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THE FULL DECOMPOSITION OF SEQUENTIAL MACHINES
WITH
THE STATE AND OUTPUT BEHAVIOUR REALIZATION

Lech Jdé2wiak
Group Digital Systems, Faculty of Electrical Engineering,
Eindhoven Universwity of Technology {(The Netherlands)

Abstract-The design of large logic systems leads to the practical
problem how to decompose a complex system into a number of simpler
subsystems. The decomposition theory of sequential machines
tries to find answers to this problen for sequential machines. For
many years, the "simpler "™ machine was defined as a machine with
fewer states and, therefore, state-decompositions of sequential
machines were considered. Together with the progress in LSI
technology and the introduction of array logic into the design of
sequential circuits a real need arose for decompositions not only
on states of sequential machines but on inputs and outputs too,
i.e. for full-decompositions.

In this report, a general and unified classification of full-
decompositions is presented, formal definitions of different
sorts of full-decompositions for Mealy and Moore machines are
introduced and theorems about the existence of full-
decompositions with the state and output behaviour realization
are formulated and proved. The presented theorems have a
straightforward practical interpretation. Based on them, a set of
algorithms has been developed and a system of programs has been
made for computing the different sorts of decompositions.

Index Terms—-Automata theory, decomposition, logic system design,
sequential machines.
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1.Introduction.

The design of large logic systems leads to the following
practical problem:

How to decompose a complex system into a number of simpler
subsystems in order to obtain:

- the clearer organization of the system and of the design,
implementation and verification process,

- the possibility of optimization of the separate subsystenms,
whereas it can be impossible directly to optimize the whole
system,

- the possibility of implementation of the system by existing
building blocks.

The decomposition theory of sequential machines tries to find
answers to the following question: how to decompose a given
sequential machine M into a number of "smaller" (and therefore
easier to develop and implement) component sequential machines
M,,My,...,M, which, in combination, realize the behaviour of a
given machine M.

Research in the above mentioned field was started in early
sixties [8][9][10][19])[20}. For many years, the "smaller"
machine was defined as a machine with fewer states than the given
machine; therefore state-decompositions of sequential machines
were considered. Definitions of decompositions on states were
introduced, constructive thecorems about the existence of state
decompositions were presented and some practical algorithms for
state decompositions were developed [4][12]{16][17]}[18][19]
[20].

Together with the progress in LSI technology and the
introduction of array logic (PAL, PGA, PLA, PLS) into the design
of sequential circuits, a real need arose for decompositions not
only on states of sequntial machines but on inputs and outputs
too, i.e. for full-decompositions.

An approach to the full-decomposition of sequential machines
has been presented in [14]} and [15). Among other things, the
definitions and theorems concerning parallel and two types of



serial full-decompositions for Mealy machines were introduced.
In this work a general and unified classification of full-
decompositions will be presented, formal definitions of
different sorts of full-decompositions for Mealy and Moore
machines will be introduced and theorems about the existence of
full-decompositions with the state and output behaviour
realization will be formulated and proved leading immediately to
some practical algorithms. The theorems concerning the types of
full-decomposition defined in {14] were formulated and proved
here with weaker assumptions than those in [14] and , therefore,
they are more general. They include cases which are important from
the practical point of view and were not covered by the theorens
presented in [14]. The notions of output~dependent trinity, state
dependent trinity semitrinity and induced semitrinity wused in
presented theorems have a straightforward practical
interpretation which is an important advantage.

2.Algebraic models of sequential machines and a full-
decomposition.

DEFINITION 2.1 A sequential machine M is an algebraic system
defined as follows:
M= (I, 5, 0, § 1) ,
where:
I - finite nonempty set of inputs,
- finite nonempty set of internal states,
- finite set of outputs,
- next state function, §: SxI — S,

»> o O W

— output function, i: SxI — O (a Mealy machine),
or \: § — O (a Moore machine).

If the output set O and the output function ) are not defined,
the sequential machine M = (I, 8, §) is called a state machine.

The machine functions & and ) can be considered as sets of
functions created for each input:

8 = {§,] 5, S — S and x¢I)



and

Y = {ix] Mgz 8§ — 0 and xe¢l},
where §,:5 — S and ),:5 -— O are defined by:

VXel YxeS 3d,.(s) = 8(8,X%X),

e (8) = M(s,X).

The 3, and 1, are called, respectively, the next-state
function and the output function with respect tc the input x.

In the next sections for &,(s) and ),(s) we will use the
notations s3, and si,.

For x¢I and Q ¢ S, we will define the two partial functions:

3.t 2% — 2% and ), : 2% — 29,
where:

¥xel ¥QsS Q?x = {s§,| seQ), QTx = {s),] s€Q}.

For XcI and Q¢S, we will define also the following two partial
functions:

By: 2% — 2% and Jg: 2% — 29,
where:

Qy = {s3,| 5€Q A XeX),

Qg = {Siy| S€Q A XeX}.

In this work, we take into account only simple decompositions
(i.e. decompositions with two component machines) and,
therefore, the term "decomposition™ is used further in the
meaning of "simple decomposition".

let M= (I, S, O, §, )} be the machine we want to decompose and
M= {I,, Sy, O;, &;, )y} and My= (I,, S,, O,, ¥,, X} are two
partial machines.

In a full-decomposition, we are interested in finding such
partial machines M; and M, that each of them has fewer states
and/or outputs than machine M and/or each of them can calculate
its next states and outputs using only the part of information
about the input of machine M and, in combination, they form
machine M' imitating M from the input-output point of view.

In a state-decomposition, we were interested in finding
machines M; and M, with only fewer internal states. Inputs and
cutputs were not decomposed.

Before we consider different sorts of full-decomposition, we
recall from [12] the definition of realization.



DEFINITION 2.2 Machine M' = (I',S',0',3',)') realizes (is
realization of) machine M = (I1,5,0,5,)) if and only irf the
following relations exist:
¢y: I — I' (a function),
$: s — 2°" (a function into nonvoid subsets of S'),
6: 0'— © (a surjective partial function) ,
and this relations satisfy the following conditions:
0(8) 875y £ B(s8y)
and
Shy = 8(s")2'y(xy) (for a Mealy machine)
or
s} = @g(s'r'") (for a Moore machine)
for all seS, s'ed(s) and xel.

Let I* be a set of all input sequences x;X,...X%, (n=0,1,...),
let x = x'x for x'eI* and x¢I and let ) and 3 be two functions
calculating the last output and the last state reached by a
machine from the state s under the input sequence X :

3: SxI* — s, B(s,x) = 5(8(s,Xx"),x),
i SxI* — 0, 1(s,%) = A (3(s,%X'),x) (Mealy case),
x(s,§) = X(%(s,x)) (Moore case).
It can be proved that if M' is a realization of M in the sense of
definition 2.1 then VseS Vs'ed(s) and VQcI* : ‘1(s,§) =

e(}'(s',w(x)), i.e. for all possible input sequences outputs
reached by machine M and its imitation M' are, after a renaming,
identical. Because of this fact, the realization in the sense of
definition 2.1 will be called by us the realization of the output
behaviour.

In some cases, we are concerned with not only the output
changes of the machine but also with the state changes. Therefore,
we will consider also realizations of the state behaviour of
sequential machines.

DEFINITION 2.3 Machine M' = (I', S8', O0', &', \') , realizes the
state and ovtput behaviocur of machine M = (I, 8, 0, 5, ) if and
only if the following relations exist:

¢: I — I' (a function),

¢: S'— 5§ (a surjective partial function)

8: 0'— O (a surjective partial function)



such that:
¢(S')5x = ¢(S'5'¢(x))
and
d(sr)r, = 8(s' 2y (x)) (for a Mealy machine)
or
G(s')r = 8(s")") (for a Moore machine).

The realization of the state and output behaviour is a special
case of the realization of the output behaviour. If function ¢ in
definition 2.2 maps each state of M onto a single state of M' and ¢
is a one-to~one function then definition 2.2 is equivalent to
definition 2.3.

In a full-decomposition, we are interested in finding the
partial machines M; and M, and the mappings:

y: I — I,xI, ,

¢: S — 2% %82 (the realization of the output behaviour)

8: 0,0, — O ,

or
v: I —m I, X I,, (the realization of the state)
: 8§, x 8§, -3 8§, and output behaviour
1 2

6: 0, x 0, — O,
that the machines M, and M, together with the mappings ¢, b, o
realize the behaviour of a machine M.

We will say that a full-decomposition is nontrivial if and only
if:

FI o f<|T) A JTI0<|I| v |8 |<]|s| A |S,|<is| v |osl|<|O] A
|0,|<{0|, where |Z| — number of elements in the set Z.

In the case of a state-decomposition, we are interested in
finding machines M, and M, and, in fact, only one mapping
¢:5, x 5, — 5.

It is evident that state-decomposition is a special case of

full-decomposition.



3. Classification of full-decompositions.

Decompositions can be classified according to the kind of
connections that exist between the component machines.

r—-—-=—=-=-=-=-=- _——sm s !

r | 1, _ " 0, | .

