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Computing the Fréchet distance with shortcuts is NP-hard

Maike Buchin⇤ Anne Driemel† Bettina Speckmann⇤

Abstract

We study the shortcut Fréchet distance, a natural
variant of the Fréchet distance that allows us to take
shortcuts from and to any point along one of the
curves. We show that, surprisingly, the problem of
computing the shortcut Fréchet distance exactly is
NP-hard. Furthermore, we give a 3-approximation
algorithm for the decision version of the problem.

1 Introduction

Measuring the similarity of two curves is an important
problem which occurs in many applications. A popu-
lar distance measure, that takes into account the con-
tinuity of the curves, is the Fréchet distance. Imagine
walking forwards along the two curves simultaneously.
At any point in time, the two positions have to stay
within distance ". The minimal " for which such a
traversal is possible is the Fréchet distance. In gen-
eral, the Fréchet distance can be computed by the
algorithm of Alt and Godau [1] in O(n2 logn) time.
Despite its versatility, the Fréchet distance has one
serious drawback: it is a bottleneck distance. Hence
it is quite sensitive to outliers, which are frequent in
real world data sets. To remedy this Driemel and
Har-Peled [3] introduced a variant of the Fréchet dis-
tance, namely the shortcut Fréchet distance, that al-
lows shortcuts from and to any point along one of the
curves. The shortcut Fréchet distance is then defined
as the minimal Fréchet distance over all possible such
shortcut curves.
The shortcut Fréchet distance automatically cuts

across outliers and allows us to ignore data specific
“detours” in one of the curves. Hence it produces
significantly more meaningful results when dealing
with real world data than the classic Fréchet distance.
Consider the following example. Birds are known to
use coastlines for navigation, e.g., the Atlantic flyway
for migration. However, when the coastline takes a
“detour”, like a harbor or the mouth of a river, the
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bird ignores this detour, and instead follows a short-
cut across. See the example of a seagull in the figure,
navigating along the coastline of Zeeland while tak-
ing shortcuts between the islands. Using the shortcut
Fréchet distance, we can detect if the trajectory of the
bird is similar to the coastline. The shortcut Fréchet
distance can be interpreted as a partial distance mea-
sure. Note that a di↵erent notion of a partial Fréchet
distance was developed by Buchin et al. [2].

Definitions. A curve T is a continuous mapping
from [0, 1] to IR2, where T (t) denotes the point on the
curve parameterized by t 2 [0, 1]. Given two curves T
and B in IR2, the Fréchet distance between them is

dF(T,B) = min
f :[0,1]![0,1]

max
↵2[0,1]

kT (f(↵))�B(↵)k ,

where f is an orientation-preserving reparameteriza-
tion of T . We call the line segment between two
arbitrary points B(y) and B(y0) on B a shortcut

on B. Replacing a number of subcurves of B by
the shortcuts connecting their endpoints results in
a shortcut curve of B. Thus, a shortcut curve is
an order-preserving concatenation of non-overlapping
subcurves of B that has straight line segments con-
necting the endpoints of the subcurves. Our input
are two polygonal curves: the target curve T and
the base curve B. The shortcut Fréchet distance
dS(T,B) is now defined as the minimal Fréchet dis-
tance between the target curve T and any shortcut
curve of the base curve B.

Results. In this paper we study the complexity of
computing the shortcut Fréchet distance. Driemel
and Har-Peled [3] described approximation algorithms
for the shortcut Fréchet distance in the restricted case
where shortcuts have to start and end at input ver-
tices. Specifically, they gave a (3 + ")-approximation
algorithm for the vertex-restricted shortcut Fréchet
distance between c-packed polygonal curves that runs
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in O(c2n log3 n) time for two c-packed polygonal
curves of complexity n. Firstly, we outline how to
combine the algorithmic layout of Driemel and Har-
Peled [3] with a line stabbing algorithm of Guibas et
al. [4] to obtain a 3-approximation algorithm for the
decision version of the general shortcut Fréchet dis-
tance which runs in O(n3 logn) time. This result is
described in the full version of this paper.
Secondly, we show that, surprisingly, in the gen-

eral case, where shortcuts can be taken at any point
along a curve, the problem of computing the short-
cut Fréchet distance exactly is NP-hard. An impor-
tant observation is that the reachable free space of the
matchings may fragment into an exponential number
of components. We use this fact in our reduction to-
gether with a mechanism that controls the sequence
of free space components that may be visited. In this
abstract we describe the construction, we prove the
correctness in the full version.

