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Samenvatting

Identifiability and identification methods for dynamic networks

Opwarming van de aarde zal gelimiteerd worden door de uitstoot van broeikasgassen te
verminderen. Hierin speelt verdere ontwikkeling van technologiën zoals hernieuwbare
energiebronnen en een slim electriciteitsnet een hoofdrol. Sommige uitdagingen in
het slimme electriciteitsnet zoals oscillaties, instabilitiet, en het ontwerp van regelaars
kunnen worden opgelost met behulp van dynamische modellen. Het electriciteitsnet
en andere moderne toepassingen bestaan uit vele gekoppelde sub-systemen, en de
interacties tussen sub-systemen kunnen worden weergegeven in een dynamisch netwerk
model. Een dynamisch netwerk model bestaat uit knooppunten die gemeten signalen
weergeven, modules die het dynamische gedrag weergeven, en excitatie vanuit de niet-
gemodelleerde wereld. Modelleren op basis van data is een manier om een dynamisch
netwerk model te verkrijgen, en het veld bekend als systeem identificatie houdt zich
bezig met het modelleren van dynamische systemen. Het kader van dit proefschrift
is gelimiteerd tot het identificeren van lineare tijd-invariante netwerken op basis van
data.
Identificatie methodes worden gewoonlijk opgesteld op basis van een beperkte exper-
imentele structuur. In het geval van een dynamisch netwerk wordt bijvoorbeeld een
beperkte topologie opgelegd, wat kan leiden tot een onnauwkeurig model wanneer de
verkeerde topologie gekozen is. Daarbij wordt gekozen welke knooppunten gemeten
worden, maar het is niet exact duidelijk welke knooppunten gemeten moeten wor-
den om een bepaald doel te bereiken. Een flexibele experimentele structuur wordt
opgezet waar verschillende keuzes voor topologie en externe excitatie mogelijk zijn.
Het uitbreiden van netwerk identificatie methodes voor deze flexibele experimentele
structuur is niet triviaal. In dit proefschrift wordt vastgesteld welke restricties in
de experimentele structuur voldoende en noodzakelijk zijn, en een efficiënte identifi-
catie methode voor deze flexibele structuur wordt opgesteld zowel in theorie als in een
functioneel algoritme.
Met een flexibele experimentele structuur kan het voorkomen dat twee netwerk mod-
ellen niet kunnen worden onderscheiden op basis van data. Het concept netwerk iden-
tificeerbaarheid wordt gëıntroduceerd als eigenschap die beschrijft of dat modellen
van elkaar onderscheiden kunnen worden. Netwerk identificeerbaarheid kan worden
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gegarandeerd door beperkingen in the experimentele structuur aan te brengen, bi-
jvoorbeeld door de toegestane dynamica, topologie, externe excitaties, of verstoringen
te beperken. Eenvoudig te verifiëren condities op basis van de netwerk topologie zijn
opgesteld die garanderen dat een set van netwerk modellen generiek netwerk identi-
ficeerbaar is. Op deze manier kan de meest flexibele experimentele structuur gebruikt
worden om te modelleren.
Het is een uitdaging om dynamische netwerk modellen van hoge kwaliteit te schat-
ten voor situaties met algemene verstoringen. Gecorreleerde verstoringen met een
spectrum van gereduceerde rang worden nauwelijks geadresseerd in de literatuur. De
joint-direct methode wordt gëıntroduceerd als een oplossing voor deze uitdaging. Een
afleiding op basis van een analyse van voorspellers leidt naar deze joint-direct methode.
De methode leidt tot schattingen van hoge kwaliteit, wat zichtbaar is in de bewezen
eigenschappen. Onder bepaalde voorwaarden is de joint-direct methode gelijk aan de
Maximum Likelihood schatting. Daarnaast kan de methode een variantie behalen die
gelijk is aan de Crámer-Rao ondergrens. De Maximum Likelihood en Crámer-Rao on-
dergrens resultaten zijn opgesteld voor verstoringen met spectrum van gereduceerde
rang. Wanneer de juiste weging wordt gekozen levert de joint-direct methode een
efficiënte schatting.
Dynamische netwerk modellen kunnen opgesteld worden voor situaties waar fysieke
grootheden direct gekoppeld zijn, zodat algebräısche lussen in het netwerk ontstaan.
Een traditionele voorspeller leidt tot onzuivere schattingen. Een analyze van ver-
schillende voorspeller definities laat zien waarom de directe methode tot onzuivere
schattingen leidt. De joint-direct methode gebruikt een andere voorspeller dan de di-
recte methode, en dit leidt tot consistente schattingen, ook onder aanwezigheid van
algebräısche lussen. In vergelijking met methoden gebaseerd op projecties heeft de
joint-direct methode minder strikte eisen aan externe excitaties, en een kleinere vari-
antie. Algebräısche lussen zijn geen probleem voor identificatie wanneer deze op een
juiste manier aangepakt worden.
Om een enkele module te schatten in een netwerk is het voldoende om enkele knoop-
punten rondom de module te meten. Het is niet exact bekend welke set van knoop-
punten tot een nauwkeurige schatting leidt. Er zijn verschillende oplossingen voor dit
vraagstuk, maar in dit proefschrift is gekozen om ongemeten knooppunten te verwi-
jderen uit het netwerk model. Het abstracte netwerk is ontwikkeld, en dit netwerk
wordt opgebouwd uit een gekozen aantal knooppunten terwijl het gedrag van de
overgebleven knooppunten gelijk blijft. Onder bepaalde voorwaarden blijft de module
gelijk in het abstracte netwerk, zodat de module gëıdentificeerd kan worden met de
gekozen knooppunten. De condities kunnen geverifieerd worden op basis van de orig-
inele netwerk topologie, zonder het abstracte netwerk af te leiden. Op deze manier
zijn eenvoudige regels opgesteld om knooppunten te selecteren waarmee een specifieke
module gëıdentificeerd kan worden.
Krachtige algoritmes zijn nodig om de joint-direct methode efficiënt in de praktijk toe
te passen op dynamische netwerken van grote schaal. Een Sequential Least Squares
algoritme met expliciete oplossing is opgesteld op basis van een benadering van de
joint-direct methode. Dit algoritme heeft dezelfde asymptotische eigenschappen als
de joint-direct methode, en simulaties laten zien dat het algoritme naar dezelfde
nauwkeurigheid convergeert als de joint-direct methode wanneer de hoeveelheid data
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groeit. Op deze manier is een efficiënte implementatie van en netwerk identificatie
methode gerealizeerd.

Een theoretische basis voor de identificatie van dynamische netwerken is gelegd, en
daarnaast zijn stappen genomen in de richting van identificatie van een module in een
netwerk. Mogelijke vervolgstappen zijn een onderzoek naar de informativiteits eisen
aan data, identificatie van de netwerk topologie, of het toevoegen van niet-lineare
dynamica.





Summary

Identifiability and identification methods for dynamic networks

Global warming is to be limited by reducing greenhouse gas emissions. Further devel-
opment of technologies such as renewable energy sources and smart electricity grids is
to play a major role in this reduction. Some of the challenges in the smart grid such as
oscillations, instability and control design may be solved with the help of a dynamic
model. These smart grids and other modern applications consist of many interact-
ing sub-systems, and the interactions between these sub-systems can be modeled as
a dynamic network model. A dynamic network model consists of nodes that repre-
sent measured signals, modules that capture the dynamical behavior, and excitations
coming from the unmodeled world. Data-driven modeling is one way of obtaining
dynamic network models, and the field of modeling dynamical systems is known as
system identification. The scope of this thesis is limited to the identification of linear
time invariant networks.

Identification approaches are typically formulated on the basis of a restricted exper-
imental setup. In the dynamic network situation for example the allowed network
topology is restricted, which may lead to an inaccurate model if the wrong structure
is chosen. Moreover a certain set of measured nodes is chosen for the experimental
setup, but it is not clear which nodes need to be measured for a particular purpose.
A flexible network setup is introduced where all different choices can be made for
the topology and excitation locations. Extending network identification approaches
to deal with a fully flexible experimental setup is not a trivial task. In this thesis it
is to be determined which restrictions on the experimental setup are necessary and
sufficient, and an efficient identification method for this setup is to be determined both
in theory and as a functional algorithm.

With a fully flexible experimental setup it may happen that two network models can
not be distinguished on the basis of data. The notion of network identifiability is in-
troduced as the property that describes whether the models can be distinguished from
each other. Network identifiability can be guaranteed by restricting the experimental
setup, i.e. by restricting the modeled dynamics, topology, external inputs and distur-
bances. Easy to check conditions on the basis of the network topology are formulated

ix
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that guarantee that a network model set is generically network identifiable. In this
way the least restrictive experimental setup can be used in the modeling process.

It is challenging to estimate high quality dynamic network models for general unknown
disturbance situations. In particular correlated disturbances with a rank-reduced spec-
trum are rarely treated in literature. The joint-direct method is established as a solu-
tion for this problem. A derivation on the basis of an analysis of predictors leads to
this joint-direct method. This joint-direct method leads to estimates of high quality.
Under some conditions the joint-direct method is equivalent to the Maximum Likeli-
hood estimate. Moreover, variance of models estimated with the joint-direct method
is bounded from below by the Crámer-Rao Lower Bound. The Maximum Likelihood
and Crámer-Rao Lower Bound results have been formulated for disturbances with
rank-reduced spectrum. The joint-direct method leads to an efficient estimate when
an appropriate weighting is chosen in the optimization cost function.

Dynamic network models may be formulated for situations where physical variables
have direct couplings, such that algebraic loops appear in the network. A traditional
direct estimation method leads to biased estimates. An analysis of different predictor
definitions shows why the direct method leads to biased estimate. The joint-direct
method uses a different predictor than the direct method, and leads to consistent
estimates, even in the situation of algebraic loops. Compared to projection based
methods, the joint-direct method has reduced requirements on external excitation
signals, and leads to a reduction of variance. Algebraic loops are not a problem in the
identification of systems when appropriately dealt with in the estimation method.

In order to estimate a single module in a network it is sufficient to measure a number
of nodes locally around the module. It is however not precisely known which subset
of nodes can lead to an accurate estimate. Answering this question can be done
in different ways, and the approach taken is to remove unmeasured nodes from the
network. The abstracted network is introduced, and this network can be constructed
on the basis of a chosen set of nodes, and this leaves the behavior of the remaining
nodes intact. Under certain conditions the module of interest remains invariant in the
abstracted network, in which case it can be identified with the selected set of nodes.
These conditions can be verified on the basis of the original network topology, without
the need to construct the abstracted network. In this way straightforward rules for
selecting a set of nodes are formulated that allow for identification of a module of
interest.

Powerful algorithms are needed in order to efficiently apply the joint-direct method
to large-scale dynamic networks in practice. A Sequential Least Squares algorithm
with an explicit solution is formulated as an approximation of the joint-direct method.
This algorithm has the same asymptotic properties as the joint-direct method, and
simulations show that the algorithm converges to the same accuracy as the joint-direct
method with increasing amounts of data. In this way an efficient implementation of
network identification methods is formulated.

A theoretical basis for identification of dynamic networks has been established, and
steps have been taken towards identification of a single module in a network. The next
steps that can be taken are an investigation of informativity requirements on data,
identification of the network topology, and the inclusion of non-linear dynamics.
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1 Introduction

1.1 Motivation

1.1.1 Greenhouse gasses

97% of climate scientists agree that humans cause global warming (Cook et al., 2013).
Many people have gotten used to driving or flying to holiday destinations and confer-
ences, having electric appliances to make life easier, and enjoying an actively heated
or cooled house. Typically fossil fuels are burned during these activities, causing emis-
sion of so called greenhouse gasses, which cause the earth to warm up. The United
Nations Framework Convention on Climate Change has made an agreement, the so
called Paris agreement (United Nations, 2016), to keep global warming below 2 oC.

Electricity and 
heat production

25%

Agriculture, 
Forestry and 

Other Land Use
24%

Industry
21%

Transport
14%

Buildings
6%

Other energy
10%

GREENHOUSE GAS EMISSIONS BY ECONOMIC SECTORS

Figure 1.1: Contribution of greenhouse gasses per economic sector (Intergovernmental
Panel on Climate Change, 2015).
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2 Chapter 1. Introduction

Many people do not want to go back to pre-industrial era living standards, so the
only way to comply with the Paris agreement is to make luxurious life more sustain-
able. The main activities that produce greenhouse gasses are depicted in Figure 1.1.
Electricity and heat production are a combined total of 25% of greenhouse gas contri-
bution (Intergovernmental Panel on Climate Change, 2015). Policies and visions are
developed by governments to obtain concrete developments in specific domains such as
transportation and the electricity grid (European Technology Platform SmartGrids,
2006). Engineers will have to play a major role in making life more sustainable by
developing clever solutions that reduce greenhouse gas emissions. In the electricity
grid, the traditional coal and natural gas fired power plants are being replaced by
renewable energy sources such as wind mills and solar panels. These renewable energy
sources do not emit greenhouse gasses during generation of electricity.

1.1.2 The electricity grid

Technological challenges appear due to the increasing penetration of renewable energy
sources in the electricity grid. Instead of power being generated at a few dedicated
locations, the generation becomes distributed over many different locations, e.g. solar
panels at someone’s home or wind mills scattered around the landscape. Power gen-
erated by wind mills and solar panels can be intermittent due to the weather, which
makes it hard to continuously balance the supply and demand of electricity. Some of
the issues that need to be addressed to successfully incorporate the renewables into the
grid are the following (Olivares et al., 2014). Intermittent generation of power can be
counteracted by appropriate levels of reserves, but economical operation under a relia-
bility constraint has to be taken into account. Moreover the topology of the grid may
change when participants go online or offline, so the market and control mechanisms
need be able to handle this. The electricity grid has to undergo a transformation in
order to be fully suitable for power generated by renewable sources.

A division into many microgrids is one of the ways to implement the smart electricity
grid of the future (Hatziargyriou et al., 2007). A microgrid is formed from a local
community of loads, renewable energy sources, and also energy storage and demand
response services, as depicted in Figure 1.2. Each microgrid is connected to the main
grid via a single interconnection, and can be operated either as connected to the grid,
or as a standalone island. It is possible that a microgrid produces or consumes more
than it can handle locally, and then this surplus or deficit needs to be transported to
other parts of the grid, possibly across borders. When the microgrid is operating in
grid connected mode, then it needs to contribute to the stability of the whole grid.
This implies that communication between participants on a large scale plays a key role
in the balancing of the grid of the future.

In the traditional grid configuration, power plants would be locally controlled to follow
the targets set by a Transmission System Operator (Kundur et al., 1994). The way
that supply and demand are balanced will need to change in a smart grid. A grid with
distributed generation has so many generators that centralized control is no longer
feasible. Participants in a microgrid are to coordinate among each other how much
electricity is produced, and possibly how much is consumed. In this way the supply
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Main grid

Figure 1.2: One microgrid where electricity is locally produced by windmills and solar
panels, electricity is consumed by factories and houses, and where battery storage and
a connection to the main grid provide a balance between supply and demand.

and demand is balanced locally as much as possible, with possibly some external help
from the main grid.

Some of the challenges (Olivares et al., 2014) that need to be solved in these microgrids
are described below. Local oscillations, instability or transient effects may plague the
microgrid, and an analysis of the stability and effect of disturbances is necessary to
guarantee smooth operation. Assumptions made for traditional power grid models
may not be valid for microgrids, and the models need to be revised. A grid where
renewables are prevalent may have low inertia, such that a small imbalance in supply
and demand can lead to large deviations from the nominal frequency of 50 or 60Hz,
which requires control mechanisms to react and prevent these imbalances. The systems
and control field will need to address answers for the challenges in the microgrids.

1.1.3 Systems and control

The field of systems and control specializes in the analysis of stability and oscillations,
and the modeling and control of systems. The concept of a system must be defined,
and for this we consider the following dictionary definition.

System: ”A set of connected things or parts forming a complex whole,
in particular: a set of things working together as parts of a mechanism or
an interconnecting network ...”

—The new Oxford dictionary of English, 1998.

The tools for analysis and control design are traditionally tailored towards systems
that operate in a single control-loop. A single system is controlled for a purpose, e.g.



4 Chapter 1. Introduction

to follow a setpoint or reject a disturbance. In case there are multiple controlled vari-
ables, the controller may work in a hierarchical structure where a central optimization
algorithm generates setpoints for a number of separate control loops. In this control
architecture each system is considered as an entity that does not interact with the
others, as depicted in Figure 1.3a. Performance of the total system is improved by
optimizing the performance of each local system with a local controller. This con-
trol strategy can lead to a globally optimal performance, but the weaknesses are that
possible interactions between systems are neglected, and that it may be infeasible to
synthesize a central governor when the number of sub-systems grows large.
In the more modern approach the sub-systems are seen as interacting entities, and con-
trollers are designed to interact among each other, as depicted in Figure 1.3b. Consid-
ering multiple systems as an interconnected network of systems is quite natural, as this
is included in the dictionary definition of a system. Here a controller communicates
with a small number of other controllers in order to optimize performance. Interac-
tions between systems are taken into account with this distributed control strategy,
and controllers can be synthesized regardless of the size of the network.

S1
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Setpoints

(a)
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Figure 1.3: On the left: Sub-systems do not interact with each other, and each sub-
system is individually controlled on the basis of setpoints generated on a higher level.
On the right: Sub-systems and controllers interact among each other in order to satisfy
a control objective.

1.2 Models

1.2.1 Definition

Many of the techniques applied in the systems and control domain depend on, or
benefit from, the presence of a model. First it is established what is meant with a
model by considering a dictionary definition.

Model: ”A simplified description, especially a mathematical one, of a
system or process, to assist calculations and predictions.”

—The new Oxford dictionary of English, 1998.



1.2. Models 5

According to (Eykhoff, 1974) a model is a simplification of reality that captures only
the essential aspects. This implies that a model is a representation of the real world
where irrelevant features are neglected, which makes it easier to understand the reality.
There can be many forms of models, such as graphical, physical, verbal or mathemat-
ical. In a mathematical model this representation is a description in mathematical
language, e.g. a set of equations.

A mathematical model may give us insight into a physical phenomenon. Newton’s
second law states that force applied to a mass is proportional to the acceleration of
that mass, i.e.

F = ma,

where F is the force, m is the mass, and a is the acceleration. This model provides some
understanding of how the world behaves, which is why models can help to improve
the design of a system. Dynamic models are models where time plays a role in the
described phenomenon, i.e. where a present value has an influence on a future value.
An example is that the present-time acceleration of a mass has an influence on the
future speed and location of the mass. If this data is available up to the current
moment, then the model may be used to predict the future behavior of the modeled
aspect. These predictions may be used to influence the future behavior of the system.
Typical engineering systems can be represented by dynamic models, and their future
behavior can be influenced with the application of a controller.

Design of a controller for a single control-loop can be improved with the use of models.
In fact a controller can be designed such that it is the optimal controller for that
model in some sense. Some controllers make explicit use of a model of the system.
Also for distributed controllers a model of the system is an important tool needed to
reach optimal performance. Moreover models of a distributed system can be used for
stability analysis or to prevent oscillations. A list containing a number of possible
applications of dynamic models is:

• While designing systems, a simulation using the model can reveal undesirable
behavior, such that the design may be adapted to prevent this behavior.

• Models can be used to estimate an unmeasured quantity, for example the state
of charge of a battery can be estimated on the basis of the measured voltage and
current.

• Forecasting the future, for example as in a weather forecast, can be done on
the basis of a dynamic model.

• Faults can be detected when the behavior of a system is no longer the same
as the behavior of the model.

• A controller applied to a system can be designed to work optimally on a model
of that system.

• The building of a model can provide new insight in how a system functions.
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1.2.2 Dynamic network models

Engineers are designing systems that are larger and more advanced than before. Large-
scale systems are composed as an interconnected network of smaller sub-systems. An
example of such a large-scale system is the electricity grid. The general observation
in the systems and control domain is that the considered systems also are growing
in scale. Local sub-systems are locally controlled, and possibly the controllers will
be communicating among each other. In order to decide which controllers are to
communicate with which other controllers, it is important to know which sub-systems
are interconnected to which other sub-systems, and how these interactions behave.
This means that the interactions between sub-systems are an essential part of the
behavior of the system. Then according to the definition of (Eykhoff, 1974) these
interconnections and interactions should be captured in the model. The name dynamic
network model will be adopted for models that capture the interconnection structure
as well as the dynamics of a system.

A dynamic network will be constructed from two types of components and is separated
from the unmodeled reality by a boundary:

• Nodes represent variables that depend on time, which possibly can be measured.
Examples are the force and acceleration in Newton’s second law.

• Modules represent the interconnections between nodes in a network, which
contain the dynamic behavior. The mass plays this role in Newton’s second law
as it connects the force and acceleration nodes.

• The boundary represents the distinction between what part of reality is con-
sidered part of the network, and what is not. A dynamic network interacts with
the world across the boundary, which causes a response in the dynamic network.
As an example, someone may attempt to push a mass, generating a force that
acts on the mass, which then makes the mass respond by moving.

Figure 1.4: Graphical representation of a dynamic network. Nodes are represented by
circles, modules are represented by rectangles. The boundary is depicted as the red
dashed line.

An example of a graphical representation of a network is depicted in Figure 1.4. In
the example it can be observed that nodes are connected with only a few other nodes,
such that they interact directly only with a few other nodes. A dynamic network
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model has the property that the behavior of one node can be described fully by the
neighboring nodes and the corresponding modules.
A microgrid can be used as an example for a dynamic network model. Variables such
as power flows, deviation from the main grid frequency, or voltages can be used as
nodes in the network. Modules represent the loads, generators and controllers that are
connected to the grid. The structure of how the different modules are interconnected,
and how the control layer is connected can be graphically represented as in Figure 1.5.

Load

Battery

Generator

Load

Generator

Control layer

Main grid

Figure 1.5: One microgrid and a control layer depicted as dynamic network model.

Next to the electricity grid, plenty of other engineering systems can be interpreted as a
dynamic network. Each of the economic sectors described in Figure 1.1 has challenges
where dynamic network models may be helpful. As an example, in the transportation
sector the interactions between an internal combustion engine and an electric motor
in the drive-train of a hybrid vehicle may be modeled as a dynamic network. This
includes a model of the battery, for which it is important to estimate the State of
Charge based on models (Beelen et al., 2016) to prevent damage and ensure optimal
performance.
Outside of the engineering domain and unrelated to greenhouse gasses there are many
possibilities to apply dynamic network models. The network model can play an im-
portant role every time a dynamic system model is needed in a situation where in-
terconnections are a relevant feature. For example in systems biology, networks of
interacting genes can be represented using a dynamic network model (Yuan et al.,
2011) to provide insight into the nature of genes. Another example field is the stock
market, where the interactions between different stocks can be modeled as a dynamic
network (Materassi and Innocenti, 2010), which may be used to forecast the future
values of these stocks.
Power grids and other fields of engineering and science raise a number of questions
regarding dynamic network models. Among these questions are stability of the network
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and various control problems. Having an available network model can be helpful in
solving these issues. What is often assumed is that a model is available, avoiding the
question of how to obtain a model. When it is unknown how to model a network, then
we have to be careful with the assumption that a model is available. Therefore, the
objective of this thesis is to contribute to the modeling of dynamic networks.

1.3 Research question

The objective of modeling dynamic networks is quite broad and in this section the
scope is narrowed down to a particular research question. Restrictions of the scope
are made by discussing what types of network models are relevant, and what methods
are available for obtaining these models. There are some different objectives for the
modeling procedure, and these have their own specific challenges. Literature has
a number of answers for the network modeling objective, but many open questions
remain to be discussed.

1.3.1 First principles modeling vs. data-driven modeling

With the availability of cheap sensors it becomes possible to measure almost every-
thing. Smart meters are being introduced in the grid such that the electricity consump-
tion of clients can measured and sent automatically to the supplier. The availability
of enormous amounts of data is both a blessing and a curse known as ’big data’. There
is a tremendous amount of data available, but it is challenging to recover the relevant
information from this data.

Typically there are two types of approaches to obtain mathematical models, first-
principles modeling, and data-driven modeling. In first-principles modeling, known
models from physics or other sciences are combined into a model of the desired system.
With this approach it is required that the available equations are able to describe
the behavior in a sufficiently accurate way, and that particular parameters of the
equations can be determined with sufficient accuracy. This way of modeling can be a
time consuming and therefore costly endeavor.

The alternative is a data-driven approach, which is based on the fact that measure-
ments of a system contain information on the behavior of the system. In the classical
reasoning of (Ljung, 1999) a user selects a model set containing candidate models with
to be determined parameters, and then a criterion or algorithm selects a model from
the set based on the available measurement data. An accurate model is selected by
the criterion when the set of candidate models contains an accurate approximation of
the real system, the data contains sufficient information, and the selection criterion
is suitable. In this way it is possible to obtain accurate models, even when it is not
known what kind of physical system has generated the data. All that is obtained is a
model that mimics the behavior of the system, which is ultimately the relevant part
of the model.

The difficulty with data-driven modeling is that measured data is used, which contains
unknown disturbances. A criterion has to select an appropriate model, even though
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the models can not exactly explain the data due to disturbances. The model that is
ultimately selected fits the data the best in some sense.

In this thesis the data-driven modeling approach of (Ljung, 1999) is followed. This
implies that an appropriate set of candidate models must be chosen, and that an
appropriate identification criterion must be chosen.

1.3.2 Linear time-invariant models

In reality the behavior of a system is usually of a non-linear nature, i.e. the principle of
superposition does not hold between variables. Moreover this behavior often changes
over time due to wear or changing conditions in the environment. When modeling
on the basis of data the incorporation of non-linear or time-varying behavior involves
many additional complexities compared to linear time-invariant (LTI) behavior. Ad-
ditionally, in order to model non-linear behavior there are additional requirements
on the measured data since all the complicated behavior must be excited if it is to
be modeled. Theory for data-driven modeling of LTI dynamical systems is more ad-
vanced than theory for modeling non-linear or time-varying alternatives. Many real
world systems can accurately be described by linear time-invariant approximations
when operated around a working point. LTI networks are a good starting point, and
so this thesis is restricted to the LTI setting. In the future the work may be extended
to non-linear or time-varying situations.

1.3.3 Different model sets

The objective is to model network systems on the basis of data, and it has been
established that a suitable set of models must be chosen. Networks of linear time-
invariant systems can be described by for example ordinary differential equations or
by discretized partial differential equations. A number of different LTI models suitable
for dynamic network modeling exist in the literature and are considered.

Behavioral models

In the behavioral modeling paradigm (Willems and Polderman, 2013), a model de-
scribes simply which trajectories a signal is allowed to follow. Signals that are part of
a behavioral model are not explicitly designated as either input or output. Nodes in
a dynamic network model are also not explicitly designated as either input or output.
However, when no structural restrictions are imposed to the behavioral model, then it
does not capture the interconnection structure of modules in a dynamic network in a
unique way. Moreover, unknown disturbances are not part of the behavioral modeling
framework. For these reasons the behavioral models are not chosen as the modeling
framework in this thesis.
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Graph models

Graph models (Gross and Yellen, 2005; Bang-Jensen and Gutin, 2008) are models con-
sisting of nodes and weighted links between those nodes. The graphical representation
of a graph model makes it really clear which nodes are related to each other, and which
nodes are the important ones. These models are widely used to represent a wide range
of systems such as a network of roads, electrical circuits, or social networks. Dynamics
can be modeled by including additional nodes that represent the time dependent be-
havior, however this can make a network needlessly complex. Dynamic networks can
be considered as a special kind of graph model that includes dynamic behavior in the
links, such that there are no additional nodes necessary. Properties and insight from
graph theory can therefore often be transferred to the dynamical networks.

Probabilistic models

Unknown disturbances are often modeled as stochastic disturbances, which can be used
to consider the nodes as stochastic variables. When nodes are described as stochas-
tic variables, then conditional probabilities can describe relations between nodes in a
structured way. A stochastic network can be defined where the stochastic variables
form nodes of the network, and where conditional probabilities form the modules
(Koller and Friedman, 2009). A definition of causality and the relation to probabili-
ties is provided by (Granger, 1980). More modeling frameworks that are related are
Structural Equation Modeling (Bollen, 1989), and the Structural Causal Model (Pearl,
2009).

State-space network models

It is well known that differential equations can be transformed into state-space models.
The states can be considered as nodes in a graph model, and the relations between
the states can be considered as the weighted links of that graph model. In (Massioni,
2014) distributed control of large-scale systems using state-space networks is discussed.
Identification of state-space networks is also considered in literature, see for example
(Haber and Verhaegen, 2014).

Transfer function network models

Modules in a network can be represented by transfer functions, such that the nodes
are both the inputs as well as the output of the modules. A network of transfer
functions can be related to the state-space model, and named Dynamic Structure
Function (DSF) (Gonçalves and Warnick, 2008). Impulse responses, a particular type
of tranfer function, are used by (Chiuso and Pillonetto, 2012) to describe a dynamic
network. Wiener filters have a particular relation to transfer functions, and these are
used by (Materassi and Salapaka, 2012) as modules. A setup of dynamical networks
using transfer functions that includes models for unknown disturbances is introduced
by (Van den Hof et al., 2013).
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1.3.4 Identification methods and objectives

Some of the different network models described in the previous section are related
with identification methods. These methods describe the criterion, or algorithm, that
selects a model from the model set.

Subspace identification

State-space models are typically obtained by subspace identification methods, which
are based on the realization of state-space systems from the Markov parameters (Ho
and Kálmán, 1966; Van Overschee and De Moor, 2012). Dynamic network applications
of subspace identification can be found for example in (Haber and Verhaegen, 2014),
where network models of large-scale systems are identified. In the network version of
subspace identification methods the interconnection structure has to be included into
the algorithm.

Prediction error methods

Transfer function models are often obtained with the use of prediction error methods
(Ljung, 1999), which under some conditions are equivalent to Maximum Likelihood
estimators. An attractive property of Maximum Likelihood and prediction error meth-
ods is that asymptotically models with zero bias can be obtained with the minimum
amount of variance. Prediction error methods have been extended to the dynamic net-
work situation in (Van den Hof et al., 2013), although there are many open questions
remaining.

Bayesian approach

Compared to Maximum Likelihood estimators, the Bayesian estimators can make use
of additional a-priori information to improve an estimate. A Bayesian estimator may
improve the Mean Squared Error of the model over the ML estimate if this a-priori
information is available and accurate. A network model with semi-parametric impulse
response models is used in (Chiuso and Pillonetto, 2012) for detection of the network
topology using Bayesian identification methods.

1.3.5 What to identify?

The stated objective is to contribute to the modeling of dynamic networks, but what
particular aspect do we want to model? Three main objectives of identification can
be distinguished, and these match with different requirements on a-priori knowledge.
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Full network identification

The objective to identify the full network is the most straightforward. All modules in
the network are to be identified from data. This objective usually requires that the
interconnection structure of the network is known, at least up to a sufficient degree.

The objective in (Gonçalves and Warnick, 2008) is to estimate the whole network from
an estimated open-loop response, and in (Yuan et al., 2011; Yuan, 2012) unknown
disturbances are added to the problem setting. The prediction error method is used
to directly estimate the network in (Yue et al., 2017) without an intermediate step of
estimating the open-loop response.

Single module identification

An alternative objective is to focus on identification of a single module in the network.
Since the module can be fully described by nodes that are in the neighborhood of the
target module, the required a-priori knowledge for this objective is reduced compared
to full network identification. Only the topology around the single module has to be
known up to a sufficient degree.

Estimation of a single module has been the objective in (Van den Hof et al., 2013) by
extending the closed-loop prediction error methods known as direct method, two-stage
method and joint-io method to the dynamic network. This reasoning was continued
in (Dankers et al., 2015) for an instrumental variable method in an errors-in-variables
situation. A prediction error method is combined with Bayesian estimation in (Everitt
et al., 2018). When identifying a local module in a network it is not necessary to
measure everywhere, which was shown by different approaches (Dankers et al., 2016;
Linder and Enqvist, 2017a; Bazanella et al., 2017).

