The full decomposition of sequential machines with the state and output behaviour realization

Citation for published version (APA):

Jozwiak, L. (1988). The full decomposition of sequential machines with the state and output behaviour realization. (EUT report. E, Fac. of Electrical Engineering; Vol. 88-E-188). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1988

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Full decomposition of sequential machines with the output behaviour realization

Citation for published version (APA):
Jozwiak, L. (1988). Full decomposition of sequential machines with the output behaviour realization. (E-199 ed.) (EUT report. E, Fac. of Electrical Engineering; Vol. 88-E-199). Eindhoven: Technische Universiteit Eindhoven.

Document status and date:

Published: 01/03/1988

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl
providing details and we will investigate your claim.

Research Report
ISSN 0167-9708
Coden: TEUEDE

Eindhoven
 University of Technology Netherlands

Faculty of Electrical Engineerıng

The Full Decomposition of Sequential Machines with the State and Output Behaviour Realization

by
L. Jóźwiak

Eindhoven University of Technology Research Reports

 EINDHOVEN UNIVERSITY OF TECHNOLOGYFaculty of Electrical Engineering Eindhoven The Netherlands

THE FULL DECOMPOSITION OF SEQUENTIAL MACHINES
 WITH
 THE STATE AND OUTPUT BEHAVIOUR REALIZATION

by
L. Jóźwiak

EUT Report 88-E-188
ISBN 90-6144-188-9

Eindhoven
January 1988

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG;

Jóžwiak, L.

The full decomposition of sequential machines with the state and output behaviour realization / by L. Jóżwiak. - Eindhoven: University of Technology, Faculty of Electrical Engineering. Fig. - (EUT report, ISSN 0167-9708; 88-E-188)
Met lit. opg., reg.
ISBN 90-6144-188-9
SISO 664 UDC 681.325.65:519.6 NUGI 832
Trefw.: automatentheorie.

Lech Jわzwiak
Group Digital Systems, Faculty of Electrical Engineering, Eindhoven Universwity of Technology (The Netherlands)

Abstract

The design of large logic systems leads to the practical problem how to decompose a complex system into a number of simpler subsystems. The decomposition theory of sequential machines tries to find answers to this problem for sequential machines. For many years, the "simpler " machine was defined as a machine with fewer states and, therefore, state-decompositions of sequential machines were considered. Together with the progress in LSI technology and the introduction of array logic into the design of sequential circuits a real need arose for decompositions not only on states of sequential machines but on inputs and outputs too, i.e. for full-decompositions.

In this report, a general and unified classification of fulldecompositions is presented, formal definitions of different sorts of full-decompositions for Mealy and Moore machines are introduced and theorems about the existence of fulldecompositions with the state and output behaviour realization are formulated and proved. The presented theorems have a straightforward practical interpretation. Based on them, a set of algorithms has been developed and a system of programs has been made for computing the different sorts of decompositions.

Index Terms-Automata theory, decomposition, logic system design, sequential machines.

Acknowledgements-The author is greatly indebted to prof.ir.A.Heetman and prof.ir.M.P.J.Stevens for making it possible to perform this work.

CONTENTAS

1. Introduction 2
2. Algebraic models of sequential machines and a full-decomposition. 3
3. Classification of full-decompositions 7
4. Partitions, partition pairs and partition trinities 15
5. Parallel full-decomposition 18
6. Serial full-decomposition of type PS 20
7. Serial full-decomposition of type NS 24
8. Serial full-decomposition of type po. 27
9. Serial full-decomposition of type NO 32
10. General full-decomposition of type PS 36
11. General full-decomposition of type PO. 37
12. Full-decompositions of state machines. 40
13. Conclusion 42
References 44
14. Introduction.

> The design of large logic systems leads to the following practical problem:

> How to decompose a complex system into a number of simpler subsystems in order to obtain:
> - the clearer organization of the system and of the design, implementation and verification process,
> - the possibility of optimization of the separate subsystems, whereas it can be impossible directly to optimize the whole system,

- the possibility of implementation of the system by existing building blocks.

The decomposition theory of sequential machines tries to find answers to the following question: how to decompose a given sequential machine M into a number of "smaller" (and therefore easier to develop and implement) component sequential machines $M_{1}, M_{2}, \ldots, M_{n}$ which, in combination, realize the behaviour of a given machine M.

Research in the above mentioned field was started in early sixties [8][9][10][19][20]. For many years, the "smaller" machine was defined as a machine with fewer states than the given machine; therefore state-decompositions of sequential machines were considered. Definitions of decompositions on states were introduced, constructive theorems about the existence of state decompositions were presented and some practical algorithms for state decompositions were developed [4][12][16][17][18][19] [20].

Together with the progress in LSI technology and the introduction of array logic (PAL, PGA, PLA, PLS) into the design of sequential circuits, a real need arose for decompositions not only on states of sequntial machines but on inputs and outputs too, i.e. for full-decompositions.

An approach to the full-decomposition of sequential machines has been presented in [14] and [15]. Among other things, the definitions and theorems concerning parallel and two types of
serial full-decompositions for Mealy machines were introduced.
In this work a general and unified classification of fulldecompositions will be presented, formal definitions of different sorts of full-decompositions for Mealy and Moore machines will be introduced and theorems about the existence of full-decompositions with the state and output behaviour realization will be formulated and proved leading immediately to some practical algorithms. The theorems concerning the types of full-decomposition defined in [14] were formulated and proved here with weaker assumptions than those in [14] and , therefore, they are more general. They include cases which are important from the practical point of view and were not covered by the theorems presented in [14]. The notions of output-dependent trinity, state dependent trinity semitrinity and induced semitrinity used in presented theorems have a straightforward practical interpretation which is an important advantage.

2.Algebraic models of sequential machines and a fulldecomposition.

DEFINITION 2.1 A sequential machine M is an algebraic system defined as follows:

$$
M=(I, S, O, \delta, \lambda)
$$

where:
I - finite nonempty set of inputs,
S - finite nonempty set of internal states,
o - finite set of outputs,
δ - next state function, $\delta: S x I \rightarrow S$,
λ - output function, $\lambda: S x I \rightarrow O$ (a Mealy machine), or $\lambda: S \rightarrow O$ (a Moore machine).

If the output set O and the output function λ are not defined, the sequential machine $M=(I, S, \delta)$ is called a state machine.

The machine functions δ and k can be considered as sets of functions created for each input:

$$
\delta=\left\{\delta_{x} \mid \delta_{x}: S \longrightarrow S \text { and } x \in I\right\}
$$

and

$$
\lambda=\left\{\lambda_{x} \mid \lambda_{x}: S \rightarrow 0 \text { and } x \in I\right\},
$$

where $\delta_{x}: S \rightarrow S$ and $\lambda_{x}: S \rightarrow O$ are defined by:
$\forall x \in I \quad \forall x \in S \quad \delta_{x}(s)=\delta(s, x)$,
$\lambda_{x}(s)=\lambda(s, x)$.
The δ_{x} and λ_{x} are called, respectively, the next-state function and the output function with respect to the input x. In the next sections for $\delta_{x}(s)$ and $\lambda_{x}(s)$ we will use the notations $s \delta_{x}$ and $s \lambda_{x}$.

For $x \in I$ and $Q \in S$, we will define the two partial functions:
$\bar{\delta}_{x}: 2^{s} \rightarrow 2^{s}$ and $\bar{\lambda}_{x}: 2^{s} \rightarrow 2^{0}$,
where:
$\forall x \in I \quad \forall Q s S \quad Q \bar{\delta}_{x}=\left\{s \delta_{x} \mid \mathbf{s} \in Q\right\}, Q \bar{\lambda}_{x}=\left\{s \lambda_{x} \mid \mathbf{s} \in Q\right\}$.
For XsI and $Q s S$, we will define also the following two partial functions:
$\bar{\delta}_{x}: 2^{s} \rightarrow 2^{s}$ and $\bar{\lambda}_{x}: 2^{s} \rightarrow 2^{\circ}$, where:
$Q \bar{\delta}_{x}=\left\{s_{\bar{\delta}}^{x} \mid s \in Q \wedge x \in X\right\}$,
$Q \bar{\lambda}_{x}=\left\{s \bar{\lambda}_{x} \mid s \in Q \wedge x \in X\right\}$.
In this work, we take into account only simple decompositions (i.e. decompositions with two component machines) and, therefore, the term "decomposition" is used further in the meaning of "simple decomposition".

Let $M=\{I, S, O, \delta, \lambda\}$ be the machine we want to decompose and $M_{1}=\left\{I_{1}, S_{1}, O_{1}, \delta_{1}, \lambda_{1}\right\}$ and $M_{2}=\left\{I_{2}, S_{2}, O_{2}, \delta_{2}, \lambda_{2}\right\}$ are two partial machines.

In a full-decomposition, we are interested in finding such partial machines M_{1} and M_{2} that each of them has fewer states and/or outputs than machine M and/or each of them can calculate its next states and outputs using only the part of information about the input of machine M and, in combination, they form machine M^{\prime} imitating M from the input-output point of view.

In a state-decomposition, we were interested in finding machines M_{1} and M_{2} with only fewer internal states. Inputs and outputs were not decomposed.

Before we consider different sorts of full-decomposition, we recall from [12] the definition of realization.

DEFINITION 2.2 Machine $M^{\prime}=\left(I^{\prime}, S^{\prime}, O^{\prime}, \delta^{\prime}, \lambda^{\prime}\right)$ realizes (is realization of) machine $M=(I, S, O, \delta, \lambda)$ if and only if the following relations exist:

```
\psi: I M I' (a function),
\phi:S }\longrightarrow\mp@subsup{2}{}{s}\mp@subsup{}{}{\prime}(a function into nonvoid subsets of S')
0: O'}->0\mathrm{ (a surjective partial function) ,
```

and this relations satisfy the following conditions:

$$
\phi(s) \delta^{\prime} \psi(x) \subseteq \phi\left(s \delta_{x}\right)
$$

and

$$
s \lambda_{x}=\theta\left(s^{\prime} \lambda^{\prime} \psi(x)\right) \quad \text { (for a Mealy machine) }
$$

or

$$
s \lambda=\theta\left(s^{\prime} \lambda^{\prime}\right) \quad \text { (for a Moore machine) }
$$

for all $s \in S, s^{\prime} \epsilon \phi(s)$ and $x \in I$.
Let I^{*} be a set of all input sequences $x_{1} x_{2} \ldots x_{n}(n=0,1, \ldots)$, let $\vec{x}=\vec{x}^{\prime} x$ for $\vec{x}^{\prime} \in I^{*}$ and $x \in I$ and let $\vec{\lambda}$ and $\vec{\delta}$ be two functions calculating the last output and the last state reached by a machine from the state s under the input sequence $\overrightarrow{\mathbf{x}}$:
$\vec{\delta}: S x I^{*} \longrightarrow S, \vec{\delta}(S, \vec{x})=\delta\left(\vec{\delta}\left(S, \vec{x}^{\prime}\right), x\right)$,
$\vec{\lambda}: S X I * \rightarrow 0, \vec{\lambda}(s, \vec{x})=\lambda\left(\vec{\delta}\left(s, \vec{x}^{\prime}\right), \vec{x}\right) \quad$ (Mealy case),

$$
\vec{\lambda}(s, \vec{x})=\lambda(\vec{\delta}(s, x)) \quad \text { (Moore case). }
$$

It can be proved that if M^{\prime} is a realization of M in the sense of definition 2.1 then $\forall s \in S \quad \forall s^{\prime} \epsilon \phi(s)$ and $\forall \vec{x} \in I^{*}: \vec{\lambda}(s, \vec{x})=$ $\theta\left(\vec{\lambda}^{\prime}\left(s^{\prime}, \downarrow(x)\right)\right.$, i.e. for all possible input sequences outputs reached by machine M and its imitation M^{\prime} are, after a renaming, identical. Because of this fact, the realization in the sense of definition 2.1 will be called by us the realization of the output behaviour.

In some cases, we are concerned with not only the output changes of the machine but also with the state changes. Therefore, we will consider also realizations of the state behaviour of sequential machines.
DEFINITION 2.3 Machine $M^{\prime}=\left(I^{\prime}, S^{\prime}, O^{\prime}, \delta^{\prime}, \lambda^{\prime}\right.$), realizes the state and output behaviour of machine $M=(I, S, 0, \delta, \lambda)$ if and only if the following relations exist:

```
\psi I M I' (a function),
\phi: S'\longrightarrowS (a surjective partial function)
0: O'\longrightarrowO (a surjective partial function)
```

such that:

$$
\phi\left(s^{\prime}\right) \delta_{x}=\phi\left(s^{\prime} \delta^{\prime} \psi(x)\right)
$$

and

$$
\phi\left(s^{\prime}\right) \lambda_{x}=\theta\left(s^{\prime} \lambda^{\prime} \psi(x)\right) \quad \text { (for a Nealy machine) }
$$

or

$$
\phi\left(s^{\prime}\right) \lambda=\theta\left(s^{\prime} \lambda^{\prime}\right) \quad \text { (for a Moore machine) }
$$

The realization of the state and output behaviour is a special case of the realization of the output behaviour. If function ϕ in definition 2.2 maps each state of M onto a single state of M ' and ϕ is a one-to-one function then definition 2.2 is equivalent to definition 2.3.

In a full-decomposition, we are interested in finding the partial machines M_{1} and M_{2} and the mappings:

$$
\psi: I \longrightarrow I_{1} \times I_{2},
$$

$\phi: S \rightarrow 2^{s_{1} \times s_{2}}$, (the realization of the output behaviour)
$\theta: \mathrm{O}_{1} \times \mathrm{O}_{2} \rightarrow 0$,
or
$\psi: I \rightarrow I_{1} \times I_{2}$, (the realization of the state)
$\phi: S_{1} \times S_{2} \rightarrow S_{,}$ (and output behaviour)
$\theta: O_{1} \times O_{2} \rightarrow 0$,
that the machines M_{1} and M_{2} together with the mappings ψ, ϕ, θ realize the behaviour of a machine M.

We will say that a full-decomposition is nontrivial if and only if:
$\left|I_{1}\right|<|I| \wedge\left|I_{2}\right|<|I| \vee\left|S_{1}\right|<|S| \wedge\left|S_{2}\right|<|S| \vee\left|O_{1}\right|<|O| \wedge$ $\left|O_{2}\right|<|O|$, where $|z|$ - number of elements in the set z.

In the case of a state-decomposition, we are interested in finding machines M_{1} and M_{2} and, in fact, only one mapping $\phi: S_{1} \times S_{2} \rightarrow S$.

It is evident that state-decomposition is a special case of full-decomposition.

3. Classification of full-decompositions.

Decompositions can be classified according to the kind of connections that exist between the component machines.

Fig 3.1 The information flow between the component machines in full-decomposition.

