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Abstract
The dimension of transistors shrinks with each new technology developed in the
semiconductor industry. The extreme scaling of transistors introduces important
statistical variations in their process parameters. A large digital integrated circuit
consists of a very large number (in millions or billions) of transistors, and therefore the
number of statistical parameters may become very large if mismatch variations are
modeled. The parametric variations often cause to the circuit performance
degradation. Such degradation can lead to a circuit failure that directly affects the
yield of the producing company and its fame for reliable products. As a consequence,
the failure probability of a circuit must be estimated accurately enough. In this paper,
we consider the Importance Sampling Monte Carlo method as a reference probability
estimator for estimating tail probabilities. We propose a Hybrid ISMC approach for
dealing with circuits having a large number of input parameters and provide a fast
estimation of the probability. In the Hybrid approach, we replace the expensive to use
circuit model by its cheap surrogate for most of the simulations. The expensive circuit
model is used only for getting the training sets (to fit the surrogates) and near to the
failure threshold for reducing the bias introduced by the replacement.

Keywords: Yield; Failure probability; Monte Carlo; Hybrid importance sampling
Monte Carlo; Dimension reduction; Exploration phase; Estimation phase; Kriging
model; Probability estimator

1 Introduction
Due to the continuously increase of the number of individual components on an Integrated
Circuit (IC) the probability of a bad working IC will increase dramatically, see [1, 2]. This
can simply be illustrated by the example in [2], where an IC with S “identical” components
(each having a failure probability pfail) has a rather large probability of Pfail = 1 – (1 – pfail)S

on break-down, even pfail is considerable small (i.e., being a rare event). For example, con-
sider a 256 Mbit SRAM circuit, having 256 million “identical” bit cells. Then to guarantee
a failure probability of 1% for this circuit (i.e. Pfail = 0.01 with S = 256 × 106), it is required
that pfail < 3.9 × 10–11, being a rare event indeed. Notice that the yield Y of an IC is closely
related to the failure probability Pfail and can be expressed as Y = 1–Pfail = (1–pfail)S . Thus,
the yield Y of an IC is estimated by using the failure probability pfail of its component.

We consider Monte Carlo (MC) techniques [3] for estimating the failure probability pfail.
The standard Monte Carlo produces an estimator p̂fail = k/n for the true probability pfail

by running the simulator n times with independent random inputs and counting the k
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occurrences of the ‘fail’ event. Notice that np̂fail ∼ Bin(n, pfail) follows a binomial law with
probability pfail of getting success out of n trials. The useful properties of the estimator
p̂fail are its unbiasedness i.e., E(p̂fail) = pfail and its independency on the dimension d of
the random vector X. However, the variance of the estimator p̂fail is given by Var(p̂fail) =
pfail(1 – pfail)/n, which can be (relatively) large for small pfail and limited number n of MC
runs. Using the ‘normal approximation’ of the binomial distribution, the 95% confidence
interval for (small) p̂fail is estimated to be ±1.96/

√
np̂fail. So, to determine p̂fail in the range

10–11 with an accuracy of ±10% with 95% confidence level, one needs about 4 × 1013 MC
runs, which is intractable in industry even with the fastest computer simulations.

To overcome the drawback of the standard MC method, a variance reducing Impor-
tance Sampling Monte Carlo (ISMC) technique is proposed in [2]. There it was shown
that a reduction of several orders can be achieved, from 4 × 1013 to at most few thousands
runs. However, when we estimate the probability of failure, it is done at some fixed envi-
ronmental parameters (such as temperature, supply voltage, and process corners). These
parameters add multiple levels of complexity. For instance, the failure probability must
be computed for a complete range of working temperatures. The complexity grows ex-
ponentially when the other dimensions are combined. For complex systems one usually
can only afford a very limited number (say, in hundreds) of simulations, and therefore the
ISMC technique remains unattractive. In [1], a model based ISMC approach has been pro-
posed for estimating rare circuit events. In the model based approach the circuit model
is replaced by a surrogate which is much faster to evaluate, the circuit model is only used
for drawing training samples which are used to build a surrogate. Usually, the number of
training samples is much smaller than the total number of MC simulations for estimating
the probability. Hence, the overall computational cost is reduced. Nevertheless, it is of-
ten difficult or even impossible to quantify the error made by such a substitution. There
is another model based approach proposed in [4] which introduces a statistical blockade
approach. In this approach one draws a large number of samples from a surrogate model
initially, find the samples which belong to the tail region, and replace them by the true re-
sponses. The authors use a linear classifier saying that such classifier is enough for SRAM
bitcells. However, our goal is to address the large circuits (such as analog IPs (Intellectual
Properties)). Our experiments show that a linear model does not work for such large cir-
cuits and it is difficult to fit a surrogate (nonlinear) model that is accurate in the tail so that
one can classify the samples that really belong to the tail region. The other limitation of
both of the above model based approaches is that they do not address the dimensionality
issue of the problem.

In this paper, we propose a Hybrid Importance Sampling Monte Carlo (HISMC) ap-
proach for estimating small failure probability. This approach is a modification of the
model based approach proposed in [1] and can be used for large dimensional circuit prob-
lems. The idea is to only use the expensive circuit modela (for a small portion of the overall
samples used to estimate the probability) close to the failure threshold and the surrogate
is used for the remaining samples that are reasonably away from the failure threshold. The
use of these small number of samples of the circuit model can prevent loss of accuracy.
The Kriging model [5, 6] is used as a surrogate of the circuit model because it inherits a
solid mathematical foundation with several useful properties including interpolation of
the training data and a closed formula for approximating the prediction error known as
a Kriging variance. The latter is useful for improving the Kriging model near the failure
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threshold as well as for selecting the samples near to the failure threshold for which the
circuit model is to be used. Our experience with the circuits shows the Kriging model
works well up to 35 input variables.

This paper is organised as follows. We start with the reference method mean-shift ISMC
approach in Sect. 2. Then we introduce a surrogate modelling technique in Sect. 3 that
combines a feature selection method and the Kriging model. Using this surrogate tech-
nique we present our HISMC approach in Sect. 4. Finally, the results are shown in Sect. 5
and a conclusion is made in Sect. 6.

2 The importance sampling Monte Carlo method
2.1 General framework
Let x ∈R

d be a vector of d process parameters, which is a realization of the random vector
(r.v.) X with probability density function (pdf) g(x), and let H(x) be a corresponding re-
sponseb of the circuit under examination. The mathematical equation of the failure prob-
ability pfail = P(H(x) ≥ γ ) is given by

p+
fail(γ ) = Eg[1{H(X)≥γ }] =

∫
1{H(x)≥γ }g(x) dx, (2.1)

where subscript g means that the expectation is taken with respect to the pdf g(x), γ is
a given failure threshold and 1{H(x)≥γ } is an indicator function that gives the value 1 if
H(x ≥ γ ), 0 otherwise.

