automatically discovers declarative process models that incorporate
both control-flow dependencies (behavioral perspective) and data conditions
(data perspective), by extending Declare with the ability to define data conditions
(predicates). The data-aware Declare notation is defined using LTL-FO (First-
Order LTL) rules. A rule indicates an association between an activity, a condition
and another activity, e.g., if an activity is executed and a certain data condition
holds after this execution, some other activity must eventually be performed.

There is also work [37, 62] to discover named DCR graphs which are also
declarative models and similar to Declare models.

6.4.3 Artifact-Centric Discovery Techniques

A few discovery techniques [93,109,110,117] have been developed to discover
business processes in terms of so-called business artifacts. Artifacts have data
and lifecycles attached to them, thus relating both perspectives.

The approach in [117] starts from a raw event stream and learns correlation
information between the events to build an Entity-Relationship (ER) model.
Guided by the user a so-called artifact-centric log is created. Such artifact-centric
logs are used to discover the lifecycles of artifacts. Here any approach can be
used to produce a Petri net. In the final step, the Petri nets are translated into
the Guard-Stage-Milestone (GSM) notation [117]. The approach in [93] uses
a different starting point. It first presents a semi-automatic and end-to-end
approach to identify artifacts in a relational database of an ERP system. Then a
life-cycle event log is extracted from event data stored in the database for each
identified artifact. Finally, it learns a process model describing the process as
a set of interacting data objects, i.e., artifacts (of a process), each following its
own life-cycle.

Similar to the artifact-centric idea, [153] considers a single process having
different facets, or perspectives, each with their own state space. It proposes
an approach to discover state-based models, which concentrate on the states
of different perspectives and explore how they interact with each other. More
precisely, the notion of a Composite State Machine is defined as a way to model
multi-perspective processes that can be learned from event logs. As the resulting
models can be quite complex, three different operations are provided such that
simplified views can be created on state machines.
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6.4.4 Data Model (Data Schema) Discovery Techniques

The discovery approach for OCBC models proposed in this chapter involves the
discovery of the data perspective, i.e., a class model. Here, we also discuss the
literature related to the discovery of the data model or data schema in databases.

Most work in this field focuses on computing inclusion dependencies. An
inclusion dependency over two predicates R and S from a schema is written
as R[A1, ..., An] ⊆ S[B1, ...,Bn], where Ai and Bi are distinct attributes (column
names) of R and S. It implies that each tuple of values appearing in columns
A1, ..., An must also appear as a tuple of values in columns B1, ...,Bn . It is like
that each value in a foreign key column must exist in its corresponding primary
key column. [10] proposes an approach named SPIDER, for efficiently detecting
single-column inclusion dependencies. It first sorts the distinct values in all
columns and then uses a parallel merge-sort like algorithm to compute all
inclusions simultaneously.

Based on the discovered inclusion dependencies, it is possible to detect
foreign keys and foreign/primary key relationships between relational tables.
The state-of-the-art algorithm for efficient and automatic discovery of single and
multi-column primary keys is Gordian [129]. Gordian formulates the problem as
a cube computation that corresponds to the computation of the entity counts of
all possible column projections. [164] proposes a robust algorithm for discovering
single-column and multi-column foreign keys, effectively reducing a large number
of false positive pairs produced by partial inclusion.

Surprisingly, very little work has dealt with the discovery of cardinality
constraints on the foreign/primary key relationships between tables. In our
discovery approach, we mainly focus on this part, and provide solutions to deal
with noise.

6.4.5 Tools for Discovery

Here, we list the available tools related to model discovery. ProM is the leading
free and open-source process mining tool platform in academia. Currently, there
are over 1500 plug-ins available (including deprecated plugins that are no longer
supported). ProM supports dozens of process discovery algorithms which can
load XES, MXML, and CSV files. The plugins related to the most known discovery
approaches are shown in Table 6.13.

Other than the academic tools, there is also a variety of commercial software.
Table 6.14 lists some process mining tools: Celonis Process Mining (Celonis),
Disco (Disco), Enterprise Discovery Suite (EDS), Interstage Business Process
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Name Approach Output Model

Alpha Miner [149] Petri net
BPMN Miner [30] BPMN diagram
CSM Miner [153] state-based model

Declare Maps Miner [94–96,122] Declare model
ILP Miner [155] Petri net

Heuristics Miner [99,159] Heuristics net
Inductive Visual Miner [80–82,84] Petri net/Process tree

Episode Miner [78] Episode model
ETMd [17] Process tree

Table 6.13: Overview of the most known academic process mining discovery approaches
in ProM.

Manager Analytics (Fujitsu), Minit (Minit), myInvenio (myInvenio), Percep-
tive Process Mining (Perceptive), QPR Process Analyzer (QPR), Rialto Process
(Rialto), SNP Business Process Analysis (SNP), and web Methods Process Per-
formance Manager (PPM). Tools like Disco, Fujitsu, QPR, and PPM have been
around for a few years. Minit, myInvenio, and Rialto emerged very recently (in
2015).

Short name Full name of tool Vendor Webpage

Celonis Celonis Process Mining Celonis GmbH www.celonis.de
Disco Disco Fluxicon www.fluxicon.com
Minit Minit Gradient ECM www.minitlabs.com
QPR QPR ProcessAnalyzer QPR www.qpr.com
... ... ... ...

Table 6.14: Overview of commercial process mining tools [136].

6.5 Summary

In this chapter, we propose some approaches to discover OCBC models, which
describe behavioral (control-flow) perspective, data perspective and interactions
in between in one diagram. These approaches can better deal with data with



6.5 Summary 221

many-to-many relations from databases of object-centric information systems.
More precisely, they correlate events through the data perspective rather than
a case notion, and can avoid the problems, such as incorrect constraints and
frequencies due to convergence and divergence. Besides, it fills the complete sep-
aration between data/structure (e.g., a class model) and behavior (e.g., BPMN,
EPCs, or Petri nets), which can not be done by existing discovery approaches.

In order to make the discovery approaches robust in real-life data with
noise, we give some solutions to filter the noise and discover precise constraints,
with configured thresholds on different perspectives. Based on a real business
process, we discover OCBC models and other types of models from the same data
generated in the process, and compare them. By comparison, the OCBC model
can best describe the process in terms of data perspective and interactions.

There are many possible avenues for future work. In this chapter, we limit the
input to an XOC log and the output to an OCBC model. It is possible to investigate
discovering models directly on databases, which enables OCBC model discovery
on big data. Besides, we can also consider discovering constraints involving the
attributes of activities and classes, e.g., guards, for OCBC models. Moreover,
cardinality constraints beyond normalized constraints can be discovered based
on a probability distribution. A possible idea is that k..n can be discovered if the
cumulation of numbers from k to n is above a configured threshold.





Chapter 7
OCBC Conformance Checking

In Chapter 4, we defined XOC event logs to organize the data from object-centric
information systems, and in Chapter 6, we proposed approaches to discover
OCBC models from XOC logs. After illustrating XOC logs and OCBC models
individually, this chapter looks at the situation where both a process model
and an event log are given. The model may have been constructed by hand
or may have been discovered (and adapted using some known knowledge).
Conformance checking searches for the difference between the modeled behavior
and the observed behavior by relating events in the event log to activities in the
process model and comparing both. It is relevant for business alignment and
auditing. For example, the event log can be replayed on top of the process model
to find undesirable deviations suggesting fraud or inefficiencies.

This chapter is organized as follows. In Section 7.1, we motivate the confor-
mance checking with object-centric behavioral constraints (i.e., OCBC confor-
mance checking) by discussing the challenges suffered by conventional confor-
mance checking approaches when they are applied to detect deviations related
to the data perspective. Section 7.2 checks conformance on the data perspective,
behavioral perspective and interactions in between, respectively. In order to
measure (quantify) the global conformance, we refer to existing criteria, i.e.,
fitness, precision and generalization, and propose approaches to compute them
in the context of an OCBC model and an XOC log in Section 7.3. Based on
the criteria, an advanced discovery approach is introduced, which can discover
models with customized criteria and deal with noise. In Section 7.4, we evaluate
our conformance checking approach and compare it with other conformance
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checking techniques. Section 7.5 reviews the related work while Section 7.6
concludes this chapter.

7.1 Motivation for OCBC Conformance Checking

Companies often have process models (explicit or implicit) to describe how their
business processes should be executed. However, in some situations it is possible
to violate the predefined processes. For example, in a hospital it must be possible
to react to urgent situations and, therefore, the flexibility to diverge from the
normal flow of actions is crucial. Besides, in flexible business environments,
descriptive models (less strict than prescriptive models) are often used to capture
the processes. These models usually give suggestions to indicate how to operate
information systems and it is common that users do not totally follow these
suggestions. For instance, the reference models in the context of SAP R/3 and
ARIS describe the “preferred” way processes should be executed. People actually
using SAP R/3 may deviate from these reference models [125].

Revealed by the above discussion, there may exist conformance problems
between predefined processes and real executions. For companies, it is necessary
to know where the real behavior violates the predefined process and get rid
of the violations when they correspond to unexpected situations. For instance,
in financial systems, it is desirable to keep the actual procedure consistent
with the model. The information systems employed to support the business
executions allow diagnosing these conformance problems. More precisely, on
the one hand, these systems typically log events (e.g., in transaction logs or
audit trails) related to the actual business process executions. On the other
hand, explicit process models describing how the business process should (or is
expected to) be executed are frequently available (based on domain knowledge
or discovery techniques). Based on them, conformance problems are identified
as the disagreement between the logs and the models.

Various conformance checking techniques (and similar techniques such as
compliance checking, auditing, Six Sigma, etc.) are proposed to diagnose the
conformance problems, i.e., if reality, as recorded in the log, conforms to the
model and vice versa. Most of them are based on replaying the traces in the event
log on the model. In [125] the numbers of missing and remaining tokens are
counted while replaying the event log, which is used to diagnose conformance
problems on the control-flow perspective. State-of-the-art techniques are the
so-called alignment-based approaches [7,137]. Given a trace in the event log, the
closest path in the model is computed by solving an optimization problem. Based
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on these techniques, it is possible to quantify the level of conformance. Most
techniques focus on fitness, however, there are also techniques for computing
other quality dimensions such as simplicity, precision, and generalization [104].

However, the existing conformance checking techniques often employ process-
centric models, e.g., Petri nets, which typically consider process instances in
isolation (ignoring interactions among them) and are more focused on the
behavioral perspective of processes (cf. Chapter 5). Accordingly, when applying
existing techniques on the object-centric systems such as ERP and CRM (which
generate and store data in an object-centric manner), the diagnosis results are
only on the behavioral perspective and fail to deal deviations related to the data
perspective and interactions. Therefore, some useful insights (related to the
undiscovered deviations) cannot be revealed.

Since the deviations related to the data perspective and interactions are
important, in this chapter we employ OCBC models for conformance checking.
Unlike existing approaches, instances are not considered in isolation and car-
dinality constraints in the data/object model are taken into account. Hence,
we can now detect and diagnose a range of conformance problems that would
have remained undetected using conventional process-model notations. More
precisely, we abstract a set of rules representing an OCBC model and detect
nine types of conformance problems. Besides, we define metrics such as fitness,
precision and generalization which can be used to quantify the conformance
between an OCBC model and an XOC log.

7.2 Diagnosing Conformance

Given an XOC event log L and an OCBC model M, we check whether reality
(in the form of events and object models in L) conforms to the model M in
this section. More precisely, the conformance diagnosis is split into three parts,
separately: on the data perspective, the behavioral perspective and the interac-
tions between them. In the diagnosis, nine types of conformance problems are
identified. Most of these problems are not captured by existing conformance
checking approaches [34,43,125,137].

7.2.1 Conformance Checking on Data Perspective

The data perspective serves as the backbone of an OCBC model. Therefore, we
first introduce how to check the conformance on the data perspective, i.e., check
if each object model conforms to the class model. In Chapter 5, we defined



226 OCBC Conformance Checking

valid and fulfilled object models for a class model, which are used to check the
conformance on the data perspective.

Definition 7.1 (Conformance on Data Perspective) Let L = (E,act,attrE,relate,
om,¹) be a sound XOC event log and M = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an
OCBC model, where ClaM is a class model. Event log L conforms to OCBC model
M on the data perspective if and only if the following rules are satisfied:

• Each object model is valid (Rule I): for any e ∈ E , object model OMe =
(Obje ,Rele ,classe ) is valid for ClaM (this includes checking the 2 cardinality
constraints that should always hold as stated in Chapter 5), and

• The last object model is fulfilled (Rule II): for the last event el ∈ E , object
model OMel = (Objel

,Relel ,classel ) is fulfilled for ClaM (this involves check-
ing the ♦ cardinality constraints that should eventually hold as stated in
Chapter 5).

Definition 7.1 checks the conformance on the data perspective according
to two rules: (i) each object model is valid for the class model, which mainly
requires that each object should satisfy the corresponding “always” cardinality
constraints, and (ii) the last object model is fulfilled for the class model, which
restricts that each object should satisfy the corresponding “eventually” cardinality
constraints. Note that Rule I assigns restrictions on each object model and Rule
II only assigns restrictions on the last object model.

Figure 7.1 shows how to check conformance on the data perspective. The
left part is a class relationship between class order line and class delivery, with
four cardinality constraints “2 1..∗”, “♦ 1..∗”, “2 0..1” and “♦ 1”. Since the
object model is evolving while the process is executed, the right part depicts
two snapshots of the object model (we only present the objects of order line
and delivery for simplicity) in an XOC log. The first snapshot corresponds to the
moment ti , including three order line objects (ol 1, ol 2 and ol 3) and three delivery
objects (d1, d2 and d3). tn represents the last moment and the corresponding
snapshot contains four order line objects (ol 1, ol 2, ol 3 and ol 4) and four delivery
objects (d1, d2, d3 and d4).

In the first snapshot, object ol 2 has two corresponding delivery objects (d1
and d2), thus violating the “2 0..1” annotation. Note that object ol 2 has one
corresponding delivery object (d2) in the second snapshot, satisfying the “♦ 1”
annotation. Object d3 has never a corresponding order line object, thus violating
the “2 1..∗” and “♦ 1..∗” annotations. Object ol 4 has no corresponding deliver ob-
jects at the last moment tn , thus violating the “eventually” cardinality constraint
“♦ 1”.
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Figure 7.1: An illustration for checking conformance on the data perspective (detecting
violations of data cardinality constraints).

7.2.2 Conformance Checking on Behavioral Perspective

Based on the data perspective, we can correlate events in XOC logs, resulting in
pattern instances. Conformance checking on the behavioral perspective compares
the correlated instances with the activity model.

Definition 7.2 (Conformance on Behavioral Perspective) Let L be a sound XOC
event log and M = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an OCBC model, where
ActM = (A,Con,πref ,πtar , type) is an activity model. Event log L conforms to OCBC
model M on the behavioral perspective if and only if the following rules are satisfied:

• Each activity exists (Rule III): {act(e) | e ∈ E } ⊆ A, i.e., all activities referred
to by events exist in the activity model, and

• Each constraint is respected (Rule IV): for each constraint con ∈ Con:

∀ins ∈ extI(L,P ) : ins�P ∈ type(con),

where P = (πref (con),πtar(con),crel(con)) is the correlation pattern corre-
sponding to con.
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Definition 7.2 checks the conformance on the behavioral perspective accord-
ing to two rules: (i) all activities observed in the log exist in the activity model,
and (ii) all behavioral constraints are respected by correlated instances in the log.
In OCBC models, each constraint con has a corresponding correlation pattern P .
Indicated by Rule IV, con is respected if all the instances correlated by P (i.e.,
extI(L,P )), satisfy the semantics of con.

Rule III is relatively easy to understand since we only need to check events
individually. In comparison, Rule IV involves a set of correlated events and is
more difficult. Figure 7.2 shows how to check conformance on the behavioral
perspective. The left part is a behavioral constraint of “unary-precedence” type
between activities a1 and a2. The constraint corresponds to a correlation pattern
(a2, a1,r ), i.e., a2 is the reference activity, a1 is the target activity and r is the
intermediary. The right part presents three corresponding instances, in which
e1, e5 and e7 are of activity a2, i.e., reference events, and the other events are
target events. In each instance, the events are executed in the order indicated
(from left to right).

a1 a2

c1 c2
r

con

a behavioral constraint and its 
corresponding correlation pattern

black ellipse refers to reference event, 
grey ellipse refers to target event and 
red outline refers to violation

reference event e1 has no target events 
before it and therefore the unary-
precedence constraint is violated

e3 e5

time

e1 e2

e7e6

e4

correlated instances

reference event e5 has two target 
events and  therefore the unary-
precedence constraint is violated

Figure 7.2: An illustration for checking conformance on the behavioral perspective (de-
tecting violations of behavioral constraints).

For the constraint depicted in Figure 7.2: type(con) = {(before,after) ∈ IN× IN |
before = 1}, i.e., there should be precisely one target (a1) event preceding each
reference (a2) event in each instance. Consider for example the third instance,
in which e7 is the reference event and e6 is a target event occurring before e7.
Hence, no problem is discovered for e7. In contrast, in the first instance there is
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no target events occurring before the reference event e1, which signals a violation
of constraint con. For the reference event e5 in the second instance, there are
two target events e3 and e4, which also violates con since the number “two” is
not allowed by the constraint.

7.2.3 Conformance Checking on Interactions

The interactions between the data perspective and the behavioral perspective
are specified by AOC relationships. They indicate the allowed correspondences
between events and objects. In this section, we check the conformance on the
interactions, i.e., compare the observed reference relations (between events and
objects) in an XOC log with the AOC relationships in an OCBC model.

Definition 7.3 (Conformance on Interactions) Let L = (E,act,attrE,relate,om,
¹) be a sound XOC event log and M = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an
OCBC model. OL is the set of all objects in L, i.e., OL = {o | ∃e ∈ E : o ∈ Obje }. Event
log L conforms to the OCBC model M in terms of the interactions between data
perspective and behavioral perspective if and only if the following rules are satisfied:

• Each object “always” has the right number of events (Rule V): for any
aoc = (a,c) ∈ AOC and o ∈ ∂c (OL):

∀e ∈ Eo : |corAOC(o, (a,c),e)| ∈ ]2A (aoc),

where Eo = {e ∈ E | o ∈ Obje } represents all moments when o exists and
corAOC(o, (a,c),e) returns all events correlated to the object o by (a,c) at
the moment that e happens (cf. Chapter 6).

• Each object “eventually” has the right number of events (Rule VI): for
any aoc = (a,c) ∈ AOC and o ∈ ∂c (OL):

|corAOC(o, (a,c),el )| ∈ ]♦A (a,c), if o ∈ Objel
,

where el represents the last moment.

• Each event refers to objects of related classes (Rule VII): for any e ∈ E
and o ∈ relate(e):

(act(e),classe (o)) ∈ AOC.
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• Each event refers to the right number of objects (Rule VIII): for any
aoc = (a,c) ∈ AOC and e ∈ ∂a(E):

|{o ∈ relate(e) | classe (o) = c}| ∈ ]OC (aoc).

An event log L that satisfies the four rules defined above is conforming to
M in terms of the interactions between the data perspective and the behavioral
perspective:

• Rule V indicates that for each object, the number of its related events
correlated by an AOC relationship aoc satisfies the “always” cardinality
constraint, i.e., ]2A (aoc), at each moment. Note that an object o may not
exist at some moment. Therefore, we limit “each moment” to any moment
when o exists.

• Rule VI only gives the restriction on objects at the last moment. More
precisely, for each object o in the last object model, the number of its
related events correlated by an AOC relationship aoc should satisfy the
“eventually” cardinality constraint, i.e., ]♦A (aoc), at the last moment (i.e.,
el ).

• Rule VII requires that the reference relations (between events and objects)
should be consistent with AOC relationships. If an event e refers to an
object o, there should exist an AOC relationship between the activity of
e and the class of o, i.e., (act(e),classe (o)) ∈ AOC. Otherwise, this rule is
violated.

• Rule VIII implies that each event needs to have the right number of corre-
sponding objects, correlated by an AOC relationship. For an event e, an
object o is correlated to e by an AOC relationship (a,c), if o is a c object
(i.e., classe (o) = c) and is referred to by e, i.e., o ∈ relate(e). Unlike “always”
and “eventually” cardinality constraints, this rule gives restrictions on each
event at the moment that the event happens.

Rule VII is relatively easy to understand. The other rules are related to the
more complex interplay between events and objects over time. These are more
interesting, but also more difficult to understand. Therefore, we elaborate on
violations of Rules V, VI and VIII next, as shown in Figure 7.3. The left part is
an AOC relationship between activity pay and class ticket, with three cardinality
constraints “2 0..1”, “♦ 1” and “1..∗”. Since the object model is evolving while
the process is executed, the right part depicts two snapshots of the process (we
only present the events of activity pay and objects of class ticket for simplicity) in
an XOC log. The first snapshot corresponds to the moment ti , including three
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Figure 7.3: An illustration for checking conformance on interactions (detecting violations
of cardinality constraints on AOC relationships between activities and classes).

events (p1, p2 and p3 which happens before ti ) and five objects (t1, t2, t3, t4
and t5 which exist at the moment ti ). tn represents the last moment and the
corresponding snapshot contains a new event p4 which refers to object t4.

Both in the first and second snapshots, object t3 has two corresponding
pay events (p1 and p2), thus violating the “2 0..1” annotation (Rule V). Object
t5 has no corresponding pay events in the second snapshot (i.e., at the last
moment), thus violating the “♦ 1” annotation (Rule VI). Note that object t4
has no corresponding pay events at moment ti , but has one corresponding pay
event p4 at the last moment, which does not violate the “eventually” cardinality
constraint “♦ 1”. Event p3 has no corresponding ticket objects, thus violating the
“1..∗” annotation according to Rule VIII. Note that the objects referred to by an
event are fixed when the event happens. Therefore, if an event violates the Rule
VIII at some moment ti , the event is violating from that moment ti to the last
moment tl , e.g., p3 in Figure 7.3.

7.2.4 Diagnostics Results

The conformance checking rules (Rules I,II...,VIII) illustrated above characterize
a wide range of conformance problems, i.e., deviations, between a given model
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and a log. According to the eight rules, we identify eight corresponding types of
deviations. As shown in Figure 7.4, besides reporting deviations of various types,
we also map deviations onto the log (resulting in a log view) and the model
(resulting in a model view). By correlating deviations to elements in XOC logs
and OCBC models, i.e., highlighting deviations in the log view and model view,
it helps to reason about the sources which lead to these deviations.
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Figure 7.4: Presenting the diagnosis result in three views: type, log and model views.

Figure 7.4 shows the idea to present the conformance checking result in three
views. Here, the three views consist of various local diagnostics, i.e., the whole
conformance checking result is divided into different parts. Users can choose
the part which they are interested in, and “zoom in” on the details related to
the part. For instance, if one is interested in a violated behavioral constraint,
the deviations related to the constraint will be presented when the constraint
is selected. In the next section, we propose some criteria which quantify the
conformance on the global level.

Next, we explain how to highlight the deviations of each type in log and
model views that are summarized in Table 7.1:

• Diagnostics for Type I deviations (validity of object models): In the log
view, each event corresponding to an invalid object model is highlighted.
For each highlighted event, the elements (objects and object relations)
which make the object model invalid are highlighted. In the model view,
the violated 2 cardinality constraints on class relationships are highlighted.

• Diagnostics for Type II deviations (fulfillment): In the log view, ele-
ments (objects and object relations) which make the last object model
unfulfilled are highlighted. In the model view, the violated ♦ cardinality
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constraints on class relationships are highlighted.
• Diagnostics for Type III problems (activity existence): In the log view,

events whose activities do not exist in the activity model are highlighted.
• Diagnostics for Type IV deviations (behavioral constraints are respect-

ed): In the log view, each deviating reference event (which does not have
the right number of target events before and after it) is highlighted. In the
model view, the violated behavioral constraints are highlighted.

• Diagnostics for Type V deviations (“always” right number of events
per object): In the log view, each deviating object (which does not always
have the right number of corresponding events) is highlighted. In the
model view, the violated 2 cardinality constraints on AOC relationships
are highlighted.

• Diagnostics for Type VI deviations (“eventually” right number of events
per object): In the log view, each deviating object (which does not eventu-
ally have the right number of corresponding events) is highlighted. In the
model view, the violated ♦ cardinality constraints on AOC relationships
are highlighted.

• Diagnostics for Type VII problems (proper classes): In the log view,
events that refer to classes they should not refer to are highlighted.

• Diagnostics for Type VIII deviations (right number of objects per even-
t): In the log view, each deviating event (which does not have the right
number of corresponding objects) is highlighted. In the model view, the
violated cardinality constraints (on the class side) on AOC relationships
are highlighted.

Type Highlighted elements
Log view Model view

I objects and object relations resulting in invalidity 2 cardinalities on class relationships
II objects and object relations breaking fulfillment ♦ cardinalities on class relationships
III events of inexistent activities -
IV events having incorrect numbers of target events behavioral constraints
V objects not always having correct numbers of events 2 cardinalities on AOC relationships
VI objects not eventually having correct numbers of events ♦ cardinalities on AOC relationships
VII events referring to objects of wrong classes -

VIII events referring to incorrect numbers of objects cardinalities on the class side on AOC
relationships

Table 7.1: Highlighting deviations of each type with the log and model views.