In general, each of the component machines can use the information about the state or output of the other component machine in order to compute its own next state and output (Fig.3.1).
From the point of view of the strength of the connections between the component machines we can distinguish the following sorts of full-decompositions:
(i) parallel full-decomposition - each of the component machines can calculate its next states and outputs independently of the other component machine, based only on the information about its own internal state and partial information about inputs (Fig.3.2),
(ii) serial full-decomposition - one of the component machines, called the tail or dependent machine (say M_{2}), uses the information about the outputs or states of the second machine, called the head or independent machine (say M_{1}), and partial information about inputs in order to calculate its next states and outputs (Fig.3.3),
(iii) general full-decomposition - each of the component machines uses information about the outputs or states of the other component machine and partial information about inputs in order to calculate its next states and outputs (Fig.3.4).

The parallel full-decomposition and the serial fulldecomposition can be treated as special cases of a general fulldecomposition with zero information about one submachine used by another submachine.

From the point of view of the sort of information about a given submachine used by another submachine in order co calculate its next states and outputs, we can distinguish the following two types of full-decomposition:
(i) the decomposition with information about outputs, called by us type 0 ,
(ii) the decomposition with information about internal states, called type s.

A given submachine can use the information about the "present" or the "next" state or output of the other submachine. So, we distinguish the following two classes of full-decomposition:
(i) class P - a decompositions with information about the present state or output,
(ii) class N - a decompositions with information about the next state or output.

Fig 3.2 Parallel full-decomposition of a machine M into component machines M_{1} and M_{2}.

Fig 3.3 Serial full-decomposition of a machine M into component machines M_{1} and M_{2}.

Fig 3.4 General full-decomposition of a machine M into component machines M_{1} and M_{2}.

From the classifications given above, it immediately follows, that the following cases of full-decompositions are feasible: - one sort of parallel full-decomposition;

- four sorts of serial full decomposition: PS, NS, PO, and NO , - two sorts of general full-decomposition: PS, PO.

For a general full-decomposition, it is possible to have not only the "pure" cases PS and PO but also the "mixture" of types S and O and classes P and N (the first submachine can use the information about the state of the second and the second about the output of the first and vice versa ; the first submachine can use the information about the present state/output of the second submachine and the second can use the information about the next state/output of the first). In this report, we do not take into account "mixed" types, because definitions and theorems for them can be formulated easily as "mixtures" of the adequate definitions and theorems for the "pure" cases considered here.

The formal definitions of all types of full-decompositions which we consider in the paper are introduced below.

Let $s \in S_{1}, t \in S_{2}, x_{1} \in I_{1}, x_{2} \in I_{2}$.

DEFINITION 3.1 A parallel connection of two machines:

$$
M_{1}=\left(I_{1}, S_{1}, O_{1}, \delta^{1}, \lambda^{2}\right)
$$

and

$$
M_{2}=\left(I_{2}, S_{2}, O_{2}, \delta^{2}, \lambda^{2}\right)
$$

is the machine:

$$
M_{1} \| M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, \delta^{*}, \lambda^{*}\right)
$$

where:

$$
\begin{aligned}
& \text { and } \begin{array}{l}
\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s, x_{1}\right), \delta^{2}\left(t, x_{2}\right)\right) \\
\lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{1}\left(s, x_{1}\right), \lambda^{2}\left(t, x_{2}\right)\right) \\
\text { (for Mealy machine) } \\
\text { or } \\
\lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right) \\
(\text { for Moore machine })
\end{array}
\end{aligned}
$$

DEFINITION 3.2 The machine $M_{1} \| M_{2}$ is a parallel fulldecomposition of the machine M if and only if the parallel connection of M_{1} and M_{2} realizes M

DEFINITION 3.3 A serial connection of type PS of two machines:

$$
M_{1}=\left(I_{1}, S_{1}, O_{1}, \delta^{1}, \lambda^{1}\right)
$$

and
for which $I_{2}^{\prime}=\mathrm{M}_{2}=\left(\mathrm{I}_{2}^{\prime}, S_{2}, \mathrm{O}_{2}, \delta^{2}, \lambda^{2}\right)$,
is the machine $M_{1} \longrightarrow M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, \delta^{*}, \lambda^{*}\right)$,
where:

$$
\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s, x_{1}\right), \delta^{2}\left(t,\left(s, x_{2}\right)\right)\right)
$$

and
$\lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{1}\left(s, x_{1}\right), \lambda^{2}\left(t,\left(s, x_{2}\right)\right)\right)$
(for a Mealy machine)
or
$\lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right)$
(for a Moore machine).

DEFINITION 3.4 The machine $M_{1} \longrightarrow M_{2}$ is a serial fulldecomposition of type PS of the machine M if and only if the serial connection of type $P S$ of M_{1} and M_{2} realizes M.

DEFINITION 3.5 A serial connection of type NS of two machines:

$$
M_{1}=\left(I_{1}, S_{1}, O_{1}, \delta^{1}, 1^{1}\right)
$$

and
for which $I_{2}^{\prime}=M_{2} \times I_{2}=\left(I_{2}^{\prime}, S_{2}, O_{2}, \delta^{2}, \lambda^{2}\right)$, is the machine $M_{2} \rightarrow M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, \delta^{*}, \lambda^{*}\right)$, where:

$$
\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s, x_{1}\right), \delta^{2}\left(t,\left(\delta^{1}\left(s, x_{1}\right), x_{2}\right)\right)\right.
$$

and

$$
\lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{2}\left(s, x_{1}\right), \lambda^{2}\left(t,\left(\delta^{1}\left(s, x_{1}\right), x_{2}\right)\right)\right.
$$

(for a Mealy machine)
or

$$
\lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right)
$$

(for a Moore machine)

DEFINITION 3.6 The machine $M_{1} \rightarrow M_{2}$ is a serial fulldecomposition of type $N S$ of the machine M if and only if the serial connection of type $N S$ of M_{1} and M_{2} realizes M.

DEFINITION 3.7 A serial connection of type PO of two machines:

$$
M_{1}=\left(I_{1}, S_{1}, O_{1}, \delta^{1}, \lambda^{1}\right)
$$

and
for which $I_{2}^{\prime}=M_{1}=O_{1}=\left(I_{2}^{\prime}, S_{2}, O_{2}, \delta^{2}, \lambda^{2}\right)$, is the machine $M_{1} \rightarrow M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, \delta^{*}, \lambda^{*}\right)$, where:

$$
\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{2}\left(s, x_{1}\right), \delta^{2}\left(t,\left(y_{1}, x_{2}\right)\right)\right)
$$

$$
\lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{1}\left(s, x_{1}\right), \lambda^{2}\left(t,\left(y_{1}, x_{2}\right)\right)\right)
$$

and $y_{1} \in O_{1}: Y_{1}$ is the present output of M_{1}
(the output of M_{1} contemporary with the state s of M_{1}) (for a Mealy machine)
or

$$
\begin{aligned}
& \left.\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{2}\left(s, x_{1}\right), \delta^{2}\left(t,\left(\lambda^{1}(s), x_{2}\right)\right)\right)\right) \\
& \lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right) \\
& (\text { for a Moore machine })
\end{aligned}
$$

DEFINITION 3.8 The machine $M_{1} \longrightarrow M_{2}$ is a serial fulldecomposition of type $P O$ of the machine M if and only if the serial connection of type $P O$ of M_{1} and M_{2} realizes M

DEFINITION 3.9 A serial connection of type NO of two machines:

$$
M_{1}=\left(I_{1}, S_{1}, O_{1}, \delta^{1}, \lambda^{1}\right)
$$

and
for which $I_{2}^{\prime}=M_{1}^{M_{2}} \mathrm{O}_{2}=\left(I_{2}^{\prime}, S_{2}, O_{2}, \delta^{2}, \lambda^{2}\right)$,
is the machine $M_{1} \longrightarrow M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, \delta^{*}, \lambda^{*}\right)$,
where:

$$
\begin{aligned}
& \delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s, x_{1}\right), \delta^{2}\left(t,\left(\lambda^{1}\left(s, x_{1}\right), x_{2}\right)\right)\right) \\
& \lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{1}\left(s, x_{1}\right), \lambda^{2}\left(t,\left(\lambda^{1}\left(s, x_{1}\right), x_{2}\right)\right)\right) \\
& (\text { for a Mealy machine }) \\
& \text { or } \\
& \delta^{\star}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s, x_{1}\right), \delta^{2}\left(t,\left(\lambda^{1}\left(\delta^{1}\left(s, x_{1}\right)\right), x_{2}\right)\right)\right) \\
& \lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right) \\
& (\text { for a Moore machine })
\end{aligned}
$$

DEFINITION 3.10 The machine $M_{1} \rightarrow M_{2}$ is a serial fulldecomposition of type NO of the machine M if and only if the serial connection of type No of M_{1} and M_{2} realizes M.
DEFINITION 3.11 A general connection of type PS of two
machines :
and

$$
M_{1}=\left(I_{1}^{\prime}, S_{1}, O_{1}, \delta^{1}, \lambda^{1}\right)
$$

where:

$$
M_{2}=\left(I_{2}^{\prime}, S_{2}, O_{2}, \delta^{2}, \lambda^{2}\right)
$$

$$
I_{1}^{\prime}=S_{2} \times I_{1}, I_{2}^{\prime}=S_{1} \times I_{2},
$$

is the machine:

$$
M_{1} \mapsto M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, 8^{*}, \lambda^{*}\right),
$$

where:

$$
\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s,\left(t, x_{1}\right)\right), \delta^{2}\left(t,\left(s, x_{2}\right)\right)\right.
$$

and

$$
\begin{aligned}
& \lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{2}\left(s,\left(t, x_{1}\right)\right), \lambda^{2}\left(t,\left(s, x_{2}\right)\right)\right. \\
& \text { (for a Mealy machine) }
\end{aligned}
$$

or

$$
\lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right)
$$

(for a Moore machine)

DEFINITION 3.12 The machine $M_{1} \leftrightarrow M_{2}$ is a general fulldecomposition of type PS of the machine M if and only if the general connection of type $P S$ of M_{1} and M_{2} realizes M.

DEFINITION 3.13 A general connection of type PO of two machines:
and

$$
\begin{aligned}
& M_{1}=\left(I_{1}^{\prime}, S_{1}, O_{1}, \delta^{1}, \lambda^{1}\right) \\
& M_{2}=\left(I_{2}^{\prime}, S_{2}, O_{2}, \delta^{2}, \lambda^{2}\right),
\end{aligned}
$$

where:

$$
I_{1}^{\prime}=O_{2} \times I_{1}, I_{2}^{\prime}=O_{1} \times I_{2}
$$

is the machine:

$$
M_{1} \leftrightarrow M_{2}=\left(I_{1} \times I_{2}, S_{1} \times S_{2}, O_{1} \times O_{2}, \delta^{*}, \lambda^{*}\right),
$$

where:

$$
\begin{aligned}
& \begin{array}{l}
\delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s,\left(y_{2}, x_{1}\right)\right), \delta^{2}\left(t,\left(y_{1}, x_{2}\right)\right)\right) \\
\lambda^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\lambda^{1}\left(s,\left(y_{2}, x_{1}\right)\right), \lambda^{2}\left(t,\left(y_{1}, x_{2}\right)\right)\right) \\
\text { and } \left.y_{1} \in O_{1}, Y_{2} \in O_{2} \text { (present outputs of } M_{1} \text { and } M_{2}\right) \\
(\text { for a Mealy machine) }
\end{array} \\
& \text { or } \\
& \delta^{*}\left((s, t),\left(x_{1}, x_{2}\right)\right)=\left(\delta^{1}\left(s,\left(\lambda^{2}(t), x_{1}\right)\right), \delta^{2}\left(t,\left(\lambda^{1}(s), x_{2}\right)\right)\right) \\
& \lambda^{*}((s, t))=\left(\lambda^{1}(s), \lambda^{2}(t)\right) \\
& (\text { for a Moore machine) }
\end{aligned}
$$

DERINITION 3.14 The machine $M_{1} \mapsto M_{2}$ is a general full decomposition of type $P O$ of the machine M if and only if the general connection of type PO of machines M_{1} and M_{2} realizes M.

Each of the above defined types of a full-decomposition can be considered as a full-decomposition with the realization of the output behaviour or as a full-decomposition with the realization of the state and output behaviour. In next paragraphs, we will formulate and prove, for the case of state and output behaviour realizations, the theorems about the existence of different types of full- decomposition defined above. In order to formulate these theorems we will introduce the notions of "output-dependent trinity", "state-dependent trinity", "semitrinity" and "induced semitrinity". Only the proves for a Mealy machine are presented in
the report, because the proves for a Moore machine are analogous. The theorems for the case of output behaviour realizations will be presented in a separate report.
4. Partitions. partition pairs and partition trinities.

The concepts of partitions and partition pairs introduced by Hartmanis [11][12] and partition trinities introduced by Hou [14][15] are very useful tools for analyzing the information flow in machines and between machines; therefore they will be used in this work. Let S be any set of elements.

DEFINITION 4.1 Partition π on S is defined as follows:

$$
\pi=\left\{B_{i} \mid B_{i} \leftrightarrows S \text { and } B_{i} \cap B_{j}=0 \text { for } i \neq j \text { and } \cup_{i} B_{i}=S\right\},
$$

i.e. a partition π on S is a set of disjoint subsets of S whose set union is s.

For a given $s \in S$, the block of a partition π containing s is denoted as [s] π and we will write $[s] \pi=[t] \pi$ to denote that s and t are in the same block of π. Similarly, the block of a partition π containing S^{\prime}, where $S^{\prime} s S$, is denoted by [$\left.S^{\prime}\right] \pi$.

The partition containing only one element of S in each block is called a zero partition and denoted by $\pi_{s}(0)$. The partition containing all the elements of S in one block is called a one partition and is denoted by $\pi_{s}(I)$.

Let π_{1} and π_{2} be two partitions on s.

DEFINITION 4.2 Partition product $\pi_{1} \cdot \pi_{2}$ is the partition on S such that $[s] \pi_{1} \cdot \pi_{2}=[t] \pi_{1} \cdot \pi_{2}$ if and only if $[s] \pi_{1}=[t] \pi_{1}$ and $[s] \pi \cdot=$ [t$] \pi_{2}$.

DEFINITION 4.3 Partition sum $\pi_{1}+\pi_{2}$ is the partition on S such that $[s] \pi_{1}+\pi_{2}=[t] \pi_{1}+\pi_{2}$ if and only if a sequence: $s=s_{0}, s_{1}, \ldots, s_{n}=t$, $s_{i} \in S$ for $i=1 . . n$, exists for which either

$$
\left[s_{i}\right] \pi_{1}=\left[s_{i+1}\right] \pi_{1} \text { either }\left[s_{i}\right] \pi_{2}=\left[s_{i+1}\right] \pi_{2}, 0 \leq i \leq n-1
$$

From the above definitions, it follows that the blocks of $\pi_{1} \cdot \pi_{2}$ are obtained by intersecting the blocks of π_{1} and π_{2}, while the blocks of $\pi_{1}+\pi_{2}$ are obtained by making union of all those blocks of π_{1} and π_{2} which contain common elements.

