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A B S T R A C T

In this article, we present a formulation for the design of double freeform lens surfaces to control the intensity
distribution of a laser beam with plane wavefronts. Double freefrom surfaces are utilized to shape collimated
beams. Two different layouts of the freeform lens optical system are introduced, i.e., a single lens with double
freeform surfaces, and two separate lenses with two flat and two freeform surfaces. The freeform lens design
problem can be formulated as a Monge–Ampère type differential equation with transport boundary condition,
expressing conservation of energy combined with the law of refraction and the constraint imposed on the optical
path length between source and target planes. Numerical solutions are computed using a generalized least-squares
algorithm which is presented by Yadav et al. (2018). The algorithm is capable to compute two solutions of the
Monge–Ampère boundary value problem, corresponding to either c-convex or c-concave freeform surfaces for
both layouts. The freeform surfaces are validated for several numerical examples using a ray-tracer based on
Quasi-Monte Carlo simulation.

1. Introduction

Laser beam shaping is the art of controlling the energy (intensity)
distribution and/or the phase profile of the beam. The energy of a laser
beam usually varies like a Gaussian function with the distance from the
axis of symmetry. Many basic and industrial applications benefit from
the use of laser beams with a specific shape, such as semiconductor
lithography, laser printing, optical data processing, optical metrol-
ogy, microvia drilling in the manufacturing of printed wiring boards,
etc [1–4].

In illumination optics, freeform optical design problems are similar
to laser beam shaping techniques. Freeform optics concerns the com-
putation of optical surfaces that convert a given source distribution of
light into a desired target distribution. Freeform optics is trending more
and more in laser beam shaping due to its many degrees of freedom in
design that can be used to obtain compact and dedicated beam shapes.
In order to achieve an effective control on both the intensity distribution
and phase profile of the laser beam, at least two freeform surfaces are
needed [5,6].

In this article, we address the problem of collimated beam shap-
ing by computing double freeform surfaces in order to achieve good
control over the intensity distribution. We restrict ourselves to planar
wavefronts. The problem of collimated beam shaping has two different
layouts: one single lens with two freeform surfaces, and two separate
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(W.L. IJzerman).

lenses with two flat and two freeform surfaces. We will present an
efficient numerical method which can be employed to deal with both
layouts.

Applying the laws of geometrical optics, one can obtain the follow-
ing mathematical relation for the two freeform surfaces with parallel
ingoing and outgoing light rays, i.e.,

𝑢1(𝚡) + 𝑢2(𝚢) = 𝑐(𝚡, 𝚢), (1)

where 𝑢1(𝚡), (𝚡 ∈ ) and 𝑢2(𝚢), (𝚢 ∈  ) define the location and shape
of the freeform surfaces, with  and  the source and target domain,
respectively. The function 𝑐(𝚡, 𝚢) is referred to as the cost function
in optimal mass transport, and is in our application a non-quadratic
function in |𝚡 − 𝚢|, in short non-quadratic cost function. From this
relation (1) we can determine the optical map 𝒎 ∶  →  . Furthermore,
combined with energy conservation, relation (1) gives rise to a non-
standard Monge–Ampère type equation, subject to a transport boundary
condition.

There are several numerical methods available which can be em-
ployed to compute freeform surfaces of optical systems governed by
the standard Monge–Ampère equation corresponding to a quadratic
cost function [7–10]. However, numerical methods for freeform design
problems with a non-quadratic cost function are rare [5,11]. Recently,
some articles have been published on the design of double freeform
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surfaces with applications to beam shaping [12–16]. In [12,13], the
authors presented Monge–Ampère solvers to design double freeform
surfaces for the control of both the intensity distribution and phase
profile of a laser beam. They discretized the standard Monge–Ampère
equation using finite differences and solved the resulting nonlinear
algebraic system using Newton iteration. As initial guess for Newton
iteration, they use ray mapping method which is based on the quadratic
cost function. Alternatively, ray mapping methods to compute double
freeform surfaces are presented in [14–16]. These methods are two-stage
procedures: first the ray mapping between source and target domains is
calculated, and second, the freeform surfaces are computed iteratively
from the mapping.

We have introduced an extended least-squares method for the
Monge–Ampère equation with non-quadratic cost function describing
a freeform lens in [5]. We employ this least-squares method for our
laser beam shaping problem. The least-squares method is a two-stage
procedure. First, we compute the optical map in a least squares sense
from a constrained minimization problem for the energy balance, and
second, we compute the shape of the freeform surfaces from the mapping
and relation (1). The algorithm is very efficient and can handle very
complicated target distributions, and is also capable to provide two
solutions, one corresponding to c-convex and one to c-concave freeform
surfaces. Our algorithm is very generic, can be applied to compute
freeform surfaces of other optical systems governed by non-quadratic
cost function. Target distributions can be arbitrary and complex such as
image or far-field approximations [7,8]. Furthermore, the algorithm can
be useful for other applications of optimal transport, such as the design
of antennas or shape optimization [17,18].

