

BPMS-RA: a novel Reference Architecture for Business
Process Management Systems
Citation for published version (APA):
Pourmirza, S., Peters, S., Dijkman, R., & Grefen, P. (2019). BPMS-RA: a novel Reference Architecture for
Business Process Management Systems. ACM Transactions on Internet Technology, 19(1), Article 13.
https://doi.org/10.1145/3232677

Document license:
TAVERNE

DOI:
10.1145/3232677

Document status and date:
Published: 01/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://doi.org/10.1145/3232677
https://doi.org/10.1145/3232677
https://research.tue.nl/en/publications/b235d362-1d0e-40e5-8339-a1ca7fcd1bd2

13

BPMS-RA: A Novel Reference Architecture for Business

Process Management Systems

SHAYA POURMIRZA, SANDER PETERS, REMCO DIJKMAN, and PAUL GREFEN,

Eindhoven University of Technology

A growing number of business process management systems is under development both in academia and

in practice. These systems typically are based on modern system engineering principles, such as service-

oriented architecture. At the same time, the advent of big data analytics has changed the scope of these

systems, including functionality such as data mining. However, existing reference architectures for business

process management systems date back 20 years and, consequently, are not up-to-date with these modern

developments. To fill the gap, this article proposes an up-to-date reference architecture, called BPMS-RA,

for modern business process management systems. BPMS-RA is based on analysis of recent literature and of

existing commercial implementations. This reference architecture aims to provide a guideline template for the

development of modern-day business process management systems by specifying functions and interfaces

that need to be provided by these systems as well as a set of quality criteria that they need to meet.

CCS Concepts: • Computer systems organization → Special purpose systems;

Additional Key Words and Phrases: Business process management systems, reference architecture, workflow

ACM Reference format:

Shaya Pourmirza, Sander Peters, Remco Dijkman, and Paul Grefen. 2019. BPMS-RA: A Novel Reference Ar-

chitecture for Business Process Management Systems. ACM Trans. Internet Technol. 19, 1, Article 13 (February

2019), 23 pages.

https://doi.org/10.1145/3232677

1 INTRODUCTION

Business Process Management (BPM) is a discipline that aims at overseeing the activities performed
in an organization to ensure the quality of outcomes and to discover improvement opportuni-
ties (Dumas et al. 2013). Business process management systems (BPMSs) are information systems
that interpret business processes to ensure that the activities specified therein are properly exe-
cuted and monitored (Baumgrass et al. 2015a).

The architecture of BPMSs has been a subject of research since the 1990s. However, apart from
the long-established Workflow Reference Model (Hollingsworth 1995) and the Mercurius reference
architecture (Grefen and Remmerts de Vries 1998), there is a general lack of modern reference
architectures for BPMSs. In particular, the existing reference architectures were developed before
the shift to Service Oriented Architectures and before the rise of Business Process Analytics and

Authors’ addresses: S. Pourmirza, S. Peters, R. Dijkman, and P. Grefen, Eindhoven University of Technology, PO Box 513,

5600 MB Eindhoven, The Netherlands; emails: {s.pourmirza, s.p.f.peters, r.m.dijkman, p.w.p.j.grefen}@tue.nl.

Current Address: S. Pourmirza, Building Blocks, Sint Josephstraat 139, 5017 GG Tilburg, The Netherlands; email: shaya@

building-blocks.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/02-ART13 $15.00

https://doi.org/10.1145/3232677

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

https://doi.org/10.1145/3232677
mailto:permissions@acm.org
https://doi.org/10.1145/3232677

13:2 S. Pourmirza et al.

Fig. 1. BPMS-RA’s design approach with produced artifacts.

Process Mining. Therefore, a revision of existing reference architectures is due that considers at
least these functions. This article fills that gap by proposing a reference architecture for BPMSs,
called BPMS-RA, which emerges from both research in the BPM community and from existing
BPMS architectures from practice. An implementation of the proposed architecture has already
been developed in the GET Service platform (GET Service Consortium 2013; Baumgrass et al.
2015b), as discussed in the evaluation section of this article.

We define a BPMS reference architecture as a predefined guideline for the architecture of a BPM
system, where the structures, elements, and relationships among the elements provide a template
for concrete architectures (Bachmann et al. 2011). This template must be defined in such a way
that concrete architectures can be instantiated from a reference architecture by implementing and
modifying it according to the specific context of that concrete architecture. Accordingly, the de-
velopment process of a reference architecture is categorized into two groups (Grefen 2015). On the
one hand, the design principles that are provided by a reference architecture can be mined from
best practices in a specific domain, in which case the resulting reference architecture is practice
driven. On the other hand, a reference architecture can be designed before the existence of the
practical best practices and inspired by existing research, which results in a research-driven ref-
erence architecture. As an example, the Workflow reference model was designed according to the
practice-driven approach whereas the Mercurius reference architecture was designed according
to the research-driven approach.

Using a design science methodology (Hevner et al. 2004), we combine both the research- and
practice-driven approaches to design the BPMS-RA. Figure 1 illustrates our approach. It illustrates
that the designed artifact is the BPMS Reference Architecture, which is designed in four steps. The
literature that is used to shape the artifact represents the “rigor” dimension of the methodology,
while the existing concrete architectures that are used represent the “relevance” dimension.

In the first step, we introduce a BPMS component classification by combining (i) the phases that
constitute the BPM life-cycle (van der Aalst et al. 2007) and (ii) the components that are iden-
tified in the Workflow reference model (Hollingsworth 1995). We employ the BPM life-cycle be-
cause it provides a deeper insight into the phases, activities, and—consequently—the functions that
need to be supported by BPMS-RA. Many reference architectures have already originated from the
life-cycles of their target systems (e.g., eSRA (Norta et al. 2014)). Similarly, we use the Workflow
reference model because it has been used as a blueprint template in developing many BPMS ar-
chitectures (e.g., SWfMS (Lin et al. 2009)). In the second step, we use component classification to
categorize functions of existing BPMS architectures both from research and industry. This leads
to an overview of the functions that are provided by these existing architectures. In the third and
fourth step, we select and apply a set of architecture quality attributes to arrange the functions that
the concrete architectures provide into a set of components that constitute the BPMS Reference
Architecture.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:3

Fig. 2. BPMS component classification framework.

The remainder of this article is structured according to the research approach that is outlined
in Figure 1. Section 2 presents the component classes (Step 1). Section 3 presents the classification
of functions from existing architectures according to these component classes (Step 2). Section 4
discusses the selection of quality attributes that must be met in BPMS-RA (Step 3). Sections 5 and
6 discuss the design of the BPMS-RA at two levels of detail (Step 4). Section 7 considers the rele-
vance of BPMS-RA by comparing it with three concrete architectures from practice. This section
also covers the impact that the quality attributes had on the design of BPMS-RA. We present our
conclusions in Section 8.

2 BPMS COMPONENT CLASSIFICATION FRAMEWORK

This section presents the component classification framework that we use to categorize the com-
ponents from existing BPMS architectures. This framework consists of six BPMS component classes

deduced by integrating (i) the phases distinguished in the BPM life-cycle and (ii) the components
presented in the Workflow reference model.

Figure 2 shows the component classes, in which the old components from the Workflow ref-
erence model are depicted by white and the modified components are depicted by gray. First, we
explain the component classes in this figure; then, we describe the rules that we used to deduce
this framework.