The approach which detects these various deviations is very different from
existing conformance checking approaches. Most of the conformance checking
approaches [34, 43, 125, 137] only consider control-flow and are unable to
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uncover the above problems. Recently, conformance checking approaches based
on alignments have been extended to also check conformance with respect to
the data perspective [34,98]. However, these do not consider a data model and
focus on one instance at a time.

Interestingly, conformance over OCBC models can be checked very efficiently.
In particular, each of the eight rules can be formalized as a boolean, SQL-like
query over the input log. The final result is obtained by conjoining all the
obtained answers.

7.3 Quantifying Conformance

In Section 7.2, we checked the conformance between an OCBC model and an
XOC log by detecting deviations based on the eight rules extracted from the
model. Besides the local conformance diagnosis, it is possible to quantify the
global conformance based on criteria. In this section, we focus on the global
conformance measure and give approaches to compute such criteria.

7.3.1 Basic Idea of Criteria

Quantifying the conformance between a log and a model is difficult, since it
is characterized by many dimensions. In traditional process mining, fitness,
simplicity, precision, and generalization are used to evaluate the quality of a
model discovered from a log. Actually, these criteria also reveal the conformance
between the log and the discovered model, since a discovered model has good
quality if it conforms to the log. Note that among these criteria, the simplicity
dimension only indicates the complexity of the discovered model, and it is not re-
lated to behavior in the log. Therefore, in this section, we abstract from simplicity
and use fitness, precision and generalization to quantify the conformance.

The conformance diagnosis in Figure 7.4 gives a local diagnosis based on
eight rules. In contrast, in this section, we measure the global conformance
between a log and a model through fitness, precision and generalization, as
shown in Figure 7.5. Note that these criteria only focus on the behavioral
perspective, which are explained as follows:

• fitness: the model should allow for the behavior seen in the event log,
• precision: the model should not allow for behavior completely unrelated

to what was seen in the event log, and
• generalization: the model should generalize the behavior seen in the event

log.
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Figure 7.5: Quantifying the conformance on the behavioral perspective through three
criteria: fitness, precision and generalization.

In traditional process mining, the replay [35,123,125] techniques are used
to compute fitness between a Petri net and an XES log. By replaying the log on
the model, i.e., replaying each case to the places and transitions, four counters
are employed to count produced tokens, consumed tokens, remaining tokens
and missing tokens. Based on these four numbers, fitness is derived to quantify
the degree of fitting (cf. Section 7.5). Besides, alignment [3, 5–7] techniques
are more advanced approaches to calculate fitness. For each case in the log, a
corresponding model path (which is the closest to the case) is derived. Then the
log moves (impossible in the model) and model moves (not observed in the log)
are counted and assigned with cost. Finally, a value is derived based on the total
cost to quantify the fitness.

Unlike traditional process mining, we do not assume a global case notion
for the whole process in the context of an OCBC model and an XOC log. Each
behavioral constraint in an OCBC model corresponds to a correlation pattern
and specifies a restriction on events in a scope (rather than a case) identified by
the pattern. In other words, a behavioral constraint is defined in the context of
a correlation pattern, such that constraints corresponding to different patterns
are independent. Because of this, it is not necessary to check an XOC log on the
whole OCBC model (with all activities and constraints). We only need to check
conformance pattern by pattern. The existing replay and alignment techniques
assume case notions and check conformance on the whole process, which does
not apply to our situation. For instance, it makes no sense to replay a pattern
instance (i.e., an instance correlated by a correlation pattern) on the whole
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process or find a model path, since the instance only has events of two activities.
Due to the difference discussed above, we employ a different methodology

from traditional process mining techniques to compute the criteria. Based on
the idea of checking conformance pattern by pattern, we (i) split the task of
quantifying conformance on the whole process into several tasks of quantifying
conformance on all correlation patterns in the process, and (ii) integrate the
results of all correlation patterns into the whole criteria. As shown in Figure 7.6,
based on a correlation pattern, we correlate events in the log to derive a set
of pattern instances and extract all behavioral constraints corresponding to the
pattern from the model. The criteria on the pattern level are computed for each
pattern and at last they are merged as criteria on the model level.
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Figure 7.6: The task of quantifying the conformance on the model level can be split into
several tasks on the pattern level.

In order to compute the criteria on the pattern level, we need to somehow
connect the instances to the constraints, and then quantify the extent to which
the instances match the constraints. In the context of a correlation pattern, the
constraints can be considered as the allowed numbers of target events before and
after each reference event, and the instances can be considered as the observed
numbers of target events before and after each reference event. Intuitively, the
variant matrix defined in Chapter 6 can serve as a bridge to connect the instances
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to the constraints, since each variant in the matrix specifies a set of number
pairs, in which the first/second number counts the target events before/after the
reference event. The details are illustrated in the next section.

7.3.2 Connecting Event Log to Process Model

In general, the conformance between a log and a model indicates how much the
observed behavior conforms to the allowed behavior. In order to quantify the
conformance, we have to connect the log to the model. Based on the idea in
Figure 7.6, the task of quantifying the conformance on the model level can be split
into several tasks on the pattern level. Accordingly, the task of connecting the
log to the model is converted into the task of connecting instances to behavioral
constraints in the context of a correlation pattern.

The variant matrix VCT defined in Chapter 6 can serve as a bridge to connect
instances to constraints. More precisely, we map the instances onto the variant
matrix to identify the observed variants, and map the constraints onto the variant
matrix to identify the allowed ones. Then the criteria are computed based on the
relation between observed and allowed variants. Next, we explain how to derive
the observed variants and their frequencies.

(0,0) (1,0) (2+,0)

(0,1) (1,1) (2+,1)

(0,2+) (1,2+) (2+,2+)

+

0 0 0

1 0 0

1 0 0

co2 cs3

time

co1 cs1 cs2

Figure 7.7: Function freV mapping instances (correlated by a correlation pattern) onto the
variant matrix VCT to show observed behavior, resulting in a frequency matrix.
For instance, the first one of the instances (on the left side) only has two
target events cs1 and cs2 after the reference event co1. This relation satisfies
the semantics of the cell (0;2+) in the variant matrix (in the middle). Since
only one of the instances has such relation, the value in the cell corresponding
to (0;2+) in the frequency matrix (on the right side) is 1.

Among the instances correlated by a candidate pattern, if the relation between
a reference event and its target events in some instance satisfies the semantics of
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a variant, we say that the instance corresponds to the variant and the variant is
observed once in the log. Based on this idea, a function freV ∈UL×UP×VCT → IN
is defined (in Chapter 6) to compute how many times each variant is observed
in a log corresponding to a pattern. More precisely, the frequency of a variant
is equal to the number of instances corresponding to the variant. For instance,
assume that we have two instances {〈co1,cs1,cs2〉,〈co2,cs3〉} where co1 and
co2 are reference events in Figure 7.7. For the first instance, there are zero
and two target events before and after the reference events, respectively, i.e.,
〈co1,cs1,cs2〉�P = (0,2) ∈ (0;2+). Similarly 〈co2,cs3〉�P = (0,1) ∈ (0;1). Therefore
freV (L,P, (0;2+)) = 1 and freV (L,P, (0;1)) = 1.

In the variant matrix, each variant essentially is a constraint type, e.g.,
(2+;0) = {(before,after) ∈ IN× IN | before ≥ 2}. In an OCBC model, each behavioral
constraint corresponds to a constraint type. Consider for example the constraint
con8 in in Figure 7.8. type(con8) = {(before,after) ∈ IN× IN | after ≥ 1}. Therefore,
constraints can be related to the variant matrix in terms of constraint types. Next,
we define a function to map constraints (corresponding to a correlation pattern)
onto a variant matrix.

Definition 7.4 (Allowed Variants by Model) Let M = (ClaM ,ActM ,AOC,]2A ,]♦A ,
]OC ,crel) be an OCBC model where ActM = (A,Con,πref ,πtar , type) is an activity
model, and P = (aref , atar ,cr) is a correlation pattern.

Function posV ∈UOCBCM×UP →P(VCT ) returns the variants allowed by a model
corresponding to a correlation pattern such that posV (M ,P ) = {v ∈ VCT | ∀con′ ∈
ConP : v ⊆ type(con′)} where ConP = {con ∈ Con | πref (con) = aref ∧πtar(con) = atar ∧
crel(con) = cr}.

In terms of a correlation pattern P , function posV maps the constraints corre-
sponding to P from an OCBC model M onto the variant matrix, resulting in a
colored matrix. In the colored matrix, the black variants represent the behavior
allowed by the model. Assume that con6 and con8 in Figure 7.8 are all con-
straints corresponding to the pattern P = (create order,create shipment,order line)
from the OCBC model M . Since con6 is of the non-precedence constraint type and
con8 is of the response constraint type, type(con6)∩ type(con8) = {(before,after) ∈
IN× IN | before = 0∧after ≥ 1}. After checking all variants in the matrix, we get
(0;1) ⊆ (type(con6)∩type(con8)) and (0;2+) ⊆ (type(con6)∩type(con8)). Therefore,
posV (M ,P ) = {(0;1), (0;2+)}.

In traditional process mining, a log and a model are connected by replaying
each case in the log onto the model. Since XOC logs and OCBC models do not
assume a case notion, we employ a different approach, i.e., the variant matrix, to
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Figure 7.8: Function posV mapping constraints (for a correlation pattern) onto the variant
matrix to show allowed behavior, resulting in a colored matrix.

connect a log to a model. Up to now, we have proposed functions to map an XOC
log on the variant matrix (resulting in a frequency matrix to show the observed
variants) and to map an OCBC model onto the variant matrix (resulting in a
colored matrix to show the allowed variants). Next, we connect the XOC log to
the OCBC model by overlapping the frequency matrix and the colored matrix.

Definition 7.5 (Connecting XOC Log to OCBC Model) Function posV indicates
a colored matrix which represents the allowed behavior, and function freV indicates
a frequency matrix which represents the observed behavior. By overlapping and
aligning these two matrices, an overlapped matrix is generated, which connects an
XOC log to an OCBC model

+
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Figure 7.9: A log is connected to a model by overlapping the frequency matrix and the
colored matrix, resulting in an overlapped matrix.

By overlapping the frequency matrix and the colored matrix, we derive an
overlapped matrix which contains all the information (i.e., the allowed behavior
and observed behavior) from these two matrices. Note that the positions of the
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nine variants are fixed in all matrices, e.g., the bottom left cell corresponds to
variant (0;2+) in the frequency matrix, the colored matrix and the overlapped
matrix. In Figure 7.9, the left matrix is a frequency matrix, which indicates the
variants observed in the log, e.g., (0;2+) is observed thirty-five times. The middle
matrix is a colored matrix, which indicates that variants (0;1) and (0;2+) are
allowed by the model. By overlapping them, we get the right matrix, i.e., an
overlapped matrix. The overlapped matrix indicates that (0;1) and (0;2+) are
observed fifty and thirty-five times, respectively, and they are allowed by the
model. In contrast, (1;0) and (2+;2+) are observed ten and five times, respectively,
and they are not allowed by the model. By summarizing the information in the
overlapped matrix, we can claim that most observed behaviors are allowed by
the model.

Through the variant matrix, we make a bridge to connect the log to the
model, resulting in an overlapped matrix which indicates both allowed behavior
and observed behavior. Next, we illustrate how to compute fitness, precision and
generalization, based on the overlapped matrix.

7.3.3 Fitness

The most dominant question in the context of conformance is whether the real
business process complies with the specified behavior, i.e., whether the log fits
the model. In traditional process mining, a model with a perfect fitness can
replay all traces in the log from beginning to end, and a model with a poor fitness
allows for little behavior seen in the event log. Based on this idea, the fitness is
often expressed as a value between 0 (very poor fitness) and 1 (perfect fitness).

In this section, we refer to the idea of fitness in traditional process mining
and propose solutions to compute fitness in the context of XOC logs and OCBC
models. More precisely, we quantify the fitness as the extent to which the
observed variants (in the XOC log) consist to the allowed variants (by the OCBC
model) based on the overlapped matrix derived in Section 7.3.2.

Figure 7.10 shows three overlapped matrices indicating different fitting
situations. Intuitively, the first situation has a perfect fitness, since all observed
behavior in the log is allowed by the model. Additionally, the second overlapped
matrix shows an almost fitting situation, since most observed behavior is allowed.
Differently, only one observed variant is allowed in the third overlapped matrix,
describing a non-fitting situation.

According to the above discussion, we explain our approach to compute
fitness. In general, fitness can be expressed as the ratio of the observed and
allowed variants in all observed variants. Based on this idea, the fitness is 1 if all
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Figure 7.10: Three overlapped matrices indicating different fitting situations.

observed variants are allowed or 0 if none of the observed variants are allowed.
In other words, the fitness is expressed as a value between 0 and 1 as it is in
traditional process mining.

In order to make the approach robust in terms of noise, it is possible to take
into consideration a threshold for the frequencies of variants. If the frequency of
a variant is below the configured threshold, we consider that it is not observed in
the log. Note that we can also set the threshold as a ratio to consider the relative
frequency when deciding if a variant is observed.

Definition 7.6 (Fitness) Let L be a sound XOC log, M be an OCBC model and P
be a correlation pattern. Function fitnessP ∈UL ×UOCBCM ×UP → [0,1] computes
the fitness on the pattern level. We define the following notions:

• fitnessP1(L, M ,P ) = |{v ∈V | freV (L,P, v) ≥ 1}|
|{v ∈VCT | freV (L,P, v) ≥ 1}| ,

• fitnessP2(L, M ,P ) = |{v ∈V | freV (L,P, v) ≥ τ}|
|{v ∈VCT | freV (L,P, v) ≥ τ}| for some threshold τ ∈ IN,

• fitnessP3(L, M ,P ) = |{v ∈V | freV %(L,P, v) ≥ τ}|
|{v ∈VCT | freV %(L,P, v) ≥ τ}| for some threshold τ ∈ [0,1],

and

• fitnessP4(L, M ,P ) = freV (L,P,V )

freV (L,P,VCT )
,1

where V = posV (M ,P ) is the set of allowed variants.

1In the remainder we assume that x
0 = 1 unless indicated otherwise.
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Definition 7.6 gives four solutions to compute fitness on the pattern level (i.e.,
corresponding to some pattern P). The first fitness notion (fitnessP1) only counts
the number of variants which are observed (i.e., freV (L,P, v) ≥ 1) and allowed
(i.e., v ∈V where V is the set of allowed variants), divided by the number of all
observed variants ({v ∈ VCT | fre(L,P, v) ≥ 1}). This solution is sensitive to noise
and is only recommended for logs without noise, which may not be applicable
for real life logs.

The second solution can deal with noise by setting a threshold τ (i.e., an
integer) to filter the infrequent variant. More precisely, a variant is observed if its
frequency is equal to or larger than the given threshold (i.e., freV (L,P, v) ≥ τ). The
third solution employs a similar idea, only changing the absolute frequency to a
relative ratio. Unlike the second or the third solution which uses the frequency
to identify if a variant is observed, the fourth solution computes fitness directly
based on the frequency. The fitness is equal to the frequency of allowed variants
(i.e., freV (L,P,V )) divided by the frequency of all variants in the variant matrix
(i.e., freV (L,P,VCT )).

Solution Threshold
fitness

Figure 7.10(a) Figure 7.10(b) Figure 7.10(c)

fitnessP1 - 7/7(=1.0) 4/7(=0.57) 1/7(=0.14)
fitnessP2 1 7/7(=1.0) 4/7(=0.57) 1/7(=0.14)
fitnessP2 2 6/6(=1.0) 4/6(=0.67) 1/6(=0.17)
fitnessP2 3 4/4(=1.0) 4/4(=1.0) 1/4(=0.25)
fitnessP2 10 3/3(=1.0) 3/3(=1.0) 1/3(=0.33)
fitnessP2 30 1/1(=1.0) 1/1(=1.0) 1/1(=1.0)
fitnessP3 0.01 7/7(=1.0) 4/7(=0.57) 1/7(=0.14)
fitnessP3 0.02 6/6(=1.0) 4/6(=0.67) 1/6(=0.17)
fitnessP3 0.03 4/4(=1.0) 4/4(=1.0) 1/4(=0.25)
fitnessP3 0.1 3/3(=1.0) 3/3(=1.0) 1/3(=0.33)
fitnessP3 0.3 1/1(=1.0) 1/1(=1.0) 1/1(=1.0)
fitnessP4 - 100/100(=1.0) 95/100(=0.95) 50/100(=0.5)

Table 7.2: The fitness derived by different solutions for each overlapped matrix in Fig-
ure 7.10.

Consider the three overlapped matrices in Figure 7.10 to understand how
to compute fitness with different solutions. For the first overlapped matrix (i.e.,
Figure 7.10(a)), seven variants are observed (seven cells with numbers greater
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than zero) and all these variants are allowed (cells colored in black). Therefore,
the fitness derived based on fitnessP1 is 7/7. The second matrix indicates that
seven variants are observed, and four of them are allowed. Therefore, fitnessP1
returns 4/7. Similarly, fitnessP1 returns 1/7 for the third matrix, as shown in the
first row in Table 7.2.

fitnessP2 returns the same result when the threshold is set as 1. If we increase
the threshold, the number of observed variants (whose frequencies are above the
threshold) decreases. For instance, with a threshold 10 there are three observed
variants, and all of them are allowed in the first and second matrix. Therefore,
fitnessP2 returns 3/3 as the fitness. In contrast, only one of the three observed
variants is allowed in the third matrix, and fitnessP2 returns 1/3, as shown in the
fifth row in Table 7.2. According to a relative ratio, fitnessP3 computes fitness in
a similar way to fitnessP2.

For these three matrices in Figure 7.10, the frequency of each variant is
the same and the sum is 100. In the first matrix, all observed variants are
allowed. In contrast, the allowed variants are observed 95 times and 50 times
in the second matrix and third matrix, respectively. Therefore, fitnessP4 returns
100/100, 95/100 and 50/100 for these three matrices.

7.3.4 Precision

While fitness evaluates whether the behavior in the log is possible with respect
to the process model, precision evaluates how much behavior is allowed by the
model which actually never happens in the log. A model having a poor precision
is underfitting, i.e., it allows for behavior that is very different from what was
seen in the event log. When the model becomes too general and allows for more
behavior than necessary, it becomes less informative as it no longer describes the
actual process. Therefore, precision is another important criterion, which should
be taken into consideration when quantifying the conformance.

In this section, we refer to the idea of precision explained above and propose
solutions to compute precision in the context of XOC logs and OCBC models.
More precisely, we quantify the precision as the extent to which the allowed
variants (by the OCBC model) are observed in the log based on the overlapped
matrix derived in Section 7.3.2.

Figure 7.11 shows three overlapped matrices indicating situations with dif-
ferent precision. Intuitively, the first situation has perfect precision, since all
behavior allowed by the model is observed in the log. The second overlapped
matrix shows an almost precise situation, since most allowed behavior is ob-
served. Differently, in the third matrix, two of the four allowed variants are not
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Figure 7.11: Three overlapped matrices indicating situations with different precision.

observed and the other two are observed infrequently, describing an imprecise
situation.

After discussing precision in different situations, we explain our approach of
computing precision. In general, the precision can be expressed as the ratio of
the allowed and observed variants in all allowed variants. Based on this idea,
the precision is 1 if all allowed variants are observed or 0 if none of the allowed
variants are observed. Similar to the approach of computing fitness, we also take
into consideration a threshold, i.e., if the frequency of a variant is below the
configured threshold, we consider that the variant is not observed in the log.

Definition 7.7 (Precision) Let L be a sound XOC log, M be an OCBC model and P
be a correlation pattern. Function precisionP ∈UL×UOCBCM ×UP → [0,1] computes
the precision on the pattern level. We define the following notions:

• precisionP1(L, M ,P ) = |{v ∈V | freV (L,P, v) ≥ 1}|
|V | ,

• precisionP2(L, M ,P ) = |{v ∈V | freV (L,P, v) ≥ τ}|
|V | for some threshold τ ∈ IN,

• precisionP3(L, M ,P ) = |{v ∈V | freV %(L,P, v) ≥ τ}|
|V | for some threshold τ ∈ [0,1],

and

• precisionP4(L, M ,P ) =
∑

v∈V −pv log2(pv )

log2(|V |) with pv = freV (L,P,v)
freV (L,P,V ) ,

2

2This is based on the idea of entropy. As before, we assume that x
0 = 1.
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where V = posV (M ,P ).

Definition 7.7 gives four solutions to compute precision on the pattern level
(i.e., corresponding to some pattern P). The first precision notion (precisionP1)
only counts the number of variants which are observed (i.e., freV (L,P, v) ≥ 1)
and allowed (i.e., v ∈ V where V is the set of allowed variants), divided by
the number of all allowed variants (i.e., |V |, where V = posV (M ,P ), defined in
Definition 7.4). This solution is sensitive to noise and is only recommended for
logs without noise, which may not be applicable for real life logs. The second
and the third solutions deal with noise by setting a threshold τ, which uses the
same filtering approach as used for computing fitness (cf. Definition 7.6).

Unlike the previous solutions which use the frequency to compute precision,
the fourth solution computes precision based on the extent to which the allowed
variants are evenly observed in terms of frequency. If all allowed variants have
the same frequency (i.e., equally observed), the precision is 1, since pv = 1/|V | for
each v ∈V . If only one allowed variant v is observed (i.e., extremely unequally
observed), the precision is 0, since freV (L,P,V ) = freV (L,P, v), i.e., pv = 1.

Solution Threshold
precision

Figure 7.11(a) Figure 7.11(b) Figure 7.11(c)

precisionP1 - 3/3(=1.0) 4/5(=0.8) 2/4(=0.5)
precisionP2 1 3/3(=1.0) 4/5(=0.8) 2/4(=0.5)
precisionP2 3 3/3(=1.0) 4/5(=0.8) 1/4(=0.25)
precisionP2 10 3/3(=1.0) 3/5(=0.6) 0/4(=0.0)
precisionP2 30 1/3(=0.33) 1/5(=0.2) 0/4(=0.0)
precisionP3 0.01 3/3(=1.0) 4/5(=0.8) 2/4(=0.5)
precisionP3 0.03 3/3(=1.0) 4/5(=0.8) 1/4(=0.25)
precisionP3 0.1 3/3(=1.0) 3/5(=0.6) 0/4(=0.0)
precisionP3 0.3 1/3(=0.33) 1/5(=0.2) 0/4(=0.0)
precisionP4 - 0.91 0.71 0.33

Table 7.3: The precision derived by different solutions for each overlapped matrix in
Figure 7.11.

Consider the three overlapped matrices in Figure 7.11 to understand how
to compute precision with different solutions. For the first overlapped matrix
(i.e., Figure 7.11(a)), there are three allowed variants and all these variants
are observed. Therefore, the precision derived based on precisionP1 is 3/3. The
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second matrix indicates that five variants are allowed, and four of them are
observed. Therefore, precisionP1 returns 4/5. Similarly, precisionP1 returns 2/4
for the third matrix, as shown in the first row in Table 7.3. precisionP2 returns
the same result when the threshold is set as 1. If we increase the threshold,
the number of observed variants (whose frequencies are above the threshold)
decreases. For instance, with a threshold 3 the number of observed variants
in the third matrix drops to 1. Therefore, precisionP2 returns 1/4 for the third
matrix. According to a relative ratio, precisionP3 computes precision in a similar
way to precisionP2.

precisionP4 computes precision based on the idea of entropy. Assuming that
the frequency for each allowed variant in Figure 7.11(a) is 30 (without changing
the sum, i.e., 90), the precision returned by precisionP4 is 1 (indicating that
allowed variants are equally observed). When changing the balance between
allowed variants, the precision decreases. For instance, when the frequency is 50,
20 and 20 (real frequency in Figure 7.11(a)), the precision is 0.91.3 If we make
the allowed variants more imbalanced, the precision gets worse, e.g., precisionP4
returns 0.71 and 0.33 for the second matrix and third matrix, respectively.

In traditional process mining, some approaches (e.g., [5]) also consider the
non-fitting behavior when computing precision. Often the alignment technique
is employed to find a fitting process instance (i.e., a complete activity sequence
in the model that is most similar to the case) for each non-fitting case, and
these alignments are used to measure the precision. By aligning cases, the
information of fitting parts (of non-fitting cases) are also taken into consideration.
In comparison, the pattern instances (corresponding to some correlation pattern)
in our approach only have events of two activities, and they do not contain
information of other patterns (unlike the cases which contain events of activities
covering the whole process). It makes no sense to align the non-fitting behavior
and take them into consideration. Therefore, in this chapter, we do not consider
the non-fitting behavior (corresponding to variants which are not allowed by
the model) when computing precision. More precisely, as shown in the four
solutions, only allowed variants (i.e., v ∈V ) are considered and non-fitting parts
are simply ignored.

7.3.5 Generalization

A process model should not restrict its allowed behavior to just the observed
examples in a log, since the log may only cover a small part of all possible

3 −(50/90) log2(50/90)−(20/90) log2(20/90)−(20/90)log2(20/90)
log2(3) = 0.91.
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behavior in a process. In other words, a model should generalize enough to
allow for other behavior (different from the sample behavior) from the same
process. Generalization is a criterion related to this question. A model having a
bad generalization is “overfitting”. Overfitting is the problem that a very specific
model is fitting a log, which only holds example behavior, too much and does
not allow for other similar behavior.

