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A Data Rate Constrained Observer for Discrete Nonlinear Systems

Quentin Voortman, Alexander Yu. Pogromsky, Alexey S. Matveev and Henk Nijmeijer

Abstract— In this paper, we develop a communication pro-
tocol for the observation of discrete time, possibly unstable,
dynamical systems over communication channels with limited
communication capacity. We develop an observer based on
the upper box dimension for one-way communication channels
that leads to a certain type of observability. This communi-
cation scheme preserves observability under communication
losses which makes the communication scheme robust towards
communication losses without feedback in the communication
channel. Using Lyapunov-like techniques, we provide bounds
on the minimum communication rate required to implement
this observer. We also use the Lyapunov dimension to provide
analytical upper bounds on the communication rate. We com-
pute an analytical upper bound and an exact expression for the
Lyapunov dimension of the smoothened Lozi map. This bound
is then tested in simulations of the communication protocol for
the observation problem of the smoothened Lozi map.

I. INTRODUCTION

In the past two decades, a lot of attention has been given
to the problem of controlling dynamical systems with limited
data-rates. This problem finds widespread applications in
many different real-world systems as communication through
wireless technologies is applied more and more. Systems
where sensors, controllers and actuators are located at sepa-
rate locations and connected through channels with limited
communication capacity are becoming more common. For
some of these decentralized systems, such as cooperative
driving of wirelessly connected vehicles, the core features are
the presence of one or several channels through which only
limited amounts of data can pass, along with one or several
sources of uncertainty. The sources of uncertainty can most
generally be split up into three categories: uncertainties on
the system parameters, uncertainties in the initial condition
and stochasticity of the communication channel. Finding
efficient communication strategies to minimize the required
communication rate is a key component to solving the
associated control and estimation problems.

In terms of control theory, there are two main problems:
the design of observers and the control of systems with data-
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rate constraints. Most of the early work (see e.g. [10] and
references therein), focused on the linear case for which most
variants of the problem have been studied. An overview of
the techniques and results that have been obtained for the
linear case has been made in [22], [4] and [1].

More recently, the focus shifted towards nonlinear sys-
tems. Some early results for specific systems were ob-
tained in [7] and [3]. More general results were obtained
in [23] where the concept of feedback entropy was used
to obtain specific data-rates and in [17], where, through a
generalization of techniques that were initially conceived for
linear systems, general data-rates were obtained for nonlinear
system. The concept of feedback entropy, which was proven
to be essentially equivalent to the invariance entropy [14][6],
has been used in many different ways to provide tighter
upper- and lower-bounds on the communication rates for
dynamical systems (see [20], [15], [26], [18], and [25]) while
other papers focus on passivity-based techniques to obtain
relevant results [12].

In this paper, we use yet another approach, which fo-
cuses on set dimensions. To quantify the dimension of
sets, mappings and dynamical systems, there exist many
different methods. Two important characteristics for sets are
the Hausdorf dimension [8] and the box dimension [11],
which is also known as the limit capacity [28]. Both of
these characteristics are related to the covering of sets with
infinitesimally small balls and can take non-integer values for
particular sets such as fractal sets and attractors of dynamical
systems. The difficulty of using these dimensions is that it
can often not be computed analytically and one has to employ
numerical methods to obtain estimates of the dimension
(see e.g. [27]). Another solution is to use the Lyapunov
dimension which upper bounds the two previous dimensions
[13]. The advantage of the Lyapunov dimension resides in
the fact that it can be computed analytically by using the
second Lyapunov method (see [5] and [16]), which leads to
analytical bounds.

We focus on the problem of building an observer in a non-
classical sense. We will sometimes refer to this observer as
a communication scheme. This observer is made up of a
coder, a channel with limited communication capacity, and
a decoder. The objective is to design the observer such that
it has some robustness towards communication losses. It is
often the case in real-world applications that losses occur
over the communication channel and the goal of our design is
that the communication scheme functions in the presence of
losses on one-way channels, i.e. channels without feedback
in the communication channel. The main contribution of this
paper is an observer which needs limited data-rates and is



robust towards communication losses, without any feedback
in the communication channel.