We have organized our paper as follows. In Section 2 we give a
mathematical formulation of the freeform beam shaping design prob-
lem. A short overview of the proposed numerical method is presented
in Section 3. We apply the numerical method to two beam shaping test
problems in Section 4, and concluding remarks are given in Section 5.

2. Problem formulation

The optical system for freefrom lens design has two different layouts:
one single lens with two freeform surfaces, and two separate lenses
with altogether two freefrom surfaces. The geometrical structure of both
optical systems is shown schematically in Fig. 1. The source and target
are situated in a medium of refractive index 𝑛o (outer), and the refractive
index between the freefrom surfaces is 𝑛i (inner). If we choose 𝑛o = 1
and 𝑛i > 1 then Fig. 1 represents a single lens optical system with two
freeform surfaces, and for the choice 𝑛i = 1 and 𝑛o > 1 it represents two
separate lenses. Let (𝑥1, 𝑥2, 𝑧) ∈ R3 denote the Cartesian coordinates
with 𝑧 the horizontal coordinate and 𝚡 = (𝑥1, 𝑥2) ∈ R2 the coordinates
in the source plane 𝑧 = 0, denoted by 𝛼1, and let  be a bounded source
domain in the plane 𝛼1. The source  emits parallel light rays which
propagate in the positive 𝑧-direction. The exitance of the source is given
by 𝑓 (𝚡) [W∕m2], 𝚡 ∈ . The target at a distance 𝓁 > 0 from the plane 𝛼1
is denoted by  .

The ingoing light rays, starting in the medium of refractive index
𝑛o, are intercepted by the first lens surface 1, defined as the graph
of a function 𝑧 ≡ 𝑢1(𝚡), 𝚡 ∈ . The light rays are refracted off by the
first freefrom surface 1, and refracted off again by the second freefrom
surface 2, and form the output beam, which is required to have parallel
light rays in the positive 𝑧-direction. The second lens surface 2 is
defined as the graph of a function 𝑤 ≡ 𝓁 − 𝑧 = 𝑢2(𝚢), 𝚢 ∈  , where
𝚢 ≡ (𝑦1, 𝑦2) ∈ R2 are the Cartesian coordinates of the target plane 𝛼2.
After refraction at 2 the rays are again in the medium of refractive
index 𝑛o.

Our goal is to achieve the desired irradiance 𝑔(𝚢) [W∕m2] at the
target plane 𝛼2 ∶ 𝑧 = 𝓁 corresponding to a given exitance 𝑓 (𝚡), with
a planar wavefront, i.e., after two refractions the refracted rays must
form a parallel beam. We assume that both freefrom surfaces 1 and 2
are perfect lens surfaces and no energy is lost in the refraction.

Fig. 1. Sketch of a freeform lens optical system.

2.1. Ray map and optical surfaces

In this section, we first give an expression for the ray-trace map, and
second, we derive the mathematical relation (1) for the location of the
freeform surfaces using the laws of geometrical optics.

The mapping 𝒎 can be derived by tracing a typical ray through the
optical system. Let us consider a ray emitted from a position 𝚡 ∈  on
the source and propagating in the positive 𝑧-direction, let �̂� = �̂�𝑧 be
the unit direction of the incident ray. The ray strikes the first freeform
surface 1, refracts off in direction �̂�, strikes the second freeform surface
2, and refracts off, again in the direction �̂�. The unit surface normal of
the first freeform surface 1, directed towards the light source, is given
by

�̂�1 =
(∇𝑢1,−1)

√

|∇𝑢1|
2 + 1

. (2)

Throughout this article, we use the convention that a hat denotes a unit
vector. According to Snell’s law [19,20], the direction �̂� = �̂�(𝚡) of the
refracted ray can be expressed as

�̂� = 𝜂�̂� + 𝐹 (|∇𝑢1|; 𝜂)�̂�1, (3)

where 𝜂 = 𝑛o∕𝑛i is the ratio of the corresponding refractive indexes
and

𝐹 (𝑧; 𝜂) = 1
√

𝑧2 + 1

[

𝜂 −
√

1 + (1 − 𝜂2)𝑧2
]

. (4)

If we write �̂� = (𝑡1, 𝑡2, 𝑡3)𝑇 then the first two components of the vector �̂�,
can be written as a function of the third component:
(

𝑡1
𝑡2

)

= (𝜂 − 𝑡3)∇𝑢1. (5)

The image on the target screen of the point 𝚡 ∈  is the point 𝚢 ∈ 
under the ray trace map 𝒎, i.e., 𝚢 = 𝒎(𝚡). This map can be obtained by
the projection of �̂� on the plane 𝛼1, i.e.,