Topology identification

In situations where the interconnection structure of the network is unknown, the objec-
tive usually is to detect this interconnection structure, which is also known as topology
detection. A typical way to perform this topology detection is by identifying the topol-
ogy as well as all the network dynamics simultaneously, as described in the following
papers.

Linear regression models are combined with the compressive sensing method in (Sanan-
daji et al., 2011, 2012) to decide which nodes are interconnected. Linear regression
models are also used in (Chiuso and Pillonetto, 2012; Zorzi and Chiuso, 2017), but
here topology is detected using Bayesian methods. This Bayesian approach has the
advantage that sparseness of estimated topology does not depend on tuning by a user.
In (Rojas and Hjalmarsson, 2011) a sparse topology is estimated by making use of
Akaike’s Information Criterion.

Alternative to identifying the exact topology one can focus on identification of topo-
logical properties. As an example, in (Mauroy and Hendrickx, 2017) the number of
neighbors connected to a particular node is estimated.
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Discussion

Identification of the full dynamic network, under the assumption that the topology is
known, is seen as the base problem. Single module identification is an extension of
full network identification in the sense that the conditions under which this is possible
can be relaxed. Topology detection is another extension of full network identification
in the sense that additional topology detection mechanisms have to be added to the
estimation problem.

1.3.6 Open questions

A number of open questions and challenges remain in the network identification liter-
ature discussed so far. These aspects are discussed in this section, which then lead to
the research question.

Experimental setup

In literature on network identification typically some experimental setup is assumed,
and then some results are shown. With experimental setup is meant that assumptions
are made on presence and correlation of unknown disturbances, presence of external
excitations, and the allowed topologies or dynamics. Often different experimental
setups are used, which can make it difficult to compare methods and results.

Restrictions on the unknown disturbances are common in the literature. Especially
the assumptions that unknown disturbances are mutually uncorrelated, that they en-
ter the network at every node, or that they are have a known spectral density are
common. These assumptions are practical only when it is known from a-priori knowl-
edge that they are satisfied. When this a-priori knowledge is not available, or when
the assumptions are not applicable, then the restrictions need to be relaxed.

Disturbances in a network can be generated by many different unmeasured phenomena,
and knowledge of the spectral contents of the noise is therefore unrealistic as an a-
priori assumption. In system identification a number of solutions have been developed
that may be employed in the dynamic network setting.

In an estimation problem, correlated disturbances and confounding variables can lead
to biased estimates. Absence of confounding variables or uncorrelated disturbances is
a typical assumption when models are obtained from data, but it is an open question
whether this is necessary. In practice it seems plausible that disturbances may be-
come correlated, for example as disturbance v2 in Figure 1.6 that affects two nodes.
We model confounding variables as a correlated disturbance, and choose to include
correlated disturbances into the experimental setup, such that we may formulate ways
to deal with the problem.

Another restriction that is common in literature, but that may not be practical, is
the assumption that a noise must enter at every node. Modules in a network can be
implemented controllers, and controller outputs can be noise-free, as e.g. typically
considered in a classical closed-loop identification problem (Ljung, 1999). In this case
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Figure 1.6: Example of a network with rank-reduced and correlated noise. Node signals
are wi, interconnected by modules Gij , and perturbed by non-measured disturbance
signals vi. Signals ri are excitation signals available to the user.

there is no process noise on a particular node signal. The more general case of noises
with rank-reduced spectral density is also considered in order to represent situations
where noise is dominated by a few sources. This latter situation is depicted in Figure
4.3 where the process noises on nodes 2 and 3 are the same (perfect correlation). When
identifying the full network dynamics, the rank-reduced noise causes some fundamental
issues that need to be addressed in the identification problem.

There exists another type of disturbance that does not affect the network itself, but
that is present in data. This disturbance is caused by the sensors that measure nodes
in a network, and is therefore known as sensor noise. In typical estimation problems
sensor noise leads to difficult Errors-in-Variables problems (Söderström, 2018). Sensor
noise may be handled in alternative ways, for example with instrumental variables
(Dankers et al., 2015), but there are open questions remaining on this topic.

With the flexible experimental setup that is considered, it is a question which knowl-
edge of this setup is available a-priori to the identification procedure. For example it
may not be known whether some noises are correlated. It is important to determine
which a-priori knowledge of the experimental setup is necessary for the identification
of a network. When the necessary conditions are known, then it may be determined
where to excite a dynamic network and where to measure, such that these conditions
can be satisfied.

Variance

When unknown disturbances are modeled as stochastic processes, then estimated mod-
els become stochastic variables. A desired property for the estimated model is that
the variability is low, i.e. that estimates based on different data sets differ by only
a small amount. This variability is well described by the variance of the estimated
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model. For unbiased estimates the variance of an estimator is bounded from below
by the Cramér-Rao Lower Bound (CRLB) (Rao, 1945). When the Cramer-Rao lower
bound on the variance is achieved, then no other estimator can achieve an unbiased
estimate with lower variance using the same model set and data set, i.e. the vari-
ability of the estimate is as low as possible. A classical estimator that has both the
consistency property and variance at the CRLB is the Maximum Likelihood estimator
(Rao, 1973).

For open-loop and closed-loop MIMO estimation it can be shown that the prediction
error method can be equivalent to the maximum likelihood estimator (Ljung, 1999;
Söderström and Stoica, 1989). For dynamic network identification the Maximum Like-
lihood analysis remains an open problem. A Maximum Likelihood estimator serves as
a benchmark for other methods. Since the network identification methods (Van den
Hof et al., 2013) are extensions of the closed-loop prediction error method, it is ex-
pected that Maximum Likelihood results can be obtained for network identification
too.

The effect of some specific experimental setups on the variance of an estimated model
has been investigated in (Everitt et al., 2013, 2015). However this analysis has not
been performed for general network structures. Moreover general expressions for the
variance of an estimated network model have not been obtained.

Algebraic loops

Dynamic networks can be defined in a way that nodes have an algebraic relation with
each other, leading to the presence of algebraic loops. Applying the direct identifi-
cation method in a closed-loop system, or a dynamic network, under presence of an
algebraic loop does not lead to consistency (Ljung, 1999; Van den Hof et al., 2013).
Other prediction error identification methods for dynamic network identification, e.g.
the two-stage method and the instrumental variable method (Van den Hof et al., 2013;
Dankers et al., 2015), are able to reach consistency by projecting node signals onto
external variables under the presence of algebraic loops. When projecting onto ex-
ternal variables, the noise contributions are decorrelated. In a situation that process
noises provide excitation, decorrelating the noise removes excitation and therefore in-
formation. When projecting onto external variables the variance is not minimized.
Moreover the external variables are required to excite all dynamics in a sufficient way.

Algorithms

Network identification methods are developed to be applied in practice. However
often the focus in prediction error methods is on the theoretical properties, without
considering how these methods can be applied in practice in the form of an algorithm.
Typically non-convex optimization problems are formulated that may run into local
minima, which are sub-optimal models. For large-scale problems typical strategies to
solve the prediction error method may fail or be prohibitively time consuming.
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1.3.7 Main research question

A number of different choices can be made with regards to the identification objective,
the network model, and the identification method. Estimation of the full network
is seen as the base case, and for this case Maximum Likelihood estimates have not
been obtained. A prime candidate to obtain Maximum Likelihood estimates are the
prediction error methods, which are defined for transfer function network models. This
then leads to the following research question.

Under which conditions can prediction error identification
be applied, for efficient estimation of models of the full, or
part of a, dynamic network?

The next step is to formulate which particular parts of the research question to answer.
Relevant literature is investigated to formulate sub-problems that have to be addressed.

1.4 Formulating sub-questions

The research question is essentially a summary of the topics that will be addressed
in this thesis. There are a few key words in the research question that require some
explanation.

• Under which conditions: The conditions relate to which assumptions on
the experimental setup must be made in order to come to an identified model.
This includes assumptions on the network topology, the correlation structure of
unknown disturbances, and on the presence and location of external excitation.

• Prediction error identification: The scope of the research is limited to pre-
diction error methods.

• Efficiently: This concept has a double meaning. On the one hand efficiency
refers to statistical efficiency of estimates, meaning that all information in the
data is explained by the model such that variance is minimized, like in a Maxi-
mum Likelihood estimate. On the other hand efficiency refers to algorithms that
can compute the estimate rapidly and accurately for large-scale models.

• Full, or part of a, dynamic network: In this thesis two identification ob-
jectives are treated. Identification of all modules in a network, also known as
identification of the full network, is one objective. The other identification ob-
jective is identification of a single module, which is identification of part of a
network. The latter objective is treated as an extension of the full network
identification problem.

All these topic will be addressed by formulating and answering a number of more
detailed sub-questions. These sub-questions are introduced below.
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1.4.1 Uniqueness of network models

With the dynamic network setup a flexible model for the data is chosen. It is possi-
ble that two network models of different topologies can represent the measured data
equally well. This implies that not all modules can be identified from data, as the
structural information contained in data is limited. We have to determine what infor-
mation is present in data, and what information must be known a-priori from intuition
or physical insight.

Part of the structural information can come from knowledge of the experimental setup.
This insight can for example come from having defined the particular locations where
reference excitations are injected. When knowledge of the experimental setup is avail-
able, only network models that match that knowledge are to be considered for iden-
tification, as the others can not be the data generating network. In this way we may
avoid problems with non-uniqueness. The question to be answered is the following.

Under which conditions on the network model set can different
network models, or modules, be distinguished from each other
on the basis of measured data?

In literature the problem where different parameters can not be distinguished on the
basis of data is known as the identifiability problem (Ljung, 1999). The situation
where different network models can not be distinguished on the basis of data is a type
of identifiability problem. Knowledge of the experimental setup that is incorporated
into the model has an influence on the identifiability of networks.

Some assumptions are commonly made on the experimental setup, and these may in-
fluence whether the networks can be distinguished. It is common to impose restrictions
on unknown disturbances, for example by assuming a known spectrum, or by restrict-
ing the allowed correlations. We will investigate whether these restrictions influence
the uniqueness of network models, and consequently whether these restrictions are
necessary. In the same way we investigate how much of the interconnection structure,
or topology must be known. The presence and location of external excitation signals
is another factor that influences the uniqueness of models. We investigate where these
reference signals have to be injected.

As the main question we investigate whether the full dynamic networks can uniquely
be determined from data. Uniqueness of the full network requires relatively many
conditions to be satisfied, as every part of the model needs to be uniquely determined.
A relaxation will be investigated where only uniqueness of particular parts of the
network, e.g. modules, is required.

1.4.2 Full network identification

A central topic in this thesis is how to obtain a dynamic network model with minimum
variance from a data set. Since different objective functions can lead to different
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properties of an estimate, what objective should we choose? Prediction error methods
can be related to Maximum Likelihood estimates, which have the minimum variance
property (Ljung, 1999). However these Maximum Likelihood properties have not been
shown in literature for dynamic network estimators. Moreover the variance expressions
of dynamic network estimators have also not been shown in literature.

In practical situations the disturbances of a network may be correlated or of a reduced
rank. We are looking to extend the experimental setup to include flexible noise mod-
els. Correlated noises, confounding variables or rank-reduced noise leads to difficult
identification problem that have not been resolved completely in literature. Estimat-
ing networks where noises may be correlated or rank-reduced is one of the objectives.
Additional to estimating the networks, the objective is to obtain Maximum Likelihood
estimates for the flexible dynamic network model. These reasons lead to the following
question.

Can maximum likelihood estimates with minimum variance be obtained
of a dynamic network for general noise conditions?

When Maximum Likelihood estimates are obtained for the general noise conditions,
then the variance of the estimate should be at the lower bound. It is to be investigated
what the variance expressions are, in particular for the rank-reduced noise situation.
When these expressions are obtained, then it can be verified whether the variance is
at the lower bound.

1.4.3 Algebraic loops

Having a flexible experimental setup allows for nodes to have an algebraic relation.
This can occur in several situations, for example when a continuous time network is
approximated with a discrete time network, or when the particular structure of a dy-
namic network originates from a structured physical system, where physical variables
interact with each other, without the direct presence of a computer-controlled (digital)
operation. An example of direct couplings between variables is force and acceleration
in Newton’s second law. Direct couplings between physical variables is then a natural
situation to take into account.

Part of the question on the conditions is what information is present in data, and what
information on the experimental setup has to be known a-priori. This part relates to
the unique identification in the presence of algebraic loops. Both the presence and
location of external signals as well as the required information contained in those
signals are to be investigated.

Under which conditions can consistent estimates be obtained
of a dynamic network that contains algebraic loops?
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Since direct identification methods are not suitable for the situation of algebraic loops
it is to be investigated what is the fundamental problem with estimating in presence
of algebraic loops. We are looking for methods that get around the fundamental
problems, which then lead to conditions under which we can identify the network.
An additional question is then whether a method can be formulated that has reduced
variance compared to the projection methods.

1.4.4 Local identification

When the objective is to estimate a local module in a network, then one approach is to
identify the full network such that also the local module is obtained. This however is
a conservative approach in the sense that all nodes must be measured and sufficiently
excited. For the estimation of a single module it is not necessary to measure all
modules, and one of the main issues in the single module identification problem is
deciding which nodes are necessary to be measured.

Which selection of node signals allows for consistent estimation
of a module of interest?

Multiple approaches can be followed to answer the question. The approach taken in
this thesis is to consider the effect of removing certain nodes from a network model. In
literature different ways of removing nodes from a network exist, and we are comparing
and looking for ways to generalize these methods. Then we are looking for conditions
under which it is possible to identify the module of interest from the newly obtained
network.

1.4.5 Algorithm

Theoretical identification methods need to be accompanied by an algorithm to be
applicable in practice. In prediction error methods there is usually no particular
algorithm discussed, but these methods rely on optimization of a typically non-convex
cost function. For network identification it is critical that the network topology can
be encoded in the algorithm, which is not always possible in existing algorithms.

Additional issues with algorithms appear when considering networks of a large scale.
The number of local minima in the non-convex cost function grows with the size of the
network. It would be beneficial if the identification has effective algorithms to solve
the identification, preferably in a way where local minima are avoided.

Which algorithms are suitable for the efficient identification
of large-scale dynamic networks?
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1.5 Overview of contents

1.5.1 Chapter 2

A precise definition of the dynamic network model is provided on the basis of a flexible
experimental setup. Preliminary notions related to disturbances and network prop-
erties are also introduced. Then the basic concepts of prediction error methods are
presented using a classical single-input-single-output system. Finally a state-of-the-art
method for identification of dynamic networks is introduced.

1.5.2 Chapter 3

The question regarding uniqueness of the representation of dynamic networks is ad-
dressed. First the concept of network identifiability is defined and motivated, after
which we are looking for conditions for network identifiability. Conditions on the
unique representation of feedthrough terms and algebraic loops are addressed. Then
checkable conditions on the experimental setup are presented to guarantee network
identifiability. Identifiability of a single module instead of the network is shown to
lead to less restrictive conditions. Then the conditions are shown to be checkable on
the basis of the modeled network topology if we consider network identifiability in a
generic sense.

This chapter is based on the following publications:

• H.H.M. Weerts, P.M.J. Van den Hof, and A.G. Dankers. Identifiability of linear
dynamic networks. Automatica, 89:247-258, 2018,

• H.H.M.Weerts, P.M.J. Van den Hof, and A.G. Dankers. Single module iden-
tifiability in linear dynamic networks. arXiv preprint arXiv:1803.02586, 2018.
(Accepted for presentation at CDC 2018),

and indirectly on the preliminary work published in:

• H.H.M. Weerts, P.M.J. Van den Hof, and A.G. Dankers. Identifiability of dy-
namic networks with part of the nodes noise-free. In Proc. 12th IFAC Workshop
ALCOSP, 2016. (IFAC-PapersOnLine, 49(13):19-24), and

• H.H.M. Weerts, A.G. Dankers, and P.M.J. Van den Hof. Identifiability in dy-
namic network identification. In Prepr. 17th IFAC Symposium on System Iden-
tification, 2015. (IFAC-PapersOnLine, 48(28):1409-1414).

1.5.3 Chapter 4

The question regarding Maximum Likelihood estimation of all modules in a dynamic
network is addressed by investigating the link with prediction error identification.
A prediction error reasoning is built for dynamic networks that have correlated and
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rank-reduced noise, which is introduced as the joint-direct method. Then a Weighted
Least Squares criterion is introduced that can be used to estimate the network. For
the situation of minimum variance estimation in the presence of rank-reduced noise a
Constrained Least Squares criterion is introduced. Maximum Likelihood estimates are
then related to the estimates obtained by the two least squares criteria. It is then the
objective to show that minimum variance estimates are obtained by the criteria under
some conditions, and for this reason variance expressions are derived for the two least
squares estimators.

This chapter is based on the following publication:

• H.H.M. Weerts, P.M.J. Van den Hof, and A.G. Dankers. Identification of linear
dynamic networks with rank-reduced noise. Automatica, 98:256-268, December
2018,

and indirectly on the preliminary work published in:

• H.H.M. Weerts, P.M.J. Van den Hof, and A.G. Dankers. Identification of dy-
namic networks with rank-reduced process noise. In Prepr. of the 20th IFAC
World Congress. IFAC, 2017. (IFAC-PapersOnLine, 50(1):10562-10567),

• H.H.M. Weerts, P.M.J. Van den Hof, and A.G. Dankers. Identifiability of dy-
namic networks with part of the nodes noise-free. In Proc. 12th IFAC Workshop
ALCOSP, 2016. (IFAC-PapersOnLine, 49(13):19-24), and

• P.M.J. Van den Hof, H.H.M. Weerts, and A.G. Dankers. Prediction error iden-
tification with rank-reduced output noise. In Proc. 2017 American Control Con-
ference, pages 382-387, Seattle, Florida, 2017.

1.5.4 Chapter 5

The question on estimation of dynamic networks in the presence of algebraic loops
is addressed here. Two predictor definitions and their implied predictor expressions
are evaluated for the situation of having algebraic loops. The joint-direct method is
formulated for one of the predictor definitions and a consistency analysis is performed.
Some observations regarding required external excitations are made. The theoretical
contributions are validated using simulation experiments.

This chapter is based on the following publication:

• H.H.M. Weerts, P.M.J. Van den Hof, and A.G. Dankers. Identification of dy-
namic networks operating in the presence of algebraic loops. In proc. 55nd IEEE
Conference on Decision and Control, pages 4606-4611, 2016.
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1.5.5 Chapter 6

The question of which nodes in a network need to be included in a model in order to
be able to estimate a module of interest is addressed in this chapter. An answer is
formulated by analyzing whether removing a node from a network leaves the module
of interest invariant. The core mechanic that changes the dynamics of a module is
the transformation of module dynamics that leave the node signals invariant. The
notion of abstraction is introduced as a way to remove nodes by utilizing network
transformations. Two existing abstraction methods that lead to network identifiable
model sets are generalized. Then conditions under which the generalized abstraction
algorithm leaves the module of interest invariant are investigated. A systematic way
to choose a set of nodes such that the conditions for invariance are satisfied is shown,
which then answers which nodes are to be measured.
This chapter is based on joint work with Jonas Linder. A paper on the basis of this
chapter is in preparation for publication in a journal.

1.5.6 Chapter 7

The question regarding efficient algorithms that can perform identification in dynamic
networks is addressed in this chapter. In order to formulate an algorithm a particular
network ARMAX parameterization is defined for network models. A Sequential Least
Squares algorithm on the basis of the network ARMAX model is defined. A consistency
analysis of the introduced algorithm is made in the basis of equivalences with the
Weighted NullSpace Fitting algorithm. Issues regarding implementation and practical
usage are discussed, and some analysis is provided on the basis of simulations. Finally
the performance of the introduced algorithm is compared to other algorithms on the
basis of simulations.
This chapter is based on the following publication:

• H.H.M. Weerts, M. Galrinho, G. Bottegal, H. Hjalmarsson, and P.M.J. Van den
Hof. A sequential least squares algorithm for ARMAX dynamic network identi-
fication. In Prepr. 18th IFAC Symposium on System Identification, Stockholm,
Sweden. IFAC, 2018.

1.5.7 Other publications

Contributions have been made to publications that are not included in this thesis:

• A.G. Dankers, P.M.J. Van den Hof, D. Materassi, and H.H.M. Weerts. Condi-
tions for handling confounding variables in dynamic networks. In Prepr. of the
20th IFAC World Congress, 2017. (IFAC-PapersOnLine, 50(1):3983-3988),

• P.M.J. Van den Hof, A.G. Dankers, and H.H.M. Weerts. From closed-loop
identification to dynamic networks: generalization of the direct method. In 56th
IEEE Conference on Decision and Control, pages 5845-5850, 2017, and

• P.M.J. Van den Hof, A.G. Dankers, and H.H.M. Weerts. Identification in dy-
namic networks. Computers & Chemical Engineering, 109:23-29, 2018.
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& preliminaries

This thesis is about prediction error identification of dynamic networks. A classical
system identification method is the prediction error method (Ljung, 1999; Söderström
and Stoica, 1989), which has been used in many different ways for many situations.
A definition of the dynamic network and its basic building blocks is provided. The
noise model plays an important role in the thesis and is extensively elaborated upon.
Then a review of the basic concepts of system identification using prediction error
methods is provided. An extension to the state-of-the-art network prediction error
identification methods is provided in order to formulate a solid basis for the remainder
of the thesis. Finally the sub-questions posed in the introduction are related to the
formally introduced concepts.

2.1 Network definition

In order to use prediction error methods in a dynamic network, a dynamic network
model must first be defined. In this section a dynamic network model is formulated
on the basis of the setup in (Van den Hof et al., 2013).

2.1.1 Basic building blocks

A dynamic network consists of L scalar internal variables or nodes wj , j ∈ N , where
N is a set of cardinality L, and K external variables rj , j ∈ R, where R is a set of
cardinality K. Each node is a basic building block of the network and is described as:

wj(t) =
∑
l∈Nj

Gjl(q)wl(t) + uj(t) + vj(t) (2.1)

23
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where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);

• Nj is the set of indices of internal variables with direct causal connections to wj ,
i.e. l ∈ Nj iff G0

jl 6= 0.

• There are no self-loops in the network, i.e. nodes are not directly connected to
themselves j /∈ Nj ;

• Gjl are proper rational transfer functions that are referred to as modules in the
network;

• uj are generated by the external variables rk(t), k ∈ R, via

uj(t) =
∑
k∈Rj

Rjk(q)rk(t), (2.2)

where rk(t) can directly be manipulated by the user and Rj is the set of indices
of generating external variables with direct causal connections to wj , i.e. k∈Rrj
iff R0

jk 6= 0, and Rjk are proper rational transfer functions;

• vj is process noise.

In a graphical way, each equation forms a building block as in Figure 2.1, where
rectangles are used to represent the modules in the network.

+

w1

G12w2

G1LwL

v1

+ R11
r1

R1K
rK

u1

Figure 2.1: The graphical representation of (2.1) is a building block of the dynamic
network.

Compared to the network setup in (Van den Hof et al., 2013), in (2.2) we allow multiple
external variables to directly affect an internal variable, and an external variable may
affect a node through a dynamic module. The additional decomposition is important
for multiple reasons, it allows to specify where the external variables enter the network,
and to represent the dynamic effect that an external variable can have on a node, and
it gives the ability to represent an immersed network1 within the same model class.

All the building blocks of the network are connected through the internal variables,
such that the dynamic network is formed. We have not defined a particular way to

1The immersed network will be defined in Chapter 6
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label the nodes, external variables and noises, but the common convention in writing
will be to label nodes as 1, . . . , L, and to label the external signals that enter at node
j with label j. When combining the L node signals for the set of nodes N = 1, . . . , L,
the network expression is obtained

w1
w2
...
wL

 =


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L

GL1 · · · GL L−1 0



w1
w2
...
wL

+


u1
u2
...
uL

+


v1
v2
...
vL

 . (2.3)

The noise vector associated with the vector of internal variables
[
w1 · · ·wL

]T is v =
[v1 · · · vL]T , which is modeled as a stationary stochastic process with rational spectral
density, such that there exists a p-dimensional white noise process e := [e1 · · · ep]T ,
p ≤ L, with covariance matrix Λ > 0 such that

v(t) = H(q)e(t).

The noise model will be specified in more detail in Section 2.1.3. In a straightforward
matrix notation the dynamic network is represented as

w(t) = G(q)w(t) +R(q)r(t) +H(q)e(t). (2.4)

The diagonal of G(q) is 0 due to the absence of self-loops. The dynamic network can
be graphically represented, for example as the example network in Figure 2.2.

w4

w3G13

G14 G41

w1

G24

w2

v1

G12

r3

v4

r2

v2

Figure 2.2: Graphical representation of a dynamic network, where circles are summa-
tion points with the indicated node as output.

Remark 2.1. Elements in w are not necessarily ordered as 1, . . . , L, and possibly the
labels can be letters or other symbols, so element (i) of w does not necessarily corre-
spond to wi. The same holds true for element (i, j) of G, which does not necessarily
corresponds with Gij. In case element (i, j) of G is explicitly used, as opposed to Gij
then this will be denoted with G(i,j), and similar for w.
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2.1.2 Spectral density

In order to evaluate the spectral contents of signals a definition of the power spectral
density is required. The cross power spectral density of vector signals a(t) and b(t) is
defined as

Φab(ω) := F{E[a(t)bT (t− τ)]}, (2.5)

where F is the discrete-time Fourier transform, and E the expected value operator.
The auto power spectral density of signal a(t) is defined as

Φa(ω) := F{E[a(t)aT (t− τ)]}. (2.6)

2.1.3 The noise model

Unknown disturbances may induce correlations between node signals that are not
caused by the modules of the network. A noise model is made in an identification
setting in order to explain these correlations.

The noise model v(t) = H(q)e(t) requires some further specification. Associated with
v is the spectrum Φv(ω). In this thesis we consider the situation that the spectrum
Φv(ω) may not be full rank, and this situation is worked out in this section. Using
spectral factorization two different representations of the noise model are derived, after
which an implication for the probability density function is shown.

For p = L, referred to as the full-rank noise case, H is square, stable, monic and
minimum-phase. The situation p < L will be referred to as the singular or rank-
reduced noise case. In this latter situation for notational simplicity and without loss
of generality the following assumption will be made.

Assumption 2.2. The vector of node signals w is ordered in such a way that[
v(1) · · · v(p)

]T is a full rank noise process.

When given just a set of measurements which contain rank-reduced process noise, it
is not known what the rank and ordering of the noise process is. We have made the
Assumption 2.2 that noise is ordered such that the first p nodes contain a full rank
noise process. This assumption may look restrictive, and a question is whether the
necessary ordering information and rank p are present in the data set. The question
whether the ordering information is present in the data is an identifiability related
question. If this information is present, it can be identified, and Assumption 2.2
would not be restrictive. A discussion on identification without a-priori knowledge of
the ordering defined in Assumption 2.2 is made in Section 3.8.

To describe properties of H we need the following lemma, which is an adapted version
of the spectral factorization theorem (Youla, 1961) that is also used in Weerts et al.
(2018c).
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Lemma 2.3 (Factorization of reduced-rank spectra). Consider an L-dimen-
sional stationary stochastic process x with rational spectral density Φx and rank
p < L, that satisfies the ordering property of Assumption 2.2. Then

a. Φx allows a unique spectral factorization

Φx = F∆F ∗

with F ∈ RL×p(z), F =
[
Fa
Fb

]
with Fa square, monic, and F stable and

having a stable left inverse F † that satisfies F †F = Ip, and ∆ ∈ Rp×p,
∆ > 0;

b. Based on the unique decomposition of Φx in (a.), there exists a unique
factorization of Φx in the structure:

Φx = F̆ ∆̆F̆ ∗

with F̆ ∈ RL×L(z) monic, stable with a stable inverse and ∆̆ ∈ RL×L,
having the particular structure

F̆ =
[

Fa 0
Fb − Γ I

]
, ∆̆ =

[
I
Γ

]
∆
[
I
Γ

]T
and Γ := limz→∞ Fb(z).

Proof. Part (a) is the standard spectral factorization theorem, see Youla (1961). The
decomposition in part (b) can be verified by direct computation. Stability of F̌ follows
from stability of F . Stability of

F̌−1 =
[

F−1
a 0

−(Fb − Γ)F−1
a I

]
(2.7)

follows since it contains only stable components. �

Lemma 2.3a shows that the noise process v(t) can be represented as a unique factor-
ization with an H that satisfies

H(q) =
[
Ha(q)
Hb(q)

]
. (2.8)

The feedthrough term of Hb will be indicated with Γ, i.e. Γ := limz→∞Hb(z). When
we apply Lemma 2.3b to v(t) we can make a unique factorization using the same Ha

and Hb as in (2.8)

v(t) = Ȟ(q)ě(t) =
[

Ha(q) 0
Hb(q)− Γ I

] [
e

Γe

]
, (2.9)

where
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• H is stable and has a stable left inverse H†, satisfying H†H = Ip, the p × p
identity matrix;

• Ha is a proper rational transfer function which is square, monic, stable and
stably invertible;

• and Hb is a stable proper rational transfer function which satisfies (Hb−Γ)H−1
a

is stable.

The L-dimensional white noise process ě has covariance matrix Λ̌ defined by

Λ̌ =
[
I
Γ

]
Λ
[
I
Γ

]T
. (2.10)

From the definition of ě we can see that there is a particular relation between the
driving white noise process in the first p nodes and the last L− p nodes.

With (2.8) and (2.9) there are actually at least two different noise model representa-
tions:

v(t) = H(q)e(t) = Ȟ(q)ě(t).

In the case of full-rank noise, p = L, and both representations are the same. Both
expressions will be utilized.

The white noise process e(t) is modeled as a stationary stochastic process. The proba-
bility density function (pdf) of the rank-reduced process ě is defined by two equations
(Rao, 1973), i.e. the pdf of e and the additional constraint[

Γ0 −I
]
ě = 0. (2.11)

An interpretation of this characterization of ě is a p-dimensional pdf that lives on
a plane described by (2.11). This interpretation is illustrated in Figure 2.3 for an
example of a 2-dimensional noise process ě(t) having rank 1 with a Gaussian pdf.

Figure 2.3: pdf of rank-reduced noise ě(t) = [e(t) 0.5e(t)]T , with e(t) ∼ N (0,Λ0), a
1-dimensional random variable.
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2.1.4 Sensor noise

Noise v(t) is a process noise, which represents external unmeasured disturbances that
affect the node signals. However there can be another source of noise from the sensors
that measure the nodes. This sensor noise is affecting only the data, but has no
influence on the actual network.

As an example of the difference between process and sensor noise, consider the mea-
surement of temperature in a room. When the temperature changes due to an un-
measured disturbance, e.g. someone opens the window, then this is a process noise.
When the measurement is disturbed while the temperature is unaffected, e.g. electro-
magnetic interference on the sensor, then this is sensor noise.

Node measurements affected by sensor noise are defined as

w̃(t) = w(t) + s(t), (2.12)

where s is a stochastic process. The node measurements w̃ are then modeled by (2.12)
combined with (2.4). In classical identification settings sensor noise would lead to an
Errors-In-Variables problem, which is difficult to solve (Söderström, 2018).

It will now be shown that sensor noise can be written as a process noise through
manipulation of the network equations. When substituting w = w̃−s into the network
equation (2.4),we obtain that w̃ − s = G(w̃ − s) + v +Rr, which can be manipulated
to

w̃ = Gw̃ +Rr + v + (I −G)s︸ ︷︷ ︸
:=ṽ

. (2.13)

With this substitution a new network representation is obtained with a modified pro-
cess noise ṽ, but with nodes w̃ instead of w. Even when the original noises v and s
have a diagonal spectrum, then ṽ is unlikely to have diagonal spectrum due to the
correlations induced by the G in ṽ = v + (I −G)s.

The implication of the new process noise ṽ is that sensor noise in a dynamic network
can be represented as a process noise that has a non-diagonal spectrum. In this thesis
sensor noises are modeled as correlated process noises, and no particular attention is
given to the sensor noise situation.