In Section II, we define the settings of the problem as
well as the notion of observability that we want the observer
to achieve. In Section III, we present the communication
scheme and give a bound on the required communication
rate in terms of the largest Lyapunov exponent and the upper
box dimension. In Section IV, we provide analytical upper
bounds on the communication rate through the Lyapunov
dimension. Finally, in Section V, we apply the theory to the
smoothened Lozi map, for which we compute the Lyapunov
dimension and simulate the communication scheme.

II. PROBLEM STATEMENT

We consider nonlinear discrete-time time-invariant dynam-
ical systems in the following form

x(t +1) = ϕ(x(t)), t ≥ 0, x(0) ∈ K, (1)

where x(t) is the state, ϕ : Rn→Rn, and K ⊂Rn is a set of
feasible initial states. We define

ϕ
t(·) = ϕ(. . .ϕ(·))︸ ︷︷ ︸

t times

.

In the following text, we will sometimes use the following
notation to refer to the dynamical system {ϕ t}t≥0. The
objective of the observer, is to construct estimates of the state
at a remote location that can only receive limited amounts of
information per unit of time. The information is transmitted
over a one-way communication channel, characterized by an
upper bound on the number of bits that can be sent per unit
of time.

Definition 1: For any time interval of arbitrary duration r,
at most b+(r)< ∞ bits can be sent over the communication
channel. The upper bound on the number of bits that can be
sent per unit of time b+(r) verifies the following property

lim
r→∞

b+(r)
r

= c,

where c is called the channel rate.
As a part of the observer, we are interested in designing

a coder C and a decoder D that guarantee a certain type of
observability which we will define later on. Figure 1 shows
the system and the observer. The coder C and decoder D
generate the messages e(t) and estimates x̂(t) in the following
way

e(t) = C (x(t),ε), ∀t ∈ N, (2)
x̂(t) = D(x̂(t−1),e(t),ε), ∀t ∈ N, (3)

where ε is the anytime exactness of observation.

Fig. 1. Observer structure.

To quantify the precision of the estimate, we introduce the
notion of anytime exactness of observation.

Definition 2: For the observer (2), (3) ε > 0 is called the
anytime exactness of observation of the system (1) if the
following holds

‖x(t)− x̂(t)‖ ≤ ε, ∀t ∈ N.
Now that we have introduced the notion of anytime

exactness, we define the notion of observability that we will
use.

Definition 3: The system (1) is said to be observable via
a communication channel with a channel rate as defined in
Definition 1 if for any ε > 0, there exists an observer (2)-(3)
that observes the system (1) with anytime exactness ε .

III. THE OBSERVATION SCHEME

In this section, we focus on the design of a communication
scheme that guarantees the observability of the dynamical
system (1) over a communication channel. We also compute
the minimum communication rate required to implement the
communication scheme.

Although we interest ourselves to systems that are pos-
sibly unstable and highly nonlinear, we must assume some
regularity conditions on the set of initial conditions and the
mapping itself. We will thus make the following assumption

Assumption 1: The map ϕ is continuously differentiable.
The set K is compact and invariant with respect to the
mapping ϕ (K = ϕ(K)).

Please note that for the upcoming results in this document,
the three parts of the previous assumption are not always
simultaneously necessary. We have however chosen to bundle
these together as the goal of the present paper is not to be
as general as possible.

For convenience’s sake, we also define the following
notations

A(x) :=
∂ϕ

∂x
(x), A j(x) :=

∂ϕ j

∂x
(x).

In order to compute the communication rate required to use
our communication protocol, we will need an upper bound on
the largest Lyapunov exponent of the system. The following
assumption supposes that such an upper bound exists for our
system. In the following assumption, ∆v(x) = v(ϕ(x))−v(x).

Assumption 2: There exists a continuous and bounded on
K function v : Rn → R, constant Λ ≥ 0, and a symmetric
positive definite matrix P such that

∆v(x)+ log2 λ1(x)≤ Λ, ∀x ∈ K (4)

where log2 0 :=−∞ and λi(x) are the roots of the equation

det [A(x)ᵀPA(x)−λ (x)P] = 0, (5)

ordered from largest to smallest.
Together with the previously mentioned matrix P, we asso-
ciate an inner product 〈x,y〉P = xᵀPy and the norms ‖x‖P =√
〈x,x〉P, x ∈ Rn, ‖A‖P =

√
max‖x‖P=1 xᵀAᵀPAx, A ∈ Rn×n.