2 NP-Hardness

Assume an instance of SUBSET-SUM is given to us
as n positive integers S = {s1, s2, . . . , sn} and a pos-
itive integer �. Recall that the problem is to de-
cide whether there exists an index set I, such thatP

i2I si = �. We now describe a construction of a
target curve T and base curve B such that there ex-
ists a shortcut curve of the base curve that is within
Fréchet distance 1 to the target curve if and only if
there exists a subset of S of which the total sum is �.

Basic Idea. The base curve has several horizontal
edges within distance 1 of the target curve. A feasi-
ble shortcut curve has to visit a well-defined subse-
quence of these edges. Any possible visiting sequence
will encode a di↵erent subset of S. Let I be an in-
dex set which defines such a subset S0 ✓ S, we call
si =

P
1ji,j2I sj the ith partial sum of S0. The

incremental partial sums encoded by a shortcut curve
are encoded on certain edges of the base curve by the
particular point where the shortcut visits the edge.
We can restrict the solutions to the Fréchet problem
to have this specific form by using what we call pro-
jection centers. These are certain points on the target
curve, which have to be visited by any curve that is
within Fréchet distance 1 to the target curve. Intu-
itively a shortcut of a feasible shortcut curve has to
start and end at particular edges of the base curve and
intersect a projection center in between. Hence we can
think of the shortcut as a projection. The construc-
tion is such that a shortcut that enters a gadget will
have two edges of the base curve available as possible
destinations. The corresponding projections will then
cascade through the projection centers of the gadget
and are bundled again on the last edge of the gad-
get, where they have a certain distance to each other,
which encodes one of the input values.

General layout and notation. We denote with
H0, H1, H�1 and H↵ the horizontal lines at 0, 1,�1
and ↵. All relevant vertices of the construction lie on
these lines (see Figure 1) and hence it is usually su�-
cient to specify their x-coordinates. We slightly abuse
notation by denoting the x-coordinate of a point and
the point itself with the same variable, albeit using a
di↵erent font.
The target curve consists entirely of edges that lie

on the x-axis. In Figure 1, the curve drawn below
the x-axis illustrates the topology of the target curve.
Clearly all feasible shortcut curves have to lie within
the hippodrome of radius 1 around the target curve.
The ith gadget defines a subcurve Ti. The vertices of
Ti, except for the initialization and the terminal gad-

get, are defined by the parameters c(i)j for 1  j  4.

These are (c(i)1 + 1, 0), (c(i)1 � 1, 0), (c(i)2 + 1, 0), (c(i)2 �
1, 0), (c(i)3 + 1, 0), (c(i)3 � 1, 0), (c(i)4 + 1, 0), (c(i)4 � 1, 0)
in this order. Thus, the edges of the target curve
are generally running in positive x-direction, except
for some edges of length two, which are centered at

the points (c(i)j , 0). We call these points projection

centers. The construction of the base curve is such
that any feasible shortcut curve has to go through the
projection centers. In particular, this is enforced by
the fact that we place all edges of the base curve at
distance at least 2 away from the projection centers.

The base curve has relevant edges e(i)j , for 1  j  7
and 0  i  n, where j defines the order along the
base curve. These edges lie on the horizontal lines H1,
H�1 and H↵ at 1,�1 and ↵ 2 (0, 1). We call these
edges docking edges , since they are the edges visited
by the feasible shortcut curves. The docking edges
run in negative x-direction. The remaining edges of
the base curve are outside the hippodrome, except for
connector edges , which vertically connect to dock-
ing edges on H↵ and run in positive y-direction.

Global variables. The construction uses four global
variables ↵ 2 (0, 1),� > 0, and � > 0. The param-
eter ↵ is besides 1 and �1 the y-coordinate of the
horizontal lines that support the docking edges. The
parameter � controls the minimal horizontal distance
between docking edges that lie in between two con-
secutive zones. The function of the parameter � is
two-fold. Firstly, it is the minimum di↵erence of two
partial sums. This can be ensured by scaling the in-
stance by �, such that si/� � 1 for 1  i  n and
�/� � 1. Secondly, we choose � su�ciently large to
ensure that a feasible shortcut curve cannot visit any
edges other than docking edges and only in the pre-
scribed visiting order.