La 1 i
| |
| 0,/8, g {

It I + 02/52 I o

0,

| 1, ‘ M, { }
| — |

Fig 3.1 The information flow between the component machines in
full-decomposition.

In general, each of the component machines can use the
information about the state or output of the other component
machine in order to compute its own next state and output
(Fig.3.1).

From the point of view of the strength of the connections between

the component machines we can distinguish the following sorts of
full-decompositions:
(i) parallel full-decomposition - each of the component
machines can calculate its next states and outputs independently
of the other component machine, based only on the information
about its own internal state and partial information about inputs
(Fig.3.2),



(ii) serial full-decomposition - one of the component machines,
called the tail or dependent machine (say M,;), uses the
information about the outputs or states of the second machine,
called the head or independent machine (say M,), and partial
information about inputs in order to calculate its next states and
outputs (Fig.3.3),

(iii) general full-decomposition - each of the component machines
uses information about the outputs or states of the other
component machine and partial information about inputs in order
to calculate its next states and outputs (Fig.3.4).

The parallel full-decomposition and the serial full-
decomposition can be treated as special cases of a general full-
decomposition with zero information about one submachine used by
another submachine.

From the point of view of the sort of information about a given
submachine used by another submachine in order to calculate its
next states and outputs, we can distinguish the following two
types of full-decomposition:

(i) the decomposition with information about outputs, called by
us type O,

(ii) the decomposition with information about internal states,
called type S.

A given submachine can use the information about the "present"
or the "next" state or output of the other submachine. So, we
distinguish the following two classes of full-decomposition:
(i) class P - a decompositions with information about the present
state or output, '

(ii) class N - a decompositions with information about the next
state or output.



r———-—="=-="=-=-"=-"=-"=-"=-"=-"=-"=-== 1
| I, . 0, |
4 1
| |
I | ¢ | ] o |
I-—-~—---I-—>- . - -——I—---—-:o
I, 0,
| 4 M, |
| |
M
L o e e e e e e e e e e am o me e o d

Fig 3.2 Parallel full-decomposition of a machine M into
component machines M, and M,.

F---=-m"="=="===="=-=-"=-=== |
! I, 0, |
- M1
| |
| | ¢ F $,/0, - o |
|
I, C,

I 4 M, |
| |
M
L e e e e e e o e e o e o m e e e d

Fig 3.3 Serial full-decomposition of a machine M into
component machines M; and M,.
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1
| I, " 0, |
1
| |
i ¥ i 0,/8, 1 - o I
| + M, l
| |
M
L o e e e e v e e e e e e e am mr e - J

Fig 3.4 General full-decomposition of a machine M into component
machines M, and M,

From the classifications given above, it immediately follows,
that the following cases of full-decompositions are feasible:
- one sort of parallel full-decompeosition;

- four sorts of serial full decomposition: PS, NS, PO, and NO,
- two sorts of general full-decomposition: PS, PO.

For a general full-decomposition, it is possible to have not
only the "pure" cases PS and PO but also the "mixture"™ of types S
and 0 and classes P and N (the first submachine can use the
information about the state of the second and the second about the
output of the first and vice versa ; the first submachine can use
the information about the present state/ocutput of the second
submachine and the second can use the information about the next
state/output of the first). In this report, we do not take into
account "mixed" types, because definitions and theorems for them
can be formulated easily as "mixtures" of the adequate
definitions and theorems for the "pure" cases considered here.

The formal definitions of all types of full-decompositions
which we consider in the paper are introduced below.

Let s¢S,, teS,, X ;eIy, Xp¢el,.
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DEFINITION 3.1 A parallel connection of two machines:
M, = (I,, S$,;, O, &', 21)
and

M, = (I,, S,, 0,, 82, 1?)
is the machine:
M, |IM, = (I,xI,,S,x8,,0,x%0,,35*,1%)
where:
$*((s,t), (x,,%,))
and
Vi(s, ), (%,,%,))
(for Mealy machine}

]

(3 (s,%,),38%(t,x,))

(31 (s,%,),22(t,x%,))

or
VE((s,t)) = (ZP(s), A (L))
(for Moore machine)

DEFINITION 3.2 The machine M,|[|M, is a parallel full-
decomposition of the machine M if and only if the parallel
connection of M, and M, realizes M

DEFINITION 3.3 A serial connection of type PS of two machines:
M, = (I,, 8§, 0,, 8%, %)

and , 2 2
. ) M, = (12' SZ' O, 235, ) )
for which I, = §,xI, ,

is the machine M,— M,

i

(I,xI,,5,%S8,,0,x0,,38%,%) ,
where:

% ((s,t), (x,,%,))
and

(81 (s,%x,),82(t,(s,%x,)))

i

AE((s,t), (x,,%,)) = (WP(s,xy) 22 (E, (5,%,)))
(for a Mealy machine)
or
Vi ((s,t)) = (W1(s),2(L))
(for a Moore machine).

DEFINITION 3.4 The machine M;— M, is a serial full-
decomposition of type PS of the machine M if and only if the serial
connection of type PS of M, and M, realizes M.
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DEFINITION 3.5 A serial connection of type NS of two machines:
M, = (I,, 8, 0,, 8, \})

and , . )
. ’ Mz = (sz szr 02: § ’ ) ):
for which I, = §;xI, ,

is the machine M,-— M, = (I,xI,,S$,XS,,0,%x0,,3* %) ,

where:
S*((s,t), (%,,%,)) = (81 (s,x3),82(t, (8 (s,%,),%,))
and
V¥ ((s,t), (%,,%,)) = (W1(s,x),02(t, (81 (8,%,),%,))
(for a Mealy machine)
or

W ((s.t)) = (A1(s), A% (¢))
(for a Moore machine)

DEFINITION 3.6 The machine M;— M, is « serial full-
decomposition of type NS of the machine M if and only if the
serial connection of type NS of M; and M, realizes M.

DEFINITION 3.7 A serial connection of type PO of two machines:
M, = (I,, §,, 0,, §*, 1)
and ,
. ’ Mz = (Izr sz: 02' 52: l2) r
for which I, = 0,xI, ,
is the machine M;— M, = (I,xI,,S,xS,,0,x0,,3*,1*) ,

where:

3¥((s,t),(%X1,%,)) = (81(s,%,), 8% (X, (¥1,%2)))
WOLs, ), (%,%5)) = (V8,23 (8, (Y i,%4)))
and y, €0, : y, is the present output of M,
(the output of M, contemporary with the state s of M;)

(for a Mealy machine)
or
3¥((s,t), (Xy,%,)) = (81(5,%y),3%(t, (A1 (5),%,))))
M ((s,t)) = (a(s), ()
(for a Moore machine)
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DEFINITION 3.8 The machine M;,— M, is a serial full-
decomposition of type PO of the machine M if and only if the serial
connection of type PO of M, and M, realizes M

DEFINITION 3.9 A serial connection of type NO of two machines:
M, = (I,, S,, 0, 8%, 1)

and e 2 2
for which I; = g:xgz( 2r S, 0z, 8%, 2%),

is the machine M;— M, = (I,xI,,5;XS,,0,%0,,8%,)%),
where:

¥ ((s,t), (%;,%5)) (31 (s,x%,),82(t, (Z\1(s,%,),%,)))
V¥ ((s,t), (%;,%,)) (\(s,xy) 03, (W (s, %,),%,)))
(for a Mealy machine)

or
$X((s,t),(xy,X%p)) = (81 (s,%,),8%(t, (W (31 (s,%x,)),%,)))
Vs, 1)) = (O1(s) aE(r))
(for a Moore machine)

DEFINITION 3.10 The machine M;— M, is a serial full-
decomposition of type NO of the machine M if and only if the serial
connection of type NO of M, and M, realizes M.

DEFINITION 3.11 A general connection of type PS of two
machines :

r
M, = (I, , S,, 0, 8!, 2}

and ,
M, = (I, , S,;, 0,, 3%, 12¥)
where: , ,
I, = S,xI, , I, = §,xI, ,
is the machine:
M;é= M, = (I,xI,,5,%S,,0,x0,,3%,1%) ,
where:

¥ ((s,t), (xy,%,;))

i

(81 (s, (t,%,)),8%(t, (58,%;))
and
A((s,8), (Xy,%2)) = (O(s, (t,x1)), Vi (t, (5,X%,))
{for a Mealy machine)
or
V((s,)) = (O1(s),P(E))
(for a Mocore machine)
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DEFINITION 3.12 The machine M= M, is a general full-
decomposition of type PS of the machine M if and only if the
general connection of type PS of M, and M, realizes M.