𝒎(𝚡) = 𝚡 +
(

𝑡1
𝑡2

)

𝑑(𝚡), (6)

where 𝑑(𝚡) is the distance between the freeform surfaces 1 and 2 along
the ray refracted in the direction �̂�(𝚡). The total optical path length 𝐿(𝚡)
corresponding to the ray emitted at a point 𝚡 ∈ , is given by

𝐿(𝚡) = 𝑛o𝑢1(𝚡) + 𝑛i𝑑(𝚡) + 𝑛o𝑢2(𝚢). (7)

The theorem of Malus and Dupin (the principle of equal optical path)
states that the total optical path length between any two orthogonal
wavefronts is the same for all rays [21, p.130]. As we deal with two
parallel beams, the wavefronts coincide with the planes 𝛼1 and 𝛼2.
Therefore, the total optical path length will be independent of the
position vector 𝚡, i.e., 𝐿(𝚡) = 𝐿. The horizontal distance 𝓁 between
the source and the target plane is given by

𝓁 = 𝑢1(𝚡) + (�̂� ⋅ �̂�)𝑑(𝚡) + 𝑢2(𝚢). (8)
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Combining Eqs. (3), (7) and (8), we obtain the following expression

𝑑(𝚡) =
𝛽

𝑛i − 𝑛o𝑡3
, (9)

where 𝛽 = 𝐿 − 𝑛o𝓁 is a constant. Note that 𝛽 < 0 is possible if 𝑛o > 1,
i.e., for the second layout (two lenses), whereas for the first layout
(single lens) 𝛽 > 0. Substituting (5) and (9) in (6), we have

𝒎(𝚡) = 𝚡 +
𝛽
𝑛i

𝜂 − 𝑡3
1 − 𝜂𝑡3

∇𝑢1. (10)

Substituting 𝑡3 in the above equation from the law of refraction (3), the
mapping 𝒎 is given by the relation

𝒎(𝚡) = 𝚡 −
𝛽
𝑛i

∇𝑢1(𝚡)
√

1 + (1 − 𝜂2)|∇𝑢1|
2
. (11)

Next, we derive relation (1) for the location of the freeform surfaces.
An alternative expression for the distance 𝑑 reads

𝑑2 =
(

𝓁 − 𝑢1(𝚡) − 𝑢2(𝚢)
)2 + |𝚡 − 𝚢|2. (12)

Thus, from Eqs. (7) and (12), we obtain

𝑛2i
(

𝓁 − 𝑢1(𝚡) − 𝑢2(𝚢)
)2 + 𝑛2i |𝚡 − 𝚢|2 =

(

𝐿 − 𝑛o𝑢1(𝚡) − 𝑛o𝑢2(𝚢)
)2,

which can be rewritten as
[

𝑢1(𝚡) + 𝑢2(𝚢) −
𝑛o𝐿 − 𝑛2i 𝓁

𝑛2o − 𝑛2i

]2
=

𝑛2i 𝛽
2

(𝑛2o − 𝑛2i )
2
+

𝑛2i
𝑛2o − 𝑛2i

|𝚡 − 𝚢|2,

and after elementary algebraic derivations, we obtain

𝑢1(𝚡) + 𝑢2(𝚢) = 𝑐(𝚡, 𝚢),

𝑐(𝚡, 𝚢) = 𝓁 +
𝑛o𝛽

𝑛2o − 𝑛2i
±

𝑛i
𝑛2o − 𝑛2i

√

𝛽2 + (𝑛2o − 𝑛2i )|𝚡 − 𝚢|2. (13)

The function 𝑐(𝚡, 𝚢) is known as the cost function in optimal mass
transport theory [6]. If we choose the plus sign in 𝑐(𝚡, 𝚢), the formulation
represents the single lens case [5,22], otherwise if we choose the minus
sign, it represents the two-lens case; for details see Appendix.

So far, we have obtained a mathematical formulation representing
the freeform surfaces of the optical system and an expression for the
ray-trace map 𝒎. Next,we formulate a second order partial differential
equation of Monge–Ampère type for the freeform surfaces.

2.2. Energy conservation

In the light transfer process global energy conservation must be
satisfied, i.e.,

∬
𝑓 (𝚡)d𝚡 = ∬

𝑔(𝚢)d𝚢, (14)

which is a constraint on 𝑓 and 𝑔. Moreover, the mapping 𝚢 = 𝒎(𝚡) ∶
 →  should satisfy energy conservation for each  ⊂ , i.e., local
energy conservation, represented by

∬
𝑓 (𝚡)d𝚡 = ∬𝒎()

𝑔(𝚢)d𝚢. (15)

After a change of variables, we obtain the differential form of local
energy conservation

𝑓 (𝚡) = 𝑔(𝒎(𝚡))| det(D𝒎(𝚡))|, (16)

where D𝒎 is the Jacobi matrix of the mapping 𝒎, which measures the
expansion/contraction of a tube of rays due to the two refractions. The
accompanying boundary condition is derived from the condition that
all light from the source domain  must be transferred into the target
domain  , and is given by

𝒎(𝜕) = 𝜕 , (17)

stating that the boundary of the source  is mapped to the boundary of
the target  . This is a consequence of the edge ray principle [23].