The Process Definition Tools component class is used to design business process definitions in
digitally processable formats that include all of the required information regarding business pro-
cesses in order to realize business goals. The Workflow Enactment Service component class, which
includes one (or in some cases multiple) so-called process engine(s), provides a runtime environ-
ment to operationalize designed process models by generating executable instances of them. The
Workflow Client Applications component class enables the interaction of BPMSs’ end users with
target BPMSs. The External Services component class enables the interoperation of running pro-
cess instances with external services. The Administration Tools component class provides user/role-
based functions for target BPMSs. Finally, the Monitoring & Control Tools component class provides
the ability to track and control the status of process instances during their executions.

We now describe the approach that we used to deduce the BPMS component classes. To this end,
we used the mapping between the components of the Workflow reference model and the phases
of the BPM life-cycle as shown in Figure 3.

In order to establish whether the Workflow reference model’s components can be used as com-
ponent classes in the framework, we evaluated them based on two rules.

(1) If a component is mapped to one or more consecutive phases of the BPM life-cycle, we
will consider this component as a component class in our classification.

(2) If a component is mapped to two or more separated phases of the BPM life-cycle, we will
decompose it into subcomponents until rule (1) is satisfied.

The arrows in Figure 3 illustrate the applied rules on the mapping between the components and
phases. Each color represents a component class in Figure 2.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:4 S. Pourmirza et al.

Fig. 3. Mapping between workflow reference model and BPM life-cycle.

Since two distinct phases relate to the Administration & Monitoring Tools component, we de-
composed this component into two subcomponents: Administration Tools and Monitoring & Con-
trol Tools. The first subcomponent is mapped to the configuration phases while the second com-
ponent is mapped to the control and diagnosis phases.

Additionally, since the other Workflow Enactment Services component and the Invoked Ap-
plications component relate to the same phase, we have merged these two components of the
Workflow reference model into one component class in our framework. In the Workflow refer-
ence model, the former component allows multiple workflow systems to pass work items between
one another. The latter component facilitates the invocation of all potential applications that might
exist in a heterogeneous environment. However, currently, these interfaces are not usually con-
sidered separately.

3 BPMS COMPONENT CLASSIFICATION

This section presents the results of using the proposed classification framework from the previ-
ous section to categorize a set of existing BPMS architectures. In total, we captured 438 compo-
nents from 41 primary studies in the academic literature, using a systematic literature review as
elaborated in Pourmirza et al. (2017). Moreover, we selected 33 existing industry-strength BPMSs.
However, since a reliable source for all existing industry-strength BPMSs is not available, we did
not use a structured approach to retrieve these systems; we used a simple Google search instead.
This presents a limitation because it means that the list of industry-strength BPMSs may not be
complete; therefore, the functionality that is identified based on industry-strength BPMSs may not
be complete.

The classification of the functionality from the existing systems is done according to a protocol
in order to avoid subjectiveness as much as possible. Two of the authors read the available literature
on the existing architectures (Pourmirza et al. 2017), extracted the functionality, classified that
functionality, and discussed the classification in order to reach a joint classification. Subsequently,
the classification was checked by the other two authors. Differences were discussed with the entire
team and processed.

In the remainder of this section, we discuss the decomposition granularity and functionality that
is provided by the existing architectures. We discuss the functionality per class of the classification
framework from Section 2.

3.1 Decomposition Granularity of Components

We discuss the levels of detail according to which the existing BPMS architectures are described,
according to the concepts of Commercial off-the-shelf (COTS) components and Software Suites.
COTS components refer to software modules that can be readily acquired in the market and,

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:5

Table 1. Distribution of Components Based on Classification

Component
Class

Level of
Details

of
Components

Component
Class

Level of
Details

of
Components

Workflow
Enactment

Service

L0 1

Workflow
Client

Applications

L0 0
L1 44 L1 9
L2 145 L2 11
L3 47 L3 7

L4 15 L4 0
Total 252 Total 27

Process

Definition Tools

L0 0

Administration

Tools

L0 0
L1 20 L1 5
L2 51 L2 15

L3 11 L3 3
L4 0 L4 0

Total 82 Total 23

Monitoring &

Control Tools

L0 0

External

Services

L0 0

L1 15 L1 7
L2 15 L2 10
L3 3 L3 4
L4 0 L4 0

Total 33 Total 21

subsequently, can be integrated into a software system (Land et al. 2008). A set of COTS compo-
nents that are bundled and that can thus be acquired in one package (Sobel et al. 2005) is usually
called a software suite. Accordingly, an architecture at the L1 level of detail presents a set of com-
ponents that can be obtained as a software suite. An architecture at the L2 level of detail presents
a set of components that can be obtained as a COTS component. Subsequently, an architecture at
L3 level of detail illustrates the functional subcomponents of a BPMS and at L4 level of detail it
presents the refinement of subcomponents. Moreover, L0 refers to a system presented as a black
box. Based on these levels of detail, Table 1 provides the detailed results for the classification of
the captured components from the research.

Based on this table, we argue that, by far, the greatest number of components in the selected
BPMS architectures are positioned at the L1 and L2 levels of details. In the same way, the BPMS-RA
will be mainly designed according to these two levels.

Figure 4 depicts the categorization of the functions that are deduced from the captured compo-
nents on the basis of BPMS component classification. The numbers on each functionality corre-
spond to the frequency of that functionality among the components.

In addition to the 41 BPMS-related primary studies in the literature, we have analyzed 33
industry-strength systems as presented in Table 4. However, since the detailed architectures of
these systems are not easily accessible, we analyzed them only at the level of the BPMS component
classes (i.e., not at the level of provided functions for each component class). Figure 5 illustrates the
number of existing COTS components within the selected industry-strength systems that support
the BPMS component classes. As expected, by far, the greatest number of COTS components are
positioned at the Workflow Enactment Services and Process Definition Tools component classes.
However, surprisingly, the External Services component class has received the lowest amount of
attention in the selected systems.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:6 S. Pourmirza et al.

Fig. 4. Distribution of identified functions among BPMS component classes.

Fig. 5. Component support by industry-strength systems.

3.2 Functions of Process Definition Tools

We identified 82 components that are positioned in the Process Definition Tools component class.
We specify five groups of functions for the Process Definition Tools component: (i) business pro-
cess modeling, (ii) business process repository provisioning, (iii) business process validation and
verification, (iv) business process simulation and optimization, and (v) offering ontology-based
knowledge management for business processes.

The first functionality, modeling business processes, has been mentioned by 50 components
in the selected architectures. A business process model contains a set of activities and a set of
relationships among the activities. These relationships can be derived from a set of constraints
and business rules that relate activities to each other.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:7

The second functionality, business process repository, has been pointed out by 11 components
in the selected architectures. The business process repository provisioning functionality enables
the storage and retrieval of business process models.

The third functionality, validating and verifying business processes, has been suggested by 9
components in the selected architectures. These components evaluate designed business processes
mainly in terms of syntax validity but also in terms of semantic validity.

The fourth functionality, simulation and optimization of business processes, has been proposed
by 6 components in the selected architectures. The simulation and optimization functionality can
help process designers and managers in making decisions by detecting bottlenecks and weaknesses
in the designed processes before they are actually operationalized.