DEFINITION 3.13 A general connection of type PO of two

machines: ,
M, = (I,, S;, 0,, &1, 2}
and

i

M, = (I,, S,, O,, 8%, 2%) ,

where: , s

is the machine:
M¢= M, = (I,xI,,58,%5,,0,%x0,,8%,)*%) ,
where:
3¥((8,8), (%,,%,)) = (81(8, (¥a,%;)) ., 82(t, (¥1,%,)))
V((s,t), (2,,%)) = (018, (Y2,%1)) 02 (8, (Y10%;,)))
and y, €0, , y,¢0, (present outputs of M, and M,)

(for a Mealy machine)
or
3 ((s,8), (xy,%;)) = (8'(s, (02 (8), %)), 82(t, (W1 (s),x,)))
V¥ ((s,8)) = (3(s),22(t))
(for a Moore machine)

DEFINITION 3.14 The machine M~ M, is a general full
decomposition of type PO of the machine M if and only if the
general connection of type PO of machines M, and M, realizes M.

Each of the above defined types of a full-decomposition can be
considered as a full-decomposition with the realization of the
output behaviour or as a full-decomposition with the realization
of the state and output behaviour. In next paragraphs, we will
formulate and prove, for the case of state and cutput behaviour
realizations, the theorems about the existence of different types
of full- decomposition defined above. In order to formulate these
theorems we will introduce the notions of "output-dependent
trinity", "state-dependent trinity", "semitrinity" and "induced
semitrinity". Only the proves for a Mealy machine are presented in
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the report, because the proves for a Moore machine are analogous.

The theorems for the case of output behaviour realizations will be
presented in a separate report.

4. partitions, partition pairs and partition trinities.

The concepts of partitions and partition pairs introduced by
Hartmanis (11][12]) and partition trinities introduced by Hou
[14][15] are very useful tools for analyzing the information flow
in machines and between machines; therefore they will be used in
this work.

Let 5 be any set of elements.

DEFINITION 4.1 Partition n on § is defined as follows:
m = {B;| ByjsS and B; n B; = 0 for i¢j and v B; = S},
i
i.e. a partition w on S is a set of disjoint subsets of S whose set
union is S.

For a given seS, the block of a partition = containing s is
denoted as [s]nand we will write [s]m= [t]~x to denote that s and t
are in the same block of x. Similarly, the block of a partition &
containing S',where S'g S , is denoted by [S']w.

The partition containing only one element of S in each block is
called a zero partition and denoted by =n¢(0). The partition
containing all the elements of S in one block is called a one
partition and is denoted by wg(I).

Let n, and n, be two partitions on S.

DEFINITION 4.2 Partition product n,+7n, is the partition on S such
that [s]w,*%, = [t]wm,*n, if and only if [s]ny = [t]lw, and [s]® ' =
[tlm,.

DEFINITION 4.3 Partition sum n,+n, is the partition on S such that
[s]n,+%, = [t]n,+mw, if and only if a sequence: s=S;, S,,...,s,=t,
s;€S for i=1l..n , exists for which either

[s;17; = [554,]17, either (s;]n, = [S;,,]%,, 0 = i 5 n-1.
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From the above definitions, it follows that the blocks of 7,7,
are obtained by intersecting the blocks of wn, and n,, while the
blocks of ®;+%, are obtained by making union of all those blocks of
®; and w, which contain common elements.

DEFINITION 4.4 v, is greater than or equal to m,: m, < %, if and
only if each block of 7, is included in a block of =,

Thus n, ¢ 7, if and only if ®,*%, = 7y if andonly if X +%, = 7,.

Let Sy be the set of all partitions on S.Because the relation <
is a relation of partial ordering (i.e. it is reflexive,
antisymmetric and transitive), (S;, <) is a partially ordered
set,

Let (Z, 3) be a partially ordered set and T be a subset of Z.

DEFINITION 4.5 z, z¢Z, is the least upper bound (LUB) of T if and
only if :
(1) VteT: z 2 t ,
(ii) VYteT: if z' =2 t then z' > zZ.
z, z¢eZ, is the greatest lower bound (GLB) of T if and only if:
(i) VteT: z < t,
(ii) vteT: if 2' < t then 2' ¢ z.

DEFINITION 4.6 A partially ordered set L= (2, <), which has a LUB
and a GLB for every pair of elements, is called a lattice.

It is evident that the set of all partitions on S together with
the relation of a partial ordering < form a lattice with
GLB(7®,,n,) = ®wy*w, and LUB(w,,®,} = ®,;+7, .

Let %g, 1g, Wy, M be the partitions on M=(I, s, 0, &, 1), in
particular: #,;, 1¢ on S, ®; on I, %, on O.

DEFINITION 4.7
(1) (ng,t5) is an S-S partition pair if and only if
VBem, ¥xeI : Bs, & B', Bletrg -
(ii) (w;,ws) is an I-S partition pair if and only ir
VAen; VseS : s8, € B, Berng .
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(iii) (wg,my) is an S-0 partition pair if and only if
VBewg VxeI : BA, s C , Cemg (Mealy case)
or
VBemg By ¢ C , Cemng (Moore case).

(iv) (my;,7ny) is an I-O partitior pair if and only if
VAeTm; VSeS : sk, § C , Cem, (Mealy case)
or

YAeny; VseS ¢t 8% & C , Cemy (Moore case).

The practical meaning of the notions introduced above is as
follows:

("s,1g) is an S~S partition pair if and only if the blocks of 7,
are mapped by M into the blocks of 4. Thus, if we know the block of
e which contains the present state of the machine M and we know
the present input of M, we can compute unambiguously the block of
Ts Wwhich contains the next state of M for the states from a given
blocks of 7 and a given input. The interpretation of the notions
of I-S8, S-0 and I-0 partition pairs is similar.

In the case of Moore machine, the definition of an I-0O pair is
trivial, besause each (7n;,7;) satisfies it { the output of M is
defined by the state of M unambiguously).

DEFINITION 4.8 Partition ny has a substitution property (it is an
SP-partition) if and only if (%g,wg) is an S-S pair.

DEFINITION 4.9 Partition trinity T = (w;,%n;,n,) on the machine M=

(I, S, O, 3§, 1) is an ordered triple of partitions on sets I, S and

0, respectively, which satisfies the following conditions:
VAem; VYBemg : Bd, ¢ B', B'eny and By, € C , Cemy .

Thus, if (w;,%s,Ty) is a partition trinity onM and we know the
block B of n; which contains the present state of M and we know the
block A of n; which contains the present input of M, we can compute
unambiguously block B' of 7, containing the next state of M and
block C of ny containing the ocutput of M for the states fromblock B
and inputs from block A.

For completely spacified machines, it has been proved that
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(mp,mg,My) is apartitiontrinityonMif andonly if (ng,ng) is an
§-5 pair, (mn;,7w;) is an I-S pair , (=;,w,) is an $-0 pair and
(ny,My) is an I-0 pair on M [14][15].
It has been shown in [14] that the set of trinities on a machine
M forms a finite trinity lattice with
GLB(T,,T,) = T,0T, and IUB(T,,T,) = T,eT, ,
where ¢ and & are defined as a collection of pairwise operations
"e" and "+" on partitions of the same type (input,state,output) of
trinities of T, and T,

5. Parallel full-decomposition.

An important theorem about the existence of a parallel full~
decomposition has been proved in [14] and [15]. Below we will
introduce a similar theorem. The differences between this
theorem and that proved in [14} and [15] are following: we did not
require n;e«t;=n;(0), which was required in [14] and [15] and we
defined the nontriviality of a full decomposition in another way.
This means that the theorem below is formulated with weaker
assumptions and therefore it is satisfied for a broader class of

cases,.

THEOREM 5.1 A machine M = (I,S,0,3,)) has a nontrivial parallel
full-decomposition with the realization of the state and ocutput
behaviour if two partition trinities on M: (w;,7n,7w,) and
(11,75, Tp) exist and they satisfy the following conditions:
(1) mge1g = 7wg(0) and w515 = Wo(0) ,

(i1) frpi<|Tlal e l<iTlvlngl<isialtsl<Isvingl<lola]y]|<]O}

Proof of theorem 5.1 is similar to that for the appropriate
theorem presented in {14] and [15].



19

The interpretation of theorem 5.1 is as follows.
Let M, = (m;,ms,Mg,8%,0) and M, = (1;,T5,70,8%,3%) ,
where:
B1s!,, = Bls,, , Blyl,, =

{
o]
|
b o

=
(=]
-

B25%,, = B23,, , B212,, = B2),, ,
for all Alew,;, Bleng, A2¢t1;, Bletg
and let M be a parallel connection of M; and M,

Since (m;,wg,ny) is a partition trinity, based only on the
information about the block of n; containing the input of M and the
block of ©¢ containing the present state of M (i.e information
about the input and present state of M;) machine M, can calculate
unambiguously the block of #ng in which the next state of M is
contained and the block of n, that contains the output of M for the
input from a given block of w; and the present state from a given
block of ng (i.e. M, can calculate its next state and output).
Similarly, since (1;,7;,17,) is a partition trinity, machine M,,
based only on the information about its input and present state
(i.e. knowledge of the adequate block of t; and block of 14}, can
calculate its next state and output (i.e. the adequate blocks of
Ty and 1g).