DEFINITION 4.4 π_{2} is greater than or equal to $\pi_{1}: \pi_{1} \leq \pi_{2}$ if and only if each block of π_{1} is included in a block of π_{2}.

Thus $\pi_{1} \leq \pi_{2}$ if and only if $\pi_{1} \cdot \pi_{2}=\pi_{1}$ if and only if $\pi_{1}+\pi_{2}=\pi_{2}$.
Let s_{π} be the set of all partitions on s. Because the relation \leq is a relation of partial ordering (i.e. it is reflexive, antisymmetric and transitive), ($\left.S_{\pi}, \leq\right)$ is a partially ordered set.

Let $(2, \leq)$ be a partially ordered set and T be a subset of Z.

DEFINITION 4.5 $\mathrm{z}, \mathrm{z} \in \mathrm{Z}$, is the least upper bound (LUB) of T if and only if :
(i) $\forall t \in T: z \geq t$,
(ii) $\forall t \in T$: if $z^{\prime} \geq t$ then $z^{\prime} \geq z$.
$z, z \in Z$, is the greatest lower bound (GLB) of T if and only if:
(i) $\forall t \in T: z \leq t$,
(ii) $\forall t \in T:$ if $z^{\prime} \leq t$ then $z ' \leq z$.

DEFINITION 4.6 A partially ordered set $L=(Z, \leq)$, which has a LUB and a GLB for every pair of elements, is called a lattice.

It is evident that the set of all partitions on S together with the relation of a partial ordering \leq form a lattice with $\operatorname{GLB}\left(\pi_{1}, \pi_{2}\right)=\pi_{1} \cdot \pi_{2}$ and $\operatorname{LUB}\left(\pi_{1}, \pi_{2}\right)=\pi_{1}+\pi_{2}$.

Let $\pi_{s}, \tau_{s}, \pi_{1}, \pi_{0}$ be the partitions on $M=(I, S, 0, \delta, \lambda)$, in particular: π_{s}, τ_{s} on S, π_{I} on I, π_{0} on 0 .

DEFINITION 4.7

(i) $\left(\pi_{s}, \tau_{s}\right)$ is an $s-S$ partition pair if and only if $\forall B \in \pi_{s} \forall X \in I: B \bar{\delta}_{x} E B^{\prime}, B^{\prime} \in \tau_{s}$.
(ii) $\left(\pi_{1}, \pi_{s}\right)$ is an I-S partition pair if and only if $\forall A \in \pi_{I} \forall S \in S: s \bar{\delta}_{\mathrm{A}} \subseteq B, B \in \pi_{s}$.

The practical meaning of the notions introduced above is as follows:
(π_{s}, τ_{s}) is an s-s partition pair if and only if the blocks of π_{s} are mapped by M into the blocks of τ_{s}. Thus, if we know the block of π_{s} which contains the present state of the machine M and we know the present input of M, we can compute unambiguously the block of τ_{s} which contains the next state of M for the states from a given blocks of π_{s} and a given input. The interpretation of the notions of I-S, S-O and I-O partition pairs is similar.

In the case of Moore machine, the definition of an I-O pair is trivial, besause each (π_{1}, π_{s}) satisfies it (the output of M is defined by the state of M unambiguously).

DEFINITION 4. 8 Partition π_{s} has a substitution property (it is an Sp-partition) if and only if $\left(\pi_{s}, \pi_{g}\right)$ is an $s-S$ pair.

DEFINITION 4.9 Partition trinity $T=\left(\pi_{1}, \pi_{s}, \pi_{0}\right)$ on the machine $M=$ ($I, S, 0, \delta, \lambda$) is an ordered triple of partitions on sets I, S and 0 , respectively, which satisfies the following conditions:
$\forall A \in \pi_{I} \forall B \in \pi_{S}: B \bar{\delta}_{A} \in B^{\prime}, B^{\prime} \in \pi_{\delta}$ and $B \bar{\lambda}_{A} \in C, C \in \pi_{0}$.

Thus, if ($\pi_{I}, \pi_{s}, \pi_{0}$) is a partition trinity on M and we know the block B of π_{s} which contains the present state of M and we know the block A of π_{I} which contains the present input of M, we can compute unambiguously block B^{\prime} of π_{s} containing the next state of M and block C of π_{0} containing the output of M for the states from block B and inputs from block A.

For completely spacified machines, it has been proved that
$\left(\pi_{1}, \pi_{s}, \pi_{0}\right)$ is a partition trinity on Mif andonly if $\left(\pi_{s}, \pi_{s}\right)$ is an S-S pair, $\left(\pi_{1}, \pi_{s}\right)$ is an $I-S$ pair , $\left(\pi_{s}, \pi_{0}\right)$ is an $\underline{S-O}$ pair and $\left(\pi_{1}, \pi_{0}\right)$ is an I-O pair on M [14][15].

It has been shown in [14] that the set of trinities on a machine M forms a finite trinity lattice with

$$
\operatorname{GLB}\left(T_{1}, T_{2}\right)=T_{1} \odot T_{2} \text { and } \operatorname{LUB}\left(T_{1}, T_{2}\right)=T_{1} \oplus T_{2},
$$

where ρ and \oplus are defined as a collection of pairwise operations ". " and "+" on partitions of the same type (input, state, output) of trinities of T_{1} and T_{2}.

5. Parallel full-decomposition.

An important theoren about the existence of a parallel fulldecomposition has been proved in [14] and [15]. Below we will introduce a similar theorem. The differences between this theorem and that proved in [14] and [15] are following: we did not require $\pi_{I} \cdot \tau_{I}=\pi_{I}(0)$, which was required in [14] and [15] and we defined the nontriviality of a full decomposition in another way, This means that the theorem below is formulated with weaker assumptions and therefore it is satisfied for a broader class of cases.

THEOREM 5.1 A machine $M=(I, S, 0,8, \lambda)$ has a nontrivial parallel full-decomposition with the realization of the state and output behaviour if two partition trinities on M : $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ exist and they satisfy the following conditions:
(i) $\pi_{g} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$, (ii) $\quad\left|\pi_{I}\right|<|I| \wedge\left|\tau_{I}\right|<|I| \vee \pi_{\delta}|<|S| \wedge| \tau_{S}|<|S| \vee| \pi_{0}|<|O| \wedge| \tau_{0}|<|O|$.

Proof of theorem 5.1 is similar to that for the appropriate theorem presented in [14] and [15].

The interpretation of theorem 5.1 is as follows.
Let $M_{1}=\left(\pi_{1}, \pi_{s}, \pi_{0}, \delta^{1}, \lambda^{2}\right)$ and $M_{2}=\left(\tau_{1}, \tau_{s}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$, where:

$$
\begin{aligned}
& \mathrm{B} 1 \delta^{1}{ }_{A 1}=\mathrm{B} 1 \bar{\delta}_{A 1}, \mathrm{~B} 1 \lambda_{A 1}^{1}=\mathrm{B} 1 \bar{\lambda}_{A 1}, \\
& \mathrm{~B} 2 \delta_{\mathrm{\delta}}{ }_{\mathrm{A} 2}=\mathrm{B} 2 \bar{\delta}_{A 2}, \mathrm{~B} 2 \lambda_{\mathrm{A} 2}^{2}=\mathrm{B} 2 \bar{\lambda}_{A 2},
\end{aligned}
$$

for all $\mathrm{Al} \epsilon \pi_{\mathrm{I}}, \mathrm{B} 1 \epsilon \pi_{\mathrm{s}}, \mathrm{A} 2 \in \tau_{\mathrm{I}}, \mathrm{B} 2 \in \tau_{\mathrm{s}}$
and let M be a parallel connection of M_{1} and M_{2}
Since $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ is a partition trinity, based only on the information about the block of π_{I} containing the input of M and the block of π_{s} containing the present state of M (i.e information about the input and present state of M_{1}) machine M_{1} can calculate unambiguously the block of π_{s} in which the next state of M is contained and the block of π_{0} that contains the output of M for the input from a given block of π_{I} and the present state from a given block of π_{s} (i.e. M_{1} can calculate its next state and output). Similarly, since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a partition trinity, machine M_{2}, based only on the information about its input and present state (i.e. knowledge of the adequate block of τ_{I} and block of τ_{δ}), can calculate its next state and output (i.e. the adequate blocks of τ_{s} and τ_{0}).

Since $\pi_{g} \cdot \tau_{g}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$, having the knowledge of the block of π_{s} and the block of τ_{g} in which the state of M is contained, it is possible to calculate this state and, having the knowledge of the block of π_{0} and the block of r_{0} in which the output of M is contained it is possible to calculate this output. So, the machines M_{1} and M_{2} together can calculate the next state and output of M unambiguously.

The special case of theorem 5.1 for:
$\left|\pi_{I}\right|<|I| \wedge\left|\tau_{I}\right|<|I| \wedge\left(\left|\pi_{s}\right|=|S| \wedge\left|\pi_{0}\right|=|0| \vee\left|\tau_{s}\right|=|S| \wedge\left|\tau_{0}\right|=|0|\right)$ express, in fact, the input redundancy. In this case machine M should be replaced with machine M_{1} or M_{2}, having fewer inputs and realizing M, instead to be decomposed. Similar special cases exist for all other theorems presented in this report.
6. Serial full-decomposition of type PS.

Let $\tau_{I}, \tau_{s}, \tau_{0}$ be partitions on a machine M on I, S and 0 respectively.

DEFINITION 6.1 $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ is a partition semitrinity if and only if τ_{I}, τ_{s} and τ_{0} satisfy the following conditions:
(i) $\left(\tau_{I}, \tau_{S}\right)$ is an $I-S$ partition pair,
(ii) $\left(\tau_{I}, \tau_{0}\right)$ is an $I-O$ partition pair (for a Mealy machine),
or
$\left(\tau_{s}, \tau_{0}\right)$ is a $S-0$ partition pair (for a Moore machine)

In other words, $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ is a semitrinity if and only if, based only on the knowledge of the block of a partition τ_{I} containing the input of M and the knowledge of the present state of M, it is possible to calculate the block of τ_{s} in which the next state of M will be contained and, in the case of a Mealy machine, based on the same information, it is possible to calculate the block of τ_{0} in which the output of M will be contained for the given input and state or, in the case of Moore machine, based on the knowledge of the block of a partition τ_{s} in which the state of M is contained, it is possible to calculate the block of τ_{0} in which the output of M will be contained for the state from a given block of τ_{s}. The triple of partitions ($\tau_{I}, \tau_{g}, \tau_{0}$) is called "semitrinity", because it has to satisfy half of the conditions for a trinity.

THEOREX 6.1 A machine M has a nontrivial serial fulldecomposition of type PS with the realization of the state and output behaviour if a partition trinity $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and a partition semitrinity $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ exist and they satisfy the following conditions:
(i) $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$,
(ii) $\left|\pi_{I}\right|<|I| \wedge\left|\pi_{s}\right| \cdot\left|\tau_{I}\right|<|I| \vee \pi_{s}|<|S| \wedge| \tau_{s}|<|S| \vee| \pi_{0}|<|O| \wedge$ $\wedge\left|\tau_{0}\right|<|0|$.

Proof (for the case of a Mealy machine)

Let $M_{1}=\left(\pi_{I}, \pi_{s}, \pi_{0}, \delta^{1}, \lambda^{1}\right)$ and $M_{2}=\left(\pi_{s} \times \tau_{I}, \tau_{s}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$ be two machines satisfying the following conditions:
(1) $\left(\pi_{1}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ satisfy the conditions of the theorem 6.1 ,
(2) $\forall B 1 \epsilon \pi_{s} \forall A 1 \epsilon \pi_{I}: B 1 \delta_{A_{1}}^{1}=\left[B 1 \bar{\delta}_{A_{1}}\right] \pi_{s}, B 1 \lambda_{A_{1}}^{1}=\left[B 1 \bar{\lambda}_{A_{1}}\right] \pi_{0}$, (3) $\forall B 1 \in \pi_{s} \forall B 2 \in \tau_{s} \forall A 2 \in \tau_{I}$:
$B 2 \delta^{2}{ }_{\left(B 1, A_{2}\right)}=\left[(B 1 \cap B 2) \bar{\delta}_{A_{2}}\right] \tau_{S}, B 2 \lambda^{2}\left(B_{\left.1, A_{2}\right)}=\left[(B 1 \cap B 2) \bar{\lambda}_{A_{2}}\right] \tau_{0}\right.$.
Since ($\pi_{I}, \pi_{S}, \pi_{0}$) is a partition trinity (1), B1 $\bar{\delta}_{A_{1}}$ is placed in just one block of π_{s} and $B 1 \bar{\lambda}_{A_{1}}$ in only one block of π_{0}. This means, that $B 1 \delta^{1} A_{1}$ and $B 1 \lambda^{1} A_{1}$ are defined unambiguously.

Since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a semitrinity and $\pi_{s} \cdot \tau_{g}=\pi_{s}(0)(1)$, ($B 1 \cap B 2)^{\prime} \bar{\delta}_{A_{2}}$ is placed in just one block of τ_{s} and ($B 1 \cap B 2$) $\bar{\lambda}_{A_{2}}$ is placed in only one block of τ_{0}. This means, that $B 2 \delta^{2}\left(B_{1, A_{2}}\right)$ and $B 2 \lambda^{2}\left(B_{1, A 2}\right)$ are defined unambigously.

Let $\psi: I \longrightarrow \pi_{I} \times \tau_{I}$ be an injective function, $\phi: \pi_{s} \times \tau_{s} \longrightarrow S$ be a surjective partial function, $\theta: \pi_{0} \times \tau_{0} \longrightarrow 0$ be a surjective partial function
and
(4)
(5) $\quad \phi(B 1, B 2)=B 1 \cap B 2$ if $B 1 \cap B 2 \neq 0$,

$$
\begin{equation*}
\theta(C 1, C 2)=C 1 n c 2 \text { if } \operatorname{clnc2} \neq 0 . \tag{6}
\end{equation*}
$$

We will prove below that the serial connection of defined above machines M_{1} and M_{2} realizes machine M.