Finally, the role of ontologies and knowledge management in modeling business processes has
received attention across the primary studies since 6 components in the selected architectures have
been devoted to these issues. Ontologies are defined as a formal and shared representation model
of knowledge in a specific domain (Gruber 1995). These components provide process designers
and domain experts with ontological models that can be used in the modeling procedure of busi-
ness processes. Using this functionality promotes common understanding and the reusability of
developed business process models.

3.3 Functions of Workflow Enactment Services

We identified 252 components that are positioned in the Workflow Enactment Service component
class. We specify six groups of functions for the Workflow Enactment Services component class:
(i) business process deployment and parser, (ii) runtime activity manager, (iii) runtime optimization
and decision making, (iv) logging execution data, (v) exception handling, and (vi) service manager
and invocation.

The business process deployment and parser functionality, mentioned by 27 components, is the
first action that has to be performed by the target component. Once a business process model is
deployed to a process engine, it will be parsed by the engine. Subsequently, all activities therein
will be detected by the process engine. Then, this engine can instantiate so-called process instances
from the deployed process models and schedule the activities therein. Henceforth, the process
engine controls the states of the generated processes’ instances as well as the state of the inner
activities.

The second functionality, runtime activity manager, has the highest frequency with 134 com-
ponents among the components in the target component class. Having instantiated a process in-
stance, the process engine is responsible for controlling the states of activity instances in addition
to the process instance (Baumgrass et al. 2015c).

The third functionality, runtime optimization and decision making, has been pointed out by 43
components. This functionality provides process engines with optimization and decision-making
capabilities by using business intelligence and analytics methods.

The fourth functionality, logging of execution data, has been mentioned by 17 components in
the selected architectures. All information produced during the execution of process instances
must be recorded by process engines.

The fifth functionality, exception handling, has been suggested by only 3 components in the
selected architectures. However, we can argue that most of the BPMSs implicitly considered this
functionality, but they did not explicitly depict a functional component for this issue owing to the
amount of details of their target architectures.

Finally, the sixth functionality, service manager and invocation, has been recognized by 28
components in the engine components of the selected architectures This functionality provides a

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:8 S. Pourmirza et al.

process engine with an ability to invoke external services and consume them by interpreting their
response values.

3.4 Functions of External Services

We identified 21 components that are positioned in the External Services component class. We
specify three groups of functions for this class: (i) service manager and invocation, (ii) service
repository and registry, and (iii) service security and trust issue.

The first functionality, service manager and invocation, addressed by the 14 components within
the External Services component class, is the same functionality as mentioned in Section 3.3. It aims
at providing a service invocation environment by connecting, mediating, and managing interac-
tions between services and BPMSs. Specifically, it enables service invocation across heterogeneous
software platforms and other BPMSs. The main reason that this functionality is common across
these two platforms can be explained by the fact that in many architectures there is no explicit
component for handling external services (as it has been considered as part of their process en-
gine) while in others, explicit components referring to the external services have been suggested.
Consequently, this functionality has appeared in both classes.

The second functionality, service repository and registry, has been offered by 5 components
within the External Services component class. This functionality is responsible for providing a
catalog of available and known services, which can be also used by process designers to pick out
target services in designing process models.

The third functionality, service security and trust, has been addressed by only 2 components. A
BPMS can use external services only if they are trusted; this functionality provides a trust mecha-
nism by offering features such as message encryption, signature verification, authentication, and
access assessment.

3.5 Functions of Workflow Client Applications

We identified 27 components that are positioned in the Client Application component class. We
specify two groups of functions for this component class which are: (i) process execution-related
client applications, and (ii) management-related client applications.

The first functionality, process execution-related client applications, mentioned by 16 compo-
nents, is used to allow end users to perform a set of activities that are available to them. The second
functionality, management-related client applications, suggested by 11 components, is mainly em-
ployed by managers to gain an insight into the execution of their process, which may include a set
of dashboards to show the performance of the processes. It should be noted that, in some of the
primary studies, this functionality has also been considered as part of the Monitoring Tools class.

3.6 Functions of Administration Tools

We identified 23 components that are classified into the Administration Tools component class.
We specify two groups of functions for this component class: (i) business process resource man-
agement and (ii) user access control management.

The first functionality, business process resource management, provided by 18 components, is
used to specify resources that can perform activities in business processes. Note that some of the
selected architectures have suggested advanced automated techniques for allocating resources to
activities in a process model (e.g., Senkul and Toroslu (2005)).

The second functionality, user access control management, mentioned by 5 components, aims
at validating and verifying resources before allowing them to perform specific tasks with BPM
systems.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:9

Table 2. Quality Attributes

Design-Time Quality Attributes

Simplicity Modifiability Integrability Portability Completeness Feasibility

Runtime Quality Attributes

High Automation Security Interoperability Usability Performance Availability

3.7 Functions Monitoring & Control Tools

We identified 33 components that are classified into the Monitoring & Control Tools component
class. We distinguish three groups of functions for this class: (i) runtime monitoring, (ii) execution
data post-processing, and (iii) runtime control.

The first functionality, runtime monitoring, addressed by 17 components, aims at precisely
tracking and accurately recording statuses of process instances. This information is of great im-
portance in providing insights into current statuses of running process instances.

The second functionality, execution data post-processing, identified by 9 components, provides
qualitative and quantitative information about the execution of business processes. For example,
it can produce valuable insights regarding the duration, costs, and quality of previously executed
process instances by using some Key Performance Indicator (KPI). In more sophisticated systems,
various so-called process mining techniques have been employed that aim at extracting knowledge
from the execution data.

The final functionality, runtime control, provided by 7 components, aims to control the execu-
tions of a currently running process instance by employing various business process intelligence
techniques. Unlike the previous functionality, the runtime control functionality is classified as
a-priori analysis techniques. As an example, in the architecture presented in Kashlev and Lu
(2014), a component, called Runtime Behavior Analytics, has been proposed that employs runtime
execution data to predict and control the upcoming activities for the currently running business
processes.

4 BPMS ARCHITECTURE QUALITY ATTRIBUTES

To design a quality reference architecture, quality attributes should be considered. We consider the
classification of quality attributes that is proposed by Bass et al. (2013) because it can be considered
seminal work judging by the number of citations that it has received. The quality attributes are
shown in Table 2. It should be noted that in the classification by Bass et al. (2013), other quality
attributes are considered subclasses of the main attributes from Table 2. For example, scalability
is an important attribute but is captured under “modifying system capacity” (i.e., modifiability).

In previous work (Angelov et al. 2012), we presented a classification of different types of ref-
erence architectures and their properties. These properties determine the quality attributes that
are important. In particular, we can characterize BPMS-RA as a Type III reference architecture,
which is defined as “a classical reference architecture, designed by an independent organization to
facilitate the design of concrete architectures of multiple other organizations” (Angelov et al. 2012).

Below, we discuss each of the quality attributes in more detail. We discuss their importance
against the background of BPMS-RA as a Type III reference architecture and explain how they
influenced the design approach that we used to arrive at BPMS-RA in Sections 5 and 6.

4.1 Design-Time Quality Attributes

Simplicity is the degree to which a system has a straightforward and easy-to-understand design,
implementation, and deployment (IEEE 2010). Modifiability is the degree to which a change can
be made to a system and the degree to which the system can adapt to changes (IEEE 2010).

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:10 S. Pourmirza et al.

