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Creep of Chiral Domain Walls
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Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials
with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as
a function of an external in plane magnetic field. This is understood as a consequence of the inversion
asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous
attempts have been made to explain these observations using creep theory, but, in doing so, these
have not included all contributions to the domain wall energy or have introduced additional free
parameters. In this article we present a theory for creep motion of chiral domain walls in the creep
regime that includes the most important contributions to the domain-wall energy and does not
introduce new free parameters beyond the usual parameters that are included in the micromagnetic
energy. Furthermore, we present experimental measurements of domain wall velocities as a function
of in-plane field that are well decribed by our model, and from which material properties such as
the strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.

PACS numbers: 75.60.Ch,75.70.Ak,75.70.Kw,75.78.Fg

Introduction. — The interest in nanomagnetic mate-
rials has grown steadily since magnetic storage devices,
such as the racetrack memory, were proposed as a new
tool to meet the ever increasing demand for computer
storage capacity [1–4]. For such applications the domain
wall (DW) chirality is an important parameter as it af-
fects the speed and direction of DW motion. The interfa-
cial Dzyaloshinskii-Moriya-interaction (DMI) [5, 6] arises
from perpendicular inversion asymmetry in the system
and affects the DW chirality. Hence it is of paramount
importance to be able to measure the magnitude of the
DMI using a simple experimental method. The inter-
facial DMI is modeled as an effective field that lies in-
plane (IP) and is always perpendicular to the domain
wall (DW) normal, hence preferring a Néel wall [7]. Su-
perpositioning the DMI field with an externally applied
IP magnetic field could provide means of measuring it.
This has lead to a boom of experimental studies on DW
dynamics under the influence of an IP magnetic field [8–
17].

There are several regimes of DW dynamics, determined
by the strength of the DW driving force compared to
the pinning force. In the flow regime the driving force
is significantly higher than the pinning force and in this
regime IP magnetic fields and DMI is succesfully modeled
by means of the Landau-Lifschitz-Gilbert equation [18–
20]. In the creep-regime however, the DW is considered
to be mostly pinned and in local equilibrium and has a
net displacement because the bias is assisted by thermal
fluctuations.

The creep model was successfully implemented to in-
terpret magnetic domain growth driven by an external
magnetic field Hz in the direction of the magnetization
of one of the domains, resulting in the famous universal

creep law for the DW velocity v: ln(v) ∝ H
−1/4
z [21].

When introducing a magnetic field perpendicular to the
magnetization direction of the domains, a modification to
this creep law was proposed: ln(v) ∝ (Eel/Hz)

1/4, where
Eel is the elasticity of the DW [8]. This modification
turned out to described the experimental finding well for
small IP magnetic fields, but is not able to describe the
high-field region [10]. Recent attempts to improve the
theoretical model exposed the dispersive nature of the
elasticity but compromised on universality as extra free
parameters were introduced that do not occur in the mi-
cromagnetic energy functional. One example of such a
parameter is the length scale L of the DW segments over
which the creep motion occurs. In previous theories for
DW motion in the creep regime this length scale does
not enter the prediction for the velocity. It is, however,
treated as a free fit parameter in Ref. [14], which makes
a direct comparison with experiment hard. Furthermore,
chiral damping was proposed to explain the asymmet-
ric component of the velocity profiles [11, 15, 16, 22]. We
contend however that in the quasi-static creep regime dy-
namic effects such as chiral damping should not play a
significant role.

In this paper we construct a theory for motion of chi-
ral domain walls in the creep regime which does not in-
volve the free parameters introduced in Ref. [14]. We
use it to interpret our experimental data on the DW ve-
locity as a function of the IP magnetic field. We show
that our model allows for quantitative determination of
the strength of the interfacial DMI from field-driven DW
creep measurements.

Model. — In the regime where some elastic manifold is
pinned stronger than the applied driving force, one can
still obtain a net motion from the combined effects of
driving forces, thermal fluctuations and elasticity. Such
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FIG. 1: (a): Top view of a DW (blue lines) that gets de-
formed over a length L and displaced over a distance u due
to a thermal fluctuation. The DW can be tilted over an an-
gle α. The magnetization is indicated by the red vectors,
which at the DW are characterized by the IP angle ϕ. Note
that the IP magnetization changes due to the displacement,
affecting the elasticity. The IP magnetic field Hx (green)
as well as the effective DMI field HD (yellow) and effective
Bloch field HB (purple) are indicated locally. (b): Model to
describe the deformation. (c): When an IP magnetic field
is applied to a sample with PMA, the magnetization inside
a domain tilts towards the IP magnetic field by an angle θt
determined by the balance of PMA and IP magnetic field
β = MSHx cos(ϕ)/KP = sin(θt) (orange) compared to the
β = 0 case (red).

motion is called creep. The creep model has been used to
successfully describe vortex dynamics in superconductors
(for a review see Ref. [23]). Based on this work Lemerle
et al. have shown that a DW in a thin magnetic film
with PMA can be modelled successfully within this creep
framework [21].

In Fig. 1 (a) the deformation of a DW due to a thermal
fluctuation in the presence of an easy axis driving field
Hz is illustrated. If the size of the deformation L is rela-
tively small, the gained Zeeman energy from the driving
field will be small relative to the elastic energy cost and
the deformation cannot grow. But for increasing L the
Zeeman energy starts to dominate and deformations can
grow. The deformations can be seen as nucleations whose
chance of survival is determined by their size. For such a
nucleation process, Arrhenius’ law tells us that the rate
at which these surviving deformations will occur is de-
termined by the height of the energy barrier Fb (i.e. the
free energy at the tipping point): ln(v) ∝ −Fb/(kBT )
[24, 25].

Thus, to model the DW dynamics we need to de-

termine the free energy F (L) of the DW segment as a
function of L and optimize it to find Fb = maxL F (L).
The free energy is composed of the elastic energy cost
and the Zeeman energy gain, which depend not only
on L, but also on the DW displacement u: F (u, L) =
Eel(u, L) + EZeeman(u, L). To express u in terms of L
we use u(L) = uc(L/Lc)

2/3 [21, 26, 27], where Lc is the
Larkin length scale determined by minimizing the sum
of the elastic and pinning energy density for u = ξ, and
uc is a proportionality constant. Hence, the next step is
to determine the elastic energy to be able to compute Lc
and express u, and thereby F , in terms of L.

The elastic energy is defined as the difference in in-
ternal, i.e. excluding pinning and driving, energy be-
tween the domain wall before and after the deformation.
Naively this would just be given by the DW energy den-
sity times the added length due to the deformation, but
due to the application of the external IP magnetic field
the DW energy density itself depends on the orientation
of the DW with respect to this applied field. Further-
more, the IP magnetization of the sample at the DW is
affected by the exchange interaction. This induces an
extra energy cost of bending the DW.

With these considerations in mind, only the elonga-
tion of the DW due to the deformation does not provide
enough information; we need to know the shape of the
deformation. Following Blatter et al. we model the de-
formation as an angular shape for simplicity, see Fig. 1
(b) [23]. Note that Pellegren et al. chose an arc shape
[14], but did not implement the exchange energy cost
due to the kink in the connection with the straight DW
segments, resulting in unphysical divergences (as demon-
strated in the Supplemental Material [28]) that do not
occur in our theory.

As a first approximation we have chosen the IP mag-
netization of each separate segment to be constant and
implement the bending energy cost as a nearest neighbor
exchange interaction at the bending points. The energy
of the system is then minimized (numerically) over the
IP magnetization angle of the two segments.