Next, we derive a Monge–Ampère type equation for the freeform
surfaces using the energy conservation constraint (16) and relation (13)
for the location of the freefrom surfaces. We assume that both freeform
surfaces are either c-convex or c-concave functions [18, p.54]. The
surfaces 𝑧 = 𝑢1(𝚡) and 𝓁 − 𝑧 = 𝑢2(𝚢) are c-convex if

𝑢1(𝚡) = max
𝚢∈

{𝑐(𝚡, 𝚢) − 𝑢2(𝚢)}, (18a)

𝑢2(𝚢) = max
𝚡∈

{𝑐(𝚡, 𝚢) − 𝑢1(𝚡)}, (18b)

alternatively, these are c-concave if

𝑢1(𝚡) = min
𝚢∈

{𝑐(𝚡, 𝚢) − 𝑢2(𝚢)}, (19a)

𝑢2(𝚢) = min
𝚡∈

{𝑐(𝚡, 𝚢) − 𝑢1(𝚡)}. (19b)

For a continuously differentiable function 𝑐, the map 𝚢 = 𝒎(𝚡) is
implicitly given by

∇𝚡𝑐(𝚡,𝒎(𝚡)) − ∇𝑢1(𝚡), (20)

under the condition that the Jacobi matrix 𝑪 = D𝚡𝚢𝑐, defined by

𝑪 =
(

𝑐11 𝑐12
𝑐21 𝑐22

)

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜕2𝑐
𝜕𝑥1𝜕𝑦1

𝜕2𝑐
𝜕𝑥1𝜕𝑦2

𝜕2𝑐
𝜕𝑥2𝜕𝑦1

𝜕2𝑐
𝜕𝑥2𝜕𝑦2

⎞

⎟

⎟

⎟

⎟

⎠

, (21)

is invertible. For our optical systems the map 𝒎 given in (11) satisfies
relation (20) indeed, with the cost function 𝑐 defined in (13). The matrix
𝑪 is symmetric negative definite, i.e., det(𝑪) > 0 and tr(𝑪) < 0, which
is a consequence of the fact that the function 𝑐 depends on |𝚡 − 𝚢| [5].
Since the cost function 𝑐 is continuously differentiable, from relation
(20), we deduce that

𝑪D𝒎(𝚡) = D2𝑢1(𝚡) − D𝚡𝚡𝑐(𝚡,𝒎(𝚡)) ≡ 𝑷 (𝚡), (22)

where D2𝑢1 is the Hessian of 𝑢1. The matrix 𝑷 (𝚡) = D2𝑢1(𝚡)−D𝚡𝚡𝑐(𝚡,𝒎(𝚡))
is negative semi-definite for a c-concave pair (𝑢1, 𝑢2) and positive semi-
definite for a c-convex pair (𝑢1, 𝑢2). In the following, we discuss the c-
convex case only, thus we require the matrix 𝑷 to be positive semi-
definite. Substituting D𝒎 from (22) in the energy balance (16) and by
choosing the positive sign for the determinant, we obtain

det(𝑷 (𝚡))
det(𝑪(𝚡,𝒎(𝚡)))

=
𝑓 (𝚡)

𝑔(𝒎(𝚡))
. (23)

Recall that the 2 × 2 matrix 𝑷 is positive semi-definite if and only if

tr(𝑷 ) ≥ 0 and det(𝑷 ) ≥ 0. (24)

Because det(𝑪) > 0 and the right hand side functions 𝑓 ≥ 0 and 𝑔 > 0, it
is obvious that det(𝑷 ) ≥ 0. So, the only requirement to verify is tr(𝑷 ) ≥ 0.
A similar condition can be obtained for the c-concave case.

Next, we give a brief description of the least-squares algorithm [5]
to solve the Monge–Ampère equation (23) subject to the boundary
condition (17) and constraint (24).