Since wg-1g5 = wg(0) and wg+ Ty = 7y (0}, having the knowledge of
the block of ng and the block of t; in which the state of M is
contained, it is possible to calculate this state and, having the
knowledge of the block of n, and the block of 1, in which the output
of M is contained it is possible to calculate this cutput. So, the
machines M; and M, together can calculate the next state and
output of M unambiguously.

The special case of theorem 5.1 for:
[xgl<[Tlalrl<lTiatingi=ls|almol=]O]v]tsl=|S|Al15]=]0])
express, in fact, the input redundancy. In this case machine M
should be replaced with machine M, or M,, having fewer inputs and
realizing M, instead to be decomposed. Similar special cases
exist for all other theorems presented in this report.
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6. Serial full-decomposition of tvpe PS.

Let Ty, Tg, 1o be partitions on a machine M on I, S and O
respectively.

DEFINITION 6.1 (1;,75,Ty) is a partition semitrinity

if and only if 1, 13 and 1, satisfy the following conditions:

(1) (17,175) is an I-S partition pair,

(ii) (t;,15) is an I-0 partition pair (for a Mealy machine),
or

{tg,7g) is a S5-0 partition pair (for a Moore machine)

In other words, (t;,T3,Ty) i8 a semitrinity if and only if,
based only on the knowledge of the block of a partition 1
containing the input of M and the knowledge of the present state of
M, it is possible to calculate the block of 7¢ in which the next
state of M will be contained and, in the case of a Mealy machine,
based on the same information, it is possible to calculate the
block of 14 in which the output of Mwill be contained for the given
input and state or, in the case of Moore machine, based on the
knowledge of the block of a partition t; in which the state of M is
contained, it is possible to calculate the block of 1 in which the
output of M will be contained for the state from a given block of
7s. The triple of partitions (1;,74,7¢) is called "semitrinity",
because it has to satisfy half of the conditions for a trinity.

THEOREM 6.1 A machine M has a nontrivial serial full-

decomposition of type PS with the realization of the state and

output behaviour if a partition trinity (m;,7ng,n;) and a

partition semitrinity (t;,t1s,7¢) exist and they satisfy the

following conditions:

(i) mge1g = wg(0) and wy-15 = We(0) ,

(i) [rgl<lTlalnglelr l<iTiv]ngl<is|altgl<Is]|vingl<io]a
Altol<lo] .
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Proof (for the case of a Mealy machine)

Let M, = (m;,Wg,Wo,8,)!) and M, = (mgx1;,75,70,8%,2%) be two
machines satisfying the following conditions:

(1) (my,mg,my) and (7y,7g,T7y) satisfy the conditions of the
theorem 6.1 ,
(2) VBlemg VAlem; : B13',, = [Bla,,Ing , Blrl,; = [Bly,,1%, ,
(3) ¥Blemy VB2evrgy VA2eTp @

B232(5;,a2)=[(B1NB2)3,,175, B2)% g5, aq,=((B1NB2)2,,]1,

Since (n;, %y, my) is a partition trinity (1), Bl?n 1 is placed in
just one block of ng and BlTA 1 inonly one block of n, . This means,
that B1s!,, and Bli',, are defined unambiguously.

Since (1;,74,79) is a semitrinity and ng-1; = ng(0) (1),
(B1nB2)3,, is placed in just one block of ty and (BlnB2)1,, is
placed in only one block of 1, . This means, that 3232(31,A2) and
B2)?%(3,,22) are defined unambigously.

Let ¢: I— =;xT; be an injective function,
¢: mgxt;— S be a surjective partial function,
6: myXT1o— O be a surjective partial function
and
(4) ¢¥(x) = ([x)ny,[x]15),
(5) $(B1,B2) = BinB2 if BinB2 # O ,
(6) 6(Cl1l,C2) = CinC2 if ClnC2 # O .

We will prove below that the serial connection of defined above
machines M, and M, realizes machine M.

Since wge1g = 15(0) and ny+15 = Ko (0) (1) , ¢ and ¢ are one-to-
one functions and for B1nB2#0 and C1nC2#0 :
(7) $(B1,B2)¢S , 0(C1,C2)¢0 .

Therefore, VYBleng ¥YB2etg VXeI and BlnB2 # 0 :

$((B1,B2) 3%, ;)
¢((Blr32)5*(Ix]ﬂ1,txlrll) ({4))

¢(Bla‘,x,ﬂl,szaztai,,X,TI,) (definition 3.3)
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= Bl3'(xyq, N Bzaztnx,rxlrl) ((5))
= [Bl?lx,ﬂlyns N [(B1NB2)3 ;7 11, ((2), (3))
= [Bl3,]®g n [(B1nB2)3,]1, ( Bé, & Bipyeyn )
= [(B1nB2)3,]7%g N [(BlAB2) 3,11, ( B1nB2 & Bl )
= [(B1nB2)3,]%g N [(B1lnB2)3,]1, ((7))
= (B1nB2) 3, ( "g*15s=Ng(0) )
= §(B1,B2) 5, ((5))

and similary:

8 ((B1,B2)2*, () =

= 9((Blr32)1*ttxlﬂl,txlrl:) {(4})
= o(lel[x,ﬂl,azlesl,[x,,l,) (definition 3.3)
= Bl"llxnrI n 52*2(31,:x111) ((6))
= [B1T[x,ﬂl]n° n [(Blnsz)T[x,TI]ro ((2), (3))
= [Bll,])®g N [(BINB2) 1,1, ( By & Bleyin )
= [{B1nB2)), 1%y N [(B1lnB2)}, )7, ( BlnB2 ¢ Bl )
= [(B1nB2) ), 1%y N [(B1nB2) ), 11, (7))
= (B1nB2) 1, ( WoTp=7o(0) )
= ¢ (B1,B2) ), ((5))

From the above calculations and definitions 2.3, 3.3 and 3.4,
it fellows immediately that the serial connection of type PS of
machines M, and M, realizes M, i.e. M has a serial full-
decomposition of type PS. If condition (ii) of theorem 6.1 is
satisfied, the decomposition is nontrivial. O

Theorem 6.1 has a straightforward interpretation.

Since (w;,ng,7ny) is a partition trinity, based only on the
information about the block of a partition n; containing the input
and the block of a partition ny containing the present state of
machine M (i.e. informatiocn about the input and present state of
M,), machine M, can calculate unambiguously the block of ny in
which the next state of M is contained and the block of x4 in which
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the output of M is contained for the given input and present state
(i.e M; can calculate its next state and output).

Since (1;,T¢,7) is a partition semitrinity and t14+nwg=ng(0) ,
based only on the information about the block of a partition 71,
containing the input and the blocks of partitions 1y and myg
containing the present state of the machine M (i.e. information
about the primary input and the present state of M, and about the
present state of M, which is a part if the input of M,), machineM,
can calculate unambiguously the block of ty; in which the next
state of M is contained and, in the case of a Mealy machine, the
block of 15 in which the output of M is contained for the given
input and present state (i.e. M, can calculate its next state and
output) . In the case of a Moore machine, M, can calculate the block
of 1, in which the output of M is contained, based only on
information about the block of 7 in which the state of M is
contained.

Since wge1y = ®g(0) and myety = W(0), having information
about the blocks of 7y and n; calculated by M, and the blocks of 14
and 1, calculated by M, (i.e. information about the next states
and outputs of M, and M,) it is possible to calculate
unambiguously the next states and outputs of machine M.

In [14], for the Mealy case, the other theorem about the
existence of a serial full-decomposition of type PS has been
proved. However, theorem 6.1 includes alsc the Moore case and two
important differences occur between ocur theorem 6.1 and the one
proved in [14].

In theorem 6.1 we did not use the notion of "forced-trinity"
which was used in [14] - instead, we introduced the notion of
"semitrinity". This notion is natural, simple and posesses a
straightforward interpretation.

We formulated and proved theorem 6.1 with weaker assumptions
(for example we did not require n;+7; = 7; (0), as was required in
[14]). This means that theorenm 4.1 is more general than the one
proved in [14].
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7. Serial full-decompositicn of type NS.

Let 1y, 1y, 1o be partitions on machine M, on I, S and O
respectiviely, and {; be another partition on S.

DEFINITION 7.1 (7;, T, To) is a (next) state-dependent trinity for
an independent state partition {; if andonly if 1, 13, 7o satisfy
one of the following conditions for a given fg:
(1) Vs,teS Yx,,%x,¢€l:

if [s)ltg=[tltg A [x;)T=[x;]1T A [sax1]$s=[t6x2]ss

then [55x1375={t5x2]Ts A [sxxl]ro=[txx2]ro

(for a Mealy machine),
(ii) vs,tes ¥x,,x,el:
1f [s)ts=[t)lts A [X;)1;=[X,]T1 A [55x1]$s=[tﬁx2]Es

then [séxl]tsz[tﬁxz]‘ts A [(S&xi))]to=[(t6xz))]1‘o

(for a Mcore machine).