We also define σP
i (x) :=

√
λi(x), which will be referred to

as the P-generalized singular values of the matrix A(x).



The observer that we will introduce is based on the idea
of covering the attractor of our dynamical system with balls
of radius δ , where δ is chosen carefully. Our first lemma
establishes sufficient conditions on δ such that the image of
a ball of radius δ will be contained in a ball of radius at
most ε after a number of time steps k. In our first lemma,
we will use the following quantities

v̄ := max
x∈K
|v(x)|, ε̂ :=

ε

2v̄+1 ,

where v is taken from Assumption 2. Next, we define k,
which represents an upper bound on the number of time
steps that it takes for the mapping ϕ to map a ball of initial
radius δ onto a ball of radius ε̂ . For any given ε > 0 and for
any δ such that

ε̂

2
Λ

2
≥ δ > 0, (6)

we define

k :=
2(log2 ε̂− log2 δ )

Λ
, (7)

where Λ is taken from the Assumption 2. Note that (6)
implies that δ < ε and 1≤ k < ∞.

Lemma 1: Let Assumption 1 hold for ϕ . For any given
ε > 0, ∃δ ∗ > 0 such that ∀δ : 0 < δ ≤ δ ∗, ∀x(t), x̂(t) ∈ K
verifying the following condition

‖x̂(t)− x(t)‖P ≤ δ ,

the following is true∥∥ϕ
i(x̂(t))−ϕ

i(x(t))
∥∥

P ≤ ε, (8)

for all i≤ k where k is defined as in (7).
The proof of this lemma will be given in the full version of
this paper.

We now introduce our observer which is organized in
epochs of bkc+ 1 time steps, where b·c refers to the floor
function. In the following procedure, l represents the epoch
index. For any l and k, we have

tl := l(bkc+1), (9)
t̄l := l(bkc+1)+1, (10)
t̂l := l(bkc+1)+ bkc . (11)

We now define the coder/decoder scheme used to commu-
nicate over the communication channel.

Procedure 1: The communication scheme is made up of
the following steps

1) Initialization Step This step is made on the first time
period only (t = 0).

a) For any channel with rate c, and for any desired
anytime exactness ε , the coder and the decoder find
δ ∗ that satisfies both Lemma 1 as well as (6). They
then both choose an identical δ ≤ δ ∗ and construct
an identical finite covering of K with balls of radius
δ whose centers are {q j} = Q ⊂ Rn, where j is an
index which is identical for identical balls in both
coverings.

b) The epoch index is initialized l = 0.
2) Repeated Step, This step is repeated for every t ∈ N.

If t = tl ,
a) The coder computes the index j of the point closest

to x(t) in Q.
b) The coder sends the index j over the communication

channel.
c) The decoder assigns x̂(t) = q j.
d) The epoch index is increased by one. (l = l +1).
If t ∈ [t̄l , t̂l ],

a) the decoder computes x̂(t) = ϕ(x̂(t−1)).
Note that in step 1a of the Initialization Step, any δ

satisfying 0 < δ ≤ δ ∗ can be chosen. Lemma 1 and (6)
ensures that the communication scheme is always feasible
but gives no guarantees on the resulting communication rate.
If we are able to find a δ such that the actual data-rate is
below a certain threshold c, we will call the observer c-
feasible.

Definition 4: The observation scheme defined in Proce-
dure 1 is c-feasible for a system {ϕ t}t≥0 if the observer leads
to observability as defined in Definition 3 of the system over
a communication channel with communication rate c.

Our communication scheme possesses some robustness
towards communication losses. No feedback in the commu-
nication channel is required to recover from a communication
loss. If a communication loss occurs, the decoder is able to
reconstruct an estimate based only on the next message it
receives without needing the previous estimate neither any
additional information. This property is important to deal
with communication losses since it implies that as soon as the
decoder receives a message, we can guarantee δ -closeness
between the state and estimate. The recovery procedure thus
requires neither feedback in the communication channel nor
an increase of the communication rate.

To quantify the communication rate needed to make our
coder/decoder scheme feasible, we will need the upper box
dimension.

Definition 5: [11] The upper box dimension d̄B of a subset
S of Rn is given by

d̄B(S) = limsup
δ→0

logNδ (S)
− logδ

, (12)

where Nδ (S) is defined as any of the following equivalent
statements:

(i) The smallest number of closed balls of radius δ that
cover S.