We assume that the (failure) region of interest lies on the upper tail of the output dis-
tribution. This is without loss of generality, because any lower tail can be converted to
the upper tail by replacing H(X) = –H(X). Therefore, the probability P[H(X) ≤ γ ′] can be
converted to p–

fail(γ
′) = P[–H(X) ≥ –γ ′] for some give failure threshold γ ′ on the lower tail

of the distribution. Hence, it is sufficient to estimate the probability for the upper tail and
hereafter we will simply write pfail instead of p+

fail(γ ).
Assume that we have another density f such that 1{H(x)≥γ }g(x) > 0 �⇒ f (x) > 0, we say

g is absolutely continuous with respect to f . Then we can write (2.1) as

Eg[1(H(X)≥γ )] =
∫

1(H(x)≥γ )g(x) dx

=
∫

1(H(x)≥γ )L(x)f (x) dx

= Ef
[
1(H(Y)≥γ )L(Y)

]
, (2.2)

where Y is a r.v. generated from the new pdf f (x) and L(x) = g(x)/f (x) if f > 0 and L(x) = 0
otherwise, is a likelihood ratio between two densities. The ISMC estimator is then given
by

p̂IS
fail =

1
N

N∑

i=1

1(H(Yi)≥γ )L(Yi), (2.3)

where Yi’s are N independent and identically distributed (iid) random samples generated
from f (x).
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The p̂IS
fail is unbiased [7] with the variance

σ 2
IS =

1
N

Varf
(
1(H(Y)≥γ )L(Y)

)
, (2.4)

where

Varf
(
1(H(Y)≥γ )L(Y)

)
= Eg

[
(1{H(X)≥γ })2 g(X)

f (X)

]
– p2

fail. (2.5)

From a practical point of view, one has to find the ‘best’ pdf f (x) in order to maximize
the accuracy of the estimator p̂IS

fail. One of the ways to find such f (x) is by minimizing the
variance σ 2

IS.
The work in this paper is an additional contribution to the developments at Mentor

Graphics where a mean-shift ISMC technique (see Sect. 2.2) is being used, assuming that
the original input distributions can be transformed into a Gaussian distribution. In this
context, the importance density is found by shifting the mean of the original density to
the area of interest. We use the same technique as a reference approach. The study of
other ISMC techniques is out of scope of this paper.

2.2 The mean-shift approach
In this paper, we consider a particular case where the original pdf g(x) is Gaussian with
mean 0 and variance I, i.e., g(x) ∼ N (0, I). We define the importance density f (x) = gθ (x)
with gθ (x) ∼ N (θ , I) parameterized by its mean θ ∈ R

d (see, [2]), in other words gθ (x) =
g(x – θ ). Then the likelihood ratio L(x) becomes

L(x) =
g(x)
gθ (x)

= e–θx+ 1
2 |θ |2 (2.6)

and the relation between the random vectors X and Y is

Y = X + θ . (2.7)

Using (2.6) and (2.7), the ISMC probability estimator (2.3) can then be written as

p̂IS
fail =

1
N

N∑

i=1

1(H(Xi+θ )≥γ ) e–θXi– 1
2 |θ |2 , (2.8)

where Xi ’s are N iid random vectors with density g(x).
Furthermore, the second moment (first term in the right hand side of (2.5)) can also be

written in a simplified way

Eg

[
1{H(X)≥γ }

g(X)
gθ (X)

]
= Eg

[
1{H(X)≥γ } e–θX+ 1

2 |θ |2] =: v(θ ). (2.9)

Recalling that for maximizing the accuracy of the probability estimator p̂IS
fail one has to

find the pdf gθ (x) or equivalently to find the mean-shift θ , such that the variance σ 2
IS is

minimum. Moreover, the variance σ 2
IS would be minimum if the second moment v(θ ) is
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minimum. By minimizing v(θ ) we obtain a probability estimator with a smaller number of
simulations [2, Sect. 3.1] than with the standard MC simulation.

Under some assumptions it has been proved in [7] that the function v(θ ) has a unique
minimizer θ∗ such that ∇v(θ∗) = 0. The optimal θ∗ can be approximated with the Newton
algorithm by solving the following optimization problem

θ∗ = min
θ

vm(θ ) (2.10)

with

vm(θ ) =
1
m

m∑

j=1

1(H(Xj)≥γ ) e–θXj+
|θ |2

2 , (2.11)

the MC approximation of the second moment v(θ ). For details we refer to [2].
Following [2], there must be at least one Xj such that 1(H(Xj)≥γ ) �= 0 to solve the optimiza-

tion problem (2.10). However, this condition may fail in a rare event context. To overcome
this problem, a multilevel approach is suggested in [8] for solving such problems in the
context of cross-entropy approaches.

2.3 Multi-level approach for rare events simulations
In the multi-level approach, we solve the optimization problem (2.10) iteratively. Starting
with the mean θ (0) = 0 of the given density function g(x), we construct a sequence of mean-
shifts {θ (k), k ≥ 1} and a sequence of levels {γk , k ≥ 1}, and iterate in both γk and θ (k) until
convergence, see the steps 1 to 6 of the Algorithm 2.1 below. Following [8], each iteration k
of the multi-level approach consists of two phases; in the first phase we fix θ (k–1) and obtain
the level γk , and in the second phase we compute θ (k) using θ (k–1) and γk . The computation
of γk and θ (k) at iteration k is as follows:

1. Computation of γk : For fixed θ (k–1), we let γk to be a (1 – ρ)-quantile of H(X(k–1)), i.e.,

P
(
H

(
X(k–1)) ≥ γk

) ≥ ρ, (2.12)

P
(
H

(
X(k–1)) ≤ γk

) ≥ 1 – ρ, (2.13)

where X(k–1) ∼ gθ (k–1) (x) and ρ is a probability which is to be chosen such that
ρ � pfail, the probability to be estimated.

An estimator γ̂k of γk is obtained by drawing m random samples X(k–1)
i ∼ gθ (k–1) (x),

calculating the responses H(X(k–1)
i ) for all i, ordering them from smallest to largest

H (k–1)
(1) ≤ · · · ≤ H (k–1)

(m) where H (k–1)
(l) := H(X(k–1)

l ) and finally evaluating the (1 – ρ)
sample quantile as

γ̂k = H (k–1)
((1–ρ)m�), (2.14)

where x� is the smallest integer greater than or equal to x.
Note that the estimation γ̂k of γk depends on two parameters, the probability ρ and

the number of samples m. Our empirical results show that if we fix m = 1000 then a
good choice of ρ is 0.20 for getting an accurate estimation of γk . However, one may
choose a smaller ρ but that may require larger m for estimating γk accurately. For
more details we refer to [8, 9].
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2. Computation of θ (k): Let gθ (k–1) (x) be the density function known at iteration k and
gθ (k) (x) be the new density we want to obtain. The likelihood ratio of densities
gθ (k–1) (x) and gθ (k) (x) at iteration k is given by

L(k)(x) =
gθ (k–1) (x)
gθ (k) (x)

= e–(θ (k)–θ (k–1))x+ 1
2 (|θ (k)|2–|θ (k–1)|2). (2.15)

Therefore, the second moment (2.9) at iteration k can be extended as

v(k)(θ (k)) = Egθ (k)
[(

1(H(X(k))≥γk ) L(k)(X(k)))2]

= Egθ (k–1)
[
1(H(X(k–1))≥γk ) L(k)(X(k–1))], (2.16)

where X(k–1) ∼ gθ (k–1) and X(k) ∼ gθ (k) .
Using the above information the optimal mean-shift θ (k) can be approximated with

the Newton algorithm by solving the following optimization problem

θ (k) = min
θ

v(k)
m (θ ) (2.17)

with

v(k)
m (θ ) =

1
m

m∑

j=1

1(H(X(k–1)
j )≥γk ) e–(θ–θ (k–1))X(k–1)

j + 1
2 (|θ |2–|θ (k–1)|2) (2.18)

the MC approximation of the second moment v(k)(θ ).
Below we present the multi-level ISMC algorithm.