Since $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)(1), \phi$ and θ are one-toone functions and for $\mathrm{B} 1 \cap \mathrm{~B} 2 \neq 0$ and $\mathrm{ClnC2} \neq 0$:
(7)

$$
\phi(\mathrm{B} 1, \mathrm{~B} 2) \in \mathrm{S}, \quad \theta(\mathrm{C} 1, \mathrm{C} 2) \in \mathrm{O} .
$$

Therefore, $\forall B 1 \in \pi_{s} \forall B 2 \in \tau_{s} \quad \forall X \in I$ and $B 1 \cap B 2 \neq 0$:

$$
\begin{align*}
& \phi\left((B 1, B 2) \delta^{*}{ }_{\psi(x)}\right)= \\
= & \phi\left((B 1, B 2) \delta^{*}\left([x] \pi_{I},[x] \tau_{I}\right)\right) \tag{4}\\
= & \phi\left(B 1 \delta^{1}[x] \pi_{I}, B 2 \delta^{2}\left(B 1,[x] \tau_{I}\right)\right)
\end{align*}
$$

(definition 3.3)

$$
\begin{align*}
& \left.=B 1 \delta^{1}[x] \pi_{I} \cap B 2 \delta{ }^{2}(B 1, f x] \tau_{I}\right) \tag{5}
\end{align*}
$$

$$
\begin{align*}
& =\left[B 1 \bar{\delta}_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \tag{2}\\
& =\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \\
& =\left[(B 1 \cap B 2) \delta_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \delta_{x}\right] \tau_{s} \tag{7}\\
& =(B 1 \cap B 2) \delta_{x} \\
& =\phi(B 1, B 2) \delta_{x} \tag{5}\\
& \text { and similary: } \\
& \theta\left((B 1, B 2) \lambda^{*} \psi(x)\right)= \\
& =\theta\left((B 1, B 2) \lambda^{*}\left(\{x] \pi_{1},(x) \tau_{1}\right)\right) \tag{4}\\
& =\theta\left(B 1 \lambda^{2}[x] \pi_{I}, B 2 \lambda^{2}\left(B 1, t \times 1 \tau_{I}\right)\right) \\
& \left.=B 1 \lambda^{1}[x] \pi_{I} \cap B 2 \lambda^{2}(B 1, t x] \tau_{I}\right) \tag{6}\\
& =\left[B 1 \bar{\lambda}_{[x] \pi_{I}}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{[x] \tau_{I}}\right] \tau_{0} \tag{3}\\
& \text { (}(2) \text {, } \\
& =\left[B 1 \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \\
& =\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \\
& =\left[(B 1 \cap B 2) \lambda_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \lambda_{x}\right] \tau_{0} \\
& =(B 1 \cap B 2) \lambda_{x} \\
& =\phi(B 1, B 2) \lambda_{x} \\
& \text { (definition 3.3) }
\end{align*}
$$

From the above calculations and definitions 2.3, 3.3 and 3.4, it follows immediately that the serial connection of type PS of machines M_{1} and M_{2} realizes M, i.e. M has a serial fulldecomposition of type PS. If condition (ii) of theorem 6.1 is satisfied, the decomposition is nontrivial. \square

Theorem 6.1 has a straightforward interpretation.

Since ($\pi_{1}, \pi_{s}, \pi_{0}$) is a partition trinity, based only on the information about the block of a partition π_{I} containing the input and the block of a partition π_{s} containing the present state of machine M (i.e. information about the input and present state of M_{1}), machine M_{1} can calculate unambiguously the block of π_{s} in which the next state of M is contained and the block of π_{0} in which
the output of Mis contained for the given input and present state (i.e M_{1} can calculate its next state and output).

Since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a partition semitrinity and $\tau_{s} \cdot \pi_{s}=\pi_{s}(0)$, based only on the information about the block of a partition τ_{I} containing the input and the blocks of partitions τ_{s} and π_{s} containing the present state of the machine M (i.e. information about the primary input and the present state of M_{2} and about the present state of M_{1} which is a part if the input of M_{2}), machine M_{2} can calculate unambiguously the block of τ_{s} in which the next state of M is contained and, in the case of a Mealy machine, the block of τ_{0} in which the output of M is contained for the given input and present state (i.e. M_{2} can calculate its next state and output). In the case of a Moore machine, M_{2} can calculate the block of τ_{0} in which the output of M is contained, based only on information about the block of τ_{s} in which the state of M is contained.

Since $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$, having information about the blocks of π_{s} and π_{0} calculated by M_{1} and the blocks of τ_{s} and τ_{0} calculated by M_{2} (i.e. information about the next states and outputs of M_{1} and M_{2}) it is possible to calculate unambiguously the next states and outputs of machine M.

In [14], for the Mealy case, the other theorem about the existence of a serial full-decomposition of type PS has been proved. However, theorem 6.1 includes also the Moore case and two important differences occur between our theorem 6.1 and the one proved in [14].

In theorem 6.1 we did not use the notion of "forced-trinity" which was used in [14] - instead, we introduced the notion of "semitrinity". This notion is natural, simple and posesses a straightforward interpretation.

We formulated and proved theorem 6.1 with weaker assumptions (for example we did not require $\pi_{I} \cdot \tau_{I}=\pi_{I}(0)$, as was required in [14]). This means that theorem 4.1 is more general than the one proved in [14].

7. Serial full-decomposition of type NS.

Let $\tau_{I}, \tau_{s}, \tau_{0}$ be partitions on machine M, on I, S and 0 respectiviely, and ξ_{s} be another partition on S.

DEFINITION $7.1\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a (next) state-dependent trinity for an independent state partition ξ_{s} if and only if $\tau_{I}, \tau_{s}, \tau_{0}$ satisfy one of the following conditions for a given ξ_{s} :
(i) $\forall s, t \in S \quad \forall x_{1}, x_{2} \in I:$
if $[s] \tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{I}=\left[x_{2}\right] \tau_{I} \wedge\left[s \delta_{x_{1}}\right] \xi_{s}=\left[t \delta_{x_{2}}\right] \xi_{s}$
then $\left[s \delta_{x_{1}}\right] \tau_{s}=\left[t \delta x_{2}\right] \tau_{s} \wedge\left[s \lambda_{x_{1}}\right] \tau_{0}=\left[t \lambda_{x_{2}}\right] \tau_{0}$
(for a Mealy machine),
(ii) $\forall s, t \in S \quad \forall x_{1}, x_{2} \in I$:
if [s] $\tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{I}=\left[x_{2}\right] \tau_{I} \wedge\left[s \delta_{x_{1}}\right] \xi_{s}=\left[t \delta_{x_{2}}\right] \xi_{s}$
then $\left[s \delta_{x_{1}}\right] \tau_{s}=\left[t \delta_{x_{2}}\right] \tau_{s} \wedge\left[\left(s \delta_{x_{1}}\right) \lambda\right] \tau_{0}=\left[\left(t \delta_{x_{2}}\right) \lambda\right] \tau_{0}$
(for a Moore machine).

In other words, $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a state-dependent trinity for an independent state partition ξ_{s} if and only if, based only on the knowledge of the block of a partition τ_{I} containing the input of machine M, knowledge of the block of a partition τ_{s} containing the present state of M and knowledge of the block of a partition ξ_{s} in which the next state of M is contained for a given input and state, it is possible to calculate the block of τ_{s} in which the next state of M will be contained and the block of τ_{0} in which the output of M will be contained.

THEOREM 7.1 A machine M has a nontrivial serial fulldecomposition of type NS with the realization of the state and output behaviour if such a partition trinity $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and such a state-dependent trinity $\left(\tau_{I}, \tau_{g}, \tau_{0}\right)$ for $\xi_{s}=\pi_{s}$ exist that the following conditions are satisfied:
(i) $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$,
(ii) $\left|\pi_{I}\right|<|I|,\left|\pi_{s}\right|<|S|,\left|\pi_{0}\right|<|0|,\left|\pi_{s}\right| \cdot\left|\tau_{I}\right|<|I|,\left|\tau_{s}\right|<|s|$, $\left|\tau_{0}\right|<|0|$.

Proof (for the case of a Mealy machine) $\Pi_{s} x$
Let $M_{1}=\left(\pi_{I}, \pi_{s}, \pi_{0}, \delta^{1}, \lambda^{1}\right)$ and $M_{2}=\left(\tau_{I}, \tau_{s}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$ be two machines for which the following conditions are satisfied:
(1) $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ satisfy the conditions of the theorem 7.1,
(2) $\forall B 1 \epsilon \pi_{s} \forall A 1 \epsilon \pi_{I}: B 1 \delta^{1} A_{1}=\left[B 1 \bar{\delta}_{\lambda_{1}}\right] \pi_{\delta}, B 1 \lambda_{\lambda_{1}}^{1}=\left[B 1 \lambda_{A_{1}}\right] \pi_{0}$,
(3) $\forall B 2 \in \tau_{S} \forall A 2 \in \tau_{I} \quad \forall B 1^{\prime} \in \pi_{s}$:

$$
\begin{aligned}
& B 2 \delta^{2}\left(B 1^{\prime}, A 2\right)=\left[\left(S \delta \delta_{x} \mid s \in B 2, x \in A 2, S \delta \delta_{x} \in B 1^{\prime}\right\}\right] \tau_{s}, \\
& B 2 \lambda^{2}\left(B 1^{\prime}, A 2\right)=\left[\left\{S \lambda_{x} \mid s \in B 2, x \in A 2, S \delta_{x} \in B 1^{\prime}\right)\right] \tau_{0} .
\end{aligned}
$$

Since ($\pi_{I}, \pi_{s}, \pi_{0}$) is a partition trinity (1) , $B \bar{\delta}_{X_{1}}$ is placed in just one block of π_{s} and $B 1 \bar{\lambda}_{A_{1}}$ is placed in only one block of π_{0}. This means that $B 1 \delta^{1} A_{1}$ and $B 1 \lambda_{A_{1}}$ are defined unambiguously.

Since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a state dependent trinity for $\xi_{s}=\pi_{s} \quad(1)$, the following condition is satisfied:
(4) $\forall s, t \in S \forall x_{1}, x_{2} \in I$:
if $[s] \tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{I}=\left[x_{2}\right] \tau_{1} \wedge\left[s \delta_{x_{1}}\right] \pi_{s}=\left[t \delta_{x_{2}}\right] \pi_{s}$
then $\left[s \delta_{x_{1}}\right] \tau_{s}=\left[t \delta_{x_{2}}\right] \tau_{s} \wedge\left[s \lambda_{x_{1}}\right] \tau_{0}=\left[t \lambda_{x_{2}}\right] \tau_{0}$.
From (4), it follows that $B 2 \delta^{2}\left(B 1^{\prime}, A_{2}\right)$ and $B 2 \lambda^{2}\left(B_{1}, A_{2}\right)$ are defined unambiguously because $\left\{s \delta_{x} \mid \mathrm{S} \in \mathrm{B} 2, \mathrm{X} \in \mathrm{A} 2, \mathrm{~S} \delta_{\mathrm{x}} \in \mathrm{B} 1^{\prime}\right\}$ is located in only one block of τ_{s} and $\left\{s \lambda_{x} \mid s \in B 2, x \in A 2, s \delta_{x} \in B 1^{\prime}\right\}$ in just one block of τ_{0}.

Let $\psi: I \longrightarrow \pi_{I} \times \tau_{I}$ be an injective function,
$\phi: \pi_{s} \times \tau_{s} \longrightarrow S$ be a surjective partial function, $\theta: \pi_{0} \times \tau_{0} \longrightarrow O$ be a surjective partial function
and
(6) $\quad \phi(\mathrm{B} 1, \mathrm{~B} 2)=\mathrm{B} 1 \cap \mathrm{~B} 2$ if $\mathrm{B} 1 \cap \mathrm{~B} 2 \neq 0$,
(7) $\quad \theta(\mathrm{CL}, \mathrm{C} 2)=\mathrm{C} 1 \mathrm{nC2}$ if $\mathrm{ClnC2} \neq 0$.

Since $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)(1), \phi$ and θ are one-toone and for $\mathrm{B} 1 \cap \mathrm{~B} 2 \neq 0$ and $\mathrm{ClnC2} \neq 0$:
(8) $\emptyset(B 1, B 2) \epsilon S, \theta(C 1, C 2) \in O$.

Therefore, $\forall B 1 \in \pi_{s} \forall B 2 \in \tau_{s} \forall x \in I$ and $B 1 \cap B 2 \neq 0:$

$$
\begin{aligned}
& \phi\left((B 1, B 2) \delta^{*}{ }_{\psi(x)}\right)= \\
& =\phi\left((B 1, B 2) \delta^{*}\left([x] \pi_{I},[x] \tau_{I}\right)\right) \\
& =\phi\left(B 1 \delta^{1}[x] \pi_{I}, B 2 \delta^{2}\left(B 1 \delta^{1}[x] \pi_{I},(x] \tau_{I}\right)\right) \\
& =B 1 \delta^{2}(x) \pi_{I} \cap B 2 \delta^{2}\left(B 1 \delta_{[x] \pi_{I}}^{1},(x) \tau_{I}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\left[B 1 \bar{\delta}_{x}\right] \pi_{s} \cap\left[\left(s \delta_{x} \mid s \in B 2 \wedge s \in B 1\right)\right] \tau_{s} \quad\left(\pi_{s}\right. \text { is SP-partition) } \\
& =\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \quad(B 1 \cap B 2 \varepsilon B 1) \\
& =\left[(B 1 \cap B 2) \delta_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \delta_{x}\right] \tau_{s} \tag{8}\\
& =(B 1 \cap B 2) \delta x \\
& =\phi(B 1, B 2) \delta_{x} \tag{6}\\
& \text { and similary: }
\end{align*}
$$

$$
\begin{align*}
& \theta\left((B 1, B 2) \lambda^{*} \psi(x)\right)= \\
& =\theta\left((B 1, B 2) \lambda^{*}\left([x] \pi_{I},[x] \tau_{I}\right)\right) \\
& =\theta\left(B 1 \lambda^{2}[x] \pi_{I}, B 2 \lambda^{2}\left(B 1 \delta^{1}(x) \pi_{I},(x) \tau_{I}\right)\right) \\
& =B 1 \lambda^{2}(x) \pi_{1} \cap B 2 \lambda^{2}\left(B 1 \delta_{t}^{1}(x] \pi_{I},(x) \tau_{I}\right) \tag{7}
\end{align*}
$$

$$
\begin{align*}
& =\left[B 1 \bar{\lambda}_{x}\right] \pi_{0} \cap\left[\left\{S \lambda_{x} \mid s \in B 2 \wedge s \delta_{x} \in\left[B 1 \bar{\delta}_{x}\right] \pi_{s}\right\}\right] \tau_{0} \quad\left(B \bar{\delta}_{x} \in B \delta\{(x] \pi)\right. \\
& =\left[B 1 \bar{\lambda}_{x}\right] \pi_{0} \cap\left[\left\{s \lambda_{x} \mid s \in B 2 \wedge s \in B 1\right\}\right] \tau_{0} \quad\left(\pi_{s}\right. \text { is SP-partition) } \\
& =\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \quad(B 1 \cap B 2 \in B 1) \\
& =\left[(B 1 \cap B 2) \lambda_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \lambda_{x}\right] \tau_{0} \tag{8}\\
& =(B 1 \cap B 2) \lambda_{x} \\
& \left(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\right) \\
& =\phi(B 1, B 2) \lambda_{x} \tag{6}
\end{align*}
$$

From the above calculations and definitions 2.3, 3.5 and 3.6, it follows immediately that the serial connection of type NS of machines M_{1} and M_{2} realizes M, i.e. M has a serial full-
decomposition of type NS. If condition (ii) of the theorem 7.1 is satisfied, the decomposition is nontrivial.