Integrability is the degree to which separately developed modules and components can correctly
integrate. To achieve seamless integration among the interfaces of multiple components, their
interface protocols should be compatible. Portability is the degree to which a system can be trans-
ferred from one platform to another (IEEE 2010). This requires an architecture to be technology
agnostic. Completeness is the degree to which a reference architecture covers the required func-
tions for concrete architectures and feasibility is the degree to which a reference architecture is
implementable in a timely manner.

Each of these quality attributes should be taken into account in the design of BPMS-RA. Con-
sidering that BPMS-RA is a Type III reference architecture, modifiability, integrability, portability,
completeness, and feasibility are especially important. The importance of integrability, portability,
and completeness follows from the property of a Type III reference architecture as an architecture
for multiple organizations. As multiple organizations may be implementing different components
of the architecture, it is important that these components can integrate and that they are portable.
We also consider completeness important in order to facilitate any organization that operates in
the BPMS area. The importance of feasibility follows from the Type III reference architecture prop-
erty that the architecture was developed by an independent organization. It mitigates the risk that
an independent organization develops an infeasible reference architecture.

The design-time quality attributes determined the design approach that we used to develop
BPMS-RA in Sections 5 and 6, as follows. Simplicity and modifiability are considered by designing
BPMS-RA in a modular manner on two levels of abstraction. Simplicity can be induced by applying
the principle of modularity on the basis of functional separation of concerns (Fielding 2000), thus
making individual components considerably less complex and, subsequently, easier to understand
and implement. Similarly, the modularity principle supports modifiability of individual loosely
coupled functional components. Integrability is considered by identifying interfaces at which the
various components interact. While we leave the detailed definition of these interfaces abstract
at this point, they can be specified in detail in future work. Portability is considered by leaving
choices with respect to technology abstract. Completeness and feasibility are considered by basing
BPMS-RA on existing concrete architectures, thus ensuring that it is complete with respect to
these architectures and that it is feasible to implement BPMS-RA. In this manner, the design-time
quality attributes lead to the design principles of modularity, abstraction, and concrete architecture
mapping that are the basis for the design of BPMS-RA in Sections 5 and 6.

4.2 Runtime Quality Attributes

High automation is the degree to which functions can be automated. In the case of BPMSs, this
applies to the automation of business processes (van der Aalst 2013) that facilitate the automated
selection of the right tasks to perform. System security is the degree to which a system resists
illegal usage while still providing its services to rightful users (Bass et al. 2013). Interoperability is
the degree to which multiple information systems can exchange and use information (IEEE 2010).
Usability is the degree to which the end users of a system acquire enough knowledge and skills
to comfortably perform, to insert inputs to, and interpret outputs from the system (IEEE 2010).
Performance is the degree to which a system accomplishes its designated functions within given
constraints, such as response time, computation power, and memory usage (IEEE 2010). Avail-

ability is the degree to which a system is operational and accessible when required (IEEE 2010).
Runtime quality attributes are the primary concern of concrete architectures because they can be

implemented and tested only in concrete systems. Therefore, consideration of runtime attributes
is not part of our design approach. However, we do provide “hooks” in the architecture, where the
various runtime quality attributes can be considered by concrete architectures, as we will discuss
in Section 7.2.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:11

Fig. 6. BPMS-RA at the L1 level.

5 BPMS-RA AT THE L1 LEVEL

We develop the BPMS-RA by modularizing the BPMS functions that were identified in Section 3.
Modularization is done according to a protocol in order to avoid subjectiveness as much as possible.
First, two of the authors conducted the modularization. In doing so, they respected the mapping
onto the existing classification, described in Section 3, and left implementation choices abstract,
thus observing the quality attributes as described in Section 4. Subsequently, the modularization
was checked by a third author. Differences were discussed and the reference architecture was
modified according to the discussion. A more detailed discussion on how the quality attributes
influenced the modularization is given in Section 7.2.

The resulting first-level (L1) modularization of the functionality is illustrated in Figure 6. The
BPMS-RA at this level consists of three components. As L1 is defined as the “tool suite” level, the
modules at this level are derived from existing tool suites. In existing architectures, three types of
tool suites can be recognized:

(1) Workflow Management System (WfMS) suites (e.g., Imixs Workflow),
(2) Service-Oriented Architecture (SOA) suites (e.g., Oracle SOA suite), and
(3) Business Process Intelligence & Analytics (BPI&BPA) suites (e.g., SAS suite).

Since the core components of the WfMS suites and SOA suites contain common BPMS func-
tionality, we merge these two suites. Accordingly, a component is suggested for the BPMS-RA at
the L1 level that is called the SOA-Based Workflow Management System Suite (SOA-WfMS). The
commonalities between the functionality of BPI&BPA suites and the other two suites are limited to
monitoring functionality and security functionality. For that reason, we modularize security func-
tionality into a third component, called Authentication, Authorization & Accountability (AAA).
The commonality with respect to monitoring functionality will be discussed and solved in the
level 2 decomposition.

Interfaces are required to allow each of the three components to interact with the others. The
first interface, IF1.1, facilitates data exchange between the SOA-WfMS and the BPI&BPA. The other
two interfaces, IF1.2 and IF1.3, integrate the mentioned two components, respectively, with the
(centralized) AAA component.

6 BPMS-RA AT THE L2 LEVEL

In this section, we present the BPMS-RA at the L2 level of modularization. This architecture consist
of a set of components that are at the same level as the refined COTS component. To define these
components, we first evaluate whether we can find COTS components in the market that provide
the same functions as those we derived from the captured components in Figure 4. Subsequently,
we place these components into the components composing the BPMS-RA at the L1 level.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:12 S. Pourmirza et al.

Fig. 7. BPMS-RA at the L2 level.

Note that we zoom into only the two main components of BPMS-RA at the L1 level, the SOA-
WfMS component and BPI&BPA component, because the architectures that we studied did not
provide a more detailed decomposition of their security components and functionality. Figure 7
illustrates the BPMS-RA at the L2 level.

The SOA-WfMS component is composed of five inner components: Process Definition Tools, Busi-

ness Process Execution Engine, Service Manager, BP Client Manager Tools and BP Resource Manager

Tools. The Process Definition Tools component provides a business process modeling environ-
ment, a model repository, a model validation and verification, and a simulation and optimization
functions. The Business Process Execution Engine component provides a process deployment and
parser, a runtime activity manager environment, a logging function, and an exception handling
function. The Service Manager component provides a service manager and invocation and a ser-
vice repository. The BP Client Manager Tools component supports process execution–related and
management-related client applications. Finally, the BP Resource Manager Tools provides a pro-
cess resource management functionality.

The BPI&BPA component comprises four inner components: Data Ingestion Tools, Information

Repository, Data Management Tools, and Data Analysis Tools. The Data Ingestion Tools component
facilitates the extraction of data from various heterogeneous data sources, transforms them into
comprehensible formats, and loads them into another component of the BPI&BPA, the Informa-
tion Repository component in the architecture. The Data Management Tools component enables
the handling of imported information (e.g., by enriching and correlating the information). Last,
the Data Analysis component provides both post-processing and runtime information processing
functions that can be used to improve and control BPMS-RA-compliant systems by provisioning
the decision-making capability.

In the rest of this section, we further explain the BPMS-RA at the L2 level.