Encoding of a solution. A shortcut curve B⌃ of
the base curve encodes a subset S0 ✓ S as follows:
The value si is included in S0 if and only if B⌃ visits

e

(i)
1 . Any feasible shortcut curve B⌃ also encodes an
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approximation of its incremental partial sums in the
distance between the point where B⌃ visits the edge

e

(i)
7 to the endpoint of this edge a

(i)
7 . By choosing the

global parameter � carefully, we can ensure that two
distinct partial sums have a minimum di↵erence that
exceeds the approximation error. By construction of
the terminal gadget any feasible shortcut curve has to

visit e

(n)
7 at a point that is in distance � + � to the

point a(i)7 . This implies that only shortcut curves that
encode a subset that sums to � can be feasible.

Construction of the gadgets. We now describe the
part of the construction of the gadgets that is specific
to the instance of the problem. That is, we give exact
choices of the coordinates of the two curves. The con-
struction is incremental. Given the endpoints of edge

e

(i�1)
7 , as defined by the (i�1)th gadget and the value
si, we describe how to construct the subcurves of the
intermediate gadget Gi. We describe the initialization
and the terminal gadget afterwards. Since all relevant
vertices of the base and target curve lie on horizontal
lines as indicated in Figure 1, we need to choose only
their x-coordinates. The construction goes through
several rounds of fixing the position of the next pro-

jection center and then projecting an endpoint a(i)j of

one edge to obtain the endpoint a

(i)
j+1, a

(i)
j+2, or a

(i)
j+3

of another edge. The endpoint b(i)j is projected in the
same way. Thus, we obtain the first point of one edge
by projecting the last point of another and the other
way around.
The detailed construction is described in the full

version of the paper. Here, we only describe how to
pick the first and the last projection center. From

Gi�1, we are given the values of a(i�1)
7 and b(i�1)

7 .

Let ` = b(i�1)
7 � a(i�1)

7 and let hi = b(i�1)
7 +�+ `. We

choose ci1 as the x-coordinate where the line through

(hi,�↵) and (b(i�1)
7 ,�1) passes through H0. We ob-

tain a(i)j and b(i)j for 1  j  6 from the subsequent
projections through the constructed projection cen-

ters as shown in the figure. Now, Let pi = a(i)6 �si. We

choose c(i)4 as the x-coordinate where the line through

(pi, 1) and a

(i)
5 passes through H0. And finally we

project the points a

(i)
5 , b(i)5 , a(i)6 and b

(i)
6 through the

last projection center c

i
4 onto H�1. We then choose

a(i)7 as the minimum of the obtained x-coordinates and

b(i)7 as the maximum of the obtained x-coordinates.

In this manner we obtain the docking edges e(i)j for

1  j  7. We connect e(i�1)
7 to e

(i)
1 using edges that

lie outside the hippodrome. Similarly we connect the
remaining edges in the order of j using vertical con-
nector edges for the edges lying on H↵ and otherwise
edges that lie outside the hippodrome.

Initialization. We place the first vertex of the target

curve at (a(0)0 , 0) = (0, 0) and the first vertex of the

base curve at (a(0)0 , 1) = (0, 1). The base curve then
continues to the left on H1 while the target curve
continues to the right on H0. G0 has one projection

center (c(0)1 , 0), we define it by c(0)1 = � + 2. Then we

define e

(0)
7 such that a

(0)
0 projects onto the center of

this edge and such that the projection is in distance �

to both endpoints. That is, we define a(0)7 = c(0)1 + 2

and b(0)7 = c(0)1 +2�+2. Now, the next gadget G1 can
be constructed as described above.

Terminal gadget. We choose the very last pro-

jection center by setting c(n+1)
1 = b(n)7 + 2. Let

p� = (a(n)7 + � + �) and project the point (p�,�1)
through this projection center onto H1 to obtain a
point (a�, 1). We finish the construction by letting
both the target curve and the base curve end on a
vertical line at a�. The target curve ends on H0 ap-
proaching from the left, while the base curve ends on
H1 approaching from the right.

Proof Idea. Consider the following construction of
a shortcut curve that encodes a given subset S0 ✓ S.
We start in B(0), and subsequently project through
all projection centers. In the intermediate gadget for

si, we visit e(i)1 if si 2 S0, otherwise we visit e(i)2 . Fi-
nally, we choose B(1) as the last vertex of our short-
cut curve. We claim that this curve is feasible if and
only if S0 is a solution. This can be proven by a
repeated application of the intercept theorem. Note
that this curve visits any edge of the base curve in
at most one point. Clearly not all feasible shortcut
curves have this property. However, they have to be
approximately monotone by the construction of the
target curve. This helps us to bound the error in the
encoding of the partial sums.

Acknowledgements. We thank Maarten Lö✏er for
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