It is difficult to reason about generalization because this refers to unseen
examples. In traditional process mining, generalization is described as the
extent to which the model can explain new coming cases from the same process.
Generalization is close to 1 if it is very likely that the next behavior from the
process will fit the model. The generalization is close to 0 if it is very likely that
new behavior from the process will violate the model. The idea is explained in
more details next. We consider all points in the event log where event e ∈ E is
about to happen. Given an event e we can find all events e ′ that occur in the
same state in model M . Every event can be seen as an observation of an activity
in some state s. Suppose that state s is visited n times and that w is the number
of different activities observed in this state. Suppose that n is very large and w is
very small, then it is likely that a new event visiting this state will correspond to
an activity seen before in this state. However, if n and w are of the same order of
magnitude, then it is more likely that a new event visiting state s will correspond
to an activity not seen before in this state.

In summary, the approach of computing generalization in traditional process
mining is based on the number of times that a state is visited and the number of
different activities observed in this state. This approach cannot apply to our task
of computing generalization, since the pattern instances (corresponding to some
correlation pattern) in our task only have events of two activities. In this case,
for an event the number of different activities is 0 or 1, which can not generate
a reasonable generalization based on the approach explained above. In this
section, we consider generalization as a capability that the model (i.e., allowed
variants) can explain new coming instances from the same process. Since the
new coming instances are things in the future, computing generalization can be
transformed into a question related to probability.

Let us consider some basic statistical notations to better understand general-
ization. Assume that we implement a trial which leads to exactly two mutually
exclusive outcomes: “success” and “failure”. In an experiment, we have n trials
which succeed s times. The question is to predict the result of the next trial.
We employ the Beta distribution to describe the probability distribution that
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the next trial succeeds, denoted as X .4 As we know nothing about the system
before the n trials, therefore we assume that the prior distribution is the uniform
distribution, i.e., X = Beta(1,1). After the n trials which succeed s times, the
posterior distribution is then X = Beta(1+ s,1+n − s).

The example described above reveals the idea of computing generalization.
Here we interpret “success” as “possible according to the model” and “failure”
as “impossible according to the model”. The pattern instances correspond to
the trials, where n means the number of instances and s means the number
of allowed instances. p is the assumed minimal probability that an instance is
allowed, e.g., p = 0.95. Based on the discussion, generalization is considered as
the possibility that the next instance will be allowed at a probability larger than
p, i.e., P (X > 0.95).

5 2 2

2 0 0

2 0 1

(c) poor generalization

50 20 2

20 5 0

2 0 1

(b) fair generalization

5000 2000 2

2000 999 0

2 0 1

(a) good generalization

Figure 7.12: Three overlapped matrices indicating situations with different generaliza-
tion.

Figure 7.12 shows three overlapped matrices indicating situations with dif-
ferent generalization. Intuitively, the first situation has very good generalization,
since all the variants with high frequencies (i.e., 5000, 2000, 2000 and 999)
are allowed. It is very likely that new coming instances from the same process
correspond to the allowed variants, i.e., allowed by the model. In contrast,
the third matrix shows a situation with poor generalization, since we have not
observed frequent behavior corresponding to the allowed variants. In other
words, it is very likely that new coming instances from the same process will
violate the model.

4In Bayesian inference, the Beta distribution is the conjugate prior probability distribution for the
Bernoulli, binomial, negative binomial and geometric distributions.
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Definition 7.8 (Generalization) Let L be a sound XOC log, M be an OCBC model
and P be a correlation pattern. Function generalizationP ∈UL ×UOCBCM ×UP →
[0,1] computes the generalization on the pattern level such that generalizationP(L, M ,
P ) = P (X > p) where V = posV (M ,P ), p ∈ [0,1] and X = Beta(1+ freV (L,P,V ),1+
freV (L,P,VC T \V )).

Definition 7.8 gives a solution to compute generalization on the pattern
level. We assume that the likelihood that a coming instance is allowed by the
model follows the Beta distribution. Based on the assumption, generalization
is considered as the cumulative probability that the coming instance will be
allowed at a probability larger than a given value p ∈ [0,1], i.e., P (X > p). We
assume that the prior distribution is the uniform distribution, i.e., X = Beta(1,1).
Based on the log, the number of allowed instances are freV (L,P,V ) and the
number of instances which are not allowed by the model are freV (L,P,VC T \V ),
where V = posV (M ,P ) is the set of allowed variants. Therefore, the posterior
distribution is then X = Beta(1+ freV (L,P,V ),1+ freV (L,P,VC T \V )).

Table 7.4 shows the derived generalization in different situations, where n
is the number of all instances and f is the number of instances which are not
allowed by the model.5 We assume p = 0.95, i.e., generalizationP(L, M ,P ) = P (X >
0.95). Note that the derived values in the generalization column are reasonable
in different situations, since they match the expected values according to the
discussion in Figure 7.12. More precisely, if n is a small number (i.e., the first
seven rows in Table 7.4), the derived generalization is low (corresponding to
Figure 7.12(c)). Besides, when most instances are not allowed, the generalization
is very low (i.e., the situation opposite to Figure 7.12(a)). Moreover, when n
increases to a large number, the initial assumption has hardly any effect on the
derived generalization. Therefore, the function in Definition 7.8 can precisely
quantify generalization.

7.3.6 Lifting and Combining Criteria

Section 7.3.3, Section 7.3.4 and Section 7.3.5 give solutions to compute fitness,
precision and generalization on the pattern level, respectively. In this section,
we lift the criteria from the pattern level to the model level. More precisely, the
criteria on the model level can be the average of all criteria on the pattern level,
and it is possible to take into account frequencies.

5This applet (at http://homepage.divms.uiowa.edu/ mbognar/applets/beta.html) computes prob-
abilities and percentiles for beta random variables.
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n f X = Beta(1+n − f ,1+ f ) generalization

0 0 Beta(1,1) 0.05
1 0 Beta(2,1) 0.0975
1 1 Beta(1,2) 0.0025
2 1 Beta(2,2) 0.00725

10 0 Beta(11,1) 0.4312
10 10 Beta(1,11) 0.0025
20 10 Beta(11,11) 0.0
100 0 Beta(101,1) 0.99438
100 100 Beta(1,101) 0.0
200 100 Beta(101,101) 0.0
100 1 Beta(100,2) 0.99408
100 5 Beta(96,6) 0.393
100 10 Beta(91,11) 0.01231

1000 1 Beta(1000,2) 1.0
1000 5 Beta(996,6) 1.0
1000 10 Beta(991,11) 1.0
1000 50 Beta(951,51) 0.46536

Table 7.4: The generalization derived in different situations by generalizationP where
p = 0.95, n = freV (L,P,VC T ) and f = freV (L,P,VC T \V ).

Definition 7.9 (Lifting Criteria From Pattern Level To Model Level) Let L be
a sound XOC log and M = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an OCBC model.
metricP represents a function to compute some criterion (fitness, precision or gener-
alization) on the pattern level, i.e., fitnessP, precisionP or generalizationP. Function
metricM ∈ UL ×UOCBCM → [0,1] computes some criterion on the model level. We
define the following notions:

• metricM1(L, M) =
∑

P∈extP(ClaM ,AOC) metricP(L,M ,P )
|extP(ClaM ,AOC)| ,

• metricM2(L, M) =
∑

P∈extP(ClaM ,AOC) metricP(L,M ,P )∗freV (L,P,VC T )∑
P∈extP(ClaM ,AOC) freV (L,P,VC T ) .

where V = posV (M ,P ).

Function metricM1 lifts the criteria from the pattern level to the model level
by computing the average of the criteria of all patterns. The criteria for different
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patterns may have different weights, i.e., if a pattern has more corresponding
instances, its criteria should be considered more in the criteria on the model
level. Therefore, metricM2 uses the frequency corresponding to each pattern as
its weight, and compute the average.

Fitness, precision or generalization quantifies the conformance on one spe-
cific perspective. It is possible to combine these three criteria as one score to
comprehensively evaluate the conformance from multiple perspectives (like the
F1 Score which combines the precision and recall in data mining).

Definition 7.10 (Combined Criteria) Let L be a sound XOC log, M be an OCBC
model and P be a correlation pattern. Function scoreP ∈UL ×UOCBCM ×UP → [0,1]
returns a score which combines fitness, precision and generalization on the pattern
level, such that scoreP(L,M ,P) = (w f ∗ f i tnessP (L, M ,P )+wp∗pr eci si onP (L, M ,P )+
wg ∗ g ener al i zati onP (L, M ,P ))/(w f +wp +wg ) where

• w f ,wp , and wg (0 ≤ w f , wp , wg ≤ 1) are weights, and

• fitnessP, precisionP and generalizationP are functions to compute fitness,
precision and generalization on the pattern level, respectively.

The score is impacted by the weights configured by users. For instance, if
one cares more about the fitness perspective when quantifying the conformance,
the fitness weight can be set as a larger value than weights of precision and
generalization. Without preference, all weights can be set as 1. In this way, users
can interact with the approach when quantifying conformance.

7.3.7 Customization of Behavioral Constraints by Criteria

Chapter 6 introduced approaches to discover OCBC models. On the behavioral
perspective, the basic idea of these approaches is to discover constraints which
are satisfied by the log. If we evaluate the discovery approaches based on the
three criteria defined in previous sections, it is obvious that these approaches
mainly focus on the fitness dimension. Therefore, it is possible that the discovered
models suffer bad precision and generalization.

In some situations, the precision and generalization are also important for
models and often there is a trade-off between these criteria. For instance, a model
with a perfect precision tends to be overfitting and suffer a bad generalization.
It turns out to be challenging to balance these criteria and the trade-off should
match the users’ requirements. For instance, based on some domain knowledge
(a priori knowledge), one may want to derive a model with perfect fitness, good
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precision and arbitrary generalization. Therefore, it is helpful to enable users
to guide the discovery task. [18] proposed an approach named Evolutionary
Tree Miner (ETM) algorithm, which can steer the discovery process based on
user-defined weights for different quality dimensions.

Select Stop?

Change

Compute score

Elite

(Random)

Creation

Result

Figure 7.13: The idea for the Evolutionary Tree Miner (ETM) algorithm.

As shown in Figure 7.13, the ETM algorithm uses the genetic manner to
discover models with high scores cyclically. The input of the algorithm is an
event log describing observed behavior. In the initial step a population of random
process trees is generated where each activity occurs exactly once in each tree.
The quality dimensions are calculated for each candidate in the population.
Using the weight given to each dimension the overall score of the process tree
is calculated. In the next step, certain stop criteria are tested such as finding a
tree with the desired overall score. If none of the stop criteria is satisfied, the
candidates in the population are changed and the score is again calculated. This
is continued until at least one stop criterion is satisfied and the best candidate
with the highest score is then returned.

Triggered by the idea explained above, we also allow the user to specify the
relative importance of each dimension beforehand (i.e., configure weights for
fitness, precision and generalization) and search the best candidate with highest
score. Differently, as shown in Figure 7.14, the input for our approach is a set
of pattern instances and each candidate is an overlapped matrix rather than a
process tree. More precisely, since each variant can be colored in black or not,
(i.e., two possibilities), we have 29 possible different colored matrices. Each
colored matrix is combined with the frequency matrix (derived based on the
pattern instances), resulting in an overlapped matrix. Based on the configured
weights for fitness, precision and generalization, we compute the score for each
overlapping matrix. After 29 loops, the scores for all overlapped matrices are



7.3 Quantifying Conformance 253

derived. We select the best one(s) with the highest score(s) and then transform
the corresponding colored matrix into a set of constraint types.
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Figure 7.14: The idea for discovering customized constraints.

Definition 7.11 (Computing Scores based on Configured Weights) Let L be
a sound XOC log and P be a correlation pattern. Function scoreV ∈UL ×P(VC T )×
UP → [0,1] returns a score which combines fitness, precision and generalization
on the pattern level, such that scoreV (L,V ,P) = (w f ∗ f i tnessV (L,V ,P ) + wp ∗
pr eci si onV (L,V ,P )+wg ∗ g ener al i zati onV (L,V ,P ))/(w f +wp +wg ) where

• V = posV (M ,P ) corresponds to a colored matrix,

• w f ,wp , and wg (0 ≤ w f , wp , wg ≤ 1) are configured weights, and

• fitnessV , precisionV and generalizationV are functions corresponding to fit-
nessP, precisionP and generalizationP, respectively.

In Definition 7.11, fitnessV , precisionV and generalizationV are functions to
compute criteria for a colored matrix V (i.e., any v ∈V is colored in black while
others are not). They have the same expressions with fitnessP, precisionP and
generalizationP, respectively, but take a different parameter as input (i.e., V

rather than M). For instance, fitnessP1(L, M ,P ) = |{v ∈V | freV (L,P, v) ≥ 1}|
|{v ∈VCT | fre(L,P, v) ≥ 1}| where

V = posV (M ,P ), and fitnessV 1(L,V ,P ) = |{v ∈V | freV (L,P, v) ≥ 1}|
|{v ∈VCT | fre(L,P, v) ≥ 1}| . The reason that
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we change the parameter is that the model does not exist yet at the stage of
computing scores. Note that the parameter M is not involved in all expressions
and it is only used to compute V (i.e., V = posV (M ,P )). Therefore, the expression
can still return the same result, although the parameter changes from M to V .

By correlating events in a log L based on a correlation pattern P , we derive a
set of pattern instances. Function freV is employed to map these instances onto
the variant matrix, resulting in a frequency matrix. Given a colored matrix V ,
an overlapped matrix is generated by overlapping V onto the frequency matrix.
Definition 7.11 gives an approach to compute the score of the overlapped matrix
by combining fitness, precision and generalization on the pattern level with
configured weights. The score is impacted by the weights configured by users.
For instance, if one cares more about the fitness, the fitness weight is configured
as a number larger than weights of precision and generalization. If one wants to
discover a balanced model at these three perspectives, all weights are configured
as the same number. In this way, users can interact with the discovery approach
to derive customized models.

Definition 7.12 (Searching for the Best Colored Matrix) Let L be a sound XOC
log and P be a correlation pattern. Function besMatrix ∈UL ×UP →P(VC T ) returns
a colored matrix Vbes = besMatrix(L,P ) with the best score, i.e., scoreV (L,Vbes,P) =

max
∀V ∈P(VC T )

scor eV (L,V ,P ).

Definition 7.12 searches the colored matrix with the best score by exploring
all possible (i.e., 29) colored matrices. Note that we do not use the genetic idea
since the searching space is not big. Assuming that the variant matrix is not
divided into 9 cells, but a lot more cells, the genetic manner could be used to
reduce the exploration space.

Definition 7.13 (Discovery of Customized Behavioral Constraints) Let L be
a sound XOC event log, P be a correlation pattern and CT be a set of constraint types.
Function disCC ∈ UL ×UP ×P(C T ) → P(UCon) discovers customized behavioral
constraints, such that disCC(L,P,CT) = {con | con = idCon(P,ct )∧ ct ∈ CT bes \ CT red}
where

• CT bes = {ct ∈ C T | ∀v ∈ Vbes : v ⊆ ct}, where Vbes ⊆ VCT is the best colored
matrix, and

• CT red = {ct ∈ C Tbes | ∃ct′ ∈ CT bes : ct′ ( ct}, which is the set of redundant
constraint types.
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Based on the best colored matrix, Definition 7.13 discovers customized
behavioral constraints. More precisely, if all black (i.e., allowed) variants in the
best colored matrix consist with a constraint type ct (i.e., ∀v ∈ Vbes : v ⊆ ct), a
constraint of this type is discovered, i.e., con = idCon(P,ct ). Note that it is possible
that there exist redundant constraint types. Here, we employ the same approach
as used to discover constraints based on frequent variants (cf. Chapter 6) to filter
the redundant constraints.

In this section, based on the defined criteria we propose an approach, which
allows users to seamlessly steer the discovery process based on preferences with
respect to three dimensions, i.e., fitness, precision and generalization.

7.4 Evaluation

In this section, the OCBC conformance checking approach is evaluated. More
precisely, we first set up an experimental environment to derive XOC logs, and
inject some known deviations in these logs. Based on the generated logs and
reference OCBC models, we verify if the approach can detect these injected
deviations. At last, we compare our approach with other conformance checking
techniques.

7.4.1 Experimental Design

The experimental environment is designed in a controlled manner. Figure 7.15
shows the details about how to evaluate the OCBC conformance checking tech-
nique. In general, starting from a particular business scenario, the upper branch
simulates the scenario to generate an XOC log (representing observed behav-
ior), the lower branch designs a model to describe the scenario (representing
allowed behavior), and, at last, the log and the model are checked to diagnose
the problems.

The conformance checking approach highly depends on the availability of
XOC event logs following the event log notion defined in Chapter 4. Such event
logs are different from standard XES, MXML, and CSV log files in two respects:
(i) there is no single case notion, and (ii) each event is related to an object model
describing the “state” of the process. This aligns well with the way that actual
information systems work: data are stored in a database and transaction update
the database. Here we use Dolibarr ERP/CRM to illustrate the feasibility of the
approach and the availability of the data assumed.
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Figure 7.15: The approach to evaluate the OCBC conformance checking approach and
tooling.

Given a process scenario, we design a simulation model with CPN Tools
(cpntools.org). (See [72,144] for an introduction to modeling using Colored
Petri Nets (CPNs) and the CPN Tools environment.) By simulating complex
process involving multiple interacting entities in the simulation model with CPN
Tools, a simulation log is generated. We interpret the simulation log to automati-
cally operate the Dolibarr ERP/CRM and populate the corresponding database.6

For example, if an order is created in the simulation and exported in the simu-
lation log, it is also created in the real system. By running the simulation, the
tables of Dolibarr get filled with information about orders, customers, deliveries,
etc. After this, we extract XOC event logs from the database of Dolibarr. In
order to conduct controlled experiments, we inject some deviations into the
normal log and check whether the deviations that are injected can actually be
discovered. Based on the normative model, we can add deviating behavior into
normal behavior by two methods:

• Adding deviating paths into the simulation model. This method is used to
add deviations on the model level. More precisely, we model the deviating
behavior as a path violating the normative model. For instance, we can
add an alternative path which skips the activity “create shipment” when
some attributes of orders satisfy predefined rules. This method generates
normal behavior and deviating behavior at the same time when simulating

6More information is at http://www.win.tue.nl/ocbc/softwares/data_generation.html.

cpntools.org
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the model, which allows generating large numbers of deviations.
• Adding deviating behavior manually on the real system. This method is

used to add deviations on the instance level, i.e., operating the real system
deliberately violating the normative scenario. For instance, after creating
an order, we never create shipments for this order. This method makes
it possible to intertwine the simulated data with real behavior, i.e., we
create normal behavior by simulating the model and inserting deviations
manually on the real system.

The lower branch in Figure 7.15 shows how to derive OCBC models. To
illustrate the approach, let us focus on the order-to-cash scenario in Dolibarr.
Based on the scenario, we create a normative OCBC model with OCBC Model
Editor in ProM, as shown in Figure 7.16. The model indicates that there are
eight classes and four activities involved in this process. The class relationships
reveal the constraints between classes, e.g., each order line should eventually
have a corresponding shipment line indicated by r 9 (this is consistent with the
real scenario where each order line is eventually shipped to the corresponding
customer). The seven behavioral constraints (i.e., con1 ∼ con7) present restric-
tions assigned on the temporal order between events of different activities. For
instance, con6 indicates that each “create order” event is followed by one or
more corresponding “create shipment” events while con7 requires each “create
shipment” event is preceded by precisely one corresponding “create order” event
(since Dolibarr does not enable creating shipments covering multiple orders).
The eight AOC relations (i.e., 1 ∼ 8 ) specify the cardinaltiy constraints be-
tween activities and classes. For example, 5 shows a one-to-one correspondence
between “create order” events and “order” objects, i.e., if an “order” object is
observed, the corresponding “create order” activity needs to be executed once
and vice versa.

7.4.2 Detecting Deviations

In this section, we manually inject typical deviations (which may really happen
in daily transactions), and detect them using our approach. Figure 7.17 shows
the object-centric event data (cf. Chapter 3), generated by simulating Dolibarr.
Note that we scope the data in a consistent way with the reference model in
Figure 7.16, i.e., the events and objects only contain instances of the activities
and classes in the reference model. For simplicity, we omit the objects of the
“customer” class, since they are not referred to by any events.

As the OTC process contains the behavioral perspective, the data perspective



258 OCBC Conformance Checking

and the interactions between the two perspectives, we inject deviations of three
categories accordingly. These deviations are highlighted in Figure 7.17 and
explained as follows:

• Deviations on the behavioral perspective. Like other modeling languages
such as Petri nets, OCBC models support checking conformance on the be-
havioral perspective. In the normal scenario, each “create invoice” event is
followed by at least one “create payment” event, indicated by the constraint
con2 in Figure 7.16. In the experiment, we add a deviation violating con2,
i.e., a “create invoice” event (“ci204” in Figure 7.17) is never followed by
corresponding “create payment” events.

• Deviations on the data perspective. A challenge for detecting behavioral
deviations is how to detect implicit deviations. For instance, a “create
order” event has corresponding “create shipment” events but does not have
sufficient ones, i.e., order lines created by the “create order” event are
not totally shipped to the corresponding customer. This implicit deviation
is indeed violating our scenario but satisfying the behavioral constraint
(i.e., con6, which requires a one-to-many relation between “create order”
events and “create shipment” events). As OCBC models have a data
perspective, it is possible to transform such implicit behavioral deviations
onto the data perspective. For example, the deviation mentioned above
can be interpreted as “some order lines have no corresponding shipment
lines”, and be detected by checking the cardinality constraints on the
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Figure 7.16: The normative OCBC model of the order-to-cash process in Dolibarr.
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class relationship r 9. In the experiment, we add a deviating “order line”
object or der _l i ne734 (“ol734” in Figure 7.17) which has no corresponding
“shipment line” objects.

• Deviations related to the interactions between two perspectives. In the
Dolibarr system, when an invoice is created, it is generally linked to one or
more existing orders. As a result, one or more element relations (showing
the correspondence between the invoice and the orders) are created when
a “create invoice” event happens, indicated by the cardinality “1..*” of
the AOC relation 3 . In reality, a possible deviating situation is that one
forgets to link one invoice to any orders. In our experiment, we mimic
this situation, i.e., create an invoice (“ci205” in Figure 7.17) without any
element relations, resulting in a deviation violating the constraints (i.e.,
“1..*” of 3 ) on the interactions of two perspectives.

Note that the deviations of different types depend on and impact each other.
For instance, the deviation (related to the interactions) that the “create invoice”
event ci 205 does not create an “element relation” object leads to two other
additional deviations: object “i205” has no corresponding “element relation”
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Figure 7.17: An illustration of the injected deviations in the normal log generated in the
order-to-cash process in Dolibarr.
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objects (a deviation on the behavioral perspective) and event “ci205” cannot
be correlated to a “create order” event before it (a deviation on the behavioral
perspective).

After loading the XOC event log with deviations (extracted from the data
shown in Figure 7.17) and the OCBC model (designed based on the scenario)
into ProM, we check the conformance to see if the inserted deviations can be
identified. In our experiments, the injected deviations mentioned above can be
totally detected and displayed clearly in three views.

As we can see in Figure 7.18, the type view reports all detected deviations
which are grouped by types. If there is a star (∗) symbol attached after the name
of a type, it indicates that there exist deviations of this type. Figure 7.18 shows
the diagnosis result corresponding to the “fulfillment” type. The left panel shows
the object models from the log and the right panel presents the class model
from the OCBC model, which are taken as input for conformance checking.
The middle panel displays the detected deviations, e.g., the deviating object
“order_line734”.

input from OCBC model

conformance checking result 
in hierarchy: three class 

relationships are violated 
and “order_line734” is a 

deviating object

input from XOC log

selected problem type: fulfilment
 (* indicates this type has deviations)

Figure 7.18: The conformance checking result in the type view.
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Figure 7.19 shows the diagnosis result using a helicopter view (i.e., model
view), by highlighting the violated constraints and cardinalities in the model.
In summary, there are six constraints violated and highlighted in red, which
corresponds to the injected deviations described in Figure 7.17. For instance, the
annotation (1) indicates that some “create invoice” events are deviating since
they are not followed by “create payment” events, and it corresponds to the
deviating event ci 204. After obtaining a general idea about the deviations on a
high level, we can use the log view in Figure 7.20 to see the deviating instances.

Consider for example the deviation (in Figure 7.17) that object “order_-
line734” eventually has no corresponding “shipment_line” objects to understand
how the three views display deviations from different angles. In Figure 7.19, the
model view indicates the target cardinality (i.e., ♦1..∗) of the class relationship
between “order_line” and “shipment_line” is violated. By clicking this relation-
ship, the “output:deviations” panel on the right displays the deviating object
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Figure 7.19: The conformance checking result in the model view.
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the deviating object 
“order_line734” is 

highlighted in object 
model and it violates the 
class relationship “360”

Figure 7.20: The conformance checking result in the log view.

“order_line734” under its corresponding cardinality. As “order_line734” violates
the “eventually” cardinality, it is only considered as a deviation at the end of the
log. As shown in Figure 7.20, “order_line734” is highlighted in the object model
(in the middle panel) corresponding to the last event and the violated constraint
id (i.e., “360”) is displayed under the “Deviation” branch in the right panel. In
the type view, this deviation is classified into the “fulfillment” type.