We compute the energy density of the domain wall by
inserting the domain-wall solution into the micromag-
netic energy functional. For more details see the Supple-
mental Material [28]. This yields for the energy per unit
length and layer thickness of a straight domain wall:

E(α,ϕ) =2
√
1− β2

J

λ
+MSπλ

(
g(β)HB cos2(ϕ− α)

−f(β) (Hx cos(ϕ) +HD cos(ϕ− α))) .
(1)

The first term is the exchange interaction J over λ, the
DW thickness. The second term is the demagnetization
energy, expressed in terms of the effective Bloch field HB
(this energy favors a Bloch DW, hence the nomencla-
ture), the angle α between the DW normal and the x-axis
and the angle ϕ the IP magnetization at the DW with
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the direction of the IP magnetic field, see Fig. 1 (a). The
third term is the Zeeman energy due to the applied IP
magnetic field Hx and the fourth is the DMI expressed in
terms of an effective field HD favoring a Néel type DW.
The prefactors involving β incorporate the tilting in the
x-direction of the magnetic domains due to the external
IP magnetic field (see Fig. 1 (c)). The functions f and g
are given in the Supplemental Material [28].

Similarly, we obtain the Zeeman energy from the driv-
ing field Hz

EZeeman(u, L) =MSHztuL
√
1− β2. (2)

Again, the factor
√
1− β comes from the tilted domains

as illustrated in Fig. 1 (c). By dividing out D in Eqs. (1)
and (2), the relevant dimensionless parameters become
J̃ ≡ Jλ−1D−1, H̃B ≡ 2HB/HD, H̃x ≡ Hx/HD and H̃z ≡
Hz/HD.

Using Eq. (1), we compute the optimal orientation
angle of the undeformed DW α0 and the correspond-
ing internal magnetization IP angle ϕ0 by minimizing
E(α,ϕ)/ cos(α). The factor 1/ cos(α) arises because we
allow the DW to orient itself with respect to the IP mag-
netic field at the cost of elongating. For example, a mixed
Bloch-Néel DW tilts its normal to better align with the
external IP magnetic field. This tilting however would
induce a stretching factor of 1/ cosα, increasing the en-
ergy cost. This effect is illustrated in Fig. 1 (a) and the
optimal angle α0 and corresponding minimized angle ϕ0

are shown as a function of Hx in Fig. 2. The energy of
the unperturbed DW is then given by LtE(α0, ϕ0).

The profile of ϕ0 shown in Fig. 2 (b) exhibits sharp
kinks for both α(Hx) = α0(Hx) and α(Hx) = 0. This
feature arises because in the energy density of Eq. (1) we
neglected higher order anisotropy terms proportional to
cosn(ϕ − α) for n > 2 which are allowed by symmetry.
As a consequence, this simplified energy density yields a
sharp transition in DW type from mixed Bloch-Néel to
pure Néel at f(β)(H̃x − 1) = g(β)H̃B as demonstrated
in Fig. 2 where ϕ0 saturates to 0 or π. To effectively
include for the higher order terms in the energy density,
we adjust the value of α to some fixed value, e.g. α = 8◦

as done by Pellegren et al.[14]. With this modification,
ϕ is smooth around ϕ = 0 or ϕ = π as demonstrated by
the green curve in Fig. 2 (b).

To compute the energy of the deformed DW we need to
account for a bending energy cost due to exchange inter-
action. A kink between two DW segments, as illustrated
in Fig. 1 (b), gives an energy cost

Eben(ϕ1, ϕ2) =
Jλ

a
(1− cos(ϕ1 − ϕ2)), (3)

with ϕ1 and ϕ2 the IP angles of the internal magneti-
zation of the segments. Here, a is the distance between
neighboring atoms in the magnetic layer. Due to vari-
ations in the lattice structure and to account for non-
nearest neighbor interactions, an effective value of a ∼ 1
nm is used. The effect of a on the DW dynamics is in-
vestigated in the Supplemental Material [28].

The elastic energy is computed by minimizing over ϕ1

and ϕ2:

Eel(u, L)

t
= min

ϕ1,ϕ2


L
2

√
1 +

(
2u

L

)2

(E(α0 + arctan(2u/L), ϕ1) + E(α0 − arctan(2u/L), ϕ2))

+
Jλ

a
(3− cos(ϕ0 − ϕ1)− cos(ϕ0 − ϕ2)− cos(ϕ1 − ϕ2))

]
− LE(α0, ϕ0).

(4)

The first term is the length of each of the two segments of
the deformed DW multiplied by their respective energy
densities. The second term is the bending energy for the
three corners, see Fig. 1 (b). The third term is the energy
of the unperturbed DW.

With this expression we compute Lc, express u in
terms of L and thereby obtain F (L) = F (u(L), L) from
which the DW velocity is found as ln(v) ∝ −Fb/(kBT ).
For more detail, see the Supplemental Material [28]. In
summary, the derivation of the DW velocity involves mul-
tiple optimization steps to determine α0, ϕ0, ϕ1, ϕ2, Lc
and finally Fb. Due to the complexity of the elastic en-
ergy, these cannot be made analytically. Approximating

the elasticity to be proportional to u2/L does allow for
analytic solutions, but these are not able to fully explain
recent experimental observations. For example, Je et al.
approximated Eq. (4) by setting α0 = 0, ϕ0 = ϕ1 = ϕ2

and neglecting the ± arctan(2u/L) in the first two terms
[8]. Because Pellegren et al. have chosen a different
DW profile, we cannot directly compare the expression
in Eq. (1) with their results [14]. They do, however, treat
L as a free parameter and do not find it by optimization.
Moreover, they do not account for the bending costs that
we model by the terms involving ϕ0 − ϕ1 and ϕ0 − ϕ1

in Eq. (1). The results discussed in the next section are
obtained numerically without making further approxima-
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FIG. 2: α0 as a function of the applied IP magnetic field
(a) and the corresponding minimized azimuthal angle of the
internal magnetization ϕ0 (b). The green curve shows the
solution for ϕ0 when α is fixed at 8◦, which switches sign at
Hx = 0. The corresponding energy density however, remains
continuous and smooth. Note that the green curve does not
saturate in but converges to the Néel wall.

tions.
Results. — In Fig. 3(a) the modeled DW velocity as a

function of the applied IP magnetic field Hx is shown for
different values of H̃B (a). Fig. 3(b) shows the asymmet-
ric component A = ln(v(↑↓)/v(↓↑)) for H̃B = 0.5. The
kinks in the solid lines at H̃x = 1 ± H̃B mark the sat-
uration of internal DW magnetization angle into a Néel
wall perpendicular to the IP magnetic field. These are
expected from the form of Eq. (1) where we neglected
terms O(cos4(ϕ)). The dashed curves are the result of
setting α = 8◦ fixed to compensate for the simplified
energy density.

In the high IP magnetic field regime, i.e. |H̃x| > H̃B,
the profile straightens out. In this regime the azimuthal
angle of the internal magnetization is saturated to align
with the IP magnetic field, yielding a Néel DW. Due to
this saturation, the orientation dependence of the elas-
ticity no longer varies with further increasing |Hx|. As a
result, the elasticity becomes isotropic and the logarith-
mic increase in velocity is linear with Hx solely due to
the gained Zeeman energy.

For |H̃x| ≤ H̃B the DW is mixed Bloch-Néel and the
DW velocity provides a distinguishing feature regarding
where the steepest slope of the velocity profile with re-
spect to H̃x = 0 and H̃x = 1 is found: When the steepest
slope is attained at |H̃x| > 1, then H̃B < 1 (that is, at
H̃x = 0 the DW is purely Néel). Otherwise, there is a
steep slope around Hx = 0 (where the DW now is mixed
Bloch-Néel). This distinction thus indicates the strength
of demagnetization relative to DMI.

2HB/HD=0.5

2HB/HD=1

2HB/HD=2

(a)

-0.2

-0.1

0.0

0.1

0.2

ln
(v
/v
0
)
(a
.u
.)