3. Numerical method

First, we calculate the mapping 𝒎 using the extended least-squares
method as follows: we enforce the equality 𝑪D𝒎 = 𝑷 by minimizing the
functional

𝐽I(𝒎,𝑷 ) = 1
2 ∬

‖𝑪D𝒎 − 𝑷 ‖

2
Fd𝚡. (25)

The norm used in this functional is the Frobenius norm. Next, we address
the boundary condition (17) by minimizing the functional

𝐽B(𝒎, 𝒃) = 1
2 ∮𝜕

|𝒎 − 𝒃|2d𝑠, (26)
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where |.| denotes the 𝓁2-norm for vectors, and 𝒃 is a vector function
mapping 𝜕 to 𝜕 . We combine the functionals 𝐽I for the interior and
𝐽B for the boundary domain by taking a weighted average

𝐽 (𝒎,𝑷 , 𝒃) = 𝛼𝐽I(𝒎,𝑷 ) + (1 − 𝛼)𝐽B(𝒎, 𝒃). (27)

The parameter 𝛼 (0 < 𝛼 < 1) controls the weight of the first functional
compared to the second functional. The minimization of (27) gives
us the mapping 𝒎 which is implicitly related to the surface function
𝑢1 as shown in relation (20). We minimize the functionals (25)–(27)
iteratively starting with an adequate initial guess 𝒎0, which will be
specified shortly. We perform the iteration

𝒃𝑛+1 = argmin 𝐽B(𝒎𝑛, 𝒃), (28a)

𝑷 𝑛+1 = argmin 𝐽I(𝒎𝑛,𝑷 ), (28b)

𝒎𝑛+1 = argmin 𝐽 (𝒎,𝑷 𝑛+1, 𝒃𝑛+1). (28c)

Thus, given the 𝑛th iterand 𝒃𝑛, 𝑷 𝑛 and 𝒎𝑛 we successively compute the
new iterand 𝒃𝑛+1, 𝑷 𝑛+1 and 𝒎𝑛+1 as explained below, see Fig. 2.

We initialize our minimization procedure by constructing an initial
guess 𝒎0 which maps a bounding box of the source area  to a bounding
box of the target area  . Without loss of generality we assume the
smallest bounding box of the source and target domain are rectangular
and denote these by [𝑎min, 𝑎max]×[𝑏min, 𝑏max] and [𝑐min, 𝑐max]×[𝑑min, 𝑑max],
respectively. Then the initial guess reads:

𝑚0
1 =

𝑥1 − 𝑎min
𝑎max − 𝑎min

𝑐min +
𝑎max − 𝑥1
𝑎max − 𝑎min

𝑐max, (29a)

𝑚0
2 =

𝑥2 − 𝑏min
𝑏max − 𝑏min

𝑑min +
𝑏max − 𝑥2
𝑏max − 𝑏min

𝑑max. (29b)

In this article, we give a brief description of the minimization of 𝐽I, 𝐽 ,
and the computation of 𝑢1 and 𝑢2; for a more mathematical description
see [5].

Minimizing procedure for 𝑷

We assume 𝒎 fixed and minimize 𝐽I(𝒎,𝑷 ) over all matrices that
satisfy (23) and (24). Since the integrand of 𝐽I(𝒎,𝑷 ) does not depend
on derivatives of 𝑷 , the minimization procedure can be performed
pointwise. Thus, we minimize ‖𝑪𝑫 − 𝑷 ‖F for each grid point 𝚡 ∈ ,
where 𝑫 is the central difference approximation of D𝒎. This gives rise
to the following constrained minimization problem

minimize 𝐻S(𝑝11, 𝑝22, 𝑝12) ≡
1
2
‖𝑸S − 𝑷 ‖

2
F, (30a)

subject to det(𝑷 ) =
𝑓

𝑔(𝒎)
det(𝑪), (30b)

tr(𝑷 ) ≥ 0, (30c)

where 𝑸 = 𝑪𝑫 and 𝑸S = (𝑸 + 𝑸𝑇 )∕2. We minimize 𝐻S instead of 𝐻
because we are only interested in the minimizer, not in its value [5].
This problem can be solved using a Lagrangian multiplier 𝜆, and the
possible minimizer has to satisfy the following algebraic system

𝑝11 + 𝜆𝑝22 = 𝑞11, (31a)

𝜆𝑝11 + 𝑝22 = 𝑞22, (31b)

(1 − 𝜆)𝑝12 =
1
2
(𝑞12 + 𝑞21), (31c)

𝑝11𝑝22 − 𝑝212 =
𝑓
𝑔
det(𝑪). (31d)

The system (31a)–(31c) is linear in 𝑝11, 𝑝22 and 𝑝12, and is regular if
𝜆 ≠ ±1, for the detailed solution see [5].

Minimizing procedure for 𝒎

Here, we assume 𝒃 and 𝑷 are fixed and minimize 𝐽 (𝒎,𝑷 , 𝒃). The
minimizer is obtained from

𝛿𝐽 (𝒎,𝑷 , 𝒃)[𝜼] = 0, (32)

Fig. 2. Flow diagram of the proposed algorithm.

where 𝛿𝐽 represents the first variation of 𝐽 with respect to 𝒎 in the
direction 𝜼. This gives rise to the following coupled elliptic system of
PDEs with Robin boundary condition, i.e.,

∇ ⋅ (𝑪𝑇𝑪D𝒎) = ∇ ⋅ (𝑪𝑇𝑷 ), 𝚡 ∈  , (33a)

(1 − 𝛼)𝒎 + 𝛼(𝑪𝑇𝑪∇𝒎) ⋅ �̂� = (1 − 𝛼)𝒃 + 𝛼𝑪 ⋅ 𝑷 �̂�, 𝚡 ∈ 𝜕 . (33b)

We discretize the elliptic equations using the finite volume method, for
the details see [5].