7.4.3 Comparison

In Section 7.4.2, we applied the OCBC conformance checking technique to
the data generated by Dolibarr. The diagnosis result shows that all inserted
deviations can be found and presented through three views. In this part, we
apply the traditional technique to the same data and compare its results with the
derived deviations using our approach.

The replay and alignment techniques often take an XES log and a Petri net
as input. First, we derive the XES log based on the object-centric event data
(cf. Chapter 3) shown in Figure 7.17. As the data are from artifact-centric
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information system, there is no case notions to correlate events. Therefore, we
correlate events based on objects, e.g., two events are correlated if they refer to
the same object or two connected objects (cf. Chapter 6). Figure 7.21 shows
the correlated events. For instance, event co251 is correlated to ci 204, as co251
refers to the object o251, ci 204 refers to the object er 619 and o251 is connected
to er 619, as shown in Figure 7.17.

cs366
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cs365
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ci205
co252 cp182

cp181

create 
order

create 
invoice

create 
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payment
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ol730-sl427
ol729-sl425

ol731-sl426

i202-pl189

i205-pl191

object(s)

o252-er614

Figure 7.21: Correlating events based on objects.

Then, we transform the correlated events in Figure 7.21 into XES logs.
Different from XOC logs, XES logs assume a case notion to integrate events
into process instances. Here, we consider “order” as the case notion and derive
an XES log with two cases in Figure 7.22, as there exist two “order” objects
o251 and o252. The second case includes events co252, ci 202, cs365 and cp181,
because these events are linked to o252 (directly or indirectly). Note that the
events ci 205 and cp182 are discarded when generating the XES log, because they
are not linked to any “order” objects.

co251o251 co251 ci204 cs365 cs366

co251o252 co252 ci202 cp181

co2
51

create

order

co2
51

create

invoice

co2
51

create

shipment

co2
51

create

payment

cs365

Figure 7.22: The generated XES log assuming that “order” is the case notion.

According to the OTC scenario, we design a Petri net to describe the business
process as shown in Figure 7.23. More precisely, after an order is created we
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have two branches. The top branch shows that multiple invoices can be created
for the order and there exists a many-to-many relationship between invoices
and payments, i.e., one invoice can be paid multiple times and one payment
can cover multiple invoices. The two implicit transitions (i.e., t) describe this
relationship. Independent from the top branch, the bottom one indicates that
multiple shipments can be created to deliver order lines in the order. After all
shipments and payments, the process ends.

Figure 7.23: A Petri net to describe the OTC business process, including conformance
checking result with respect to the log in Figure 7.22.

Using existing techniques to check the conformance between the log in
Figure 7.22 and the model in Figure 7.23, it is possible to detect some deviations
on the behavioral perspective. For instance, the deviation that “create invoice”
event ci 204 is not followed by a “create payment” event is detected, indicated by
the cross symbol. However, the deviation that the “create invoice” event ci 205
has no corresponding “create order” event before it is not detected, as ci 205 is
not included in the XES log in Figure 7.22.

The conformance checking on the whole process with an assumed case notion
of “order” fails to detect all deviations, as a case notion only provides a view
of the process from a particular angle. It is possible to detect the deviating
“create invoice” event ci 205 by considering the sub-process related to “invoice”.
Figure 7.24 shows the derived XES log based on the “invoice” case notion, and
Figure 7.25 describes the sub-process related to “invoice”. Note that the “create
shipment” activity is discarded in the sub-process because it is not related to
“invoice”. After conformance checking, the deviating event “create invoice” event
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Figure 7.24: The generated XES log assuming that “invoice” is the case notion.

ci 205 is detected, as ci 205 has no “create order” event before it, indicated in the
third case in Figure 7.24.

Figure 7.25: A Petri net to describe the sub-process related to “invoice” (i.e., the life-cycle
of an invoice), including conformance checking result with respect to the
log in Figure 7.24.

In some situations, it is possible to detect the deviations on the data perspec-
tive. Consider for example the deviating object ol 734 (in Figure 7.17), which has
no corresponding “shipment line” objects. By considering “order line” as an arti-
fact, we extract a corresponding XES log with four cases in Figure 7.26, and use
the model in Figure 7.27 to describe its life-cycle. After conformance checking,
the result shows that the event co252 has no following “create shipment” event
in the case corresponding to ol 734, indicating that ol 734 is deviating.

According to the artifact-centric approach illustrated above, the deviations
on the data perspective can be detected if we can somehow transform them
into deviations on the behavioral perspective, e.g., the deviating object ol 734.
However, if the deviation is related to objects which are not referred to by
events, it is impossible to transform them into deviating events. For instance,
assume that an “order” object does not have a corresponding “customer” object,
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Figure 7.26: The generated XES log for the “order line” artifact.

which violates the class relationship r 5 in Figure 7.16. This deviation cannot be
detected by the approach, because “customer” objects are not referred to by any
events.

Figure 7.27: A Petri net to describe the life-cycle of the “order line” artifact.

In summary, traditional conformance checking techniques support detecting
deviations on the behavioral perspective. They fail to efficiently detect deviations
related to multiple instances and the data perspective, although it is possible to
overcome some of the limitations by using some expertise such as choosing proper
case notions, sub-processes or artifacts. In comparison, the OCBC conformance
checking technique is more powerful in this situation. It can detect the deviations
related to the data perspective and interactions in a straight-forward manner.
Besides, the implicit deviations on the behavioral perspective can be detected
when taking into consideration the data perspective.

7.5 Related Work

Conformance checking compares an existing process model with an event log of
the same process. The comparison shows where the real process deviates from
the modeled process. Moreover, it is possible to quantify the level of conformance
based on the criteria such as fitness, precision and generalization. In this section,
we discuss the literature related to approaches to check the conformance between
a log and a model, and criteria to quantify the conformance.
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Token-based replay [35,123,125] uses both an event log and a process model
as input, i.e., history is replayed on the model to analyze various phenomena.
More precisely, the numbers of produced, consumed, missing and remaining
tokens are counted while replaying the event log. For instance, if an activity in
the event log is not enabled, then a missing token is added. These numbers can
be used to diagnose conformance problems. A typical application is to compute
fitness based on the numbers. After replaying a trace σ in a log on top of a model,
the fitness of a trace σ is computed based on four counters: p (produced tokens),
c (consumed tokens), m (missing tokens), and r (remaining tokens). The fitness
is then calculated as fitness(σ, N ) = 1

2 (1− m
c )+ 1

2 (1− r
p ). The same approach can be

used to analyze the fitness of a log consisting of many cases: simply taking the
sums of all produced, consumed, missing, and remaining tokens, and applying
the same formula.

Token-based replay can differentiate between fitting and non-fitting cases.
It is easy to understand and can be implemented efficiently. However, this
approach has some drawbacks. Intuitively, fitness values tend to be too high for
extremely problematic event logs. If there are many deviations, the Petri net gets
“flooded with tokens” and subsequently allows for any behavior. The approach
is also Petri-net specific and can only be applied to other representations after
conversion.

Alignments are introduced to overcome these limitations [3,5–7] . Given a
trace in the event log, the closest path in the model is computed by solving an
optimization problem. In alignment approaches, model moves and log moves are
used to describe the misalignment, and they are easier to interpret than missing
and remaining tokens. By assigning a cost function to this misalignment, fitness
is computed based on the total costs.

The replay and alignment techniques mainly focus on fitness. There exist
techniques which can compute other criteria such as precision and generalization.
In [104] a prefix automaton is constructed based on the event log to count
so-called escaping edges. By quantifying these edges and their frequency, it
provides an accurate measurement of the precision dimension. [105] extends
and complements the technique introduced in [104], by additionally considering
potential variability in the event log. Moreover, it introduces a novel technique
to estimate the confidence interval of the metric, which estimates the robustness
of the precision. Note that traces in the log do not need to be completely fitting.
In [104, 105], the non-fitting parts are simply ignored, i.e., only a fraction
of the event log can be used for computing precision, resulting in unreliable
precision measurements. In [4], by aligning the event log and the model, the pre-
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alignment makes it possible to measure precision more accurately, even in case
of deviations. [137] shows how to compute the generalization criterion, which
measures if the model is “overfitting” (i.e., the model explains the particular
sample log, but it is unlikely that another sample log of the same process can be
explained well by the current model).

Besides checking conformance on Petri nets, [43,44] check the conformance
of artifact-centric models expressed in terms of proclets. These papers show
that process instances cannot be considered in isolation as instances in artifact-
centric processes may overlap and interact with each other. This complicates
conformance checking but the problem can be decomposed into a set of smaller
problems, that can be analyzed using conventional conformance checking tech-
niques. These artifact-centric conformance checking techniques do not relate
control-flow to some overall data model (like the class model in OCBC models).

Also related is the work on conformance checking of declarative models
[31,32]. [31] proposes an approach to compute the fitness of Declare models. It
creates a constraint automata for each constraint to derive the optimal alignment.
It also presents some techniques to remove the search space. [32] discusses how
to compute fitness, precision and generalization for Declare models. However,
this work does not consider multiple intertwined instance notions and also does
not relate control-flow to some overall data model.

These techniques and criteria explained above only cover the control-flow
perspective. There also exist approaches which check conformance on other
perspectives. [165] constructs a timed business process model describing activ-
ities from mobile services, on the basis of the specification and verification of
temporal constraints. Then conformance checking is implemented by verifying
how compliant the constructed model and a new arrival event log. [59] extends
BPMN to support modeling Cloud resources and their pricing strategies. Then
the matching between temporal constraints of Cloud resources and the tempo-
ral constraints of BP activities are checked. These two approaches check the
conformance on the control-flow and time perspectives in terms of temporal con-
straints. [34] describes an approach that aligns event log and model, and takes
data and resources into account when checking process conformance. Multi-
perspective conformance checking [97] considers the conformance of process
to multiple perspectives of a process model (i.e., control-flow, data, resources,
time) at the same time.
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7.6 Summary

In this chapter, we proposed techniques to check conformance based on OCBC
models in terms of the behavioral perspective, data perspective and the interac-
tions in between. In this way, we overcome the problems of existing approaches
that instances are considered in isolation and constraints on the data perspective
are not taken into account. Hence, we can now detect and diagnose a range of
conformance problems that would have remained undetected using conventional
process model notations.

The conformance checking task is split into two parts in this chapter. The first
part is diagnosing the local conformance. We abstract a set of rules representing
an OCBC model and detect nine types of conformance problems. The second task
is to define three criteria, i.e., fitness, precision and generalization to quantify
the conformance on the global level. Based on the criteria, a model discovery
algorithm is proposed to discover behavioral constraints satisfying the configured
criteria. At last, we evaluate our conformance checking approach based on the
data generated in a real system Dolibarr by simulating the system.

In this chapter, the conformance diagnosis reveals the deviations about the
instances on the entities level, i.e., events and objects. In the future, it is possible
to check conformance on the attribute level, by taking into consideration the
attribute values.





Chapter 8

OCBC Performance Analysis

In Chapter 6, we discovered OCBC models from XOC logs to reveal the real
executions of business processes. In Chapter 7, we compared XOC logs with
OCBC models to check conformance and detect deviations (which suggest fraud
or inefficiencies). These two chapters cover two types of process mining, i.e.,
discovery and conformance. We now shift our attention to another type of process
mining: enhancing process models with performance-related information. More
precisely, by projecting XOC logs onto OCBC models, timestamps and frequencies
of activities can be used to identify bottlenecks and diagnose other performance
related problems.

This chapter is organized as follows. In Section 8.1, we motivate the per-
formance analysis based on OCBC models by discussing the challenges not
addressed by conventional performance analysis approaches. When these ap-
proaches are applied to artifact-centric information systems, serious problems
emerge. In Section 8.2, we analyze the performance on the time perspective, by
presenting the performance with dotted charts, column charts and indicators.
Section 8.3 analyzes the performance on the frequency perspective, highlighting
the “high way” (i.e., frequent parts) of the process. In Section 8.4, we evaluate
our performance analysis approach and compare it with other related techniques.
Section 8.5 reviews the related work while Section 8.6 concludes this chapter.
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8.1 Motivation for OCBC Performance Analysis

Business processes form the heart of companies, no matter if they are small
or large. Competitiveness of companies depends on continuous improvement
of business processes, because “every good process eventually becomes a bad
process” without improvement in a fast-changing era [61]. Therefore, business
process performance analysis has become a central issue in both academia
and business, which aims at improving business processes by clarifying the
characteristics and identifying the possible bottlenecks.

Traditional performance analysis tools (e.g., Business Objects and HP Business
Process Cockpit) often focus on defined key performance indicators (KPIs), which
are measured independent from process models [64]. In contrast, process mining
techniques analyze business performance by projecting event logs onto process
models, which intuitively present which parts of the process suffer problems. In
this way, bottlenecks can quickly be identified and resolved.

Replay techniques [64,137,147] are commonly used to derive performance
information based on a timed event log and an end-to-end process model. More
precisely, these approaches assume that the start state is known, in order to
replay each case of the log on the model. For one case, initially, a token is placed
in the start place. Then, one by one, each transition (corresponding to the activity
of the event in the case) in the model fires, thus consuming tokens from its input
places and generating tokens in its output places. This is repeated until the case
reaches a final marking. After replaying all cases, a collection of “token visits”
are recorded for each place, and each token visit has a start and end time. Hence,
a multi-set of durations can be derived, which are used to compute the waiting
time. Similarly, each transition is also visited by tokens. If events in the log
have start and complete lifecycles, we can also get the start and end time, which
can be used to compute the service time. The replay approaches depend on
procedural models, e.g., Petri nets, which have strict and clear semantics. Note
that it is also possible to analyze performance based on other types of models,
such as Fuzzy models [2,56,133] and directly-follows graphs (DFGs) [136]. For
instance, Figure 8.1 presents a performance analysis result projected on a DFG in
Disco, for a real-life application process of a personal loan in a Dutch Financial
Institute (cf. BPI challenge 2012).

The already existing approaches explained above analyze performance based
on process models, which describe the life-cycle of individual cases. This requires
a case notion. However, a (global) case notion is missing in artifact-centric
information systems, e.g., ERP/CRM systems, whose processes consist of in-
teractive business functions such as procurement, production, sales, delivery,
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(a) frequency perspective (b) time perspective

Figure 8.1: Performance analysis in Disco.

finance, etc. These processes are flexible and cannot be properly described by
procedural models such as Petri nets (which assume a case notion for the whole
process and have clear semantics for replaying). Besides, XES logs comprising
process instances (which are taken as input for already existing approaches) are
difficult to derive from artifact-centric information systems, as these systems
are object-centric. In other words, they are built on top of database technology,
i.e., the generated data contains hundreds of tables (covering customers, orders,
deliveries, etc.) rather than explicit process instances.

To address the above problems (note that the problems are general problems
and are not Disco-specific, cf. Section 8.4.3 for more details), in this chapter we
analyze the performance of artifact-centric business processes based on OCBC
models, which are more powerful to describe these processes (cf. Chapter 5).
In general, techniques concerned with the analysis of processes cover several
performance dimensions, e.g., time (how fast a process is executed), frequency
(which part of a process is executed most frequently), cost (how much a process
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execution costs), quality (how well the process meets customer requirements and
expectations), etc. Here, we only focus on the time and frequency perspectives,
like most performance analysis tools in process mining, e.g., the tool in Figure 8.1
(cf. Section 8.4 for more experiment results based on various tools). This
chapter shows the advantages of OCBC models and XOC logs when it comes to
performance analysis. We will show the following properties of OCBC-based
performance analysis:

• We remove the imprecision of performance results caused by complex rela-
tionships in data. The data extracted from artifact-centric information
systems consists of database tables, in which there exist one-to-many and
many-to-many relationships. The XES log format requires a case notion
to correlate events in these tables, resulting in logs with convergence and
divergence problems (cf. Chapter 4). These problems lead to incorrectly
reported frequencies (due to duplicated events) and times (events are
wrongly correlated). In contrast, the XOC log format correlates events
by the data perspective (i.e., objects), which can deal with the complex
relationships in data and avoid the imprecision.

• The performance analysis result is naturally displayed in one single diagram
and bottlenecks are visualized intuitively. Similar to the DFG in Figure 8.1,
OCBC models can also present the performance of the whole loan process
in one single diagram with highlighted bottlenecks. Note that the loan
process involves multiple sub-processes, e.g., the activities whose names
start with “A” and “W” are from different sub-processes. If there exist many-
to-many relationships between sub-processes, the DFG in Figure 8.1 will
suffer the imprecision problem explained above. A solution to avoid this
problem is to analyze the performance for each sub-process, resulting in
separate diagrams with disconnected performance information. In contrast,
the OCBC model has no problems facing many-to-many relationships. In
other words, the performance result can still be displayed in one single
diagram in such a situation.

• The performance analysis can become lightweight based on available domain
knowledge. Unlike replay techniques, which correlate and replay events (of
a particular case) over the whole process model, OCBC models correlate
events and analyze performance based on a particular correlation pattern.
In other words, the performance analysis of the whole model can be split
into independent smaller tasks for all correlation patterns. If one has
the knowledge to identify some interesting parts of the process, one can
compute the performance only for the patterns involved in these parts
(rather than the whole model), such that the analysis takes less time.
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8.2 Performance Analysis for the Time Perspective

In XOC logs, each event has a timestamp to indicate when the event happens.
Based on these timestamps, we analyze the performance on the time perspective
in this section. Note that although it is possible that objects can have attributes
related to time (e.g., the time when an object is created, modified or deleted),
we limit the performance analysis to activities (i.e., based on observed events).
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Figure 8.2: Analyzing and visualizing the performance on time perspective.

Figure 8.2 shows an overview on how to analyze performance based on
an XOC log and an OCBC model. As events in XOC logs are not correlated
explicitly and it makes no sense to analyze the time of individual events, we first
correlate events based on correlation patterns extracted from the OCBC model
(cf. Definition 6.8). More precisely, based on a selected correlation pattern,
events are correlated, resulting in a set of pattern instances. Each instance
contains one reference event and any number of target events. Then, the derived
instances are analyzed and the performance is presented through three methods:
dot charts, column charts and indicators. After deriving the performance result
for each correlation pattern, it is possible to integrate them into a single diagram.

Correlating events using correlation patterns was explained in Chapter 6.
Therefore, we illustrate how to analyze pattern instances with dotted charts,
column charts and indicators.
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8.2.1 Performance Analysis Using Dotted Charts

In any process mining project for performance analysis, the first intuitive idea
is to get a general feeling of the data in event logs. Besides the various log
inspectors in ProM which offer information such as the number of events and
activities, the so-called dotted chart provides a helicopter view of the events in
the log [130].

An event in an XOC log can have various attributes, such as “activity”, “time”,
“resource”, “amount” and “customer”. In addition to the original attributes,
correlated events have extra artificial attributes. As shown in Figure 8.2, events
are correlated as instances based on a correlation pattern for performance
analysis. During the correlation process, a new attribute “instance” is added
to each event to indicate the instance it belongs to. Besides, an additional
attribute “type” with two possible values “reference” and “target” is also added,
because each instance comprises events of the reference or target activities of
the correlation pattern. For example, the callout in Figure 8.3 describes the
attributes of the second event in the last row. This event is of the reference
activity and belongs to the seventh instance.

time

r1

r2

instance

0 10 20 30 40 50 60 70 80 90

r3

r4

r5

r6

r7

each dot 
corresponds to 

an event

time can
 be absolute or 

relative

the color 
and shape of a dot may 

depend on attributes 
of the event

each row 
corresponds to a 
pattern instance

instance: r7
type: reference
activity: create invoice
time: 2018-10-01 14:35:36 
resource: Sara
amount: 1000.50
customer: Roy

Figure 8.3: In a dotted chart, dots represent events, and the position, color, and shape of
a dot indicate the attributes of the corresponding event.
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In a dotted chart, each event is depicted as a dot in a two-dimensional panel
as shown in Figure 8.3. In the panel, the horizontal axis represents the time
of the event and the vertical axis represents the instance of the event. In other
words, events are grouped in rows by instances and ranked by time. In each
row, dots correspond to events from the same instance and the events on the left
happen before the events on the right.

The color and shape of a dot can also indicate features of its corresponding
event. Events which have the same value for a particular attribute can have the
same color or shape. For instance, Figure 8.3 uses the color and shape to indicate
attribute “type”. Therefore, events with different “type” values have different
colors and shapes, i.e., reference events are represented by red circles and target
events are represented by blue squares.

(a) OCBC model

a1 a2 a3

c2c1 c3r1 r2

con1 con2

aoc1 aoc2 aoc3 aoc4

a2(ref) a3(tar)

c2

(b) selected pattern

con2

aoc2 aoc3

Figure 8.4: Selecting a correlation pattern from an OCBC model for performance analysis.

Next, we use an example to explain how to view performance using dotted
charts. Assume that one is interested in the performance related to the correlation
pattern in Figure 8.4(b), after analyzing the whole OCBC model in Figure 8.4(a).
Based on the selected correlation pattern, events in the log are correlated,
resulting in the instances in Figure 8.5. Note that at least one target event
should happen before or after its corresponding reference event, indicted by the
constraint con2. Figure 8.5 shows three instances on the left side, where the
numbers in parenthesis indicate the event timestamps. For simplicity, we use
integer timestamps to represent verbose timestamps like “2018-10-01 14:35:36”.
For instance, the reference event e1 happens at time 10. By selecting the instance
as the class, each row in the dotted chart (on the right side in Figure 8.5) depicts
a pattern instance.

Based on the dotted chart, it is easy to understand some interesting patterns.
For instance, the target events e2, e3, e6 and e7 happen between time 15 and
time 30, and e5 and e9 happen around time 60. If this rule is followed by
thousands of instances, we can claim that it is a pattern (i.e., target events
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Figure 8.5: Presenting pattern instances with a dotted chart of absolute time.

happen in a batching way). In reality, this pattern can be interpreted as an
insight that some types of events only happen in a fixed period of a day or a
week, as the corresponding resources only work in that period.

e3(18) e4(35)

e1(10) e2(27)

e9(62)e8(46)

e5(60)

correlated instances dotted chart

time

ins1

ins2

. . .

time
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ins1

ins2

ins3 e6(15) e7(30)

. . .

-30 -20 -10 0 10 20 30-40

Figure 8.6: Presenting pattern instances with a dotted chart of relative time.

Note that the time dimension in a dotted chart can be absolute or relative.
Figure 8.5 and Figure 8.6 map the same instances onto dotted charts with
absolute time and relative time, respectively. In Figure 8.6, we place all reference
events at time zero. Besides, each target event is placed based on its relative
timestamp, i.e., the result of its absolute timestamp minus the absolute timestamp
of its corresponding reference event. By comparing Figure 8.5 and Figure 8.6,
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the dotted chart with relative time can be considered as the result of aligning all
instances based on reference events in the horizontal dimension, which makes it
easier to compare the target events before and after reference events.

The dotted chart is a very powerful tool to view events and analyze perfor-
mance from different angles. One can see all events at once while potentially
showing different perspectives at the same time (through class, time, color
and shape). The dotted chart can be seen as an example of a visual analytics
technique which leverages on the remarkable capabilities of humans to visually
identify patterns, trends and irregularities in large datasets. Moreover, by zoom-
ing in one can investigate particular patterns. Note that it is possible that the
horizontal axis represents an event attribute rather than time.

8.2.2 Performance Analysis with Column Charts

Dotted charts are used to derive a helicopter view of behavior. Based on the
dotted chart, it is possible to count dots (i.e., events) in a time window (of
a particular size), resulting in a column chart (or bar chart) which shows the
frequency distribution of events in terms of time.

A significant parameter for deriving an interesting column chart is the size of
the time window, which decides the density of columns. A too small or too large
window size results in a column chart that provides little or no information. For
instance, if the configured window size is too small, windows may contain just
one or no event. In the derived column chart, the frequency of any column is one
or zero, which does not tell anything about which columns are more frequent.
In practice, this parameter can be customized by users. Figure 8.7 shows two
column charts based on different window sizes. Given a window size, the time
axis is divided into windows which are next to each other and do not overlap.
For instance, given a window size of 10 time units, two window examples are
(0,10] and (10,20]. The first window includes all events which happen after time
0 and before or at time 10, and the second window includes all events which
happen after time 10 and before or at time 20.

After identifying time windows, we can build a column for each window.
The height of the column indicates the number of events in the corresponding
window. Note that filtering techniques can be employed when counting events
in a window. For instance, we can set a restriction on an attribute of events such
that only events that have required attribute values are counted. In this way, the
column chart is more flexible to present the frequency distribution of different
kinds of events.
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Figure 8.7: Two column charts based on window sizes of 10 (a) and 20 (b), respectively.

Figure 8.7(a) presents an example to show how to derive a column chart,
based on a dotted chart with relative time and a window size of 10 time units.
More precisely, in the dotted chart each row depicts a pattern instance, where
blue dots represent target events and red dots represent reference events. The
horizontal (time) axis in divided into ten windows based on the given window
size, and vertical axis has numbers to indicate the frequency of events in each
window. In this example, we only focus on the distribution of target events,
as reference events are always located at time zero in terms of relative time.
Therefore we only count the blue dots (target events) for each window. For
instance, there are five blue dots in the window (0,10] and four blue dots in the
window (10,20].