2.1.5 Open-loop response and spectra

In order to formulate what information is present in the data, the open-loop response
of the network and the spectral density of the data must be defined. The network
transfer function that maps the external signals r and e into the node signals w is
denoted by:

T (q) =
[
Twr(q) Twe(q)

]
, (2.14)

with

Twr(q) := (I −G(q))−1
R(q), and (2.15)

Twe(q) := (I −G(q))−1
H(q), (2.16)
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where the notation T (q) = (I −G(q))−1
U(q) with

U(q) =
[
H(q) R(q)

]
(2.17)

is also sometimes used. This is also known as the open-loop response of the network
corresponding with

w(t) = Twrr(t) + v̄(t), (2.18)

where noise component v̄(t) is defined by v̄(t) := Twe(q)e(t).

Nodes w(t) can be represented as a spectral density in the following way

Φw(ω) = Twr(eiω)Φr(ω)TTwr(e−iω) + Φv̄(ω). (2.19)

Another useful spectrum is the cross power spectral density of w and r

Φwr(ω) = Twr(eiω)Φr(ω). (2.20)

The power spectral density of v̄ is

Φv̄(ω) := Twe(eiω)ΛTTwe(e−iω), (2.21)

which can be determined from the known spectra using

Φv̄(ω) = Φw(ω)− Twr(eiω)Φr(ω)TTwr(e−iω). (2.22)

2.1.6 Paths and loops

Some notions from graph theory will be borrowed for use in the dynamic network.
Modules form the interconnections between nodes. A node wk is said to be an in-
neighbor of node wj if Gjk 6= 0, and wj is said to be the out-neighbor of node wk.
As an example, in Figure 2.2 w1 is an out-neighbor of w3. Moreover w1 is both the
in-neighbor and out-neighbor of w4.

Another notion that is useful is a path in the network, which is essentially a sequence
of modules. More precisely there exists a path through nodes wn1 , . . . , wnk if

Gn1n2Gn2n3 · · ·Gn(k−1)nk 6= 0.

A loop is a path that ends where it begins, more precisely a loop is a path where
n1 = nk. As an example, in Figure 2.2 there is a path w4 → w1 → w2 → w4 since
G41G12G24 6= 0 and this is also a loop. There is no path w3 → w1 → w4 since G31 = 0.

2.1.7 Properness of modules

A transfer function Gij has a direct term or feedthrough defined by

G∞ij := lim
z→∞

Gij(z).
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The feedthrough of Gij is non-zero when both Gij and G−1
ij are proper, and then Gij

is also said to be bi-proper. In terms of notation, for any transfer function A(z) we
will denote A∞ := limz→∞A(z). Therefore G∞ := limz→∞G(z) to indicate the direct
terms of the whole network. A transfer function Gij is said to have a delay when it is
strictly proper, i.e. G∞ij = 0.

Using these direct terms a special kind of loop can be defined: When all modules that
are part of a loop have a non-zero feedthrough, then the loop is an algebraic loop, i.e.
the nodes wn1 , . . . , wnk , wn1 form an algebraic loop if

G∞n1n2
G∞n2n3

· · ·G∞nkn1
6= 0.

When a permutation matrix Π can transform ΠG∞ΠT to a strictly upper triangular
matrix, then there are no algebraic loops in the network (Deo, 1974).

2.1.8 Well-posedness

With the equations defined so far, a network model could be defined which can not
appear in reality. For example the algebraic loop described by G = [ 0 1

1 0 ] would lead
to a singular and non-invertible (I − G) so that there is no open-loop response T =
(I−G)−1[R H]. Therefore it is required that the network is well-posed (Willems, 1971;
Dankers, 2014), which is more precisely defined by the following definition.

Definition 2.4 (Definition 2.10 from (Dankers, 2014)). Consider a dynamic net-
work as defined in (2.4). Consider a loop embedded in the network. Suppose the
loop passes through the internal variables wl1 , . . . , wln . Let L = {wl1 , . . . , wln}. If
a variable in the network has a direct connection to any wl ∈ L denote this vari-
able as a ’variable that affects the loop L’. Let AL denote the set of variables that
affect the loop. Note that AL consists of internal variables, external variables,
and process noise variables. The loop defined by L is well-posed if the following
conditions are satsified:

(a) The internal variables of the loop (i.e. all wl∈L) are completely (uniquely)
determined by the variables that affect the loop, i.e. all variables in AL.

(b) The internal variables of the loop depend causally on the variables that affect
the loop.

(c) The internal variables of the loop depend on the variables that affect the
loop in a continuous manner.

(d) Small changes in the model should not result in a loop L that violates Con-
ditions (a) - (c).

For a more detailed explanation of the well-posedness property see (Dankers, 2014).
Any dynamic network that corresponds to a physical system is well-posed, however
some models that we define on paper do not make physical sense. The models that
do not make physical sense are not well-posed, so requiring that a network model is
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well-posed is not a restriction on applicability. It is rather straightforward to check
well-posedness of a network.

Proposition 2.5 (Proposition 2.14 in (Dankers, 2014)). A dynamic network
model as defined in (2.4) is well-posed if all principal minors of (I − G(∞))−1

are nonzero.

As shown in the beginning of this section, an algebraic loop can lead to a non-well-
posed model, however this is only true for specific cases. In general well-posed networks
can have algebraic loops as part of the network. All networks which occur in reality
are well-posed, so any network that is excluded due to this property can not exist in
reality (Willems, 1971).

2.1.9 Dynamic network model

For the remainder of the thesis it is important to clearly define the network model.
This definition is more general compared to network models defined in literature, as
this model includes a flexible noise model and the possibility of algebraic loops.

Definition 2.6 (dynamic network model). A network model of a network with
L nodes, and K external excitation signals, with a noise process of rank p ≤ L is
defined by the quadruple:

M = (G,R,H,Λ)

with

• G ∈ RL×L(z), diagonal entries 0, all modules proper and stable2;

• R ∈ RL×K(z), proper;

• H ∈ RL×p(z), stable, with a stable left inverse, and satisfying the de-

composition H(q) =
[
Ha(q)
Hb(q)

]
, where Ha is stable, monic, stably invert-

ible, and Hb is stable, proper, and satisfies (Hb − Γ)H−1
a is stable, where

Γ = limz→∞Hb(z).

• Λ ∈ Rp×p, Λ > 0;

• the network is well-posed.

Noise covariance matrix Λ is included in the definition of a model, as is common for
multivariable models (Söderström and Stoica, 1989).

In this thesis dynamic network models are defined for the situation that all modules G
are stable, while prediction error methods are in closed-loop systems able to identify

2The assumption of having all modules stable is made in order to guarantee that Twe (2.16) is a
stable and stably invertible spectral factor of the noise process that affects the node variables.
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unstable modules when the loop is stable (Ljung, 1999). Further research is required
to make the theory presented in this thesis suitable for unstable G. One paper where
unstable G are treated is (Bottegal et al., 2018).

The original network is unknown, and some identification criterion chooses the most
suitable model to represent the network from a set on the basis by minimizing a cost
function. A set of candidate models is defined from which the final model is chosen,
and in this case the set of candidate models is a set of network models. Network
models are parameterized by some parameter θ ∈ Θ, and the set of candidate network
models is then defined on the basis of the parameter space Θ.

Definition 2.7 (network model set). A network model set for a network of L
nodes, K external excitation signals, and a noise process of rank p ≤ L, is defined
as a set of parametrized matrix-valued functions:

M :=
{
M(θ) =

(
G(q, θ), R(q, θ), H(q, θ),Λ(θ)

)
, θ ∈ Θ

}
,

with all models M(θ) satisfying the properties as listed in Definition 2.6.

Only model sets for which all models in the set share the same rank, i.e. rank(Λ(θ)) =
p, are considered in this thesis. Parameter θ is used only as a vehicle for creating a set
of models. Particular properties of the mapping from parameters to network models
are not considered.

2.2 Identification with prediction error methods

2.2.1 The basics

Here the three concepts that form the core of any system identification method are
described. This section is based on the contents of (Ljung, 1999; Söderström and
Stoica, 1989). First the basic concepts of system identification are discussed for a basic
open-loop identification problem, after which prediction error methods are discussed
for the closed-loop situation.

A system identification method describes the way to build a mathematical model of
a system on the basis of measured data, such that the estimated model describes the
data well. In the prediction error method a model is selected from a set of candidate
models by some criterion. The core concepts are

• a data set,

• a model set, and

• an identification criterion.
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After a model has been estimated from a data set, the model may be validated on
the basis of validation data. Different validation methods exist, but this topic is not
treated in this thesis.
The data set is the measured data that is generated by the data generating system S,
which is the system that is to be modeled. For single-input-single-output systems the
data generating system is typically described by

y(t) = G0(q)u(t) + v(t), (2.23)

where u is known as the input of the plant G0, y is known as the output, v is the
unknown noise disturbance, t is the time index, and q−1 is the delay operator, i.e.
q−1w2(t) = w2(t− 1). The plant can be described by a rational transfer function

G0(q−1) = b0 + b1q
−1 + b2q

−2 + b3q
−3 + · · ·

1 + a1q−1 + a2q−2 + a3q−3 + · · · . (2.24)

In an experiment some signal u(t) is designed and applied as an input to the plant,
for example a multisine, and the output y(t) is measured for the duration of the
experiment. The data set contains u(1), . . . , u(N) and y(1), . . . , y(N), where N is the
number of samples that were drawn. The unknown noise v(t) is assumed to be a
stationary stochastic variable, and u(t), y(t) are assumed to be quasi stationary.
The model set is constructed by parameterizing the transfer functions associated with
the model, i.e.

G(q, θ) = θb0 + θb1q
−1 + θb2q

−2 + · · ·+ θbnq
−n

1 + θa1q
−1 + θa2q

−2 + · · ·+ θanq
−n , (2.25)

where θ =
[
θa1 θa2 · · · θan θb0 θb1 θb2 · · · θbn

]T ∈ Θ. Set Θ is the space
that contains the parameters of the parameterized model, and so it governs the model
set. The model set M is the set of all models that have θ ∈ Θ.
An identified model is then obtained from the identification criterion, which is a func-
tion that selects a model from the set of candidate models, such that the chosen
model describes the data set well in some sense. Therefore the criterion is a function
of u(1), . . . , u(N) and y(1), . . . , y(N), and the model set. A criterion based on the
error described by (G0−G(θ)) seems logical, however G0 is an unknown quantity. For
that reason the data is used, as the data contains the necessary information on G0. A
good model is able to describe the output well on the basis of the input, so an error
that can be optimized is then

ε(t, θ) = y(t)−G(q, θ)u(t), (2.26)

where G(q, θ)u(t) is essentially mimicing the output. A criterion function that is often
used is the least squares criterion

θ̂N = arg min
θ

1
N

N∑
t=1

ε2(t, θ), (2.27)

where the parameters θ is chosen to minimize the power of error ε(t, θ).
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2.2.2 Prediction error methods

Some network identification methods in literature, and the identification methods
treated in this thesis are based on the prediction error method (Ljung, 1999). In
the prediction error method a thorough reasoning is added to the choice of the error
and the criterion by using a predictor. Under the assumption that G0 is causal, the
one-step-ahead predictor is defined as

ŷ(t|t− 1) := E
(
y(t)

∣∣∣y(t− 1)−, u(t− 1)−
)
, (2.28)

where y(t − 1)− is a shorthand notation for y(t − 1), y(t − 2), · · · . This predictor is
able to predict the value of y(t) using only past and present values of u and y, so it
is an excellent way of representing dynamic relations in data. The predictor will be
used to explain the dynamics in the data in an identification setting.

When the noise v(t) is non-white, i.e. v(t) is correlated with v(t−1)−, then to evaluate
the predictor expression the noise must be modeled, which can be done by writing the
noise as filtered white noise

v(t) = H0(q)e(t), (2.29)

where H0 is a monic rational transfer function and e(t) is a white noise with bounded
moments. With this noise model the predictor (2.28) results in the expression (Ljung,
1999)

ŷ(t|t− 1) = (H0)−1G0(q)u(t) +
(
1− (H0)−1) y(t). (2.30)

The parameterized model additionally includes a noise model

H(q, θ) = 1 + θc1q
−1 + θc2q

−2 + · · ·+ θcnq
−n

1 + θd1q
−1 + θd2q

−2 + · · ·+ θdnq
−n . (2.31)

This is used to define the parameterized predictor

ŷ(t|t− 1; θ) = (H(q, θ))−1G(q, θ)u(t) +
(
1− (H(q, θ))−1) y(t), (2.32)

and the prediction error

ε(t, θ) = y(t)− ŷ(t|t− 1; θ) = (H(q, θ))−1
(
y(t)−G(q, θ)u(t)

)
. (2.33)

In the prediction error method, this prediction error is optimized in criterion (2.27).

2.2.3 Concepts in prediction error methods

Analysis of the estimated model is an important part of the prediction error method.
It is important for an estimate to be an accurate representation of the real system in
some sense. A way to define accuracy is consistency, which describes that an estimated
model tends to the data generating model as more data is collected. For consistency
it is required that the model G(q, θ) is flexible enough to be an accurate description
of G0(q), i.e.

∃θ0 ∈ Θ s.t. G(q, θ0) = G0(q). (2.34)
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In (Ljung, 1999) an asymptotic analysis is presented that guarantees consistency of
an estimate, i.e.

θ̂N → θ0 w.p. 1 as N →∞, (2.35)
under some conditions, which has the implication that

G(ejω, θ̂N )→ G0(ejω). (2.36)

In order to formulate the conditions for consistency two concepts need to be introduced,
namely identifiability and informativity, and this is done next.
The notion of identifiability is a classical notion in system identification, and the con-
cept has been used in different settings, so it becomes important to specify what is
meant with network identifiability. The classical identifiability definition as present
in (Ljung, 1976; Söderström et al., 1976) is a consistency-oriented concept concerned
with estimates converging to the true underlying system (system identifiability) or to
the true underlying parameters (parameter identifiability). In current literature, iden-
tifiability is defined as a property of a parametrized model set, referring to a unique
one-to-one relationship between parameters and predictor model, see e.g. (Ljung,
1999). As a result a clear distinction has been made between aspects of data informa-
tivity, a property of measured data, and identifiability. For an interesting account of
these concepts see also the more recent work (Bazanella et al., 2010).
A necessary condition for consistency is that only one point in the parameter space
θ ∈ Θ is associated with the data generating system. This uniqueness concept is
defined in the following way.

Definition 2.8 (Identifiability (Ljung, 1999)). Model set M is globally identifi-
able at θ1 ∈ Θ if for all θ ∈ Θ

M(θ) = M(θ1)⇒ θ = θ1. (2.37)

Essentially the definition means that every dynamic model in the model set is associ-
ated with exactly 1 point in the parameter space.
Another necessary condition for consistency is that the data contains a sufficient
amount of information. The following definition is common in literature.

Definition 2.9 (Informativity (Ljung, 1999)).
Define the data vector z(t) =

[
yT (t) uT (t)

]T and predictor filter W (q, θ) =[
H(q, θ)−1 H(q, θ)−1G(q, θ)

]
as shorthand notation. The data z(t) is called in-

formative with respect to a model setM if for any two models W (q, θ1),W (q, θ2),
θ1, θ2 ∈ Θ,

E
∣∣∣(W (q, θ1)−W (q, θ2)

)
z(t)

∣∣∣2 = 0 (2.38)

implies W (ejω, θ1) = W (ejω, θ2) for almost all ω.

When data is informative for a model set then the predictor filters can be recovered
from data. Since the predictor filters are related to G and H in a one-to-one way,
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the dynamics of G and H can be recovered from data when data is informative. In
combination with identifiability this implies that a unique estimate is obtained, i.e. the
criterion (2.27) is minimized by a single θ ∈ Θ. A sufficient condition for informativity
with respect to all model sets is formulated as follows.

Theorem 2.10 (Theorem 8.1 in (Ljung, 1999)). A data set is informative if the
spectrum matrix corresponding to z(t) is strictly positive definite for almost all
frequencies.

The theorem shows a condition for informativity of data for any linear time-invariant
model. For particular models sets strictly positive definite spectrum may not be
necessary, but further analysis on this topic is outside the scope of this thesis.
Now that informativity and identifiability have been defined we can formulate the con-
ditions for consistency. First the conditions for open-loop systems are specified.

Proposition 2.11. Let data y(t) and u(t) be generated by (2.23) in an open-
loop situation, i.e. u and v are uncorrelated processes. The estimate θ̂N obtained
by (2.27) with the prediction error described in (2.33) is consistent under the
following conditions:

1. The model of G is flexible enough, i.e. ∃θ0 ∈ Θ such that G(q, θ0) = G0(q);

2. The noise model H(q, θ) and G(q, θ) are independently parameterized, i.e.
they do not share parameters;

3. The model set M is identifiable;

4. The process u is sufficiently informative.

When a plant operates in closed-loop, then there is correlation between u(t) and v(t)
and a different set of conditions is required for consistency.

Proposition 2.12. Let data y(t) and u(t) be generated by (2.23) in an closed-
loop situation, i.e. there is a feedback from y to u. The estimate θ̂N obtained
by (2.27) with the prediction error described in (2.33) is consistent under the
following conditions:

1. The system is in the model set, i.e. ∃θ0 ∈ Θ such that both G(q, θ0) = G0(q)
and H(q, θ0) = H0(q);

2. The model set M is identifiable;

3. The process z(t) =
[
yT (t) uT (t)

]T is sufficiently informative;

4. There is at least 1 sample delay in the loop of both the data-generating
process and for all models in the model set.

The three core concepts that are required for consistency are informativity, identifia-
bility, and the data generating system should be in the model set.



38 Chapter 2. The dynamic network & preliminaries

2.2.4 Variance

One of the objectives of this thesis is to obtain estimates of minimum variance. The
concept variance will be defined in this section. Since the noise v(t) is a random
process, the estimate θ̂N is a random variable. Estimate θ̂N has certain amount of
uncertainty, and the uncertainty may be described by the variance. The covariance
matrix of a variable x is defined as

Cov(x) = E (x− E(x)) (x− E(x))T . (2.39)

It can be shown (Ljung, 1999) that under mild conditions a consistent estimate θ̂N is
normally distributed with N →∞, i.e.

√
N(θ̂N − θ0) ∈ AsN (0, Pθ), (2.40)

implying that a consistent estimate θ̂N is described by a normal distribution centered
at the true parameter with covariance matrix Pθ. Covariance matrix Pθ describes how
’fast’ convergence to the true parameter happens, meaning that with small Pθ fewer
data points are needed for an accurate estimate compared to high Pθ.

2.3 The MISO direct method

2.3.1 Introduction

In order to identify the network (2.4) some extensions have to be made compared to
identification of the open-loop system (2.23). These changes relate to the three core
concepts: the data set is larger, the model set is now a network model set, and the
criterion has to be adapted. Moreover in the identification we have to account for feed-
back through the network dynamics, and for the possibility that noise enters at more
locations than at one output. Here the direct method for dynamic network identifica-
tion from (Van den Hof et al., 2013) will be presented in order to show the changes in
the identification framework. Since this estimation method is a direct method, it can
be related to Maximum Likelihood estimates that minimize the variance, which is a
relevant property for answering the research question.
The data set contains all node measurements and all external variables, usually in the
form w(t) ∈ RL, r(t) ∈ RK . This direct method for dynamic network identification
is an extension of the direct method for closed-loop identification (Ljung, 1999) that
estimates all modules Gjl, l ∈ Nj in a multi-input-single-output closed-loop setting. If
the method is applied to each node j, then all modules in the network can be estimated
under certain conditions.
For this direct method it is assumed that data is generated by a data generating system
S, that is denoted as the model

M0 = (G0, R0, H0,Λ0). (2.41)

The set of candidate models is the network model set as defined in the previous section
with some additional restrictions, namely
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• References enter the network directly at a single node, without encountering
dynamics, i.e. matrix R0 contains exactly one 1 in every column and is known.
This restriction is encoded in the model set, every M ∈ M has the same R0.
This also implies that uj(t) in (2.1) is known.

• Process noise vj(t) is uncorrelated to other noises in the network, and can be
modeled as vj(t) = H0

jj(q)ej(t). This restriction is encoded in the model set,
every M ∈M has diagonal H and full rank and diagonal Λ.

• Modules Gjk, k ∈ Nj can have a direct term, but wj is not part of any algebraic
loop.

2.3.2 Definition of the method

The criterion used in prediction error methods is based on the concept of prediction,
which essentially is that a good model of node wj(t) should be able to predict wj(t)
on the basis of the past. Therefore the method makes use of the definition of a one-
step-ahead predictor3 (Van den Hof et al., 2013)

w̆j(t|t− 1) := E
(
wj(t) | w(t− 1)−, wk(t) if G∞jk 6= 0, uj(t)

)
, (2.42)

where w(t−1)− is shorthand notation for w(t−1), w(t−2), . . . , w(t−∞). Essentially
the predictor is the part of wj(t) that can be recovered from past values, and the part
that can not be predicted is the innovation ej(t), i.e.

wj(t) = w̆j(t|t− 1) + ej(t). (2.43)

The innovation ej(t) is uncorrelated to the predictor w̆j(t|t−1), otherwise there would
be information in the innovation that can be used to predict wj(t). The predictor can
be written as an expression based on the network model that generated the data

w̆j(t|t− 1) = wj(t)− (H0
jj)−1(q)

wj(t)− uj(t)− ∑
k∈Nj

G0
jk(q)wk(t)

 . (2.44)

Now the model set can be used to assign parameters to the predictor

w̆j(t|t− 1; θ) = wj(t)−H−1
jj (q, θ)

wj(t)− uj(t)− ∑
k∈Nj

Gjk(q, θ)wk(t)

 (2.45)

such that each model is associated with a predictor. The objective then is to find a
parameter θ which results in a model that makes good predictions. To this end the
difference between measured and predicted wj is defined as the prediction error

ε(t, θ) := wj(t)− w̆j(t|t− 1; θ). (2.46)
3The symbol w̆j is different than the conventionally used predictor symbol ŵj . The reason for

this notation will become clear in Chapter 5.
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The innovation can not be predicted, and so for the true system the prediction error
is equal to the innovation. Now the criterion is supposed to select a model which has
a small prediction error. To this end the model is selected that minimizes the power
of the prediction error, i.e.

θ̂N = arg min
θ

1
N

N∑
t=1

ε2(t, θ). (2.47)

It can be shown that under some conditions (2.47) leads to consistent estimates.

Proposition 2.13 (Proposition 2 in (Van den Hof et al., 2013)). Estimate (2.47)
is consistent under the following conditions:

1. Noise vj is uncorrelated to all reference signals.

2. Noise vj is uncorrelated to all other noises that have a path to wj.

3. Every loop through wj has a delay, i.e. there are no algebraic loops through
wj.

4. The spectral density of
[
wj wn1 . . . wnn

]T
, n∗ ∈ Nj, denoted as ΦjNj (ω)

is positive definite for ω ∈ [−π, π].

5. The system is in the model set, i.e. there exists a θ0 ∈ Θ such that
Gjk(q, θ0) = G0

jk(q) for all k ∈ Nj, and Hjj(q, θ0) = H0
jj(q).

This proposition shows that consistent estimates can be obtained from data using
the criterion and predictor model as defined above under some conditions. The key
conditions described in the proposition are the conditions on correlatedness of the
noise, conditions on how feedthrough is modeled, conditions on information content
in the data, and conditions on the flexibility of the parameterized model. In the
dynamic network model definition we allow for many more networks than the networks
that satisfy the conditions of the above proposition. Relaxing conditions under which
consistent estimates can be obtained is the objective of the thesis. In particular the
following will be relaxed:

• Noise vj may be correlated with other noises vi;

• The noise process v may have a rank-reduced spectrum;

• Algebraic loops may be present in the network;

• External variables may now affect the network through a dynamic module;

• A node may have multiple external variables as in-neighbor.
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2.3.3 Local identification

For the identification of a single module Gji we may use the MISO direct method
with wj as output and all its in-neighbors as inputs. The identification is then an
identification of all modules Gjk, k ∈ Nj on the basis of input nodes wk, k ∈ Nj and
output node wj . However in (Dankers et al., 2016) it is shown that it is possible
to obtain consistent estimates of module Gji when using other nodes than the in-
neighbors of wj as inputs. In that situation the question which nodes to use for the
identification of module Gji is apparent. This question is closely related to which
nodes must be measured. A further introduction to this topic is provided in Chapter
6.

2.4 Conclusion

In this thesis we are looking for conditions under which efficient estimates of a network
may be obtained from data. A number of relaxations in the experimental setup have
been made and incoporated into the dynamic network model definition. The defined
network model is more flexible than the network models available in literature, and
with we may look for the less restrictive conditions for consistency.

In order to have consistent estimates it is necessary that unique models can be ob-
tained. One effect of the flexible network model is that we have to evaluate whether
unique network models can be obtained from data. The uniqueness question relates
to the identifiability and informativity properties that have been specified for the pre-
diction error method. Conditions under which network models are identifiable are to
be investigated.

Identification using the direct method presented in Section 2.3 results in consistent
estimates only under the presented restrictions on the experimental setup. When the
experimental setup is generalized, for example by allowing correlated noises or alge-
braic loops, then the direct identification method may no longer result in consistent
estimates and must be generalized. Prediction error methods are based on the defini-
tion of a predictor, and this predictor needs to be examined and defined for network
identification. It is desirable that this new method has favorable variance properties,
preferably with the variance at the Cramer-Rao lower bound. A Maximum Likelihood
for identification of a dynamic network would lead to such properties. This leads to
questions on how to obtain consistent estimates of a dynamic network for such flexible
models, and questions regarding the variance of those estimates.





3Network identifiability

3.1 Introduction

In order to consistently identify modules in a dynamic network we need these modules
to be unique minima of the identification criterion. In the defined network model
set there is great flexibility in modeling the modules, noise, and external excitations,
which may lead to non-uniqueness in the network representation. A-priori knowledge
of the experimental setup may be used to restrict the set of models. Then it is to
be determined how much the topology, noise, and external excitations need to be
restricted such that unique models can be obtained. Based on the papers (Weerts
et al., 2018b,c), we are addressing the following question in this chapter.

Under which conditions on the network model set can different
network models, or modules, be distinguished from each other
on the basis of measured data?

With conditions on the network model set we mean the user choice that is

• the modeled presence and location of external excitations,

• the modeled correlations between disturbance signals, and

• the modeled network topology and module dynamics.

There is an emphasis on the word ”modeled” since the question whether we can dis-
tinguish between two models does not depend on any data generating system. The
choice for a particular network model set can be based on knowledge of the experimen-
tal setup, but this is not strictly necessary. In particular under study are situations
that are not commonly addressed in literature, but that are relevant for practical
application:

43
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• Disturbance terms vi are allowed to be correlated over time, and also over node
signals, i.e. vi and vj , i 6= j, can be correlated;

• The vector disturbance process v can have a rank-reduced spectrum, which in-
cludes the situation that some individual disturbance terms can be 0 for all
time;

• Direct feedthrough terms are allowed in the network modules.

Due to the inclusion of these additional aspects in the dynamic network model there
may be non-uniqueness in the network representation, and this will be addressed by
an identifiability analysis. Determining restrictions under which network models can
be distinguished is the topic of this chapter.
To address the main question the concept of network identifiability will be introduced
as a property of a parametrized set of network models. Network identifiability will not
operate on parameter level, unlike the classical notions introduced in Section 2.2.3.
Network identifiability operates on the level of the dynamics, the topology of the
network, and on the presence and location of excitations. The first step in this chapter
is to start from the definition of a data set, and then determine which information can
possibly be recovered from this data set. Identifiability will then be evaluated on the
basis of information that can be recovered from data.
When network identifiability is defined, conditions must be obtained under which
a model set is network identifiable. In (Gonçalves and Warnick, 2008) conditions
for identifiability have been derived for a model named Dynamic Structure Function
(DSF). These conditions are to check identifiability on the basis of a nullspace of an
identified transfer function matrix. In order to test for identifiability with this method,
an identification has to be performed before identifiability can be tested, which is not
a practical test. Since the data-generating network is unknown (it has to be identified)
we aim to find conditions on the network model set that guarantee identifiability that
do not require knowledge of the data-generating network. We want to have conditions
that can be verified without the need to know the data generating network or the need
to first perform an identification. These conditions can be shown to depend on the
modeled topology and experimental setup. When considering network identifiability
in a generic sense as is done in (Bazanella et al., 2017), then the conditions may be
verified on the basis of available paths and excitations in the network model.
The identifiability analysis relates to certain restrictions on the model set. In (Gonçalves
and Warnick, 2008) the investigation is focused on the important aspects

• where external variables enter the network, and

• the modeled topology of the network.

In this chapter some additional phenomena are modeled since we model noise, and we
are allowing the presence of modules that are not strictly proper. This leads to some
additional aspects of network identifiability to be investigated, namely

• the presence of noise, including possible noise correlations and rank-reduced noise
processes, and
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• whether it is necessary to have strictly proper modules, or whether feedthrough
terms and algebraic loops can be distinguished.

When the objective is to identify a single module, then we no longer need to impose
these strong restrictions on the whole network model. Different network models may
minimize the cost function, as long as the module of interest is the same in every one
of those different network models, such that there is a unique estimate of the module.
Network identifiability is then a conservative requirement for the network model, and
instead we introduce the concept identifiability of a single module. Restrictions that
need to be imposed on the model set can be relaxed compared to network identifiability
of the full network model.

The chapter will continue as follows. In Section 3.2 it is shown which information can
be obtained from measured data, and the concept network identifiability is defined
and discussed. Then in Section 3.3 identifiability issues related to the spectral fac-
torization of noise and direct feedthrough of models are discussed. Conditions under
which network models can be distinguished are formulated in Section 3.4 for the situ-
ation that every node is excited. For situations where the topology of the network is
incorporated in the model set we formulate necessary and sufficient conditions under
which network models can be distinguished in Section 3.5. Non-conservative condi-
tions for identifiability of a single module are investigated in Section 3.6. In Section
3.7 identifiability conditions are described in terms of paths in the network. Finally
in Section 3.8 the conditions under which the ordering of signals can be determined
are shown.

3.2 Definitions

This section will set the basic definitions needed to perform the identifiability analysis.
First it must be determined which models to distinguish. Usually in an identification
setting a criterion selects a model from the model set, so the models in the model set
must be different in some ways such that the criterion can distinguish between the
different models.

The question whether in a chosen model set, the models can be distinguished from
each other on the basis of measured data, has two important aspects:

• a structural —or identifiability— aspect: is it possible at all to distinguish be-
tween models, given the restrictions on the model set, e.g. presence and location
of external excitation signals and noise disturbances, and

• a data informativity aspect: are the measured signals informative enough to
distinguish between different network models, i.e. is the information present in
the data rich enough.

The first (structural) aspect will be referred to as the notion of network identifiability.
For consistency of model estimates in an actual identification experiment, it is required
that the model set is network identifiable and that the external excitation signals are
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sufficiently informative. This separation of concepts allows for the study of structural
aspects of networks, separate from the particular choice of test signals in identification.

When data is the starting point, we have to determine how the data can be represented
such that the identifiability and informativity aspects can clearly be separated. Based
on the network equations (2.4), (2.14)-(2.16) the system can be written as

w = Twr(q)r(t) + v̄(t), (3.1)
where v̄(t) := Twe(q)e(t). (3.2)

Many identification methods, among which prediction error and subspace identifica-
tion methods, base their model estimates on second order statistical properties of the
measured data. These properties are represented by auto-/cross-correlation functions
or spectral densities of the signals w and r. Usually the spectra Φw, Φwr and Φr are
available as data. Then utilizing the relations of the spectra in (2.19) and (2.20), it is
obtained that

Twr(eiω) = Φwr(ω)Φ−1
r (ω), and (3.3)

Φv̄(ω) = Φw(ω)− Twr(eiω)Φr(ω)TTwr(e−iω), (3.4)

under suitable conditions on the inverse Φ−1
r (ω). The transfer function matrix Twr

and spectrum Φv̄ are to be modeled with a parameterized network model. Since w, r
are measured, these spectra are written as

Twr(eiω, θ) = Φwr(ω)Φ−1
r (ω), and (3.5)

Φv̄(ω, θ) = Φw(ω)− Twr(eiω, θ)Φr(ω)TTwr(e−iω, θ). (3.6)

Now the objects that can be obtained from the second order properties of the data
have been related to the network model, and the distinction between identifiability
and informativity aspects can be made. Recovering Twr and Φv̄ from the available
spectra Φw, Φwr and Φr will be referred to as the data informativity aspect. Ensuring
that models can be distinguished on the basis of Twr and Φv̄ will be referred to as the
identifiability aspect, which is the topic of the remainder of this chapter.