Algorithm 2.1 (Multi-level ISMC)
1. Set k = 1, θ (0) = 0 ∈R

d (then g(x) ≡ gθ (0) (x)), ρ = 0.2 and m = 1000.
2. Draw m samples X(k–1)

1 , . . . , X(k–1)
m according to the distribution gθ (k–1) (x).

3. Compute the (1 – ρ)-quantile γk of H(X(k–1)). If γk > γ reset γk to γ .
4. Introduce

v(k)
m (θ ) =

1
m

m∑

j=1

1(H(X(k–1)
j )≥γk ) e–(θ–θ (k–1)).X(k–1)

j + |θ–θ(k–1) |2
2 .

5. Solve θ (k) = minθ v(k)
m (θ ).

6. If γk < γ , go to step 2 with k ← k + 1, otherwise, go to step 7.
7. Compute (2.8) with θ∗ = θ (k).
8. End of the algorithm.

Figure 1 illustrates the multi-level ISMC approach (Algorithm 2.1) in the situation x ∈
R

2. Here, we assume that the optimal mean-shift θ∗ is estimated in four iterations. The
sample distribution per mean-shift θ (k) is shown by the ellipses. Moreover, the blue curves
(3-dotted are intermediate and 1-solid is the target) represent the contours at levels γk ,
k = 1, . . . , 4. Notice that γ4 = γ . We start by sampling from the original pdf gθ (0) (x) = g(x),
see steps 1 and 2 of the algorithm for iteration k = 1. Then we find the level γ1 (step 3).
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Figure 1 Multi-level (mean-shift) ISMC approach

Afterwards, we estimate θ (1) using the variance criterion in steps 4 and 5. Now, we go to
the second iteration and start by sampling from the new distribution gθ (1) (x). We repeat
the same procedure until convergence to the optimal mean-shift θ∗, see step 6. Here we
have γ4 = γ . Finally, we sample from the optimal pdf gθ∗ (x) (distribution is shown by green
ellipse centered at θ∗) and compute p̂IS

fail, see step 7.

3 The surrogate modeling technique
As stated in Sect. 1, we deal with circuits having a large number of statistical input vari-
ables. Usually, only a few of them are important i.e., having a statistical effect on the circuit
response. The remaining variables have a negligible or no statistical effect on the circuit
response. It should be noticed that almost all surrogate models (including Kriging) lose
their accuracy with increasing dimension and it is not possible to build an accurate surro-
gate model with a complete set of variables. Therefore, dimension reduction is required
before fitting a surrogate model. Dimension reduction is the process of reducing the num-
ber of random variables under consideration and is often divided into two categories: fea-
ture extraction and feature selection [10, Chap. 6]. In feature extraction, one performs the
projection of the original input space to a reduced space. The dimension of the reduced
space is much smaller than the original space. There exists a variety of different projection
methods. Among others Partial Least Squares Regression (PLSR) [11, 12] belongs to this
category. On the other hand, feature selection is the process of selecting a subset of im-
portant variables while other variables are set to their nominal values and removed from
the set of input variables used for building a surrogate model. Our experience with feature
extraction, especially with PLSR, shows that it requires a large number (which grows with
the dimension of the problem) of training samples to perform accurately, and therefore it
cannot be used when only a limited number of simulations are allowed. Hence, we prefer
to use a feature selection method that performs accurately even with a limited number of
simulations.

3.1 Feature selection
In circuit simulations, feature selection is a process of selecting a subset of important vari-
ables, having statistical effect on the circuit response of the circuit under study, while other
variables having no or negligible effect are set to their nominal values without incurring
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much loss of information. Several different approaches for feature selection exist, see for
examples [13]. Here we will employ the well known Least Absolute Shrinkage and Se-
lection Operator (LASSO) [14] which is stable and exhibits good properties for feature
selection.

3.1.1 LASSO
Let x = [x1, . . . , xd] be a vector of input variables and H(x) be a circuit response of interest.
We can approximate H(x) by a linear model

H(x) ≈ xb = b1x1 + · · · + bdxd, (3.1)

where b = [b1, . . . , bd]T is a column vector of regression coefficients. It is clear from (3.1)
that each component bj of b gives a certain amount of information of the relative impor-
tance of xj. In the context of circuit simulation the dimension of the vector x of input
variables is very large. However, only few of xj ’s are important. This means we are willing
to determine a small subset of variables that gives the main effects and neglect the small
effects. LASSO is a well known method that performs this task. Given a training set (Xi,
Hi)i=1,...,n where Xi are n random input vectors generated with some design of experiment
(see Sect. 3.2.1) and Hi := H(Xi) are the corresponding responses, and a tuning parame-
ter λ ≥ 0, LASSO estimates the components of b by minimizing the following Lagrangian
expression

b̂ = min
b

{ n∑

i=1

(Hi – Xib)2 + λ

d∑

j=1

|bj|
}

. (3.2)

Depending on the value of the tuning parameter λ, LASSO sets many coefficients exactly
to zero. The variables xj corresponding to the nonzero coefficients bj are selected as im-
portant variables. The computation of the LASSO solutions is a quadratic programming
problem and can be tackled by standard numerical analysis algorithms. However, the least
angle regression (LARS) [15] procedure is a better approach in terms of the computational
efficiency. The LARS algorithm exploits the special structure of the LASSO problem, and
provides an efficient way to compute the solutions simultaneously for all possible values
of λ. For detail we refer to [16, Sect. 3]. Among all solutions we choose the one that fits the
model (3.2) best by cross-validation. Another aspect of LASSO is the choice of the number
n of training samples. Typically, n should be much smaller than the dimension d (when d
is large). Our experiments show that n depends on the number of important parameters
rather than the dimension. The rule of thumb suggests to have 10 samples to each impor-
tant parameter. Therefore, if we assume there are maximum 50 important variables then
at most 50 × 10 = 500 simulations are required to performed LASSO accurately.

Once we have selected the important variables we are ready to build a surrogate (Krig-
ing) model. The surrogate model will be built with the important variables only.