Theorem 7.1 has a straightforward interpretation.
Since ($\pi_{I}, \pi_{s}, \pi_{0}$) is a partition trinity, machine M_{1}, based only on the information about its input and present state (i.e. knowledge of the adequate block of π_{1} and block of π_{s}), can calculate its next state and output (i.e. the adequate blocks of π_{s} and π_{0}).

Since ($\tau_{1}, \tau_{s}, \tau_{0}$) is a state-dependent partition trinity for $\xi_{s}=\pi_{s}$, based only on information about the block of τ_{I} containing the input, the block of τ_{s} containing the present state of M and the block of π_{s} containing the next state of M for the given input and present state (i.e. information about the primary input and present state of M_{2} and the next state of M_{1} which is part of the input of M_{2}), machine M_{2} can calculate unambiguously the block of τ_{s} in which the next state of M is contained and the block of τ_{0} in which the output of M is contained for the given input and present state (i.e. M_{2} can calculate its next state and output).

Since $\tau_{s} \cdot \pi_{s}=\pi_{s}(0)$ and $\tau_{0} \cdot \pi_{0}=\pi_{0}(0)$, having information about blocks of π_{s} and π_{0} calculated by M_{1} and blocks of τ_{s} and τ_{0} calculated by M_{2}, it is possible to calculate unambiguously the next states and outputs of machine M.
8. Serial full-decomposition of type po.

Let $\pi!$ and ξ_{0} be partitions on M on S and O respectively.

DEFINITION 8.1π is a state partition induced by an output partition ξ_{0} if and only if one of the following conditions is satisfied:

```
\(\forall s, t \in S \quad \forall x, y \in I\) : if \(\left[s \lambda_{x}\right] \xi_{0}=\left[t \lambda_{y}\right] \xi_{0}\)
    then \(\left[s \delta_{x}\right] \pi \pi_{s}=\left[t \delta_{y}\right] \pi!\)
    (for a Mealy machine),
(ii) \(\forall s, t \epsilon S\) : \([s] \pi!=[t] \pi s\) if and only if
    \([s \lambda] \xi_{0}=[t \lambda] \xi_{0}\)
    (for a Moore machine) .
```

In other words, if $\pi \dot{s}$ is a state partition induced by an output partition ξ_{0} and if we know that the present output y of M is contained in a block C : $C \epsilon \xi_{0}$ then we know that the present state s of M is contained in a block $B: B \in \pi{ }_{s}^{\prime \prime}$, which is indicated unambiguously by block C. We can say, that block B of π is induced by block C of ξ_{0} and denote this by: $B=$ ind (C).

Let $\tau_{1}, \tau_{s}, \tau_{0}$ be partitions on a machine M, on I, S and O respectively, and ξ_{0} be the other partition on 0 .

DEFINITION 8.2 $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ is a partition semitrinity induced by an output partition ξ_{0} if and only if such a state partition $\pi \dot{s}$ induced by ξ_{0} exists, that τ_{1}, τ_{s} and τ_{0} satisfy the following conditions for this $\pi!$:
(i) $\left(\tau_{I}, \tau_{s}\right)$ is an I-S partition pair,
(ii) $\left(\tau_{s} \cdot \pi_{s}{ }^{\prime}, \tau_{s}\right)$ is a s-s partition pair,
(iii) $\left(\tau_{s} \cdot \pi_{s}{ }^{\prime}, \tau_{0}\right)$ is a $s-o$ partition pair, and
$\left(\tau_{1}, \tau_{0}\right)$ is an I-O partition pair (for a Mealy machine), or
$\left(\tau_{s}, \tau_{0}\right)$ is a $\mathrm{s}-\mathrm{O}$ partition pair (for a Moore machine).

In other words, $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ is a semitrinity induced by an output partition ξ_{0} if and only if, based on the knowledge of the block of a partition τ_{I} containing the input of M and the knowledge of the block of a partition τ_{ε} and the block of an induced partition $\pi!$ containing the present state of M, it is possible to calculate the block of τ_{s} in which the next state of M will be contained and, in the case of a Mealy machine, based on the same information it is possible to calculate the block of τ_{0} in which the output of M will be contained for the given input and state or, in the case of a Moore machine, based on the knowledge of the blocks of partitions τ_{s} and π_{s} ' containing the state of M, it is possible to calculate the block of τ_{0} containing the output of M for the given state.

THEOREM 8.1 A machine M has a nontrivial serial fulldecomposition of type po with the realization of the state and output behaviour if such a partition trinity $\left(\pi_{I}, \pi_{f}, \pi_{0}\right)$ and such a partition semitrinity $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ induced by $\xi_{0}=\pi_{0}$ exist that the following conditions are satisfied:
(i) $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$,
(ii) $\left|\pi_{I}\right|<|I| \wedge\left|\pi_{0}\right| \cdot\left|\tau_{I}\right|<|I| \vee\left|\pi_{s}\right|<|S| \wedge\left|\tau_{s}\right|<|s| \vee\left|\pi_{0}\right|<|0| \wedge$ $\wedge\left|\tau_{0}\right|<|0|$.

Proof (for the case of a Mealy machine)

Let $M_{1}=\left(\pi_{I}, \pi_{s}, \pi_{0}, \delta^{2}, \lambda^{2}\right)$ and $M_{2}=\left(\pi_{0} \times \tau_{I}, \tau_{\varepsilon}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$ be the two machines for which the following conditions are satisfied:
(1) $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{I}, \tau_{\xi}, \tau_{0}\right)$ satisfy the conditions of the theorem 8.1 .
(2) $\forall B 1 \in \pi_{s} \forall A_{1} \in \pi_{I}: B 1 \delta_{A_{1}}=\left[B 1 \bar{\delta}_{A_{1}}\right] \pi_{\delta}, B 1 \lambda_{A_{1}}^{1}=\left[B 1 \bar{\lambda}_{A_{1}}\right] \pi_{0}$, (3) $\forall C 1 \epsilon \pi_{0} \quad \forall B 2 \epsilon \tau_{\delta} \forall A 2 \epsilon \tau_{I}:$

$$
\begin{aligned}
& B 2 \delta^{2}(c:, A 2)=\left[\left\{S \delta \delta_{x} \mid s \in B 2 \wedge s \in \operatorname{sind}(C 1) \wedge x \in A 2\right\}\right] \tau_{s}, \\
& B 2 \lambda^{2}(C 1, A 2)=\left[\left\{s \lambda_{x} \mid S \in B 2 \wedge s \in \operatorname{ind}(C 1) \wedge x \in A 2\right\}\right] \tau_{0} .
\end{aligned}
$$

 are defined unambiguously.

Since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a semitrinity induced by $\xi_{0}=\pi_{0}$ (1), the following conditions are satisfied:
(4) $\left(\tau_{s} \cdot \pi_{s}^{\prime}, \tau_{g}\right)$ is a $S-S$ pair and $\left(\tau_{s} \cdot \pi_{s}{ }^{\prime}, \tau_{0}\right)$ is a $S-0$ pair,
(5) $\left(\tau_{I}, \tau_{S}\right)$ is an $I-S$ pair,
(6) $\left(\tau_{I}, \tau_{0}\right)$ is an $I-0$ pair.
 located in just one block of τ_{ε}. From (4) and (6), it follows that $\left\{S \lambda_{x} \mid s \in B 2 \wedge s \in\right.$ ind $\left.(C 1) \wedge x \in A 2\right\}$ is located in just one block of τ_{0}. This means, that $B 2 \delta^{2}\left(c 1, A_{2}\right)$ and $B 2 \lambda^{2}\left(c 1, A_{2}\right)$ are defined unambigously

Let $\psi: I \longrightarrow \pi_{I} \times \tau_{I}$ be an injective function, $\phi: \pi_{\delta} \times \tau_{s} \longrightarrow S$ be a surjective partial function, $\theta: \pi_{0} \times \tau_{0} \longrightarrow 0$ be a surjective partial function
and
(7)
(8) $\quad \phi(B 1, B 2)=B 1 \cap B 2$ if $B 1 \cap B 2 \neq 0$,
(9) $\quad \theta(\mathrm{Cl}, \mathrm{C} 2)=\mathrm{C1nC2}$ if $\mathrm{ClnC2} \neq 0$.

Since $\pi_{s} \cdot \tau_{s}=\pi_{g}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)(\lambda), \phi$ and θ are one-toone functions and
(10) $\phi(B 1, B 2) \epsilon S$, $\theta(C 1, C 2) \epsilon O$.

Therefore, $\forall C 1 \epsilon \pi_{0} \forall B 1 \epsilon \pi_{s} \forall B 2 \epsilon \tau_{s} \forall X \in I$ and $B 1 \cap B 2 \neq 0$:

$$
\begin{align*}
& \phi\left((B 1, B 2) \delta^{*} \psi(x)\right)= \\
& \left.=\phi\left((B 1, B 2) \delta^{*}(t x] \pi_{I},[x] \tau_{I}\right)\right) \\
& =\phi\left(B 1 \delta^{1}(x) \pi_{I}, B 2 \delta^{2}\left(C 1,[x] \tau_{I}\right)\right) \\
& \left.=B 1 \delta^{1}(x) \pi_{I} \cap B 2 \delta^{2}(C 1, t x) \tau_{I}\right) \\
& =\left[B 1 \bar{\delta}_{[x]} \pi_{I}\right] \pi_{s} \cap\left[(\operatorname{ind}(C 1) \cap B 2) \bar{\delta}_{[x] \tau_{I}}\right] \tau_{s} \quad \text { ((2), (3)) } \\
& =\left[B 1 \bar{\delta}_{x}\right] \pi_{s} \cap\left[(\text { ind }(C 1) \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \quad\left(B \bar{\delta}_{x} \in B \bar{\delta}_{[x] \pi}\right) \\
& =\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \pi_{s} \cap\left[(\text { ind }(C 1) \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \quad(B 1 \cap B 2 \in B 1) \\
& =\left[(\mathrm{B} 1 \cap \mathrm{~B} 2) \bar{\delta}_{\mathrm{x}}\right] \pi_{\mathrm{s}} \cap\left[(\mathrm{~B} 1 \cap \mathrm{~B} 2) \bar{\delta}_{\mathrm{x}}\right] \tau_{\mathrm{s}} \quad(\mathrm{~B} 1 \cap \mathrm{~B} 2 \in \operatorname{ind}(\mathrm{C} 1) \cap \mathrm{B} 2) \\
& =\left[(B 1 \cap B 2) \delta_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \delta_{x}\right] \tau_{s} \\
& \text { ((4), (10)) } \\
& =(B 1 \cap B 2) \delta_{x} \\
& \left(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\right) \\
& =\phi(B 1, B 2) \delta_{x} \tag{8}
\end{align*}
$$

and similary:

$$
\begin{aligned}
& \theta\left((B 1, B 2) \lambda^{*} \psi(x)\right)= \\
& =\theta\left((B 1, B 2) \lambda^{*}\left(1 \times 1 \pi_{I},(x) \tau_{1}\right)\right) \\
& =\theta\left(B 1 \lambda^{1}\left(x \pi_{I}, B 2 \lambda^{2}\left(C i,(x) \tau_{I}\right)\right)\right. \\
& \left.=B 1 \lambda^{1}[x] \pi_{I} \cap B 2 \lambda^{2}(C 1, t x] \tau_{I}\right) \\
& =\left[B 1 \bar{\lambda}_{\{x] \pi_{I}}\right] \pi_{0} \cap\left[(\text { ind }(C 1) \cap B 2) \bar{\lambda}_{[x] \tau_{I}}\right] \tau_{0} \quad \text { ((2), (3)) } \\
& =\left[B 1 \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(\text { ind }(C 1) \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \quad\left(B \bar{\lambda}_{x} \in B \bar{\lambda}_{i x 1 \pi}\right) \\
& =\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(\text { ind (C1) } \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \quad(B 1 \cap B 2 \leq B 1) \\
& =\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \quad(B 1 \cap B 2 \in \text { ind }(C 1) \cap B 2) \\
& =\left[(B 1 \cap B 2) \lambda_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \lambda_{x}\right] \tau_{0} \\
& =(B 1 \cap B 2) \lambda_{x} \\
& \left(\pi_{0} \cdot \tau_{0}=\pi_{0}(0)\right)
\end{aligned}
$$

$$
\begin{equation*}
=\phi(\mathrm{B} 1, \mathrm{~B} 2) \lambda_{\mathrm{x}} \tag{8}
\end{equation*}
$$

From the above calculations and definitions 2.3, 3.7 and 3.8, it follows immediately that the serial connection of type PO of machines M_{1} and M_{2} realizes M i.e. M has a serial fulldecomposition of type PO. If condition (ii) of theorem 8.1 is satisfied, the decomposition is nontrivial.

The interpretation of theorem 8.1 is as follows:
Since $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ is a partition trinity, machine M_{1}, based only on the information about its input and present state (i.e. knowledge of the adequate block of π_{I} and block of π_{s}), can calculate its next state and output (i.e. the adequate blocks of π_{s} and π_{0}).

Since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is a partition semitrinity induced by π_{0} and $\tau_{s} \cdot \pi_{s}=\pi_{s}(0)$, where π_{s}^{\prime} is the state partition induced by π_{0}, based only on the information about the block of a partition τ_{I} containing the input and the blocks of partitions τ_{s} and $\pi!$ containing the present state of the machine M (i.e. information about the primary input and the present state of M_{2} and about the present output of M_{2} which is a part if the input of M_{2}), machine M_{2} can calculate unambiguously the block of τ_{s} in which the next state of M will be contained and, in the case of Mealy machine, the block of τ_{0} in which the output of M will be contained for the given input and present state (i.e. M_{2} can calculate its next state and output). In the case of Moore machine, M_{2} can calculate the block of τ_{0} in which the output of M will be contained based only on information about the block of τ_{s} in which the state of M is contained.

Since $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$, having information about blocks of π_{s} and π_{0} calculated by M_{1} and blocks of τ_{g} and τ_{0} calculated by M_{2}, it is possible to calculate unambiguously the next states and outputs of the machine M.

9. Serial full-decomposition of type NO.

Let $\tau_{I}, \tau_{s}, \tau_{0}$ be partitions on a machine M, on I, S, 0 respectiviely, and ξ_{0} be the other partition on 0 .