(ii) The smallest number of cubes of side δ that cover S.
(iii) The number of δ -mesh cubes that intersect S.
(iv) The smallest number of sets of diameter at most δ that

cover S.
(v) The largest number of disjoint balls of radius δ with

centers in S.
The following theorem establishes a relationship between

the system and the rate required to observe the system over
a communication channel with the proposed communication
procedure. Λ is taken from Assumption 2 and d̄B(K) is the



upper box dimension of the set K. We are now ready to state
the first result of this paper.

Theorem 1: Provided that Assumptions 1, and 2 hold for a
system {ϕ t}t≥0, we have that for any communication channel
with rate c > Λd̄B(K)

2 , the proposed observation scheme is c-
feasible for that system.
The proof of this theorem will be provided in the full
version of this paper. The result of Theorem 1 can be
compared to other bounds that were previously obtained
in the literature. Compared to [18], where a rate of nL
is required (n being the dimension of the system, L the
global Lipschitz constant), our rate is better. Compared to
[24] in the case that there is a single unstable Lyapunov
exponent, the rate is worse by a factor of d̄B(K), but our
communication protocol presents robustness towards losses
in the communication channel, which is not the case for that
paper. Finally, we note that in [5], Corollary 6.2.1 provides an
estimate for the topological entropy which coincides with our
estimate under identical assumptions. We emphasize however
that the present observer is an improvement on their result
since we also take into account the robustness towards losses.

IV. AN ANALYTICAL UPPER BOUND ON THE
COMMUNICATION RATE

Now that it is proven that our communication scheme leads
to observability with a precisely defined rate, this section
is dedicated to providing an analytical upper bound on the
communication rate. The unknown component in our rate is
the upper box dimension d̄B(K). Computing the upper box
dimension of sets analytically is in general not feasible so
we will use results from [13], [5] and [16] to upper bound
d̄B(K) with the Lyapunov dimension. We will first provide
definitions for the Lyapunov dimension of a map in a point,
a map over a set, and a dynamical system. We will then
cite several theorems required to upper bound the upper
box dimension with the Lyapunov dimension. Next, we will
provide results that allow us to upper bound the Lyapunov
dimension analytically and sometimes compute it exactly.
The last part of this section is dedicated to providing the
analytical bound on the required communication rate. We
start by defining the following notation

σi(ϕ
j,x) = σi

(
∂ϕ j

∂x
(x)
)
, x ∈ K,

where σi(·) refers to the singular values of the matrix
(σi (A(x)) are positive numbers, equal to the square root
of the eigenvalues of A(x)∗A(x)). These singular values are
ordered, such that σ1 ≥ ·· · ≥ σn ≥ 0, ∀x∈K. We then define
the singular value function.

Definition 6: The singular value function of A j(x) of order
d ∈ [0,n] at x ∈ K is defined as

ωd
(
A j(x)

)
:=

1, d = 0,
σ1(ϕ

j,x) . . .σd(ϕ
j,x), d ∈ {1, ..,n},

σ1(ϕ
j,x) . . .σbdc+1(ϕ

j,x)d-bdc, d ∈ (0,n)\{1, ..,n-1}.

With the definition of the singular value function, we can
now define the local Lyapunov dimension of a map. The
following three definitions are taken from [16].

Definition 7: The local Lyapunov dimension of a contin-
uously differentiable map ϕ : Rn→ Rn at the point x ∈ K is
defined as

dL(ϕ,x) := sup{d ∈ [0,n] : ωd (A(x))≥ 1}.
This definition can be extended to the Lyapunov dimension

of a mapping of a set.
Definition 8: The Lyapunov dimension of a continuously

differentiable map ϕ :Rn→Rn of a compact set K is defined
as

dL(ϕ,K) := sup
x∈K

sup{d ∈ [0,n] : ωd (A(x))≥ 1}.
The final definition concerns the Lyapunov dimension of

a dynamical system {ϕ t}t≥0.
Definition 9: The Lyapunov dimension of a dynamical

system {ϕ t}t≥0 with respect to a compact invariant set K
is defined as

dL({ϕ t}t≥0,K) := inf
t>0

sup
x∈K

sup{d ∈ [0,n] : ωd
(
At(x)

)
≥ 1}.