In other words, (1;,1;,7,) is a state-dependent trinity for an
independent state partition f; if and only if, based only on the
knowledge of the block of a partition 7; containing the input of
machine M , knowledge of the block of a partition t; containing the
present state of M and knowledge of the block of a partition f¢ in
which the next state of M is contained for a given input and state,
it is possible to calculate the block of 15 in which the next state
of Mwill be contained and the block of 1, in which the output of M
will be contained.

THEOREM 7.1 A machine M has a nontrivial serial full-

decomposition of type NS with the realization of the state and

output behaviour if such a partition trinity (x;,%s, ) and sucha

state~dependent trinity (1;,7s,79) for fg=ng exist that the

following conditions are satisfiedr

(i) mge1g = wg(0) and w1y = Wy (0) ,

(i1) Iwgl<lzl, Ingl<Is], Imol<lol, Ingl-leil<lTl, [rsl<ISl,
[tol<lo] .
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Proof (for the case of a Mealy machine)TBx
Let M, = (ﬁl,ﬁs,ﬂo,ﬁl,ll) and M, = ( I,rs,ro,az,x’) be two
machines for which the following conditions are satisfied:

(1) (m;,mg,me) and (71;,7¢,7,) satisfy the conditions of the
theorem 7.1 ,
(2) VBlewg VAlewy: Bla',, = (Bld,,]mg; , Blil,, = {Bli,,]ng ,

(3) VBzfts VAZGTI VBl'Eﬂs:
Bzalezu'AZ) = [(S&xl SEBZ, XEA2, SSXGBI'}]‘[s ’
B2) % 51,02y = [(8)\]| 3€B2, xeA2, S8, eBl')]r, .

Since (w;,%y,%y) is a partition trinity (1), Bl?l , 1s placed in
just one block of g and Bl),, is placed in only one block of LI
This means that Bls',, and Bli!,,; are defined unambiguously.

Since (1;,75,7¢) is a state dependent trinity for {;=r; (1),
the following condition is satisfied:
(4) Vs,teS V¥x,,x,el:
if [s]ltg=[tlty A [X;]11=[%X,]7; A [saxl]n,=[tax2]w‘

then [55x1113=[t5x2375 A [s\xl]r°=[tlxz]r° .

From (4), it follows that B25%,5,.,,,, and B2)%(5,. ,,, are
defined unambiguously because {s&,| se¢B2, xeA2, s3,¢Bl'} is
located in only one block of 1 and
{s),| seB2, xeA2, s8,¢Bl') in just one block of t,.

Let ¢y: I— w;xt; be an injective function,

¢: myx1;— S be a surjective partial function,
8: MyXTo— O be a surjective partial function

and
(5) ¥ (x) = ([x)ng,[x]1Ty)

(6) ¢(B1,B2) = BinB2 if B1nB2 # 0 ,
(7) 8(C1,C2) = C1nC2 if Clnc2 # O

Since wge1y = wg(0) and wyeTH = Mg (0} (1) , ¢ and ¢ are one~to-

one and for BlnB2#0 and ClnC2#0 :
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(8) $(B1,B2)eS , @(C1,C2)¢0 .
Therefore, ¥Bleng VB2etrgy ¥YXe¢l and BlnB2 # 0 ¢

¢ ((B1,B2)5*%,y,)

= ¢((Blr32)5*(lxlﬂ1,Exlrli) ((5))
= ¢(5151‘x1“:’32°2‘31‘ﬂx:u Jixitg)) (definition 3.5)
= Blaitxmx n Bza?‘““%xlwl"xlfl’ ((6))
= [Bl?,x,ﬂrjns n [{sd,] seszasays[31?,y,"I]n,Aye[x]rI}]rs

- ((21,(3))

= [B13, )7 n [{S3,| SeB2ASs, ¢[B13, )%}ty (B3, = Bé ,;q)

= [B13,]%; n ((S8,| SeB2 A seBl)]l1; (wg is SP-partition)

= [(B1nB2)3,)%g n [(BinB2) 3]t ( B1nB2 & Bl )
= [(B1nB2)3,1%; n [(BlnB2)3s,]1; ((8))
= (B1nB2) 3, ( MgeTg=ng(0) )
= §(B1,B2) 3, ((6))

and similary:

8((B1,B2)2*; ,) =
= 9((31:32)\*c:xxwl,:x:rl>) ((5))
= @(BLM (5, /B3 gyt L tx11y) (definition 3.5)

=Bl)l[x1-n'1 n Bzxa(slait ((7))

x]ﬂl'tx’TI’

= [Bthx,ﬂI]ﬁo n [{sir,] seBZAsaye[Bl?lyl“I]w,Aye[x]tI}]ro
— — — (21, (3))
= [B1),]%g N [{S),| SeB2ASs, €[B13,])%s)]1Ty (Bd, & B;y)q)

= [Bli, 17y N [(S),| SeB2 A seBl)]1, (%; is SP-partition)

= [(BlnB2)1,1%y N [(B1nB2)), 11, ( BinB2 & Bl )
= [(B1nB2) ), 17 N [(B1nB2) i, ]l1, ((8))
= (BLnB2)), ( mMge1g=ng(0) )
= ¢(B1,B2) ), ((6))

From the above calculations and definitions 2.3, 3.5 and 3.6,
it follows immediately that the serial connection of type NS of
machines M, and M, realizes M, i.e. M has a serial full-
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decomposition of type NS. If condition (ii) of the theorem 7.1 is
satisfied, the decomposition is nontrivial. 0O

Theorem 7.1 has a straightforward interpretation.

Since (m;,ms,T%p) is a partition trinity, machine M, based
only on the information about its input and present state (i.e.
knowledge of the adequate block of #; and block of 7g), can
calculate its next state and output (i.e. the adequate blocks of
xg and wg).

Since (17,74,174) is a state-dependent partition trinity for
fs=ns, based only on information about the block of 7; containing
the input, the block of 1, containing the present state of M and
the block of 73 containing the next state of M for the given input
and present state (i.e. information about the primary input and
present state of M, and the next state of M, which is part of the
input of M,}, machine M, can calculate unambiguously the block of
Tg in which the next state of M is contained and the block of 1, in
which the output of M is contained for the given input and present
state (i.e. M, can calculate its next state and output).

Since tgenmg = 7w3(0) and Tg°%y = "g(0) , having information
about blocks of 7 and n, calculated by M, and blocks of 74 and 1,
calculated by M, , it is possible to calculate unambiquously the
next states and outputs of machine M.

8. Serial full-decomposition of type PO.
Let w¢ and f, be partitions on M on S and O respectively.

DEFINITION 8.1 n} is a state partition induced by an output
partition {, if and only if one of the following conditions is
satisfied:
(1) Vs,teS Vx,yel : If [s)y ]y = [(trylEp
then ([sdy)ni = [té,]m§

(for a Mealy machine),

(ii) vs,teS : [s]n§ = [t)n} if and only if
[sMEg = [t)]f,
(for a Moore machine) .
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In other words, if n} is a state partition induced by an output
partition {, and if we know that the present output y of M is
contained in a block C: Cefy then we know that the present state s
of M is contained in a block B: Ben§,which is indicated
unambiguously by block C. We can say, that block B of =} is
induced by block C of {, and denote this by: B = ind(C).

Let 1;, 15, To be partitions on a machine M, on I, S and O
respectively, and §{, be the other partition on oO.

DEFINITION 8.2 (1;,T;,Ty) is a partition semitrinity induced by
an output partition {, if and only if such a state partition =
induced by t, exists, that 1;, 1y and r, satisfy the following
conditions for this =}:
(1) (1;,7g) is an I-S partition pair,
(ii) (zrg*mg',14) is a S-S partition pair,
(iii) (tgemwg',Ty) is a S-0 partition pair,
and
(17,175) is an I-0O partition pair (for a Mealy machine),
or
(15,7p) is a S-0 partition pair (for a Moore machine).

In other words, (71;,73.,7¢) 1is a semitrinity induced by an
output partition {, if and only if, based on the knowledge of the
block of a partition 7; containing the input of M and the knowledge
of the block of a partition t; and the block of an induced
partition n! containing the present state of M, it is possible to
calculate the block of 1y in which the next state of M will be
contained and, in the case of a Mealy machine, based on the same
information it is possible to calculate the block of 1, in which
the output of Mwill be contained for the given input and state or,
in the case of a Moore machine, based on the knowledge of the
blocks of partitions 1, and #¢' containing the state of M, it is
possible to calculate the block of 13 containing the output of M
for the given state.
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THEOREM 8.1 A machine M has a nontrivial serial full-
decomposition of type PO with the realization of the state and
output behaviour if such a partition trinity (m;,n;,ny) and sucha
partition semitrinity (t;,7g, 7o) induced by {, = ®; exist that the
following conditions are satisfied:
(1) wge1g = wg(0) and mye1gy = MH(0} ,
(ii) Inpl<|Tialmgl-lrgl<lT|v|mgl<|sialtg|<|slvIngi<|oO]A

Al tol<]of

Proof (for the case of a Mealy machine)

Let M, = (m;,mg,%o,8%,01) and M, = (myXT;,T5,79,38%,1%) be the
two machines for which the following conditions are satisfied:
(1) (wy,7mg,%y) and (15,7;,7,) satisfy the conditions of the
theorem 8.1 ,

(2) VBlemg VA em; : Blsl,, = [Bl3,,]ln, , Bl1i},, = [Bll,,)n, ,
(3) VClemy VB2et1y VA2etr; @
B23% ¢y, 02:=[{33,] s5¢B2 A seind(Cl) A xeA2)]1g,
B2) % ¢y, a2:=[{8)x]| SeB2 A s¢ind(Cl) A xeA2})1,.