6.1 Inner Components of the SOA-WfMS

6.1.1 Derived Component from Process Definition Class. There are some COTS components in
the market that provide the required functions for the Process Definition Tools class. For example,

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:13

Fig. 8. Functions of process definition tools.

Signavio Process Editor is a stand-alone Web-based modeling environment for designing BPMN
process models. Consequently, we suggest a component, called Process Definition Tools, for the
BPMS-RA at the L2 level. This component, as shown in Figure 8, must ideally support the first four
identified functions. Moreover, the PR_REPO_OUT interface and PR_REPO_IN interfaces are defined
for uploading and downloading business process models from the repository and the EVT_DEF_IN
interface can be used mainly by process designers to model business processes according to the
external events that may be received.

A BPMS-RA-compliant system must provide business process modeling functionality. To this
end, it allows end users of the system to design business processes that include multiple types of
activities and relationships among them.

A full-fledged Process Definition Tools component must contain its own business process repos-
itory. A well-known example of such a repository is the SAP reference model, which includes over
600 process models. Regarding academic initiatives, an advanced business process model reposi-
tory, called APROMORE, has been proposed (La Rosa et al. 2011).

A BPMS-RA-compliant system must support validation and verification functionality. For ex-
ample, ADONIS provides a feature for validating the syntactical correctness of business processes.
Additionally, many academic initiatives, such as WoPed (Freytag 2005), offer syntactical and se-
mantical validation of process models.

A complete Process Definition Tools component must include business process simulation and
optimization functionality. Considering industrial solutions, many process modelers such as Bizagi
Process Modeler and Tibco have a feature that supports process simulation. Considering academic
initiatives, a notable example is CPN Tools (Jensen et al. 2007) for simulating and analyzing Petri
Nets.

Although ontology-based modeling functionality has been deduced from academic studies, it
has very limited support among industrial solutions. This functionality aims at providing learned
knowledge for the process designer; therefore, it is shifted to the BPI&BPA component.

6.1.2 Derived Component from Workflow Enactment Services Class. All WfMS and SOA suites
include COTS components that provide the main functions for the Workflow Enactment Services
component class. For example, Camunda and Activiti contain the Camunda Process Engine and Ac-
tiviti Process Engine, which are responsible for executing business process models. Consequently,
we suggest a component, called Business Process Execution Engine, as shown in Figure 9, for the
BPMS-RA at the L2 level. The Business Process Execution Engine interacts with the Process Defi-
nition Component via the PR_DPL_OUT and PR_DPL_IN interfaces. A business process model can be
deployed to the execution engine automatically using the PR_REPO_IN interface or manually using
the PR_REPO_OUT interface. Also, the BP Execution Engine interacts with the BPI&BPA component
by receiving runtime events from (via the RT_EVT_IN interface) and providing execution data to
this component (via the EXEC_INFO_OUT interface). Finally, the business process execution engine
interacts with the service manager and invocation functionality (shown in the detailed view of

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:14 S. Pourmirza et al.

Fig. 9. Functions of the business process execution engine.

Fig. 10. Functions of the service manager.

Figure 10) concerning runtime data exchange (via the SERV_IN interface) and with any external
services (e.g., to perform an activity) with the target engine (via the ACT_OUT interface).

A BPMS-RA-compliant system provides business process deployment and parser functionality
that produces process instances from the deployed process model. A process instance can be at
different states (i.e., initialized, running, terminated, completed, and suspended); therefore, the
Business Process Execution Engine must support the transition among these states.

Having instantiated a process instance, the process engine must support runtime activity man-
ager functionality, which can be seen as the core feature of a BPMS-RA-compliant system. This
functionality enables a BPMS-RA-compliant system to categorize the activities in a process in-
stance with different states (i.e., scheduled, (re-)assigned, accepted, rejected, skipped, enabled, run-
ning, and completed) and it enables the transitions among these states.

A full-fledged BPMS-RA-compliant system must be able to support logging execution data func-
tionality by providing an interface in which execution logs can be exchanged. Therefore, the
BPI&BPA component can exploit the execution data for provisioning more accurate information.

A BPMS-RA-compliant system must support exception handling functionality by identifying po-
tential exceptions (using execution monitoring) and, subsequently, by exception recovery (using
some techniques that are bundled in the BPI&BPA component). This functionality has been con-
sidered as an explicit functionality in BPM systems. However, according to the usability runtime
quality attribute, it seems to be logical to highlight exception handling functionality in designing
the BPMS-RA architecture.

The other two functionalities of the Workflow Enactment Services component class will be po-
sitioned at other components in BPMS-RA. Considering the architecture of the BPMS-RA at the L1,
we shift runtime optimization and decision making to the BPI&BPA component. The reason for
this shift is coupling all of the functions that use business intelligence and analytics techniques so
that they can be carried out by the BPI&BPA component. Having shifted this functionality, we pro-
mote the principle of separation of concerns, thus, further boosting the modularity principle in our
design. Consequently, the IF1.1 interface between the SOA-WfMS component and the BPI&BPA
component, as shown in Figure 6, must provide the business process execution engine component
with runtime information provisioned by the runtime optimization and decision-making func-
tionality. Also, we merge the service manager and invocation functionality in this component
class with the same functionality in the External Services component class. The main reason for

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:15

Fig. 11. Functions of client applications.

this design decision is the principle of separation of concerns, as the main concern for the process
engines is to interpret the business process models and provide a runtime environment to opera-
tionalize them while the major concern of the captured components in the external services is to
employ external services to feed required input data into the process engines.

6.1.3 Derived Components from External Services Class. Many WfMS and almost all SOA suites
in the market include COTS components that provide the required functions for the External Ser-
vices component class (e.g., Oracle SOA Suite). Accordingly, we suggest a component, called Ser-

vice Manager, for the BPMS-RA at the L2 level. This component, as shown in Figure 9, provides
a service invocation environment for the consumer of this functionality (via the SERC_DATA_INC
interface). Moreover, the Service Manager component ideally contains a repository and/or a reg-
istry for services that can be reachable via SRV_REPO_OUT and SRV_REPO_IN interfaces. Finally, in
collaboration with the AAA component, the Service Manager component can certify the validity
of services through the AAA_API_IN interface.

As discussed before, a BPMS-RA-compliant system must support the service manager and invo-
cation functionality through the Service Manager component. For example, Hu and Grefen (2003)
have proposed an architecture for the service mediating workflow management systems. Also, a
notable example of a COTS component is the Oracle SOA Suite, which includes the Oracle Service
Bus.

An ideal BPMS-RA-compliant service must include the service repository and registry func-
tionalities. An example of an available COTS component that provides such a functionality is the
Anypoint Service Registry that has been offered by MuleSoft. Another well-known example of this
functionality is the WebSphere Service Registry and Repository from IBM.

Although the service security has been deduced from the selected architecture, considering the
separation of concern, we shift it to the AAA component in the BPMS-RA at the L1 level.

6.1.4 Derived Component from Workflow Client Applications Class. Almost all WfMS suites in
the market include COTS components that support the functions for the Client Applications com-
ponent class. For example, the Activiti BPM Platform has a dedicated component, called Activiti
Explorer, providing end users with a Web-based interface. Also, Microsoft Outlook has been em-
ployed as a client application for many BPMSs, such as the Together Workflow Server. Accordingly,
we suggest a component, called Business Process Client Manager Tools, for the BPMS-RA at the L2

level. This component, as shown in Figure 11, must support the process execution–related client
applications and the process management–related client applications functions.