We have to make one last assumption on the dynamical
system, in order to find an analytical upper bound on
the communication rate. This assumption, which is similar
to Assumption 2, will be used to compute the Lyapunov
dimension of the dynamical system. In the next assumption,
∆w(x) = w(ϕ(x))−w(x).

Assumption 3: Let d = j + s ∈ [1,n] where j = bdc ∈
{1, . . . ,n} and s = d−bdc ∈ [0,1). There exists a continuous
and bounded on K function w :Rn→R and a positive definite
symmetric matrix P such that

∆w(x)+
j

∑
i=1

log2 λi(x)+ s log2 λ j+1(x)< 0, ∀x ∈ K (13)

where the λi are solutions of (5).
To upper bound the communication rate, we will use the

following theorem and corollary.
Theorem 2: [13] Let Assumption 1 hold. Then

d̄B(K)≤ dL(ϕ,K).
Corollary 1: [13] Under the hypotheses of Theorem 2,

d̄B(K)≤ dL(ϕ
t ,K)

for all t ≥ 1.
The following theorem is a reformulation of Theorem 2

from [16].
Theorem 3: Suppose Assumption 3 holds with d = j+ s,

then for sufficiently large T > 0

dL({ϕ t}t≥0,K)≤ dL(ϕ
T ,K)≤ j+ s.

Due to the lack of space, the proof of this theorem is
ommitted from this document. It will be provided in the full
version of this paper.

Finally, to obtain an exact analytical expression for the
Lyapunov dimension of a dynamical system, the following
proposition, which is a reformulation of Proposition 3 and
Corollary 3 from [16], is useful.



Proposition 1: Suppose that at one of the equilibrium
points of the dynamical system {ϕ t}t≥0 : xeq ≡ ϕ t(xeq)
the matrix A(xeq) has the eigenvalues λ1(xeq), . . . ,λn(xeq).
Suppose there exists a non-singular matrix S such that

SA(xeq)S−1 = diag(λ1(xeq), . . . ,λn(xeq)) (14)

where |λ1(xeq)| ≥ · · · ≥ |λn(xeq)|. Let ϕS : w→ Sϕ(S−1w)
be the discrete mapping after the linear coordinate change.
Suppose that for s+ j as defined in Assumption 3, we have

dL(ϕS,Sxeq) = s+ j

then for any invariant set K 3 xeq of {ϕ t}t≥0 we have

dL({ϕ t}t≥0,K) = s+ j.
We are now ready to state the second result of this paper.

In the next theorem, Λ is taken from Assumption 2, and j
and s are taken from Assumption 3.

Theorem 4: Provided that Assumptions 1, 2, and 3, are
verified for a system {ϕ t}t≥0, we have that for any commu-
nication channel with rate c > Λ( j+s)

2 the observation scheme
is c-feasible for that system.

Proof: From Assumption 1, we have that the mapping
is C1 and that K is invariant under the map. We thus apply
Corollary 1 to obtain that

d̄B(K)≤ dL(ϕ
t ,K).

Since this is true for any t, it also holds for t = T from
Theorem 3. We thus obtain

d̄B(K)≤ j+ s. (15)

Finally, we use Proposition 1 together with (15) to prove the
theorem.

V. APPLICATION OF THE THEORY ON THE
(SMOOTHENED) LOZI MAP

In this section, we will compute the communication rate
for our coder/decoder scheme applied to the Lozi map ([19],
[9]). The Lozi map, which is a modification of the Hénon
map is a discrete-time system {ϕ t}t≥0, with

ϕ :
(

x1(t)
x2(t)

)
→
(

1−a|x1(t)|+bx2(t)
x1(t)

)
,

where a and b are positive constants. For parameters such
that 1+a−b > 0, the Lozi map has an equilibrium

x+ =

(
1

1+a−b
,

1
1+a−b

)
.

If, in addition, we have 1−a−b < 0, there exists a second
equilibrium

x− =

(
1

1−a−b
,

1
1−a−b

)
.

In this paper, we will assume that the latter is true. In that
case, both equilibria are unstable.

The Lozi map is only Lipschitz continuous and not C1

as required by the Assumption 1. We will thus consider

the following C1 approximation of the map that was first
introduced in [2].