By utilizing (2.15)-(2.16), the parametrized model M(θ) is related to the objects that
can be obtained from data:

Twr(q, θ) := [I −G(q, θ)]−1R(q, θ),
Φv̄(ω, θ) = [I −G(eiω, θ)]−1H(eiω, θ)Λ(θ) ·

·H(eiω, θ)∗[I −G(eiω, θ)]−∗,

where (·)∗ denotes complex conjugate transpose. We formalize the reasoning above
in the definition of network identifiability that addresses the property that network
models are uniquely determined from Twr and Φv̄.
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Definition 3.1 (Network identifiability). The network model set M is globally
network identifiable at M0 := M(θ0) if for all models M(θ1) ∈M,

Twr(q, θ1) = Twr(q, θ0)
Φv̄(ω, θ1) = Φv̄(ω, θ0)

}
⇒M(θ1) = M(θ0). (3.7)

M is globally network identifiable if (3.7) holds for all M0 ∈M.

Essentially the definition states that a particular model M0 is identifiable when it can
be distinguished from all other models in the model set M on the basis of objects
that can be determined from 2nd order properties of the data. In an identification
setting, the M0 is unknown and the implication in (3.7) can not be checked directly.
Instead of identifiability of a specific M0, it is sufficient to have identifiability of all
models in M, which does not depend on knowledge of M0. Therefore global network
identifiability of a model setM is a stronger concept than global network identifiability
at a particular model. The latter property is considered in (Gonçalves and Warnick,
2008) and (Gevers et al., 2017). In this thesis both properties will be addressed.

We have chosen to use the spectral density Φv̄ in the definition, rather than its spectral
factor as e.g. originally done in Weerts et al. (2015). This is motivated by the objective
to include the situation of rank-reduced noise, where Φv̄(ω, θ) will be singular, and
the handling of possible direct feedthrough terms and algebraic loops in the network.
This will be further addressed and clarified in Section 3.3.

Remark 3.2. In Definition 3.1 we consider identifiability of the network dynamics
M = (G,R,H,Λ). This can simply be generalized to consider the identifiability of a
particular network property f(M), by replacing the right hand side of the implication
(3.7) by f(M1) = f(M0), while f can refer to network properties as e.g. the Boolean
topology of the network, the network dynamics in G, a single module Gji, etc.

Remark 3.3. The network identifiability definition is formulated for the combined
signals w and r. However it is straightforward to formulate the definition for several
other situations, e.g. using only signals w as data, or possibly a subset of node signals
and a subset of external signals. When only a subset of w and r is considered then
the implication (3.7) uses the appropriate rows and columns of Twr and Φv̄ on the
left hand side. Note that e.g. in the direct method and joint-io method for closed-loop
identification (Ljung, 1999), only the measured signals in w are used as a basis for
identifiability studies. In these approaches, excitation signals r may be present, but
are not taken into account. This situation can be handled by removing matrix R from
the model set.

Before moving to the formulation of verifiable conditions for network identifiability,
an example is presented of a disturbance free network. This is done to illustrate that
a model set can be globally identifiable at one model, while not identifiable at another
model.

Example 3.4. Consider the disturbance-free systems S1, S2 in Figure 3.1 with A(q) 6=
0,−1, and B(q) 6=0, both rational transfer functions. These two networks are described
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Figure 3.1: Systems S1 (left) and S2 (right).

by the transfer functions

G0
1 =

0 0 0
A 0 0
0 B 0

 , G0
2 =

0 0 0
0 0 B
A 0 0

 , R0
1 = R0

2 =

1 0
0 1
1 0

 .
The transfer function matrices Twr(q) related to the networks S1 and S2 respectively,
are given by:

T 0
1 (q)=

 1 0
A 1

AB + 1 B

 , T 0
2 (q)=

 1 0
(A+ 1)B 1
A+ 1 0

 . (3.8)

These transfer functions map the external signals r to the node signals w. We consider
the model set M(θ) with (omitting arguments q)

G(θ) =

 0 G12(θ) G13(θ)
G21(θ) 0 G23(θ)
G31(θ) G32(θ) 0

 , R =

1 0
0 1
1 0

 , (3.9)

and so G(θ) is parametrized and R is known and fixed. Since we have a disturbance
free system we discard a noise model here, without loss of generality.
In order to investigate whether each of the two systems can be represented uniquely
within the model set, we refer to (2.15), and analyze whether the equation

T 0
i (q) = [I −G(q, θ)]−1R(q) (3.10)

for i = 1, 2 has a unique solution for G(q, θ). To this end we premultiply (3.10) with
[I −G(q, θ)].
For network S1 we then obtain the relation (omitting argument q) 1 -G12(θ) -G13(θ)

-G21(θ) 1 -G23(θ)
-G31(θ) -G32(θ) 1

 1 0
A 1

AB + 1 B

 =

1 0
0 1
1 0

 . (3.11)
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Solving the corresponding six equations for the parametrized transfer functions Gij(θ)
shows the following. When combining the two equations related to the first row in the
right hand side matrix of (3.11) it follows that G13(θ) = G12(θ) = 0. Solving the
second row leads to G23(θ) = 0 and G21(θ) = A, while solving the third row delivers
G31(θ) = 0 and G32(θ) = B. As a result the original system S1 is uniquely recovered,
and so M is globally network identifiable at S1.
When applying the same reasoning to network S2 we obtain 1 -G12(θ) -G13(θ)

-G21(θ) 1 -G23(θ)
-G31(θ) -G32(θ) 1

 1 0
(A+ 1)B 1
A+ 1 0

 =

1 0
0 1
1 0

 . (3.12)

Solving this system of equations for the second column on the right hand side leads
to G12(θ) = G32(θ) = 0, while the solution for the first column delivers G13(θ) = 0,
G31(θ) = A and

−G21(θ) + (A+ 1)B −G23(θ)(A+ 1) = 0 (3.13)

or equivalently G21(θ) = (A + 1)(B − G23(θ)). This shows that not only G21(θ) = 0,
G23(θ) = B is a valid solution, but actually an infinite number of solutions exists. As a
result M is not globally network identifiable at S2. An interpretation is that in S2 the
contributions from w1 and w3 both solely depend on r1 making them indistinguishable,
which is reflected in the modelled transfer function matrix R(q).

3.3 Conditions on feedthrough and noise correlation

3.3.1 Problem description

In this section we show that it is impossible to distinguish between feedthrough in G
and instantaneous correlations in process noise described by Λ on the basis of only
the spectrum Φv̄. For this reason we provide three sets of conditions, presented as
restrictions on the network model set, under which we are able to uniquely recover the
feedthrough and Λ.
In papers on identification in dynamic networks, different assumptions are made on
the presence of direct feedthrough terms G∞ and noise correlation Λ. For example
in (Van den Hof et al., 2013) it is assumed that Λ is diagonal and that there are no
algebraic loops in the network, while in (Gonçalves and Warnick, 2008) it is assumed
that all modules are strictly proper.
Here we consider a general situation where there can be algebraic loops and there
may be correlation between the noises. In this situation the question is whether a
distinction can be made between noise correlation and direct feedthrough terms. This
is illustrated by an example.

Example 3.5. In this example there are two networks, shown in Figure 3.2, which
have cov(e) = I. The spectrum of w = v̄ is in both systems exactly the same

Φw =
[
1 a
a 1 + a2

]
. (3.14)
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w1 w2a

e1 e2

w1 w2

ae1

e1

e2

e2

~ ~

Figure 3.2: Systems S1 (left) and S2 (right).

In the left system, the correlation between w1 and w2 is explained with a module, while
in the right system the correlation is due to correlation of noise process ẽ1 with ẽ2.
This leads to two different decompositions of the spectrum

Φw =
[

1 0
−a 1

]−1

︸ ︷︷ ︸
(I−G1)−1

[
1 0
0 1

]
︸ ︷︷ ︸

Λ1

[
1 −a
0 1

]−1
=
[
1 0
0 1

]−1

︸ ︷︷ ︸
(I−G2)−1

[
1 a
a 1 + a2

]
︸ ︷︷ ︸

Λ2

[
1 0
0 1

]−1
. (3.15)

When both these models are present in the model set M, then it is impossible to
distinguish between the models on the basis of only the spectrum Φv̄.

Based on the example, the central question becomes which restrictions should be
incorporated into a model set such that the feedthrough can be distinguished from the
noise correlation. These restrictions may be imposed on either the feedthrough terms
of G, or on the noise correlations captured in Λ, such that the following implication
is satisfied

Φv̄(ω, θ1) = Φv̄(ω, θ0)⇒
{
G∞(θ1) = G∞(θ0)

Λ(θ1) = Λ(θ0) . (3.16)

Here we note that the decomposition of the spectrum

Φv̄(ω, θ) = Twe(eiω)ΛTTwe(e−iω), (3.17)

with Twe = (I −G)−1H can only be unique when implication (3.16) holds. We have
seen in Example 3.5 that implication (3.16) does not hold for all network model sets.
The spectrum Φv̄ is uniquely be decomposed whenever the following implication holds

Twr(q, θ1) = Twr(q, θ0)
Φv̄(ω, θ1) = Φv̄(ω, θ0)

}
⇒

 Twr(q, θ1) = Twr(q, θ0)
Twe(q, θ1) = Twe(q, θ0)

Λ(θ1) = Λ(θ0)
, (3.18)

where we include Twr such that we may make explicit use of external variables. Since
external variables have a known spectrum they may be used to uniquely determine
the feedthrough of G. In the remainder of this section we provide three sets of condi-
tions for which (3.18) is satisfied. These conditions cover three different situations by
specifying particular assumptions on the presence/absence of delays in the modules
in the networks, by allowing certain correlations in the noise model, and by making
explicit use of external variables.
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For situations where (3.18) is holds, the implication (3.7) of Definition 3.1 can be re-
formulated into a condition on the network transfer functions T (q, θ) and Λ(θ). When
the implication (3.18) holds, then network identifiability is shown when implication

T (q, θ1) = T (q, θ0)⇒ (G(θ1), R(θ1), H(θ1)) = (G(θ0), R(θ0), H(θ0)) (3.19)

holds. In order to provide conditions for network identifiability, in this section we will
provide conditions such that (3.18) holds. Then under those conditions network iden-
tifiability can be formulated for the implication (3.19), for which we provide conditions
in later sections.
Remark 3.6. In Gonçalves and Warnick (2008) the transfer function T has been used
as a basis for dynamic structure reconstruction. The fact that the network transfer
function T is the object that can be uniquely identified from data, has been analyzed in
Weerts et al. (2015) for the situation that p = L with diagonal Λ(θ), and no algebraic
loops in the networks. This has been the motivation in Weerts et al. (2015) to use the
condition (3.19) as a definition of network identifiability. In the extended situation
with possible algebraic loops, rank-reduced noise, and without restrictions on noise
correlations, we have to formulate conditions such that both (3.18) and (3.19) are
satisfied in order to guarantee network identifiability.

3.3.2 Decompositions of the noise spectrum

First we consider the situation that all modules in the network are strictly proper, i.e.
limz→∞G(z) = 0. When noise is also full rank, then (I−G)−1H is monic, such that it
becomes rather straightforward to make a unique spectral decomposition of Φv̄. The
following proposition covers the full rank as well as the rank-reduced situation.

Proposition 3.7. Consider a network model setM, and define T (q, θ) being the
parameterized version of the network transfer function T (q) (2.14). If

G∞(θ) := lim
z→∞

G(z, θ) = 0 for all θ ∈ Θ, (3.20)

then implication (3.18) holds, and condition (3.7) in Definition 3.1 of network
identifiability is equivalently formulated as (3.19).

Proof. Provided in Appendix 3.10.1. �

Note that the above result is valid for both full-rank (p = L) and reduced-rank (p < L)
noise processes. In the rank-reduced case Twe and H become non-square of dimension
L× p. Additionally there are no restrictions on Λ(θ), e.g. it is not restricted to being
diagonal.
The second situation that is addressed is where modules are allowed to have feed-
through terms, such as was done in Weerts et al. (2015). For this situation we have
to show that that (3.7) in Definition 3.1 of network identifiability is equivalently for-
mulated as (3.19). Feedthrough terms make (I − G)−1 a non-monic transfer matrix,
meaning that we must be careful with factorization of the spectrum Φv̄. It can be
shown (see Dankers (2014)) that there are no algebraic loops in a network if and only
if there exists a permutation matrix Π, such that ΠTG∞Π is upper triangular.
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Proposition 3.8. Consider a network model setM, and define T (q, θ) being the
parameterized version of the network transfer function T (q) (2.14). If

1. There exists a permutation matrix Π such that for all θ ∈ Θ,

ΠTG∞(θ)Π (3.21)

is upper triangular, and

2. Φ∞v (θ) := H∞(θ)Λ(θ)H∞(θ)T is diagonal for all θ ∈ Θ,

then implication (3.18) holds, and condition (3.7) in Definition 3.1 of network
identifiability is equivalently formulated as (3.19).

Proof. Provided in Appendix 3.10.2. �

The interpretation of condition 1. seems to be that there is no algebraic loop in the
parametrized model set. However condition 1. is actually stronger than just absence
of algebraic loops, it also implies that the location of feedthrough terms is the same in
every model that is in the model set. This means that a user has to choose, based on
some a-priori knowledge, which modules are allowed to have a direct term, and which
have a delay.

When comparing Proposition 3.8 to Proposition 3.7 we make the following observation.
The ability to estimate more flexible correlations between the white noise processes
(Φ∞v (θ) is not constrained in Proposition 3.7, while being diagonal in Proposition 3.8),
and this is traded against the ability to handle direct feedthrough terms in the modules
(Proposition 3.8). It should be noted that the above results hold true for any selection
of excitation signals r that are present.

3.3.3 The situation of algebraic loops

There are some situations where the modeling of algebraic loops can not be avoided.
One example is when we are trying to detect the location of feedthrough terms in all
of the modules. With such a model the propositions 3.7 and 3.8 are not applicable,
and the results need to be extended.

The results of Proposition 3.7 and 3.8 have been derived based on conditions that
guarantee that the transfer function Twe and correlation matrix Λ are uniquely de-
termined from the noise spectrum Φv̄. By making use of external variables r, and by
incorporating specific conditions on Twr, more generalized situations can be handled,
even including the situation of having algebraic loops in the network. We will follow a
reasoning where the transfer function Twr will be required to uniquely determine the
feedthrough term G∞, and –as a result— also the noise covariance matrix Λ.

To this end we consider the matrices T∞wr(θ), R∞(θ) and G∞(θ) that contain direct
feedthrough terms of Twr(q, θ), R(q, θ) and G(q, θ). Suppose that row j of (I−G∞(θ))
has αj parameterized elements, and row j of R∞(θ) has βj parameterized elements.
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We define the L × L permutation matrix Pj and the K ×K permutation matrix Qj
such that all parametrized entries in the considered row of (I−G∞(θ))Pj are gathered
on the left hand side, and all parametrized entries in the considered row of R∞(θ)Qj
are gathered on the right hand side, i.e.

(I −G∞(θ))j?Pj =
[
(I −G∞(θ))(1)

j? (I −G∞)(2)
j?

]
(3.22)

R∞(θ)i?Qj =
[
R∞

(1)
j? R∞

(2)
j? (θ)

]
(3.23)

with (·)j? indicating the j-th row of a matrix.

Next we define the matrix Ť∞j (θ) of dimension αj × (K − βj) as the submatrix of
T∞wr(θ) that is constructed by taking the row numbers that correspond to the columns
of G∞(θ)j? that are parametrized, and by taking the column numbers that correspond
to the columns of R∞(θ) that are not parametrized. This is formalized by

Ť∞j (Twr(θ)) :=
[
Iαj 0

]
P−1
j T∞wr(θ)Qj

[
IK−βj

0

]
. (3.24)

We can now formulate the following identifiability result for the situation that algebraic
loops are allowed in the network.

Proposition 3.9. Consider a network model set M, and define T (q, θ) being
the parameterized version of the network transfer function T (q) (2.14). If for all
θ ∈ Θ:

• each row of
[
G∞(θ) R∞(θ)

]
has at most K parameterized elements, and

• for each j = 1, · · ·L, the matrix Ť∞j (Twr(θ)) has full row rank for all θ ∈ Θ,

then implication (3.18) holds, and condition (3.7) in Definition 3.1 of network
identifiability is equivalently formulated as (3.19).

Proof. Provided in Appendix 3.10.3. �

In the above proposition, conditions are formulated under which the transfer func-
tion Twr will uniquely determine the direct-feedthrough term G∞ and —as a result
thereof— also the noise covariance matrix Λ.

3.4 Identifiability conditions for full excitation

It has been shown that for three situations the essential condition for global network
identifiability can be equivalently formulated in the expression (3.19) on the basis of T .
In order to show conditions for network identifiability we have to provide conditions
such that implication (3.19) holds. Here we investigate conditions under which the
implication (3.19) is satisfied for the situation that K + p ≥ L, i.e. where we have at
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least as many external signals as nodes available. This leads to sufficient conditions for
global network identifiability on the basis of where external excitation and noise enter
the network, but that are not dependent on the particular structure of the network as
present in G. When conditions are not dependent on the particular structure of the
modeled G, then these conditions can be satisfied even when no a-priori knowledge of
the structure of G is included in the model set.

Theorem 3.10. Let M be a network model set for which the conditions of one
of the Propositions 3.7-3.9 are satisfied, and where all modules in G may be
parameterized. Let U = [H(q) R(q)] as defined in (2.17). Then

(a) M is globally network identifiable at M(θ0) if there exists a nonsingular
and parameter-independent transfer function matrix Q∈R(K+p)×(K+p)(z)
such that

U(q, θ)Q(q) =
[
D(q, θ) F (q, θ)

]
(3.25)

with D(θ) ∈ RL×L(z), F (θ) ∈ RL×(p+K−L)(z), and D diagonal and full
rank for all θ ∈ Θ0 with

Θ0 := {θ ∈ Θ | T (q, θ) = T (q, θ0)}.

(b) If in part (a) the diagonal and full rank property of D(q, θ) is extended to
all θ ∈ Θ, then M is globally network identifiable.

Proof. Provided in Appendix 3.10.4. �

Expression (3.25) is basically equivalent to a related result in (Gonçalves and Warnick,
2008), where a deterministic reconstruction problem is considered on the basis of
a network transfer function, however without considering (non-measured) stochastic
disturbance signals. Note that the condition can be interpreted as the possibility
to give U(q, θ) a leading diagonal matrix by column operations. There is an implicit
requirement in the theorem that U has full row rank, and therefore it does not apply to
the case of Example 3.4. The situation of a rank-reduced matrix U will be considered
in Section 3.5.

Example 3.11. Suppose we model correlated noise by having off-diagonal terms in
H, in the model set M(θ) with

G=

 0 G12(θ) G13(θ)
G21(θ) 0 G23(θ)
G31(θ) G32(θ) 0

,
H=

H11(θ) H12(θ) 0
H21(θ) H22(θ) 0

0 0 H33(θ)

, R=

R11(θ) 0
0 R22(θ)
0 0

,
where R11(θ), R22(θ) 6≡ 0, and H(θ) monic. Then a simple permutation matrix Q can
be found to create U(q, θ)Q =

[
D(q, θ) F (q, θ)

]
with

D(q, θ) = diag(
[
R11(θ) R22(θ) H33(θ)

]
)
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and by Theorem 3.10 the model set is globally network identifiable. If external excita-
tion signals r would have been absent, identifiability can not be guaranteed according
to Theorem 3.10 because the off-diagonal terms in the noise model would prevent the
existence of a permutation matrix Q that can turn the noise model into a diagonal
form. If the process noises at the first two nodes are uncorrelated, they can be mod-
elled with H21(θ) ≡ H12(θ) ≡ 0, and the diagonal H directly implies global network
identifiability, irrespective of the presence of external excitation signals.

One of the important consequences of Theorem 3.10 is formulated in the next corol-
lary.

Corollary 3.12. Subject to the conditions in Theorem 3.10, a network model set
M is globally network identifiable if every node signal in the network is excited
by either an external excitation signal r or a noise signal v, that is uncorrelated
with the excitaton/noise signals on the other nodes.

The situation described in the Corollary corresponds to U(q, θ) having a single pa-
rameterized entry in every row and every column, and thus implies that U(q, θ) can
be permuted to a diagonal matrix. Uncorrelated excitation can come from noise or
external variables. Note that the result of Theorem 3.10 can be rather conservative,
as it does not take account of any possible structural conditions in the matrix G(q, θ).
Additionally the result does not apply to the situation where U(q, θ) is not full row
rank, i.e. when the number of external variables plus the rank of the process noise
is smaller than the number of nodes, as in that case U can never be transformed to
having a leading diagonal by column operations. This is e.g. the case in Example 3.4.
Both structural constraints and possible reduced row rank of U(q, θ) will be further
considered in Section 3.5. Now some illustrative examples are presented that originate
from Weerts et al. (2016a).
Example 3.13 (Closed-loop system). One of the very simple examples to which the
results above apply is the situation of a single-loop feedback system, with a disturbance
signal on the process output, and a reference input at the process input (controller out-
put), see Figure 3.3. The process output y will take the role of node variable wa, while

Figure 3.3: Classical closed-loop configuration.

the process input u will be represented by the (noise-free) wb. When parametrizing pro-
cess G(q, θ) and controller C(q, θ), as well as noise model v(t) = Ha(q, θ)e(t) and the
fixed reference filters Ra(q) = 0, Rb(q) = 1, it appears that the essential identifiability
result of Theorem 3.10 is reflected by the matrix

U(q, θ) =
[
Ha(q, θ) 0

0 1

]
.
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This matrix is square and equal to the diagonal matrix D in the theorem. Since it is
square we have that matrix F will have dimension 2× 0. The conditions of Theorem
3.10 are satisfied with Q = I, and therefore the closed-loop system is globally network
identifiable. This implies that consistent estimates of G0 and C can be obtained, when
identified simultaneously.
In our current setting we consider the simultaneous identification of all modules in
the network. In the classical direct method of closed-loop identification, one typically
parametrizes the plant model G, but not the controller C, implying that only part of the
network is identified. This can lead to questions of identifiability of part of a network
(rather than of the full network). The analysis of such a question can fit into the
general setting of Definition 3.1 by considering the network property f(M) = G, as
meant in Remark 3.2, and this will be addressed in a later section.

Example 3.14 (Network example). In this example we analyze the 5 node network
of Figure 3.4 where the noises on nodes 1 and 2 are correlated. The nodes are labeled

w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

Figure 3.4: 5 node network.

such that the last two are noise-free. In this example no knowledge on the structure of
G is included in the network model set. Process noise will be modeled according tov1(t)

v2(t)
v3(t)

 =

H11(q, θ) H12(q, θ) 0
H21(q, θ) H22(q, θ) 0

0 0 H33(q, θ)


︸ ︷︷ ︸

Ha(q,θ)

e1(t)
e2(t)
e3(t)

 .

The elements H21 and H12 are present to allow for modeling correlation between the
process noises v1 and v2, while v3 is modeled independently from these two signals. As
the external excitation signals r4 and r5 directly affect the two corresponding node sig-
nals, without a dynamic transfer, the corresponding R matrices are not parameterized
but fixed to 1. This leads to a matrix U(q, θ) constructed as

U(q, θ) =


H11(q, θ) H12(q, θ) 0 0 0
H21(q, θ) H22(q, θ) 0 0 0

0 0 H33(q, θ) 0 0
0 0 0 1 0
0 0 0 0 1

 .
The condition of Theorem 3.10 is now checked by attempting to diagonalize the matrix
U(q, θ) by postmultiplication with some filter Q(q) which does not depend on θ. Due to
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the correlated noise it is not possible to diagonalize the matrix in this way. Note that
by adding external excitations to nodes 1 and 2, leading to the addition of fixed unit
vector columns in U(q, θ), we can make the model set globally network identifiable.

3.5 Identifiability for known network topology

When the topology of G(q, θ), or a part of it, is known, or when there are fewer external
variables plus noises, as in Example 3.4, the result of Theorem 3.10 is conservative
and/or even does not apply. Structure restrictions in G(q, θ) are typically represented
by fixing some modules, possibly to 0, on the basis of assumed prior knowledge. For
these cases of structure restrictions, in (Gonçalves and Warnick, 2008) necessary and
sufficient conditions have been formulated for satisfying global network identifiability
at a particular model M0. The conditions are formulated in terms of nullspaces that
cannot be checked without knowledge of M0. Since we are most interested in global
identifiability of a full model set, rather than in a particular model, we will further
elaborate and generalize these conditions and present them in a form where these
conditions can be checked without a-priori knowledge of the network dynamics.
First we need to introduce some notation. In line with the reasoning in Section 3.3.3,
we suppose that each row j of G(θ), has αj parameterized transfer functions, and row
j of U(θ) has βj parametrized transfer functions, and we define the L×L permutation
matrix Pj , and the (K+p)×(K+p) permutation matrix Qj , such that all parametrized
entries in the considered row of (I−G(q, θ))Pj are gathered on the left hand side, and
all parametrized entries in the considered row of U(q, θ)Qj are gathered on the right
hand side, i.e.

(I −G(θ))j?Pj =
[
(I −G(θ))(1)

j? (I −G)(2)
j?

]
(3.26)

U(θ)j?Qj =
[
U

(1)
j? U(θ)(2)

j?

]
(3.27)

Next we define the transfer matrix Ťj(q, θ) of dimension αj × (K + p − βj), as the
submatrix of T (q, θ) that is constructed by taking the row numbers that correspond
to the columns of G(q, θ)j? that are parametrized, and by taking the column numbers
that correspond to the columns of U(q, θ) that are not parametrized. This is formalized
by

Ťj (T (q, θ)) :=
[
Iαj 0

]
P−1
j T (q, θ)Qj

[
IK+p−βj

0

]
. (3.28)

The following theorem now specifies necessary and sufficient conditions for the central
identifiability condition (3.19).

Theorem 3.15. LetM be a network model set for which the conditions of one of
the Propositions 3.7-3.9 are satisfied, and that additionally satisfies the following
properties:

a. Every parametrized entry in the model {M(z, θ), θ ∈ Θ} covers the set of
all proper rational transfer functions;
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b. All parametrized transfer functions in the model M(z, θ) are parametrized
independently (i.e. there are no common parameters).

Let U = [H(q) R(q)] as defined in (2.17). Then

1. M is globally network identifiable at M(θ0) if and only if

• each row j of the transfer function matrix
[
G(θ) U(θ)

]
has at most

K + p parameterized entries, and
• for each j, Ťj (T (q, θ0)) defined by (3.28) has full row rank.

2. M is globally network identifiable if and only if

• each row j of the transfer function matrix
[
G(θ) U(θ)

]
has at most

K + p parameterized entries, and
• for each j, Ťj (T (q, θ)) defined by (3.28) has full row rank for all θ ∈ Θ.

Proof. Provided in Appendix 3.10.5. �

Condition a. states that a parameterized model is not restricted in model order or
dynamics, which means the transfer function is modeled in a non-parametric way. The
reason for using the non-parametric transfer functions is that network identifiability is
defined on the structural level, and not the parameter level where classical identifiabil-
ity notions are defined. In case a model set with restrictions on the transfer functions
such as a limited order or shared parameters, then these restrictions may relax the
necessary conditions for network identifiability. Sufficiency of the conditions does how-
ever not depend on the parameterization of the transfer functions. This means that
the theorem is applicable to parametric models

The condition on the maximum number of parametrized entries in the transfer function
matrix, reflects a condition that the number of parametrized transfers that map into
a particular node, should not exceed the total number of excitation signals plus white
noise signals that drive the network. The check on the row rank of matrices Ťj is
an explicit way to check the related nullspace condition in (Gonçalves and Warnick,
2008). The assumption (a.) in the theorem, refers to the situation that we do not
restrict the model class to any finite dimensional structure, but that we consider the
situation that could be represented by a non-parametric identification of all module
elements. Essentially we are separating the network identifiability concept from the
parameter identifiability concept that was presented in Section 2.2.3.

Remark 3.16. The condition on the maximum number of parametrized entries per
row in the parametrized matrix seems closely related to a similar condition for struc-
tural identifiability of (polynomial) ARMAX systems, as formulated in Theorem 2.7.1
of Hannan and Deistler (1988).

The results of this Section can be applied to Example 3.4.

Example 3.17 (Example 3.4 continued). In Example 3.4 a model set has been defined
with U = R not full row rank, and hence Theorem 3.10 is not suitable for checking its
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network identifiability. Now with the introduction of necessary and sufficient condi-
tions in Theorem 3.15 we can evaluate the network identifiability property of the model
set in Example 3.4 easily. Consider a model set with G and R as defined in (3.9),
without noise model (i.e. p = 0) such that U = R, and satisfying assumptions (a.)
and (b.) of Theorem 3.15. Global network identifiability at S1 and S2 is evaluated by
checking the two conditions of Theorem 3.15. First it is easily verified that

[
G(θ) U

]
has at most 2 = K + p parameterized transfer functions on each row. The second
condition is checked by evaluating the rank of the appropriate sub-matrices defined in
(3.28) on the basis of the T -matrices for S1 and S2 given in (3.8).
For S1 we need to check the conditions for rows 1-3 accordingly. Then by considering
(3.11) we can determine Ťj (T (q, θ1)) as appropriate submatrices of T (q, θ1). For all
rows j, Qj = I, since U is not parametrized, and so we need to consider all columns
of T (q, θ1). For j = 1, Ťj (T (q, θ1)) is defined by selecting the second and third row of
T (q, θ1), corresponding with the columns of parametrized elements in G1?(q, θ1), i.e.

Ť1 (T (q, θ1)) =
[

A 1
AB + 1 B

]
;

while for j = 2 we need to select rows one and three, and for j = 3 rows one and two,
corresponding with the columns of parametrized elements in G2?(q, θ1) and G3?(q, θ1),
respectively, leading to

Ť2 (T (q, θ1)) =
[

1 0
AB + 1 B

]
, Ť3 (T (q, θ1)) =

[
1 0
A 1

]
.

Since all three Ť -matrices are full row-rank, since we assumed that B 6= 0, the condi-
tions for global network identifiability at S1 are satisfied which verifies the conclusion
of Example 3.4.
For S2 a similar check needs to done on the basis of (3.12), leading to

Ť2 (T (q, θ2)) =
[

1 0
A+ 1 0

]
which obviously does not have full rank, confirming that the model set is not globally
network identifiable at S2.
If we would restrict the model set to satisfy G21(θ) = 0, it can simply be verified that
the conditions for global network identifiability at S2 are satisfied, which is confirmed
by the analysis in (3.13).

3.6 Identifiability of a single module

The next step is to relax the definition and conditions from the previous sections
such that uniqueness of a single module can be guaranteed. To this end we formalize
identifiability of particular properties of M as suggested in Remark 3.2. First we define
identifiability of a row of M , in order to evaluate identifiabilty around a certain node
in a network, after which identifiability of a particular module is treated.
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Definition 3.18. Row j of network model set M is globally network identifiable
at M0 := M(θ0) if for all models M(θ1) ∈M,

Twr(q, θ1) = Twr(q, θ0)
Φv̄(ω, θ1) = Φv̄(ω, θ0)

}
⇒

 Gj?(q, θ1) = Gj?(q, θ0)
Rj?(q, θ1) = Rj?(q, θ0)
Hj?(q, θ1) = Hj?(q, θ0)

. (3.29)

Row j of network model set M is globally network identifiable if (3.29) holds for
all M0 ∈M.