3.2 The Kriging model
Remark 3.1 To avoid the use of additional notations, we will introduce the Kriging model
for an input vector x having full dimension d. However, in our algorithms, x will be used
in its reduced form. See Algorithm 4.1.
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The notion of a Kriging model, also known as Gaussian process regression in literature
[6], was initially developed in a geostatic framework [17]. The Kriging model also plays a
central role in the design and analysis of “computer experiments” [5, 18]. The main idea
of the Kriging model is to assume that the response function H(x) is a realization of a
Gaussian process G(x)

G(x) = f(x)Tβ + Z(x), (3.3)

where f(x)Tβ is a linear regression model on a given functional basis f(x) = [f1(x), . . . ,
fq(x)]T and a vector of regression parameters β = [β1, . . . ,βq]T .

For the numerical experiments in Sect. 5, we use the DACE Kriging toolbox [19] for
Matlab� to model the response function H(x). DACE provides the functional basis f(x)
as a set of polynomials of order 0, 1 and 2. In this paper, we use the linear functional basis,
i.e.,

f1(x) = 1, f2(x) = x1, . . . , fd+1(x) = xd. (3.4)

For details we refer to [19].
The second term Z(x) on the right hand side of (3.3) is a Gaussian process with zero

mean and covariance

E
[
Z(x)Z

(
x′)] = σ 2R

(
x, x′,�

)
, ∀(

x, x′) ∈X×X, (3.5)

where X ∈ R
d is the domain of input variable x, σ 2 is the process variance of G(x) and

R(x, x′,�) is a correlation function characterized by a vector of parameters � = [�1, . . . ,�d]T .
The choice of the correlation function R depends on the smoothness of the response

function H(x) [20]. Assuming H(x) is smooth, we use the following Gaussian correlation
function

R
(
x, x′,�

)
=

d∏

j=1

exp

(
–
∣∣∣∣
(xj – x′

j)2

�j

∣∣∣∣

)
. (3.6)

For other correlation functions we refer to [19, 20].

3.2.1 The Kriging predictor
We have a circuit model to be used for simulating the behaviour of a circuit. We find a or-
dered set D = (S, H), called the training set, where H = [H(s1), . . . , H(sNtr )]T is a vector of
observations that results from the circuit model on a set of experiments, S = [s1, . . . , sNtr ]T .
Notice that the notation s is used here for the input x to distinguish the training samples
from the one that will be used for the other simulations. The set of experiments is usually
referred to as a Design Of Experiments (DOE), see [5]. The construction of a Kriging pre-
dictor depends on D, and the DOE should be selected carefully in order to get the largest
amount of the statistical information about the response function over the input space.
In this report, we use the Latin Hypercube Sampling (LHS) space filling technique for our
DOE. We will not discuss the LHS in this paper, but we refer to [21].
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Following [19], given a training set D = (S, H) the Kriging predictor of an untried point
x, i.e., x /∈ S is given by:

Ĥ(x) = f(x)T β̂ + r(x)T R–1(H – Fβ̂), (3.7)

where

H =
[
H(si)

]
i=1,...,Ntr

, (3.8)

F =
[
fi(sj)

]
i=1,...,q,j=1,...,Ntr

, (3.9)

β̂ =
(
FT R–1F

)–1FT R–1H, (3.10)

R =
[
R(si, sj,�)

]
i=1,...,Ntr,j=1,...,Ntr

, (3.11)

r(x) =
[
R(x, si,�)

]
i=1,...,Ntr

. (3.12)

The prediction error also known as the Kriging variance at a point x is given by:

σ̂ 2
K (x) = σ 2(1 + u(x)T(

FT R–1F
)–1u(x) – r(x)T R–1r(x)

)
, (3.13)

where u(x) = FT R–1r(x) – f(x).

3.2.2 Estimation of parameters
Given a choice of regression and correlation models, the optimal values of the parameters
β , σ 2 and � can be inferred using the Maximum Likelihood Estimation (MLE). The MLE
of β is the generalized least-square estimate β̂ given in (3.9) and the MLE of σ 2 (see, [19,
Sect. 3]) is

σ̂ 2 =
1

Ntr
(H – Fβ̂)T R–1(H – Fβ̂). (3.14)

Using these β̂ and σ̂ 2 the optimal correlation coefficients �̂ of the correlation function
solve the following optimization problem

�̂ = min
�

|R|1/Ntr σ̂ 2, (3.15)

where |R| is the determinant of R. See [19].

4 A hybrid importance sampling Monte Carlo approach
In this section we propose a HISMC approach. This approach is a modification of the
hybrid approach proposed in [1, Sect. 4] and can be used for large circuits. Similar to
[1], we split the ISMC Algorithm 2.1 into two phases; The first is the Exploration Phase
that includes the steps 1 to 6 for estimating the optimal mean-shift θ∗, and the second
is the Estimation Phase that consists of step 7 for estimating the probability (2.8) using
the optimal value θ∗ of the mean-shift θ . In the HISMC approach, we will use a hybrid
combination of LASSO, the Kriging model and the circuit model. We will treat the two
phases (the exploration phase and the estimation phase) separately.



Tyagi et al. Journal of Mathematics in Industry            (2018) 8:11 Page 11 of 23

4.1 The exploration phase
The goal of the exploration phase is to find the optimal mean-shift θ∗. Here we replace
the indicator function 1(H(x)≥γk ) in step 4 of Algorithm 2.1 by an approximation 1(Ĥ(x)≥γk ),
where Ĥ(x) is the Kriging prediction of the response H(x) at some input x. Notice that the
accuracy of the model 1(Ĥ(x)≥γk ) is important and must be checked before its use. The Mis-
classification Error (MCR) is used as a measure of accuracy for the metamodel 1(Ĥ(x)≥γk ).

MCR =
1
N

N∑

i=1

1(1H(xi)≥γk �=1Ĥ(xi)≥γk
). (4.1)

A leave-one-out cross validation technique for the Kriging model is proposed by [22] and
it is used to estimate the MCR in this paper.

Before presenting our algorithm for the exploration phase, we want to mention some
preliminaries for extra understanding of the algorithm.

Remark 4.1 (Preliminaries)
(i) A new Kriging model is built at each level of the exploration phase, i.e., in general,

the Kriging model at iteration k is different from k – 1.
(ii) At each iteration k of the exploration phase, the feature selection (using LASSO) is

performed before fitting a Kriging model. Note that for iteration k, the feature
selection is performed on the reduced set of variables selected at iteration k – 1.

(iii) The notation LHS(θ (k–1) ± a) indicates the LHS in the interval
[θ (k–1) – a, θ (k–1) + a] where θ (k–1) ∈R

d is the mean of the known pdf gθ (k–1) (x) at
iteration k and a = [a, a, . . . , a] ∈R

d is a vector with a user defined positive
integer a.

(iv) Ntr, d and dr denote the size of a training set, the full and reduced dimensions of
the input vector X respectively.