Column charts can provide intuitive insights to users. The column chart in
Figure 8.7 shows the frequency distribution of target events in terms of relative
time. Apparently, there are more target events after reference events than those
before reference events. Besides, target events most likely happen within 10 time
units after the reference event. The probability decreases when the timestamps
of events are getting far from the window (0,10]. Based on the column chart, it
is also possible to calculate the support of a customized window. For instance,
the window (−10,30] has a support of (3+5+4+3)/(1+2+3+5+4+3+2) = 0.75,
which indicates that 75% of events fall into this window. Moreover, it is also
possible to identify a window (of the smallest size) for a given support (there
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can be many).
Note that if the number of columns is very large, we can zoom out on the

time and connect the top of each column, resulting in a line chart. The line chart
lifts the information on a higher level, which can visually indicate insights, such
as patterns and trends.

8.2.3 Performance Analysis with Indicators

The performance of an organization can be measured through quantitative, mea-
surable indicators. These are commonly known as Key Performance Indicators
(KPIs). There exist various performance indicators, which can be time-related
(e.g. throughput time of a process, service time of an activity), quality-related
(e.g. visiting frequencies, error rates) or cost-related (e.g. process costs, material
costs). For different purposes, different indicators are of importance.

As the idea of OCBC performance analysis is to divide the whole analysis into
multiple smaller analysis tasks on the pattern level, in this section we propose
some indicators related to correlation patterns. More precisely, similar to the
throughput time of a process, we define durations of pattern instances to indicate
its throughput time.

Definition 8.1 (Duration of Pattern Instance) Let P be a correlation pattern
and L = (E ,act,attrE,relate,om,¹) be a sound XOC event log. UTS is the universe of
timestamps. We assume that each event e ∈ E has a timestamp, denoted as ]t i me (e) ∈
UTS. Let UDur be the universe of time durations. Function dur ∈ P(E∗) → UDur

returns the duration of a pattern instance.
For a pattern instance ins ∈ extI(L,P), we define the following versions for dur:
• durPre(ins) = ]t i me (eref )− ]t i me (e f ), computing the precedence duration of a

pattern instance,
• durRes(ins) = ]t i me (el )− ]t i me (eref ), computing the response duration of a

pattern instance, and
• durAll(ins) = durPre(ins)+durRes(ins) = ]t i me (el )− ]t i me (e f ), computing the

total duration of a pattern instance,
where e f = ins1 is the first event, el = ins|ins| is the last event and eref is the reference
event in ins.1

Definition 8.1 defines the total duration, precedence duration and response
duration for an instance corresponding to a correlation pattern. Intuitively, the

1insn means the n-th event in the instance ins.
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total duration of a pattern instance is the duration from its first event to its last
event. Considering the reference event as a cut-off point, the total duration is
divided into two segments, i.e., the precedence duration (before the reference
event) and the response duration (after the reference event). Note that the
precedence (response) duration is 0, if there are no target events before (after)
the reference event.

Consider for example the instances in Figure 8.5. durAll(ins3) = 47, since its
first event e6 happens at time 15 (i.e., ]t i me (e6) = 15) and its last event e9 happens
at time 62 (i.e., ]t i me (e9) = 62). For the precedence duration, durPre(ins3) =
46−15 = 31 as the reference event e8 happens at time 46 (i.e., ]t i me (e8) = 46). For
the response duration, durRes(ins3) = 62−46 = 16, by subtracting the time of the
reference event e8 from the time of the last event e9. Note that durPre(ins1) = 0
as there are no target events before the reference event e1.

In a pattern instance, there may exist multiple target events before and after
reference events. Figure 8.8 shows a pattern instance ins, in which e4 is the
reference event, and e1, e2 and e3 (e5, e6 and e7) are three target events before
(after) the reference event. Definition 8.1 computes precedence (response)
durations based on the first (last) target event, corresponding to the “longest”
method in Figure 8.8. Based on this method, durPre(ins) = 43 − 5 = 38 and
durRes(ins) = 75−43 = 32. It is also possible to compute the precedence (response)
durations based on the closest target event before (after) the reference event,
indicated by the “shortest” method. With this method, durPre(ins) = 43−35 = 8
and durRes(ins) = 51 − 43 = 8. Besides, we can use the median target event
to compute the precedence (response) duration. For instance, as there are
three target events before the reference event e4, e2 is the median target event.
Similarly, e6 is the median target event for the events after e4. Based on the
median events, durPre(ins) = 43−14 = 29 and durRes(ins) = 58−43 = 15. Moreover,
we can calculate durations based on the mean time. The mean time for the events
before (after) the reference event is (35+5)/2 = 20 ((75+51)/2 = 63). Therefore,
durPre(ins) = 43−20 = 23 and durRes(ins) = 63−43 = 20.

Different methods can be applied to different situations in practice. Ac-
cordingly, the derived results are interpreted as different insights. Consider
for example a pattern where “create order” is reference activity and “create
shipment” is target activity. With the “longest” method, the calculated duration
means that a customer receives all packages for his order after a time slot of
the duration. In contrast, using the “closet” method, the duration means that
the customer receives the first package after a time slot of the duration. In this
thesis, we use the “longest” method by default.
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Figure 8.8: Various methods to compute precedence and response duration, where: black
dots correspond to reference events and green (yellow) dots correspond to
start (end) of instance durations.

Definition 8.2 (Average and Standard Deviation of Duration) Let L be a sound
XOC event log and P be a correlation pattern. Function aveDur ∈UL ×UP →UDur

returns the average duration of pattern instances corresponding to P , such that

aveDur(L,P ) =
∑

ins∈extI(L,P ) dur(ins)

|extI(L,P )|

where dur corresponds to durAll, durPre or durRes when computing the average of
total duration, precedence duration or response duration, respectively. Function
devDur ∈UL ×UP →UDur returns the standard deviation, such that
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devDur(L,P ) =
√∑

ins∈extI(L,P )(dur(ins)−aveDur(L,P ))2

|extI(L,P )|

Function aveDur computes the average duration of instances correspond-
ing to a pattern by dividing the sum of durations by the number of instances.
For example, the average of the total duration of instances in Figure 8.5 is
(17+42+47)/3 = 35.3 as durAll(i ns1) = 17, durAll(i ns2) = 42 and durAll(i ns3) = 47.
Similarly, the average of the precedence duration is (0 + 17 + 31)/3 = 16 as
durPre(i ns1) = 0, durPre(i ns2) = 17 and durPre(i ns3) = 31, and the response aver-
age duration is (17+25+16)/3 = 19.3 as durRes(i ns1) = 17, durRes(i ns2) = 25 and
durRes(i ns3) = 16. Note that the precedence average duration plus the response
average duration is equal to the total average duration.

Note that it is possible that two sets of instances have the same average
duration but are quite different from each other. For instance, assume that
the durations of the first set are 0, 30 and 60, and the durations of the sec-
ond set are 30, 30 and 30. They have the same average duration, i.e., 30,
but apparently the durations of the second set are more stable. In this case,
we use the notion standard deviation of duration to reflect the difference, cal-
culated by the function devDur. For instance, the deviation of the first set is√

((0−30)2 + (30−30)2 + (60−30)2)/3 = 24.5 while the deviation of the second set
is 0.

Based on the function aveDur, we can infer the average duration for each
possible pattern of an OCBC model. Note that the average duration is the
absolute duration and it only reflects the performance of a particular pattern
individually. Often it is interesting to investigate durations on the whole model
level (i.e., comparing durations of all patterns) and detect which part (i.e.,
pattern) consumes the most time. For this, we define the relative duration of a
pattern by comparing its absolute duration with others.

Definition 8.3 (Relative Duration) Let L be a sound XOC event log, M = (ClaM ,
ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an OCBC model and P ∈ extP(ClaM ,AOC) be a corre-
lation pattern. Function relDur ∈ UL ×UOCBCM ×UP → [0,1] returns the relative
average duration of pattern instances corresponding to P , such that

relDur(L, M ,P ) = aveDur(L,P )

maxP ′∈extP(ClaM ,AOC) aveDur(L,P ′)
.
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Definition 8.3 computes the relative duration for a correlation pattern, i.e.,
dividing its absolute average duration by the longest average duration (identified
by comparing durations of all patterns). As shown in Definition 8.2, the average
duration has three variants, i.e., the average of the total duration, the average of
the precedence duration and the average of the response duration. Accordingly,
there are three corresponding relative durations, i.e., relative total duration,
relative precedence duration and relative response duration.

In order to explain how to compute relative durations, we present the fol-
lowing example. Assume that there exist four patterns P1, P2, P3 and P4 in
total in an OCBC model, whose absolute precedence/response/total durations
are 15/45/60, 70/30/100, 0/70/70 and 30/0/30, respectively, as shown in
Table 8.1. For the precedence duration, 70 is the longest one. Divided by the
longest duration, i.e., 70, the relative precedence durations are 0.21, 1.0, 0.0
and 0.43, as shown in the “Precedence duration (Relative)” column. In this way,
we can also derive the relative response and total durations for these patterns.
Note that the total duration is the sum of precedence and response durations.
The “Total duration (Precedence ratio)” column indicates the ratio of precedence
duration in the total duration. For instance, the precedence duration and total
duration of P1 are 15 and 60, respectively. Therefore, the precedence ratio of P1
is 15/60 = 0.25.

Pattern Precedence duration Response duration Total duration
Absolute Relative Absolute Relative Absolute Relative Precedence ratio

P1 15 0.21 45 0.64 60 0.6 0.25
P2 70 1.0 30 0.43 100 1.0 0.7
P3 0 0.0 70 1.0 70 0.7 0.0
P4 30 0.43 0 0.0 30 0.3 1.0

Table 8.1: An example to explain how to compute relative durations.

After deriving durations, we propose a solution to project durations of all
patterns onto an OCBC model, which supports humans to visually understand
the performance on the time perspective. The idea of the solution is to highlight
particularly long durations, i.e., the bottlenecks in the model. For the notation of
durations in the model, we refer to the notation of behavioral constraints.

As shown in Figure 8.9(a), in an OCBC model a behavioral constraint (e.g.,
con1) is depicted as an edge with a black dot and an arrow between two activities,
indicating the restriction between them. Each constraint has a corresponding
correlation pattern, which is indicated by a dashed line (e.g., cr 1). Similar
to behavioral constraints, each duration also corresponds to a correlation pat-



286 OCBC Performance Analysis

tern. Therefore, we adapt the notation in Figure 8.9(a) to depict durations in
Figure 8.9(b).
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c2c1 r1

con1

(a) behavioral constraints
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dur1(t1)

aoc1 aoc2
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Figure 8.9: The difference of notations between behavioral constraints and durations.

We also use a black dot to indicate the reference activity, and a dashed
line (e.g., cr 1) to indicate the correlation pattern. Furthermore, the edges are
employing barbed arrows for duration in Figure 8.9(b), which are different from
compressed arrows for constraints in Figure 8.9(a). As shown in Figure 8.9(b),
dur 1, dur 2 and dur 3 refer to the precedence duration, response duration and
total duration, respectively. In the parenthesis, we can indicate the absolute time
(e.g., t1, t2 and t3) for the duration. For the precedence duration and response
duration, the edges have only one arrow. When the arrow enters into (exits
from) the black dot, the edge corresponds to precedence (response) duration.
The total duration is represented by an edge with two arrows at both ends.
Besides, there is a white dot in the edge to indicate the ratios of precedence
duration and response duration. The part between the black dot and the white
dot corresponds to the precedence duration while the other part corresponds to
the response duration. For instance, if the ratio of precedence duration is 0.0,
the white dot is next to the black dot. If the ratio is 0.5, the white dot is in the
middle of the edge. Note that a duration is defined in the context of a correlation
pattern and it is independent from behavioral constraints.

In order to give information about relative durations, we assign different
colors to the arrows to highlight long durations, as shown in Figure 8.10, such
that we assign dark red to long durations and light red to short durations. More
precisely, by dividing the range of relative durations (i.e., (0,1]) into five intervals,



8.2 Performance Analysis for the Time Perspective 287

relative duration

five colors 
correspond 

to five intervals of 
relative durations

(0.0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1.0]

precedence

the darkest color 
indicates that the duration 
is larger than 0.8  and less 

or equal to 1.0

0.0

response

total

the lightest color 
indicates that the duration 
is larger than 0.0  and less 

or equal to 0.2

the X mark indicates 
that the relative 
duration is 0.0

Figure 8.10: The color scale for relative durations.

five different degrees of red color are employed to depict them accordingly. For
instance, the darkest red corresponds to (0.8,1.0] and the lightest red corresponds
to (0.0,0.2]. Note that it is possible that the relative duration is 0.0, which means
that there are only reference events and no target events in pattern instances. In
this situation, we add an X mark on the edge to indicate that the duration is 0.0.
Based on the color solution explained above, any relative duration corresponds
to precisely one edge in Figure 8.10. For instance, a precedence duration of 0.9
corresponds to the edge with the darkest red color (the rightest one) in the first
row.

With highlighted long durations on the model, one can intuitively see the
bottlenecks. We use an example to illustrate the approach of projecting durations
introduced above. Figure 8.11 describes a process with an OCBC model, which
is a part of the online shopping scenario. Before making an order of some
products online, the customer often asks some questions about these products.
After getting satisfying answers, the customer creates an order which contains
some order lines (corresponding to the products). Then, the order lines are
packed and shipped to the customer. In this process, there exist one-to-many
and many-to-many relationships, e.g., (the order lines of) one order can be split
into multiple shipments and one shipment can include order lines from multiple
orders.

There are four possible correlation patterns P1, P2, P3 and P4 in total in



288 OCBC Performance Analysis

Figure 8.11. Their corresponding precedence, response and total duration are
shown in Table 8.1. As the total durations contain information of both precedence
and response durations, we only project them onto the model to make the model
more readable without losing insights. As shown in the “Total duration (Relative)”
column, the relative duration of P2 is 1.0. Therefore, its corresponding edge is in
the darkest red in the model. Besides, the white dot is located on the edge based
on its precedence ratio, i.e., 0.7. Similarly, we can project the total durations of
other patterns onto the model. Note that if the precedence ratio is 0.0, the white
dot is next to the black dot (e.g., P3) and if the precedence ratio is 1.0, the white
dot is next to the target activity (e.g., P4).
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Figure 8.11: Highlighting bottlenecks in an OCBC model based on total durations in
Table 8.1.

The projection of durations results in the OCBC model in Figure 8.11, which
provides insights from the time perspective. Note that behavioral constraints will
be hided in the OCBC model when presenting the performance, as the durations
are related to correlation patterns rather than constraints.

For the correlation pattern P2, “create order” is the reference activity and
“ask question” is the target activity. Accordingly, an instance corresponding to
P2 reflects the consulting situation for a particular order. In real applications,
customers can consult before orders (e.g., asking information about goods) and
after orders (e.g., asking information about shipments or sales return). Indicated
by the white dot, on average staff of the online shopping company spend more
time (70%) answering questions before an order is placed than after it (30%).
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Indicated by P3, all “create shipment” events happen after the corresponding
“create order” events. After an order is created, on average the corresponding
customer waits 70 time units until he receives the goods.

Up to now, we have introduced all approaches to analyze the performance
on the time perspective. Different approaches are chosen based on different
situations, and accordingly, the derived performance results are interpreted as
different insights. Consider for example the pattern P3 in Figure 8.11. The
“longest”/“shortest”/“median” method in Figure 8.8 to compute the response
duration, indicates the amount of time it takes for the customer to receive his/her
last/first/middle package for a specific order. Besides, the performance analysis
in real applications can be split into three situations based on the available
knowledge, explained as follows:

• If a user knows which pattern is most interesting, he/she can directly
employ dotted charts and column charts to analyze the performance of the
pattern.

• If the user has no domain knowledge at all, he can calculate the indicators
of all patterns and project the performance onto the model. After high-
lighting patterns with long durations, the bottlenecks can be selected for
further analysis with dotted charts and column charts.

• In most cases, the user has some knowledge to identify several interesting
candidate patterns. For instance, in the process described in Figure 8.11,
the patterns P2 and P3 are interesting candidates, as the user may want to
know for an order, the time used to answer the related questions and the
time used to deliver goods to the customer. In this situation, the indicators
of all candidate patterns can be computed to detect bottlenecks, which are
further analyzed with dotted charts and column charts. In this way, the
performance analysis is faster, because we only spend time on analyzing
interesting patterns rather than the whole model.

8.3 Performance Analysis for the Frequency Perspec-
tive

When analyzing performance of business processes, it is often interesting to
compute how frequent each part of the model is actually used in real process
executions. Based on the frequency information, it is possible to see the “highway”
of the processes (which is the backbone of the processes) and the infrequent
parts (which can be improved).
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Most of the already existing performance analysis tools in process mining
analyze the frequency perspective. However, they are focusing on the behavioral
perspective, as the employed models do not support a powerful data perspective.
In this section, we analyze the performance on the frequency perspective, and
employ OCBC models to present the frequency information on the behavioral
and data perspectives.

8.3.1 Mapping Frequencies onto OCBC Models

Based on an XOC log we derive the frequency information and project them onto
an OCBC model. Furthermore, we classify the elements in OCBC models into five
groups, i.e., classes (C), class relationships (R), activities (A), AOC relationships
(AOC) and behavioral constraints (Con). Each element in the five groups has a
frequency, indicating the number of its corresponding instances in the log.

Definition 8.4 (Frequency) Let L = (E ,act,attrE,relate,om,¹) be a sound XOC
event log and M = (ClaM ,ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an OCBC model where
ClaM = (C,R,π1,π2,]2src,]♦src,]2tar ,]♦tar) is the class model and ActM = (A,Con,πref ,
πtar , type) is the activity model. El eM = C ∪R ∪ A ∪AOC ∪Con is the set of all
elements in the model. Function fre ∈ EleM → IN returns the frequency that an
element ele ∈ EleM is observed in the log. The function has five versions to calculate
frequencies for the different types of elements.

The frequency of a class is the number of objects of the class, i.e., for each c ∈C ,

freC(c) = |{o | ∃e ∈ E : (o ∈ Obje ∧ classe (o) = c)}|.

The frequency of a class relationship is the number of object relations corre-
sponding to the relationship, i.e., for each r ∈ R,

freR(r) = |{(r,o1,o2) | ∃e ∈ E : (r,o1,o2) ∈ Rele }|.

The frequency of an activity is the number of events of the activity, i.e., for each
a ∈ A,

freA(a) = |{e ∈ E | act(e) = a}|.

The frequency of an AOC relationship is the number of references (between events
and objects) corresponding to the relationship, i.e., for each aoc = (a,c) ∈ AOC,

freAOC(aoc) = |{(e,o) | e ∈ E ∧o ∈ relate(e)∧act(e) = a ∧ classe (o) = c}|.
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The frequency of a behavioral constraint is the number of instances (derived
based on P) which follow semantics of the constraint, i.e., for each con ∈ Con,

freCon(con) = |{ins ∈ extI(L,P ) | ins�P ∈ type(con)}|,

where P = (πref (con),πtar(con),crel(con)) is the corresponding pattern of con.
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Figure 8.12: Computing the frequencies of different elements with freC, freR, freAOC, freA
and freCon.

Definition 8.4 maps an XOC log onto an OCBC model in terms of the fre-
quency perspective, as shown in Figure 8.12. It gives five functions to compute
the frequencies of different types of elements. More precisely, function freC
computes the frequency of a class, i.e., the number of all observed objects (in the
log) corresponding to the class. Similarly, for a class relationship function freR
computes its frequency by counting all corresponding object relations observed
in the log. The frequency of an activity (indicated by freA) is the number of
events corresponding to the activity. For an AOC relationship (a,c), its frequency
(indicated by freAOC) is the number of reference relations between a events and
c objects. Different from the previous frequencies, the frequency of a behavioral
constraint is computed based on the events correlated by its corresponding pat-
tern (i.e., pattern instances). For instance, assuming that P is the corresponding
pattern of a behavioral constraint con, its frequency freCon(con) is the number of
instances which satisfy the semantics of con.
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Index Event Activity References Object Model
Objects Relations

1 co1 co o1,ol1,ol2 o1,ol1,ol2 (r10,o1,ol1), (r10,o1,ol2)

2 co2 co o2,ol3,ol4 o1,ol1,ol2,o2,ol3,
ol4

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4)

3 cs1 cs ol1 o1,ol1,ol2,o2,ol3,
ol4

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4)

4 ci1 ci er1 o1,ol1,ol2,o2,ol3,
ol4,er1

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4), (r8,o1,er1)

5 cs2 cs ol1,ol2 o1,ol1,ol2,o2,ol3,
ol4,er1

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4), (r8,o1,er1)

6 ci2 ci er2,er3 o1,ol1,ol2,o2,ol3,
ol4,er1,er2,er3

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4),(r8,o1,er1),(r8,o1,er2),
(r8,o2,er3)

7 cs3 cs ol3,ol4 o1,ol1,ol2,o2,ol3,
ol4,er1,er2,er3

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4),(r8,o1,er1),(r8,o1,er2),
(r8,o2,er3)

8 ci3 ci er4 o1,ol1,ol2,o2,ol3,
ol4,er1,er2,er3,er4

(r10,o1,ol1),(r10,o1,ol2),(r10,o2,ol3),
(r10,o2,ol4),(r8,o1,er1),(r8,o1,er2),
(r8,o2,er3), (r8,o2,er4)

Table 8.2: An XOC log example for computing frequencies.

Consider the log in Table 8.2 and the model in Figure 8.13 to understand
how to compute the frequencies of different elements. freC(element relation) = 4
as there are four element relation objects in the log, i.e., er 1, er 2, er 3 and
er 4 in the “Objects” column in Table 8.2. freR(r8) = 4 as there are four object
relations of r 8, e.g., (r 8,o1,er 1) in the “Relations” column. freA(create invoice) = 3
as there are three create invoice events, i.e., ci 1, ci 2 and ci 3 in the “Event”
column. freAOC(aoc4) = 5 as there are five reference relations of aoc4 (between
create shipment events and order line objects), i.e., cs1 refers to ol 1, cs2 refers
to ol 1 and ol 2, and cs3 refers to ol 3 and ol 4, indicated by the “Event” and
“Reference” columns.

After explaining the frequency calculation of classes, class relationships, ac-
tivities and AOC relationships, we show how to compute the frequencies of
behavioral constraints. In order to do this, we need to correlate events first.
Figure 8.14 shows the correlated events for con1, con2 and con3 based on
the log in Table 8.2. We use con2 as an example to explain how to correlate
events and compute the frequency. As shown in Figure 8.14(b), cs1 and cs2
are correlated to co1, because each of them has at least one object reference
shared with co1. Similarly, cs3 is correlated to co2. Based on the correlated
events and the order of events (indicated by the “Index” column in Table 8.2),
we can derive two instances 〈co1,cs1,cs2〉 and 〈co2,cs3〉. The behavioral con-
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Figure 8.13: Computing the (absolute) frequencies based on the log in Table 8.2.

straint con2 requires that each reference event has precisely one following target
event, i.e., type(con2) = {(before,after) ∈ IN× IN | after = 1}. ins�P returns a pair of
integers (before,after), in which before/after indicates the number of target events
before/after the reference event in ins (cf. Definition 6.8). 〈co1,cs1,cs2〉�P = (0,2)
and 〈co2,cs3〉�P = (0,1). Therefore, freCon(con2) = 1 as only the second instance
satisfies con2.
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Figure 8.14: Correlating events to compute the frequencies of behavioral constraints.

Note that the frequencies in Definition 8.4 are absolute values. A typical
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drawback of absolute frequencies is that the values always increase along with
the size of the corresponding log. Therefore, it might be interesting to transform
the absolute frequency into a relative frequency, i.e., a fraction between 0 and 1,
which indicates the scale of the frequency compared with other frequencies.

Definition 8.5 (Relative Frequency) Let El e be the set of elements of a particular
type, i.e., Ele is C , R, A, AOC , or Con. fre is the corresponding function to calculate
the frequency. For each el e ∈ El e, its relative frequency is

relFre(ele) = fre(ele)

maxele′∈Ele fre(ele′)

The relative frequency of an element el e in an OCBC model is the result of the
absolute frequency of el e divided by the absolute frequency of the most frequent
element of the same type as el e. Consider for example the absolute frequencies
shown in Figure 8.13. For the AOC relationships, aoc4 has the largest frequency,
i.e., 5. Divided by 5, the relative frequencies of aoc1, aoc2, aoc3 and aoc4 are
0.8, 0.4, 0.8 and 1.0, respectively.

0

(0.6,0.8](0,0.2] (0.8,1](0.4,0.6](0.2,0.4]

0.2 0.4 0.6 0.8 1.0

(0,0.2]
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(0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]

Figure 8.15: Color and width scale used for encoding class, activity and relation frequen-
cies.

Based on relative frequencies, we can highlight the frequent elements of the
model with outstanding colors for nodes or thick widths for edges, as shown in
Figure 8.15. In general, the range of relative frequency (i.e., (0,1]) is divided
into five intervals and each interval has a corresponding color or width. More
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precisely, the orange and blue colors are used to paint classes and activities,
respectively. A light color indicates a small relative frequency and a dark color
indicates a large relative frequency. For instance, the lightest orange color
indicates that the frequency of a class is in the interval of (0,0.2]. Similarly, five
different widths of edges are used to reflect the relative frequencies of relations
and a thin (thick) edge indicates a small (large) relative frequency.