Similar to the reasoning of Section 3.3 we can reason that restrictions on feedthrough
terms and noise correlation are needed in order to ensure identifiability.

Corollary 3.19. Let M be a network model set for which the conditions of one
of the Propositions 3.7-3.9 are satisfied, then implication (3.18) holds, and con-
dition (3.29) in Definition 3.18 of network identifiability of row j is equivalently
formulated as

T (q, θ1) = T (q, θ0)} ⇒

 Gj?(q, θ1) = Gj?(q, θ0)
Rj?(q, θ1) = Rj?(q, θ0)
Hj?(q, θ1) = Hj?(q, θ0)

. (3.30)

The conditions in Theorem 3.15 are formulated independently for each row, so it
is straightforward to obtain conditions under which a specific row of M is identifi-
able.

Corollary 3.20. Let M be a network model set as defined in Theorem 3.15, and
let Ťj (T (q, θ)) be defined by (3.28), then:

1. Row j of network model set M is globally network identifiable at M(θ0) if
and only if

i) row j of the transfer function matrix
[
G(θ) U(θ)

]
has at most K+ p

parameterized entries, and
ii) Ťj (T (q, θ0)) has full row rank.

2. Row j of network model set M is globally network identifiable if and only
if i) holds and ii) holds for all Ťj (T (q, θ)) , θ ∈ Θ.

When we are interested in uniquely distinguishing one specific module, then the iden-
tifiability conditions of a row of M are conservative. It is possible that a module is
identifiable, even when other modules of that row are not, which is illustrated by the
following example.
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w1 w4

e1

G41

w2

e2

G42

w3

G43

G32

Figure 3.5: Example network model where some modules are identifiable.

Example 3.21. Consider a set of network models of the topology shown in Figure
3.5, described by 

w1
w2
w3
w4

=


0 0 0 0
0 0 0 0
0 G32 0 0
G41 G42 G43 0



w1
w2
w3
w4

+


1 0
0 1
0 0
0 0

[e1
e2

]
, (3.31)

where all modules Gji are parameterized. The response of the node variables is given
by w = Te with

T = (I −G)−1H =


1 0
0 1
0 G32
G41 G42 +G32G43

 . (3.32)

From T module G41 can directly be determined, but the other modules G42 and G43
on row 4 can not. This is because node 4 has three modules, and there are only two
available excitations.

Identifiability of a specific module is defined next.

Definition 3.22. Module Gji of network model set M is globally network iden-
tifiable at M0 := M(θ0) if for all models M(θ1) ∈M,

Twr(q, θ1) = Twr(q, θ0)
Φv̄(ω, θ1) = Φv̄(ω, θ0)

}
⇒ {Gji(q, θ1) = Gji(q, θ0)}. (3.33)

Module Gji of network model setM is globally network identifiable if (3.33) holds
for all M0 ∈M.

Also for this definition we can directly formulate conditions on feedthrough terms and
instantaneous noise correlations.
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Corollary 3.23. LetM be a network model set for which the conditions of one of
the Propositions 3.7-3.9 are satisfied, then implication (3.18) holds, and condition
(3.33) in Definition 3.22 of network identifiability of module Gji is equivalently
formulated as

T (q, θ1) = T (q, θ0)} ⇒ {Gji(q, θ1) = Gji(q, θ0)}. (3.34)

Identifiability of every module holds for every model set that is globally network identi-
fiable. However now the interesting question is whether the conditions can be relaxed,
such that identifiability of a module is guaranteed, even when other modules are not
identifiable.
In order to find identifiability conditions for a single module Gji, assume without loss
of generality that this module corresponds to the top row of Ťj . Then define Ťj,(i,?)
as the top row of Ťj , and Ťj,(−i,?) by

Ťj (T (q, θ)) =
[
Ťj,(i,?) (T (q, θ))
Ťj,(−i,?) (T (q, θ))

]
(3.35)

So Ťj,(−i,?) is Ťj with the row corresponding to node wi removed. The following The-
orem now specifies necessary and sufficient conditions for the identifiability condition
(3.33).

Theorem 3.24. Let M be a network model set as defined in Theorem 3.15, and
let Ťj (T (q, θ)) be defined by (3.28),and Ťj,(−i,?) (T (q, θ)) by (3.35), then:

1. Module Gji of network model setM is globally network identifiable at M(θ0)
if and only if

rank(Ťj (T (q, θ0))) > rank(Ťj,(−i,?) (T (q, θ0))). (3.36)

2. Module Gji of network model set M is globally network identifiable if and
only if

rank(Ťj (T (q, θ))) > rank(Ťj,(−i,?) (T (q, θ))) (3.37)

for all θ ∈ Θ.

Proof. Provided in Appendix 3.10.7. �

The essential part of the theorem is that if the row of Ťj corresponding to node wi is a
linear independent row, then the module is identifiable. Note that there is no explicit
requirement on the number of parameterized elements in Theorem 3.24. We do not
require uniqueness of all modules, so we can have fewer equations than unknowns.
Example 3.25 (Example 3.21 continued). For node 4 there are three parameterized
transfer functions, while there are only two external signals. To evaluate identifiability
we use

Ť4 =

1 0
0 1
0 G32

 , Ť4(−1,?) =
[
0 1
0 G32

]
. (3.38)
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In Ť4 the first row is clearly linearly independent of the other rows, such that

rank(Ť4(−1,?)) = 1 < rank(Ť4) = 2,

and the condition of Theorem 3.24 is satisfied for G41. It can be shown that rows 2
and 3 of Ť4 are linearly dependent, and so G42 and G43 are both not identifiable.

It should be noted that to guarantee identifiability of a single row or module it is likely
not necessary to guarantee that implication (3.18) holds, as only a sub-matrix of T is
used to determine the uniqueness of the row or module. The implications in (3.18), and
(3.30) or (3.34) respectively may be written using a sub-matrix instead of T in order to
obtain conditions that are both necessary and sufficient. In future research generalized
conditions on feedthrough terms and instantaneous noise correlations locally around
the node or module of interest may be formulated, instead of on the full network
model.

3.7 Path-based identifiability conditions

3.7.1 Generic network identifiability

It is not intuitive to relate the rank conditions that have been formulated in Theorem
3.15, Corollary 3.20 and Theorem 3.24 to properties of the network. In this section
the rank conditions that appear in the network identifiability results are formulated
as topology based conditions. The core idea is that the rank of T depends on the
topology of the network. We base our reasoning on concepts presented in Bazanella
et al. (2017); Hendrickx et al. (2018), such as generic identifiability, which we adapt
to our problem setting. Then the rank conditions for identifiability are adapted to
this definition. The notion of vertex disjoint paths and its relation to the rank of the
transfer matrix will be introduced, and used to formulate topological conditions under
which the network is identifiable.

Definition 3.26 (Generic network identifiability).

• M is generically network identifiable if for all models M(θ1) ∈ M the
implication (3.19) holds for almost all M0 ∈M.

• Row j of network model set M is generically network identifiable if for all
models M(θ1) ∈M the implication (3.29) holds for almost all M0 ∈M.

• Module Gji of network model set M is generically globally network identi-
fiable for all models M(θ1) ∈M the implication (3.33) holds for almost all
M0 ∈M.

The only difference between Definitions 3.1 and 3.26 is the exception of a set of zero
measure, i.e. identifiability of almost all models is accounted for. The consequences
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of this change in the definitions and an overview of the different identifiability notions
are discussed in Section 3.7.4.

The rank conditions of Theorems 3.15 and 3.24, Corollary 3.20 can directly be formu-
lated for the generic network identifiability.

Corollary 3.27. The model set M, row j of model set M, or module Gji of
model set M is generically network identifiable by the conditions 2) of Theorem
3.15, Corollary 3.20, Theorem 3.24 respectively upon replacing the phrase “for
all θ ∈ Θ” by “for almost all θ ∈ Θ”.

Proof. The proof is a trivial extension of the proof of Theorem 3.15 and the proof of
Theorem 3.24. �

3.7.2 Vertex disjoint paths

In van der Woude (1991), the name vertex is used for a node, and the rank of a transfer
matrix is connected to the notion of a set of vertex disjoint paths. The notion of vertex
disjoint paths can be used to formulate topological conditions under which a model set
is generically network identifiable, following the approach in Bazanella et al. (2017).
As defined in van der Woude (1991), two paths in a network between external signals
or nodes are vertex disjoint if they have no common nodes, including their start and
end nodes. For a set of l paths, these paths are vertex disjoint if every pair of paths
is vertex disjoint.

The essential meaning is the following: If there exists a set of vertex disjoint paths
from some excitations rk, el to some nodes wi, then every one of those nodes has ’its
own’ source of excitation. Note that when two paths are vertex disjoint, there may
still exist modules that connect the nodes in the paths, and there may exist loops
around the nodes.

The connection to the rank of a transfer matrix is on the basis of state-space systems
in the following way. A parameterized state-space system is defined with matrices
A,B,C, and the open-loop transfer from input to output is defined as Tss := C(sI −
A)−1B. Then the generic rank of the transfer matrix Tss is defined as the rank of Tss
for almost all values of parameters. This is formalized in the following theorem.

Theorem 3.28 (Theorem 2 from van der Woude (1991)). Let GΣ be the graph
corresponding to the state-space system

ẋ = Ax+Br, w = Cx. (3.39)

The maximum number of vertex disjoint paths in GΣ from signals in r to signals
in w equals the generic rank of Tss.
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3.7.3 Path-based identifiability conditions

The next step is to link the network of transfer functions represented by model M to
a state-space formulation. In order to avoid difficulties with direct feedthrough terms
we make the assumption that the modules G are strictly proper, and we can shift the
H and R by a sample delay while also shifting the signals, i.e.

H(q)e(t) = H(q)q−1e(t+ 1), R(q)r(t) = R(q)q−1r(t+ 1). (3.40)

Shifting H and R by a delay does not have an influence on the network topology or
the rank of the open-loop transfer function matrix T (q).
The associated state-space system is defined in the following way. For each node
j = 1, . . . , L define a state-space system in observable canonical form with the state
vector xj and the state equation

x+
j = Ajxj +

L∑
i=1

Bwjiwi +
K∑
k=1

Brjkrk +
p∑
l=1

Bejlel

wj = Cjxj ,

(3.41)

where Aj and Cj have the structure

Aj =



∗ 1 0 · · · 0
... 0

. . . . . . 0

∗ 0
. . . 1 0

∗ 0 · · · 0 1
∗ 0 · · · · · · 0

 , Cj =
[
1 0 · · · 0

]
, (3.42)

via the relations
Gj? = Cj(zI −Aj)−1Bwj?

q−1Rj? = Cj(zI −Aj)−1Brj?

q−1Hj? = Cj(zI −Aj)−1Bej?.

(3.43)

Note that Bwji = 0 if wi is not an in-neighbor to wj . The full network can be written
in state-space form by interconnecting all of the individual state-space systems (3.41)

x+ = Ax+Brr +Bee,

w = Cx,
(3.44)

with

Bw =

B
w
11 · · · Bw1L
...

. . .
...

BwL1 · · · BwLL

, Br =

B
r
11 · · · Br1K
...

. . .
...

BrL1 · · · BrLK

, Be =

B
e
11 · · · Be1p
...

. . .
...

BeL1 · · · BeLp

,

x =

x1
...
xL

 , C = diag({Ci}i=1···L), A = diag({Aii}i=1···L) +BwC.

(3.45)
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The network topology of G is encoded by the block-structure of Bw. Associate the
graph GM with nodes w, r based on the topology of M , and associate graph GΣ with
nodes x,w, r based on the topology of (3.44). Graph GΣ has some special structure,
there always exists a path xj{n}, . . . , xj{1} due to the structure of Aj induced by the
observable canonical form. There are some strong relations between the graphs GM
and GΣ which are specified in the following lemma.

Lemma 3.29. Let graph GM be associated with nodes w, r based on the topology
of M , and let graph GΣ be associated with nodes x,w, r based on the topology of
(3.44), then:

1. In GM node wi is an in-neighbor of wj if and only if in GΣ there is a path
xi{n}, xj{s}, xj{s−1}, . . . , xj{1} for some s;

2. In GM node rk is an in-neighbor of wj if and only if in GΣ there is a path
rk, xj{s}, xj{s−1}, . . . , xj{1} for some s;

3. In GM node el is an in-neighbor of wj if and only if in GΣ there is a path
el, xj{s}, xj{s−1}, . . . , xj{1} for some s;

4. For some sequence k1, . . . , kn the path rk, wk1 , . . . , wkn , wj exists in GM if
and only if the path rk, xk1 , . . . , xkn , xj , wj existsa in GΣ;

5. For some sequence k1, . . . , kn the path el, wk1 , . . . , wkn , wj exists in GM if
and only if the path el, xk1 , . . . , xkn , xj , wj existsain GΣ.

aTechnically every xk is to be replaced with xk{sk}, · · · , xk{1} for some sk

Proof. Provided in Appendix 3.10.8. �

The interpretation of the lemma is as follows. When wi is an in-neighbor of wj in
the transfer function network, then in the state-space network this is represented
as a path of nodes that runs only through the states in xj . A path that passes
through nodes wk1 , . . . , wkn in the transfer function network is associated with the
path that passes through states in xk1 , . . . , xkn in the state-space network. This implies
that paths in GM and their associated paths in GΣ share their vertex joint/disjoint
properties.

Proposition 3.30. Let graph GM be associated with nodes w, r based on the
topology of M , and let graph GΣ be associated with nodes x,w, r based on the topol-
ogy of (3.44). The paths rk, wk1 , . . . , wkn , wj and rl, wl1 , . . . , wln , wi in GM are
disjoint if and only if the paths rk, xk1 , . . . , xkn , xj , wj and rl, xl1 , . . . , xln , xi, wi
in GΣ are disjoint.

Proof. Follows directly from Lemma 3.29. �

Now the maximum number of disjoint paths can be linked to the generic rank.
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Proposition 3.31. Let U be a set of white noises el and external variables rk,
and let Y be a set of nodes wj. Define the set of open-loop transfer functions
from excitations in U to nodes in Y that is generated by the model set as

T := {TYU (q, θ) | θ ∈ Θ}. (3.46)

The maximum number of vertex disjoint paths in GM from excitations in U to
nodes in Y is equal to the generic rank of TYU ∈ T .

Proof. Provided in Appendix 3.10.9. �

The rank conditions on Ťj of Corollary 3.27 can now be evaluated by checking whether
there are a sufficient number of vertex disjoint paths from selected external signals to
node signals.

Proposition 3.32. Let M be a set of network models M with strictly proper
modules in G. Let Yj be the set of nodes wk which are an input to a parameterized
Gjk(θ), and let αj be the the cardinality of Yj. Let Uj be the set of external signals
rk, el that are an input to non-parameterized Rjk, Hjl.

1. The model set M is generically network identifiable if and only if condition
i) of Theorem 3.15 holds and for each j, there is a set of αj vertex disjoint
paths from excitations in Uj to nodes in Yj.

2. Row j of model set M is generically network identifiable if and only if
condition i) of Corollary 3.20 holds and there is a set of αj vertex disjoint
paths from excitations in Uj to nodes in Yj.

3. For module Gji, let Ȳj = Yj \wi. Module Gji of model setM is generically
network identifiable if and only if there exists a set P of the maximum
number of vertex disjoint paths from signals in Uj to nodes in Ȳj, and there
is an additional path from signals in Uj to wi, such that this path and the
paths in P are vertex disjoint.

Proof. Obtained by combining Corollary 3.27 with Proposition 3.31. �

In order to satisfy condition 1) or 2) there is an implicit requirement on the number
of available external signals, which is directly related to the maximum number of
parameterized elements in conditions 1) and 2) of Corollary 3.27. For condition 3)
there is no minimum number of external signals, but there is the implicit requirement
that there is a ’surplus’ excitation that can form a vertex disjoint path to the module
of interest.
In order to check the conditions of Proposition 3.32, all that must be done is check
which transfer functions are parameterized, and check whether the necessary paths
are present in the network. This is illustrated in an example.

Example 3.33 (Example 3.25 continued). Topology based conditions for identifia-
bility are checked for various modules in the network in Figure 3.5. When check-
ing identifiability of modules that map into node w4 we see that the in-neighbors are
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Y4 = {w1, w2, w3}, so there are α4 = 3 parameterized modules. There are only 2 ex-
citations, which can never form 3 vertex disjoint paths, so the row is not generically
network identifiable.

For identifiability of module G42 there are two vertex disjoint paths from external
signals to the other inputs w1, w3, and there is no surplus excitation available for w2.
However for identifiability of module G41 there is just one vertex disjoint path from
external signals to the other inputs w2, w3, and there is the surplus excitation available
for w1, so G41 is generically network identifiable.

3.7.4 Discussion on definition of identifiability

Path-based conditions are based on generic rank, and not ’standard’ rank. The dif-
ference between the two definitions of identifiability is the exclusion of a zero-measure
set of models, so network identifiability is stricter than generic network identifiability.
When one model in M is not identifiable, then M is not network identifiable, but
it can be generically network identifiable. Next an example is given of a single non-
identifiable model in the model set, which is in particular relevant in case the objective
is to identify the network topology.

Example 3.34. Suppose we have a parameterized set of models as depicted in Figure
3.6, with

G =
[

0 G12(θ)
G21(θ) 0

]
, H =

[
1
0

]
, T 0 =

 1
1−G0

12G
0
21

G0
21

1−G0
12G

0
21

 .
Identifiability of G12 and G21 is determined from the rank of Ť1 = G21

1−G12G21
and

Ť2 = 1
1−G12G21

respectively. For all θ where G21(θ) = 0 the Ť1 loses rank and G12 is
not identifiable.

w2 w1G12

G21

v1

Figure 3.6: A closed-loop network representing a set of models.

In a situation where the topology is known, i.e. it is known that G21 6= 0, then we
want to classify the model set as identifiable, which can be done with generic network
identifiability. However when the topology is not known a-priori, we would like to
determine whetherG12 andG21 are zero or non-zero. Then the possibility thatG0

21 = 0
must be taken into account such that the generic network identifiability concept is less
attractive, and the global network identifiability concept is more powerful.
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3.8 Signal ordering

In Assumption 2.2 we have formulated a condition on an ordering property of the
signals. It should be determined whether Assumption 2.2 is reasonable. To that end
in this section we will further discuss this assumption and how it can be dealt with.
We will investigate whether the information on the ordering of signals can be extracted
from data.
Our definitions of models and model sets in Section 2.1 only consider models that have
the ordering property, and a particular rank in the noise model. So, for discussing the
situation of models that do not have this property, we need to slightly adapt Definition
2.6.

Definition 3.35 (Network model without ordering). A network model without
ordering property is defined by the quadruple

M = (G,R, H̃, Λ̃) (3.47)

with H̃ ∈ RL×L(z) monic, Λ̃ ∈ RL×L with any rank p ≤ L, and G and R as
defined before in Definition 2.6.

First of all, if we are considering network identifiability at a particular known un-
ordered model M0 = (G0, R0, H̃0, Λ̃0), then the covariance matrix Λ̃0 carries the in-
formation of the rank p as well as the information for re-ordering the node signals
w in such a way that, after reordering, the model satisfies the ordering property of
Assumption 2.2. This can be understood by realizing that rank Λ̃0 = p, and that
there exists a permutation matrix Π such that [Ip 0]ΠT Λ̃0Π[Ip 0]T = Λ0, the rank-p
covariance matrix of the ordered model. That same permutation matrix can then be
applied to w, to reorder the node signals in the model so as to arrive at its ordered
equivalent. So when considering a particular known model, the model information
intrinsically contains the information how to order the signals to satisfy the ordering
property.
For the mode general situation where M0 is unknown, the required information for
determining p and for reordering the node signals can be retrieved from data, so from
Twr and Φv̄(ω). In particular we can observe that on the basis of

v̄ = (I −G)−1v

and (I − G) being full rank, it is clear that rank Φv̄ = rank Φv = p, and more
specifically, by using the monicity property of H̃, that rank Φ∞v̄ = rank Λ̃ = p. So
for an unknown model M(θ0), p can be obtained directly from Φ∞v̄ (θ0). A similar
situation occurs for the ordering of signals as formulated in Assumption 2.2, as is
formulated next.

Proposition 3.36. Consider a network model M0 = M(θ0) according to Def-
inition 3.35, with rank Φv̄(θ0) = p. If either one of the following conditions is
satisfied:
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1. G∞(θ0) = 0;

2. G∞(θ0) has a known pattern of 0’s, that guarantees that there are no alge-
braic loops, and Φ∞v (θ0) is diagonal;

3. Each row of [G∞(θ0) R∞(θ0)] has at most K nonzero elements, and
for each i ∈ N , the matrix Ť∞i (θ0) (3.24) has full row rank,

then on the basis of T∞wr(θ0) and Φ∞v̄ (θ0) a permutation matrix Π can be con-
structed that reorders the node signals w in such a way that the permuted model
satisfies the ordering property as meant in Assumption 2.2.

Proof. Provided in Appendix 3.10.6. �

The reasoning that underlies this result, is that under the formulated conditions the
covariance matrix Λ̃0 can be uniquely retrieved from the data. And based on Λ̃0 a per-
mutation matrix can then be found that reorders the node signals into a (reordered)
model that satisfies the ordering property.
The conditions of this Proposition are basically the same as the ones applied in Propo-
sitions 3.7, 3.8 and 3.9 for analyzing identifiability.

The results in this section show that the ordering property of Assumption 1 is not a
restriction if we consider the identifiability of a model set at a particular model. This
is due to the fact that in that particular model, either the model information or the
measurement data in the form of T∞wr and Φ∞v̄ carry enough information to find a
permutation matrix to arrive at a permuted model that does satisfy Assumption 1.

3.9 Conclusions

The concept of network identifiability has been introduced as a way to describe whether
network models can be distinghuished from each other. Conditions on the modeled
topology, noise correlations and presence of external excitations can be formulated
and checked explicitly such that global network identifiability of a dynamic network
model set or module is guaranteed. Conditions that are based on paths present in
the network have been formulated such that generic identifiability can rather easily be
checked. It should be noted that the path-based conditions only apply to the situation
that a set of zero-measure models is excluded from the model set.

Having an independent excitation available at every node is sufficient to guarantee
network identifiability. When a-priori knowledge on a network is encoded into the
model set, then the requirements on the presence of excitation is reduced. Identifia-
bility conditions have been formulated for network models that includes noises that
are possibly correlated and rank-reduced, and networks that may contain algebraic
loops. With these reduced requirements on the network model we can describe more
practical situations, for example situations where noises are correlated. When a net-
work identifiable model set is combined with informative data, then unique network
models can be retrieved from the data set. The identifiability results may be used
to prove consistent estimation of all modules in a network. Other applications of the
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identifiability results are for example to identify the network topology, or to detect
where the direct feedthrough terms of a network are.

3.10 Appendix

3.10.1 Proof of Proposition 3.7

Since in the considered situation

Twe(θ) := (I −G(θ))−1H(θ)

has an upper p× p part which is monic, while

Φv̄(θ) = Twe(θ)Λ(θ)Twe(θ)∗ (3.48)

it follows that (3.48) satisfies the conditions of the unique spectral factorization in
Lemma 2.3a, if p < L. If p = L it satisfies the conditions of the standard spectral
factorization. Therefore Twe and Λ are uniquely determined by Φv̄, or in other words

{Φv̄(θ1) = Φv̄(θ0)} =⇒
{
Twe(θ1) = Twe(θ0)

Λ(θ1) = Λ(θ0) .

Since Twr(θ1) = Twr(θ0) is in the premise of (3.7) and Λ(θ1) = Λ(θ0) is implied by the
premise of the equality of the spectra, as indicated above, the result follows directly.

�

3.10.2 Proof of Proposition 3.8

First we treat the full-rank situation that p = L.

In this situation

Φv̄(z, θ) := (I −G(θ))−1H(θ)Λ(θ)H(θ)∗(I −G(θ))−∗

and using the property that H is monic leads to

Φ∞v̄ (θ) := lim
z→∞

Φv̄(z, θ) = (I−G∞(θ))−1Λ(θ)(I−G∞(θ))−T .

The algebraic loop condition now implies that ΠT (I −G∞(θ))−1Π is upper unitrian-
gular2 and (leaving out arguments θ for brevity):

ΠTΦ∞v̄ Π =
ΠT (I −G∞)−1Π︸ ︷︷ ︸

L

·ΠTΛΠ︸ ︷︷ ︸
D

·ΠT (I −G∞)−TΠ︸ ︷︷ ︸
LT

.

2upper unitriangular is upper triangular with 1’s on the diagonal.
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With D being diagonal and L upper unitriangular, this represents a unique LDLT
decomposition of the permuted spectrum. As a result Λ is uniquely determined from
Φv̄.

Spectral factorization of Φv̄ leads to a unique decomposition

Φv̄ = ĤΛ̂Ĥ∗

with Ĥ monic, stable and minimum-phase, but Λ̂ not necessarily diagonal. Since Λ̂ is
full rank, there is a nonsingular matrix B such that Λ̂ = BΛBT , leading to the unique
spectral decomposition:

Φv̄ = ĤBΛBT Ĥ∗,

where ĤB = Twe. As a result, Twe is uniquely determined from Φv̄, and the proof
follows along the same steps as in the proof of Proposition 3.7.

Now we turn to the situation p < L.

When applying the spectral decomposition of Lemma 2.3b to Φv it follows that

Φv̄(z, θ) = (I −G(θ))−1H̆(θ)Λ̆(θ)H̆(θ)∗(I −G(θ))−∗

with H̆ square and monic, and structured according to

H̆ =
[

Ha 0
Hb − Γ I

]
, and Λ̆ =

[
I
Γ

]
Λ
[
I
Γ

]T
.

Since by assumption Φ∞v is diagonal, it follows that Γ := limz→∞Hb(z) = 0 and

Λ̆ =
[
Λ 0
0 0

]
.

As a result
Φ∞v̄ = (I −G∞(θ))−1Λ̆(θ)(I −G∞(θ))−T

with Λ̆(θ) diagonal. Then exactly the same reasoning as above with a permutation of
the signals to turn (I−G∞)−1 into a unitriangular matrix, shows that Λ̆ and therefore
also Λ is uniquely determined from Φv̄.

With Λ known, the decomposition Φv̄ = TweΛT ∗we uniquely determines Twe from Φv̄.
The proof then follows the same same steps as in the proof of Proposition 3.7. �

3.10.3 Proof of Proposition 3.9

This proof consists of 2 steps. The first step is to use Twr to uniquely determine the
feedthrough of G, i.e.

T∞wr(θ1) = T∞wr(θ0)⇒ G∞(θ1) = G∞(θ0). (3.49)

The left hand side of the above implication can be written as

(I −G∞(θ0))T∞wr(θ1) = R∞(θ0). (3.50)
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Consider row i of the matrix equation (3.50), and apply the following reasoning for
each row separately. By inserting the permutation matrices Pi and Qi, defined in
(3.22)-(3.23), we obtain for row i:

(I −G∞(θ0))P−1
i PiT

∞
wr(θ1)Qi = R∞(θ0)Qi (3.51)

leading to

(I −G∞(θ0))(1)
i? T

(1)
i (θ1) + (I −G∞)(2)

i? T
(2)
i (θ1) =

=
[
R∞

(1)
i? R∞

(2)
i? (θ0)

]
, (3.52)

with PiT
∞
wr(θ1)Qi =

[
T

(1)
i (θ1)
T

(2)
i (θ1)

]
. Note that Ť∞i (θ) = T

(1)
i (θ)

[
IK−βi

0

]
as defined by

(3.24).

When considering the left 1× (K−βi) block of the vector equation (3.52), while using
the expression for Ť∞i (θ) above, we can write

(I −G∞(θ0))(1)
i? Ť

∞
i (θ1) + ρ(θ1) = R∞

(1)
i? , (3.53)

with ρ(θ1) the left 1 × (K − βi) block of (I − G∞)(2)
i? T

(2)
i (θ1). Now ρ(θ1) and R∞

(1)
i?

are independent of parameter θ0, which implies that, if Ť∞i (θ1) has full row rank, then
all the parametrized elements in (I −G∞(θ0))i? are uniquely determined.

Then the second step is to determine Λ and Twe. By writing the spectrum of v̄ as

Φ∞v̄ = (I −G∞)−1H∞(θ)Λ(θ)(H∞(θ))T (I −G∞)−T

we obtain through pre- and post-multiplication:

(I −G∞)Φ∞v̄ (I −G∞)T =
[

Λ(θ) Λ(θ)ΓT (θ)
Γ(θ)Λ(θ) Γ(θ)Λ(θ)ΓT (θ)

]
where Γ := limz→∞Hb(z, θ). For given G∞ (from step 1), and given Φv̄, this equation
provides a unique Λ, such that Twe can be uniquely obtained from

Φv̄ = Twe(θ)ΛT ∗we(θ). (3.54)

The proof then follows the same steps as the proof of Proposition 1. �

3.10.4 Proof of Theorem 3.10

a) It will be shown that under the condition of the theorem, the equality T (q, θ) =
T (q, θ0) implies M(θ) = M(θ0) for all θ ∈ Θ. With the definition of Θ0, the equality
of the T -matrices implies that we can restrict to θ ∈ Θ0. That same equality induces

(I −G(θ))−1U(θ) = (I −G(θ0))−1U(θ0) (3.55)
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and postmultiplication with Q leads to

(I−G(θ))−1 [D(θ) F (θ)
]
=(I−G(θ0))−1 [D(θ0) F (θ0)

]
,

with D(θ) diagonal and full rank for all θ ∈ Θ0.
The left square L × L blocks in both sides of the equation can now be inverted to
deliver D(θ)−1(I −G(θ)) = D(θ0)−1(I −G(θ0)). Due to zeros on the diagonal of G(θ)
and G(θ0) and the diagonal structure of D(θ) and D(θ0), it follows that D(θ) = D(θ0)
and consequently G(θ) = G(θ0). Then by (3.55) it follows that U(θ) = U(θ0) and
M(θ) = M(θ0).
b) For part (b) it needs to be shown that the implication under (a) holds true for any
M(θ0) inM. It is direct that this is true, following a similar reasoning as above, if we
extend the parameter set to be considered from Θ0 to Θ. �

3.10.5 Proof of Theorem 3.15

We will first provide the proof for situation (1).
The left hand side of the implication (3.19) can be written as

(I −G(θ))T = U(θ), (3.56)

where we use shorthand notation T = T (θ0), G(θ) = G(θ1) and U(θ) = U(θ1).
Consider row i of the matrix equation (3.56), and apply the following reasoning for
each row separately. By inserting the permutation matrices Pi and Qi, defined in
(3.26),(3.27) we obtain for row i:

(I −G(θ))i?PiP−1
i TQi = Ui?(θ)Qi (3.57)

leading to
(I −G(θ))(1)

i? T
(1)
i + (I −G)(2)

i? T
(2)
i =

[
U

(1)
i? U(θ)(2)

i?

]
, (3.58)

with P−1
i TQi =

[
T

(1)
i

T
(2)
i

]
. Note that Ťi = T

(1)
i

[
IK+p−β

0

]
.

Sufficiency:
When considering the left 1× (K + p− βi) block of the vector equation (3.58), while
using the expression for Ťi above, we can write

(I −G(θ))(1)
1? T̆i + ρ = U

(1)
i? , (3.59)

with ρ the left 1× (K + p− βi) block of (I −G)(2)
i? T

(2)
i .

Now ρ and U (1)
i? are independent of θ, which implies that, if Ťi has full row rank, then

all the parametrized elements in (I −G(θ))i? are uniquely determined. Then through
(3.58) the parametrized elements in Ui?(θ) are also uniquely determined.