DEFINITION $9.1\left(\tau_{1}, \tau_{\delta}, \tau_{0}\right)$ is an output-dependent trinity for the independent output partition ξ_{0} if and only if τ_{I}, τ_{s} and τ_{0} satisfy one of the following conditions for a given ξ_{0} :
(i) $\forall s, t \in S \quad \forall x_{1}, x_{2} \in I$: if $[s] \tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{I}=\left[x_{2}\right] \tau_{I} \wedge\left[s \lambda_{x}\right] \xi_{0}=\left[t \lambda_{x_{2}}\right] \xi_{0}$
then $\left[s \delta_{x_{1}}\right] \tau_{\delta}=\left[t \delta x_{2}\right] \tau_{s} \wedge\left[s \lambda_{x_{1}}\right] \tau_{0}=\left[t \lambda_{x_{2}}\right] \tau_{0}$
(for a Mealy machine),
(ii) $\forall s, t \in S \quad \forall x_{1}, x_{2} \in I$:
if $[s] \tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{I}=\left[x_{2}\right] \tau_{1} \wedge\left[\left(s \delta_{x_{1}}\right) \lambda\right] \xi_{0}=\left[\left(t \delta_{x_{2}}\right) \lambda\right] \xi_{0}$
then $\left[s \delta_{x_{1}}\right] \tau_{s}=\left[t \delta_{x_{2}}\right] \tau_{s} \wedge\left[\left(s_{x_{1}}\right) \lambda\right] \tau_{0}=\left[\left(t \delta_{x_{2}}\right) \lambda\right] \tau_{0}$
(for a Moore machine).

In other words, $\left(\tau_{1}, \tau_{\delta}, \tau_{0}\right)$ is an output-dependent trinity for the independent output partition ξ_{0} if and only if, based on the knowledge of the block of a partition τ_{I} in which the input of a machine M is contained, the block of a partition τ_{s} in which the present state of M is contained and the block of a partition ξ_{0} in which the outputs of M are contained for inputs from a given block of τ_{1} and states from a given block of τ_{s}, it is possible to calculate the block of τ_{s} in which the next state of M is contained and the block of τ_{0} in which the output of M is contained for the present state from a given block of τ_{s} and input from a given block of τ_{I}.

THEOREM 9.1 A machine M has a nontrivial serial fulldecomposition of type NO with the realization of the state and output behaviour if such a partition trinity ($\pi_{1}, \pi_{s}, \pi_{0}$) and such an output-dependent trinity $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ for $\xi_{0}=\pi_{0}$ exist that the following conditions are satisfied:
(i) $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$,
(ii) $\left|\pi_{I}\right|<|I| \wedge\left|\pi_{0}\right| \cdot\left|\tau_{I}\right|<|I| V\left|\pi_{s}\right|<|s| \wedge\left|\tau_{s}\right|<|s| v\left|\pi_{0}\right|<|O| \wedge$ $\wedge\left|\tau_{0}\right|<\mid$ 이.

Proof (for the case of Mealy machine) π_{0},
Let $M_{1}=\left(\pi_{1}, \pi_{5}, \pi_{0}, \delta^{1}, \lambda^{1}\right)$ and $M_{2}=\left(\tau_{I}, \tau_{s}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$ be two machines for which the following conditions are satisfied:
(1) $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{1}, \tau_{g}, \tau_{0}\right)$ satisfy the conditions of theorem 9.1 ,
(2) $\forall B 1 \epsilon \pi_{s} \forall A 1 \epsilon \pi_{I}: B 1 \delta^{1} A_{1}=\left[B 1 \bar{\delta}_{A_{1}}\right] \pi_{s} \wedge B 1 \lambda^{1}{ }_{A_{1}}=\left[B 1 \bar{\lambda}_{A_{1}}\right] \pi_{0}$,
(3) $\forall B 2 \in \tau_{s} \forall A 2 \in \tau_{I} \quad \forall C 1 \in \pi_{0}$:
$B 2 \delta^{2}\left(C 1, A_{2}\right)=\left[\left\{s \delta_{x} \mid S \in B 2, x \in A 2, S \lambda_{x} \in C 1\right\}\right] \tau_{s}$,
$B 2 \lambda^{2}\left(C 1_{1, \lambda 2}\right)=\left[\left\{S \lambda_{x} \mid s \in B 2, x \in A 2, S \lambda_{x} \in C 1\right\}\right] \tau_{0}$.

Since ($\pi_{1}, \pi_{s}, \pi_{0}$) is a partition trinity (1), $B 1 \bar{\delta}_{A_{1}}$ is placed in just one block of π_{s} and $B 1 \bar{\lambda}_{A_{1}}$ is placed in just one block of π_{0}. This means that $B 1 \delta_{A_{1}}^{1}$ and $B 1 \lambda_{A_{1}}^{1}$ are unambiguously defined.
since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is an output dependent trinity for $\xi_{0}=\pi_{0}$ (1), the following condition is satisfied:
(4) $\forall s, t \in S \forall x_{1}, x_{2} \in I$:
if $[s] \tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{1}=\left[x_{2}\right] \tau_{1} \wedge\left[s \lambda_{x_{1}}\right] \pi_{0}=\left[t \lambda_{x_{2}}\right] \pi_{0}$
then $\left[s \delta_{x_{1}}\right] \tau_{s}=\left[t \delta_{x_{2}}\right] \tau_{s} \wedge\left[s \lambda_{x_{1}}\right] \tau_{0}=\left[t \lambda_{x_{2}}\right] \tau_{0}$.
From (4), it follows that $\mathrm{B} 2 \delta^{2}\left(C_{1, ~} A_{2}\right)$ and $\mathrm{B} 2 \mathrm{~A}^{2}\left(\mathrm{C}_{1}, \mathrm{~A}_{2}\right)$ are defined unambiguously, because $\left\{s \delta_{x} \mid s \in B 2, x \in A 2, s \lambda_{x} \in C 1\right.$ \} is located in just one block of τ_{s} and $\left\{s \lambda_{x} \mid s \in B 2, x \in A 2, s \lambda_{x} \in C 1\right\}$ in just one block of τ_{0}.

Let $\psi: I \longrightarrow \pi_{I} \times \tau_{I}$ be an injective function, $\phi: \pi_{s} \times \tau_{s} \rightarrow S$ be a surjective partial function, $\theta: \pi_{0} \times \tau_{0} \longrightarrow 0$ be a surjective partial function
and
(6) $\quad \phi(B 1, B 2)=B 1 \cap B 2$ if $B 1 \cap B 2 \neq 0$,
(7) $\quad \theta(\mathrm{C} 1, \mathrm{C} 2)=\mathrm{C} 1 \mathrm{nC2}$ if $\mathrm{ClnC2} \neq 0$.

Since $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)(1), \phi$ and θ are one-toone and
(8) $\phi(B 1, B 2) \epsilon S, \theta(C 1, C 2) \in O$.

Therefore $\forall B 1 \epsilon \pi_{s} \forall B 2 \epsilon \tau_{s} \forall X \in I$ and $B 1 \cap B 2 \neq 0:$

$$
\begin{aligned}
& \phi\left((B 1, B 2) \delta^{*}{ }_{\psi(x)}\right)= \\
= & \phi\left((B 1, B 2) \delta^{*}\left([x] \pi_{I},[x] \tau_{I}\right)\right) \\
= & \phi\left(B 1 \delta^{1}[x] \pi_{I}, B 2 \delta^{2}\left(B 1 \lambda_{[x] \pi_{I}},[x] \tau_{I}\right)\right) \\
= & B 1 \delta^{1}[x] \pi_{I} \cap B 2 \delta^{2}\left(B 1 \lambda_{[x] \pi_{I}}^{1}\left[\{x] \tau_{I}\right)\right.
\end{aligned}
$$

(definition 3.9)
$=\left[B 1 \bar{\delta}_{\{x] \pi_{I}}\right] \pi_{s} \cap\left[\left\{s \delta_{x} \mid s \in B 2 \wedge s \lambda_{y} \in\left[B 1 \bar{\lambda}_{[y]} \pi_{I}\right] \pi_{0} \wedge Y \in[x] \tau_{I}\right\}\right] \tau_{s}$

$=\left[B 1 \bar{\delta}_{x}\right] \pi_{s} \cap\left[\left\{s \delta_{x} \mid s \in B 2 \wedge s \in B 1\right)\right] \tau_{s} \quad\left(\left(\pi_{s}, \pi_{0}\right)\right.$ is so-pair)
$=\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \quad(B 1 \cap B 2 \leqslant B 1)$
$=\left[(B 1 \cap B 2) \delta_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \delta_{x}\right] \tau_{s}$
$=(B 1 \cap B 2) \delta_{x}$
$=\phi(B 1, B 2) \delta_{x}$
and similary:

$$
\begin{aligned}
& \theta\left((B 1, B 2) \lambda^{*} \psi(x)\right)= \\
& =\theta\left((B 1, B 2) \lambda^{*}\left((x) \pi_{1},[x] \tau_{1}\right)\right) \\
& =\theta\left(B 1 \lambda^{1}[x] \pi_{I}, B 2 \lambda^{2}\left(B I^{\prime} \lambda^{1}(x) \pi_{I},(x) \tau_{I}\right)\right) \\
& =B 1 \lambda^{2}[x] \pi_{I} \cap B 2 \lambda^{2}\left(B I \lambda^{1}[x] \pi_{I},(x] \tau_{I}\right)
\end{aligned}
$$

$$
\begin{array}{lr}
=\left[B 1 \vec{\lambda}_{x}\right] \pi_{0} \cap\left[\left\{s \lambda_{x} \mid s \in B 2 \wedge s \in B 1\right\}\right] \tau_{0} & \left(\left(\pi_{s}, \pi_{0}\right)\right. \text { is so-pair) } \\
=\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} & (B 1 \cap B 2 \leq B 1) \\
=\left[(B 1 \cap B 2) \lambda_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \lambda_{x}\right] \tau_{0} & ((8)) \\
=(B 1 \cap B 2) \lambda_{x} & \left(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\right) \\
=\phi(B 1, B 2) \lambda_{x} & ((6))
\end{array}
$$

From the above calculations and definitions 2.3,3.9 and 3.10, it follows immediately that the serial connection of type NO of machines M_{1} and M_{2} realizes M i.e. M has a serial fulldecomposition of type NO. If condition (ii) of the theorem 9.1 is satisfied, the decomposition is nontrivial.

Theorem 9.1 has a straightforward interpretation.
Since $\left(\pi_{1}, \pi_{s}, \pi_{0}\right)$ is a partition trinity, machine M_{1}, based only on the information about its input and present state (i.e. knowledge of the adequate block of π_{1} and block of π_{s}), can calculate its next state and output (i.e. the adequate blocks of π_{s} and π_{0}).
since $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ is an output-dependent partition trinity for $\xi_{0}=\pi_{0}$, based only on information about the block of τ_{1} containing the input, the block of τ_{s} containing the present state of M and the block of π_{0} containing the output of M for the given input and present state (i.e. information about the primary input and present state of M_{2} and the output of M_{1} which is a part of the input of M_{2}), machine M_{2} can calculate unambiguously the block of τ_{s} in which the next state of M is contained and the block of τ_{0} in which the output of M is contained for the given input and present state (i.e. M_{2} can calculate its next state and output).
since $\tau_{s} \cdot \pi_{s}=\pi_{s}(0)$ and $\tau_{0} \cdot \pi_{0}=\pi_{0}(0)$, having information about blocks of π_{s} and π_{0} calculated by M_{1} and blocks of τ_{s} and τ_{0} calculated by M_{2}, it is possible to calculate unambiguously the next states and outputs of the machine M.
10. General full-decomposition of type pS

THEOREM 10.1 A machine M has a nontrivial general fulldecomposition of type PS with the realization of the state and output behaviour if two partition semitrinities: ($\pi_{I}, \pi_{s}, \pi_{0}$) and $\left(\tau_{I}, \tau_{s}, \tau_{0}\right)$ exist and they satisfy the following conditions:
(i) $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$,
(ii) $\left|\tau_{s}\right| \cdot\left|\pi_{I}\right|<|I| \wedge\left|\pi_{s}\right| \cdot\left|\tau_{I}\right|<|I| \vee\left|\pi_{s}\right|<|S| \wedge\left|\tau_{s}\right|<|s| \vee\left|\pi_{0}\right|<|0| \wedge$ $\wedge\left|\tau_{0}\right|<|0|$.

Proof (for the case of a Mealy machine)

Let $M_{1}=\left(\tau_{s} \times \pi_{1}, \pi_{s}, \pi_{0}, \delta^{1}, \lambda^{2}\right)$ and $M_{2}=\left(\pi_{s} \times \tau_{I}, \tau_{s}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$ be the two machines for which the following conditions are satisfied:
(1) $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ satisfy the conditions of theorem 10.1,
(2) $\forall B 1 \in \pi_{S} \quad \forall B 2 \in \tau_{s} \forall A_{1} \in \pi_{I}$:
$B 1 \delta^{1}(B 2, A 1)=\left[(B 1 \cap B 2) \bar{\delta}_{A 1}\right] \pi_{s}, B 1 \lambda^{1}\left(B 2, A_{1}\right)=\left[(B 1 \cap B 2) \bar{\lambda}_{A 1}\right] \pi_{0}$,
(3) $\forall B 1 \in \pi_{s} \forall B 2 \in \tau_{s} \forall A 2 \in \tau_{I}:$
$B 2 \delta^{2}\left(B_{1}, A_{2}\right)=\left[(B 1 \cap B 2) \bar{\delta}_{A_{2}}\right] \tau_{f}, B 2 \lambda^{2}\left(B 1, A_{2}\right)=\left[(B 1 \cap B 2) \bar{\lambda}_{A 2}\right] \tau_{0}$.
Since ($\pi_{1}, \pi_{s}, \pi_{0}$) and ($\tau_{1}, \tau_{s}, \tau_{0}$) are semitrinities and $\pi_{s} \cdot \tau_{s}=$ $\pi_{s}(0)(1),(B 1 \cap B 2) \bar{\delta}_{A_{1}}$ is placed in just one block of $\pi_{s},(B 1 \cap B 2)$ is placed in just one block of π_{0}, ($\left.\mathrm{BlOB}_{\mathrm{B}}\right)_{\bar{\delta}_{A_{2}}}$ is placed in only one block of τ_{s} and (B1nB2) $\bar{\lambda}_{A_{2}}$ is placed in only one block of τ_{0}. This means, that $B 1 \delta^{1}\left(B 2, A_{1}\right), B 1 \lambda^{1}\left(B 2, A_{1}\right), B 2 \delta^{2}(B 1, A 2)$ and $B 2 \lambda^{2}\left(B_{1, ~} A_{2}\right)$ are defined unambiguously.