(b)

-0.05

0.00

0.05

A

-2 -1 0 1 2
Hx/HD

FIG. 3: Dependence of the IP magnetic field H̃x of the DW
velocity (a) and the assymetric component of the velocity A
for H̃B = 0.5 (b). The profiles in (a) are given a vertical
offset for clarity. The dashed lines represent the result for
fixing α = 8◦.

Note that the demonstrated asymmetry of the profile
compares well with experiments [10, 11, 14–17, 29]. Fur-
thermore, the minimal velocity is not attained at H̃x = 1
as in the model of Je et al. [8].

Note moreover that the asymmetric velocity compo-
nent switches sign as |H̃x| increases. This feature has
been observed experimentally and explained by chiral
damping [11, 13, 15]. In our model there are no chi-
ral damping effects, showing that this feature need not
be an indication for chiral damping.

Finally, we compared and fitted our model to exper-
imental data. The results are shown in Fig. 4 showing
good quantitative agreement in a broad variety of sam-
ples. We performed measurements on two different sam-
ples stacks, see Fig. 4 (b) and (c) (see the Supplemental
Material for details on these samples, the method of mea-
surement and more fit results [28]). Furthermore, we also
interpret data from previous research of Ref. [10] in Fig. 4
(a). In Fig. 4 (d) the obtained values for HD are plot-
ted as a function of the film thickness t and confirm our
expectation that HD should decrease as a function of t
[20, 28, 30].

Conclusion. — The DMI and IP magnetic field com-
plexify DW dynamics significantly due to the orientation
dependence of elasticity. To grasp and expose this com-
plexity, we defined a model following creep theory and
solving the dynamics semi-analytically. The model has a
profound sensitivity to DMI and demagnetization. As a
result, the model provides a quantitative interpretation
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HD(T) 0.17 0.22 0.12

H̃B 1.4 0.7 0.6

aeff (nm) 1.0 1.7 2.0

FIG. 4: Fitted DW velocity curve (dashed line) to experi-
mental data (dots) of three different samples. The data shown
in (b) and (c) and is obtained for this paper. Details on the
samples and measurements as well as the assumed material
parameters can be found in the Supplemental Material [28].
The data in (a) is from Ref. [10]. The obtained fit parame-
ters are shown in the table. In (d) the HD(tfilm) trend for the
Pt/Co/Gd (orange) and Pt/Co/Ir (blue) stacks are shown.

of experimental data of DWs that demonstrate asymmet-
ric velocity profiles as a function of Hx.

Experimental studies that do not exhibit a (distinc-
tive) kink at Hx/HD = ±2HB are often fitted with the
constant elasticity model proposed by Je et al.[8] In these
studies the measurement range of Hx might not be large
enough to expose these kinks. Fig. 4(b) demonstrates
that our model resembles results from the constant elas-
ticity model of Je et al. [8], but yields a different value
of the DMI

The parameter α has been set to a fixed value to ac-
count for the omission of higher order anisotropy terms
in the energy density. As a result the angle ϕ will not sat-
urate for large Hx. Previous research used α as a fitting
parameter as to account for roughness [14]. If roughness
forces the DW to tilt, the tilting angle is not fixed to one
value. Hence a fixed value of α should not be interpreted
as a physical tilting of the DW.

We remark that assuming ϕ to be constant along an
axis normal to the DW is only a first approximation. For
a Mixed Bloch-Néel DW, ϕ will adjust so that the mag-
netization aligns with the IP magnetic field well inside
the domains, but does not at the DW. As ϕ plays a key
role in the DW dynamics, future research could focus on
the exact behavior of ϕ.

In recent publications the asymmetric shape of the DW
velocity profile as a function of Hx is used as an argu-
ment for significant effect of chiral damping on the DW

dynamics [11, 15, 16]. However, our model demonstrates
a similar asymmetry without chiral damping. Further-
more, in the quasi-static creep regime dynamic effects
such as chiral damping should not affect creep motion.

The comparison experimental data demonstrates the
broad applicability of our model. Future research could
apply our model to an extensive sample study to investi-
gate the effects of parameters such as layer thickness or
growth.
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Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials
with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric
as a function of an external in plane magnetic field. This is understood as a consequence of the
inversion asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. In
this supplemental material we expand upon the calculations, theories and methods used in the main
article. In particular, we elaborate and briefly review creep theory to be self contained.

PACS numbers: 75.60.Ch,75.70.Ak,75.70.Kw,75.78.Fg

The reader is referred to the main article for an intro-
duction of the subject and description of the model.

MAGNETIZATION PROFILE AND ENERGY
DENSITY

In this section we derive the micromagnetic energy of
a thin system with perpendicular magnetic anisotropy
(PMA) and a domain wall (DW), wherewith we compute
the spatial magnetization vector profile first for untilted
domains and then for tilted domains. We conclude the
section by computing the energy density of a DW with
tilted domains.

Micromagnetic energy

Here we sum up the contributions of all considered
magnetic effects that make up the energy of a thin ferro-
magnetic layer with spin inversion asymmetry and PMA.
We express each effect in terms of a corresponding energy
or (effective) magnetic field. All magnetic fields have
units of Tesla and the saturation magnetization is ex-
pressed in Ampere per meter (if preferred, one could in-
terchange these two units without further consequences).

Let us denote the magnetization in the ferromagnet by
the unit vector in spherical coordinates,

Ω =




cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)


 , (1)

where φ is the azimuthal angle, and θ the polar angle.

Exchange interaction

The exchange interaction actually gives rise to ferro-
magnetism and originates from the Pauli repulsion be-

tween two neighboring spins. For ferromagnets it is en-
ergetically favorable for the two spins to align because
of this interaction and it is therefor also called the ex-
change stiffness. A misalignment of neighbors gives an
energy contribution

−JsΩ(x) ·Ω(x + a) = −Js cos(δω), (2)

where Js is the spin exchange stiffness, a the vector
connecting two neighbors and δω is the angle between
the two magnetizations. In the continuum limit we ex-
press this angle in terms of the gradients of θ and ϕ by

δω ≈ |a|
√

(∇θ)2 + sin2(θ)(∇ϕ)2. Now we sum over all
nearest neighbor sites, which in the continuum limit be-
comes an integral. By expanding the cosine to second
order and defining the continuum exchange interaction
J = Jsa

−1 with a now the lattice spacing we obtain

Eexchange(θ, ϕ) =
J

2

∫
d3x

(
(∇θ)2 + sin2(θ)(∇ϕ)2

)
.

(3)

A typical value for J is around 10−11 Jm−1 and for a is
around 3 Å.

Perpendicular magnetic anisotropy

Phenomenologically, we introduce an anisotropy en-
ergy for an easy z-axis, by

EPMA(θ, ϕ) = −KP

2

∫
d3x cos2(θ). (4)

The subscript P stands for PMA. From symmetry ar-
guments higher order terms in ϕ and θ could also be
included, but we omit them for simplicity. It will be con-
venient to define an effective anisotropy magnetic field
strength HP = KP/MS with MS the saturation magne-
tization. It should be noted that HP is only introduced
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for notational convenience and cannot be physically in-
terpreted as an effective magnetic field. HP has typical
values around 0.1 T and MS around 5× 105 Am−1.

Demagnetization

Dipole-dipole interactions also contribute to the en-
ergy and prefer Bloch DWs. The dipole-dipole potential
energy is written as a Zeeman energy from the demagne-
tization field Hd

Ed = −1

2

∫
d3xM(x) ·Hd(x). (5)

Following Tarasenko et al.[1], we perform a Fourier trans-
form of the demagnetisation field, its corresponding mag-
netic potential Φ (such that Hd = ∇Φ) and the magne-
tization M = MSΩ to obtain an expression for the above
energy in terms of the fourier modes using Maxwel’s
equation

∇ ·B = ∇ · (H + 4πµ0M) = 0; (6)

we thus find

Ed =
µ0

4π2

∫
d3k

1

k2
(Mk · k)(M−k · k). (7)

Here, k = |k|. Now we perform the inverse Fourier trans-
form of the z component.