By assumption we know that one solution to (3.56) is given by G(θ0) and U(θ0). Since
the solution is unique, and G(θ0) and U(θ0) are a possible solution we know that G(θ0)
and U(θ0) must be the only solution. This proves the validity of the implication (3.19).
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Necessity of condition 2:
If the matrix Ťi(θ0) is not full row rank, then it has a non-trivial left nullspace. Let
the rational transfer matrix X 6= 0 of dimension 1 × αi be in the left nullspace of
Ťi. Then there also exists a proper, rational and stable Xp in the left nullspace of Ťi.
Then (3.59) can also be written as(

(I −G(θ))(1)
i? +Xp

)
Ťi + ρ = U

(1)
i? . (3.60)

By the formulated assumptions (a) and (b) it holds that each parameterized transfer
function can be any proper rational transfer function, and that these parameterized
transfer functions do not share any parameters. This implies that G(θ1)i? ∈ M and
(G(θ1)i? − Xp) ∈ M refer to two different model rows of G in the model set, that
generate the same network transfer function T . Hence implication (3.19) can not
hold.
Necessity of condition 1:
If αi + βi > K + p, then Ťi(θ0) will be a tall matrix which can never have a full row
rank. Then because of the necessity of the row rank condition on Ťi(θ0), necessity of
condition 1 follows immediately.
Proof of situation (2): For all θ ∈ Θ:
For every θ ∈ Θ we can construct T (θ) with related Ťi(θ) of full row rank, and the
reasoning as presented before fully applies. If for some θ ∈ Θ we can not construct
this full row rank Ťi(θ) there exists a model in the model set which is not identifiable,
and hence the model set is not globally network identifiable in M. �

3.10.6 Proof of Proposition 3.36

The expression for Φv̄ is given by (discarding arguments θ0):

Φv̄ = [I −G]−1H̃Λ̃H̃∗[I −G]−∗. (3.61)

while Twr = [I −G]−1R. Because H̃ is monic, the expression for Φ∞v̄ reduces to:

Φ∞v̄ = [I −G∞]−1Λ̃[I −G]−∗. (3.62)

We are now going to show that under the different conditions, Λ̃ can be uniquely
derived from Φ∞v̄ and T∞wr.
Situation of strictly proper modules (Proposition 3.7).
Since we know that G∞ = 0 it follows immediately from (3.62) that Φ∞v̄ = Λ̃, showing
that Λ̃ can be directly obtained from Φ∞v̄ .
Situation of diagonal Λ and no algebraic loops (Proposition 3.8).
If Φ∞v is diagonal then also Λ̃ is diagonal. We consider (3.62). Based on the algebraic
loop condition, we can construct a permutation matrix Π such that ΠT (I −G∞)−1Π
is upper unitriangular. Then:

ΠTΦ∞v̄ Π =
ΠT (I −G∞)−1Π︸ ︷︷ ︸

L

·ΠT Λ̃Π︸ ︷︷ ︸
D

·ΠT (I −G∞)−TΠ︸ ︷︷ ︸
LT

.
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With D being diagonal and L upper unitriangular, this represents a unique LDLT
decomposition of the permuted spectrum. As a result Λ̃ is uniquely determined from
Φ∞v̄ .

Situation of algebraic loops (Proposition 3.9).
The proof of Proposition 3.9 shows that under the given conditions, G∞ is uniquely
determined from Twr. Then (3.62) leads to the expression

[I −G∞]Φ∞v̄ [I −G∞]∗ = Λ̃. (3.63)

showing that Λ̃ can be uniquely determined.

In all three situations considered, the matrix Λ̃ is uniquely determined from Φ∞v̄ and
possibly T∞wr. Then there exists a permutation matrix Π that reorders the signals v in
such a way that ΠΛ̃ΠT is a matrix of which the left upper p × p part is full rank. If
we apply this reordering of signals, determined by Π, to the node signals w, then we
arrive at a permuted model that has the ordering property, according to Assumption
2.2. �

3.10.7 Proof of Theorem 3.24

The left hand side of the implication (3.33) can be written as

(I −G(θ))T = U(θ), (3.64)

where we use shorthand notation T = T (θ0), G(θ) = G(θ1) and U(θ) = U(θ1). By
inserting the permutation matrices P and Q as in (3.28) we obtain for row j:

(I −G(θ))j?PP−1TQ = Uj?(θ)Q (3.65)

leading to
(I −G(θ))(1)

j? T
(1)
j + (I −G)(2)

j? T
(2)
j =

[
U

(1)
j? U(θ)(2)

j?

]
, (3.66)

with P−1TQ =
[
T

(1)
j

T
(2)
j

]
. Note that Ťj = T

(1)
j

[
IK+p−β

0

]
. The right-hand block in (3.66)

corresponding to U(θ)(2)
j? does not add to the uniqueness of the module of interest

since it is fully parameterized (conditions a,b of Theorem 3.15), so equivalently we can
consider

(I −G(θ))(1)
j? T̆j + ρ = U

(1)
j? , (3.67)

with ρ the left 1 × (K + p − β) block of (I − G)(2)
j? T

(2)
j . Now since ρ and U

(1)
j? are

independent of θ we have that (I − G(θ))(1)
ji is uniquely specified if and only if (I −

G(θ))(1)
ji is uniquely specified in the left-nullspace of Ťj .

Sufficiency:
Define some transfer matrix X(q) of dimension (K + p − β) × 1 with the following
properties:

• Ťj(−i,?)(q, θ0)X(q) = 0, and
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• Ťj(i,?)(q, θ0)X(q) 6= 0,

where Ťj(−i,?) and Ťj(i,?) are defined in (3.35). This X exists because condition (3.36)
requires that Ťj(−i,?)(q, θ0) is not full column rank, and condition (3.36) implies that
Ťj(i,?)(q, θ0) is linearly independent from the rows of Ťj(−i,?)(q, θ0). Now define an
(K + p − β) × (K + p − β) full rank transfer matrix Z(q) which has X as its first
column. Then (3.67) can be post-multiplied with Z to obtain an equivalent set of
equations, leaving the set of solutions for Gji invariant. The first column of ŤjZ is

Ťj(q, θ0)X(q) =
[
Ťj(i,?)(q, θ0)X(q)

0

]
, (3.68)

such that, for this choice of Z, Gji can be uniquely determined from

(I −G(θ))(1)
j?

[
Ťj(i,?)X

0

]
= (U (1)

j? − ρ)X. (3.69)

If Gji is unique for this particular choice of Z, it must be unique in the original problem
also.

Necessity:
The converse of condition (3.36) is that rank

(
Ťj(q, θ0)

)
= rank

(
Ťj(−i,?)(q, θ0)

)
. In this

case the row of Ťj(q, θ0) corresponding to Gji(θ) is linearly dependent on other rows
of Ťj(q, θ0). When Ťj(i,?) is linearly dependent on another row Ťj(k,?), an equation
equivalent to (3.67) can be created where the element Gj1 and row Ťj(i,?) are deleted,
and where (GjiF+Gjk) replaces Gjk, such that Gji can not uniquely be distinguished.

Proof of situation (2): For all θ ∈ Θ:
For every θ ∈ Θ we can construct T (θ) with related Ťj(θ). If condition (3.36) applies
for every model as stated by condition (3.37), then the reasoning as presented before
fully applies to every model. If for some θ ∈ Θ the condition (3.36) is not met, there
exists a model in the model set which is not identifiable, and hence the model set is
not globally network identifiable in M. �

3.10.8 Proof of Lemma 3.29

Proof of statement 1: The when wi is an in-neighbor of wj this implies Gji 6= 0, which
implies Bwji 6= 0, such that the ji block of A denoted with A{ji} = BwjiCi has a non-zero
first column since Ci = [ 1 0 ··· 0 ], such that xi,{1} is an in-neighbor of xj,{s} for some
s. The implications act also in the other direction. Upon replacing wi with rk or el,
then it is implied that Rjk 6= 0 or Hjl 6= 0 respectively, such that Brjk 6= 0 or Bejl 6= 0
respectively, which implies that rk or el is an in-neighbor of xj,{s} for some s.

Statement 2 is a direct consequence of statement 1. �
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3.10.9 Proof of Proposition 3.31

By Proposition 3.30 the number of vertex disjoint paths in GM from excitations in
U to nodes in Y is equal to number of vertex disjoint paths in GΣ from excitations
in U to nodes in Y for every model in M, such that the maximum number of vertex
disjoint paths over the set of models is equal.

For each model θ in Θ the open-loop transfer function is

TYU (z, θ) = CY(zI −A(θ))−1BU (θ), (3.70)

where CY and BU are C and B with the appropriate rows and columns removed. Then
using Theorem 3.28 the number of vertex disjoint paths in GM from excitations in U
to nodes in Y is equal to the generic rank of TYU (z, θ). �



4Joint-direct identification
of a network

for any noise spectrum

4.1 Introduction

In this chapter based on (Weerts et al., 2018d) it is the objective to obtain a Maxi-
mum Likelihood estimate of all transfer functions in a dynamic network model, so the
question addressed in this chapter is the following.

Can maximum likelihood estimates with minimum variance be obtained
of a dynamic network for general noise conditions?

In single-input-single-output systems as (2.23) the prediction error method can be
shown to be equal to Maximum Likelihood estimation under some conditions. When
the identification setting is extended to multi-input-single-output identification of dy-
namic networks as in Section 2.3, then the relation to Maximum Likelihood has not
been drawn in the literature. Adding flexible noise models that allow noise correlations
and rank-reduced spectra make it more difficult to draw a parallel between prediction
error methods and Maximum Likelihood estimates, since the prediction error methods
in literature are not able to deal with these noises.

Correlated disturbances cause correlations between nodes that are not induced by the
dynamic modules. This means that when correlated disturbances are not appropriately
estimated, then estimated module dynamics are estimating the noise correlations as
well as the original module dynamics. One way of dealing with correlated disturbances

79
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is formulated in (Dankers et al., 2017). The effect of correlated disturbances in a
closed-loop system has been studied in (Van den Hof et al., 2017a). In that paper the
objective is to estimate a single module consistently using a multi-input-single-output
setting. Some noise correlations are blocked by including additional inputs, i.e. inputs
that are not an in-neighbor to the output in the data generating network are modeled
as an additional input. In this way some noise correlations can be explained by the
additional module, preventing bias in the module of interest.

In this chapter an alternative approach to dealing with correlated noise is taken.
Here we model additional outputs in the estimation problem, so the setting becomes
multi-input-multi-output. The approach is named the joint-direct method, since the
multiple outputs are predicted jointly. For this approach the prediction error reasoning
of dynamic networks has to be revisited to jointly predict all the outputs. By modeling
multiple outputs, the noise correlations can be modeled in a non-diagonal H model.
A difficulty that appears with this approach is that rank-reduced noises are modeled
with a non-square H.

Identification in the situation of rank-reduced noise is a topic that has not been widely
addressed in the prediction error identification literature. Dynamic factor models have
been developed in Deistler et al. (2015); Felsenstein (2014) to deal with rank-reduced
noise. Maximum likelihood estimates with rank-reduced noise have been obtained
for vector autoregressive systems (Kölbl, 2015) and linear regression (Srivastava and
von Rosen, 2002). In classical multi-output prediction error methods (Ljung, 1999)
rank-reduced noise has not been considered. A prediction error framework where no
assumption on the rank of the noise is placed is to be developed, including the crite-
rion, analysis of consistency, and the relation with Maximum Likelihood estimates. A
preliminary study towards prediction error identification of a 1-input-2-output system
with rank-reduced noise has been performed in (Van den Hof et al., 2017b).

Maximum Likelihood estimates are asymptotically efficient estimates where the vari-
ance asymptotically tends to the Cramér-Rao lower bound. Our approach is as follows:
first we derive expressions for the variance of the estimated modules, in particular for
the rank-reduced noise situation. With those expressions it can be analyzed under
which conditions the variance is at the Cramér-Rao lower bound.

The chapter will proceed by defining the predictor, prediction error, and an identifica-
tion criterion with consistency analysis for the situation of correlated noises in Section
4.2. In Section 4.3 another criterion specifically for the situation of rank-reduced noise
is introduced, and maximum likelihood properties are analyzed. Then in Section 4.4
the variance is analyzed by investigating the Cramer-Rao lower bound. Finally, in
Section 4.5, simulations show the benefit of appropriately taking rank-reduced noise
into account.

4.2 Predictor, model set and WLS

In this section we develop a prediction error approach for the identification of dy-
namic networks. Before proceeding with the prediction error setup we must define
which class of dynamic networks are being considered. In Chapter 3 conditions for
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identifiability have been presented, and we need to ensure that an identifiable model set
can be constructed. The assumptions on the data generating network are formalized
below.

Assumption 4.1. The data generating system S is represented by the network
model M0 where

• the modules in G0(q) are strictly proper;

• all nodes w are measured;

• external excitation may be present;

• the noise spectrum Φv(ω) may be non-diagonal and is of rank p ≤ L;

• the nodes are ordered such that the first p nodes are affected by a rank p
noise process.

The requirement that all modules are strictly proper is applied also to the model set.
In the model set a noise model is used where H(q, θ) and Λ(q, θ) are as defined in
Chapter 2, and in particular they are not necessarily diagonal.

Remark 4.2. We have considered the situation that all modules in G(q, θ) are strictly
proper. This situation can be extended to the situation of having proper modules in
G(q, θ), thus allowing direct feedthrough terms, as long as there are no algebraic loops
in the network. In Chapter 5 we develop the prediction error approach for networks that
have feedthrough or even algebraic loops. Since the formulation of the ML result will
become technically more involved for non-strictly proper modules, we have preferred to
restrict to the strictly proper module situation in the current chapter.

The objective in this chapter is to estimate all modules in the network. Moreover,
in order to model the correlations captured in the non-diagonal H, additional predic-
tor outputs are to be included. For these reasons we define a multivariable predic-
tor.

Definition 4.3. The one-step-ahead predictor for node signals w(t) is defined as
the conditional expectation

ŵ(t|t− 1) := E
{
w(t) | wt−1, rt

}
, (4.1)

conditioned on wt−1 := {w(0), w(1), · · · , w(t−1)} and rt := {r(0), r(1), · · · , r(t)}.

This predictor definition is the classical predictor used in multivarable estimation
(Söderström and Stoica, 1989; Ljung, 1999). In situations where noise is of a reduced
rank, there are multiple ways to model the noise process v. In order to write a
unique and explicit form for the predictor filters that generate the one-step-ahead
prediction, we use the squared version of the noise model (2.9), i.e. v = Ȟ0ě where Ȟ
is square and monic as discussed in Chapter 2. This leads to the following predictor
expression.
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Proposition 4.4. For a dynamic network considered in (2.4) that has strictly
proper modules, the one-step-ahead predictor of the node signals w(t) is given by

ŵ(t|t− 1) = W 0
w(q)w(t) +W 0

r (q)r(t), (4.2)

with the predictor filters

W 0
w(q) = I − (Ȟ0(q))−1(I −G0(q)), (4.3)

W 0
r (q) = (Ȟ0(q))−1R0(q). (4.4)

Proof. Provided in Appendix 4.7.1. �

The classical predictor has been represented with a network model, instead of a MIMO
open-loop transfer function. For situations where noise is full rank, the equality Ȟ0 =
H0 holds, so full rank noise will be treated as a special case throughout the chapter.

Remark 4.5. In (Weerts et al., 2016c) the alternative noise model, determined by the
non-square H0(q) was used as a basis for formulating the predictor filters. However
due to intrinsic non-uniqueness of the corresponding filter expressions, the use of the
square noise model Ȟ0 is more attractive. Note that a subtle difference between the
noise models Ȟ0 and H0 is that in Ȟ0 the feedthrough term of H0

b has been removed
and is represented now in cov(ě).

In the parameterized model the feedthrough of Hb is modeled by Γ(θ) defined as
Γ(θ) := limz→∞Hb(z, θ). The transfer functions in predictor (4.2) are parameterized
in accordance with the model set M to create the parameterized predictor

ŵ(t|t− 1, θ) = w(t)−
(
H̆(q, θ)

)−1 (
(I −G(q, θ))w(t)−R(q, θ)r(t)

)
, (4.5)

with
H̆(q, θ) =

[
Ha(q, θ) 0

Hb(q, θ)− Γ(θ) I

]
. (4.6)

The prediction error is then defined as

ε(t, θ) := w(t)− ŵ(t | t− 1, θ), (4.7)

which is L-dimensional even in the rank-reduced case.

The typical identification criterion for multivariable predictor models is the Weighted
Least Squares (WLS) criterion (Söderström and Stoica, 1989; Ljung, 1999)

θ̂WLS
N = arg min

θ∈Θ

1
N

N∑
t=1

εT (t, θ) Q ε(t, θ), (4.8)

with Q > 0. Given the multivariate character of the prediction error, the WLS cri-
terion will allow us to show maximimum likelihood properties, and thus asymptotic
minimum variance properties of our estimated models in later sections. Because the
prediction error has a different form than the prediction error in literature (Ljung,
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1999; Söderström and Stoica, 1989), the consistency proofs from literature do not
apply, and these results must be re-evaluated.

For analysis of the asymptotic properties of the parameter estimate (4.8) consider the
asymptotic criterion

θ? = arg min
θ∈Θ

V̄ (θ), (4.9)

with
V̄ (θ) = Ē εT (t, θ) Q ε(t, θ), (4.10)

and Ē defined as limN→∞
∑N
t=1 E, according to Ljung (1999). In classical literature

it has been shown that the solution of the weighted least squares criterion converges
to the solution of the asymptotic criterion under some mild conditions (Ljung, 1999).
Based on this result we can formulate that, under the condition that w(t) and r(t) are
jointly quasi-stationary, r(t) is bounded, and e(t) has bounded moments of order ≥ 4,
it holds that

θ̂WLS
N → θ? w.p. 1 as N →∞. (4.11)

With this convergence result, consistency is shown when θ? = θ0. Conditions for
consistency are formulated in the next proposition.

Proposition 4.6. Consider data generated by a system that satisfies Assumption
4.1, and consider a model set M where all modules in G are strictly proper. Let
θ? be defined by (4.9), then it holds thata

{G(q, θ?), Ha(q, θ?), Hb(q, θ?)− Γ(θ?), R(q, θ?)}
= {G0(q), H0

a(q), H0
b (q)− Γ0, R0(q)},

(4.12)

when the following conditions are satisfied

1. The data generating system is in the model set, i.e. ∃θ0 ∈ Θ such that
M(θ0) = M0,

2. M is globally network identifiable at M(θ0), and

3. the external excitation r, if present, is persistently exciting of sufficiently
high order and uncorrelated to v.

aStrictly speaking θ? can be a set and the equation holds for all θ ∈ θ?.

Proof. Provided in Appendix 4.7.2. �

In this proposition the full rank noise situation appears as a special case. With full
rank noise, (4.12) is written as

{G(q, θ?), H(q, θ?), R(q, θ?)} = {G0(q), H0(q), R0(q)}. (4.13)

In the criterion (4.8) it can be observed that H0
b (q)−Γ0 is estimated consistently, but

since Γ0 is the feedthrough of H0
b (q), the Γ0 is not estimated at all.
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Information on Γ exists in the spectrum Φv̄ and in the residuals of the estimated model.
For the situation of rank-reduced noise, when the modules G are strictly proper, then
the feedthrough of Hb(q, θ) parameterized as Γ(q, θ) can directly be obtained from the
noise spectrum Φv̄(ω) since

Φv̄(∞) = (I −G∞)−1
[
I
Γ

]
Λ
[
I
Γ

]T
(I −G∞)−T , (4.14)

with G∞ = 0. This implies that no structure has to be imposed onto Γ(θ). When
the WLS criterion has been applied, then the Γ can also be estimated in the following
way. Based on the dependencies in the innovation we split the prediction error into 2
parts:

ε(t, θ) =
[
εa(t, θ)
εb(t, θ)

]
, (4.15)

where εa ∈ Rp, and εb ∈ RL−p. Under zero initial conditions in the system and
the predictor filters, the prediction error, when evaluated at θ = θ0, has the same
dependencies as the innovation, i.e.

εa(t, θ0) = e(t), and εb(t, θ0) = Γ0e(t),

such that Γ0εa(t, θ0) = εb(t, θ0). Using this knowledge an estimation of Γ0 can be
made by

Γ̂N =
(

1
N

N∑
t=1

εb(θ̂N )εTa (θ̂N )
)(

1
N

N∑
t=1

εa(θ̂N )εTa (θ̂N )
)−1

. (4.16)

Since θ̂N is a consistent estimator, this estimate Γ̂N will converge to

Γ? =
(
E εb(θ?)εTa (θ?)

)(
E εa(θ?)εTa (θ?)

)−1 (4.17)

which is
Γ? = Γ0Λ0(Λ0)−1 = Γ0. (4.18)

For full-rank noise the weight Q = (Λ0)−1 typically leads to minimum variance esti-
mates (Ljung, 1999), but for rank-reduced noise Λ̌0 is not invertible. In order to obtain
minimum variance properties, a new approach is needed to determine an appropriate
weighting Q in the identification criterion (4.8).
The identification method that is presented in this section is termed as “joint-direct
method”, as it combines elements from two classical methods for closed-loop identifi-
cation (Ljung, 1999), i.e. the joint-io method that is based on treating all measured
signals jointly and starts with estimating closed-loop transfer function objects, and
the direct method in which plant and noise dynamics are parametrized directly.

4.3 Constrained least squares and ML

4.3.1 Constrained least squares

When noise is rank-reduced, the WLS criterion does not take into account the fact that
there are dependencies in the innovation process ě(t), as represented in (2.11). In this
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section an identification criterion is introduced which properly takes these dependen-
cies into account. Maximum likelihood properties of the estimators are investigated,
which implies an appropriate choice of weight for the WLS criterion. Based on the
dependencies in the innovation we define

Z(t, θ) := Γ(θ)εa(t, θ)− εb(t, θ), (4.19)

and introduce the Constrained Least Squares (CLS) criterion:

θ̂CLSN = arg min
θ

1
N

N∑
t=1

εa(t, θ) Qa εa(t, θ)

subject to 1
N

N∑
t=1

ZT (t, θ)Z(t, θ) = 0,

(4.20)

with Qa > 0. For finite N , the quadratic constraint is equivalent to the constraint
Z(t, θ) = 0 ∀t, which was introduced in Weerts et al. (2017). We have chosen for a
quadratic constraint as this facilitates the convergence and consistency result in the
next proposition, and because it is less computationally demanding.

While the term Γ(θ) was only estimated after optimizing the WLS criterion, in the
CLS criterion it enters the estimation procedure directly through the constraint. Con-
sistency of the CLS estimate can now be formulated in the next proposition of which
a preliminary version was presented in Weerts et al. (2017).

Proposition 4.7. Consider data generated by a system that satisfies Assumption
4.1, and consider a model set M where all modules in G are strictly proper. Let
θ̂CLSN be defined by (4.20) and let θ∗ be defined by

θ∗ = arg min
θ

Ē εa(t, θ) Qa εa(t, θ)

subject to Ē ZT (t, θ)Z(t, θ) = 0.
(4.21)

1. Under the conditions that w(t) and r(t) are jointly quasi-stationary, r(t) is
bounded, and e(t) has bounded moments of order ≥ 4, it holds that

θ̂CLSN → θ∗ w.p. 1 as N →∞. (4.22)

2. It holds thata

{G(q, θ∗), H(q, θ∗), R(q, θ∗)} = {G0(q), H0(q), R0(q)}, (4.23)

when the following conditions are satisfied

1. The data generating system is in the model set, i.e. ∃θ0 ∈ Θ such that
M(θ0) = M0,

2. M is globally network identifiable at M(θ0), and
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3. the external excitation r, if present, is persistently exciting of sufficiently
high order and uncorrelated to v.

aStrictly speaking θ∗ can be a set and the equation holds for all θ ∈ θ∗.

Proof. Provided in Appendix 4.7.3. �

As opposed to the consistency result for the WLS estimate in Proposition 4.6, now
the term Γ(θ), which is included in Hb(q, θ), is also estimated consistently directly in
the criterion. Estimation of Γ is taken care of by the constraint, that constrains the
parameter space in order to guarantee the (static) dependency among the terms of the
prediction error.

4.3.2 Maximum Likelihood

Maximum Likelihood estimates minimize the variance of the estimated model. Moti-
vated by the proper handling of the dependencies in the noise terms, it can be expected
that the CLS estimate has a close resemblance with the Maximum Likelihood estimate.
This is analysed next.

Theorem 4.8. Let e(t) be normally distributed and zero mean, i.e. e(t) ∼
N (0,Λ0), and consider a parameterized model set as in Definition 3.35. Then
under zero initial conditionsa:

1. The Maximum Likelihood estimate of θ0 is

θ̂ML
N = arg max

θ
logLa(θ)

subject to 1
N

N∑
t=1

ZT (t, θ)Z(t, θ) = 0,
(4.24)

with

logLa(θ) = c− N

2 log det Λ(θ)

− 1
2

N∑
t=1

εTa (t, θ)Λ−1(θ)εa(t, θ).
(4.25)

2. Under the condition that Λ(θ) does not share parameters with ε(t, θ) the
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Maximum Likelihood estimate can alternatively be written as

θ̂ML
N = arg min

θ
det
(

1
N

N∑
t=1

εa(t, θ)εTa (t, θ)
)

subject to 0 = 1
N

N∑
t=1

ZT (t, θ)Z(t, θ),

Λ(θ) = 1
N

N∑
t=1

εa(t, θ)εTa (t, θ).

(4.26)

aThe zero initial conditions reflect values of input and output values of the predictor filters,
prior to the time interval [1, N ], that are required to calculate the predicted node signal within
the time interval.

Proof. Provided in Appendix 4.7.4. �

In the theorem above two formulations of the Maximum Likelihood estimator are
presented, and the second one deserves some attention. In (4.26) the last equation
does not involve an actual constraint that limits the optimization problem, but it is
merely there to specify the parameters that determine the estimated Λ. When the
constraint on Λ(θ) is removed, then (4.26) may be used to estimate G,H,R without
estimating Λ.

Note that when a model set with fixed (non-parameterized) Λ is used, then the term
−N2 log det Λ(θ) in (4.24) becomes constant, and the Maximum Likelihood estimate
(4.24) reduces to the Constrained Least Squares (4.20) estimate with Qa = Λ−1. This
implies that the CLS equipped with the appropriate weight Qa = (Λ0)−1 is a maximum
likelihood estimator in case of Gaussian disturbances.

The maximum likelihood estimator also applies to situations of full rank noise as a
special case. Then the estimator is

θ̂ML
N = arg min

θ
det
(

1
N

N∑
t=1

ε(t, θ)εT (t, θ)
)

subject to Λ(θ) = 1
N

N∑
t=1

εT (t, θ)ε(t, θ).

(4.27)

For a fixed Λ this corresponds with the WLS (4.8) with Q = Λ−1.

4.3.3 Practical situations

If initial conditions are non-zero and not explicitly dealt with in the parametrized
model, then part of the prediction error is caused by the initial conditions. Although
this effect asymptotically goes to 0, the εb does not have to be linearly dependent on
εa, and consequently there do not exist parameters for which Z(t, θ) = 0 for all t.
Similarly in the situation whereM does not contain S, it is possible that there do not
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exist parameters for which Z(t, θ) = 0 for all t. When the Z(t, θ) can not be made 0
the constraint in (4.20) and (4.24) is not feasible and the solution set of the criterion
is empty.
In order to deal with situations where there are non-zero initial conditions, or where the
system is not in the model set, we introduce a relaxed criterion. This relaxed criterion
has a relaxed constraint, which appears as an additional penalty term, weighted by
the real-valued penalty weight λ > 0:

θ̂relN =arg min
θ

1
N

N∑
t=1

(
εa(t, θ)Qaεa(t, θ)+λZT (t, θ)Z(t, θ)

)
. (4.28)

The above criterion is equivalent to the CLS (4.20) for λ→∞. Another way to write
the relaxed criterion is as the WLS (4.8) with parameterized weight

Q(θ) =
[
Qa + λΓT (θ)Γ(θ) −λΓT (θ)

−λΓ(θ) λI

]
. (4.29)

In a situation where the number of samples N is finite, and where initial conditions
are not estimated, the optimal prediction error may not be rank-reduced. Then the
constraint of the CLS, which enforces a rank-reduced prediction error, causes bias.
Relaxing the CLS by tuning parameter λ is effectively a trade-off between bias and
variance. The optimal choice for λ will depend on the contribution of initial con-
ditions, the contribution of unmodeled dynamics and the length of the data record.
Determining the optimal bias-variance trade-off is not considered here.

4.4 Cramer-Rao lower bound

4.4.1 Variance of Weighted Least Squares Estimates - full rank

In the situation that the noise is full rank the classical parameter variance results
(Ljung, 1999) can be applied. For N →∞ and S ∈ M the estimate converges under
weak conditions to a normal distribution given by

√
N(θ̂CLSN − θ0)︸ ︷︷ ︸

:=θ̃

∼ N (0, Pθ), (4.30)

with Pθ positive definite. For full-rank noise processes, Pθ is defined by

Pθ =
[
Ēψ(t)QψT (t)

]−1 [Ēψ(t)QΛ0QψT (t)
]
·

·
[
Ēψ(t)QψT (t)

]−1
,

(4.31)

with
ψ(t) := − d

dθ
εT (t, θ)|θ=θ0 . (4.32)

It can be shown that the weight Q = (Λ0)−1 leads to the minimum variance estimate
Söderström and Stoica (1989).
The variance has some lower bound P 0

θ , Pθ ≥ P 0
θ , which for full-rank noise is given by

P 0
θ =

[
Ēψ(t)(Λ0)−1ψT (t)

]−1
. (4.33)
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4.4.2 Variance of Weighted Least Squares Estimates - rank-
reduced

For rank-reduced noise and the WLS criterion (4.8) the expression for Pθ is similar
to the expression above, with Λ0 replaced by Λ̌0. This can be shown by following
its derivation in Söderström and Stoica (1989) and using Λ̆0 instead of Λ0. For the
rank-reduced case, Λ0 would have to be replaced by Λ̆0, which is singular, and so its
inverse does not exist. Therefore a lower bound like (4.33) is not valid in this case.
The question is now what the minimum variance is when noise is rank-reduced. In the
following example we are looking for a weight Q which leads to minimum variance in
a simple rank-reduced noise estimation problem.

Example 4.9. Consider the system in Figure 4.1, where 2 parameters are to be esti-
mated, θa and θb. The system is governed by[

w1(t)
w2(t)

]
=
[
a0 0
0 b0

] [
r1(t)
r2(t)

]
+
[
e(t)
e(t)

]
︸ ︷︷ ︸
ě(t)

.

The disturbance process ě has covariance matrix Λ̌0 = [ 1 1
1 1 ], which is singular. When

w1

w2

a
0

b
0

r1

e
r2

Figure 4.1: System with 2 nodes, no dynamics and 1 noise disturbance. It is excited
by the quasi-stationary excitation signals r1, r2 and the stochastic process e which are
all mutually uncorrelated and have unit variance.

the WLS (4.8) is used with a weight Q defined by (4.29) and Γ(θ) set to 1,

Q =
[
1 + λ −λ
−λ λ

]
(4.34)

with λ > 0 and prediction errors

εa = w1 − θar1, εb = w2 − θbr2, (4.35)

then we get a consistent estimate. The identification criterion to be minimized becomes

1
N

N∑
t=1

{
1
λ
ε2
a(θa) +

([
1 −1

] [εa(θa)
εb(θb)

])2
}
. (4.36)

In the limit as λ → ∞, Q becomes singular, and the expression for the identification
criterion becomes

1
N

N∑
t=1

(
(a0 − θa)r1 + e− (b0 − θb)r2 − e

)2
, (4.37)
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which is obtained by substituting (4.35) into (4.36). In this expression disturbance e
drops out, and a variance-free estimate of a0 and b0 is obtained. This phenomenon of
variance-free estimation has also been observed in (Everitt et al., 2015).