Figure 8.16 gives colors to classes and activities, and specifies the widths
of relations based on the scale in Figure 8.15. For instance, the class “order”
is colored in middle orange, which indicates that its relative frequency is in
(0.4,0.6]. In contrast, the activity “create invoice” is colored in the darkest blue,
which indicates that its relative frequency is in (0.8,1.0]. For the relations, aoc4
is the widest edge among all AOC relationships, which indicates that it is the
most frequent. Clearly, the model with highlighted information provides the user
with immediate feedback about the importance of each element in the model.

create
 invoice (1.0)

create 
order (0.67)

create 
shipment (1.0)

order
(0.5)

element
relation 

(1.0)

order
 line
(1.0)

r8(1.0) r10(1.0)

con1(1.0) con2(0.33)

aoc1
(0.8)

aoc2
(0.4)

aoc3
(0.8)

aoc4
(1.0)

the dark color 
shows that “create 
invoice” is frequent

con3(0.67)

the thin 
edge indicates a 

small relative 
frequency 

the light color 
shows that “order” is 

less frequent

the widest 
edge indicates that the 

relative frequency 
is in (0.8,1.0]

Figure 8.16: Highlighting frequent elements in the OCBC model to provide immediate
feedback about their importance.

8.3.2 Computing Lengths of Pattern Instances

Section 8.3.1 proposed approaches to compute the absolute and relative frequen-
cies of each element in an OCBC model, and projected the frequency information
onto a model to highlight the frequent parts. In this section, we investigate
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the frequency of target events in pattern instances, i.e., the lengths of pattern
instances.

Definition 8.6 (Lengths of Pattern Instances) Let P be a correlation pattern
and L = (E ,act,attrE,relate,om,¹) be a sound XOC event log. Function len ∈
P(E∗) → IN returns the length of a pattern instance. For a pattern instance
ins ∈ extI(L,P ), we define the following versions for len:

• lenAll(ins) = |ins|−1, computing the total length, i.e., the number of target
events in the instance (subtracting 1 since each instance contains precisely
one reference event),

• lenPre(ins) = |ins←−
P
|, computing the precedence length, i.e., the number of

target events before the reference event,
• lenRes(ins) = |ins−→

P
|, computing the response length, i.e., the number of target

events after the reference event,
where (|ins←−

P
|, |ins−→

P
|) = ins�P.

Definition 8.6 defines the total length, precedence length and response length
of a pattern instance. Note that ins�P = (|ins←−

P
|, |ins−→

P
|) is a shorthand defined in

Chapter 6, where |ins←−
P
| (|ins−→

P
|) represents the number of the target events before

(after) the reference event in a pattern instance. We use the three instances
shown in Figure 8.17(a) to explain how to compute different lengths. For the
total length, lenAll(ins1) = 1, as there is only one target event e2 in i ns1. Similarly,
lenAll(ins2) = 2 and lenAll(ins3) = 3. For the precedence length, lenPre(ins1) = 0 as
there are no target events before the reference event e1. In the same method,
lenPre(ins2) = 2 and lenPre(ins3) = 1. For the response length, there are one, zero
and two target events after reference events in these three instances, respectively.
Therefore, lenRes(ins1) = 1, lenRes(ins2) = 0 and lenRes(ins3) = 2
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Figure 8.17: Two sets of pattern instances having the same average length but having
different deviations.
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Definition 8.7 (Average and Standard Deviation of Lengths) Let L be a sound
XOC event log and P be a correlation pattern. Function aveLen ∈ UL ×UP → IR
returns the average length of pattern instances corresponding to P , such that

aveLen(L,P ) =
∑

ins∈extI(L,P ) len(ins)

|extI(L,P )|
where len is function lenAll, lenPre or lenRes when computing average of total length,
precedence length or response length, respectively. Function devLen ∈UL ×UP → IR
returns the standard deviation, such that

devLen(L,P ) =
√∑

ins∈extI(L,P )(len(ins)−aveLen(L,P ))2

|extI(L,P )|
Based on the functions for computing the length of an individual instance,

function aveLen derives the average length of all instances corresponding to a
pattern, by dividing the sum of individual lengths by the number of instances.
For example, the average of the total lengths of instances in Figure 8.17(a) is
(1+2+3)/3 = 2, as lenAll(i ns1) = 1, lenAll(i ns2) = 2 and lenAll(i ns3) = 3. Similarly,
the average of the precedence (response) lengths is (0+2+1)/3 = 1 ((1+0+2)/3 =
1).

Note that the instances (ins1, ins2 and ins3) in Figure 8.17(a) and the in-
stances (ins4, ins5 and ins6) in Figure 8.17(b) have the same averages of total
length, precedence length and response length. However, it is obvious that
they are quite different from each other. In this situation, the metric standard
deviation can be used to reflect the difference, which is calculated by the function
varLen. The deviation of the total lengths of the instances in Figure 8.17(a)
is

√
((1−2)2 + (2−2)2 + (3−2)2)/3 = 0.82, while the deviation of the instances in

Figure 8.17(b) is 0.
Note that the average length inferred by function aveLen is an absolute

length. It only reflects the lengths of instances of a particular pattern. Often it is
interesting to compare the lengths on the whole model level (i.e., in terms of all
patterns) and detect which pattern has the longest instances.

Definition 8.8 (Relative Length) Let L be a sound XOC event log, M = (ClaM ,
ActM ,AOC,]2A ,]♦A ,]OC ,crel) be an OCBC model and P ∈ extP(ClaM ,AOC) be a cor-
relation pattern. Function relLen ∈UL ×UOCBCM ×UP → [0,1] returns the relative
(average) length of pattern instances corresponding to P , such that
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relLen(L, M ,P ) = aveLen(L,P )

maxP ′∈extP(ClaM ,AOC) aveLen(L,P ′)

Definition 8.8 computes the relative length for a correlation pattern, i.e.,
divides its absolute average length by the largest absolute average length (iden-
tified by comparing lengths of all patterns). As shown in Definition 8.7, the
average length has three variants, i.e., average of the total length, average of
the precedence length and average of the response length. Accordingly, there
are three corresponding relative lengths, i.e., relative total length, relative prece-
dence length and relative response length.

Pattern Precedence length Response length Total length
Absolute Relative Absolute Relative Absolute Relative Precedence ratio

P1 1 0.25 2 0.67 3 0.6 0.33
P2 4 1.0 1 0.33 5 1.0 0.8
P3 0 0.0 3 1.0 3 0.6 0
P4 2 0.5 0 0.0 2 0.4 1.0

Table 8.3: An example to explain how to compute relative lengths.

In order to explain how to compute relative lengths, we employ the following
example. Assume that there exist four patterns P1, P2, P3 and P4 in total in an
OCBC model, and their corresponding precedence, response and total lengths
are shown in Table 8.3. For the precedence length, P2 has the largest one (i.e., 4)
and therefore its relative length is 1.0. The precedence lengths for P1, P3 and P4
are 1, 0, and 2, respectively. Divided by the largest length, i.e., 4, their relative
precedence lengths are 0.25, 0.0 and 0.5, as shown in the “Precedence length
(Relative)” column. Similarly, we can derive the relative response lengths and
relative total lengths for these patterns. Note that the total length is the sum of
precedence and response lengths. The “Total length (Precedence ratio)” column
indicates the ratio of the precedence length in the total length. For instance, the
precedence length and total length of P1 are 1 and 3, respectively. Therefore,
the precedence ratio of P1 is 1/3 = 0.33.

Similar to relative durations (cf. Section 8.2.3), we also propose a solution to
project lengths of all patterns onto an OCBC model, highlighting the patterns
which have longer lengths. The idea of the solution is to refer to the notation
of durations (in Figure 8.10) but employing different degrees of the blue color
(rather than the red color) to indicate the scale of lengths. As shown in Fig-
ure 8.18, we divide relative lengths into five intervals, in which the smallest
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interval (0.0,0.2] corresponds to the lightest blue and the largest interval (0.8,1.0]
corresponds to the darkest blue. Note that it is possible that the relative length
is 0.0, which means that there are only reference events and no target events
in pattern instances. In this situation, we again add an X mark on the edge to
indicate that the length is 0.0. Based on the color solution explained above, any
relative length corresponds to precisely one edge in Figure 8.18. For instance,
a precedence length of 0.9 corresponds to the edge with the darkest blue color
(the rightest one) in the first row.

relative length

five blue 
colors correspond 
to five intervals of 

relative length

(0.0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1.0]

precedence

the darkest color 
indicates that the length is 
larger than 0.8  and less or 

equal to 1.0

0.0

response

total

the lightest color 
indicates that the length is 
larger than 0.0  and less or 

equal to 0.2

the X mark 
indicates that the 
relative length is 

0.0

Figure 8.18: The color scale for relative lengths.

We use the same process in Figure 8.11 to explain how to project lengths
onto models. There are four possible correlation patterns P1, P2, P3 and P4 in
total. Their corresponding precedence, response and total lengths are shown
in Table 8.3. Here, we only project the total lengths on the model to make
the model easy to read. As shown in the “Total length (Relative)” column, the
relative length of P2 is 1.0. Therefore, its corresponding edge is the darkest blue
in the model. Besides, the white dot is located accordingly on the edge based
on its precedence ratio, i.e., 0.8. Similarly, we can project the lengths of other
patterns onto the model. Note that the white dot for P3 is next to the black
dot as its precedence ratio is 0.0, and the white dot for P4 is next to the target
activity as its precedence ratio is 1.0.
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Figure 8.19: Highlighting bottlenecks in an OCBC model based on the total lengths in
Table 8.3.

The projection of lengths results in the OCBC model in Figure 8.19, which
provides insights in terms of instance lengths. For instance, the instances cor-
responding to P2 have the largest average length indicated by the darkest blue
color, and the instances corresponding to P4 have the smallest average length
indicated by the lightest blue color. For the correlation pattern P2, “create order”
is the reference activity and “ask question” is the target activity. On average, each
order has five related questions. As indicated by the position of the white dot,
there are more questions before the order than those after the order. Besides,
each order has on average three following shipments indicated by P3, and each
shipment contains on average order lines from two orders indicated by P4.

8.4 Evaluation

In this section, we evaluate the OCBC performance analysis approach by compar-
ing it with other performance analysis approaches while using the same raw event
data. More precisely, based on the data generated in the OTC (order-to-cash)
scenario of a real ERP system Dolibarr, different approaches are employed (our
approach, but also more conventional approaches) to analyze the performance
both on the frequency and time perspectives. Then, we compare the results
derived by these approaches, to see which one can provide the best insights to
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reveal the real performance.

8.4.1 Data Set

The OTC business process is a significant scenario in enterprises, which is sup-
ported by typical ERP systems. In this section, we introduce a data set generated
in this scenario in an open source ERP system, Dolibarr.2 The data set involves
nine tables in the database of Dolibarr, as shown in Figure 8.20. There are ten
relations (i.e., r 1, r 2,...,r 10) between tables, which indicate the dependencies
between records in different tables. For instance, the “order” column in the
“order_line” table (a foreign key) refers to the “id” column in the “order” table
(the primary key).

Note that the data set in Figure 8.20 is very small. Each table only contains
one mandatory column (i.e., “id” column), and some other significant columns
(e.g., “creation_date” and “customer” columns). Besides, all table records only
cover transactions related to two orders (o1 and o2). The motivation for experi-
menting on such simple data is that we can use expertise to analyze the data and
get insights about its performance. Then the analysis result derived manually can
be considered as the ground truth to evaluate the results of different performance
analysis approaches (i.e., the OCBC approach and other approaches explained
later). Based on the ground truth, we can qualitatively compare approaches and
identify problems.

We extract events from these tables. By considering the timestamp columns
as activities, we identify four activities, i.e., “create order”, “create shipment”,
“create invoice” and “create payment”, which correspond to the “create_date”
columns in tables “order”, “shipment”, “invoice” and “payment”, respectively, as
shown in Table 8.4. Events of different activities can be extracted from these four
tables. For instance, an event co1 of activity “create order” with a timestamp
“2017-08-11 10:33:37” can be derived based on the first record o1 in the “order”
table. In this way, we extract ten events, as shown in the “Events” column of
Table 8.4.

Besides extracting events, all records can be transformed into objects. Note
that each record has a unique id shown in the “id” column, e.g., the first record
in the “order” table has an id o1. By considering (i) the record id as the object id
and (ii) the table of records as the class of objects, we can derive twenty-eight
objects, as shown in the “Objects” column in Table 8.5. For instance, the object
c1 corresponds to the first record in the “customer” table.

2https://www.win.tue.nl/ocbc/softwares/log_generation.html.
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order (o)

id creation_date customer

o1 2017-08-11 10:33:37 c1

o2 2017-08-13 16:28:15 c1

shipment_line (sl)

id shipment order_line quantity

sl1 s1 ol1 1

sl2 s2 ol1 1

sl3 s2 ol2 3

sl4 s3 ol3 3

sl5 s3 ol4 2

shipment (s)

id creation_date customer

s1 2017-08-14 11:36:35 c1

s2 2017-08-16 14:15:31 c1

s3 2017-08-19 13:22:04 c1

element_relation (er)

id order Invoice 

er1 o1 i1

er2 o1 i2

er3 o2 i2

er4 o2 i3

invoice (i)

id creation_date customer amount

i1 2017-08-15 09:13:27 c1 2380

i2 2017-08-17 17:38:36 c1 1431

i3 2017-08-23 14:23:19 c1 1904

customer (c)

id name address

c1 Ming Eindhoven

c2 Cong Tilburg

payment_line (pl)

id payment Invoice amount

pl1 p1 i1 2380

pl2 p1 i2 1431

pl3 p2 i3 1904

payment (p)

id creation_date amount

p1 2017-08-21 16:26:13 3811

p2 2017-08-26 14:53:49 1904

order _line (ol)

id order product quantity price

ol1 o1 computer 2 1190

ol2 o1 phone 3 476

ol3 o2 cup 3 1

ol4 o2 TV 2 952

r5 r4

r8 r10 r6

r7 r2

r3

r1

r9

foreign
key

primary
key

Figure 8.20: A small extraction of the database corresponding to the OTC business process
in Dolibarr.

Table Column Activity Abbreviation Events

order create_date create order co co1,co2
shipment create_date create shipment cs cs1,cs2,cs3
invoice create_date create invoice ci ci1,ci2,ci3

payment create_date create payment cp cp1,cp2

Table 8.4: Identified activities and corresponding events.

Similarly, we can transform dependencies between records into object re-
lations. For instance, as (i) object o1 corresponds to the first order record (in
the “order” table), (ii) object c1 corresponds to the first customer record (in
the “customer” table), and (iii) the order record refers to the customer record
through the relationship r 5, we get an object relation (r 5,c1,o1) between objects
c1 and o1. Applying the same method, thirty-six object relations are derived as
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shown in the “Relations” column in Table 8.5.

In- Event Acti- Timestamp References Object Model
dex vity Objects Relations

1 co1 co 2017-08-11 10:33:37 o1,ol1,ol2 c1,c2,o1 (r5,c1,o1),(r10,o1,ol1),(r10,o1,ol2),(r5,c1,o2)
2 co2 co 2017-08-13 16:28:15 o2,ol3,ol4 ol1,ol2, o2 (r10,o2,ol3),(r10,o2,ol4),(r4,c1,s1),(r6,s1,sl1)
3 cs1 cs 2017-08-14 11:36:35 s1,ol1 ol3,ol4,s1 (r9,ol1,sl1),(r1,c1,i1),(r3,i1,er1),(r8,o1,er1)
4 ci1 ci 2017-08-15 09:13:27 i1,er1 sl1,i1,er1 (r4,c1,s2),(r6,s2,sl2),(r9,ol1,sl2),(r6,s2,sl3)
5 cs2 cs 2017-08-16 14:15:31 s2,ol1,ol2 s2,sl2,sl3 (r9,ol2,sl3),(r1,c1,i2),(r3,i2,er2),(r8,o1,er2)
6 ci2 ci 2017-08-17 17:38:36 i2,er2,er3 i2,er2,er3 (r3,i2,er3),(r8,o2,er3),(r4,c1,s3),(r6,s3,sl4)
7 cs3 cs 2017-08-19 13:22:04 s3,ol3,ol4 s3,sl4,sl5 (r9,ol3,sl4),(r6,s3,sl5),(r9,ol4,sl5),(r7,p1,pl1)
8 cp1 cp 2017-08-21 16:26:13 p1,pl1,pl2 p1,pl1,pl2 (r2,i1,pl1),(r7,p1,pl2), (r2,i2,pl2),(r1,c1,i3)
9 ci3 ci 2017-08-23 14:23:19 i3,er4 i3,er4,p2 (r3,i3,er4),(r8,o2,er4),(r7,p2,pl3), (r2,i3,pl3)
10 cp2 cp 2017-08-26 14:53:49 p2,pl3 pl3

Table 8.5: The object-centric event data extracted from the database in Figure 8.20.

Table 8.5 presents the object-centric event data (cf. Chapter 3) extracted
from the database in Figure 8.20. The extracted events form the behavioral
perspective (indicated by “Index”, “Event”, “Activity” and “Timestamp” columns).
The extracted objects and relations compose an object model, which represents
the data perspective (indicated by “Objects” and “Relations” columns). The
interactions between these two perspectives are indicated by the “References”
column, which is explained next.

Here, we assume that each event refers to the record from which the event is
derived. For instance, event co1 refers to the first record o1 in the “order” table
(i.e., co1 refers to o1), as co1 is derived from o1. Based on domain knowledge,
we know that each “create order” event also inserts several order lines (related
to its created order) into the database. Therefore, co1 also refers to ol 1 and ol 2
as ol 1 and ol 2 are related to o1, as shown in the first row in the “References”
column. In this way, we can derive all interactions between events and objects.

8.4.2 OCBC Performance Analysis Experiments

In this section, we employ the OCBC performance analysis approach to analyze
the data set introduced in Section 8.4.1. We use the OCBC model in Figure 8.21 to
present the performance information. The cardinalities on the class relationships
and AOC relationships are hidden for simplicity, as they are not related to the
performance analysis.

Based on the model, we extract six correlation patterns (P1, P2,..., P6) as
shown in Table 8.6 (using function extP in Chapter 6). For example, P1 is an
extracted pattern, in which “create order” (co) is the reference activity, “create
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create 
payment

create 
invoice

create 
order

create 
shipment

order lineorder
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element
relation

shipment
line

payment
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shipmentinvoice
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r3

r4

r5 r6r7

r8
r9r10

aoc1 aoc2 aoc3 aoc4 aoc5 aoc6 aoc7 aoc8

con2con1 con3

Figure 8.21: An OCBC model for presenting performacne information.

invoice” (ci) is the target activity and the class relationship r 8 serves as the
intermediary to connect these two activities.

Pattern
Reference Target

Intermediary
Instances

activity activity Instance1 Instance2 Instance3

P1 co ci r8 〈co1,ci 1,ci 2〉 〈co2,ci 2,ci 3〉 -
P2 ci co r8 〈co1,ci 1〉 〈co1,co2,ci 2〉 〈co2,ci 3〉
P3 co cs ol 〈co1,cs1,cs2〉 〈co2,cs3〉 -
P4 cs co ol 〈co1,cs1〉 〈co1,cs2〉 〈co2,cs3〉
P5 ci cp r2 〈ci 1,cp1〉 〈ci 2,cp1〉 〈ci 3,cp2〉
P6 cp ci r2 〈ci 1,ci 2,cp1〉 〈ci 3,cp2〉 -

Table 8.6: Extracted correlation patterns and corresponding instances.

For each pattern, instances can be derived based on the data set in Table 8.5.
Table 8.6 presents instances of all correlation patterns. Note that the real input
for our performance analysis approach is an XOC log rather than an object-centric
event data set. In an XOC log, each event has a corresponding object model to
indicate the state of the database after the event. As the events in Table 8.5 do
not remove objects, the object model corresponding to each event is a subset
of the object model in the “Object Model” column. In other words, the “Object
Model” column contains all objects observed in the process and it is not necessary
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to rebuild the object model for each event. In this case, the object-centric event
data can be considered as a simplified XOC log, which has enough information
to generate instances for each pattern.

Pattern Absolute Duration Relative Duration Precedence
Average Deviation Maximum Minimum Ave Var Max Min ratio

P1 8d2h30m1s 2d13h24m5s 9d21h55m4s 6d7h4m59s 1.0 0.85 1.0 1.0 0
P2 6d17h13m17s 3d0h9m47s 9d21h55m4s 3d22h39m50s 0.83 1.0 1.0 0.62 1.0
P3 5d12h17m51s 0d12h9m40s 5d20h53m49s 5d3h41m54s 0.68 0.17 0.59 0.82 0
P4 4d16h32m53s 1d11h16m16s 5d20h53m49s 3d1h2m58s 0.58 0.49 0.59 0.48 1.0
P5 4d10h10m17s 1d16h34m1s 6d7h12m46s 3d0h30m30s 0.57 0.56 0.64 0.48 0
P6 4d15h51m38s 2d7h39m8s 6d7h12m46s 3d0h30m30s 0.55 0.77 0.64 0.48 1.0

Table 8.7: Durations for different patterns.

After recognizing instances for each pattern, we compute instance durations
as shown in Table 8.7, based on the timestamps in the “Timestamp” column
in Table 8.5. The average and deviation of instance durations are computed
based on the method in Definition 8.2. Besides, we also identify the maximal
and minimal durations for each pattern. Consider for example the pattern P1.
The average duration is 8 days and 2 hours, and the deviation is 2 days and 13
hours. In all individual instance durations, the longest one takes 9 days and 21
hours, and the shortest one takes 6 days and 7 hours. By comparing the absolute
durations of all patterns, the relative durations are derived based on the method
in Definition 8.3. Note that the durations in Table 8.7 are total durations, and the
“Precedence ratio” column indicates how much the precedence duration occupies
in its corresponding total duration.

Figure 8.22 shows the performance information after projecting various
durations in Table 8.7 onto the OCBC model in Figure 8.21. Note that for
simplicity only the behavioral perspective of the OCBC model is presented. Based
on the graphs, the performance of the whole process can be visualized intuitively.
The numbers in parenthesis represent the absolute durations, the colors of
edges indicate the relative durations, and the positions of white dots show the
precedence ratios. Consider for example the pattern P1 in the “average” view to
understand how to interpret the performance information:

• The darkest color indicates that P1 consumes the longest time during all
patterns.

• The position of the white dot means that all target events (i.e., “create
invoice” events) happen after the corresponding reference events (i.e.,
“create order” events).

• The number on the edge shows that on average a customer waits 8 days
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Figure 8.22: Projecting different durations onto OCBC models (only the behavioral per-
spectives of the OCBC model are shown for simplicity).

and 2 hours to receive all invoices from the company.3

In addition to the “average” view, other views can also provide significant
insights. For instance, as shown in the “deviation” view P1 has the largest
deviation, i.e., the durations between orders and invoices change a lot for
different orders. In contrast, P3 has the smallest deviation, i.e., the waiting
times for customers to receive shipments are stable. For the detected bottleneck,
we can zoom in on its corresponding pattern instances with dotted charts and
column charts for further analysis. As the data set is simple, here we do not
present this part of the experiment.

After analyzing the time perspective, we shift to the frequency perspective.
Figure 8.23 shows the frequencies of all elements in the OCBC model. As we can
see in the model, “shipment line” is the most frequent class in all classes, which
means that “shipment line” has the most objects observed in the process. On
the behavioral perspective, activities “create invoice” and “create shipment” are
more frequent than other activities. In real applications, a manager could assign
more staff for these frequent activities.

3It is “all invoices” as durations are computed with the“longest” method by default. In contrast, it
would be the “first invoice” if durations were computed with the“shortest” method.
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Figure 8.23: Projecting frequencies onto the OCBC model and highlighting frequent
elements.

8.4.3 Comparison of Existing Process Analysis Tools

In Section 8.4.2, we applied the OCBC performance analysis approach to a data
set from the OTC scenario in Dolibarr. In this section, other already existing
process analysis approaches and tools are used on the same data set to derive
performance results.

Based on the data set in Table 8.5, an XES log is extracted as shown in
Figure 8.24. Note that the XES log has (i) convergence problems, e.g., ci 2 is
contained by two cases as if it is executed twice though it is performed only once
in Dolibarr, and (ii) divergence problems, e.g., in case case2 “create payment”
has two instances cp1 and cp2 which cannot be distinguished within the case,
although they are performed on different documents in Dolibarr (i.e., cp1 is on
ci 2 and cp2 is on ci 3).

Figure 8.25(a) presents the performance analysis result on the frequency per-
spective derived by Disco. More precisely, all frequency information is projected
onto a DFG, which is discovered based on the directly-follow relations in the XES
log. The numbers on the edges and nodes indicate the frequencies of relations
and activities, respectively. For example, activity “create shipment” is observed
three times, and “create invoice” is directly followed by “create payment” twice
in the log. Note that some frequency information is not precise. For instance,
“create invoice” happens 4 times which violate the reality, i.e., 3 times as shown in
Table 8.5. Moreover, the DFG shows a misleading edge from “create payment” to
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Figure 8.24: The XES log extracted from the data in Table 8.5.