Calculation of freeform surfaces

We compute the first lens surface 𝑧 = 𝑢1(𝚡) from relation (20) in the
least-squares sense, i.e.,

𝑢1(𝚡) = argmin 𝐼(𝜙), 𝐼(𝜙) = 1
2 ∬

|∇𝜙(𝚡) − ∇𝚡𝑐(𝚡,𝒎(𝚡))|2d𝚡, (34)

and this gives rise to the following Poisson problem with Neumann
boundary condition:

𝛥𝑢1 = ∇ ⋅ ∇𝚡𝑐(𝚡,𝒎), 𝚡 ∈  , (35a)

∇𝑢1 ⋅ �̂� = ∇𝚡𝑐 ⋅ �̂�, 𝚡 ∈ 𝜕 . (35b)

The Poisson equation is discretized using standard finite differences, and
the discretized system is solved in Matlab using LU decomposition. The
second freeform surface is calculated from relation (13), substituting
the converged mapping 𝒎(𝚡) and the first freeform surface 𝑢1(𝚡). A
summarizing flow diagram of the algorithm is presented in Fig. 2.

4. Test problems

As discussed earlier, the lens beam shaping problem has two different
layouts: one single lens with two freeform surfaces, and two separate
lenses also with two freeform surfaces. In this section, we provide
numerical test results for both layouts. In addition, each layout has
either c-convex or c-concave freeform surfaces. We apply our algorithm
to achieve two different target distributions for the same Gaussian
source distribution. The intensity distribution of a laser beam usually
varies like a Gaussian function with the distance from the axis of
symmetry, which makes it a challenging problem in optical design. As
99.7% of the total intensity is confined within 3𝜎 of the mean, with 𝜎 the
standard deviation [24, p.120], implying that about 55% of the source
domain contains only 0.3% of the total flux to transport from the source
to the target for our test problems.
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Fig. 3. Gaussian to circular top-hat: Source and target distributions.

Fig. 4. Gaussian to circular top-hat: convergence history of the algorithm.

The first test problem concerns the transformation of a Gaussian
input beam into a uniform circular top-hat target distribution, and in
the second example, we show that our algorithm can also map the
Gaussian distribution into a non-uniform distribution at the target. We
will also present a comparison between both layouts. We compute all
four possible optical systems for the first test problem, and for the second
example, we execute our numerical algorithm to compute c-convex
freeform surfaces for the single-lens system and c-concave freeform
surfaces for the two-lens system.

4.1. From a Gaussian to a uniform circular top-hat distribution

In the first test problem, we compute freeform surfaces such that an
incident Gaussian beam transform into a uniform top-hat circular beam
as shown in Fig. 3. The source domain is given by  = [−1, 1] × [−1, 1].
The light source emits a parallel beam of light with Gaussian exitance,
i.e.,

𝑓 (𝚡) = 𝐴 exp
(

−1
2

(

|𝚡|

𝜎

)2)

. (36)

255



N.K. Yadav, J.H.M. ten Thije Boonkkamp and W.L. IJzerman Optics Communications 439 (2019) 251–259

Fig. 5. Gaussian to circular top-hat: Achieved target irradiance distribution.

Fig. 6. Gaussian to circular top-hat: the freeform lens systems with 100 random rays.

In our numerical calculations, we use the parameter values 𝐴 = 3.1415×
10−1 and 𝜎2 = 0.05. The irradiance 𝑔(𝚢) of the target  is given
by

𝑔(𝑦1, 𝑦2) =

⎧

⎪

⎨

⎪

⎩

1
𝜋

if 𝑦21 + 𝑦22 ≤ 1,

0 otherwise.
(37)

Note that we have chosen the parameter 𝐴 in such a way that the
source and target distributions satisfy the global energy balance (14).
For the first layout: one single lens, we have the refractive indexes
𝑛i = 1.5, 𝑛o = 1 and select the parameter 𝛽 = 2𝜋, and for the second
layout: two separate lenses, the refractive indexes are 𝑛i = 1, 𝑛o = 1.5
and we opt the parameter 𝛽 = −𝜋. For the both layouts, we fix the weight
parameter 𝛼 = 0.65.
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Fig. 7. Gaussian to non-uniform: Source and target distributions.