Since (w;,7;, %) is a partition trinity (1), Bis!,, and B1)\},,
are defined unambigucusly.

Since (1;,1tg,79) is a semitrinity induced by §{4=%, (1), the
following conditions are satisfied:

'(4) (tg*mg',1g) is a -8 pair and (1g+n;',14) is a S-0 pair,
(5) (1;.,1¢) is an I-S pair,
(6) (t1,T4) is an I~-0 pair.

From (4) and (5), it follows that {s3,| seB2Aseind(Cl)AxeA2} is
located in just one block of 1. From (4) and (6), it follows that
{syy| seB2Aseind(Cl)axeA2} is located in just one block of 1,.
This means, that B23%,.,,,,, and B2, ,,, are defined
unambigously

Let y: I— w;x1; be an injective function,

¢: mgx1;— 5 be a surjective partial function,
6: TeXTo— O be a surjective partial function
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(7) v(x) = ([X)mp,[x]11y),
(8) ¢ (B1,B2) B1nB2 if B1nB2 # O ,
(9) 8(C1,C2) = C1nCc2 if CinC2 # O .

It

Since ®ge1g = %5 (0) and my* 14 = e (0) (1) , ¢ and & are one-to~

one functions and
(10) $(B1,B2)eS , 6(C1,C2)¢0 .

Therefore, ¥Cleng VBlemg VB2etTg ¥Yxe¢I and BInB2 # 0 :

$((B1,B2) 8% (4,) =

= ¢((B1:Bz)5*(leﬂr,lxlTIl) ((7))
= (818" (17 /B23% ¢y 1x1g) (definition 3.7)
= Blallxlﬂl n Bzaztcx,txzrlx ((8))
= [Bl?txlwl]wg n [(ind(c1)n32)'§[x”1]rs ((2), (3)}
= [Bl8,]%; n [(ind(C1l)nB2)3,}1, ( B3, € Bigyyq )
= [(B1NB2)3,)7 n [(ind(C1)nB2)38,]1; ( B1nB2 ¢ Bl )
= [(B1nB2)3,]ng n [(B1nB2) 3,11, ( BlnB2 ¢ ind(C1l)nB2 )
= [(BinB2)3,)l7; N [(B1nB2)3,]7; ((4)'(51353
= (B1nB2) 3, ( XgeTg=ng(0) )
= ¢(B1,B2) 5, ((8))
and similary:
8((B1,B2) 2", (y,) =
= 8((BL,B2)  (rx1m ,tx17y)) (7))
= 6(BIM (yn B2V ey, tarr ) (definition 3.7)
= Bllltxlwl n Bz‘Z:C1,txlrI) ((92))
= [BlT[xlwI]no n [(ind(Cl)nBZ)T[x,TI]ro ((2), (3))
= [Bli,]®y N [(in&(C1)nB2) 1,11, ( By & Bhyyrp )
= [(B1NB2)3, )™y 0 [(ind(C1)nB2)), 11, ( BinB2 & Bl )
= [(BLNB2)),17o N [(B1nB2) )\, )T, ( BinB2 ¢ ind(Cl1l)nB2 )
((4), (10))
= [(B1NB2)),17y N [(B1nB2)3,]1, ((10))

= (BlnB2)lx ( 7\'0'?0=ﬂ0(0) )
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= ¢(B1,B2) ), ((8))

From the above calculations and definitions 2.3, 3.7 and 3.8,
it follows immediately that the serial connection of type PO of
machines M, and M, realizes M, i.e. M has a serial full-
decomposition of type PO. If condition (ii) of theorem 8.1 is
satisfied, the decomposition is nontrivial. O

The interpretation of theorem 8.1 is as follows:

Since (m;,7g,%y) is a partition trinity, machine M;, based
only on the information about its input and present state (i.e.
knowledge of the adequate block of wx; and block of wg), can
calculate its next state and output (i.e. the adequate blocks of
g and 7,).

Since (1;,73,7,) is a partition semitrinity induced by =, and
Tg*ni=ng(0) , where =} is the state partition induced by n,,
based only on the information about the block of a partition 71,
containing the input and the blocks of partitions 13 and =}
containing the present state of the machine M (i.e. information
about the primary input and the present state of M, and about the
present output of M, which is a part if the input of M;), machine M,
can calculate unambiguously the block of 1¢ in which the next
state of Mwill be contained and, 1n the case of Mealy machine, the
block of 14 in which the output of Mwill be contained for the given
input and present state (i.e. M, can calculate its next state and
output). In the case of Moore machine, M, can calculate the block
of 1y in which the output of M will be contained based only on
information about the block of 73 in which the state of M is
contained.

Since wgrt1g = Wy (0) and my*Tg = Wy(0), having information
about blocks of ng and n, calculated by M, and blocks of 1; and 1,
calculated by M, , it is possible to calculate unambiguously the
next states and outputs of the machine M.
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9. Serial full-decomposition of type NO.

Let T;, T3, To be partitions on a machine M, on I, S, ©
respectiviely, and {, be the other partition on 0.

DEFINITION 9.1 (1,15, 7o) is an output-dependent trinity for the
independent output partition {, if and only if 1;, 15 and 71,

satisfy one of the following conditions for a given §,:

(i) Vs,tes ¥x,,x,el:
if {slte=[t]11s A [X,]111=[%2171 A [8)y 1Eo=[try 1y
1 2

then [s3, Jteg=[{td, J1g A [BL, lTo=({tly 1tg
1 2 1 2
(for a Mealy machine),
(ii) Vs,teS ¥x,,xX,¢€l:
if [s]1g=[t]tg A [X]1;={X,)T; A [(s8, )2]Ee=[(t3, ) A1y
1 2

then [83, Jtg=[td, 11 A [(88, ))11o=[(td, ))]1Ty
1 2 1 2

(for a Moore machine).

In other words, (7;,t;,1o) is an cutput-dependent trinity for
the independent output partition {; if and only if, based on the
knowledge of the block of a partition r; in which the input of a
machine M is contained, the block of a partition 1 in which the
present state of M is contained and the block of a partition §, in
which the outputs of M are contained for inputs froma givenblock
of 1; and states from a given block of tg, it is possible to
calculate the block of t¢ in which the next state of M is contained
and the block of 145 in which the output of M is contained for the
present state from a given block of 1 and input froma given block
of 1;°
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THEQREM 9.1 A machine M has a nontrivial serial full-
decomposition of type NO with the realization of the state and

output behaviour if such a partition trinity (w;,7ng,n,) and such

an output-dependent trinity (1;,7g,7g) for =7, exist that the

following conditions are satisfied:

(i) wge1g = wg(0) and ng*19 = W(0) ,

(ii) {mrf<lzlalmolbrrl<iTlvingl<|s|Alrs]<is|v]mo]<io]A
altol<lol .

Proof (for the case of Mealy machine) +r.x
Let M; = (wy,wg, %y, 8%,0t) and My = (7;,1,10,82,3%) be two
machines for which the following conditions are satisfied:

(1) (m;,7mg,7y) and (17,75, 7o) satisfy the conditions of theorem
9.1 ,

(2) VBlemg WAlemy: Bla!,, = [Bld,,Im; A Blal,, = [Blh,,]n, ,

(3) VB2etgy VA2eT; ¥Clemy:
B232 (), n2) = [{834] seB2, xeR2, s),eCl }]1; ,
B22 2 01,02y = [{8)y| 8eB2, xeA2, 83, €eCl }]1, -

Since (7,7, ny) is a partition trinity (1), 131“25-l , is placed in
just one block of n; and Bl_\“ is placed in just one block of 7,.
This means that B13!,, and Bl)!,, are unambiguously defined.

Since (t;,7g,7To) is an output dependent trinity for ig=mn,
(1), the following condition is satisfied:

(4) Vs,teS Vx,,x,el:
if [s)tg=[t]lts A [X;]71=[%,]1; A [sxxl]ﬂo={txxz]no

then [saxljrs=[t8x2]rs A {sxxl]t°=[tlxz]ro

From (4), it follows that B28% ., ,,, and B2)? ., ,,, are
defined unambiguously, because {s3,| se¢B2, XeA2, s),¢Cl} is
located in just one block of 1y and
{s),| seB2, xeA2, s1,¢Cl} in just one block of t,.
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Let ¢y: I— n;X7; be an injective function,

¢: wmgxt;— S be a surjective partial function,
8: TyaXTo— O be a surjective partial function

and
(5) $(x) = ([(xXIn;,[x]11) o
(6) $(B1,B2) = B1nB2 if BlnB2 # O ,
(7) 8(C1,C2) = Clnc2 if €CInC2 # 0 .