(v) Define a design matrix S(k) = [s(k)
i ]Ntr×d where s(k)

i ∼ LHS(θ (k–1) ± a) are Ntr

training samples. In this paper, we use a = 3 so that a surrogate model can be fitted
to predict the response for the inputs lie in the range of 3-sigma. For a Gaussian
distribution 99.7% (almost all) samples lies in this range.

(vi) Given the design matrix S(k), the corresponding response vector is evaluated from
the circuit model and is denoted by H(k). Note that for iteration k, the columns of
S(k) corresponding to irrelevant variables (outcome of LASSO at iteration k – 1)
are set to zero (nominal values) before evaluating the outputs H(k).

(vii) Introduce the training set D(k)
r = (S(k)

r , H(k)) where S(k)
r ⊆ S(k) is the reduced design

matrix containing the columns of S(k) corresponding to the important variables
(outcome of the feature selection process).

(viii) In ISMC Algorithm 2.1, we have ρ = 0.2 and m = 1000 for estimating an
intermediate level γk at iteration k. Notice (from Fig. 1) that choosing larger value
of γk will give faster convergence to failure threshold γ . However, for doing that
we use a smaller ρ which needs a large n. In a surrogate based approach we use a
cheap model instead of the full circuit model and thus a large number m (say,
10,000) of simulations can be used, and therefore a small ρ (say, 0.05) is acceptable.

Algorithm 4.1 (HISMC/Exploration phase)
1. Set k = 1, θ (k–1) = θ (0) = 0 ∈ R

d , ρ = 0.05, m = 10,000, d(k–1)
r = d and a = 3.
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2. Choose Ntr = 200 if d(k–1)
r < 20, Ntr = 10d(k–1)

r if 20 ≤ d(k–1)
r ≤ 50 otherwise Ntr = 500.

3. Find the training set D(k) = (S(k), H(k)) at iteration k.
4. Perform feature selection using LASSO on the training set D(k).
5. Find d(k)

r and Dk
r = (Sk

r , Hk) the number of important variables and the reduced
training set, respectively.

6. Fit a Kriging model using the training set Dk
r .

7. Draw m iid random samples X(k)
1 , . . . , X(k)

m ∼ f (x, θ (k–1)) and estimate
Ĥ(X(k)

1 ), . . . , Ĥ(X(k)
m ) using the Kriging model.

8. Compute the (1 – ρ) sample quantile γk . If γk > γ reset γk to γ .
9. Introduce the Kriging based variance criterion

v(k)
m (θ ) =

1
m

m∑

j=1

(1{Ĥ(X(k)
j )≥γk})

2 e(–X(k)
j ·(θ–θ (k–1))+ 1

2 (|θ |–|θ (k–1)|2))

and compute θ (k) = arg minθ v(k)
m (θ ).

10. If γk < γ , return to step 2 and proceed with k ← k + 1, otherwise save θ∗ = θ (k),
dr = d(k)

r and the reduced set (say xr) of input variables.
11. Go to the estimation phase.

4.2 The estimation phase
Assuming that the optimal value θ∗ of the mean-shift θ is computed in the exploration
phase, our next goal is to find an estimation of the probability pfail. To this end, we build
a surrogate based accurate probability estimator. One simple approach [1] is to replace
the indicator function 1(H(Y)≥γ ) in (2.8) by its surrogate model 1(Ĥ(Y)≥γ ), where Ĥ(Y) is
the Kriging prediction of the response H(Y) at some input Y = X + θ∗. Here the Kriging
predictor is built on the training set with input vectors centered at θ∗. To get an impres-
sion of accuracy of the probability estimator we would like to have a confidence interval.
A candidate is Pseudo Confidence Interval (PCI), that depends on the Kriging variance, is
provided in [1]. However, there is no proof that the true probability would lie in the PCI.
Moreover, the PCI can be very wide if the Kriging prediction has a large variance. To pre-
vent loss of accuracy of the probability estimator, a hybrid approach is proposed by [23,
24] that combines the simulations of the Kriging model and the original system (circuit
model in our context). The original system is used only for the responses that are close
to the failure threshold. In this section we will use a similar approach based on the Krig-
ing model. Unlike the hybrid approach in [23] where the first surrogate model is used to
simulate, we check the accuracy of the model online and improve (re-build) it, if required.
The authors in [25] demonstrate the benefits of using an improved surrogate model which
might be useful to our application. In this paper, we use an adaptive sampling technique
to improve the Kriging model. We add some samples (adaptively) to the initial training set
from the region of interest, see step 14 in Algorithm 4.2. Due to the interpolation nature,
the Kriging model gives a better fit in that region after the improvement.

We start with drawing a training set D∗ = (S∗, H∗) where S∗ is the Ntr × d design ma-
trix with rows representing the Ntr random vectors generated with the LHS(θ∗ ± a) and
H∗ is an Ntr × 1 vector of corresponding responses. Then we perform the feature selec-
tion (using LASSO) and find the reduced training set D∗

r = (S∗
r , H∗) where S∗

r ⊆ S∗ is the
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reduced design matrix containing the columns of S∗ corresponding to the important vari-
ables. Afterward, we build a Kriging model on the updated training set D∗

r . Finally, we
build a hybrid indicator function Iγ (Y) called an emulator that combines the true indica-
tor function 1(H(Y)≥γ ) and its surrogate 1(Ĥ(Y)≥γ ) based on an accept/reject criterion. See
next section.

4.2.1 The emulator
We define an interval known as the “margin of uncertainty” [20] around the threshold γ .

M =
{

Y :
∣∣Ĥ(Y) – γ

∣∣ ≤ zα/2σ̂K (Y)
}

, (4.2)

where σ̂K (Y) is the Kriging variance at point Y, zα/2 = Φ–1(1 – α/2) with Φ–1(x) is the
inverse cumulative distribution function of the standard normal distribution. If α = 0.01
for which zα/2 = 2.58, we assume that there is 99% chance that a true value lies in the
interval γ – zα/2σ̂K (Y) ≤ Ĥ(Y) ≤ γ + zα/2σ̂K (Y).

The accept/reject regions are indicated in Fig. 2 which says that we accept the simulation
of the Kriging predictor Ĥ(Y) if Ĥ(Y) is reasonably away (Y /∈M) from the failure threshold
γ and we reject Ĥ(Y) if it is close (Y ∈ M) to γ . In the latter case the circuit model must
be used.