This phenomenon should also be observed in the variance expression (4.31). To this
end we use

ψ(t) =
[
r1(t) 0

0 r2(t)

]
, (4.38)

such that we obtain

ĒψQψT = Ē
[
r2
1(1 + λ) −r1r2λ
−r1r2λ r2

2λ

]
=
[
(1 + λ) 0

0 λ

]
(4.39)

and
ĒψQΛ̌0QψT = Ē

[
r2
1 0
0 0

]
=
[
1 0
0 0

]
. (4.40)

We can compute Pθ of (4.31) as

Pθ =
[
(1 + λ) 0

0 λ

]−1 [1 0
0 0

] [
(1 + λ) 0

0 λ

]−1
=
[ 1

(1+λ)2 0
0 0

]
. (4.41)

Here we can see that as λ→∞ the covariance goes to 0.

It could be tempting to use an expression like (4.33) for the lower bound on the vari-
ance, with the inverse covariance (Λ0)−1 replaced by a pseudo-inverse of Λ0. In this
example (Λ̌0)† = 1

4 [ 1 1
1 1 ] and substituting this into (4.33) instead of (Λ0)−1, delivers[

Ēψ(t)(Λ̌0)†ψT (t)
]−1
6= 0, (4.42)

which can not be the expression for the minimum variance.

Note that this example is fully symmetric in nodes w1 and w2, or equivalently in
systems a0 and b0. Nevertheless one of the parameters θb is estimated variance-free,
while θa is not. This is the result of the particular choice of weighting function, that
according to (4.29) reflects the choice of w1 as the full-rank noise node. Choosing
the alternative weight Q =

[
λ −λ
−λ 1+λ

]
would resemble the situation of choosing w2 as

the full rank noise node. For both the weights, when we let λ→∞ the variance-free
maximum likelihood estimate is obtained, which is again symmetric in θa and θb.

In this example it is possible to choose a weight beyond the structure of (4.29), e.g.
Q =

[ 1 −1
−1 1

]
, in which case we arrive at a variance-free estimate, since QΛ0Q = 0.

For this choice of Q we are essentially only modeling the ’constraint’, and we dropped
the ’original cost function’ ε2

a. Such a weight Q is useful when all parameters in the
model can be estimated using just the constraint.

The conclusion that can be drawn from the example is we have two options to minimize
variance in a rank-reduced estimation problem. Either we use the CLS criterion, or
we must use the WLS with weight described in (4.29). Expressions for the variance of
the WLS and CLS criteria are derived in the next section.
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4.4.3 Variance of Constrained Least Squares Estimates

In this section we will derive a closed-form expression for the variance of the CLS
estimates. We must address the full impact of the constraint, that typically reduces
the effective parameter space in the criterion.

For the CLS situation the asymptotic identification criterion is written as follows:

θ∗ = arg min
θ

Ē εa(t, θ) Qa εa(t, θ)

subject to: Ē ZT (t, θ)Z(t, θ) = 0.
(4.43)

We are making an analysis of the variance around the data generating system param-
eters, so we assume that θ∗ = θ0.

In a neighborhood around θ = θ0 the constraint can be approximated using a first
order Taylor series

Z(t, θ) ≈ Z(t, θ0) + ∂Z(t, θ)
∂θ

∣∣∣
θ=θ0

(θ − θ0) = A(t)(θ − θ0), (4.44)

where

A(t) := ∂Z(t, θ)
∂θ

∣∣∣
θ=θ0

(4.45)

with A ∈ R(L−p)×nθ . The approximated constraint is then

Ē (θ − θ0)TAT (t)A(t)(θ − θ0) = 0, (4.46)

where Ē AT (t)A(t) is of dimension nθ × nθ. Note that Z(t, θ0) = 0, but that Z(t, θ)
with θ in the neighborhood around θ0 is non-zero. Similarly the A(t)(θ − θ0) is 0 for
θ = θ0 and non-zero in the neighborhood, which implies that the parameter space that
is being constrained by (4.46) is the same as in the CLS criterion. We can define a
matrix Π of dimension (nθ − nρ)× nθ such that the expectation is

Ē AT (t)A(t) = ΠTΠ, (4.47)

where matrix Π has no particular structure. Then in the neighborhood of the estimate
θ∗ the constraint is approximated by a quadratic constraint

θ∗ = arg min
θ

Ē εa(t, θ) Qa εa(t, θ)

subject to: (θ − θ0)TΠTΠ(θ − θ0) = 0.
(4.48)

In order to appropriately take the constraint into account in the variance analysis, a re-
parameterization will be considered using a parameter ρ with dim(ρ) = nρ < dim(θ).
The two parameters will be related through a mapping induced by the constraint, such
that the new parameterization trivially satisfies the constraint.
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Lemma 4.10. The constrained parameter space determined by (θ−θ0)TΠTΠ(θ−
θ0) = 0, with Π defined as above, is equivalently described by

θ = Sρ+ C, with ρ ∈ Rnρ , (4.49)

where S ∈ Rnθ×nρ satisfies ΠS = 0 and is full column rank, i.e. S characterizes
the right nullspace of Π, and C = Π†Πθ0, where Π† satisfies ΠΠ† = I.

Proof. Provided in Appendix 4.7.5. �

The unconstrained parameter ρ can now be used to rewrite the criterion (4.48) into a
form that trivially satisfies the constraint. The resulting criterion is then essentially
an unconstrained criterion operating on a lower dimensional parameter ρ.

Proposition 4.11. The optimization problem (4.48) can equivalently be written
as

θ∗ = Sρ∗ + C, (4.50)

with
ρ∗ = arg min

ρ
Ē εa(t, Sρ+ C) Qa εa(t, Sρ+ C). (4.51)

Proof. Provided in Appendix 4.7.6. �

Since (4.51) is an unconstrained identification criterion, we know that the asymptotic
variance of the estimate ρ̂N that corresponds to the asymptotic estimate ρ∗ is given
by

Pρ =
[
Ēψρ(t)QaψTρ (t)

]−1 [Ēψρ(t)QaΛ0Qaψ
T
ρ (t)

]
·

·
[
Ēψρ(t)QaψTρ (t)

]−1
,

(4.52)

with
ψρ(t) = − d

dρ
εTa (t, Sρ+ C)|ρ=ρ∗ . (4.53)

Combining this expression with (4.49) now provides an expression for Pθ, as formulated
next.

Proposition 4.12. The covariance matrices Pρ and Pθ satisfy the following
relation

Pθ = SPρS
T . (4.54)

Proof. Provided in Appendix 4.7.7. �

It is well known that the lower bound of Pρ is achieved when Qa = (Λ0)−1, such that

Pρ ≥ P 0
ρ =

[
Ēψρ(t)(Λ0)−1ψTρ (t)

]−1
. (4.55)
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Then by Proposition 4.12 the lower bound of Pθ is

Pθ ≥ P 0
θ = SP 0

ρS
T , (4.56)

which is achieved for Qa = (Λ0)−1.

Matrix S characterizes the right-nullspace of Π, so it is not a unique matrix. The
covariance matrix Pρ is a function of S and C, which makes it that all possible S
matrices lead to the same Pθ and lower bound P 0

θ . As an illustration of the results,
an Example is shown for the CLS estimate.

w1

w2

1

1

r1

e

r2

0.5

Figure 4.2: System with 2 nodes, no dynamics and 1 noise disturbance. It is excited
by the quasi-stationary excitation signals r1, r2 and the stochastic process e which are
all mutually uncorrelated and have unit variance.

Example 4.13. In this example, depicted in Figure 4.2, the system is given by

w1(t) = r1(t) + 0.5r2(t) + e(t), w2(t) = r2(t) + e(t). (4.57)

The noise is rank reduced, and has covariance matrix Λ̌0 = [ 1 1
1 1 ], which is singular.

When the CLS (4.20) is used with knowledge of Γ0 = 1 and prediction errors

ε1 = w1 − θa1r1 − θa2r2, ε2 = w2 − θbr2, (4.58)

where ε1 = εa and ε2 = εb, then we get a consistent estimate. The constraint here
consists of Ē Z2(t, θ) = 0 with

Z(t, θ) = ε1(t, θ)− ε2(t, θ). (4.59)

Determining the approximated constraint requires taking the derivative

A(t) = ∂Z(t, θ)
∂θ

∣∣∣
θ=θ∗

=
[
−r1(t) −r2(t) r2(t)

]
. (4.60)

When evaluating the expectation in the constraint we have

ĒAT (t)A(t) = Ē

r2
1(t) 0 0
0 r2

2(t) −r2
2(t)

0 −r2
2(t) r2

2(t)

 =

1 0 0
0 1 −1
0 −1 1

 , (4.61)

which can be factorized into ΠTΠ with Π =
[
1 0 0
0 1 −1

]
.
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Vectors S and C can now be determined based on ΠS = 0 and C = Π†Πθ0, leading to:

S =

0
1
1

 , C =

 1
−0.5

0

 .
With this choice of S, we can determine ψρ using (4.53) as

ψρ = − d

dρ

(
w1 −

[
r1 r2 0

]
(Sρ+ C)

)
= r2 (4.62)

Then Pρ of (4.52) is given by:

Pρ = (Ē r2
2)−1(Ē r2

2)(Ē r2
2)−1 = 1,

where Λ0 = Qa = 1. Then with Proposition 4.12 the covariance of θ is determined as

Pθ = SPρS
T =

0 0 0
0 1 1
0 1 1

 .
Since we used the optimal weighting Qa = (Λ0)−1 this is also the lower bound on
the variance in the given situation. Note that in the considered situation the first
parameter θa1 is estimated variance-free.

It becomes interesting to analyze when it is beneficial to model a rank-reduced noise.
The most clear case is in a situation where the matrix ĒAT (t)A(t) is square and full
rank, as then the constraint uniquely determines all parameters, and all parameters
are determined variance-free. In other situations some individual modules may be
estimated variance-free, or the variance can be reduced. These results suggest that in
a situation where noise is dominated by a few sources, and the other noise sources are
small, then it may be beneficial to model this as rank-reduced noise in order to reduce
variance.

4.4.4 Comparison to other work

Using a different reasoning than presented above, and not related to dynamic networks,
in Stoica and Ng (1998) the Cramér-Rao lower bound on the variance under parametric
constraints has been derived for Gaussian distributed noise. That result can be linked
to the lower bound obtained in the previous section. In Stoica and Ng (1998) it is
stated that first the Fisher information matrix J of the unconstrained part of the
criterion (4.20) is obtained, which is

J = Ē ψa(t)Λ−1
0 ψTa (t), (4.63)

with ψa(t) = ψ(t) [ I0 ]. This unconstrained part of the criterion does not contain all
parameters, meaning that ψa contains rows that are 0, and J is singular. The lower
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bound on the variance can not be given by J−1 since it does not exist. In Stoica and
Ng (1998) it has been proven that the lower bound is given by

P 0
θ = S

(
ST Ē ψa(t)Λ−1

0 ψTa (t)S
)−1

ST , (4.64)

with S as defined before. The above expression is equal to the lower bound in (4.56)
that we obtained using a different reasoning, since by the chain rule for differentiation
we have that

ψρ(t) = STψa(t) (4.65)
which can be substituted in (4.64) to arrive at (4.56).

4.5 Simulations

w1

w2

v2
w3

G31 G13

v1
r1

Figure 4.3: Example of a network with rank-reduced noise. Node signals are wi, being
the outputs of the (circular) summation points, interconnected by modules Gij and
perturbed by non-measured disturbance signals vi. Signals ri are excitation signals
available to the user.

In this simulation example a 3 node network will be identified from data using the WLS
and CLS criteria. We use the network in Figure 4.3 with r2 = 0 and v a 2-dimensional
white noise process with Λ0 = I, such that

G0 =

 0 G0
12 G0

13
0 0 G0

23
G0

31 0 0

 , H0 =

1 0
0 1
0 1

 .
The dynamic modules are finite impulse responses with the following coefficients

G0
12(q)

G0
13(q)

G0
23(q)

G0
31(q)

 =


0.33 −0.2 0.13 −0.08 0.05
0.2 −0.45 −0.73 −0.54 −0.25
−0.15 0.12 −0.9 0.6 0.3
−0.5 0.06 −0.1 0.03 0



q−1

q−2

q−3

q−4

q−5

.
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In total 100 Monte-Carlo simulations are performed on the above network with N =
1000 samples taken for each data set, and with initial conditions set to 0.

A model structure is used with G(q, θ) having the same structure as G0, H(q, θ) =[
I

Γ(θΓ)
]
, and with Λ = I. Parameters are collected in the vector

θT =
[
θT12 θT13 θT23 θT31 θTΓ

]
∈ R22, (4.66)

where θij correspond to module Gij(θij). The prediction error can be denoted byε1(t, θ)
ε2(t, θ)
ε3(t, θ)

 =

w1(t)
w2(t)
w3(t)

−
 0 φ2(t) φ3(t) 0

0 0 φ3(t) 0
φ1(t) 0 0 0

 θ, (4.67)

with appropriately chosen regressors φi(t).

The WLS is applied as the relaxed CLS with weight (4.29) parameterized with Γ(θ).
The prediction errors are linear in the parameters, so the WLS criterion is straightfor-
ward to implement as a linear regression problem. In order to solve the CLS criterion a
constraint optimization has been implemented and solved using Matlab’s fmincon()
function. Two different choices for λ are used to illustrate the effect of increasing
values of λ. Results of the WLS estimates, and of the CLS estimates, are plotted in
Figure 4.4.

It can be observed that the parameters of modules G12 and G13 do not change with
different criteria. The noise on node 1 is independent of noise on nodes 2 and 3, such
that estimation of the node 1 parameters is essentially not affected by the constraint.
The parameters of G23 and G31 are estimated with smaller variance when λ increases,
since the estimate gets closer to the ML estimate. The parameters of Γ (indexed by
numbers 21 and 22) are estimated with very small variance, even for small λ.

For this estimation the lower bound on the variance can be computed. An approxima-
tion of the constraint is made by taking the derivative of the constraint with respect
to the parameters. The constraint is formulated as

Z(θ) := Γ1(θ)ε1(t, θ) + Γ2(θ)ε2(t, θ)− ε3(t, θ). (4.68)

Its derivative with respect to the parameters is

A(t) = − d

dθ
Z(t, θ)

∣∣∣
θ=θ0

=[
Γ0

1φ2 Γ0
1φ3 Γ0

2φ3 −φ1 φ2θ
0
12 + φ3θ

0
13 φ3θ

0
23
]
,

(4.69)

where Γ0 = [ Γ0
1 Γ0

2 ]. Then to build the matrix Π of maximum rank we need 12 time
samples

Π =

 A(1)
...

A(12)

 . (4.70)

Because of the fact that Γ0
1 = 0, the Π matrix is structured such that the left most 10

columns are 0. The other 12 columns constitute a 12× 12 matrix of full rank. Matrix
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Figure 4.4: Boxplot of parameter estimation errors for the 22 different parameters
over 100 Monte-Carlo runs. The top and middle figures are the WLS estimates (4.8)
with weight (4.29) and λ = 0.1 and λ = 10 respectively, the bottom figure is the CLS
estimate (4.20).
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S is then defined by the right-nullspace of Π, and S has the particular structure that
the first 10 rows are non-zero and form a 10× 10 matrix of full rank, and the other 12
rows are 0 such that ΠS = 0. When we consider P 0

θ = SP 0
ρS

T and the structure of S,
it is immediately observed that the lower bound on the variance of parameters 11 to
22 is 0.

The example above shows a similar phenomenon as the static Example 4.9, i.e. two
modules that map into node variables that are subject to the same disturbance, and
as a result of this are estimated variance-free.

4.6 Conclusions

Dynamic network models with rank-reduced noise can consistently be estimated under
standard conditions when correlated and rank-reduced noise is appropriately included
in the model set. In order to appropriately take the rank-reduced noise into account
in the identification criterion, a weighted quadratic criterion subject to a constraint
is utilized. Under fairly standard conditions this constrained criterion can be shown
to result in maximum likelihood estimates. A classical variance expression can be
derived for the weighted least squares estimator, but for the criterion with constraint
the variance expressions is modified to appropriately take the constraint into account.
For this latter situation explicit expressions for the variance have been derived, as well
as expressions for the lower bound of this variance, reaching the Cramér- Rao lower
bound for normally distributed noise.

Maximum Likelihood estimates are significant since these obtain the minimum amount
of variance that is possible for an unbiased estimate. This implies that other asymp-
totically unbiased estimates of all network dynamics will not be able to improve over
the joint-direct method in terms of variance. Moreover the joint-direct method is a
suitable candidate method to be extended for tackling other network identification
objectives. The work in this chapter may be extended to the identification of a single
module, or for identification of the network topology.

4.7 Appendix

4.7.1 Proof of Proposition 4.4

First one predictor expression is derived using the square and monic noise model Ȟ0,
then it is shown that this is unique. We write the network equation (2.4) as

w = G0w +R0r + (Ȟ0 − I)ě+ ě.

Then we substitute using He = Ȟě and (2.4) the expression

ě = (Ȟ0)−1[(I −G0)w −R0r]
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into the expression (Ȟ0 − I)ě, leading to

w = [I − (Ȟ0)−1(I −G0)]w + (Ȟ0)−1R0r + ě. (4.71)

Since we assume that G0 is strictly proper, [I − (Ȟ0)−1(I − G0)] is strictly proper,
and evaluating the conditional expectation (4.1) leads to (4.2).

Now it is shown that the predictor filters W 0
w and W 0

r are unique. The predictor can
be written as

ŵ(t|t− 1) = w − ě = W 0
ww +W 0

r r. (4.72)

By subtracting W 0
ww from both sides, and substituting (2.1) we obtain

(I −W 0
w)(I −G0)−1(H0e+R0r) = ě+W 0

r r. (4.73)

Now since e is independent from r we have

(I −Ww)(I −G)−1He = ě, (4.74)

and then
(I −Ww)(I −G)−1 = Ȟ−1 (4.75)

must hold. Since (I − G)−1 and Ȟ−1 are full rank, the expression for Ww is unique.
From (4.73) we obtain (I −Ww)(I − G)−1Rr = Wrr since e is independent from r,
where substituting (4.3) leads to the unique definition (4.4). �

4.7.2 Proof of Proposition 4.6

First it will be shown that θ0 is a minimum of the criterion, i.e. θ0 ∈ θ?, after which
it will be shown that M(θ0) is the only minimum, i.e. M(θ0) = M(θ) ∀ θ ∈ θ?.

When combining (4.7), (4.5) and (2.4) it can be shown that the prediction error can
be rewritten in terms of e and r[

εa(θ)
εb(θ)

]
= Fe(q, θ)e+

[
I

Γ0

]
e+ Fr(q, θ)r, (4.76)

with

Fe(θ) := Ȟ−1(θ)(I −G(θ))(I −G0)−1H0 −
[
I

Γ0

]
,

Fr(θ) := Ȟ−1(θ)
(

(I −G(θ))(I −G0)−1R0 −R(θ)
)
,

where Fe is strictly proper since the innovation
[
I

Γ0

]
e has been written as a separate

term.

The first term has a strictly proper filter, the innovation (second) term does not have
delay, and since e is a white noise, the first 2 terms are uncorrelated with each other.
By condition 2 the r term is uncorrelated with the e terms. In the quadratic function
V̄ (θ) defined by (4.10) any cross-term between the 3 terms is 0 due to uncorrelatedness,
therefore each of the terms can be minimized individually. Due to condition 1 the first
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and third terms are minimized by θ0 and become 0. The second term does not contain
parameters, so it is trivially minimized. Then we can conclude that θ0 ∈ θ?.
Now it will be shown that any parameter θ1 which reaches the minimum of the cost
function must result in M(θ0) = M(θ1). It can be shown ((Ljung, 1999) proof of
Theorem 8.3) that

0 = V̄ (θ0)− V̄ (θ1)
= Ē(ε(t, θ0)− ε(t, θ1))TQ(ε(t, θ0)− ε(t, θ1)).

(4.77)

Since Q > 0 we must have ε(t, θ0) = ε(t, θ1), up to a possible transient term due to ini-
tial conditions, which decays to zero and therefore can be neglected in our asymptotic
criterion. By condition 2,

[
e(t)
r(t)

]
is a full rank process, such that

Fe(q, θ0) +
[
I

Γ0

]
= Fe(q, θ1) +

[
I
Γ0

]
(4.78)

and
Fr(q, θ0) = Fr(q, θ1). (4.79)

Since Fe(q, θ0) = 0 and Fr(q, θ0) = 0 we can write[
I 0
Γ0 0

]
=
[
I 0

Γ0 0

]
+
[
Fe(q, θ1) Fr(q, θ1)

]
. (4.80)

When we use the expressions for Fe and Fr, then pre-multiply both sides of (4.80)
with (I − G(q, θ1))−1Ȟ(q, θ1), and finally add

[
0 (I −G(q, θ1))−1R(q, θ1)

]
to both

sides, then

(I −G(θ0))−1 [H(θ0) R(θ0)
]

= ·

· (I −G(θ1))−1
[

Ha(θ1) Ra(θ1)
Hb(θ1)− Γ(θ1) + Γ0 Rb(θ1)

]
︸ ︷︷ ︸

:=T ′(θ1)

(4.81)

is obtained, where Ra and Rb are defined by R(q, θ) =
[
Ra(q,θ)
Rb(q,θ)

]
. Note that Γ(θ1) is

the feedthrough of Hb(θ1), such that the feedthrough of Hb is being ’replaced’ with
the true values Γ0, and Γ(θ1) does not appear in the equation.
In (4.12) we make no claims on the feedtrough of Hb, we have to show that

T ′(θ1) = T ′(θ0)⇒
{G(q, θ?), Ha(q, θ?), Hb(q, θ?)− Γ(θ?), R(q, θ?)}

= {G0(q), H0
a(q), H0

b (q)− Γ0, R0(q).}
(4.82)

If we consider Θ′ ∈ Θ defined by all θ for which Γ(θ) = Γ0, then using the model set

M′ := {M(θ), θ ∈ Θ′} ⊆ M,

we have that T ′(θ) = T (θ) for all θ ∈ Θ′. This means that we can apply the network
identifiability reasoning to this situation. Since M′ is a subset of M, M′ is globally
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network identifiable at M(θ0) ifM is is globally network identifiable at M(θ0). Using
condition 3 we then have that

T ′(q, θ1) = T ′(q, θ0)
⇓
G(q, θ1) = G0(q)
Ha(q, θ1) = H0

a(q)
Hb(q, θ1)− Γ(θ1) = H0

b (q)− Γ0

R(q, θ1) = R0(q).


(4.83)

�

4.7.3 Proof of Proposition 4.7

The convergence proof in Ljung (1999) needs to be adapted slightly in order to prove
(4.22). Under the conditions in part (1) the cost function converges

sup
θ∈Θ

∣∣∣∣∣ 1
N

N∑
t=1

εa(t, θ)Qaεa(t, θ)− Ēεa(t, θ)Qaεa(t, θ)

∣∣∣∣∣→ 0 (4.84)

w.p.1 as N →∞. Similarly the constraint converges

sup
θ∈Θ

∣∣∣∣∣ 1
N

N∑
t=1

ZT (t, θ)Z(t, θ)− ĒZT (t, θ)Z(t, θ)

∣∣∣∣∣→ 0 (4.85)

w.p. 1 as N → ∞. Since the cost and constraint in (4.20) both converge (4.22) must
hold.

Using the same reasoning as the proof of Proposition 4.6, θ0 is a minimum of the
cost function, and θ0 satisfies the constraint. Now it is shown that M(q, θ0) is the
only model that is a minimum of the cost function that satisfies the constraint, i.e.
M(q, θ0) = M(θ) ∀ θ ∈ θ∗.

It can be shown ((Ljung, 1999) proof of Theorem 8.3) that

0 = Ēεa(t, θ0)TQaεa(t, θ0)− Ēεa(t, θ1)TQaεa(t, θ1) (4.86)

if and only if

0 = Ē(εa(t, θ0)− εa(t, θ1))TQa(εa(t, θ0)− εa(t, θ1)). (4.87)

For the constraint we can use the fact that

Z(t, θ0) = Γ(θ0)εa(t, θ0)− εb(t, θ0) = 0, ∀t (4.88)

up to a possible transient term due to initial conditions that can be neglected in our
asymptotic analysis. We can then rewrite the asymptotic constraint

0 = ĒZT (θ1)Z(θ1) (4.89)
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into the same form as (4.87)

0 = Ē(Z(θ0)− Z(θ1))T (Z(θ0)− Z(θ1)). (4.90)

Due to condition (b) and Qa > 0 the predictor filters are identified from the above
two equations, using the definitions of Fe and Fr from the proof of Proposition 4.6[

I 0
Γ(θ0)−I

] (
Fe(θ0)+

[
I

Γ0

])
=
[

I 0
Γ(θ1)−I

] (
Fe(θ1)+

[
I

Γ0

])
, (4.91)[

I 0
Γ(θ0) −I

]
Fr(θ0) =

[
I 0

Γ(θ1) −I
]
Fr(θ1). (4.92)

In these equations Fe(θ0) = 0 and Fr(θ0) = 0, such that the combination is

[ I 0
0 0 ] =

[
I 0

Γ(θ1) −I
]

[Fe(θ1) +
[
I

Γ0

]
Fr(θ1)]. (4.93)

When this equation is pre-multiplied with (I − G(θ1))−1Ȟ(q, θ1)
[

I 0
Γ(θ1) −I

]
on both

sides, and then [ 0 (I−G(θ1))−1R(q,θ1) ] is added on both sides, it is obtained that

T (q, θ0) = T (q, θ1), (4.94)

By condition (c) the model set is globally network identifiable at θ0 such that

T (θ0) = T (θ1)⇒M(θ0) = M(θ1). (4.95)

�

4.7.4 Proof of Theorem 4.8

First the proof of part 1 is given. The pdf of the innovation ě is given by 2 equations:
there is the normal distribution of e = [I 0]ě

f(e) = (2π)−
p
2

|Λ| 12
exp

(
−1

2e
TΛ−1e

)
, (4.96)

and [
Γ0 −I

]
ě = 0 w.p. 1. (4.97)

The likelihood for N datapoints is then also given by 2 equations (Srivastava and von
Rosen, 2002; Khatri, 1968)

La(θ) = (2π)−
pN
2

|Λ(θ)|N2
exp

(
−1

2ε
T
a (t, θ)Λ−1(θ)εa(t, θ)

)
, (4.98)

and [
Γ(θ) −I

]
ε(t, θ) = 0 w.p. 1 ∀t. (4.99)

Then taking the natural logarithm results in

logLa(θ) =c− N

2 log det Λ(θ)

− 1
2

N∑
t=1

εTa (t, θ)Λ−1(θ)εa(t, θ).
(4.100)
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logLa(θ) is the criterion to be maximized combined with (4.99)

θML
N = arg max

θ
logLa(θ)

subject to 0 = εb(t, θ)− Γ(θ)εa(t, θ) ∀t.
(4.101)

Taking the sum of squares for each time t gives the equivalent constraint

subject to 1
N

N∑
t=1

ZT (t, θ)Z(t, θ) = 0, (4.102)

with Z defined by (4.19).

Now part 2 is proven in a similar way as the maximum likelihood proof in (Åström,
1980) for full rank noise. Under the condition that Λ(θ) and ε(θ) do not share param-
eters, the cost function logL(θ) is maximized at

Λ(θ) = 1
N

N∑
t=1

εa(t, θ)εTa (t, θ) (4.103)

In this maximum the constraint of (4.24) is satisfied. Then (4.103) is substituted into
the objective of (4.24), and added as additional constraint, to obtain (4.26). �

4.7.5 Proof of Lemma 4.10

The constraint is satisfied when Π(θ − θ∗) = 0 holds. When substituting (4.49) then
we have

Π(Sρ+ C − θ∗) = 0, (4.104)

where we have ΠSρ = 0, such that the constraint is independent of ρ. Substituting
C = −Π†Πθ∗ then satisfies the equation. �

4.7.6 Proof of Proposition 4.11

Proof is by substituting θ = Sρ + C into the CLS (4.20). Lemma 4.10 shows that
this parameter mapping satisfies the constraint for all ρ, and thus can be removed.
Equivalence of the cost function is trivial. �

4.7.7 Proof of Proposition 4.12

With Pθ = E(θ? − θ̂N )(θ? − θ̂N )T and using the mapping (4.49) we get

Pθ = ES(ρ? − ρ̂N )(ρ? − ρ̂N )TST , (4.105)

such that Pθ = SPρS
T . �





5Joint-direct identification
of a network

with algebraic loops

5.1 Introduction

From Chapter 3 we know that a network model can have algebraic loops and still be
network identifiable. Since unique network models can be obtained in the presence of
algebraic loops, the question that is addressed in this chapter on the basis of (Weerts
et al., 2016b) is the following.

Under which conditions can consistent estimates be obtained
of a dynamic network that contains algebraic loops?

Treating the situation of algebraic loops is not a typical objective in identification.
Some identification methods exist that can handle the presence of algebraic loops
in the classical closed-loop system, namely the IV method Söderström and Stoica
(1989); Gilson and Van den Hof (2005), and the Two-Stage method Van den Hof and
Schrama (1993). For dynamic network versions of these methods see Van den Hof
et al. (2013); Dankers (2014). In both these methods the node signals are ’projected’
onto an external variable, in order to de-correlate the node signals from the noise.
This approach leads to consistent estimates under the presence of algebraic loops,
even when process noises are correlated. The price of projection methods is that
any excitation due to process noise is de-correlated such that it no longer provides
information, and therefore the estimator does not have minimum variance properties.

105
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External excitation must be available for these methods to work, and this excitation
must be of ’sufficient’ power and order of persistence of excitation.

In order to make an improvement in terms of variance compared to the projection
methods, information provided by by process noise can be used in an estimator. The
joint-direct method introduced in the previous chapter utilizes the information pro-
vided by process noise to achieve Maximum Likelihood estimates of minimum variance,
and therefore is an interesting candidate for use in the algebraic loop situation. In the
previous chapter we have specified the joint-direct method for networks with strictly
proper modules, but in this chapter we formulate the joint-direct method for networks
that contain algebraic loops.

Extending the joint-direct method is done by the following approach. The predictor
used in Chapter 4 uses strictly past values of node signals to predict the current node
values. For networks where feedthrough is present in modules the predictor definition
deserves a critical look. We evaluate the predictor for the feedthrough case with and
without algebraic loops. In order to avoid the algebraic loop problems, the identifi-
cation setup will make explicit use of external excitations. The external excitation is
only necessary for estimation of the direct feedthrough terms of the modules. Exci-
tation provided by process noise is modeled and used to estimate module dynamics,
and so helps to minimize variance.

As an illustrative base-case for developing our approach to the general problem we
utilize the symmetric closed-loop system defined in Figure 5.1. This system is a net-
work consisting of the variables w(t) =

[
w1(t)
w2(t)

]
, r(t) =

[
r1(t)
r2(t)

]
, e(t) =

[
e1(t)
e2(t)

]
, and the

filters

G(q) =
[

0 G12(q)
G21(q) 0

]
, H(q) =

[
H1(q) 0

0 H2(q)

]
, R(q) =

[
1 0
0 1

]
.

This closed-loop system is similar to the classical loop used in the Joint-IO method
Caines and Chan (1975), however now additional external excitations r1, r2 are present.
Although the reasoning is built upon the 2-node network presented above, the theory
is developed for general dynamic networks that satisfy the following assumptions.

Assumption 5.1. The data generating system S is represented by the network
model M0 as defined in Chapter 2 where

• the modules in G0(q) may contain algebraic loops;

• all nodes w are measured;

• some external excitations are present;

• the noise spectrum Φv(ω) may be non-diagonal and is of rank L.

This chapter proceeds by evaluating the predictor in the presence of algebraic loops
in Section 5.2. Then the identification setup and conditions for consistent estimates
are presented in Section 5.3. Obtained results are then discussed in Section 5.4 after
which simulations are presented to validate and illustrate the results in Section 5.5.
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w2

w1

G12

G21

v1

r1

r2

v2

Figure 5.1: Symmetrical closed-loop system S1.