Since wg 1y =

%5 (0) and w15 = We{0) (1) , ¢ and @ are one-to-

one and
(8) $(B1,B2)eS , 6(C1l,C2)¢0 .
Therefore VYBlemg; VYB2etTy VYXeX and BIlnB2 # 0 :

]

i

$((B1,B2)8%;(y,)

¢((Blrsz)5*([xlﬂr,lxlTI)) ' ((5))
¢(Blai,x,ﬂl,azaztnlﬁlxlwl,(x,fx,) (definition 3.9)
BlaltxmI n Bzaztslxﬁxlﬂl,lxlfx) ((8))
[Bl?[xlnrjﬂs N [(ssy| SeB2AS) €[BLliyyq 1MoAYE[X]T1}]Ts

- ((2),(3))

[B13,)%g n [(S3,]| S€B2ABA,e[BIh, 17 }]Ty (Bly & Blyyyq)

[Bl3,}%s n [{s3,| SeB2 A seBl)]ty ((mg,my) is SO-pair)

[(B1nB2)3,]1%; n [(BlnB2)3,] 1, ( B1nB2 § Bl )
[(B1nB2)3,1®; N [(B1nB2)3,]1g ((8))
(B1nB2) 3, ( Xget1g=mg(0) )
0(B1,B2) 3, ((6))

and similary:

8((B1,B2)2*;(y,) =

O ((BL,B2)  ((x1n,1x17 ) ((5))
e(lellx,“I,BzxZ(“#‘xlTr JtxiTps) (definition 3.9)
Bl)‘ltxlwI n lelellﬂx]“I,[x]TI) (7))
[BlT,x,"I]no noL{s)\,| seazhsxyegslilylWI]nOAyeE?%ifiggg

[(B1h,]%y n [{Shy| SeB2ASX, €[Blh,I7y)11y (Bix § Bhrypq)
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[B1Y,)7, n [{S),| SeB2 A seBl})t, ((m;,%y) is SO-pair)

= [(B1nB2)),17m N [(BlnB2) 417, ( BInB2 ¢ Bl )
= [(B1nB2) )\, ]17g N [(BLlNB2)),]Tg ((8))
= (B1nB2) ), ( mge1g=ng(0) )
= 0(B1,B2)), ((6))

From the above calculations and definitions 2.3, 3.9 and 3.10,
it follows immediately that the serial connection of type NO of
machines M; and M, realizes M; i.e. M has a serial full-
decomposition of type NO. If condition (ii) of the theorem 9.1 is
satisfied, the decomposition is nontrivial. O

Theorem 9.1 has a straightforward interpretation.

Since (wy,mg,my) is a partition trinity, machine M,, based
only on the information about its input and present state (i.e.
knowledge of the adequate block of =#; and block of =), can
calculate its next state and output (i.e. the adequate blocks of
7s and 7g) -

Since (t;,15,1Ty) is an output-dependent partition trinity for
fo=my. based only on information about the block of 1; containing
the input, the block of 1; containing the present state of M and
the block of n, containing the output of M for the given input and
present state (i.e. information about the primary input and
present state of M, and the output of M, which is a part of the
input of M,), machine M, can calculate unambiguously the block of
7¢ in which the next state of M is contained and the block of 14 in
which the output of M is contained for the given input and present
state (i.e. M, can calculate its next state and output).

Since tg+ng = w5 (0) and tgMg = We(0) , having information
about blocks of w; and n, calculated by M; and blocks of 1y and 1,
calculated by M, , it is possibkle to calculate unambiguously the
next states and outputs of the machine M.
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10. General full-decomposition of type PS

THEOREM 10.1 A machine M has a nontrivial general full-
decomposition of type PS with the realization of the state and

output behaviour if two partition semitrinities: (w;,wg,n,) and

(11,75, 70} exist and they satisfy the following conditions:

(1) mgetg = w5 (0) and w14 = We(0) ,

(11) lrsleIngl<iTlalmg]-lrsl<|Tiv]ng]<
Altol<]o]

s{altgl<|s]v]mgl<]o]A

Proof {(for the case of a Mealy machine)

Let M, = (TgX®;, Mg, Mg, 8% ,3Y) and M, = (®gXT;,T5,70,82,)2%) be
the two machines for which the following conditions are
satisfied:

(1) (®;,mg,my) and (14,75, 17p) satisfy the conditions of theorem
10.1 ,
(2) VBlenmg VYB2eTg VA em; :

B18'(5,,21)=((B1nB2)3,,17s , B1A' 5, 21,=[(B1nB2) %, I7, ,
(3) VYBleny; VB2etTg; VA2e71y :

B252 (5, ,22:=[(B1NB2)3,,11s, B2)? 5, 22,=((B1nB2));,]1,

Since (m;,7g, W) and (ty,15,7g) are semitrinities and ng-1, =
g (0) (1), (Blnf.’,z)“a“M is placed in just one block of 7y, (B1nB2) is
placed in just one block of n,, (BlnB2)3,, is placed in only one
block of 14 and (B1nB2) ), , is placed in only one block of 1, . This
means, that B13'(g,,a:y  BLM'(py,a1y , B28%(py,aqy and
B21% 5, a2, are defined unambiguously.

Let ¢: I— 7;x1; be an injective function,

¢: ngx1¢— S be a surjective partial function,
0: TyXty=— O be a surjective partial function
and
(4) ¢(x) = ([xIng, XDy},
(5) ¢(B1,B2) = B1nB2 if Bi1nB2 # 0 ,
(6) e(C1,c2) = c1nc2 if C1nC2 # O .
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Because Tg*Tg = Mg (0) and Wy 15 = 7y (0) (1) , § and 6 are one-to-
one functions and
(7) $(B1,B2) ¢S , 8(C1l,C2)¢0

Therefore V¥Blenwg VB2etg ¥xel and BInB2 # 0 :

¢((B1,B2) 8%, (x,)

= ¢((B1rB2)5*lKxIWI,(xITI)) ((4))
= ¢(B131t32’{x]n1,,BZ&z(Bl’lxlrl,) (definition 3.11)
= Blé' (g, 1x1m0 N Bzaztsl,txlrlw ((5))
= [(BlnBzﬁ,x”I]ns n {(BlnBz)E[x]TI]rs ((2), (3))
= [(B1nB2)a,1mg n [(B1nB2)3,]1, ( Bé, & Bd; 1 )
= [(B1NB2)3,}ng N [(B1nB2)3,]rts ((7))
= (B1nB2) 3, ( Tge1g=ng(0) )
= ¢(B1,B2)3, ((5))

and similary:

8 ((B1,B2))*;(4,) =

= 9((Blr32)**(txlwl,txlrl)) ((4))
= e(lei(B,,,x,ﬂl,,32x2(31,[x,rl,) (definition 3.11)
= BI\) (ga, (x1mp2 D 3212131,tx1111 ((6))
= [(Blnsz)T,x]ﬂl]no n [(Blnnz)T,x,TI]to ((2), (3))
= [(B1NB2) ), 17y N {(BLNB2) ), }1, ( Bb, § Bhgyrqp )
= [(B1nB2) ), 1mg N [(B1nB2) ), 17, ((7))
= (B1lnB2) 1, | ( Mo 15=Tp(0) )
= ¢$(B1,B2) ), ((5))

From the above calculations and definitions 2.3, 3.11 and
3.12, it follows immediately that the general connection of type
PS of machines M, and M, realizes M, i.e. M has a general full-
decomposition of type PS. If condition (ii) of theorem 10.1 is
satisfied, the decomposition is nontrivial. O
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The interpretation of theorem 10.1 is similar to the
interpretation of theorem 6.1.

11. General full-~decomposition of type FO

THEQREM 11.13 A machine M has a nontrivial general full-
decomposition of type PO with the realization of the state and
output behaviour if two partition semitrinities (w;,wg,wg)
induced by £y, = 19 and (14,75, 1ty) induced by £,5, = 7y exist and
they satisfy the following conditions:
(i) mgetg = w;(0) and wye19 = My (0) ,
(i1) lrol-Ingl<lTialnol-lrl<lzlving|<|s|alrsl<is|v|my]|<|o]A
Altol<lo] .

Proof (for the case of a Mealy machine)

Let M, = (1,XWy, Mg, %, 8 ,0Y) and M, = (MyXT;,T4,T4,5%,)12%) be
the two machines for which the following conditions are
satisfied:

(1) (my,mg,mp) and (15,1g,17,) satisfy the conditions of theoren
11.1 ,
(2) VC2eTy VBlemg VYA €7,
Bl ¢y, a1y = [(83,] SeBl A seind(C2) A xeAllnmg ,
Bl ! ¢a, a1y = [{8)x]| s€Bl A seind(C2)
(3) VClemy VB2etTy VA2e1,
B25% ¢y, az) = [{S8,] SeB2 A seind(Cl) A xeA2}]tg,
B2 2 ¢y,n2) = [{8)4] S€B2 A seind(Cl) A xeA2)}]1,.