Let $\psi: I \longrightarrow \pi_{I} \times \tau_{I}$ be an injective function,
$\phi: \pi_{s} \times \tau_{s} \longrightarrow S$ be a surjective partial function,
$\theta: \pi_{0} \times \tau_{0} \rightarrow 0$ be a surjective partial function
and

$$
\begin{array}{ll}
\text { (4) } & \phi(x)=\left([x] \pi_{1},[x] \tau_{1}\right), \tag{4}\\
\text { (5) } & \phi(B 1, B 2)=B \operatorname{n} B 2 \text { if } B 1 \cap B 2 \neq 0, \\
(6) & \theta(C 1, C 2)=C \operatorname{lnC2} \text { if } C 1 \cap C 2 \neq 0 .
\end{array}
$$

Because $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)(1), \phi$ and θ are one-toone functions and

$$
\begin{equation*}
\phi(\mathrm{B} 1, \mathrm{~B} 2) \in \mathrm{S}, \quad \theta(\mathrm{C} 1, \mathrm{C} 2) \in \mathrm{O} . \tag{7}
\end{equation*}
$$

Therefore $\forall B 1 \epsilon \pi_{s} \forall B 2 \epsilon \tau_{s} \forall X \in I$ and B1nB2 $\neq 0$:

$$
\begin{align*}
& \phi\left((\mathrm{B} 1, \mathrm{~B} 2) \delta^{*} \psi(x)\right)= \\
& =\phi\left((B 1, B 2) \delta^{*}\left([x] \pi_{I},\{x] \tau_{I}\right)\right) \\
& =\phi\left(B 1 \delta^{1}\left(B 2, t \times 1 \pi_{I}\right), B 2 \delta^{2}\left(B 1, t \times 1 \tau_{I}\right)\right) \\
& =B 1 \delta^{1}\left(B 2,[x] \pi_{I}\right) \cap B 2 \delta^{2}\left(B 1,[x) \tau_{I}\right) \\
& =\left[(B 1 \cap B 2) \bar{\delta}_{\{x] \pi_{I}}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \bar{\delta}_{\{x] \tau_{I}}\right] \tau_{s} \\
& \text { ((2), (3)) } \\
& =\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \bar{\delta}_{x}\right] \tau_{s} \\
& \left(B \bar{\delta}_{x} \in \bar{B}_{[x] \pi}\right) \\
& =\left[(B 1 \cap B 2) \delta_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \delta_{x}\right] \tau_{s} \tag{7}\\
& =(B 1 \cap B 2) \delta_{x} \\
& \text { (} \left.\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\right) \\
& =\phi(B 1, B 2) \delta_{x} \tag{5}
\end{align*}
$$

and similary:

$$
\begin{align*}
& \theta\left((B 1, B 2) \lambda^{*} \psi(x)\right)= \\
& =\theta\left((B 1, B 2) \lambda^{*}\left(t \times 1 \pi_{I},[x] \tau_{I}\right)\right) \\
& =\theta\left(B 1 \lambda^{1}\left(B 2,[x] \pi_{I}\right), B 2 \lambda^{2}\left(B 1, f x 1 \tau_{I}\right)\right) \\
& \text { (definition 3.11) } \\
& \left.=B 1 \lambda^{1}\left(B 2,[x] \pi_{I}\right) \cap B 2 \lambda^{2}(B 1, f x) \tau_{I}\right) \\
& =\left[(B 1 \cap B 2) \bar{\lambda}_{[x] \pi_{I}}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{[x] \tau_{I}}\right] \tau_{0} \\
& \text { ((2), (3)) } \\
& =\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \bar{\lambda}_{x}\right] \tau_{0} \\
& \left(B \bar{\lambda}_{x} \leq B \bar{\lambda}_{[x] \pi}\right) \\
& =\left[(B 1 \cap B 2) \lambda_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \lambda_{x}\right] \tau_{0} \tag{7}\\
& =(B 1 \cap B 2) \lambda_{x} \\
& \left(\pi_{0} \cdot \tau_{0}=\pi_{0}(0)\right) \\
& =\phi(B 1, B 2) \lambda_{x} \tag{5}
\end{align*}
$$

From the above calculations and definitions 2.3, 3.11 and 3.12 , it follows immediately that the general connection of type PS of machines M_{1} and M_{2} realizes M, i.e. M has a general fulldecomposition of type PS. If condition (ii) of theorem 10.1 is satisfied, the decomposition is nontrivial. \square

The interpretation of theorem 10.1 is similar to the interpretation of theorem 6.1.

11. General full-decomposition of type FO

THEOREM 11.1 A machine M has a nontrivial general fulldecomposition of type PO with the realization of the state and output behaviour if two partition semitrinities ($\pi_{I}, \pi_{s}, \pi_{0}$) induced by $\xi_{02}=\tau_{0}$ and $\left(\tau_{1}, \tau_{\varepsilon}, \tau_{0}\right)$ induced by $\xi_{01}=\pi_{0}$ exist and they satisfy the following conditions:
(i) $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)$,
(ii) $\left|\tau_{0}\right| \cdot\left|\pi_{I}\right|<|I| \wedge\left|\pi_{0}\right| \cdot\left|\tau_{I}\right|<|I| V\left|\pi_{s}\right|<|s| \wedge\left|\tau_{s}\right|<|s| \vee\left|\pi_{0}\right|<|0| \wedge$ $\wedge\left|\tau_{0}\right|<\mid$ ㅇ .

Proof (for the case of a Mealy machine)

Let $M_{1}=\left(\tau_{0} \times \pi_{I}, \pi_{s}, \pi_{0}, \delta^{1}, \lambda^{2}\right)$ and $M_{2}=\left(\pi_{0} \times \tau_{I}, \tau_{s}, \tau_{0}, \delta^{2}, \lambda^{2}\right)$ be the two machines for which the following conditions are satisfied:
(1) $\left(\pi_{1}, \pi_{s}, \pi_{0}\right)$ and $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ satisfy the conditions of theorem 11.1.
(2) $\forall C 2 \in \tau_{0} \quad \forall B 1 \in \pi_{s} \forall A_{1} \in \pi_{1}$:

$$
\begin{aligned}
& B 1 \delta^{1}(C 2, A 1)=\left[\left(S \delta_{x} \mid s \in B 1 \wedge s \in \operatorname{ind}(C 2) \wedge x \in A 1\right] \pi_{s},\right. \\
& B 1 \lambda^{2}(C 2, A 1)=\left[\left\{s \lambda_{x} \mid s \in B 1 \wedge s \in \operatorname{ind}(C 2) \wedge x \in A 1\right] \pi_{0},\right.
\end{aligned}
$$

(3) $\forall C 1 \in \pi_{0} \forall B 2 \in \tau_{\mathrm{s}} \forall \mathrm{A} 2 \in \tau_{\mathrm{I}}$:

$$
\begin{aligned}
& B 2 \delta^{2}(C 1, A 2)=\left[\left\{s \delta_{x} \mid s \in B 2 \wedge s \in \operatorname{ind}(C 1) \wedge x \in A 2\right\}\right] \tau_{s}, \\
& B 2 \lambda^{2}(C 1, A 2)=\left[\left\{s \lambda_{x} \mid s \in B 2 \wedge s \in \operatorname{ind}(C 1) \wedge x \in A 2\right\}\right] \tau_{0} .
\end{aligned}
$$

Since $\left(\pi_{I}, \pi_{s}, \pi_{0}\right)$ is a semitrinity induced by $\xi_{02}=\tau_{0}$ and $\left(\tau_{1}, \tau_{s}, \tau_{0}\right)$ is a semitrinity induced by $\xi_{01}=\pi_{0}(1)$, the following conditions are satisfied:
(4) $\left(\pi_{s} \cdot \cdot \tau_{s}, \tau_{s}\right)$ is a s-S pair,
(5) $\left(\pi_{s} \cdot \tau_{s}{ }^{\prime}, \pi_{s}\right)$ is a $s-s$ pair,
(6) $\left(\pi_{s} \cdot \cdot \tau_{s}, \tau_{0}\right)$ is a S-O pair,
(7) $\left(\pi_{s} \cdot \tau_{s}{ }^{\prime}, \pi_{0}\right)$ is a $s-0$ pair,
(8) $\left(\pi_{1}, \pi_{s}\right)$ is an I-S pair,
(9) $\left(\pi_{I}, \pi_{0}\right)$ is an I-O pair,
(10) $\left(\tau_{I}, \tau_{s}\right)$ is an I-S pair,
(11) $\left(\tau_{I}, \tau_{0}\right)$ is an I-O pair.

From (5) and (8), it follows that $\left\{s_{\delta_{x}} \mid \mathbf{s} \in \mathrm{Bl} \mathrm{\wedge s} \epsilon\right.$ ind (C2) $\left.\wedge x \in A 1\right\}$ is located in just one block of π_{s}. From (7) and (9), it follows that $\left\{s \lambda_{x} \mid s \in B 1 \wedge s \epsilon\right.$ ind $\left.(C 2) \wedge x \in A 1\right\}$ is located in only one block of π_{0}. This means, that $B 1 \delta^{1}\left(C 2, A_{1}\right)$ and $B 1 \lambda^{1}(C 2, A 1)$ are unambiguously defined.
similarly, from (4) and (10), it follows that $\left\{s \delta_{x}\right\}$ $s \in B 2 \wedge s \in$ ind (C 1) $\wedge \mathrm{X} \in \mathrm{A} 2\}$ is located in just one block of τ_{s} and, from (6) and (11), it follows that
$\left\{s \lambda_{x} \mid s \in \operatorname{B} 2 \wedge s \in\right.$ ind (C1) $\left.\wedge x \in A 2\right\}$ is located in just one block of τ_{0}. So, $\mathrm{B} 2 \delta^{2}\left(C_{1, A_{2}}\right)$ and $B 2 \lambda^{2}\left(C_{1, A_{2}}\right)$ are unambigously defined.

Let $\psi: I \longrightarrow \pi_{I} \times \tau_{I}$ be an injective function,
$\phi: \pi_{s} \times \tau_{s} \longrightarrow S$ be a surjective partial function,
$\theta: \pi_{0} \times \tau_{0} \longrightarrow 0$ be a surjective partial function
and

$$
\begin{equation*}
\psi(x)=\left([x] \pi_{1},[x] \tau_{I}\right), \tag{12}
\end{equation*}
$$

(13) $\phi(B 1, B 2)=B 1 \cap B 2$ if $B 1 \cap B 2 \neq 0$,
(14) $\quad \theta(C 1, C 2)=C 1 n C 2$ if C1nC2 $\neq 0$.

Since $\pi_{s} \cdot \tau_{s}=\pi_{s}(0)$ and $\pi_{0} \cdot \tau_{0}=\pi_{0}(0)(1), \phi$ and θ are one-toone functions and
(15) $\phi(B 1, B 2) \in S, \theta(C 1, C 2) \in O$.

Therefore, $\forall C 1 \in \pi_{0} \forall C 2 \in \tau_{0} \forall B 1 \in \pi_{s} \forall B 2 \in \tau ; \forall x \in I$ and $B 1 \cap B 2 \neq 0$: $\phi\left((\mathrm{B} 1, \mathrm{~B} 2) \delta^{*}{ }_{\psi(x)}\right)=$
$=\phi\left((B 1, B 2) \delta^{*}\left(\{x] \pi_{I},(x) \tau_{I}\right)\right)$
$=\phi\left(B 1 \delta^{1}\left(C_{2},(x] \pi_{I}\right), B 2 \delta^{2}\left(C_{1},\left[x \tau_{I}\right)\right) \quad\right.$ (definition 3.13)
$=B 1 \delta^{1}\left(C 2, f \times 1 \pi_{I}\right) \cap B 2 \delta^{2}\left(C 1,[x] \tau_{I}\right)$

$=\left[(\right.$ ind $\left.(C 2) \cap B 1) \vec{\delta}_{x}\right] \pi_{s} \cap\left[(\operatorname{ind}(C 1) \cap B 2) \bar{\delta}_{x}\right] \tau_{s}$
($\mathrm{B}_{\mathrm{\delta}}^{\mathrm{x}}: \mathrm{E}_{\mathrm{B}}^{\mathrm{\delta}}(\mathrm{x} 1 \pi)$