For this purpose, the PRCS_EXEC and DATA_DASHBOARD interfaces are designed to consume data
from and visualize required features for process execution–related functionality (e.g., activity list)
and management-related functionality (e.g., performance dashboard), respectively. However, an
ideal client manager tool includes a set of pluggable applications, such as business processes mod-
eler, that can be realized via the PRCS_DSG_VIS interface. Another example for these interfaces is
an application for managing users’ profiles that can be implemented through the USER_PROF in-
terface. End users can ideally customize their own client application based on their preferred tools
according to their authorization level. Nevertheless, end users need to be granted access from the

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:16 S. Pourmirza et al.

Fig. 12. Functions of the resource application.

Fig. 13. The SOA-WfMS component at the L2 level.

AAA component; thus, the IF1.2 interface between the SOA-WfMS and the AAA component needs
to be implemented in a way that the BP Client Manager Tools’ end users are authenticated and
authorized via the AAA component. This functionality can be realized through the AAA_API_IN
interface.

6.1.5 Derived Component from Administration Tools Class. A great number of WfMS and a
lesser number of SOA suites include COTS components that support the required functions for
the Administration Tools component class (e.g., Oracle Role Manager and Metastorm BPM User
Management). Accordingly, we suggest a component, called Business Process Resource Manager

Tools, for the BPMS-RA at the L2 level. We have used the term resources as it has been predomi-
nantly used by the BPM community. This component, as shown in Figure 12, manages all of the
potential resources that can be employed to perform business processes by providing an interface
(i.e., ORG_RSC_OUT) to the other components of a BPMS-RA-compliant system.

Note that, owing to the separation of the concern design principle, the user access control man-
agement functionality is handled by the AAA component; thus, the AAA_API_IN interface is fore-
seen to enable this interaction.

6.1.6 SOA-WfMS Component at the L2 Level. Altogether, these suggested components result in
the SOA-WfMS component at the L2 level, as illustrated in Figure 13.

We employ black arrows if a component provides/uses an internal interface and colorful ar-
rows if a component provides/uses an external interface through the designed ports, which are
distinguished according to their concerns.

The concern of the purple port is business process models. This port contains a set of CRUD
functions for an external process definition tool and a deployment functionality to directly deploy
a business process model into the Execution Engine. The concern of the dark-gray port is services.
This port enables external service managers to interact with the internal service repository of the
target BPMS. The concern of the green port is execution-related activities. This port provides a
set of functions to enable users to interact with running process instances. The concern of the
orange port is events. This port establishes an interaction between the SOA-WfMS component

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:17

and the BPI&BPA component. Finally, the concern of the navy-blue port is security. This port
consumes a set of authentication, authorization, and accounting services that are provided by the
AAA component.

6.2 Inner Components of the BPI&BPA

Considering the BPI&BPA, we suggest that inner components stem from the Monitoring & Control
component class to provide three main functions: (i) runtime monitoring, (ii) execution data post-
processing, and (iii) runtime control.

Runtime monitoring functionality observes the execution of business process instances by pro-
ducing a set of events (i.e., execution data). There are some COTS components in the market for
monitoring these events, such as Oracle Business Activity Monitoring (BAM) and IBM Business
Monitor.

The recorded execution data can be further exploited to provide organizations with better un-
derstanding as to how their process instances are actually executed. These kinds of techniques
align well with the execution data post-processing functionality for which we found a great num-
ber of COTS components, such as ProM and Disco.

Runtime control functionality controls the behavior of currently running process instances by
enabling decision making. Having exploited the past and current execution data, this function-
ality forecasts and further predicts the future events that may influence running instances. This
functionality has been supported by many COTS components (e.g., SAS Business Intelligence &
Analytics and IBM Cognos Analytics).

Accordingly, we design the inner architecture of the BPI&BPA component based on the in-
troduced COTS components. The first common action among these COTS components is the
ETL (Vassiliadis 2009) procedure, which extracts data from various heterogeneous data sources,
transforms them into comprehensible formats, and loads them into an information repository. The
BPI&BPA component must enable the import of all types of data (i.e., batches or streams). Since
the ETL techniques are mainly designed to support the batch mode, a new method has been sug-
gested, called Data Ingestion (Grover and Carey 2015), covering both types offered by many COTS
components, such as Apache Chukwa and Gobblin. Consequently, the BPI&BPA component con-
tains two components: (1) a Data Ingestion Tools component that imports and formats both batches
and streams of data and (2) an Information Repository component that provides storage for the for-
matted data.

Additionally, the BPI&BPA must be able to manage imported data in such a way that when new
data come into the information repository they must provide some added value to the already
existing information. Many data management challenges are proposed in the literature. For exam-
ple, the data enrichment challenge in Chaudhuri (2012) and the data retention challenge in Tene
and Polonetsky (2012) have been suggested. There are some COTS components resolving these
challenges, such as SAS Data Management Software, which provides the data enrichment func-
tionality. Therefore, the BPI&BPA component must include a Data Management Tools component,
which resolves data management challenges.

Finally, the imported data must be analyzed. The input for post-processing analysis techniques
are often batches of execution data and for runtime control techniques can be both batches and
streams of data. Therefore, the BPI&BPA component includes a Data Analysis Tools component
supporting both sets of batch data analysis and stream data analysis techniques. Considering batch
data analysis, one of the well-known methods is OLAP, for which many systems are available as
COTS component (e.g., SAS OLAP Server and Oracle OLAP). Another example for supporting
batch processing is Apache Hadoop, which provides a distributed computing framework to pro-
cess large amounts of data in parallel. Considering stream data analysis, a well-known method is

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:18 S. Pourmirza et al.

Fig. 14. The BPI&BPA component at the L2 level.

Complex Event Processing (CEP), provided by existing COTS components, such as jBoss Drools
Fusion, Oracle Complex Event Processing, and Esper.

Altogether, these suggested components constitute the BPI&BPA component at the L2 level as
seen in Figure 14, which illustrates the detailed view of this component.

This architecture contains three internal interfaces and three ports. The D_REC interface, pro-
vided by the Data Ingestion Tools, receives data from various data sources. The D_IMP port is
connected to this interface, which can be linked to the EVT_OUT interface to establish an interac-
tion between the SOA-WfMS and the BPI&BPA component for transferring the execution data. The
D_REPO interface, provided by the Information Repository, offers a set of required CRUD functions
used by the other components. The D_QUERY port, connected to the D_REPO interface, can be linked
to the EVT_IN interface to also establish an interaction between the SOA-WfMS and the BPI&BPA
component for asynchronously transferring post-processed improvements. The DCS_REP interface,
provided by the Data Analysis Tools, is also connected to the D_QUERY. However, the DCS_REP in-
terface synchronously invokes consumers using different mechanisms, such as triggers. Finally,
the AAA_SRV port is responsible for consuming a set of authentication, authorization, and account-
ing services that are provided by the AAA component.

7 EVALUATION AND DISCUSSION

This section provides a discussion on the architecture that is described in the previous two sec-
tions along two lines. First, it compares the reference architecture to three concrete BPM system
architectures that are applied in practice. Second, it discusses how the quality attributes that were
discussed in Section 4 have impacted the reference architecture.