The mathematical formulation of the Emulator is given as follows

Iγ (Y) =

⎧
⎨

⎩
1(H(Y)≥γ ) if Y ∈ M,

1(Ĥ(Y)≥γ ), otherwise.
(4.3)

4.2.2 Probability estimator
The emulator-based probability estimator p̂E

fail of the failure probability pfail is given by

p̂E
fail =

1
N

N∑

i=1

Iγ (Yi) e–θ∗Xi– 1
2 |θ∗|2 (4.4)

Figure 2 The visualization of the accept/reject criterion
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and its variance can be estimated by

σ̂ 2
E =

1
N

Var
(
Iγ (Y) e–θ∗X– 1

2 |θ∗|2)

=
1
N
E

[(
Iγ (Y) e–θ∗X– 1

2 |θ∗|2 – p̂E
fail

)2]

≈ 1
N

[
1

N – 1

( N∑

i=1

(
Iγ (Yi) e–θ∗Xi– 1

2 |θ∗|2)2 – N
(
p̂E

fail
)2

)]

. (4.5)

Using (4.4) and (4.5), the 100(1 – α′)% confidence interval for the true probability pfail is
defined as

CI =
[
p̂E

fail – zα′/2σ̂E , p̂E
fail + zα′/2σ̂E

]
(4.6)

and the accuracy of the probability estimator p̂E
fail can be measured by the coefficient of

variation

CV = zα′/2
σ̂E

p̂E
fail

. (4.7)

The 95% confidence interval is the most commonly used interval that corresponds to
zα′/2 = 1.96 for α′ = 0.05. The accepted probability p̂E

fail is the one with a coefficient of vari-
ation CV ≤ 10%.

Combining the information from the exploration and estimation phases, the full HISMC
algorithm can be formulated as follows:

Algorithm 4.2 (HISMC/Estimation phase)
1. Use Algorithm 4.1 for finding the optimal mean-shift θ∗, the number dr of

important variables and the reduced set of (important) input variables xr .
2. Initialize the Estimation phase:

(a) Set a = 3 and Ntr = 200, 10dr , 500 if dr < 20, 20 ≤ dr ≤ 50, otherwise.
(b) Set the iteration parameter l = 0, maximum number of iterations lmax = 10, the

number n = 1000 of simulations used at iteration l, initialize the total number
N = 0 of simulations before iteration l, zα/2 = 2.58, zα′/2 = 1.96, tolerance of CV
tol_cv = 0.1, τ = 0, η = 0.

3. Get the training set D∗ = (S∗, H∗) where S∗ = [s∗
i ]Ntr×d with s∗

i ∼ LHS(θ∗ ± a) and
H∗ is a vector of corresponding responses.c

4. Perform feature selection using LASSO on the training set D∗.
5. Update the number dr of important parameters and find the reduced training set

D∗
r = (S∗

r , H∗). See preliminaries for Algorithm 4.1.
6. Fit a Kriging model.
7. Draw n iid random samples X(l)

i ∼ g(x) and shift them to Y(l)
i = X(l)

i + θ∗.
8. Find the Kriging predictions Ĥ(Y(l)

i ) and Kriging variances σ̂ 2
K (Y(l)

i ) using (3.7) and
(3.13), respectively.

9. Compute the likelihood weights w(l)
i = e–θ∗X(l)

i – 1
2 |θ∗|2 and v(l)

i = (w(l)
i )2 for all

i = 1, . . . , n.
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10. Determine τ ← τ +
∑n

i=1 w(l)
i Iγ (Y(l)

i ), η ← η +
∑n

i=1 v(l)
i Iγ (Y(l)

i ) and N ← N + n.
11. Compute p̂E

fail = τ
N and σ̂ 2

E = 1
N(N–1) (η – N(p̂E

fail)
2).

12. Calculate CV = zα′/2
σ̂E

p̂E
fail

.

13. If CV > tol_cv and l < lmax go to step 14 otherwise go to step 15.
14. Use the full simulations Nfull drawn to compute Iγ (Y(l)

i ), see definition (4.3). Select
some pointsd (say, min{10, Nfull}) uniformly among all Nfull simulations. Add these
samples into the training set and rebuild the Kriging model with the updated
training set. Go to step 6 with l ← l + 1.

15. Determine the 95% confidence interval

CI =
[
p̂E

fail – zα′/2σ̂E , p̂E
fail + zα′/2σ̂E

]
.

16. Save the probability p̂E
fail, the variance σ̂ 2

E , CI and the CV.
17. End of the algorithm.

5 Results and discussion
In this paper two realistic circuits are used for validation purpose. The first one is a VCO
with 1500 statistical input parameters and scalar response ‘oscillation frequency’ and the
second one is a memory cell with 2096 statistical input parameters and scalar response
‘read delay’. The ISMC and HISMC algorithms are repeated 100 times, and the empirical
results for both the exploration and estimation phase are compared. In the exploration
phase we compare the optimal mean-shift computed by both the algorithms and the re-
quired number of simulations. On the other hand, we compute the probability in the es-
timation phase, and therefore we need to measure the efficiency of the probability. When
we replace the circuit model with a surrogate model, the simulation time becomes negli-
gible, and one can take only true simulation runs into account for estimating the efficiency
of the algorithm. However, the surrogate model introduces a bias that may be very large.
Therefore, we use the following procedure to measure the efficiency of the emulator based
probability estimator.

1. Get a reference probability: Let p̂M
fail be a probability estimator of a method M for

estimating the probability pfail. To estimate empirically the bias in p̂M
fail we need a

reference probability pref
fail. A simple estimation p̂ref

fail of pref
fail can be obtained by running

ISMC Algorithm 2.1 with a small coefficient of variation (say less than 1%).
2. Perform Nrep experiments of method M: Notice that a probability generated from the

MC estimator p̂M
fail is a random number and thus comparing a single outcome of p̂M

fail

with the reference probability p̂ref
fail is not valid. Hence, we perform Nrep independent

experiments of the method M and store Nrep outcomes p̂M
fail(i) and their confidence

intervals CIM(i) for i = 1, . . . , Nrep.
3. Then we compute

(a) Relative bias: The relative bias εrel of the estimator p̂fail with respect to the
reference probability p̂ref

fail

εrel
(
p̂M

fail
)

=
p̂ref

fail – mean(p̂M
fail)

|p̂ref
fail|

× 100%, (5.1)



Tyagi et al. Journal of Mathematics in Industry            (2018) 8:11 Page 16 of 23

where

mean
(
p̂M

fail
)

=
1

Nrep

Nrep∑

i=1

p̂M
fail(i). (5.2)

Note that we do not use absolute value for the numerator in (5.1), since it gives
an indication whether or not p̂M

fail underestimates or overestimates the reference
value.

(b) Central Coverage Probability (CCP): The CCP for the estimator p̂M
fail, which is the

probability that p̂ref
fail lies within CIM, is given by

CCP
(
p̂M

fail
)

=
1

Nrep

Nrep∑

i=1

1{p̂ref
fail∈CIM(i)}. (5.3)

For a 95% confidence interval CIM, an unbiased estimator p̂M
fail and a large Nrep

the CCP must be 0.95 (approximately). However, for a biased estimator CCP
might be smaller than 0.95. We assume that a (biased) estimator is good enough
if it does not have CCP lower than 0.90, i.e., a 5% error in the confidence interval
is acceptable.