“create invoice”, since all “create payment” events happen after the corresponding
“create invoice” events in real OTC processes. Note that these problems arise due
to the convergence and divergence problems in the log. Disco is showing the
right model given the flattened event log. In other words, the problems cannot
be solved if XES logs are used as input for the tool.

Figure 8.25(b) presents the time information on the DFG. In the experiment,
we choose “Mean duration” for the performance analysis, i.e., the numbers on
the edges indicate the average times between activities. The interpretation of the
numbers is simple and precise, in the situation with only one-to-one relationships
between activities. For instance, “3.5 d” on the edge from “create invoice” to
“create payment” means that after an invoice, on average we need to wait 3.5 days
to receive the corresponding payment. However, if there are multiple payments
for one invoice and multiple invoices for one payment (i.e., many-to-many
relationship), the numbers are misleading and difficult to interpret (the 3.5 days
are based on the two times that “create invoice” and “create payment” appear
directly after one another in one of the cases). For instance, “3.5 d” can mean
that after 3.5 days the first (or the last) payment for an invoice is received, when
considering the invoice as reference. Besides, “3.5 d” can also be interpreted
as that the time between the first invoice (or last invoice) and a payment is 3.5
days, when considering the payment as reference. Apparently, more than four
interpretations can be made for the same number, which decreases the value of
the insights. Traditional process discovery techniques showing frequencies and
delays (like in Figure 8.25), face the following problems:

• Not all useful information is employed to compute times. After investigating
how Disco computes the times for relations, we found that 3.5 days are the
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(a) frequency perspective (b) time perspective

Figure 8.25: Analyzing the performance based on the log in Figure 8.24 with Disco.

average of the time between ci 2 and cp1 (4 days) and the time between
ci 3 and cp2 (3 days). In other words, it only considers the times between
directly linked events. Therefore, the time between ci 2 and cp1 is discarded
since they are not next to each other.

• Interesting times can be missing. If two activities are not observed next to
each other in the log, e.g., “create order” and “create payment”, there is
no edge and time between them. In practice, users may be interesting in
this time. A method to derive the time is to choose a path between them
and sum all times on the path. However, the result with this method is not
precise, as multiple paths can exist between two activities and the results
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derived based on them can be quite different.
• Times can provide misleading insights. In the discovered DFG, the edges

may conflict with real processes due to the convergence and divergence
problems in logs. Accordingly, the times on these edges do not provide
real insights. For instance, based on the number “46 hrs” on the edge from
“create payment” to “create invoice”, we can not claim that one customer
receives a new invoice after he pays the last invoice.

(a) frequency perspective (b) time perspective

Figure 8.26: Analyzing the performance based on the log in Figure 8.24 with Celonis
Process Mining.

We also used Celonis Process Mining (Version 4.0) to analyze the performance
on the frequency perspective, resulting in the graph in Figure 8.26(a). All the
activities have the same frequency, i.e., 2, which is inconsistent with the real
frequency in the log in Figure 8.24. For instance, “create shipment” is observed
3 times, as shown in Table 8.5. The number on the edge from “create shipment”
to “create invoice” is 1. However, this should be 2 since “create shipment” is
directly followed by “create invoice” twice in the log. Figure 8.25(b) reveals
the performance on the time perspective. The numbers on edges indicate the
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average times between activities. In general, the derived graphs in Figure 8.26
are similar to the DFGs in Figure 8.25. They have the same nodes and edges,
and slightly different numbers for frequencies and times. They suffer the same
problems explained above for Disco.

Figure 8.27 displays a discovered Petri net with the Inductive visual Miner
[79], setting parameters “activities” as 1 and “paths” as 1 (i.e., no filtering at all).
The graph contains a lot of edges (and loops), and frequencies and times are
presented on edges and nodes. The frequency number on an edge indicates the
number of times the edge is visited by tokens. The frequencies of activities are
indicated by the number of the entering (or exiting) edges. Besides, the numbers
(on activities) correspond to sojourn times. Sojourn time is the sum of waiting
time (the time between an activity becoming enabled and a resource starting
to execute it) and service time (the time a resource is busy with a task). Since
events in the log only have one lifecycle (rather than pairs of start and complete),
the service time is zero. In other words, the sojourn time here represents the
waiting time.

create shipment

3d 16:11:54

create invoice

3d 01:33:06

create payment

3d 00:47:25

Figure 8.27: Analyzing the performance based on the log in Figure 8.24 with Inductive
visual Miner (setting parameters “activities” as 1 and “paths” as 1).

Note that the times used to annotate the Petri net are more related to tokens
rather than real waiting times between activities (i.e., different from the waiting
times explained in a DFG). Consider for example the time tcs on the “create
shipment” activity, i.e., 3 days and 16 hours. It is the average of (i) the time t1
(3 days and 1 hour, between co1 and cs1), (ii) the time t2 (2 days and 2 hours,
between cs1 and cs2) and (iii) the time t3 (5 days and 21 hours, between co2
and cs3). According to the definition of the waiting time on Petri nets, t1, t2 and
t3 correspond to times between activity “create shipment” becoming enabled and
a “create shipment” event happening. Note that based on the Petri net, activity
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“create shipment” is enabled when a “create order” event, a “create payment”
event or a “create shipment” event happens. t1 and t3 correspond to the times
between a “create order” event and a “create shipment” event. In contrast, t2
corresponds the time between a “create shipment” event and another “create
shipment” event. Therefore, the time tcs cannot be interpreted as the waiting
time between activities, such that after an order, a customer waits 3 days and 16
hours to receive the shipments. It reflects the waiting time related to resources,
e.g., a shipment is ready to be created but it has to wait 3 days and 16 hours,
because the resource is busy with other shipments.

create payment

3d 11:39:03
create invoice

8d 02:30:01

create shipment

5d 12:17:51

Figure 8.28: Analyzing the performance based on the log in Figure 8.24 with Inductive
visual Miner (setting parameters “activities” as 1 and “paths” as 0.2).

As sojourn times are related to the structure of Petri nets, they will change
when projecting the same log onto different Petri nets derived with different
parameters. For instance, Figure 8.28 shows a discovered Petri net setting
parameters “activities” as 1 and “paths” as 0.2. In this case, the discovered graph
is simpler, as the filtering technique is employed. Note that the time on the
“create shipment” activity is 5 days and 12 hours, which is quite different from
the time (3 days and 16 hours) in Figure 8.27. The fact that performance result
changes when setting different parameters makes the times on Petri nets more
difficult to understand for users. Intuitively, the times, i.e., the performance
result, should be consistent when users just want to get a brief view by filtering.

In comparison, the results derived by our OCBC performance analysis ap-
proach shown in Figure 8.22 and Figure 8.23 can more precisely reflect the real
performance for the data set (with one-to-many and many-to-many relationships)
in Figure 8.20. On the behavioral perspective, the performance information on
the OCBC model presents frequencies of all elements and highlights the frequent
parts. On the time perspective, the bottlenecks of the process are detected, and
the derived times (i.e., durations) can be precisely interpreted as insights, which
are easy to understand for users.



8.5 Related Work 313

8.5 Related Work

Process mining techniques do not only discover process models and check con-
formance, but they also analyze performance of business processes. In this
section, we review already existing performance analysis approaches in process
mining [101].

Various approaches exist to analyze performance based on event logs. Most
related to the first part of this chapter is the so-called dotted chart provides a
helicopter view of an event log, which presents the performance on the frequency
and time perspectives [130,136]. More precisely, in a dotted chart each event
is depicted as a dot in a two dimensional panel, where the horizontal axis
represents the time of the event and the vertical axis represents the class of the
event. By choosing different classes (e.g., attributes) as the vertical axis, we can
analyze the performance from different perspectives. For instance, setting the
vertical axis as cases, the dotted chart depicts the events of a case (along with
time) in each row and provides some indicators related to cases, such as the
average duration, the maximal duration and the minimal duration of cases. The
dotted chart can be seen as an example of a visual analytics technique which
leverages on the remarkable capabilities of humans to visually identify patterns,
trends and irregularities in large datasets.

Most techniques provide performance information projected onto process
models. In [147], an approach is proposed to obtain performance information
by replaying a timed event log (i.e., an event log with timestamp information)
on a workflow net (which is discovered from the log). This approach successfully
obtains performance information of several time dimension metrics, such as flow
times, waiting times, service times, synchronization times, etc. Consider two
subsequent events e1 and e2, where e1 is of activity a and happens at “23-11-
2011 15:56” and e2 is of activity b and happens at “23-11-2011 16:20”. If b is
causally dependent on a, we record a time of 24 minutes in-between a and b.
By repeatedly measuring such time differences during replay, we can compute
the average time that elapses in-between a and b. Unfortunately, this approach
requires that the log fits the model perfectly, i.e., each case in the log should be
a model instance. When the event log does not totally consist with the model,
techniques for conformance checking, i.e., alignment, can be employed to align
event log and model [137]. Moreover, [64] introduced an approach by enabling
invisible transitions to fire such that the log does not have to fit the model.

Another highly related approach to performance analysis is based on Fuzzy
models as proposed in [56]. [133] proposed a clustering algorithm to discover a
Fuzzy model which only contains a limited set of nodes and edges. Based on the
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model, two different ways were presented to project performance information
onto it. As the model has relaxed semantics, the routing of activities needs to be
estimated from encountered events in the event logs. For this purpose, a dedi-
cated/relaxed log replay technique was developed for Fuzzy models [2]. Using
these performance projections, one can gain insights of the process performance
in an intuitive way.

However, none of the models (i.e., Petri nets and Fuzzy models) involved in
the above approaches can handle processes that contain complex control flow
dependencies such as cancellation, multiple concurrent instances, and advanced
synchronization. They are thus insufficient to carry out performance analysis of
processes which need such features. The YAWL language [145] was proposed to
model the well-known workflow patterns, which supports complex control flow
constructs such as multiple instances, cancellation regions and OR-joins. [116]
demonstrated how performance analysis can be done for processes modeled in
the YAWL language with such advanced concepts.

Often business process performance of a specific activity, case, or entire pro-
cess highly depends on the context. For example, preceding activities, involved
resources and their workload, or even the weather can have a big effect on per-
formance. [85] presented a new methodological approach to identify the effect
of contextual factors on performance in terms of processing time. This approach
facilitates detecting impacted activities, i.e., activities within a business process
that are indeed dependent on the context. [63] introduced a novel approach to
analyze key process performance indicators by considering the process context.
Each process entity was assigned a descriptive context label. Statistical hypoth-
esis testing was used to verify whether a context label explains a significant
difference in performance. Using this technique, the effect of any context on
KPIs can be automatically analyzed and insights can be gained on root causes
for delays, bottlenecks, deviations to protocol and violations of service level
agreements, etc.

Most business process performance approaches offer various views showing
the performance of a process over a given period of time, without considering
how performance changes over time. [106] presented an approach to analyze
the evolution of process performance via a notion of Staged Process Flow (SPF),
which abstracts a business process as a series of queues corresponding to stages.
If one knows how the temporal performance of a process evolves over a given
period of time, he/she can take measures to avoid the possible bottlenecks. For
instance, assuming that a bank manager knows how the waiting times in a loan
application process evolved over the past month, he/she can adjust the resource
allocation policies so as to minimize the effects of bottlenecks.
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In real applications, most event logs only record either the start or the
completion times of events, such that only the transition times between events are
available and waiting or service times are not readily available. [108] proposed a
novel method of estimating the average latent waiting and service times from the
transition times, based on the optimization of the likelihood of the probabilistic
model with expectation and maximization (EM) algorithms.

Next to the process mining techniques explained above, very few techniques
are available to project performance information onto discovered process models.
[64] compared the commercial process monitoring tools, which showed that (i)
performance values are either measured based on a user-defined process model
directly linking events in the log to parts of the model or (ii) they are measured
totally independent from process models.

8.6 Summary

In this chapter, we analyzed the performance of artifact-centric business processes
based on XOC logs and OCBC models. As OCBC models are more powerful to
describe these processes, our approach can avoid the convergence and divergence
problems when correlating events in the situation with one-to-many and many-
to-many relationships, and derive precise performance analysis result.

Besides, the performance result is naturally displayed in one single diagram
and bottlenecks are visualized intuitively. From the time perspective, we employ
dotted charts and column charts to present the performance in more detail. Based
on the defined indicators such as durations of pattern instances, the bottlenecks of
the process are visualized intuitively after computing all durations and projecting
them onto the model. From the frequency perspective, we compute the absolute
and relative frequencies of each element in an OCBC model, and project this
frequency information onto the model to highlight the “highways” of the process.

As OCBC models correlate events and analyze performance based on individ-
ual correlation patterns rather than the whole process, the performance analysis
on the whole model can be split into independent smaller tasks for all correlation
patterns. Based on this idea, users can implement customized performance
analysis. If one has the knowledge to identify the interesting parts of the process,
he/she can only compute the performance for the patterns involved in these
parts to decrease the running time.

The limitation of our performance analysis is that it is time-consuming when
the model is complex and there is no knowledge to identify some interesting
correlation patterns, i.e., we have to compute the performance for all patterns.
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Fortunately, as the whole performance analysis can be split into independent
smaller tasks, the time-consuming problem can be solved by computing the
smaller tasks with parallel techniques. This is a promising direction of future
work.

Another future work could be correlating performance to the data perspective.
In this chapter, performance is only computed for the behavioral perspective,
e.g., the time it takes to deliver the goods after placing the respective order. As
OCBC models and XOC logs support the data perspective as a first-class citizen,
it is possible to link the performance result to objects, which can indicate the
root cause of bottlenecks. For instance, a very long delivery time can be related
to an order, a customer or a supplier, and the reason can be derived based on
these objects, e.g., the order contains too many products, the customer lives too
far away or the supplier is unreliable.



Chapter 9
Case Study of Stack Exchange

Up to now, we have introduced all OCBC techniques, such as model discovery,
conformance checking and performance analysis. In this chapter, we present a
case study based on a real-life data set from a Question & Answer website Stack
Exchange, in which we show how these techniques are used in practice.

This chapter is organized as follows. In Section 9.1 we introduce the Stack
Exchange website. Section 9.2 describes the data set and how to extract the raw
data. Section 9.3 presents how to parse the data set, i.e., import the data set into
database tables, and extract XOC logs from them. Based on the extracted logs,
we discover OCBC models in Section 9.4. Taking an XOC log and an OCBC model
as input, Section 9.5 checks conformance and Section 9.6 analyzes performance,
respectively. Finally, Section 9.7 summarizes this chapter.

9.1 Introduction of Stack Exchange

Stack Exchange is a very popular Question & Answer internet community and a
large repository of valuable knowledge. It has 174 child websites (counted on
January 15, 2019), covering a wide variety of topics ranging from programming
to cooking. Stack Overflow is a well-known child website of Stack Exchange,
focusing on programming. Figure 9.1 shows some example topics, such as “Stack
Overflow” and “Server Fault”. Each topic is represented by a message box, whose
size indicates the number of questions related to the topic. Table 9.1 lists some
children websites, each of which corresponds to a particular topic. More precisely,
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the “#Question” column indicates the number of questions and the “Start time”
column indicates the time when the first question was posted.

Name Description Start time Website

Stack Overflow for programmers 2008-07-31 stackoverflow.com
Mathematics studying math at any level 2010-03-27 math.stackexchange.com
Ask Ubuntu for Ubuntu users and developers 2009-01-08 askubuntu.com
Artificial Intelligence artificial intelligence 2016-08-02 ai.stackexchange.com

Table 9.1: Details of some example child websites of Stack Exchange.

Figure 9.1: The topics in Stack Exchange.

Stack Exchange serves as a platform for users to ask and answer questions
on emerging topics: users are expected to ask questions with simple factual
answers and discussions are discouraged [29]. Besides, users can vote up or



9.1 Introduction of Stack Exchange 319

question

answer

vote

selected
answer

comment

user

badge

tag

Figure 9.2: The interface of the Stack Exchange website.

down, comment and edit questions and answers in a way similar to a wiki or
Digg. Figure 9.2 shows the interface of the website and the involved elements
are explained as follows:

• Question. The top part in the red square corresponds to the question.
• Comment. The middle part in the orange square refers to a comment.
• Answer. The bottom part in the blue square is an answer to the question.

An answer can be identified as the “selected answer” by the user who posts
the question, if he/she considers that the answer is the most relevant to
the question. A question can have only one “selected answer”, indicated by
a check mark.

• Tag. A tag is a word or phrase that describes the key content of the question.
Tags sort questions into specific and well-defined categories, in order to
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connect questions with experts who are able to answer these questions.
• Vote. Users can vote up or down questions and answers. The number (e.g.,

32) indicates the score of a question or an answer, derived by subtracting
the count of “down” votes from the count of “up” votes.

• User. People who want to post in the website must register as users. The
user who posts a question or answer is shown under the question or answer.

• Badge. Stack Exchange is a free service and users are not compensated for
their services. However, users can earn reputation points and “badges” for
their valued contributions. For example, a user is awarded 10 reputation
points for receiving an “up” vote on an answer.

Figure 9.3: The Stack Exchange Data Dump.
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9.2 Description of Data Set

Stack Exchange publishes its data regularly, in the form of a so-called Stack
Exchange Data Dump. This enables access to historical data of Stack Exchange
[29].

Figure 9.3 shows the interface where one can download the data dump. The
time in the orange square indicates when the data dump is published. The
paragraph in the blue square describes the data dump, i.e., it is an anonymized
dump of all user-contributed content on the Stack Exchange network. The
whole data dump consists of a bunch of children data sets, which are listed
in the red square in Figure 9.3, and each of them corresponds to a topic, e.g.,
“ai.stackexchange.com.7z” corresponds to the “Artificial Intelligence” topic.

The data set used for our case study is a part of the data dump published on
September 5th, 2018, corresponding to the “Artificial Intelligence” topic. It is
formatted as a separate archive consisting of XML files zipped via 7-zip using
bzip2 compression. After decompressing the 7-zip package, we derive eight files,
“Badges.xml”, “Comments.xml”, “PostHistory.xml”, “PostLinks.xml”, “Posts.xml”,
“Tags.xml”, “Users.xml” and “Votes.xml”, as shown in Table 9.2.

Name Description #Instances Size Start time End time

Badges.xml badges assigned to users 14,515 1,592 KB 2016-08-02 2018-09-02
Comments.xml comments for posts 7,102 2,308 KB 2016-08-02 2018-09-01
PostHistory.xml histories of posts 17,246 15,095 KB 2016-08-02 2018-09-02
PostLinks.xml links between posts 302 33 KB 2016-08-02 2018-08-31
Posts.xml posted questions and answers 5,760 9,117 KB 2016-08-02 2018-09-01
Tags.xml tags attached on the questions 287 24 KB - -
Users.xml users registered in the website 15,541 6,770 KB 2016-08-02 2018-09-02
Votes.xml votes for posts 22,338 1,979 KB 2016-08-02 2018-09-02

Table 9.2: Statistics of the data set corresponding to the “Artificial Intelligence” topic in
Stack Exchange.

In other words, Table 9.2 provides a complete trace of all the actions on the
“Artificial Intelligence” website of Stack Exchange for almost two years, i.e., from
“2016-08-02” (when the website was founded) to “2018-09-02”. The “#Instance”
column indicates the count of instances for each file. For instance, there are
15,541 users in the “Users.xml” file. The “Start time” and “End time” columns
show the earliest and latest timestamps found in each file, respectively, and
their values are left empty when there is no timestamp column in the file, e.g.,
“Tags.xml”.

Each file in Table 9.2 consists of a set of rows and each row corresponds to an
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Figure 9.4: A fragment of the “Badges.xml” file.

instance which records all related attribute values. Figure 9.4 shows a fragment
of the “Badges.xml” file. The first row corresponds to a badge instance which
was created at “2016-08-02T15:38:29.913”. The id of the badge is “1” and it
was given to a user whose id is “4”. The name of the badge is “Informed”, which
indicates the level of the badge.

9.3 XOC Log Extraction

Section 9.2 described the data set derived from the Stack Exchange website. In
this section, we extract XOC logs from the data set. As previously mentioned, the
data set consists of eight XML files. Therefore, we must first parse and import
them into database tables in order to be able to perform the log extraction.

In our case study, the key task is to explore the relations between questions
and answers, thus the raw data must be parsed according to this goal. However,
there are no explicit questions and answers in the raw data, since both questions
and answers are considered as posts, stored in the same file “Posts.xml”. In order
to get event logs containing objects and events related to questions and answers,
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the posts need to be separated into two categories: questions and answers. We
would like to have a separate class for questions and a class for answers.

Value Name Semantics #Instances

1 Question the post is a question 2,152
2 Answer the post is a question 3,129
3 Wiki the post is a community wiki 0
4 TagWikiExcerpt the post holds the tag excerpt for a tag 238
5 TagWiki the post holds the wiki text for a tag 238

6 ModeratorNomination
the post holds a nomination text pro-
vided by a moderator candidate

0

7 WikiPlaceholder
the post holds the text in the modera-
tor election

3

8 PrivilegeWiki
the post is posted by a user who has a
privilege

0

Table 9.3: The values and semantics of the attribute “PostTypeId” in the “Posts.xml” file.

Each post in the file “Posts.xml” has an attribute “PostTypeId”, which has one
of the eight different values shown in Table 9.3, indicating the type of the post.
For instance, a post is considered as a question/answer if it has the value “1”/“2”
for the attribute “PostTypeId”. The “#Instances” column indicates the counts
of posts of different types. For example, there are 2,152 questions and 3,129
answers, which cover the most posts. There are 479 posts of other types, which
are excluded in the case study. In summary, we import questions and answers
into “question” and “answer” tables, respectively, as shown in Table 9.4, and
filter out other posts.

Similarly, we also need to separate comments into “question comments” and
“answer comments”, since all of them are stored in the same file “Comments.xml”.
As each comment refers to a question or answer through the attribute “postid”,
the “postid” value can be used for the separation. More precisely, if the “postid”
value of a comment is the id of a particular question/answer, it is imported
into the “question_comment”/“answer_comment” table. By applying the same
method to the “Votes.xml” files, we derive another two tables “question_vote”
and “answer_vote”. Besides, the “User.xml”, “Badge.xml”, “PostHistory.xml”,
“Tag.xml” and “PostLinks.xml” files result in the “user”, “badge”, “history”, “tag”
and “post_link” tables, respectively.

Table 9.4 provides an overview of the eleven tables derived from the eight
XML files in Table 9.2. The “Source file” column indicates the file where the table
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Index Name Description Source file #Records Class

1 question posted questions Posts.xml 2,152 question
2 answer posted answers Posts.xml 3,129 answer
3 question_comment comments of questions Comments.xml 3,803 q_comment
4 answer_comment comments of answers Comments.xml 3,299 a_comment
5 question_vote votes of questions Votes.xml 11,051 q_vote
6 answer_vote votes of answers Votes.xml 8,705 a_vote
7 user registered users Users.xml 15,541 user
8 badge badges of users Badges.xml 14,515 badge
9 history operations on posts PostHistory.xml 17,246 history
10 tag tags of questions Tags.xml 287 -
11 post_link links between posts PostLinks.xml 302 -

Table 9.4: Derived tables by parsing XML files in Table 9.2.

is extracted while the “#Records” column shows the number of records in each
table. In order to extract XOC logs, we assign a class to each table, for example,
the “question_comment” table corresponds to the “q_comment” class. Note that
since the “tag” and “post_link” tables have few records, we do not assign classes
to them, and so they are excluded in the case study.

Based on the common knowledge in terms of the relations between tables
[103], Figure 9.5 presents the data schema of the derived tables shown in
Table 9.4. “question” table has a foreign key “FK1” (corresponding to the
“owneruserid” column) which references the primary key “PK” (corresponding to
the “id” column) of the “user” table. Note that the table “history” has multiple
foreign keys, where “FK1” references to “PK” in the “question” table, “FK2”
references to “PK” in the “user” table and “FK3” references to “PK” in the “answer”
table.

The records in the tables explained above can be transformed into objects,
in other words, into the data perspective of the resulting XOC logs. From this
perspective, a “badge” record in the “badge” table with an id of “1” can be
transformed into an object of class “badge” with an id of “badge1”. In addition
to objects, it is possible to extract events from the database tables, forming the
behavioral perspective of the resulting XOC logs. The idea is to consider the
timestamp columns in tables as activities. The “badge” table has a timestamp
column “date” (corresponding to the timestamp attribute “Date” in the file
“Badge.xml” in Figure 9.4), which can be considered as an activity “get_badge”.
To summarize the process, Table 9.5 shows twelve possible activities derived
from the database tables.

After mapping timestamp columns into activities, events can be extracted
from database tables. Based on the key relations, we can derive the reference rela-
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Figure 9.5: The data schema of the derived database tables shown in Table 9.4.

tions between events and objects/records. The value “2016-08-02T15:38:29.913”
in the first record of “badge” table (corresponding to the first row in the file
“Badge.xml” in Figure 9.4) can be transformed into a “get_badge” event which
happened at 15:38:29 on August 2nd, 2016 and refers to the object “badge1”.