Mk =

∫
dzMκ(z)e−ikzz, (8)

where κ = (kx, ky)T . This results in

Ed =
µ0

4π2

∫
d2κ

∫
dz

∫
dz′
∫
dkz

1

κ2 + k2z
e−ikz(z−z

′)

(9)

(Mκ(z) · κ +Mz
κ(z)kz)(M−κ(z′) · κ +Mz

−κ(z′)kz).

We take out an effective contribution to the easy z-axis
anisotropy by using:
∫
d3xM2

z =

∫
dz

∫
d2κd2κ′

(2π)4
Mz

κM
z
κ′e

ix·(κ+κ′) (10)

=

∫
dz

∫
d2κ

(2π)2
Mz

κM
z
−κ.

Then we evaluate the integral over kz and are left with

Ed =
µ0

4π

∫
d2κ

∫
dz

∫
dz′e−κ|z−z

′| (11)
(

1

κ
(Mκ(z) · κ)(M−κ(z′) · κ)− κMz

κ(z)Mz
−κ(z′)

−2i sign(z − z′)(Mκ(z) · κ)Mz
−κ(z′)

)
.

The first term is the energy of the magnetic field decli-
nation away from the DW. The second term is the en-
ergy associated with the change in magnetization at the
boundaries. The third term describes the twisting of the
DW. [2, 3]

Next, under the assumption that the film thickness t
is small (i.e. t < λ), the magnetization is homogeneous
along the z direction and we evaluate the integrals over
z and z′. We use

∫ t/2

−t/2
dz

∫ t/2

−t/2
dz′e−|z−z

′|κ =
2t

κ

(
1− 1− e−κt

κt

)
(12)

≈ t2, for κt� 1,

and

∫ t/2

−t/2
dz

∫ t/2

−t/2
dz′e−|z−z

′|κ sign(z − z′) = 0, (13)

by symmetry. Furthermore, we rotate the IP components
of M such that the x component aligns with the DW
normal. This means Ω(ϕ, θ) → Ω(ϕ − α, θ), where α is
the angle (w.r.t. the x-axis) of the DW normal. And
by translation symmetry the field is also homogeneous in
the y direction. That means

Mκ · κ = Mx
κ, and (14)

Mx
κ = 2πδ(ky)Mx

kx . (15)

For the DW dynamics only the first term in Eq. (11)
is relevant. As we shall see from the DW profile in the
following, Mkx converges rapidly to 0 for increasing kx,
hence for small t, we assume κt � 1. Then the demag-
netization energy is reduced to

Ed ≈
t2µ0

2

∫
dk|k|Mx

kM
x
−k

∫
dy. (16)

The integral over y indicates that the demagnetization
energy increases linearly with the DW length. Once we
know the DW profile (i.e. θ and ϕ as a function of x), we
then explicitly compute the inverse Fourier transform

Mx
k =

∫ ∞

−∞
dxMxe

ikx

= MS

∫ ∞

−∞
dx sin(θ) cos(ϕ− α)eikx,

to obtain the final expression for the demagnetization
energy by working out all the integrals.
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Zeeman energy

The energy contribution of the external magnetic field
H is the Zeeman energy, given by

Eexternal(θ, ϕ) = MS

∫
d3x(−Ω(x) ·H) (17)

= −MS

∫
d3x (Hx sin(θ) cos(ϕ)

+Hy sin(θ) sin(ϕ) +Hz cos(θ)) .

Dzyaloshinskii-Moriya interaction

For convenience we rotate our axes such that the gra-
dient of the magnetization ω points along the x axis and
the interface between the ferromagnet and (heavy spin
orbit coupling) normal metal is perpendicular to the z
axis. For two neighboring spins along the x direction, the
energy contribution due to the interfacial Dzyaloshinskii-
Moriya interaction (DMI) is given by

EDMI = Ds · (Ω(x)×Ω(x + ax̂)), (18)

where Ds = Dsŷ is the DMI. From Ref. [4] we com-
pute Ds to be in te order of 10−23 J. We approxi-
mate the magnetization direction of the neighboring par-
ticle (Ω(x + ax̂)) in terms of Ω(x) by Ω(x + ax̂) ≈
Ω(x) + a∂Ω(x)

∂x . Then, summing over all sites and taking
the continuum limit, we get

EDMI = Ds

∫
dy

a

∫
dx(ŷ · (Ω(x)× ∂Ω

∂x
). (19)

Where we used that the system is homogeneous along
the y direction. We then define D = Dsa

−1t−1 to obtain
an interfacial DMI energy per DW area. D has typical
values around 10−4Jm−2. We also define an effective
DMI field HD = D/(MSλ). In the final section of this
supplemental material we apply our model to DW veloc-
ity measurements of two series of samples with varying
thickness to extract the value of HD of these samples and
verify the proportionality HD ∝ t−1.

Inserting the definition of Ω and working out the cross
and inner product, we obtain in terms of the spherical
coordinates θ and φ.

EDMI(θ, ϕ) = tMSλHD

∫
dxdy cos(ϕ)

∂θ

∂x
. (20)

In this case HD is not only introduced for notational con-
venience, but also has the physical interpretation of a
local IP magnetic field directed along −∇θ. Let α be
the angle between the DW normal and the applied ex-
ternal IP magnetic field. Then we rotate our axes back
such that the x axis lied parallel to the IP magnetic field.
This effectively shifts ϕ→ ϕ− α.

DW profile

Now we derive an expression for θ in equilibrium for
a system with no external magnetic field, nor DMI, nor
Bloch anisotropy. Then ϕ is constant in equilibrium. We
then apply the Euler-Lagrange equation to the energy
density, which is distilled from the above.

∂E
∂θ

= ∇ ∂E
∂(∇θ) , so (21)

−KP

2

∂ cos2(θ)

∂θ
= J∇2θ. (22)

For this system, derivatives with respect to the z coordi-
nate are negligible and we align the y-axis with the DW,
so ∇θ = ∂θ

∂x . Now if we multiply Eq. (22) with ∂θ
∂x and

integrate over x, we find:

− KP

J
cos2(θ) + C =

(
∂θ

∂x

)2

. (23)

With C and integration constant. As we send x → −∞
we know that dθ

dx → 0 and cos(θ(x)) → Q = ±1. Q is
the charge of the DW distinguishing between an up-down
(+1) and down-up (−1) wall. So we find C = KP

J . Using
the goniometric identity sin2 a + cos2 a = 1 and taking
the square root we find:

Q
∂θ

∂x
=

√
KP

J
sin(θ). (24)

Now we separate variables. A primitive of the function
1

sin(θ) is ln(tan( θ2 )). To find the integration constant we
define the DW position xDW as such that θ(x = xDW) =
π/2. And so we find:

ln (tan(θ/2)) =
Q

λ
(x− xDW), (25)

with λ =
√

J
KP

a typical length scale for the DW width.
We solve for θ to find

θ(x) = 2 arctan
(
e
Q
λ (x−xDW)

)
. (26)

DW profile for tilted domains

An IP magnetic field also changes the orientation of
the magnetic moment inside the domains. For simplicity
we assume Q = +1. The equilibrium orientation has to
balance PMA and the IP magnetic field, yielding a dif-
ferent internal magnetization profile. The energy density
well inside the domain is given by

Ein = −MS

(
HIP · m̂ sin(θ) +

HPMA

2
cos2(θ)

)
. (27)

Here HP = KP/MS is the effective magnetic field of the
PMA, HIP is the IP vector of the applied magnetic field
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and m̂(ϕ) the IP vector of the internal magnetization. We
minimize this energy, where we assume HP � |HIP · m̂|,
because else there will be no perpendicularly magnetized
domains anymore. The two solutions are

θ = arcsin(β), or θ = π − arcsin(β), (28)

with β =
HIP · m̂
HPMA

. (29)

Which precisely characterizes the magnetization in the
the up and down domains respectively. We have the
bounds |β| � 1.