ϕγ :
(

x1(t)
x2(t)

)
→
(

1−a fγ(x1(t))+bx2(t)
x1(t)

)
where

fγ(x) =

{
|x|, if |x| ≥ γ;

x2

2γ
+ γ

2 , if |x|< γ,

and γ is some relatively small constant. To ensure the exis-
tence of the two equilibria, one has to include the additional
constraint γ < (a+1−b)−1. We will thus make the following
assumption about the parameters.

Assumption 4: The following inequalities hold

a,b,γ > 0, 1−a < b < 1, γ < (a+1−b)−1.

Note that the inequality b < 1 is added to ensure that
dL{ϕ t}t≥0,K) < 2. In this context, we now compute the
Lyapunov dimension of the Lozi map.

Theorem 5: Let Assumption 4 hold. Then for any compact
invariant set K of the smoothened Lozi map ϕγ , the following
inequality holds

dL({ϕ t
γ}t≥0,K)≤ 2− log2 b

log2

(√
a2 +4b−a

)
−1

.

Moreover, if x+ ∈ K, the following holds

dL({ϕ t
γ}t≥0,K) = 2− log2 b

log2

(√
a2 +4b−a

)
−1

.

The proof of this theorem will be provided in the full version
of this paper.

Having found an upper bound for dB(K), we provide an
analytical bound for the communication rate required for our
coder/decoder scheme by using an estimate for Λ from [25].

Corollary 2: Suppose that Assumption 4 holds, let K be
the compact invariant set of {ϕ t

γ}t≥0 then, for any channel
with communication rate

c >

[
2log2

(√
a2+4b−a

2

)
− log2(b)

][
log2

(√
a2+4b+a

2

)]
log2

(√
a2+4b−a

2

) ,

the observation scheme is c-feasible for the smoothened Lozi
map.

Proof: To prove this, we borrow the result from
Theorem 13 from [25] to find Λ for Assumption 2. This
gives us that Assumption 2 holds with

Λ = 2log2

(√
a2 +4b+a

)
−2.

We then apply Theorem 4 to obtain the aforementioned
bound on c.

We have performed simulations to confirm the theoretical
uppper bound for several values of ε , the anytime exactness.



In [21] the following conditions for the presence of a strange
attractor in the Lozi system were established

0 < b < 1, (16)
a > 0, (17)

2a+b < 4, (18)

b <
a2−1
2a+1

, (19)

a
√

2 > b+2. (20)

Although these conditions do not imply that the smoothened
Lozi map will have a strange attractor, typical trajectories
for small γ display chaotic-like behavior for parameter in
those ranges. For the simulation, we have chosen to use the
set of parameters a = 1.7 and b = 0.3, γ = 10−5, which
verify (16)-(20) and Assumption 4. The strange attractor
was observed through simulations to be confined to the
region [−1.1,1.3]× [−1.1,1.3]. For this set of parameters,
Proposition 2 implies that the observation scheme is c-
feasible for the smoothened Lozi map for any c> 1.2013. We
have implemented the observation scheme for the following
set ε ∈ {0.5,0.2,0.1,0.05}. For each of different ε , we
summarize the number of points in the covering N, as well as
the resulting communication speed c∗ in Table I. We can see
that as ε becomes smaller, the actual communication rate
becomes higher although for all of these ε we manage to
find a covering that results in an effective communication
rate very close to or below c.

ε = 0.2 ε = 0.1 ε = 0.075 ε = 0.05
N [1] 1×106 2×106 2×107 3.5×107

c∗ [bits/s] 1.0924 1.1499 1.169431 1.212770

TABLE I
RESULTS OF THE SIMULATIONS ON THE SMOOTHENED LOZI SYSTEM.

VI. CONCLUSION

In this paper, we have developed a communication proto-
col made up of a coder/decoder scheme to observe discrete-
time dynamical systems with uncertainties over communica-
tion channels with losses. Using the upper box dimension,
we have proven that for any rate above Λd̄B

2 , we can build
such observers. We have also shown that we can provide
analytical upper bounds on this rate under certain conditions.
For the smoothened Lozi system, we have given an analytical
upper bound of the Lyapunov dimension of the dynamical
system. We have also provided an analytical upper bound
for the communication rate required to observe this system
with our coder/decoder scheme. Future extensions of this
work include other forms of uncertainty such as parametric
uncertainties and noise (both in the dynamical systems as on
the communication channel) as well as implementing this
communication scheme as a means to reach consensus for
several dynamical systems.
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