7.1 Relation to Concrete Architectures

To evaluate the practical relevance of BPMS-RA, we compared its components to the components
of three concrete BPMS architectures that are used in practice. Table 3 shows the results of this
effort.

All of the BPMSs provide design, execution, and monitoring capabilities for BPMN 2.0 business
processes. As shown in the table, the Process Definition Tools component of BPMS-RA is realized
in Activiti by two components: Activiti Modeler, which is a web-based business process develop-
ment environment; and Activiti Designer, which provides an Eclipse-based plug-in with the same
purpose. Bizagi and GET Service support this component with the Bizagi Process Modeler and the
Process Development Environment, respectively. The mapping of concrete components to the BP
Execution Engine, BP Client Manager, and BP Resource Manager is straightforward. Regarding

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:19

Table 3. Mapping Concrete Architectures to BPMS-RA

the Service Manager, the three systems provide RESTful service integration capabilities that allow
both internal and external services to be stored, managed, and exploited.

While all the components of the SOA-WfMS part of BPMS-RA are fully supported by the three
systems, there is far less support for the BPI&BPA components. The Data Analysis component
is supported by the event correlator and event aggregator components of GET Service. However,
this component received less attention in Activiti and Bizagi. Both systems have an application
for producing reports and for analyzing past executions of the business processes. However, they
do not support the prediction of future executions based on past events. The Data Ingestion Tools
component is supported by GET Service and Activiti, and in the new release of Bizagi there are
some out-of-the box components to ingest data from specific systems such as SAP. The functions
that are provided by the Data Management Tools component and the Information Repository com-
ponent are linked with the functions that are provided by the relevant components as shown in
Table 3. Consequently, it is possible to claim that these two components are supported by all three
systems.

The functions of the AAA component are also covered by all three systems. Activi by default
supports basic authentication, while Bizagi provides different options for authentication, including
default Windows authentication, Active Directory authentication, and federated authentication.
GET Service provides an OAuth 2.0 authentication procedure.

7.2 Impact of Quality Attributes

The quality attributes have impacted the reference architecture as follows.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:20 S. Pourmirza et al.

—Simplicity has been considered by creating a two-level decomposition of the architecture
into a relatively small number of components that have clearly identifiable functionality.

—Modifiability has been considered by creating loosely coupled components that can be mod-
ified relatively independently of each other.

—Integrability has been considered by identifying the interfaces at which the components
must interact. It can be further considered in future work by standardizing the interaction
at these interfaces.

—Portability has been considered by abstracting from implementation choices. It can be fur-
ther considered in future work by considering the way in which the various components
must be deployed.

—Completeness has been considered by using a systematic literature review that aims to
identify all existing BPMSs (Pourmirza et al. 2017).

—Feasibility has been achieved by considering BPMSs that have been implemented, show-
ing that the reference architecture can indeed be implemented as discussed in detail in
Section 7.1.

—High-automation has been considered in the communication between the BP Execution
Engine (from SOA-WfMS) and Data Analysis Tools (from BPI&BPA). The latter component
exploits the historical execution logs from the former component (through the EVT_OUT
interface) and feeds the former component with the predicted future execution paths auto-
matically (through the EVT_IN interface).

—Security has been considered by introducing a dedicated component that must ensure se-
curity.

—Interoperability is achieved by introducing dedicated components that are responsible for
interoperability, in particular, the Service Manager component through its SR_INVC inter-
face and the Data Ingestion Tools through the D_IMP interface.

—Usability quality must be considered in future work in the BP Client Manager Tools and
Process Definition Tools, as these two components are used by the end user of a BPMS-RA
compliant system. It must also be considered in the BP Execution Engine and, in particular,
through the Exception Handling functionality, since the BPMS-RA must support exception
detection and recovery.

In the design of BPMS-RA, we considered a trade-off between the following quality attributes.

—Simplicity versus modifiability: Although the former facilitates BPMS-RA-compliant sys-
tems to be realized and deployed easily, the latter prevents the systems getting stuck forever
with the original deployment. Therefore, we paid more attention to modifiability than to
simplicity.

—Simplicity versus completeness: A more complete system may result in a more complex
one. We tried to mitigate this issue by modularizing the functionality, which we consider
complete in light of the literature study that we conducted.

—Simplicity versus high automation and interoperability: A more automated and interoper-
able system may result in a more complex one. We tried to mitigate this issue by proposing
the definition of standard interfaces.

—Feasibility versus modifiability, integrability, and portability: Although developing a more
modifiable, integrable, and portable system requires more implementation efforts during
the first development cycle, we believe that these quality attributes will eventually result in
less implementation effort during the life-cycle of a BPMS-RA-compliant system. Therefore,
we paid more attention to these quality attributes than to feasibility.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

BPMS-RA: BPMS Reference Architecture 13:21

Fig. 15. Overview of BPMS-RA.

—Security versus integrability and interoperability: The security of a system may degrade
as a system is integrated with a new components. In light of this trade-off, we did not
consider security beyond the introduction of an AAA component that primarily implements
authorization and authentication.

—Modularity versus performance: A less modular decomposition may result in a better per-
forming system since all of the required resources are accessible with less latency. However,
BPMS-RA has been designed primarily based on the principle of modular decomposition.

8 CONCLUSION

This article presents a reference architecture for Business Process Management Systems, called
BPMS-RA. BPMS-RA provides a guideline for the development of concrete BPMSs. In addition, it
offers a common understanding of the provided functionalities and interfaces of these systems.
Finally, it can be employed as a standard for evaluating the completeness of existing BPMS archi-
tectures and systems.

BPMS-RA was developed based on concrete BPMSs from the research community (using
a research-driven approach) and on concrete BPMSs from industry (using a practice-driven
approach).

Figure 15 presents a condensed view of BPMS-RA. Shared borders between components in
this figure represent interfaces between these components. At the highest level of abstraction,
BPMS-RA consists of three main components: (1) the SOA-WfMS component, which offers
functions such as business process modeling and execution; (2) the BPI&BPA component, which
is responsible for monitoring and controlling BPMS-RA-compliant systems; and (3) the AAA
component, which secures BPMSs by providing functions for authentication, authorization, and
accounting. At lower levels of abstraction, BPMS-RA is refined into components and lists the
functionality that is provided by these components.

By providing a reference architecture that is based on recent concrete architectures, the
contribution of BPMS-RA is an update, after twenty years, of existing reference architectures
(Hollingsworth 1995; Grefen and Remmerts de Vries 1998) with the latest developments from
both research and practice. Thus, BPMS-RA takes functionality into account that is provided by
traditional workflow systems as well as functionality provided by modern-day business process
intelligence systems. When comparing the existing reference architectures to BPMS-RA, the most
striking improvements of BPMS-RA are the integration of components for real-time business

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

13:22 S. Pourmirza et al.

process analysis and the shift to a service-oriented paradigm, which is related to the end of a
distinction between client applications and other workflow enactment services.