We discretize the source domain  uniformly in 200 × 200 grid
points. To compare both layouts, we provide the convergence history
of the algorithm for all four possible optical systems for both layouts,
i.e., c-convex and c-concave freeform surfaces, in Fig. 4. The residuals
𝐽I and 𝐽B stall after around 1000 iterations at a value of approximately
10−7, and the algorithm shown similar convergence for the both layouts,
although for the second layout the algorithm converges a little slower
than for the single lens problem. The algorithm is very memory and time
efficient. All our numerical calculations were performed on a laptop
with 4 GB of RAM and core i5 processor. The calculation time for 1000
iterations is about 380 s.

The freeform surfaces are validated using a ray tracing algorithm [8].
We run the algorithm for 10 million uniformly distributed quasi-random
points on the source to verify the irradiance pattern at the target. The
achieved target irradiance for 10 million rays is shown in Fig. 5 for
both layouts, viz. c-convex surfaces of the single lens system and c-
concave surfaces of the two-lens system. The distributions for the other
two systems look almost the same. The figures show that the irradiance
distribution is quite uniform. Indeed, 𝑒 = 2.3×10−6, where the error 𝑒 is
defined as

𝑒 = 1
𝑁

𝑁
∑

𝑖=1
(𝑡𝑑𝑖 − 𝑡𝑎𝑖)2, (38)

where 𝑁 represents the number of grid cells, 𝑡𝑑 the desired target
irradiance and 𝑡𝑎 the achieved ray trace irradiance. A better result can
be obtained by decreasing the grid size and increasing the number of
rays traced through the system.

The freeform lens optical systems are shown in Fig. 6 with trans-
parent side walls and 100 random rays including the source and target
plane. We have computed all four possible optical systems for both lay-
outs, viz. c-convex and c-concave freeform surfaces on their respective
domains. For the single lens, c-convex case the freeform surfaces appear
convex with respect to their domains but for the c-concave case the
surfaces look very flat. For the two-lens system it is just the other way.
The mapping for the c-convex case of the single lens system and for the
c-concave case of the two-lens system turn around the irradiance pattern
of the source on the target, i.e., rays cross in between two freeform
surfaces and the envelop of the rays form a caustic surface.

4.2. From a Gaussian to a non-uniform distribution

In the second test problem, we show that our algorithm can also
provide a non-uniform target distribution for a given source distribution.
Here, we challenge our algorithm to convert the Gaussian exitance 𝑓 (𝚡),
as given by expression (36) into a non-uniform square shaped irradiance
at the target  as shown in Fig. 7. The irradiance at the target is given

Fig. 8. Gaussian-to-non-uniform: Achieved target irradiance distribution.

by the function

𝑔(𝑦1, 𝑦2) = 𝐵ℎ(𝑦1)ℎ(𝑦2),

ℎ(𝑦) = 1 − 5
(

5𝑦
7

− 1
2

)2(5𝑦
7

+ 1
2

)2
. (39)

Here, we scale the target distribution by the parameter 𝐵 = 2.9061
in order to satisfy the energy balance (14). The extended least-squares
algorithm exhibits similar convergence as for the first test problem. The
irradiance pattern at the target (peaks and lows of the polynomial)
is validated by the ray tracing algorithm, and can be seen in Fig. 8,
for 10 million uniformly distributed quasi-random points on the source
domain.

We have presented the single lens system with c-convex freeform
surfaces in Fig. 9(a) and the two-lens system with c-concave freeform
surfaces in Fig. 9(b) with transparent side walls and 100 random rays
including the target distribution at the target plane. In these figures
the freeform surfaces look like a perfect convex or concave surface,
however, the target distribution is non-uniform and we computed c-
convex or c-concave surfaces only. To have a closer look at the lens
surfaces, we have computed gradient surfaces for the single lens system,
and plotted the modulus of the gradient in Fig. 10. Since, the source
distribution is given by a Gaussian function, the first surface is convex as
there is only one critical point as is evidenced by gradient plot Fig. 10(a).
However, the target distribution is given by a polynomial with nine
extrema, which can be seen from the gradient plot in Fig. 10(b), showing
that the second freeform surface is a c-convex surface.
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Fig. 9. Gaussian to non-uniform distribution: the freeform lens systems.

Fig. 10. Gaussian to non-uniform distribution, single lens system: modulus of gradients of the freeform surfaces.

5. Conclusions and discussion

We have presented a generic method for designing double freeform
lens surfaces: ‘‘a single lens with two freefrom surfaces’’ and ‘‘two
separate lenses with two freeform surfaces’’, in order to have a good
control over the irradiance distribution of parallel light rays with planar
wavefronts. Using properties of geometrical optics, i.e., the law of
refraction, the principle of equal optical path length for the ingoing
and outgoing wavefronts, and energy conservation, the double freeform
surfaces design problems are formulated as a PDE of Monge–Ampère
type with non-quadratic cost function coupled with the transport bound-
ary condition. An extended least-squares method [5] is employed to
compute the numerical solution. We have computed both c-convex and
c-concave freeform surfaces for both layouts.