This immediately yields an effect on the driving force
as the Zeeman energy difference now is proportional to

∆EZeeman ∝
1

2
Hz(cos(π − θ)− cos(θ)) (30)

= Hz cos(θ)

= Hz

√
1− β2.

We investigate how these new boundary conditions af-
fect the energy density. Accounting for IP magnetic fields
and DMI, the energy density reads

E =
J

2
(∇θ)2 +MS

(
− HP

2
cos(θ)2 −HIP · m̂ sin(θ)

(31)

+HDλ cos(ϕ− α)∇θ
)
.

The Euler-Lagrange formalism yields

J∂2xθ = MS (HP cos(θ) sin(θ)−HIP · m̂ cos(θ)) . (32)

We divide out MSHP and use the definitions of λ and β
to rewrite the above as

λ2∂2xθ = cos(θ) (sin(θ)− β) . (33)

As we can see, the DMI has no effect on the DW pro-
file because it depends only linearly on ∇θ. Using
2(∂xθ)(∂

2
xθ) = ∂x

(
(∂xθ)

2
)

and 2(∂xθ) cos(θ) sin(θ) =
∂x sin(θ)2, the above yields

(λ∂xθ)
2

=
(
sin(θ)2 − 2β sin(θ)

)
+ C, (34)

where C is a constant which we now determine from the
boundary conditions. As x→∞, ∂xθ → 0 and sin(θ)→
β, we obtain:

C = β2. (35)

Thus

(λ∂xθ)
2 = (sin(θ)− β)

2 , that is λ
∂θ

∂x
= sin(θ)− β.

(36)

With boundary condition θ(xdw) = π/2, we solve this
equation and obtain

θ(x) = 2 arctan

(
1

β
− β

√
1− β2 tanh

(
(x− xdw)

λ

√
1− β2

2
− arccoth

(
1 + β√
1− β2

)))
; (37)

= 2 arctan
(
e
x−xdw
λ

)
− β tanh

(
x− xdw

λ

)
+O(β2). (38)

This DW shape is shown in Fig. 1 for β = 1/4 along
with the β = 0 case. The result leaves the DW thickness
λ intact, as can also be seen in the figure.

Energy density

We now assume that along the x-axis ϕ is constant.
Then we integrate our energy density over x using
Eq. (37) (or Eq. (26) for the untilted case), subtracting
the energy density of a system with a DW at xdw = 0,
and we are left with an equilibrium (i.e. Hz = 0) energy

density. We work out the case for the demangetization
energy explicitly based on the work of Tarasenko et al.[1].
We start out by reproducing the known results for β = 0.

For convenience we define X = (x − xdw)/λ, so dx =
λdX. Note that sin(θ) = 1/ cosh(X), which has poles at
Xn = πi

2 (2n+1) for n ∈ Z. We now evaluate Eq. (17) by
closing the contour in the upperhalf of the complex plane
along an infinity modulus semi circle. Due to the expo-
nent, this contribution vanishes, and we use the residue
theorem. The residue of the integrand at Xn is given by

e
1
2πkλ(2n+1)

i cos(nπ)
. (39)
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β=0

β=1/4

0

π

2

π

θ

-4 -2 0 2 4
x- xDW

λ

FIG. 1: Effect of IP magnetic field on the DW profile pa-
rameter θ. A side view of the corresponding magnetization is
illustrated in Fig. 1 (c) of the main article.

Now we sum over all poles in within the contour (i.e.
n > 0) to find

Mx
k = Mx

−k = MS cos(ϕ− α)
πλ

cosh(kπλ2 )
. (40)

Which indeed vanishes rapidly for increasing k. Now we
evaluate the integral over k in Eq. (16) to obtain the
energy density (per sample thickness per DW length)

Ed = 4 ln(2)tµ0M
2
S cos2(ϕ− α). (41)

Hence we define an effective Bloch anisotropy field (re-
ferring to the fact that this energy contribution favors a
Bloch type DW) HB = 4 ln(2) tµ0MS

πλ .

In total, the energy density is given by

E(α,ϕ) = 2
√
JKP + 4µ0M

2
S t ln(2) cos2(ϕ− α)−MSπλ(Hx cos(ϕ) +Hy sin(ϕ)) + πD cos(ϕ− α) (42)

= 2
J

λ
+MSπλ

(
HB cos2(ϕ− α)− (Hx cos(ϕ) +Hy sin(ϕ)) +HD cos(ϕ− α)

)

When ϕ varies along the DW, the energy density ob-
tains a bending contribution following from the exchange
interaction:

Ebend = 2Jλ

(
∂ϕ

∂s

)2

. (43)

Now we calculate the same energy density for β 6=
0. The more elegant Eq. (36) is used to simplify these
integrals. For convenience we first define

f(β) =
4

π

(
arcsin(

√
1 + β

2
)− arcsin(β)

)
(44)

≈1− 2

π
β +O(β3).

g(β) =
(1− β2)

4 ln(2)

(
−H−b −Hb + b(ψ(1)(1− b)− ψ(1)(1 + b))

)

(45)

The results are:

• Exchange interaction

EExchange(ϕ) =
J

λ

(√
1− β2 − πβ

2
f(β)

)
. (46)

• PMA

EPMA(ϕ) = KPλ

(√
1− β2 +

πβ

2
f(β)

)
. (47)

Using the definition of λ we combine the two above
expressions, cancelling the inverse cosine functions.
The result is 2Jλ

√
1− β2.

• Bloch anisotropy
Using the residue theorem we compute Mx

k so that
the Bloch anisotropy energy is now given by

EBloch(ϕ) = 4µ0M
2
S tπ

2λ2 cos2(ϕ− α)×

∫ ∞

−∞
dk

sinh2

(
kλ arccos(β)√

1−β2

)

sinh2

(
kλπ√
1−β2

) |k|

= 8µ0M
2
S t cos2(ϕ− α)(1− β2)×

∫ ∞

0

dK
sinh2 (Kb)

sinh2 (K)
|K|.

(48)

We have changed variablesK = kπλ√
1−β2

and defined

b = arccos(β)/π, 0 ≤ b ≤ 1. Now we work out the
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integral using the geometric series [5]

∞∑

n=0

(n+ 1)e−2nK =
1

(1− e−2K)2
. (49)

We write out the definition of hyperbolic sine in
terms of exponentials and use

∫ ∞

0

dKKe−aK =
1

a2
, (50)

for a > 0, to evaluate the integral. Finally, we
evaluate the sum over n to find

EBloch(ϕ) = 8µ0M
2
S t cos2(ϕ− α) ln(2)

(1− β2)

4 ln(2)
×

(
−H−b −Hb + b(ψ(1)(1− b)− ψ(1)(1 + b))

)
.

(51)

Hz is the Harmonic number of z and ψ(1) is the first
derivative of the digamma function. When β = 0,
b = 1/2 and 2 + H−1/2 = H1/2 = 2 − 2 ln(2) and
ψ(1)(3/2) = ψ(1)(1/2) − 4 = π2/2, so we indeed
obtain the known limit. This result is shown in
Fig. 2 as a function of β.

• Zeeman energy

EZeeman(ϕ) = −MSλπ(Hx cos(ϕ) +Hy sin(ϕ))f(β)
(52)

• DMI

EDMI(ϕ) = 4πD cos(ϕ)f(β) (53)

We absorb this effect by a redefinition of the effective
fields and parameters as follows

• J → J
√

1− β2;

• KP → KP
√

1− β2, which keeps λ fixed;

• HIP → HIPf(β);

• Hz → Hz

√
1− β2;

• HD → HDf(β);

• HB → HBg(β).