Up to now, we finished parsing the data set from the Stack Exchange website
and extracting XOC logs from it. The extracted logs are used for analysis in the
next sections. Models can be discovered as a result from this analysis, and to
understand this output in an easy way we could filter out some activities when
extracting a specific XOC log. The column “Included in log” in Table 9.5 is used
for this purpose, i.e., when it is set to “No”, the event will not be included in the
extracted log. In the example in Table 9.5, four different events will be filtered
out: “access_last”, “close_question”, “edit_question_last”, and “edit_answer_last”.
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Index Table Timestamp column Activity Included in log

1 user creation_date register Yes
2 user last_access_date access_last No
3 question creation_date post_question Yes
4 question close_date close_question No
5 question last_edit_date edit_question_last No
6 answer creation_date post_answer Yes
7 answer last_edit_answer edit_answer_last No
8 question_comment creation_date make_question_comment Yes
9 answer_comment creation_date make_answer_comment Yes

10 question_vote creation_date vote_for_question Yes
11 answer_vote creation_date vote_for_answer Yes
12 badge date get_badge Yes

Table 9.5: Mapping between activities and table columns

Note that it is also possible to filter based on the extracted XOC logs. However,
the beforehand filtering can decrease the time used for extracting XOC logs.

9.4 OCBC Model Discovery

Taking the XOC logs generated in Section 9.3 as input, we discover OCBC models
in this section, and in addition, we investigate the distribution of cardinality
constraints. Note that with different parameters, the discovery technique can
return different models. Here, we require the discovery technique to return a
model where (i) its fitness is 1, (ii) it only contains positive behavioral constraints
and (iii) the discovered cardinalities are normalized (cf. Chapter 6). Note that
the above setting just discovers a model to provide some basic insights. It is
possible to discover a model using other parameters or repair the discovered
model based on known knowledge (cf. Section 9.5).

Figure 9.6 shows the discovered OCBC model based on the requirements
mentioned above. In a single diagram the data and behavioral or control-
flow perspectives are described (bottom and top, respectively), as well as the
interplay between them (middle). It clearly reveals the involved classes (e.g.,
“question”), activities (e.g., “post_question”) and constraints in the Question &
Answer process in the Stack Exchange website, which is explained next.

The main task of the class model discovery (cf. Chapter 6) is to derive
the cardinality constraints on the relation between classes. By taking r 6 as an
example, the cardinality constraint 21 is discovered at its “question” side. It
means that each answer always corresponds to precisely one question. Actually,
the cardinality constraint ♦1 is also discovered, which means that each answer
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Figure 9.6: The discovered OCBC model which describes the Question & Answer process
in the Stack Exchange website.

eventually corresponds to precisely one question. It is omitted in Figure 9.6 since
it is implied by 21. Similarly, 2∗ and ♦∗ are discovered at the “answer” side on
r 6 where ♦∗ is also omitted. They indicate that each question can correspond to
any number of questions.

The panel shown in Figure 9.7 presents the distribution for the discovered
cardinality constraints on class relationships. Diagrams simply show the dis-
tribution of the cardinalities of r 6, taking question as a reference. There are
four drop-down menus at the top of the panel, which are used to configure the
distribution. In Figure 9.7, reference value is set as “question”, target as “answer”
and relation as “question-parentid-answer” (corresponding to r 6). It means that
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Figure 9.7: This diagram shows the distribution of the cardinalities 2∗ of r 6, taking
question as a reference. It indicates how many answers a question gets. The
bar corresponding to the value “1” means that there are almost 1000 questions
that received one answer.

the distribution corresponds to the cardinality constraint 2∗ at the “answer” side
on r 6. In other words, the distribution presents the relation between the number
of answers and questions. As the object model evolves over time, accordingly
the distribution changes in different object models. The value in the “moment”
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drop-down menu indicates the time (represented by an event) for the presented
distribution. Each bar has a cardinality number beneath it, indicating the fre-
quency of questions that have a particular number of answers. By looking at the
first three bars, one can see that approx 400+1000+450=1850 questions have
up to 2 answers.

The discovered behavioral constraints between activities in Figure 9.6 specify
the temporal restrictions on the behavioral perspective. For example, the “unary-
precedence” constraint between “register” and “post_question” activities indicates
that someone is only able to post questions in the website after registering
himself as a user. All these behavioral constraints describe the control-flow in
a declarative manner. More precisely, after being registered, a user can post a
question, and only then the question can be answered, commented or voted.
Similarly, the provided answer can also be commented or voted. Besides, it is
possible to get a badge based on one’s activities.

In addition to discovering all behavioral constraints to describe the control-
flow, our approach can also provide the cardinality numbers distribution of
precedence/response target events in terms of a correlation pattern, by using the
panel in Figure 9.8. The reference, target and intermediary drop-down menus in
the panel indicate the reference activity, target activity and intermediary of the
correlation pattern, respectively. In Figure 9.8 the reference activity is “register”,
the target activity is “post_question” and the intermediary is “user-owneruserid-
question” (corresponding to the class relation r 1). By default, the distribution
is for all reference events, in this case for all “register” events. It is possible
to inspect the distribution for a particular reference event by setting specific
instance values on the drop-down menu displayed in Figure 9.8.

The discovered AOC relationships between activities and classes describe the
constraints between events and objects. Here, all the discovered cardinalities on
the relationships are 21 and 1, which indicate the one-to-one relation between
events and objects. Thus, in the example, one “register” event corresponds to a
“user” object and vice versa.

9.5 OCBC Conformance Checking

The OCBC model discovered in Section 9.4 describes how the Stack Exchange
website is operated. However, the real actions may not be entirely consistent
with the expected scenario. In this section, we repair the discovered model based
on domain knowledge, such that it can be used as a reference model to check
conformance.
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blue bars correspond to the response cardinalities. For instance, the second
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Figure 9.9: The discovered model is repaired to serve as the reference model for confor-
mance checking. We add an eventually cardinality ♦1..∗ to r 6, a behavioral
constraint between “get_badge” and “register”, and an AOC relationship
between “close_question” and “question”.

In the discovery process, we configured the requirement for fitness as 1,
resulting in a model that totally fits the event log. However, the discovered
model is not precise in some parts, allowing some unexpected actions to be
executed. Based on assumptions derived according to our understanding of the
website, some constraints of the discovered model in Figure 9.6 are strengthened,
resulting in the reference model depicted in Figure 9.9. The assumptions and
strengthened constraints are explained as follows:

• In a normal situation, we require that each question eventually has at least
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one corresponding answer, indicated by ♦1..∗ of r 6 in Figure 9.9. This
requirement is reasonable since the motivation of the website is to post
questions and get answers. In other words, we consider the questions
without answers as deviations.

• A posted question can be closed if the question is duplicated or of bad
quality. The questions that are closed eventually harm the development of
the Stack Exchange website, and the website wants to avoid this situation.
Based on this knowledge, a question is considered as a deviation if it
has a corresponding “close_question” event. Therefore, we add an AOC
relationship between the activity “close_question” and the class “question”

Figure 9.10: Conformance checking results projected onto the OCBC model.
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with a cardinality 20 on the activity side in Figure 9.9. In this way, we also
test if we can check the conformance in terms of negative constraints.

• The users registered in the website are expected to get badges by being
active in posting questions, answers or comments. Thus we add a “response”
constraint between “register” and “get_badge” activities in Figure 9.9.

In order to improve the readability of the reference model, we remove the
class “q_comment”, the activity “make_question_comment” and the involved
constraints. Taking the OCBC model in Figure 9.9 and XOC logs extracted
in Section 9.3 as input, we check the conformance between them and detect
deviations (cf. Chapter 7). The diagnosis result is presented in three views: the
model view shown in Figure 9.10, the type view shown in Figure 9.11, and the
log view shown in Figure 9.12. In general, the model view provides a helicopter
view of the conformance checking result, the type view lists deviations (grouped
by types), and the log view supports inspecting deviating objects.

Deviations with respect to the behavioral perspective. In the model view, the
“response” constraint between “register” and “get_badge” is highlighted in red,

Figure 9.11: Conformance checking results showing different types of deviations.
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which indicates that some “register” events are violating this constraint. In the
type view, the violated constraints and corresponding deviating events are listed
in the “output:deviations” panel. The details of the events and constraints are
presented by the “input: XOC log” and “input: OCBC model” panels, respectively.
For instance, events “register25” and “register96” are listed, which violate the
constraint with an id of “213”. By checking the information in the right panel,
the constraint is a “response” constraint between “register” and “get_badge”.

Deviations with respect to the data perspective. In the model view, the ♦1..∗ on
the class relation between “question” and “answer” classes is highlighted in red,
which indicates that some “question” objects eventually have no corresponding
“answer” objects. All the deviating “question” objects are listed in the type
view after clicking the “fulfillment” tab. The log view supports inspecting the
deviating objects and their corresponding objects at each moment, i.e., in each

Figure 9.12: Conformance checking results projected onto the XOC log.
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object model. Figure 9.12 shows the object model corresponding to the event
“get_badge15774”. The deviating object “question82” is highlighted in red, since
it has no related “answer” objects. Indicated by the yellow lines, it only has one
related “user” object and two related “vote” objects.

Deviations related to the interactions between two perspectives. In the model
view, 20 and ♦0 on the AOC relation between “close_question” and “question”
are highlighted in red, which indicates that some “question” objects are violating
the AOC relationship. In the type view, we can use the “events per object” tab
to inspect the deviating “question” objects. For instance, “question7” is listed
in the “output:deviations” panel since it has a corresponding “close_question”
event, which violates the rule that a question should always and eventually has
0 corresponding “close_question” event (indicated by 20 and ♦0).

9.6 OCBC Performance Analysis

Next, we analyze the performance based on the XOC log extracted in Section 9.3
and the OCBC model in Figure 9.6.

In our approach, the performance analysis of the whole model is split into
several independent views based on selected correlation patterns (cf. Chapter 8).
Therefore, we first extract correlation patterns from the OCBC model in Figure 9.6
(using function extP in Chapter 6), resulting in the fourteen patterns presented
in Table 9.6. For example, P1 is an extracted pattern, in which “register” is the
reference activity, “get_badge” is the target activity and the class relationship
r1 serves as the intermediary to connect these two activities. For each pattern,
some instances can be derived from the XOC log, and each instance contains a
reference event and a set of target events correlated to the reference event by
the pattern.

In real applications, it is not necessary to analyze performance for all patterns
if the most relevant ones are already known. In the case study of Stack Exchange,
the pattern “P5” is one of the most interesting patterns based on common
knowledge. For “P5”, “post_question” is the reference activity and “post_answer”
is the target activity. These two activities are the most important activities in
Stack Exchange, since the motivation of the website is providing answers to
questions posted by users. Therefore, pattern “P5” appears to be the obvious
choice to serve as an example to present our performance analysis result.

Figure 9.13 employs the dotted chart to present the performance analysis
result for the pattern “P5”. The Y axis indicates that there are almost 2,150
instances while the X axis indicates that events in these instances happened from
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Pattern Reference activity Target activity Intermediary

P1 register get_badge r1
P2 get_badge register r1
P3 register post_question r2
P4 post_question register r2
P5 post_question post_answer r6
P6 post_answer post_question r6
P7 post_question make_question_comment r4
P8 make_question_comment post_question r4
P9 post_question vote_for_question r7
P10 vote_for_question post_question r7
P11 post_answer make_answer_comment r9
P12 make_answer_comment post_answer r9
P13 post_answer vote_for_answer r10
P14 vote_for_answer post_answer r10

Table 9.6: Correlation patterns extracted from the OCBC model in Figure 9.6.

August, 2016 to September, 2018. Each instance corresponds to a row in the
dotted chart, which contains a “post_question” event, represented by the green
dot, and a set of “post_answer” events, represented by the red dots. By using the
results presented by the dotted chart, we can infer some insights explained as
follows:

• Questions may have long life cycles. In other words, answers are still
received even a long time after the original question creation. This is indi-
cated by the red dots which have long distances from their corresponding
green dots.

• The instances are sorted by timestamp. More precisely, the instances at
the top of the dotted chart contain questions and answers posted at the
moment the website was founded, while the instances at the bottom of
the dotted chart contain questions and answers posted more recently. One
can see that the density of the red dots is getting high from top to bottom.
It indicates that the website is becoming more popular and active, since
questions are answered more frequently.

• There is an explosion of questions and answers just after the website was
founded-right after the website release (from August, 2016 to September,
2016), a quite steep green line curve and dense red dots can be noticed.
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Figure 9.13: The performance analysis result corresponding to pattern “P5”, presented by
the dotted chart in the absolute time.

Then the curve goes gently from September, 2016 and becomes steeper in
the latest half year (from March, 2018 to September, 2018). A reasonable
explanation for this curve behavior is that at the beginning, the website
invited some professional people to post questions and provide answers.
When the website started to get on the correct track, these invited people
stopped posting, leading to fewer questions and answers. In the latest half
year, the website became more popular, leading to more questions and
answers.
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Figure 9.14: The performance analysis result corresponding to pattern “P5”, presented by
the dotted chart in the relative time.

Figure 9.13 is based on the absolute time to present the performance result.
It is possible to view the result from other angles, such as the one shown in
Figure 9.14. This chart provides the performance result in the relative time, by
aligning all reference events, i.e., “post_question” events, with the value 0 of the
relative time. According to the aligned dotted chart, we can derive some more
insights explained as follows:

• All “post_answer” events happen after corresponding “post_question” events-
in each row all red dots are placed after the green dot.

• Most answers are provided in a short time period (less than one day) after
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the corresponding questions are posted-the dense red dots just after the
green dots indicate this.

In addition to dotted charts, our approach can also provide some statistics/-
metrics, to reflect the performance. For example, we can consider the time period
from the moment that a question is posted to the moment that the last answer
corresponding to the question is given as the “question duration” of the instance
which contains the question. In terms of the “question duration”, the instance
〈post_question109,post_answer7587〉 has the longest duration: 743 days, 4 hours,
16 minutes and 1 second. The event “post_question109” posted a question with
title “Can rule induction be considered a way to hybridize probabilistic/statistical
approaches and symbolic approaches?” on August 2rd, 2016. The question was
answered on August 15th, 2018, corresponding to the event “post_answer7587”.
By searching the question online and investigating why the question has a long
life cycle, we found that the question was edited on April 14, 2018. A possible
explanation is that the modification of the question improves the quality and
“revive” the question.

Interestingly, we found the shortest duration is 0. For example, the instance
〈post_question1429,post_answer1430〉 has a duration of 0. The event “post_ques-
tion1429” posted the question “How machine learning can help with sustainable
development and biological conservation?” on August 7th, 2016. It was an-
swered (corresponding to the event “post_answer1430”) at the same time. By
searching the question online and investigating why the question was answer
without any delay, we found that the question and answer were given by the
same user. Actually, the question was a scheduled question rather than a real-
istic question. The user already knew the answer and he wanted to post some
knowledge in the website by this question.

Metric Average Deviation Maximum Minimum

question duration 43d6h8m17s - 743d4h16m1s 0s
answer duration 26d8h18m40s - 738d3h48m54s 0s

length 2.45 1.33 14 1

Table 9.7: Values of some example metrics.

In addition to the metric related to a single instance, there are other metrics
that can be used to summarize the performance on a higher level. For instance,
the average value for the instance duration is 43 days, 6 hours, 8 minutes and
17 seconds. It indicates that a question is valid or alive (i.e., it can get answers)
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for 43 days on average after it is posted. Table 9.7 shows more metrics to reflect
the performance, where “answer duration” means the time period between the
first answer and the last answer while the “length” means the number of events
in an instance.

9.7 Summary

In this chapter, we discussed a case study based on a real-life data set from the
Stack Exchange website. Based on domain knowledge about data schema and
activities, we parsed the data set and extracted XOC logs, which were taken as
input to implement OCBC techniques.

Using discovery technique, an OCBC was discovered to describe how the
Question & Answer process is operated in the website. By repairing some
constraints in the discovered model and considering it as the reference model,
conformance was checked to detect deviations, such as questions without any
answers. At last, performance was analyzed for an example pattern involved
“post_question” and “post_answer” activities, which provided some insights on the
time perspective, e.g., most answers are given in one day after the corresponding
questions are posted.

The case study shows that the OCBC techniques can be applied to real-life
data and provide novel insights.



Chapter 10
Conclusions and Future Work

This chapter concludes the thesis. In Section 10.1 the main contributions of this
thesis are summarized. Section 10.2 discusses the limitations and open problems.
Finally, we propose some ideas for future work in Section 10.3.

10.1 Contributions of the Thesis

In this thesis, we proposed a range of techniques for analyzing business processes
in artifact-centric information systems. These techniques are all based on Object-
Centric Behavioral Constraint (OCBC) models. In general, our work covers
most types of process mining, i.e., extracting event logs from execution data,
discovering models from event logs, and checking conformance and analyzing
performance based on logs and models.

The XOC log format to organize data and the OCBC models to describe busi-
ness processes form the cornerstones of our research. Several novel techniques
were created to derive insights, which are summarized as follows:

XOC event logs and extraction. Chapter 3 defined the notion of object-
centric event data to abstract the data generated by artifact-centric information
systems. Such data are different from case-centric event data and have their
own features. In order to organize such data, Chapter 4 introduced the XOC
log format which does not require the case notion. Besides, an approach was
proposed to automatically extract XOC logs from object-centric event data.

OCBC models and discovery. Chapter 5 illustrated the OCBC models by
explaining all the involved elements: the data perspective, e.g., classes; the
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behavioral perspective, e.g., activities; and then the AOC relationships combining
the first two. Chapter 6 presented approaches to automatically discover OCBC
models from XOC logs. First, a basic approach was illustrated to discover models
from clean logs. Then, a more robust discovery approach was proposed to deal
with noise in real life data.

OCBC conformance checking. Based on an XOC log and a manually de-
signed or discovered OCBC model, Chapter 7 showed techniques to diagnose the
conformance between them. By taking the data perspective into consideration, it
is possible to detect and diagnose a range of conformance problems that would
have remained undetected by conventional approaches. The diagnostic results
(i.e., deviations related to the behavioral perspective, data perspective and inter-
actions) were present in three different views: rule view, log view, and model
view. Besides, metrics such as fitness, precision and generalization were defined
to quantify the degree of conformance.

OCBC performance analysis. Chapter 8 analyzed the performance in terms
of frequencies and times by taking an XOC log and an OCBC model as input. In
order to show performance results from different angles, (dotted and column)
charts, and indicators were used. With the obtained results in hands, it was
possible to map them onto the model, and from this step important bottlenecks
could be revealed.

Case study using real life data. To link all techniques in a consistent manner,
in Chapter 9 a case study showed how OCBC techniques can be applied to real-life
data.

10.2 Limitations

The thesis provides a range of OCBC/XOC-based techniques supporting the differ-
ent types of process mining. Despite the broad coverage of process mining there
are several known limitations. In this section, these limitations are discussed
making clear that by addressing them the OCBC techniques would become more
stable and complete.

Domain knowledge. In Chapter 4, we presented how XOC logs can be extracted
from database tables and change logs (such as redo logs and change tables).
The events can be derived from database changes recorded in the change logs,
and this is done by using domain knowledge to identify the activities of events.
Besides, it is possible to extract events from timestamp columns in database
tables. In this situation, the domain knowledge is also required when identifying



10.3 Future Work 343

the activities of events, e.g., the events corresponding to the “creation_date”
column in the “order” table are “create order” events. In summary, and as a
rule of thumb, the domain knowledge must be used and considered as a direct
dependency when identifying activities of events during the log extraction. For
instance, we can consider column names as activities, which are not intuitive
and risky (since different tables can have the same column name).

Model Complexity. An OCBC model consists of activities, classes and various
constraints. However, as the number of activities and classes increases, the
complexity of the corresponding model can rise, decreasing its readability. OCBC
models tend to be larger and more complex, since they include both behavioral
and data perspectives (while most other models only include the behavioral
perspective), which increases the model complexity.

Large scale data. The input data for OCBC techniques from databases (of
artifact-centric information systems) can be very large. As a result, the current
OCBC techniques still need to be improved to deal with the big data topic. In
its current state, the performance analysis is time-consuming when the model
is complex and there is no knowledge to identify some interesting correlation
patterns, i.e., we have to compute the performance for all patterns.

A website providing various OCBC software. In order to apply OCBC tech-
niques, we built a website (https://www.win.tue.nl/ocbc/) to present the in-
volved software in this thesis. Moreover, this website also offers manuals to
introduce software and example data for experiments.

10.3 Future Work

This final section sketches ideas for further research in OCBC techniques that
extend beyond the scope of this thesis.

Attribute level. In Chapter 5, the semantics of constraints in OCBC models
are defined on the entity level. For instance, an AOC relationship between the
activity “create order” and the class “order” specifies the correspondence between
“create order” events and “order” objects. It is possible to intensify the semantics
by incorporating the attribute level. As a result, the AOC relationship can also
indicate the correspondence between “create order” event attributes and “order”
object attributes. In Chapter 7, the conformance diagnosis reveals the deviations
about the instances on the entities level, i.e., events and objects. Similarly, it
is also possible to check conformance on the attribute level, i.e., taking into
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consideration the attribute values.

Semantics and reasoning on OCBC models. Crucial reasoning tasks that exist
for Declare and the like (such as consistency, dead activities, etc.) are not
discussed in the context of OCBC models in this thesis, which may lead to
potential problems. For instance, when dealing with noise, it is well known that
as soon as constraints with support less than 100% are retained, the algorithm
could produce a final inconsistent model [38]. In future, these tasks should be
taken into consideration to make our techniques more robust.

Model patterns. It is possible to identify typical behavioral patterns that involve
multiple instances or interaction between structure and behavior. Along this
line, we plan to study the effect of introducing subtyping in the data model,
a constraint present in all data modeling approaches. The interplay between
behavioral constraints and subtyping gives rise to other interesting behavioral
patterns. For example, implicit choices may be introduced through subtyping.
Consider a response constraint pointing to a payment class with two subclasses
credit card payment and cash payment. Whenever the response constraint is
activated and a payment is expected, such an obligation can be fulfilled by either
paying via cash or credit card.

Distributed processing. It is promising to relate process mining to Big Data
technologies. In order to solve the limitations of OCBC techniques when dealing
with large scale data, we can investigate how to incorporate the parallel comput-
ing approaches into these techniques. For instance, since OCBC models correlate
events and analyze performance based on individual correlation patterns rather
than the whole process, the performance analysis on the whole model can be
split into independent smaller tasks for all correlation patterns. Based on this
idea, parallel computing approaches can be employed to execute the indepen-
dent tasks and integrate the results onto the whole OCBC model. Similarly, the
parallel manner can be also applied to log extraction and model discovery.
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Summary

Process Mining based on Object-Centric Behavioral Constraint (OCBC)
Models

In today’s world, enterprises are using information systems to support the
execution of their business processes. The amount of data being stored about
process executions is rapidly growing. Process mining appears to leverage exe-
cution data to analyze the business processes executed on information systems.
Existing process mining techniques make a fundamental assumption about pro-
cesses: process models and event logs assume the presence of a well-defined
case notion. This implies that each event refers to a case and that the model
describes the life-cycle of cases. This assumption is consistent with case-centric
information systems. However, most information systems one encounters in
enterprises nowadays are artifact-centric, which do not assume a case notion
in their business processes. Such differences lead to problems when applying
existing process mining techniques, e.g., it is difficult to identify the case notion
for the whole process, and the many-to-many relations cannot be well described.

In this thesis, we addressed these problems by proposing a series of process
mining techniques based on a novel type of models, i.e., Object-Centric Behav-
ioral Constraint (OCBC) Models. An OCBC model combines data/object models
(ER, UML, or ORM) and declarative models (Declare), which can describe both
data and behavioral perspectives of business processes in one single diagram.
Based on the model, various techniques ranging from event log extraction to
performance analysis were created, which are summarized as follows.

The data generated by artifact-centric information systems are different from
case-centric event data and have their own features. Therefore, Chapter 3 defines
the notion of object-centric event data to represent the data from artifact-centric
systems. Subsequently, Chapter 4 introduces the XOC log format, which can
better cater to data from artifact-centric systems, and gives an approach to
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automatically extract XOC logs from object-centric event data.
Chapter 5 illustrates the novel OCBC modeling language by explaining all the

involved elements. The data perspective (e.g., classes) is first explained, followed
by the behavioral perspective (e.g., activities). Then these two perspectives are
combined, resulting in an OCBC model. Chapter 6 presents approaches to
automatically discover OCBC models from XOC logs. First, a basic approach is
illustrated to discover models from clean logs. Then, a more robust discovery
approach is proposed to deal with noise in real life data.

Based on an XOC log and a manually designed or discovered OCBC model,
Chapter 7 shows techniques to diagnose the conformance between them. By
taking the data perspective into consideration, it is possible to detect and diag-
nose a range of conformance problems that would have remained undetected
by conventional approaches. Besides, metrics such as fitness, precision and
generalization are defined to quantify the degree of conformance. Chapter 8
analyzes the performance in terms of frequencies and times by taking an XOC
log and an OCBC model as input. In order to show performance results from
different angles, (dotted and column) charts, and indicators are used. With the
obtained results in hands, it is possible to map them onto the model, and from
this step important bottlenecks could be revealed.

Finally, Chapter 9 presents a case study to apply the proposed techniques to
real-life data. It shows the methodology to link all techniques in a consistent
manner. Subsequently, Chapter 10 summarizes this thesis by discussing contribu-
tions and limitations. Besides, it also sketches ideas for further research in OCBC
techniques.
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