In various industrial problems there is a need to focus a laser beam
to a well-defined shape and size with a uniform flat top irradiance dis-
tribution. From numerical simulations, it is evident that our algorithm is
capable to convert a Gaussian distribution into a flat top-hat distribution
at the target. Furthermore, beyond the laser applications, our algorithm
can also achieve a non-uniform target distribution for a given source
distribution. The design examples show clearly that the least-squares
method presented in this article can be used in beam shaping.

The numerical algorithm can also be applied to the design of optical
systems in illumination optics, e.g., for LED lighting. Moreover, the
algorithm can be generalized to double freeform surfaces for wavefronts
different from the planar case, such as, e.g., spherical wavefronts or
cylindrical wavefronts, and for saddle point surfaces.

Appendix. The cost function

Here, we elaborate the properties of the cost function 𝑐(𝚡, 𝚢) defined
in relation (13), i.e.,

𝑐(𝚡, 𝚢) = 𝓁 +
𝑛o𝛽

𝑛2o − 𝑛2i
±

𝑛i
𝑛2o − 𝑛2i

√

𝛽2 + (𝑛2o − 𝑛2i )|𝚡 − 𝚢|2. (A.1)

The sign in front of the square root is unknown yet. To determine this
we proceed as follows. Using Eq. (7) (with 𝐿(𝚡) = 𝐿) and (12), we can
show that the term under the square root in (A.1) can be expressed as

𝛽2 + (𝑛2o − 𝑛2i )|𝚡 − 𝚢|2 = 1
𝑛2o

(

𝑛i𝛽 + 𝑑(𝑛2o − 𝑛2i )
)2 ≥ 0.

Substituting this expression in Eq. (A.1), we obtain

𝑐(𝚡, 𝚢) = 𝓁 +
𝑛o𝛽

𝑛2o − 𝑛2i
±

𝑛i
𝑛2o − 𝑛2i

1
𝑛o

|

|

|

𝑛i𝛽 + 𝑑(𝑛2o − 𝑛2i )
|

|

|

. (A.2)

Here, we need to check the sign of the expression 𝑛i𝛽 + 𝑑(𝑛2o − 𝑛2i ).
Substituting 𝑑 from Eq. (9), this expression becomes

𝑛i𝛽 + 𝑑(𝑛2o − 𝑛2i ) = 𝑛o𝛽
𝑛o − 𝑛i𝑡3
𝑛i − 𝑛o𝑡3

. (A.3)

Substituting 𝑡3 in the above relation from the law of refraction (3), we
obtain

𝑛i𝛽 + 𝑑(𝑛2o − 𝑛2i ) = −
𝑛i𝑛o𝛽

√

𝑛2i + (𝑛2i − 𝑛2o)|∇𝑢1|
2
. (A.4)

Let us first consider a single lens with two freeform surfaces, thus 𝑛o = 1
and 𝑛i > 1. The constant 𝛽 = 𝐿 − 𝓁 > 0 is called "reduced optical path
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length" [5]. Expression (A.4) shows that we have to choose the minus
sign for the absolute value in expression (A.2), and consequently the
plus sign in expression (A.1) (more details can be found in [5]), which
results in

𝑐(𝚡, 𝚢) = 𝓁 +
𝛽

1 − 𝑛2i
+

𝑛i
1 − 𝑛2i

√

𝛽2 + (1 − 𝑛2i )|𝚡 − 𝚢|2. (A.5)

Next, we check the sign of 𝑛i𝛽 + 𝑑(𝑛2o − 𝑛2i ) in expression (A.2) for the
second layout, i.e., for the optical system with two different lenses. For
this case, 𝑛o > 1 and 𝑛i = 1, and the constant 𝛽 = 𝐿 − 𝑛o𝓁 < 0. Thus,
expression (A.4) shows that we have to choose the plus sign for the
absolute value in expression (A.2), which results in

𝑐(𝚡, 𝚢) = 𝓁 +
𝑛o𝛽

𝑛2o − 1
±

𝛽 + (𝑛2o − 1)𝑑
𝑛o(𝑛2o − 1)

. (A.6)

Now, we substitute 𝑑 from relation (7) in the above expression, which
gives

𝑐(𝚡, 𝚢) = 𝓁 +
𝑛o𝛽

𝑛2o − 1
±
(

𝓁 +
𝑛o𝛽

𝑛2o − 1
− (𝑢1(𝚡) + 𝑢2(𝚢))

)

. (A.7)

In the above equation, the right hand side equals the left hand side for
the minus sign, therefore we have to choose minus sign in (A.1). Thus
the mathematical expression for the two-lens case reads

𝑐(𝚡, 𝚢) = 𝓁 +
𝑛o𝛽

𝑛2o − 1
− 1

𝑛2o − 1

√

𝛽2 + (𝑛2o − 1)|𝚡 − 𝚢|2. (A.8)
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