In Fig. 2 the different effects of β are plotted, normal-
ized with respect to the β = 0 value.

The effect of this domain tilting on the final DW ve-
locity as a function of Hx is shown in Fig. 3 for typical
parameter values (see Table I).

HB

Hx, HD

J, KP, Hz

0

1

2

3

E
ff
ec
t

-1 0 1
β

FIG. 2: The effect of the β parameter on HB (blue), HD

and Hx (orange), J , KP and Hz (green), normalized to their
respective values for β = 0.

β=β(Hx)≠0

β=0

-0.1

0.0

0.1

0.2

0.3

ln
(v
/v
0
)

-4 -2 0 2 4
Hx/HD

FIG. 3: The DW velocity corrected for tilting of the magnetic
domains (blue) compared with the model where this effect is
neglected and β is set to 0 (light blue). The effect is significant
and therefore implemented in our model.
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CREEP THEORY IN DEPTH

In this section we work out the theory of creep for
magnetic DWs, based on the review by Blatter et al. who
used creep theory to describe the motion of magnetic
vortices in superconductors [6]. To start, we follow the
analytic derivation by Lemerle [7], where no IP magnetic
field is applied and expose relevant details to be used
later on. By assuming the elasticity to be non dispersive,
the results of Je et al. immediately follow [8]. However,
when the elasticity is considered to be dispersive, one
has to abandon the analytic approach of Lemerle and
use numerical optimizations to obtain the DW velocity.
We conclude this section by commenting on the work by
Pellegren et al [9], who, instead of optimizing actually
keep some parameters to fit; we reproduce their work
but do optimize.

Creep theory attempts to describe some manifold in a
pinning potential, whose barrier height is larger than the
driving force, but still exhibits a net macroscopic motion
of due to fluctuations (e.g. quantum or thermal). The
rate at which these fluctuation occur is computed from
the Arrhenius law [10, 11]; a deformation due to a fluctu-
ation costs elasticity energy, but yields energy from the
driving force. These costs and yield scale differently with
the size of the fluctuation so that there is a optimal size
Lopt above which the deformation can grow. At this op-
timal deformation length the energy cost is maximal and
equal to the energy barrier the nucleation problem has
to overcome.

Hence the recipe is clear: Determine the elasticity en-
ergy cost and the driving energy gain as a function of the
deformation length L. Subtract the two and optimize for
L. As we shall see for a non dispersive stiffness, this opti-
mization can be done analytically and yields the famous
creep law ln(v) ∝ −H−1/4z . In fact, this law has become
so famous that the exact proportionality has become a
measure of how well a systems dynamics are in the creep
regime. We show that a purely theoretical creep model
also exhibits deviations from this creep exponent.

Non dispersive energy density

We consider a straight DW and deform a segment of
length L with amplitude u as is shown in the figure of the
main article (Lermerle considers a segment of length 2L)
[7]. The magnetization to the left of the DW is parallel
to the external driving field. Hence the deformation is
energetically favorable with respect to this external field
due to the Zeeman energy. However, due to the defor-
mation, the DW gets stretched, which is energetically
unfavorable. Furthermore, we assume that the disorder
is expressed trough a pinning potential that has some
characteristic length scale. We assume u to be small, e.g.

the increase in the DW length due to the deformation is
expressed as 2

√
u2 + (L/2)2 − L ≈ 2u2/L. There is no

external IP magnetic field, nor do we consider DMI, nor
dipole-dipole interaction. In summary, the energy differ-
ence between the deformed DW and the straight DW is
given by:

∆E(u, L) = Eel
2u2

L
−
√

∆ξ2L−MSHzt
Lu

2
. (54)

Here, Eel is the elastic energy density, t is the film thick-
ness, λ the DW width, J is the exchange stiffness, K is
the effective anisotropy energy, ∆ is the pinning strength
scaling, ξ is the characteristic length scale of the pinning
potential, MS is the saturation magnetization (in Tesla)
and Hz is the applied out of plane (OOP) magnetic field
(in Oersted Oe=A/m). The three terms in the RHS of
the above equation thus account for stretching, pinning
and Zeeman energy. The square root in the pinning term
reflects that only fluctuations in the pinning potential af-
fect the DW dynamics.

The elasticity is determined by subtracting the energy
of an unperturbed DW from the energy of the deformed
DW. When the energy density is non dispersive, this dif-
ference is just the energy density times the DW elonga-
tion. However, the elongation is a function of both u and
L. So we now set out to express u in terms of L using
the exponential wandering relation.

We define a length scale Lc for the DW segment length,
above which the DW can adjust itself elastically, so that
locally it is in the optimal configuration with respect to
the pinning potential. This length scale is determined
by the optimal balance between elasticity and pinning
energy, for a deformation amplitude of u = ξ (i.e. a
metastable state which has hopped one pinning site).
This yields

Lc = 2(2E2elξ2/∆)1/3. (55)

We also define a critical field strength Hc as the external
OOP field strength required to move the DW with L =
Lc and u = ξ in the absence of thermal fluctuations. It
is given by

Hc =
4Eelξ
L2

cMSt
, (56)

which is found by equating the pinning energy and the
Zeeman energy with L = Lc and u = ξ.

The spatially and thermally averaged correlation func-
tion 〈〈(u(y + L) − u(y))2〉〉 is proportional to (L/Lc)

2ζ ,
where ζ is the characterizing wandering exponent. For
1D DWs it has been proven that ζ = 2/3 [12, 13]. We
thus assume a scaling law for the displacement

u = uc(L/Lc)
ζ , (57)

where uc is a transverse scaling parameter. We insert this
relation into Eq. (54) and drop out the pinning energy to
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find

∆E(L) =
2Eelu2c
Lc

(
L

Lc

)2ζ−1
− 1

2
MSHztuc

(
L

Lc

)ζ+1

.

(58)

When we maximize (notice that Lemerle calls this a min-
imization) this expression for L we find

Lopt = Lc

(
ζ + 1

2ζ − 1

MSHztL
2
c

4ucEel

) 1
ζ−2

. (59)

Now we insert ζ = 2/3 and Eq. (59) into Eq. (58) to find
the energy barrier

Fb =
4

55/4
u
9/4
c ∆1/2

ξ

( Eel
HzMSt

)1/4

. (60)

By Arrhenius’ equation the hopping rate is proportional
to the exponential of the Boltzman weighted energy bar-
rier. The DW velocity is found because it should be pro-
portional to this hopping rate. In conclusion, we obtain
the following proportionality

ln(v) ∝ −
( Eel
Hz

)1/4

. (61)

Notice that we only used that Eel is the proportionality
constant of the energy gain from the deformation, pro-
portional to 2u2/L. As soon as Eel can no longer be
approximated with the above proportionality. So next,
we consider a dispersive energy density and adjust the
above derivation accordingly.

Dispersive energy density

There are three components that make up elasticity.
Most familiar is stretching: There is an DW energy cost
per length, and a deformation elongates the DW. To min-
imize this energy cost, the DW is kept short and thus
straight. Some systems (including ours) need to distin-
guish between stretching and bending; although both try
to keep the manifold straight the underlying mechanisms
are different. In our system both stretching and bending
energy costs are caused by the exchange interaction. A
third elasticity component is formed by orientation. In
our system this component starts playing a role when
applying an external field. For example a Bloch DW be-
comes more flexible when applying an IP magnetic field
perpendicular to the DW normal as the magnetic mo-
ment at the DW will then be more aligned with the IP
magnetic field upon any deformation. Similarly a Néel
wall will become stiffer in the same situation.