BPMS-RA is meant to facilitate the design of concrete architectures by researchers and
practitioners. As a facilitation reference architecture, it provides guidelines and inspiration for the
design of concrete architectures (Angelov et al. 2012). In particular, it gives a complete overview of
the functionality that is provided by modern-day BPMSs. This overview can serve as an inspiration
for the functions that a researcher or practitioner may want to implement. The reference architec-
ture also suggests a system structure that organizes these functions, including the interfaces that
facilitate the interaction between the functions. This structure can serve as a guideline for concrete
BPMSs. It must be noted that the interfaces themselves are not standardized in this article. In
that respect, BPMS-RA is a facilitation rather than a standardization architecture (Angelov et al.
2012), which it has in common with the existing reference architectures (Hollingsworth 1995;
Grefen and Remmerts de Vries 1998) on which it is based. However, the mere identification of
interfaces is a guideline in itself and shows where standardization efforts are necessary. Indeed,
the Workflow Reference Model also had that goal (Hollingsworth 1995) and has (indirectly)
inspired standards such as the BPMN Interchange Format (Object Management Group 2011),
which partly standardizes the exchange of process models between a process definition tool and
an execution engine. Along the same lines, BPMS-RA is related to the XES standard (IEEE 2016),
which partly standardizes the data exchange between an execution engine and data analysis tools.

REFERENCES

Samuil Angelov, Paul Grefen, and Danny Greefhorst. 2012. A framework for analysis and design of software reference

architectures. Information and Software Technology 54, 4 (2012), 417–431.

Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. 2011.

Documenting Software Architectures: Views and Beyond. Addison-Wesley.

Len Bass, Paul Clements, and Rick Kazman. 2013. Software Architecture in Practice (3rd ed.). Vol. 2. Addison-Wesley.

Anne Baumgrass, Mirela Botezatu, Claudio Di Ciccio, Remco Dijkman, Paul Grefen, Marcin Hewelt, Jan Mendling, Andreas

Meyer, Shaya Pourmirza, and Hagen Völzer. 2015a. Towards a methodology for the engineering of event-driven process

applications. In BPM Workshop, Vol. 256. Springer, 501–514.

Anne Baumgrass, Claudio Di Ciccio, Remco Dijkman, Marcin Hewelt, Jan Mendling, Andreas Meyer, Shaya Pourmirza,

Mathias Weske, and Tsun Yin Wong. 2015b. GET controller and UNICORN: Event-driven process execution and moni-

toring in logistics. In BPM Demo, Vol. 1418. CEUR Proceedings, 75–79.

Anne Baumgrass, Remco Dijkman, Paul Grefen, Shaya Pourmirza, Hagen Völzer, and Mathias Weske. 2015c. A software

architecture for transportation planning and monitoring in a collaborative network. In IFIP Advances in Information and

Communication Technology – Risks and Resilience of Collaborative Networks. Vol. 463. Springer, 277–284.

Surajit Chaudhuri. 2012. What next? A half-dozen data management research goals for big data and the cloud. In Symposium

on Principles of Database Systems. ACM, 1–4.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo Reijers. 2013. Fundamentals of Business Process Management.

Springer.

Roy Thomas Fielding. 2000. Architectural styles and the design of network-based software architectures. Ph.D. Dissertation.

University of California, Irvine, Irvine, CA.

Thomas Freytag. 2005. WoPeD–workflow Petri net designer. In Applications and Theory of Petri Nets. https://www.

researchgate.net/publication/228697436.

GET Service Consortium. 2013. GET Service: Efficient Transportation Planning and Execution. Retrieved January 12, 2018

from http://getservice-project.eu/.

Paul Grefen. 2015. Business Information System Architecture (BISA). Eindhoven University of Technology.

Paul Grefen and Remmert Remmerts de Vries. 1998. A reference architecture for workflow management systems. Data &

Knowledge Engineering 27, 1 (1998), 31–57.

Raman Grover and Michael J. Carey. 2015. Data ingestion in AsterixDB. In EDBT. Openproceedings.org, 605–616.

Thomas R. Gruber. 1995. Toward principles for the design of ontologies used for knowledge sharing? International Journal

of Human-Computer Studies 43, 5 (1995), 907–928.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design science in information systems research.

MIS Quarterly 28, 1 (2004), 75–105.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

https://www.researchgate.net/publication/228697436
https://www.researchgate.net/publication/228697436
http://getservice-project.eu/

BPMS-RA: BPMS Reference Architecture 13:23

David Hollingsworth. 1995. The workflow reference model. Workflow Management Coalition Technical Report TC00-1003

(1995).

Jinmin Hu and Paul Grefen. 2003. Conceptual framework and architecture for service mediating workflow management.

Information and Software Technology 45, 13 (2003), 929–939.

IEEE. 2010. Systems and software engineering – vocabulary. IEEE Standard, 1–418.

IEEE. 2016. Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event Logs and Event Streams. Tech-

nical Report 1849-2016. IEEE.

Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. 2007. Coloured Petri nets and CPN tools for modelling and validation

of concurrent systems. International Journal on Software Tools for Technology Transfer 9, 3–4 (2007), 213–254.

Andrey Kashlev and Shiyong Lu. 2014. A system architecture for running big data workflows in the cloud. In IEEE Inter-

national Conference on Services Computing (SCC). IEEE, 51–58.

Marcello La Rosa, Hajo Reijers, Wil van der Aalst, Remco Dijkman, Jan Mendling, Marlon Dumas, and Luciano García-

Bañuelos. 2011. APROMORE: An advanced process model repository. Expert Systems with Applications 38, 6 (2011),

7029–7040.

Rikard Land, Laurens Blankers, Michel Chaudron, and Ivica Crnković. 2008. COTS selection best practices in literature and

in industry. In High Confidence Software Reuse in Large Systems. Springer, 100–111.

Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhaoqiang Lai, Farshad Fotouhi, and Jing Hua. 2009. A

reference architecture for scientific workflow management systems and the VIEW SOA solution. IEEE Transactions on

Services Computing 2, 1 (2009), 79–92.

Alex Norta, Paul Grefen, and Nanjangud C. Narendra. 2014. A reference architecture for managing dynamic inter-

organizational business processes. Data & Knowledge Engineering 91 (2014), 52–89.

Object Management Group. 2011. Business Process Model and Notation (BPMN) - version 2.0. Technical Report formal/2011-

01-03. Object Management Group.

Shaya Pourmirza, Sander Peters, Remco Dijkman, and Paul Grefen. 2017. A systematic literature review on the architecture

of business process management systems. Information Systems 66 (2017), 43–58.

Pinar Senkul and Ismail H. Toroslu. 2005. An architecture for workflow scheduling under resource allocation constraints.

Information Systems 30, 5 (July 2005), 399–422.

William Sobel, Bruce McCorkendale, and Thomas Powledge. 2005. Systems and methods for centralized subscription and

license management in a small networking environment. Patent No. 11/192038, Filed July 29th., 2005, Issued February

1st., 2007.

Omer Tene and Jules Polonetsky. 2012. Big data for all: Privacy and user control in the age of analytics. Northwestern Journal

of Technology and Intellectual Property 11 (2012), xxvii.

Wil van der Aalst. 2013. Business process management: A comprehensive survey. ISRN Software Engineering 2013, Arti-

cle 507984 (2013), 37 pages.

Wil van der Aalst, Mariska Netjes, and Hajo Reijers. 2007. Supporting the full BPM life-cycle using process mining and

intelligent Redesign. Contemporary Issues in Database Design and Information Systems Development, Keng Siau (Ed.). IGI

Global, 100–132.

Panos Vassiliadis. 2009. A survey of extract–transform–load technology. International Journal of Data Warehousing and

Mining 5, 3 (2009), 1–27.

Received November 2016; revised June 2018; accepted June 2018

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 13. Publication date: February 2019.