(c) Mean Squared Error (MSE): The MSE of p̂fail is computed as

MSE
(
p̂M

fail
)

=
1

Nrep

Nrep∑

i=1

(
p̂M

fail(i) – p̂ref
fail

)2. (5.4)

Note that MSE(p̂M
fail) can be written as

MSE
(
p̂M

fail
)

=
1

Nrep

Nrep∑

i=1

(
p̂M

fail(i) – mean
(
p̂M

fail
))2 +

(
mean

(
p̂M

fail
)

– p̂ref
fail

)2

= Var
(
p̂M

fail
)

+
(
bias

(
p̂M

fail
))2. (5.5)

Then we can say that the MSE is the sum of variance and squared bias of the
estimator which provide a useful way to estimate the efficiency of a biased
estimator (see 4 below).

4. Estimate the Efficiency Metric: We now introduce an efficiency estimator denoted by
Êff and given as

Êff(M1, M2) =
MSE(p̂M1

fail )
MSE(p̂M2

fail )
�TM1
�TM2

, (5.6)

where �TM1 and �TM2 are the average computational costs (CPU time) required for
method M1 and M2, respectively.

If Êff(M1, M2) = κ > 1, it means that method M1 requires κ times more
computational cost than M2 to obtain the same accuracy. If Êff(M1, M2) > 1 then
estimator M2 is preferred to M1.
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5.1 The VCO
5.1.1 Results of the exploration phase
Figure 3 indicates the computation of the mean-shift θ (k) and the target level γk at each
iteration of the exploration phase. Note that we plot the empirical means of ‖θ (k)‖ and
γk from the ISMC and HISMC algorithms repeated 100 times. In both figures, the blue
dotted curves with asterisks stand for the ISMC approach and the red dotted curves with
squares are for the HISMC approach. We start with θ (0) = 0 and compute the pair (γk , θ (k)),
iteratively. It can be seen from the figure (at right) that the ISMC algorithm takes 7 itera-
tions to reach the target γ = 1900. However, the HISMC algorithm takes only 4 iterations.
Indeed, in the case of ISMC we used ρ = 0.2 and m = 1000 for estimating the intermediate
levels γk . On the other hand, in HISMC we replace the expensive circuit model by the Krig-
ing model that allows us to use more samples (m = 10,000) and then a smaller value of ρ

(0.05) is acceptable. Clearly, HISMC makes bigger steps that results into less iterations. In
the left plot the estimated norm of the mean-shifts corresponding to γk is shown at level k.
From Tables 1 and 2, the last ‖θ (k)‖ of both methods are 6.42 and 6.44. The HISMC has
only 0.3% relative error with respect to ISMC and thus we can see in Fig. 3 that the last
‖θ (k)‖ of both methods lies on the same (black horizontal) line, approximately.

Tables 1 and 2 represent the numerical results for the exploration phase of the ISMC
and the HISMC algorithm, respectively. The first, second, third and fourth columns rep-
resent the iteration number k, the number of full simulations, the intermediate level γk

and the mean-shift θ (k) per iteration, respectively. The fifth and sixth column in Table 2
represent the reduced dimension dr and the LOO-MCR (leave-one-out misclassification

Figure 3 VCO: The mean-shifts θ (k) and intermediate levels γk at iteration k

Table 1 Memory cell: ISMC exploration phase

Iteration (k) #Runs γk ‖θ k‖
1 1000 1600 1.20
2 1000 1655 2.18
3 1000 1710 3.20
4 1000 1764 4.14
5 1000 1816 5.06
6 1000 1868 5.92
7 1000 1900 6.42

Total 7000
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Table 2 VCO: HISMC exploration phase

Iteration (k) #Runs γk ‖θ k‖ dr LOO-MCR (%)

1 500 1645 1.87 27 0.6
2 270 1738 3.64 25 0.3
3 250 1835 5.38 24 1.0
4 240 1900 6.44 24 1.0

Total 1260

Table 3 VCO: reference probability estimation

Method Probability (p̂ref
fail) CV (%) #Runs

Reference 1.10× 10–10 0.99 345,000

Table 4 VCO: ISMC versus HISMC probability estimation

Method Mean probability CV (%) εrel (%) CCP MSE #Runs

ISMC 1.10× 10–10 8.14 0 0.94 2.34× 10–23 5000
HISMC 1.07× 10–10 9.21 2.92 0.92 3.27× 10–23 457

error) at iteration k, respectively. Recalling the training sample rule (see Algorithm 4.1),
we draw 500 training samples at iteration k = 1 (see the second column) since d = 1500
which is greater than 50. The training sample size at iteration k + 1 depends on the re-
duced dimension dr (fifth column) at iteration k. Further, the LOO-MCR (4.1) stands for
the “leave one out misclassification error” of the Kriging model at iteration k. We can see
that the maximum error is 1% (for k = 3 and 4).

Moreover, it can be seen that the ISMC requires total 7000 simulations to estimate the
optimal mean-shift. On the other hand, HISMC requires 1260 full simulations only.

5.1.2 Results of the estimation phase
Given the optimal mean-shift from the exploration phase, we estimate the failure proba-
bility pfail. First we get a reference probability pref

fail by running the ISMC algorithm with a
small (less than 1%) coefficient of variation. The reference results are shown in Table 3.
The probability p̂ref

fail is being useful to measure the bias, MSE and thus the efficiency of the
HISMC method.

Now we present the empirical results of the estimation phase of the ISMC and HISMC
algorithms. Recall that these results are based on the 100 experiments, i.e., both the algo-
rithms are repeated 100 times with different ‘seed’ of the random generator each time. It
is worth mentioning here that we performed a feature selection before fitting the Kriging
model in the estimation phase of the HISMC algorithm and we also rebuild the Kriging
model many times during the process. The average number of important parameters is
dr = 23. Before converging the probability up to the required accuracy, we rebuild the
Kriging model 4 times by adding some samples from the region near to the failure thresh-
old. Table 4 represents the results of the estimation phase of the ISMC and HISMC algo-
rithms. The mean probability, the average coefficient of variation (CV(%)) and the mean
squared error (MSE) are computed for both of the techniques. We also computed the rel-
ative bias (εrel(%)) and the central coverage probability (CCP) for the HISMC technique.
The last column indicates the total number (#Runs) of true simulations used in the esti-
mation phase.
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Figure 4 VCO: Empirical probability distributions of ISMC and HISMC from Nrep = 100 experiments with mean
1.10× 10–10 and 1.07× 10–10, respectively

The results in Table 4 are visualized by Fig. 4. The left and right-hand side plots show the
probability distributions from Nrep = 100 experiments (repetitions) of ISMC and HISMC
methods, respectively. The vertical solid ‘black’ line in the center represents the mean
of the Nrep random values of the failure probability. The dotted line in the center is the
reference probability p̂ref

fail. The two dashed lines around the center represent the 95% con-
fidence interval. Clearly, the reference probability p̂ref

fail lies within the 95% empirical CI for
both the methods. Moreover, the difference between mean and the reference probabil-
ity gives the bias in the probability estimator. For the HISMC estimator (right-hand side
plot), a bias (εrel = 2.92%) can be noticed. Because of this bias, the CCP is equal to 0.92
(see Table 4) which is smaller than 0.95 (the desired probability for a 95% CI). We assume
that for Nrep = 100 a CCP with less than and equal to 5% error is acceptable. For more
accurate estimation of the bias εrel and CCP we need to perform a larger number Nrep

(say 1000) of experiments. Finally, we estimate the efficiency of the HISMC with respect
to the ISMC method. Recalling formula (5.6), we require the mean squared error and the
average CPU time for both methods. The mean squared error is given in Table 4. The aver-
age CPU times required for ISMC and HISMC are T̄ISMC = 82,239 s and T̄HISMC = 9676 s,
respectively. Thus, we get

Êff(ISMC, HISMC) =
MSE(p̂IS

fail) × T̄ISMC

MSE(p̂E
fail) × T̄HISMC

=
2.34 × 10–23 × 82,239
3.28 × 10–23 × 9676

≈ 6.