So suppose in general we have some DW energy density
E(ϕ, α) which is a function of the azimuthal angle of the
magnetization of the sample at the DW ϕ, and the angle

α of the DW normal w.r.t. the applied in-plane magnetic
field. After minimizing it for ϕ this energy Emin(α) is only
a function of α. We assume a DW deformation that has
some profile α(s) parametrized by s, which runs along the
length of the DW, such that α(s)−α(0) is an odd function
of s (i.e. the deformation has a reflection symmetry in a
line along α(0)). So in general, the energy difference is
given by

Eel =

∫
dsEmin(α(s))− LEmin(0). (62)

For a situation such as studied above, with u/L� 1, we
do a second order approximation of the right hand side
in u/L. The result is

Eel ≈
2u2

L

(
Emin(0) +

∂2Emin

∂α2
(0)

)
. (63)

On the right hand side of this equation the two elastic-
ity components are made explicit. The first term is the
stretching energy density and the second term the orien-
tation energy density.

When considering bending, it becomes hard to deter-
mine Emin analytically. In the previous section we have
computed the bending contribution from the exchange
interaction to the energy density given by Eq. (43). To
solve such a system one could expand the energy density
around α0 = α(0) and ϕ0 = ϕ(0), which is the equilib-
rium angle corresponding to a DW orientation α(0) (so
∂ε
∂ϕ (α0, ϕ0) = 0):

E(α,ϕ) ≈ E(α0, ϕ0) + (α− α0)Eα +
1

2
(α− α0)2Eαα

(64)

+
1

2
(ϕ− ϕ0)2Eϕϕ + (α− α0)(ϕ− ϕ0)Eαϕ,

with Eα = ∂E
∂α (α0, ϕ0) and Eab = ∂2E

∂a∂b (α0, ϕ0). If we
neglect bending and solve the Euler Lagrange equation
for ϕ, we find

ϕ = ϕ0 − (α− α0)
Eαϕ
Eϕϕ

. (65)

Inserting this in Eq. (64) we get

E(α) ≈E(α0, ϕ0) + (α− α0)Eα +
1

2
(α− α0)2Eαα (66)

− 1

2
(α− α0)2

E2αϕ
Eϕϕ

.

To find the energy of the deformed wall we just have
to integrate over s. As α(s) − α(0) is odd, the second
term vanishes upon integration. After subtracting the
unperturbed DW energy we obtain the energy difference

Eel ≈ ∆Lε(α0, ϕ0) + S

(
εαα −

1

2

ε2αϕ
εϕϕ

)
, (67)
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where ∆L =
∫
ds − L and S =

∫
(α(s) − α0)2ds. Note

that although this result is more general than the result
of Eq. (64), it is less accurate, because of the assumption
that not only α(s) − α0, but also ϕ(s) − ϕ0 has to be
small.

When bending cannot be neglected the Euler Lagrange
formalism gets an additional term which makes it a dif-
ferential equation.

ϕ− 4
Jλ

Eϕϕ
∂2s

∂ϕ2
= ϕ0 − (α− α0)

Eαϕ
Eϕϕ

. (68)

The solution depends on the profile α(s) of the DW. In
[9] a circle segment shape is chosen and the equation is
solved when there is no boundary condition for ϕ. At the
end of this section we reproduce their model and extend
it by optimizing for the segment length L to find the free
energy barrier.

However, as this solution does not account for bending
at the boundaries, we first work out the model of this
paper, which implements the bending energy in a rough

and simplified manner: We choose the deformation to be
triangularly shaped, determined by u and L, following
Blatter et al.[6] The segments will have a constant value
for ϕ each and at the bending points a nearest neighbor
exchange interaction is implemented. The elasticity is
then enriched by the following bending energy contribu-
tion:

Ebend =
Jλ

a
(3− cos(ϕ0 − ϕ1)− cos(ϕ0 − ϕ2)− cos(ϕ1 − ϕ2)).

(69)

Here ϕ0 is the azimuthal angle of the magnetization of the
unperturbed DW, and ϕ1 and ϕ2 are the optimized angles
of the upper and lower segment respectively. The factor
3 comes from the subtraction with the straight DW. Due
to variations in the lattice structure and to account for
non-nearest neighbor interactions, an effective value of a
should be used, but as demonstrated in Fig. 4 the precise
value of a has no significant effect on the DW dynamics.
The elasticity is now given by

Eel(u, L)

t
= min
ϕ1,ϕ2


L

2

√
1 +

(
2u

L

)2

(E(α0 + arctan(2u/L), ϕ1) + E(α0 − arctan(2u/L), ϕ2))

+
Jλ

a
(3− cos(ϕ0 − ϕ1)− cos(ϕ0 − ϕ2)− cos(ϕ1 − ϕ2))

]
− LE(α0, ϕ0).

(70)

After minimizing the elasticity in Eq. (70) over ϕ1 and ϕ2, one obtains the elasticity as a function of u and L. This
dispersive elasticity is used in the main article as a starting point for our model. The energy density is given by
Eq. (71) and is made dimensionless by dividing out D:

Ẽ(α,ϕ) ≡ E(α,ϕ)

D
= 2J̃

√
1− β2 + π

(
g(β)

H̃B

2
cos2(ϕ− α)− f(β)H̃x cos(ϕ) + f(β) cos(ϕ− α)

)
, (71)

with J̃ ≡ Jλ−1D−1, H̃B ≡ 2HB/HD and H̃x ≡ Hx/HD. By assuming u� L, setting ϕ1 = ϕ2 = ϕ0 and α0 = 0, the
elasticity is approximated to be proportional to u2/L: Eel ≈ u2

L Eel,0 with

Eel,0 = 4J̃
√

1− β2 +

{
+2πf(β)|H̃x| − πg(β)H̃B , if |H̃x − 1| > H̃B;

−π f(β)2

H̃Bg(β)
(H̃x − 1)(H̃x − 3) , otherwise.

(72)

This formula is used to fit data using ln(v) ∝
−(Eel,0/Hz)

1/4. However, due to the severe assumptions
made to obtain it, the fit will not be good and should be
used to obtain good guesses for the relevant parameters.
To determine the exact velocity we continue with the ex-
act elasticity of Eq. (70). The optimization over ϕ1 and
ϕ2 is done numerically.

The Larkin length now is found as usual inserting u = ξ
as described above. However, this has to be done numeri-

cally as well as the computation of the free energy barrier.
The result is shown and discussed in the main paper. In
Fig. 5 we plot ln(v) as a function of H−1/4z which, in our
exact theoretical model, is not perfectly linear.

Instead of considering a DW normal to the applied IP
magnetic field, one could tilt the DW itself over a fixed
angle α as suggested by Pellegren et. al. [9]. From
Eq. (71) it becomes clear that the pure Néel DW then
no longer minimizes the energy density for |Hx −HD| >
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FIG. 4: The effective lattice spacing affects the DW dynam-
ics.

2HB; the Néel DW is the asymptotic limit as Hx → ∞.
Because there will be no saturation of the azimuthal an-
gle ϕ, the velocity profile becomes more smooth. As de-
scribed in the main text, we do not need to interpret a
fixed value of α as a physical tilting of the DW, but use
it solely to account for higher order anisotropy terms.

-6

-5

-4

-3

-2

-1

ln
(v
/v
0
)

-5 -4 -3 -2 -1

-Hz
-1/4

FIG. 5: The exact creep velocity as a function H
−1/4
z for

H̃B = 1.3, H̃x = 0.5 (blue) and H̃x = 2 (orange). Even the
exact model deviates from the famous creep law.

To conclude this section, we reproduce and expand on
the results from Pellegren et al., who considered an arc
shape deformation parametrized not by the displacement
u, but by the radius of the circle segment illustrated in

FIG. 6: An illustration of the deformation model considered
by Pellegren et al.[9]

Fig. 6. The relation between u and R is given by

R =
L2 + 4u2

8u
. (73)

Using Eq. (64) enriched with Eq. (43), we find ϕ by the
Euler Lagrange formalism. The boundary conditions are
not given by a restriction on the value of ϕ at the bound-
ary of the segment, but by minimizing the energy. As-
suming R � L the solution for ϕ cen be approximated
by:

ϕ(s) = ϕ0 +
Eαϕ
Eϕϕ

1

R
(s− Λ sinh(s/Λ)) . (74)

Now we compute the elasticity as a function of R and
L. Using the Larkin length and the wandering exponen-
tial relation Eq. (57) combined with Eq. (73), the elas-
ticity is only a function of L. Then the optimal length
Lopt is computed as a function of Hx as well as the cor-
responding free energy barrier.