>

xeAllm, ,

Since (w;,mg,%y) is a semitrinity induced by §,,=1, and
(t1,1g,Tp) is a semitrinity induced by £4,=%, (1), the following
conditions are satisfied:

(4) (mg'+1g,75) is a S-§ pair,
(5) (wget¢',mg) is a S-S pair,
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(6) (mg'*1¢,1y) is a S-0 pair,
(7) (mg*14',7y) is a 5-0 pair,
(8) (my;,7g) is an I-S pair,
(9) (m;,mMy) is an I-0 pair,
(10) (t;,1g) is an I-S pair,
(11) (1;,19) is an I-0 pair.

From (5) and (8), it follows that {saxl seBlAaseind (C2) AxeAl)
is located in just one block of n;. From (7) and (9), it follows
that {s),| seBlAaseind(C2)Axe¢Al) is located in only one block of
%o. This means, that Bl3!'(¢,, .,y and BIN! (., ,,, are
unambiguously defined.

Similarly, from (4) and (10), it follows that ({s3,]|
seB2Aseind(Cl) AxeA2) is located in just one block of 15 and, from
(6) and (11), it follows that
{s),| seB2Aseind(C1) AxeA2) is located in just one block of 7,. So,
5252(c1,nz; and lez(cx,nz) are unambigously defined.

Let ¢y: I— w;x7; be an injective function,

¢: mgxtg—4 S be a surjective partial function,
9: myXTp— O be a surjective partial function

and
(12)  ¥(x) = ([x)I7™y, [X]11q),

(13)  ¢(B1,B2) = BinB2 if BlnB2 # 0 ,
(14) 8(C1,C2) = CinC2 if C1nc2 # 0

Since mg+1g = 7 (0) and 7wy 1y = 15 (0) (1) , ¢ and @ are one-to-
cne functions and
(15) $(B1,B2)eS , 0(Cl,C2)¢0 .

Therefore, VYClemy VC2ety VBleng; VB2et; Vxel and BlnB2 # O:

O((B1,B2)3%;(4))

= ¢((B1,B2) 8™ (rxa1x ,1x11 ) ((12))
= ¢(B181‘czlIXI“I)’stztc’vl[JC]TI’) (definition 3.13)
= 1 2

= Bl8% (ca,txamy N B28% ey, tx11)) ((13))

[(ind(cz)n31)?[x1ﬂ11ng n [(ind(cnnaz)?u,,llrs
((2),(3))

— —_ (B;x « BE[xlﬂ)
[(B1nB2)3,1ng N [(B1nB2)3,]1, ( B1nB2 ¢ ind(Cl1)nB2 )
( BlnB2 ¢ ind(C2)nBl )

((4), (5), (15))

[(BLnB2)3,]%g N {(B1nB2)3,)1, ((15))

= [(ind(C2)NB1l) 3,17 N [(ind(Cl)nB2) 3, )1,
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= (BlnB2)3d, ( mge1s=mg(0) )
= ¢(B1,B2) 3, ((13))
and similary:

8((B1,B2)V*;(4,) =

- e((Bl,BZ)l*([x]ﬂr’[x}TI,) ((12))
= 9(51x1(61,[x,ﬂl,,szx’,CI,,xlrl,) (definition 3.13)
= 1

= Bl (e, tximpy N BZizccz,txera ((14))

= ((ind(C2)nB1) & (¢ 17g 0 [(ind(C1)nB2) ) (17 17g
((2),(3))

- - ( Blx & Bhiyyq )

= [(B1nB2)\,1%y N [(B1nB2)%, 117, ( BlnB2 g ind(C1)nB2 )
( BInB2 & ind(C2)nB1 )

((6), (7), (15))

= [(ind(C2)nB1) )\, 17 n {(ind(C1)nB2)1, 11,

= ((BInB2)),)7y N [(B1nB2)), ]1, ((15})
= (B1NB2)), _ ( Mg*To=Tg(0) )
= ¢(B1,B2)), ) ((13))

From the above calculations and definitions 2.3, 3.13 and
3.14, it folliows immediately that the serial connection of type PO
of machines M; and M, realizes M, i.e. M has a serial full-
decomposition of type PO. If condition (ii) of theorem 11.1 is
satisfied, the decomposition is nontrivial. O

The interpretation of theorem 11.1 is similar to the
interpretation of theorem 8.1.

12, Full-decompositions of gtate machines.

After modifying theorems 5.1, 6.1, 7.1 and 10.1, they can be
applied to state machines.

A state machine is a special case of the sequential machine for
which the output set 0 and the output function ) are not defined.
If we take this into account and we define the full-decompositions
of state machines in a manner analogous to the definitions for the
general sequential machines and then, we remove from the listed
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theorems all the conditions concerning the output set O and the
output function )\, we obtain the following theorenms:

THEQOREM 12.1 The state machine M = (I, S, 3) has a nontrivial
parallel full-decomposition if such two partitions n; and t; onI
and such two partitions wg and 1ty on S exist that the following
conditions are satisfied:

(1) (rg,mg) is a S-S partition pair,

(ii) (=w;,7wg) is an I-$ partition pair,
(iii) (tg,15) is a S-S partition pair,

(iv) (ty,1s) is an I-S partition pair,

(V) mgetg = %5(0),

(vi) Iwgi<iziafei<itivingl<|s|altgi<ls] .

THEOREM 12.2 The state machine M = (I, S, §) has a nontrivial
serial full decomposition of type PS if such two partitions %y and
7; on I and such two partitions =g and tr; on S exist that the
fellowing conditions are satisfied:

(i) (ng,mg) is a S-S partition pair,

(ii) (wy,ng) is an I-S partition pair,

(iii) (t;,1g) is an I-S partition pair,

(iv) #mge1y = mg(0),

(v) | e l<lZialmgl-lrgl<iTlvingl<is|afrgl<Is] -

THEOREM 12.3 The state machine M = (I, S, ) has a nontrivial
serial full-decomposition of type NS if such two partitions =g and
T3 on S and such two partitions 7n; and t; on I exist that the
following conditions are satisfied:

(1) (ny,ng)} is a S-8 partition pair,
(ii) (my;,wg) is an I-S partition pair,
(iii) Vs, teS Vx,,X,el
if [s)te=[t)tg A [X;)T;=[%,]17; A [53x1]"s=[t5x2]“s

then [S5x1]Ts=[t5x2]Ts

2

(iv) T®wge1g = mg(0),
(v)  ngl<izlalngl-lrsl<lTlvingl<is]altsl<Is] .



42

THEOREM 12.4 The state machine M = (I, S, &) has a nontrivial
general full decomposition of type PS if and only if such two
partitions n; and t; on I and such two partitions n; and 1ty on S
exist that the following conditions are satisfied:

(1) (n;,mg) is an I-S partition pair,

(ii) (1;,7s) is an I-S partition pair,

(1ii) Teg*Tg = Wg(0),

(iv)  [rgl-lngl<|Tialngl-lrol<|T]vimgl<[s|a]z5]<]S] .

Proof and interpretation of the theorems given above are
analogous to those for theorems 5.1, 6.1, 7.1 and 10.1.

13. Conclusion.

The notions and theorems presented in the previous sections
have straightforward practical interpretations. Based on them, a
set of algorithms has been developed and a system of programs has
been made for computing the different sorts of decompositions. We
are going to present this algorithms and some practical
conclusions in a separate report.

Here, we want only to stress three important facts:

Full-decompositions of type N are not so attractive from the
practical point of view as decompositions of type P, because
decompositions of type N introduce some timing problems. In
decompositions of type N, one of the component machines has to
compute its next state or output, before the second component
machine, using the information about the computed next state or
output, can compute its own next state or output. If we assume that
computation of the next state and output for one component machine
takes one time interval, a valid next state and output for the
whole machine appears after two such time intervals. In this
situation we have to limit the frequency of input signals and to
use the two-phase clock.

Solving the practical tasks, we should first try to find a



43

parallel full-decomposition which satisfies given requirements
and only in the case of failure, we should look for a serial
decomposition or, in the case of failure, for a general
decomposition.This is so, because in the case of the serial and
general decompositions, the connections between the partial
machines have to be implemented and because the reduction of the
functional dependences between input, state and output variables
of the machine is decrising from the parallel through the serial
to the general decomposition, i.e. the complexity of the
combinational logic of each of the component machines is lowest
for the parallel decomposition and highest for the general
decomposition.

In some practical tasks, it is more economical to consider
separately the realization of the next-state function § and
separately the realization of the output function ) than to
consider them simultaneously. It is possible to abstract from the
output function ) and to decompose first the state machine defined
by the next-state function §. It is passible to realize then the
output function ), where )} is treated as a function of inputs (in
the Mealy case) and states of the partial state machines in a full-
decomposition of the state machine defined by &.

The results presented in this report are easy to extend in
order to cover the case of incompletely specified sequential
machines. It can be done by using the concepts of weak partition
pairs or extended partition pairs introduced by Hartmanis [12].
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