This means that ISMC requires approximately 6 times more CPU time than HISMC to
achieve the same accuracy. Hence, we get a speedup of factor 6.

5.2 The memory cell
5.2.1 Results of the exploration phase
Similar to the VCO, both the ISMC and HISMC algorithms were repeated Nrep = 100 times
with a different seed of the random generator each time. The mean results (average of 100
experiments) of the exploration phase are given in this section.

Figure 5 indicates the computation of the mean-shift θ (k) and the intermediate failure
thresholds γk at each iteration of the exploration phase for the memory cell. Here the
target threshold failure γ = 902 is reached in 6 and 4 iterations (right plot) per method.
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Figure 5 Memory cell: the mean-shifts θ (k) and intermediate levels γk at iteration k

Table 5 Memory cell: ISMC exploration phase

Iteration (k) #Runs γk ‖θ k‖
1 1000 878.72 1.30
2 1000 884.99 2.36
3 1000 890.40 3.38
4 1000 896.01 4.14
5 1000 901.10 5.26
6 1000 902.00 5.31

Total 6000

Table 6 Memory cell: HISMC exploration phase

Iteration (k) #Runs γk ‖θ k‖ dr LOO-MCR (%)

1 500 883.38 1.91 35 2.0
2 350 892.40 3.64 34 1.0
3 340 901.75 5.30 33 1.0
4 330 902.00 5.32 33 1.0

Total 1520

The last ‖θ (k)‖ which are known as optimal-mean shift have the values 5.31 and 5.32 for
the ISMC and HISMC methods, respectively. Thus, ‖θ (k)‖ for both methods converge to
the same line. To this end, we can say that HISMC gives a good estimation of the mean-
shift computed with ISMC.

Tables 5 and 6 show the numerical results from the exploration phase of the ISMC and
HISMC, respectively. It can be seen from the tables that HISMC requires 1520 full simu-
lations (used for training the Kriging models) for estimating the optimal mean-shift. On
the other hand, ISMC requires 6000 simulations.

5.2.2 Results of the estimation phase
The reference probability p̂ref

fail is shown in Table 7. Again, the p̂ref
fail is computed using ISMC

algorithm with a small coefficient of variation.
The empirical results of the estimation phase with Nrep = 100 experiments of ISMC and

HISMC methods are shown in Table 8. It is worth noting here that, in HISMC, we perform
the dimension reduction (using LASSO) before fitting the initial Kriging model in the
estimation phase. The average number of important parameters is dr = 33. Moreover, we
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Table 7 Memory cell: reference probability estimation

Method Probability (p̂ref
fail) Variance (σ̂ 2

ref ) CV (%) #Runs

ISMC 6.01× 10–8 9.26× 10–20 0.99 315,000

Table 8 Memory cell: ISMC versus HISMC probability estimation

Method Mean probability CV (%) εrel (%) CCP MSE #Runs

ISMC 6.02× 10–8 7.85 –0.17 0.95 3.65× 10–18 5000
HISMC 5.98× 10–8 6.83 0.51 0.96 3.70× 10–18 1130

Figure 6 Memory cell: probability distributions of ISMC and HISMC methods from Nrep = 100 experiments
with mean 6.02× 10–8 and 5.98× 10–8, respectively

rebuild the Kriging model 4 times (during the process) by adding some samples from the
region near to the failure threshold. Furthermore, we see in the table that the relative bias
(εrel) for HISMC is small, and therefore we have a good estimation of the CCP.

Similar to VCO, the probability distribution plots from Nrep = 100 experiments (repeti-
tions) of ISMC and HISMC methods are shown in Fig. 6. Clearly, the reference probabil-
ity p̂ref

fail lies within the 95% empirical CI for both the methods. Moreover, the difference
between mean and the reference probability gives the bias in the probability estimator.
Compared to VCO we here see a smaller bias in the HISMC estimator. The reason is the
small number Nrep = 100 of experiments. For accurate estimation of the bias εrel and CCP
we need to perform a higher number Nrep (say 1000) of experiments.

Finally, we estimate the efficiency of the HISMC with respect to the ISMC method. The
mean squared error is given in Table 8. The average CPU times required for ISMC and
HISMC are T̄ISMC = 53,448 s and T̄HISMC = 7922 s, respectively. Thus, we get

Êff(ISMC, HISMC) =
3.65 × 10–18 × 53,448
3.70 × 10–18 × 7922

= 6.7.

This means that ISMC requires approximately 6.7 times more CPU time than HISMC to
achieve the same accuracy. Hence, we get a speedup of factor 6.7, and therefore we prefer
the HISMC over the ISMC.
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6 Conclusion and future work
In this paper we proposed a HISMC approach for yield optimization of circuits having a
very large number of input variables and scalar response. Moreover, we assume that only
a few (say less than 35) of the input variables are important. The HISMC approach uses
a feature selection method (LASSO) that reduces the dimension of the input variables of
an underlying problem that allows us to fit the Kriging model on the reduced dimension.
The Kriging model is used for most of the simulations and makes a significant reduction
on runs from the expensive to use circuit model. Although it is hard or even impossible
to quantify the bias in the probability estimator, the Emulator prevents loss of accuracy
by using the true simulations near to the failure threshold. For future work we will try
to compare the HISMC approach (in terms of efficiency and robustness) with a hybrid
approach proposed by [24] and with commercially available methods (e.g., Solido� and
MunEDA�). More focus will be on multi-input and multi-output circuits, especially in
considering output H(x) with more constraints involved.
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Endnotes
a We use the SPICE-like Eldo� simulator from Mentor Graphics� to perform the circuit simulations.
b Note that, in this paper, we only consider a scalar response of the circuit. However, for the cases where a circuit has

multiple responses, the algorithm proposed in this paper has to be repeated for each output, individually. This
process will reduce the overall speedup of the proposed method. For such cases a further research is required.

c The columns of S∗ corresponding to irrelevant variables (complement of xr ) are set to zeros before evaluating the
outputs H∗ .

d The purpose of selecting these points is to improve the Kriging predictor in the margin of uncertainty.
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