In Fig. 7 this optimal length is plotted along with the
DW velocity computed from the corresponding energy
barrier. In the same figure the elasticity for a fixed value
of L is also shown to emphasize the effect of optimiz-
ing for L. These results are generated for α0 = 0 (left
column) and α0 = 8◦ (right column). Notice that for
α0 = 0 the same kinks occur, which has the same cause:
the saturation of ϕ0.
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FIG. 7: The exact results for the arc deformation model
proposed by Pellegren et al. [9] for α0 = 0 (blue) and α0 = 8◦

(orange). The two columns correspond to H̃B = 0.5 (left)
and H̃B = 2 (right) . The optimized deformation length Lopt

is not constant as a function of Hx (a) and (b), as a result
the velocity profiles (c) and (d) differ form the elasticity with
L(Hx) = L fixed shown in (e) and (f) respectively. Further-
more, due to the saturation of ϕ0 at α0 = 0, the results again
show kinks.
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EXPERIMENTAL METHOD

The samples are grown via Ar DC magnetron sputter
deposition in a sputter chamber with a base pressure of ∼
3× 10−9 mbar. The detailed composition of the samples
introduced in the main article is:

Sample a SiO2/Ta(4)/Pt(4)/Co(0.6)/Pt(4)
Sample b SiO2/Ta(4)/Pt(4)/Co(0.8)/Gd(4)
Sample c SiO2/Ta(4)/Pt(4)/Co(0.9)/Ir(4)

The

number in parentheses indicates the thickness of the
layer in nanometers. These samples are representa-
tives of the variety of the velocity profiles observed
in the literature of asymmetric domain expansion
experiments.[8, 14–16].

The data of sample (a) was obtained from Ref. [14].
The sample is a symmetric stack where in an ideal case
no DMI should be present. A finite DMI is obtained when
the difference of the interfacial quality of the sputtered
layers is considered. The authors studied the interfacial
quality by changing the growth pressure of the top plat-
inum layer. A growth pressure of 1.12 Pa is used for the
top layer in sample (a).

The data of samples (b) and (c) are part of a larger
sample study performed for this paper on the effect of the
Cobalt layer thickness. The results of the sample study
are shown in the following section.

For all samples a perpendicular magnetic anisotropy
is determined via angle-dependent anomalous Hall effect
measurements. The saturation magnetization MS is ob-
tained via SQUID-VSM measurements. We image the
magnetic domains and the expansion of those domains
with a Kerr microscope setup. In this setup a differ-
ence in contrast in the image corresponds to a differ-
ent magnetization in the z-direction. A dark contrast
in the images indicates that the magnetization is point-
ing into the plane, referred to as a down domain. A
light contrast in the image corresponds to an up domain.
These domains are nucleated around intrinsic impurities
and defects in the sample, by applying out-of-plane mag-
netic field pulses. The pulses can vary in length between
0.8 − 400 ms and can reach a field strength up to ±33
mT.

In Fig. 8 (a) the nucleation of an up domain is shown.
The image is processed to a binary image by threshold-
ing. After the nucleation the domain is expanded in three
steps via additional out-of-plane field pulses. In figure
Fig. 8 (b) the nucleation of an up domain is shown in
white and the three expansion steps are indicated by a
darkening gray scale. We find that the expansion of the
magnetic domain is symmetric to all sides. In Fig. 8 (c)
an in-plane magnetic field along the x-direction is added
during the expansion of the domain. In this case, the
right side of the domain expands much faster than the
left side, resulting in an asymmetric magnetic domain
expansion. The velocity of the domain boundary is ob-

FIG. 8: Kerr microscope images of a magnetic domain. The
magnetization in the light areas is pointing out of the plane
(up direction) and the magnetization in the black areas is
pointing into the plane (down direction). In (a) an unpro-
cessed Kerr image is shown. A binary image is obtained via
thresholding. In (b) the nucleation of the domain is shown
in white and the three expansion steps with a darkening gray
scale. Only out-of-plane magnetic field pulses are applied and
this results in a symmetric expansion of the magnetic domain
to all sides. In (c) an additional in-plane field is applied in
the x-direction and this results in an asymmetric expansion
along that direction.

tained by measuring its displacement for a known pulse
length. Repeating this as a function of the in-plane field
Hx results in a velocity profile.

SAMPLE STUDY: EFFECT OF
FERROMAGNETIC LAYER

We applied our model to determine the effect of
the layer thickness of the ferromagnet on the strength
of the DMI. Since the DMI is an interfacial effect,
we would expect that the DMI decreases for an in-
crease in the cobalt layer thickness. We studied two
types of stacks: SiO2/Ta(4)/Pt(4)/Co(x)/Gd(4) and
SiO2/Ta(4)/Pt(4)/Co(x)/Ir(4). The result is shown in
Fig. 9.

The obtained trends are in line with our expectations
described in the first section of this supplemental ma-
terial (i.e. that HD ∝ t−1) and compare well to pre-
vious experiments. [17, 18] Future research could focus
on a larger sample study with a thorough investigation
of uncertainties in the measurement and determination
of the sample parameters (such as the thickness of the
saturation magnetization) to establish a proportionality
D ∝ t−1.
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FIG. 9: Effect of ferromagnetic layer thickness on the velocity
profile as a function of Hx. The data (dots) are fitted (dashed
lines) with our model to obtain a value for the effective DMI
field HD, summarized in (h). (a), (c), (e) and (g) show the
results for the Pt/Co(x)/Ir stacks and (b), (d) and (f) show
the results for the Pt/Co(x)/Gd stacks with varying thickness
of the Co layer.
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CONSTANTS AND PARAMETERS

Constant Description Value
α angle of the IP component of the DW normal w.r.t. the IP magnetic field -
β parametrization of the tilted magnetization inside mangetic domains: sin(θ) = β -
∆ pinning energy constant 103J2/m3

ζ wandering exponent: 〈〈(u(y + L)− u(y))2〉〉 ∝ (L/Lc)
2ζ 2/3

θ angle of the internal magnetization of the DW with respect to the z-axis -
λ DW width 5nm
ξ correlation length of the pinning potential 10nm
φ IP angle of the internal magnetization of the DW with respect to the x-axis -
A assymetric component of the DW velocity: A = ln(v(↑↓)/v(↓↑)) -
a (effective) lattice spacing 2nm
b defined from b = arccos(β)/π -
D DMI energy defined from D = Dsa

−1t−1 -
E DW energy density -
Eel the elasticity of the DW (energy cost per length) -
Fb free energy barrier associated with a DW deformation -
HB effective field favoring the Bloch wall arising from dipole-dipole interaction -
HD effective DMI field -
HDW effective field defined as the ϕ dependent part of E -
Hx externally applied IP magnetic field along the x-axis -
Hy externally applied IP magnetic field along the y-axis -
Hz externally applied OOP magnetic field along the z-axis driving the DW 10mT
J exchange energy defined from the spin exchange J = Js/a 2× 10−11J/m
KP PMA energy defined as KP = J/λ2 8× 105 J/m3

L length of a thermally fluctuating DW segment -
MS saturation magnetization 5× 105 A/m
T Temperature 300◦K
t film thickness 0.5nm
u displacement of a thermally fluctuated DW segment normal to the DW -
uc proportionality constant of the wandering relation 10nm

TABLE I: Desciption of the constants and symbols used in this paper and their typical values if applicable.
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