$=\left[(B 1 \cap B 2) \delta_{x}\right] \pi_{s} \cap\left[(B 1 \cap B 2) \delta_{x}\right] \tau_{s}$
(4), (5), (15))

```
\(=(\mathrm{B} 1 \mathrm{n} \mathrm{B} 2) \delta_{\mathrm{x}}\)
    ( \(\left.\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\right)\)
    \(=\phi(B 1, B 2) \delta_{x}\)
and similary:
        \(\theta\left((B 1, B 2) \lambda^{*} \psi(x)\right)=\)
    \(=\theta\left((B 1, B 2) \lambda^{*}\left([x] \pi_{I},[x] \tau_{I}\right)\right)\)
    \(=\theta\left(B 1 \lambda^{1}\left(C_{1},(x] \pi_{I}\right), B 2 \lambda^{2}\left(C_{1},(x) \tau_{I}\right)\right)\)
\(=B 1 \lambda^{1}\left(C 1,(x) \pi_{1}\right) \cap B 2 \lambda^{2}\left(C 1,(x) \tau_{I}\right)\)
    \(=\left[(\right.\) ind \(\left.(C 2) \cap B 1) \bar{\delta}_{[x] \pi_{I}}\right] \pi_{0} \cap\left[(\right.\) ind \(\left.(C 1) \cap B 2) \bar{\lambda}_{\left[x I \tau_{I}\right.}\right] \tau_{0}\)
    \(=\left[(\right.\) ind \(\left.(C 2) \cap B 1) \bar{\lambda}_{x}\right] \pi_{0} \cap\left[(\right.\) ind \(\left.(C 1) \cap B 2) \bar{\lambda}_{x}\right] \tau_{0}\)
```



```
                                    ( \((6),(7),((15))\)
                                    ((6), (7), ((15))
\(=\left[(B 1 \cap B 2) \lambda_{x}\right] \pi_{0} \cap\left[(B 1 \cap B 2) \lambda_{x}\right] \tau_{0}\)
                            (definition 3.13)
\(=\left[(\right.\) ind \(\left.(C 2) \cap B 1) \bar{\delta}_{[x] \pi_{I}}\right] \pi_{0} \cap\left[(\right.\) ind \(\left.(C 1) \cap B 2) \bar{\lambda}_{\left(x I \tau_{I}\right.}\right] \tau_{0}\)
                                    ( \(B \bar{\lambda}_{x} \in \bar{B}_{[\times 1 \pi}\) )
\(=(B 1 \cap B 2) \lambda_{x}\)
    \(\left(\pi_{0} \cdot \tau_{0}=\pi_{0}(0)\right)\)
\(=\phi(B 1, B 2) \lambda_{x}\)

From the above calculations and definitions 2.3, 3.13 and 3.14, it follows immediately that the serial connection of type po of machines \(M_{1}\) and \(M_{2}\) realizes \(M\), i.e. \(M\) has a serial fulldecomposition of type po. If condition (ii) of theorem 11.1 is satisfied, the decomposition is nontrivial. \(\square\)

The interpretation of theorem 11.1 is similar to the interpretation of theorem 8.1.
12. Full-decompositions of state machines.

After modifying theorems 5.1, 6.1, 7.1 and 10.1 , they can be applied to state machines.

A state machine is a special case of the sequential machine for which the output set \(O\) and the output function \(\lambda\) are not defined. If we take this into account and we define the full-decompositions of state machines in a manner analogous to the definitions for the general sequential machines and then, we remove from the listed
theorems all the conditions concerning the output set 0 and the output function 1 , we obtain the following theorems:

THEOREM 12.1 The state machine \(M=(I, S, \delta)\) has a nontrivial parallel full-decomposition if such two partitions \(\pi_{I}\) and \(\tau_{I}\) on \(I\) and such two partitions \(\pi_{s}\) and \(\tau_{s}\) on \(s\) exist that the following conditions are satisfied:
(i) \(\left(\pi_{s}, \pi_{s}\right)\) is a s-S partition pair,
(ii) \(\left(\pi_{I}, \pi_{s}\right)\) is an I-S partition pair,
(iii) ( \(\tau_{s}, \tau_{s}\) ) is a \(s-s\) partition pair,
(iv) \(\left(\tau_{I}, \tau_{s}\right)\) is an I-S partition pair,
(v) \(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\),
(vi) \(\quad\left|\pi_{I}\right|<|I| \wedge\left|\tau_{I}\right|<|I| \vee\left|\pi_{s}\right|<|s| \wedge\left|\tau_{s}\right|<|s|\).

THEOREM 12.2 The state machine \(M=(I, S, \delta)\) has a nontrivial serial full decomposition of type PS if such two partitions \(\pi_{1}\) and \(\tau_{I}\) on \(I\) and such two partitions \(\pi_{s}\) and \(\tau_{s}\) on \(S\) exist that the following conditions are satisfied:
(i) \(\left(\pi_{s}, \pi_{s}\right)\) is a \(S-S\) partition pair,
(ii) \(\left(\pi_{I}, \pi_{s}\right)\) is an I-S partition pair,
(iii) ( \(\tau_{1}, \tau_{s}\) ) is an I-S partition pair,
(iv) \(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\),
(v) \(\quad\left|\pi_{I}\right|<|I| \wedge\left|\pi_{s}\right| \cdot\left|\tau_{I}\right|<|I| \vee\left|\pi_{s}\right|<|s| \wedge\left|\tau_{s}\right|<|s|\).

THEOREM 12.3 The state machine \(M=(I, S, \delta)\) has a nontrivial serial full-decomposition of type NS if such two partitions \(\pi_{s}\) and \(\tau_{s}\) on \(S\) and such two partitions \(\pi_{I}\) and \(\tau_{I}\) on \(I\) exist that the following conditions are satisfied:
(i) \(\left(\pi_{s}, \pi_{s}\right)\) is a \(s-s\) partition pair,
(ii) \(\left(\pi_{I}, \pi_{s}\right)\) is an I-S partition pair,
(iii) \(\forall s, t \in S \forall x_{1}, x_{2} \in I:\)
if \([s] \tau_{s}=[t] \tau_{s} \wedge\left[x_{1}\right] \tau_{I}=\left[x_{2}\right] \tau_{1} \wedge\left[s \delta_{x_{1}}\right] \pi_{s}=\left[t \delta_{x_{2}}\right] \pi_{s}\)
then \(\left[s \delta_{x_{1}}\right] \tau_{s}=\left[t \delta_{x_{2}}\right] \tau_{s}\),
(iv) \(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\),
(v) \(\quad\left|\pi_{I}\right|<|I| \wedge\left|\pi_{s}\right| \cdot\left|\tau_{s}\right|<|I| \vee\left|\pi_{s}\right|<|s| \wedge\left|\tau_{s}\right|<|s|\).

THEOREM 12.4 The state machine \(M=(I, S, \delta)\) has a nontrivial general full decomposition of type PS if and only if such two partitions \(\pi_{I}\) and \(\tau_{I}\) on \(I\) and such two partitions \(\pi_{s}\) and \(\tau_{s}\) on \(S\) exist that the following conditions are satisfied:
(i) \(\left(\pi_{I}, \pi_{s}\right)\) is an I-S partition pair,
(ii) \(\left(\tau_{I}, \tau_{S}\right)\) is an \(I-S\) partition pair,
(iii) \(\pi_{s} \cdot \tau_{s}=\pi_{s}(0)\),
(iv) \(\quad\left|\tau_{\delta}\right| \cdot\left|\pi_{I}\right|<|I| \wedge\left|\pi_{s}\right| \cdot\left|\tau_{I}\right|<|I| \vee\left|\pi_{\delta}\right|<|S| \wedge\left|\tau_{\delta}\right|<|S|\).

Proof and interpretation of the theorems given above are analogous to those for theorems 5.1, 6.1, 7.1 and 10.1.
13. Conclusion.

The notions and theorems presented in the previous sections have straightforward practical interpretations. Based on them, a set of algorithms has been developed and a system of programs has been made for computing the different sorts of decompositions. We are going to present this algorithms and some practical conclusions in a separate report.

Here, we want only to stress three important facts:
Full-decompositions of type \(N\) are not so attractive from the practical point of view as decompositions of type \(P\), because decompositions of type \(N\) introduce some timing problems. In decompositions of type \(N\), one of the component machines has to compute its next state or output, before the second component machine, using the information about the computed next state or output, can compute its own next state or output. If we assume that computation of the next state and output for: one component machine takes one time interval, a valid next state and output for the whole machine appears after two such time intervals. In this situation we have to limit the frequency of input signals and to use the two-phase clock.

Solving the practical tasks, we should first try to find a
parallel full-decomposition which satisfies given requirements and only in the case of failure, we should look for a serial decomposition or, in the case of failure, for a general decomposition.This is so, because in the case of the serial and general decompositions, the connections between the partial machines have to be implemented and because the reduction of the functional dependences between input, state and output variables of the machine is decrising from the parallel through the serial to the general decomposition, i.e. the complexity of the combinational logic of each of the component machines is lowest for the parallel decomposition and highest for the general decomposition.

In some practical tasks, it is more economical to consider separately the realization of the next-state function \(\delta\) and separately the realization of the output function \(\lambda\) than to consider them simultaneously. It is possible to abstract from the output function \(\lambda\) and to decompose first the state machine defined by the next-state function \(\delta\). It is passible to realize then the output function \(\lambda\), where \(\lambda\) is treated as a function of inputs (in the Mealy case) and states of the partial state machines in a fulldecomposition of the state machine defined by \(\delta\).

The results presented in this report are easy to extend in order to cover the case of incompletely specified sequential machines. It can be done by using the concepts of weak partition pairs or extended partition pairs introduced by Hartmanis [12].

\section*{REFERENCES}
[1] M.A. Arbib : Theories of abstract automata, Englewood Cliffs,N.J.: Prentice - Hall, 1969.
[2] G. Cioffi, E. Constantini, S. de Julio : A new approach to the decomposition of sequential systems, Digital Processes, vol.3, p. 35-48, 1977.
[3] G. Cioffi, S. de Julio, M. Lucertini : Optimal decomposition of sequential machines via integer nonlinear programming: A computational algorithm, Digital Processes, vol.5, p. 27-41, 1979.
[4] A.D. Friedman, P.R. Menon : Theory and design of switching circuits, Woodland Hills, Cal.: Computer Science Press, 1975. [5] A. Ginzburg : Algebraic theory of automata, N.Y.: Academic Press, 1968.
[6] J. Hartmanis : On the state assignment problem for sequential machines I, IRE Trans. Electron. Comput. " vol.EC-10, p.157-165, 1961.
[7] J. Hartmanis, R.E. Stearns : On the state assignment problem for sequential machines II, IRE Trans. Electron. Comput., vol.EC10, p.593-603, 1961.
[8] J. Hartmanis : Loop-free structure of sequential machines, Inf. \& Control, vol.5, p.25-43, 1962.
[9] J. Hartmanis : Further results on the structure of sequential machines, J. Assoc. Comput. Mach., vol.10,p.78-88, 1963. [10] J. Hartmanis, R.E. Stearns : Some danger in state reduction of sequential machines, Inf. \& Control, vol.5, p.252-260, 1962. [11] J. Hartmanis, R.E. Stearns : Pair algebra and its application to automata theory, Inf. \& Control, vol.7, p.485-507, 1964. [12] J. Hartmanis, R.E. Stearns : Algebraic structure theory of sequential machines, Englewood Cliffs, N.J.: Prentice-Hall, 1966.
[13] W.M.L. Holcombe : Algebraic Automata Theory, Cambridge University Press, 1982. (Cambridge studies in advanced mathematics, vol.1).
[14] Y. Hou : Trinity algebra and full-decompositions of sequential machines, Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 1986.
[15] Y. Hou : Trinity algebra and its application to machine decompositions, Information Processing Letters, vol.26, p.127134, 1987.
[16] Yu.V. Pottosin, E.A. Shestakov : Approximate algorithms for parallel decomposition of automata, Autom. Contr. \& Comput. Sci., vol.15, No 2, p.24-31, 1981. (Translation of: Avtom. \& Vytchisl. Techn.).
[17] Yu.V. Pottosin, E.A. Shestakov E.A. : Decomposition of an automaton into a two-component network with constraints on internal connections, Autom. Contr. \& Comput. Sci., vol.16, No 6, p.24-31, 1982 .
[18] Yu.V. Pottosin : Decompositional method for coding the states of a parallel automaton, Autom. Contr. \& Comput. Sci., vol.21, No 1, p.78-84, 1987.
[19] M. Yoeli : The cascade decomposition of sequential machines, IRE Trans. Electron. Comput., vol.EC-10, p.587-592, 1961. [20] M. Yoeli : Cascade-parallel decompositions of sequential machines, IEEE Trans. Electron. Comput., vol.EC-12, p.322-324, 1963.




IMPLEMENTATICN AND EVALUATION OF A OUMBINED TEST-ERRUR CUKRECTLON PROCEDURE FOR MEMORIES WITH DEFECTS.

(170) Hou Yibin

DASM: A tool :or deccomosition and nalaly:as ol stoquential machites.
EUT Kequrt \&7-E-176, 1987. ISBN 91)-い144-170-t
(1.1) Monnee, P. and M.H.A.J. Herben

MULTIPLE-BEAN GROUNDSTATION REFLECTUR ANTENNA SYSTEM: A previminary study.
EUT Report 37-E-171. 1987. ISBN 90-6144-171-4
(172) Bastiaans, M.J. and A.H.M. Akkermans

ERROR REDUCTIUN IN TWO-DIMENSIONAL PULSE-AREA MODULATION, WITH APPLICATION TO COMPUTER-GENERATED TRANSPARENCIES.
EUT Report 87-E-172. 1987. ISBN 90-6144-172-2
(173) Zhu Yu-Caı

ON A BOUND OF THE MODELLING ERRORS OF BLACK-BOX TRANSFER FUNCTION ESTIMATES.
EUT Report 8:-E-173. 1987. ISEN 90-6144-173-0
(174) Serkelaar, M.R.C.M. and J.F.M. Theeuwen

TECHNOLOGY MAPPING FROM BOOLEAN EXPRESSIONS TO STANDARU CELLS.
EUT Report 87-E-174. I 987 . ISBN 90-6144-174-9
(175) Janssen, P.H.M.

FURTGER RESUITS ON THE MGMILIAN JEGREE AND THE KRUNECYEK JNDICES OF ARMA MODELS.

(176) Janssen, P.if.M. and P. Stoica, T. Söderstrōm, P. Eykhoff

MODEL STRUCTURE SELECTION FOR MULTIVARIABLE SYSTEMS BY CROSS-VALIDATION METHODS.
EUT Report 87-E-176. 1987. ISBN \(90-6144-176-5\)
(177) Stefanov, B. dnd A. Veefkand, L. Zarkova

ARCS IN CESIUM SEEDED NOBLE GASES RESULTING FROM A MAGNETICALLY INDUCED ELECTRIC FIELD. EUT Report 87-E-177. 1987. ISBN 90-6144-177-3
(17g) Janssen, P.H.M. and P. Storca
ON THE EXPECTATION OF THE PRODUCT OF FOUR MATRIX-VALUED GAUSSIAN RANDOM VARIABLES.
EUT Report 87-E-178. 1987. ISBN 90-6144-178-1
(179) Lieshout, G.J.P. van and L.P.P.P. van Ginnekett

GM: A gate matrix layout qenerator.
EUT Report 87-E-179. 1987. JSBN 90-6144-179-X
(180) Ginneken, L.P.P.P. van

GRIDLESS ROUTING FOR GENFRALIZED CELL ASSEMBLIES: Rtport and user manual.
EUT Report 87-E-180. 1987. ISBN 90-6144-180-3
(281) Bollen, M.H.J. and P.T.M. Vaessen

FREOUENCY SPECTRA FOR ADMITTANCE ANL, VOLTAGE TRANSFERS MEASURED ON A THREE-PHASE POWER TRANSFORMER. EUT Report 87-E-181. 1987. ISEN ソ@-6144-181-1
(182) Zhu Yu-Cai

ELACK-BOX IDENTIFICATION OF MIMO TRANSFER FUNCTIONS: Asymptotic propterties of prediction error models. EUT Report 87-E-182. 1987. ISBN 90-6144-182-X
(183) Zhu Yu-Cai

ON THE BOUNDS OF THE MODELLING ERRORS OF BLACK-BOX MIMO TRANSFER FUNCTION ESTIMATES.
EUT Report 87-E-183. 1987. ISBN 90-6144-183-8
(184) Kadete, H .

ENHANCEMENT OF HEAT TRANSFER BY CORONA WIND.
EUT Report 87-E-184. 1987. ISBN 90-́ 144-184-6
(I85) Hermans, P.A.M. and A.M.J. Kwaks, I.V. Bruza, J. Dijk
THE IMPACT OF TELECOMMUNICATION ON FURAL AREAS IN DEVELOPING CCUNTRIES. EUT Report 87-E-145. 1987. [SBN 90-6144-185-4
(185) Fu Yanhong

THE INFLUENCE OF CONTACT SURFACE MICROSTRUCTURE ON VACUUM ARC STABILITY AND ARC VOLTAGE. EUT Report \(87-E-186\). 1987. ISEN 90-6144-185-2
(187) Kajser, F. and L. Stok, R. van den Born

DESIGN AND IMPLEMENTATION OF A MOUULE LIERARY TO SUPPORT TIE STRUCTURAL SYNTHESIS.
EUT Report 87-E-187. 1987. ISBN 90-6144-187-U
(188) Jơzaiwiak, L.

THE FULL DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE STATE AND OUTPUT BEHAVIOUR REALIZATION. EUT Report 88-E-188. I988. ISBN 90-6144-198-9```