5.2 Predictor and innovation

5.2.1 Traditional predictor

When there is a direct feedthrough term present in G21(q) the traditional one-step-
ahead predictor for w2 as defined in (2.42) is typically chosen as

w̆2(t|t− 1) := E{w2(t) | wt−1
2 , wt1, r

t
2}, (5.1)

where wt1 := {w1(0), w1(1), · · · , w1(t)}, wt−1
2 := {w2(0), w2(1), · · · , w2(t − 1)} and

rt2 := {r2(0), r2(1), · · · , r2(t)}. This predictor will explain the current value of node
w2 based on the past of w2, and the past and present of node w1 and external excitation
r2.

In an open-loop situation (G12 = 0) or in absence of algebraic loops (G∞12 = 0), the
w1(t) is uncorrelated with e2(t), and the predictor, in terms of transfer functions from
the data generating system, is given by

w̆2(t|t− 1) =
(
1−H−1

2 (q)
)
w2(t) +H−1

2 (q)G21(q)w1(t), (5.2)

such that the innovation is

e2(t) = w2(t)− w̆2(t|t− 1). (5.3)

Note that through the direct feedthrough term G∞21, the predictor (5.2) will be de-
pendent/conditioned on w1(t), and not just on the strict past w1(t− 1)−. If w1(t) is
correlated with e2(t) through a feedthrough term G∞12, then the prediction of w2(t)
is conditioned onto e2(t). In that case the innovation is not e2(t), and the predictor
(5.1) is not given by (5.2) anymore. With predictor w̆2(t|t − 1) the noise e2(t) can
be partially predicted from the data, but how much can be predicted depends on the
individual variances of e1 and e2. When a loop does not contain delay, then the pre-
dictor expression belonging of w̆2(t|t−1) explicitly contains the variances of e1 and e2,
and is less attractive to use as (5.2). We can conclude that the traditional predictor
w̆2(t|t−1) works fine in open-loop (G12 = 0) and closed-loop with delay (G∞12G

∞
21 = 0),

but becomes difficult to use when an algebraic loop is present.
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5.2.2 Traditional network predictor when there are no alge-
braic loops

The analysis in the section above does not imply that the predictor w̆2(t|t − 1) has
no use. In fact the traditional predictor is defined in (2.42) for the MISO estimation
problem in dynamic network for the situation that there are no algebraic loops. The
MISO estimation setup presented in Chapter 2 may even be extended to a MIMO
estimation setup. For a dynamic network, a vector of predictors based on the predictor
defined in (2.42) is

w̆(t|t− 1) :=

w̆1(t|t− 1)
...

w̆L(t|t− 1)

 , (5.4)

where
w̆j(t|t− 1) = E{wj(t) | wt−1

k ,∀k ∈ Kj , wt`,∀` ∈ Lj , rt}, (5.5)
where Kj = {k | G∞jk = 0} and Lj = {` | G∞j` 6= 0}. The expression in terms of
network dynamics that belongs to w̆(t|t − 1) is obtained in the following proposition
for the situation that there are no algebraic loops.

Proposition 5.2. For a dynamic network considered in (2.4) that has no alge-
braic loops and where Λ is diagonal, the vector of one-step-ahead predictors of
the node signals w(t) is given by

w̆(t|t− 1) = W 0
w(q)w(t) +W 0

r (q)r(t), (5.6)

with the predictor filters

W 0
w(q) = I − (H0(q))−1(I −G0(q)), (5.7)

W 0
r (q) = (H0(q))−1R0(q). (5.8)

Proof. Provided in Appendix 5.7.1. �

The obtained predictor expression (5.6) is similar to the predictor expression (4.2) for
the situation of full rank noise, however Ww is no longer strictly proper due to the
G∞.
In (2.42) it was established that w̆j(t|t− 1) is uncorrelated to ej(t) when there are no
algebraic loops. It is possible that G∞12 6= 0, such that w̆1(t|t− 1) becomes correlated
to e2(t). In other words, for the predictor w̆(t|t− 1) and innovation e(t) we have the
correlation

E w̆(t|t− 1)eT (t) (5.9)
with 0 on the diagonal, and possibly non-zero values on off-diagonal elements. The
vector of predictors w̆(t|t − 1) and vector of innovations e(t) are not orthogonal, and
so they are not a predictor and innovation pair. This is the reason that w̆(t|t − 1) is
named a ’vector of predictors’, instead of a predictor.
It was shown in Section 2.3 that consistent estimates can be obtained in a multi-input-
single-output setting. Since w̆(t|t−1) and e(t) are not a predictor and innovation pair,
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the standard prediction error framework is not applicable when the vector of predictors
w̆(t|t − 1) is used in a MIMO estimation setting. In the remainder of the chapter a
different definition of the predictor is utilized, which does match the prediction error
framework. The focus will be on networks that may have algebraic loops, and this has
the situation of no algebraic loops as a special case.

5.2.3 Network predictor

Instead of a predictor which uses instantaneous values of w(t), the predictor in Defi-
nition 4.3, namely ŵ(t|t − 1) = E{w(t) | wt−1, rt}, is used to replace the traditional
predictor. The predictor is only conditioned with respect to the delayed values wt−1.
From the variables that are known at time t, namely wt, rt, only w(t) may be corre-
lated with e(t), since e is a white noise process such that w(t− 1) and samples before
it can not be correlated with e(t). By not conditioning ŵ(t|t−1) onto w(t) we prevent
the possibility that ŵ(t|t− 1) is correlated with e(t).
It seems strange for a network which contains modules with feedthrough terms to not
condition the predictor onto w(t) since it seems like we discard useful information that
is present in w(t). However the effect is that the feedthrough terms are modeled in
a different way in the predictor expression. The feedthrough terms appear as part of
the noise model.

Proposition 5.3. For a dynamic network considered in (2.4) that satisfied As-
sumption 5.1, the network predictor ŵ(t|t − 1) = E{w(t) | wt−1, rt} is given by
(omitting arguments q, t)

ŵ(t|t− 1) =
(
I − (I −G∞)−1H−1(I −G)

)
w + (I −G∞)−1H−1Rr. (5.10)

Proof. Provided in Appendix 5.7.2. �

The predictor expression in (5.10) has some interesting properties. For strictly proper
modules G∞ = 0, and (5.10) becomes equal to the predictor expression obtained in
the previous chapter (4.2) for full rank noise. Through the factor (I − G∞)−1, the
filter (I − G∞)−1H−1(I − G) becomes monic, which implies that the predictor filter
of w is strictly proper. This conforms to the conditioning on w(t− 1)− that is used in
the predictor definition (4.3).
The innovation related to the network predictor ŵ is

ê(t) := w(t)− ŵ(t|t− 1), (5.11)

which is equal to a scaled version of the driving noise process

ê(t) = (I −G∞)−1e(t). (5.12)

Due to the scaling of e(t) the innovation ê(t) can be correlated over the channels even
when e(t) is not.
In the prediction error framework we parameterize a predictor with a model set in
order to identify the model, and this leads to consistency under some conditions. Here
we can parameterize the predictor (5.10) with a network model, and then evaluate the
conditions for consistency. This approach is taken in the next section.
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5.3 Joint-direct identification setup

The joint-direct identification setup will be defined for the case of algebraic loops. First
the network predictor ŵ will be parameterized, and then an identification criterion is
defined. The model structure M is as defined in Chapter 2, and the models in M
satisfy Assumption 5.1. With the use of the parameterized model set the parameterized
predictor is defined as

ŵ(t|t− 1; θ) := Ww(q, θ)w(t) +Wr(q, θ)r(t) (5.13)

with

Ww(q, θ) = I−(I−G∞(θ))−1H−1(q, θ)(I−G(q, θ))
Wr(q, θ) = (I −G∞(θ))−1H−1(q, θ)R(q, θ). (5.14)

The parameters of G∞ appear as the feedthrough terms of G. From the Ww filter the
feedthrough terms of G can not be uniquely determined, this is because Ww is strictly
proper, i.e.

W∞w = I − (I −G∞)−1I(I −G∞) = 0. (5.15)
But since the predictor filters Ww and Wr are uniquely related to the open-loop
response Twr and Twe, we can uniquely recover a network model from the predictor
filters when the network model set is network identifiable. This implies that filter Wr

must be used in order to obtain G∞.
The prediction error is defined as ε̂(t, θ) := w(t)− ŵ(t|t− 1; θ) such that we obtain

ε̂(t, θ) = (I −G∞(θ))−1ε(t, θ), (5.16)

with
ε(t, θ) = H−1(q, θ)

(
(I −G(q, θ))w(t)−R(q, θ)r(t)

)
. (5.17)

In Chapter 4 ε was used as the prediction error. With this new predictor we use ε̂,
being a scaled version of ε.
As identification criterion a weighted least squares criterion will be applied:

θ̂N = arg min
θ

VN (θ), (5.18a)

VN (θ) = 1
N

N∑
t=1

ε̂T (t, θ)Qε̂(t, θ), (5.18b)

where the matrix Q > 0 is chosen by the user. If the ’true system’ is in the model
set and indicated by θ0, then for θ = θ0 the prediction error is a white noise. More
precisely, for θ = θ0 the prediction error is the innovation

ε̂(t, θ0) = ê(t) = (I −G∞)−1e(t). (5.19)

In order to reduce the variance of the estimator an appropriate choice for Q is the
covariance matrix of ê(t) being given by (I − G∞)−1Λ(I − G∞)−T . This will be
further commented upon in Section 5.4.
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In classical direct and joint-io methods the presence of external signals r is not strictly
necessary for arriving at consistency. For dynamic network models that have algebraic
loops it has been shown in Chapter 3 that some external excitations r are necessary to
have a network identifiable model set. In our new setup the presence of some signals
r is necessary for network identifiability, and then also for informativity in view of the
presence of direct feedthrough terms in the models. The final step in this section is to
prove consistency of the estimator θ̂N .

Theorem 5.4. Consider data generated by a system that satisfies Assumption
5.1, and consider a model set M. Let θ̂N be defined by (5.18). M(θ̂N ) is a
consistent estimate of M0 under the following conditions:

1. The network system is in the model set, i.e. ∃ θ0 ∈ Θ such that G(q, θ0) =
G(q), H(q, θ0) = H(q), and R(q, θ0) = R(q);

2. The data is informative with respect to M;

3. The model set M is globally network identifiable.

Proof. Provided in Appendix 5.7.3. �

The conditions of the above theorem are very similar to the conditions of Proposition
4.6. Similarities are due to the fact that the predictor expression (4.2) for full rank
networks is a special case of the predictor expression for algebraic loops (5.10). This
implies that the joint-direct identification method for full rank networks that was
presented in Chapter 4 is a special case of the joint-direct identification method that
has been presented in the current chapter. The main difference between the conditions
for consistency are the conditions under which the model set is network identifiable.
When there are algebraic loops, then some external variables can make the feedthrough
terms identifiable.

5.4 Discussion

The identification setup that we have chosen is basically a direct identification method
that apparently can estimate a dynamic network / closed-loop system while algebraic
loops are present. The basic step that we have made in this respect is to exclude direct
feedthrough terms in the predictor models from the node variables w, but we include
the direct feedthrough terms in the predictor models from the external signals r. As a
result, when algebraic loops are present, the presence of an external excitation signal is
necessary. However different from the alternative projection methods (IV, two-stage),
we keep on using the full signals w as predictor inputs, rather than projecting them
onto external signals first. This has two consequences:

• Firstly, the requirements on the persistence of excitation properties of the ex-
ternal signals will be limited, as the r signals only serve to identify the direct
feedthrough terms;
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• Secondly, the variance of the estimated models will be driven by the signal power
of the w signals, rather than by their projections onto r, thus substantially
improving the variance of the estimate.

Since external excitation is used for identification of the direct terms, one could wonder
whether it would be necessary to have external excitation signals on all node variables
when only a few loops are algebraic. This question can be answered by the conditions
under which the model set is network identifiable. For an in-depth reasoning on
network identifiability see Chapter 3. Here we make an identifiability analysis for
a typical closed-loop system with just one reference, i.e. the system in Figure 5.1
but without r2. The main question is whether G∞12 and G∞21 can be determined from
T∞wr. To this end the conditions of Proposition 3.9 can be checked. Alternatively we
can manually check for identifiability of the feedthrough terms by applying the same
reasoning as in Example 3.4, then we attempt to determine the parameters from[

1 −G∞12(θ)
−G∞21(θ) 1

][ 1
1−G∞12G

∞
21

G∞21
1−G∞12G

∞
21

]
︸ ︷︷ ︸

T∞wr

=
[
1
0

]
. (5.20)

It is directly clear that indeed the feedthrough terms can be determined uniquely. This
implies that for the typical closed-loop system just one external excitation is necessary
to deal with an algebraic loop.
One could wonder whether it would be necessary to apply the presented network
predictor to all node variables. Without addressing this problem in detail, it seems
feasible to use the traditional predictor for predicting those node variables that are
a-priori known to have no algebraic loops, while applying the new network predictor
for the variables that are part of an algebraic loop. For this approach the nodes that
are part of an algebraic loops need to be predicted jointly, while the other nodes may
be predicted separately. When in the network node wi is not part of an algebraic loop,
and noise vi is independent of other noises, then in the parameterized predictor (5.13)
the parameters on the row corresponding to wi are independent of parameters on the
other rows. When a row has independent parameters, then the estimation problem
of that particular row may be separated from estimation of the other parameters.
This means that in order to estimate the network we only need to jointly predict and
estimate the nodes where parameters are shared.
Concerning the asymptotic variance of the estimate, it can be stated that minimum
variance is achieved when the covariance of the innovations process ê(t) is used as
weighting Q in the identification criterion. Now suppose the covariance of innovation
ê(t) is parameterized in the model set M as Λ̂(θ). According to Ljung (1999) the
resulting asymptotic (minimum) variance is equal to the asymptotic variance of the
maximum likelihood estimator under Gaussian assumptions, resulting in the criterion

VN (θ) = 1
N

det
N∑
t=1

ε̂(t, θ)ε̂T (t, θ). (5.21)

This criterion has the property that no weight has to be chosen in order to obtain
minimum variance estimates.
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5.5 Simulation

The direct identification method with network predictor ŵ will be validated by nu-
merical simulations. A comparison to the extended instrumental variable method
Gilson and Van den Hof (2005) is made since it is one of the methods that can deal
with algebraic loops. S1 is used to generate data, and has the following dynamical
components:

G12(q) = 0.3 + 0.7q−1 + 0.3q−2,

G21(q) = 0.15 + 0.9q−1 − 0.5q−2,

H1(q) = 1,
H2(q) = 1,
R(q) = I.

Low order FIR filters are used to keep numerical computation relatively easy.
In total two sets of experiments are performed. For each set of experiments 100
Monte-Carlo random simulations are performed. The external excitation is known
but generated as normally distributed white noise ri = N (0, σ2

r), and randomized in
each experiment. The first set of experiments is performed with the power of the noise
(ei = N (0, σ2

e)), and the power of the external excitation equal, σ2
e = σ2

r = 1. In
the second set of experiments the external excitation has less power to illustrate the
benefit of the additional excitation coming from the noise, σ2

e = 1, σ2
r = 0.01. For all

experiments N = 1000 data samples are drawn, and initial conditions are 0.
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Figure 5.2: Difference between estimated and true parameters over 100 experiments
with σ2

r = σ2
e for the two estimation methods, Joint-direct in the left plot, IV in the

right plot.

For the identification methods the following setup is used. The prediction error ε̂(t, θ)
is considered with the criterion defined in (5.18), and the model set is chosen to contain
the network system. For weighting matrix Q we choose the optimal weighting

Λ = Eê0(t)êT0 (t).
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This optimal weight is unknown in practice, but in such a situation the determi-
nant minimization criterion (5.21) can be used, leading to the same asymptotic vari-
ance Ljung (1999). The cost function (5.18) is minimized in Matlab by the function
fmincon() without imposing constraints.

The estimated models are evaluated by plotting the difference between estimated pa-
rameters and the true parameters as a boxplot. For the situation that power of noise
and excitation is equal the results are plotted in Figure 5.2. It is clear that both
methods deliver estimates around the true parameter values. The main difference is
that the IV estimates appear to have a higher variance.
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Figure 5.3: Difference between estimated and true parameters over 100 experiments
with σ2

r = 0.01σ2
e for the two estimation methods, Joint-direct in the left plot, IV in

the right plot.

It has been mentioned that the joint-direct method does not require large power of r
since excitation by process noise is used. This situation is plotted in Figure 5.3. Here
the estimates are also around the true parameter values and both methods appear
unbiased. However now the difference in variance between the two methods is much
larger, the joint-direct method significantly outperforms the IV. This difference is
caused by the fact that the IV depends on the external excitation, but that signal has
too low power.

5.6 Conclusions

The joint-direct method can obtain consistent estimates of dynamic networks that con-
tain algebraic loops. Differences in conditions compared to the strictly proper modules
situation is due to requirements on external excitations. Variance of estimated net-
works and requirements on external excitations are reduced compared to instrumental
variable methods. The drawback of the method is that a non-convex optimization
problem is to be solved, while with IV it is possible to use a convex optimization
problem.
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5.7 Appendix

5.7.1 Proof of Proposition 5.2

The dynamic network (2.4) can be written as

w =
[
I −H−1(I −G)

]
w +H−1Rr + e. (5.22)

When applying the definition of (5.4) to w there are 3 terms to evaluate, which we do
for each wj

w̆j(t|t− 1) =

E
{
wj(t)− [H−1]j?(I −G)w(t)

∣∣∣ w(t− 1)−, wk(t) if G∞jk 6= 0, r(t)−
}
·

·+E
{

[H−1]j?Rr
∣∣∣ w(t− 1)−, wk(t) if G∞jk 6= 0, r(t)−

}
·

·+E
{
ej

∣∣∣ w(t− 1)−, wk(t) if G∞jk 6= 0, r(t)−
}
.

(5.23)

In the first term, the direct terms that appear are exactly the ones where G∞jk 6= 0,
such that the conditional expectation results in wj(t) − [H−1]j?(I − G)w(t). In the
second term, the r(t) and its past are fully present in the conditioning, such that the
expectation results in [H−1]j?Rr. For the third term it must be evaluated whether
ej(t) is a part of the wk(t) corresponding to G∞jk 6= 0. Whenever G∞jk 6= 0, then the
condition on not having algebraic loops implies that every path from wj to wk has a
delay, such that wk(t) can not be correlated with ej(t). This implies that the third
term is 0. Then stacking every predictor together the predictor expression (5.6) is
obtained. �

5.7.2 Proof of Proposition 5.3

In the proof, arguments q and t will be omitted where possible. Starting with (2.4)
add a multiplication with identity after H, and subtract w from both sides of the
equation:

0 = −(I −G)w +Rr +H(I −G∞)(I −G∞)−1e. (5.24)

Pre-multiplying the equation with (I −G∞)−1H−1 and adding w to both sides of the
equation delivers

w =
{
I − (I −G∞)−1H−1(I −G)

}
w+

+ (I −G∞)−1H−1Rr + (I −G∞)−1e.
(5.25)

Since the first filter on the right hand side is strictly proper, the second filter is proper,
and e is white noise, it follows directly, by applying the definition of the network
predictor, that the predictor is given by the first two terms on the right hand side. �
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5.7.3 Proof of Theorem 5.4

The proof is divided into 3 parts. The first part is the convergence of VN (θ) to
V̄ (θ) := Ē ε̂T (t, θ)Λ−1ε̂(t, θ) for N →∞. This convergence can be shown by applying
the convergence proof found in Ljung (1999).
As second part of the proof it is shown that the true system minimizes the quadratic
function V̄ (θ). Rewrite the prediction error in terms of its driving variables with the
use of w = (I −G)−1(He+Rr) (omitting arguments q, t)

ε̂(θ) =
(
I −G∞(θ)

)−1
H−1(θ)

(
I −G(θ)

)
(I −G)−1H−1e+ ·

· +
(
I −G∞(θ)

)−1
H−1(θ)

{(
I −G(θ)

)
(I −G)−1R(q) −R(q, θ)

}
r.

(5.26)

The above equation contains a mix of parameterized and non-parameterized transfer
functions. In the above equation the e terms can be split into a delayed and non-
delayed part {(

I −G∞(θ)
)−1

H−1(θ)
(
I −G(θ)

)
(I −G)−1H−1+

−
(
I −G∞

)−1
}
e(t) +

(
I −G∞

)−1
e(t),

(5.27)

where the first e term is delayed, and the second non-delayed. The two terms are
uncorrelated since e(t) is a white noise. In the quadratic function V̄ (θ) any cross-
term between the non-delayed e term and r or the delayed e term is zero, due to
uncorrelatedness. The choice of parameter has no effect on the non-delayed and non-
parameterized e term, and it has no cross-terms in the expectation of the quadratic
expression. The choice θ = θ0 results in the first term in (5.27) and the second (r-
dependent) term in (5.26) to be equal to 0. This minimizes V̄ (θ) and the prediction
error is then equal to the innovation ε(t, θ0) = ê(t). In the last step we consider any
model θ1 which realizes the same criterion V̄ (θ) as θ0,

V̄ (θ0) = V̄ (θ1). (5.28)

It can be shown that

V̄ (θ1)− V̄ (θ0) = Ē (ε̂1 − ε̂0)TΛ−1(ε̂1 − ε̂0)+
+2Ē(ε̂1 − ε̂0)TΛ−1ε̂0

where ε̂i := ε̂(t, θi).
Analysing the second term we can use the fact that ε̂0 = e0(t) being a white noise
process, while ε̂1− ε̂0 can be shown to be dependent on data up to t−1 only. Therefore
this latter term will be uncorrelated with e(t), and the second term in the above
equation will be 0, so that

V̄ (θ1)− V̄ (θ0) = Ē (ε̂1 − ε̂0)TΛ−1(ε̂1 − ε̂0). (5.29)

With the condition on informativity of data it now follows that V̄ (θ0) − V̄ (θ1) = 0
implies that the corresponding predictor filters must be equal. Then with the use of
network identifiability we know that this must also imply that the models are equal

M(θ0) = M(θ1), (5.30)

which concludes the proof. �



6Single module identification
- input selection1

6.1 Introduction

Estimation of a single module is relevant for local identification in a dynamic network,
and a relevant question for this topic is the following.

Which selection of node signals allows for consistent estimation
of a module of interest?

There are some different approaches in the literature which treat this problem of
selecting which inputs to use for estimation of a single module.

• The approach in (Dankers et al., 2016) is based on the idea that unmeasured
nodes can be removed from the network, resulting in a new transformed net-
work. Depending on which nodes are measured, the module of interest can be
left invariant in the transformed network. When the module of interest is left in-
variant, then it can be estimated consistently using just those measured nodes in
a direct identification method under certain conditions. In particular the process
noise of predictor inputs and outputs must be uncorrelated. An extension of the
conditions is presented in (Dankers et al., 2017) for some situations of correlated
noise. A two-stage method has been proposed in (Dankers et al., 2016) as an
alternative to the direct estimation, and this leads to a different set of conditions
for consistency. In particular there are no more restrictions on correlatedness of
noises, but the requirements on external excitation are increased.

1This chapter is based on collaboration with Jonas Linder. A paper based on this joint work is in
preparation.
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• The approach in (Linder and Enqvist, 2017a,b; Linder, 2017) is also based on
the idea that unmeasured nodes can be removed from the network, resulting in
a new transformed network. In this approach, even when the module of interest
is modified in the transformed network, it may be possible to recover the module
of interest from modules in the transformed network. An indirect identification
method is used to identify the module of interest.

• The approach in (Bazanella et al., 2017; Hendrickx et al., 2018) is based on an
indirect identification approach for the situation that all nodes are excited by
external variables. An analysis of the identifiability of the module of interest is
made in particular for the information present in the measured nodes.

The approaches in (Dankers et al., 2016) and (Linder and Enqvist, 2017a) are both
based on the removal of unmeasured nodes, and the objective in this chapter is to
generalize these approaches. Like in previous chapters a-priori assumptions on diag-
onality of H or R will be avoided. There is no specific identification method chosen,
instead identifiability of the module of interest is analyzed such that an identification
method of choice can be used. One possible identification method is the joint-direct
method, which can lead to significantly smaller variance than the indirect identification
approaches in the literature.
It is possible that there are multiple sets of measured nodes that each lead to consistent
estimates of a module of interest. However each of these sets of nodes can result in
different variance for the estimated module of interest. The question which set of
nodes leads to the lowest variance is interesting, but not addressed in this chapter.
The approach in (Dankers et al., 2016) is based on the immersion algorithm, which
applies the lifiting technique. Lifting a path essentially works as follows. When there
are modules connecting w1 → w2 → w3, and w2 is unmeasured, then module G32 is re-
moved and replaced by a new module Ğ31 = G32G21, such that the path then no longer
passes through node w2. In the immersion algorithm, each path that passes through
an unmeasured node is lifted, and afterwards the unmeasured nodes are deleted from
the network. The core mechanism of lifting paths is the following: Due to the lifting of
paths, unmeasured nodes no longer influence the measured nodes, while the behavior
of measured nodes remains the same. Immersion is illustrated by an example.

Example 6.1. Consider the network in Figure 6.1 where the nodes are described by
the following equations

w1
w2
w3
w4

=
=
=
= G41w1

G12w2 + G13w3 + G14w4
G24w4

+ r1
+ r2
r3

+ r4

+ v1
+ v2
+ v3
+ v4

(6.1)

where node w4 is unmeasured and to be immersed. The paths from w1 through w4 and
the path from external signals v4 and r4 need to be lifted. When the lifting technique
is applied to path w1 → w4 → w2 then module G24 is replaced by a new module
Ğ21 = G24G41, and similar for the external signals. Lifting the path w1 → w4 → w1
leads to a self-loop around node w1, i.e. node w1 is an input to itself

w1 = G14G41w1 +G12w2 +G13w3 + r1 + v1, (6.2)
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w4

w3G13

G14 G41

w1

G24

w2

v1+r1

G12

v3+r3

v4+r4

v2+r2

Figure 6.1: A network where node w4 is non-measured.

which is not allowed in the network setup as defined in Chapter 2. The self-loop can be
resolved to obtain a network description that matches our definition, by moving both
w1 terms to the left-hand side, and normalizing by multiplication of the equation with
S = (1 − G14G41)−1. Finally the network depicted in Figure 6.2 is obtained, where
the module of interest has changed.

w3SG13w1

G24 G41w2

S(v1+r1)

SG12

v3+r3

v4+r4

v2+r2

G24

SG14

Figure 6.2: Network obtained after immersion of node w4 of the network depicted in
Figure 6.1.

The method of indirect inputs introduced in (Linder and Enqvist, 2017a) is an alter-
native technique to remove unmeasured nodes. With indirect inputs, the main idea is
that the out-neighbor of an unmeasured node contains information about that unmea-
sured node. Then the equation of the out-neighbor is manipulated in order to obtain
an explicit expression for the unmeasured node, which is then used to eliminate the
unmeasured node from the network by inserting the equation. An example where the
method is applied is shown next.

Example 6.2. Consider the network in Figure 6.1 with node w4 unmeasured, and
with w2 the indirect observation of the unmeasured node. There are two modules that
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have w4 as input that need to be removed. In order to remove G14 we make use of the
equation of the indirect observation, w2 = G24w4 + v2 + r2 can be transformed into

w4 = G−1
24 (w2 − v2 − r2). (6.3)

Now the new equation is used to eliminate w4 as an input to node w1 by inserting the
above equation into the equation of node w1

w1 = G12w2 +G13w3 +G14G
−1
24 (w2 − r2 − v2)︸ ︷︷ ︸

w4

+r1 + v1. (6.4)

The other module G24 can be removed by lifting the path w1 → w4 → w2. Then the
network that is obtained is depicted in Figure 6.3.

w3G13w1

w2

v1+r1

G12 + 

G14(G24)
-1 

v3+r3

v4+r4

v2+r2

G24

-G14(G24)
-1

G24G41

Figure 6.3: Modification of the network depicted in Figure 6.1, obtained after removal
of node w4 by the indirect inputs method.

The major difference that the indirect inputs method makes is that the inverse of
modules may appear in the obtained network. Now the implications for identification
of the module of interest in the transformed networks obtained by the two node re-
moval approaches are analyzed. The objective is to identify module G13 while w4 is
unmeasured. When immersion is used to remove w4, the network in Figure 6.2 can
be used to determine which inputs to use. Node w1 is the output, and nodes w2 and
w3 are inputs. Additionally the external variables r1 and r4 are in-neighbors of w1
and are included as predictor inputs. The noise v4 acts as a confounding variable. In
the alternative situation that indirect observation w2 is used to remove w4, then the
network in Figure 6.3 can be used to determine which inputs to use. Here, also node
w1 is the output, and nodes w2 and w3 are inputs. However now the external variables
r1 and r2 are in-neighbors of w1 and must be included as predictor inputs. Now the
noise v2 acts as the confounding variable. The implication for identification is that
different external variables are used as an input, and that noises must be modeled
in a different way. Additionally the identified module will be different depending on
which of the two approaches is chosen. Conditions under which the module of interest
remains invariant will be discussed later in the chapter.

In the presented examples the module G13 is invariant when w4 is removed with
one method, but not with the other method. Immersion and the indirect inputs
method each have a different set of conditions for which nodes can be removed such
that a module of interest remains invariant. The two approaches described above are
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generalized in this chapter such that a generalized set of conditions for invariance is
obtained.

The approach in this chapter is as follows. Transforming networks and removing nodes
is defined as the concept named abstraction. It will be shown that immersion and the
indirect inputs method are particular ways of abstracting a network, and a method
that generalizes the two special cases is presented. For single module identification
we may exploit situations where the module of interest remains invariant in the ab-
stracted network, and where the module is identifiable in the abstracted network. It is
investigated under which conditions a module remains invariant and identifiable when
the generalized method is used to abstract a network. Finally, given a network, it is
determined which nodes to measure such that a module remains invariant.

The chapter will continue as follows. In Section 6.2, it is shown that transformations
can be applied to a network representation to manipulate the modules and structure.
Then the concept of abstraction is formally defined and related to the network trans-
formations. In Section 6.3, particular network abstractions for identification purposes
are discussed, in particular immersion, indirect inputs and a generalization of those.
Section 6.4 contains a discussion on conditions under which a module of interest is
invariant for particular abstraction algorithms. Finally, in Section 6.5, a method to
select which nodes to measure such that a local module can be consistently identified
is developed.

6.2 Equivalent network representations

In the previous section, the immersion and indirect inputs methods have been in-
troduced that modify paths of a network representation before removing a node. A
particular feature for those two methods is that the behavior of the remaining nodes
remains invariant while the modules change. The core mechanism that is used is that
a particular network can be represented by different network models with different
topology. The basic idea of the two discussed methods consists of two parts, first
modules are transformed such that unmeasured nodes no longer are an input to mea-
sured nodes, and then the unmeasured nodes can be removed without changing the
behavior of measured nodes. In this section, we investigate which freedom is avail-
able for transforming the dynamics and removing the nodes. First the focus is on
transforming the network to alternative representations, and later on removing nodes.

6.2.1 Transformation of the global network

Fundamentally, we need to define when two networks are equivalent descriptions of
behavior, and what freedom is available to transform the network to an equivalent one.
In the network model definition in Chapter 2, it has been stated that the external
variables r and nodes w are known, and it is reasonable to state that equivalent
networks must describe the same relation between r and w. The dynamic influence
of r on w is described by the open-loop transfer function matrix Twr, and so the
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equivalence of two networks additionally requires equality of the two related open-
loop transfer function matrices from r to w. The open-loop response of the network
is described by (2.18), i.e. w(t) = Twrr(t) + v̄(t). When w, r and Twr are the same
for two networks, then also v̄ must be the same.

Definition 6.3. Let the network model M (i) correspond with open-loop transfer
T

(i)
wr and noise spectrum Φ(i)

v̄ for i = {1, 2}. Network models M (1) and M (2) are
said to be equivalent if

T (1)
wr = T (2)

wr and Φ(1)
v̄ = Φ(2)

v̄ . (6.5)

In the above definition the T (i
wr) and Φ(i)

v̄ are associated with w and r for i = {1, 2}.
There is an implicit assumption in the definition that w and r are the same for both
i = {1, 2}.

The full freedom that is available for transformation of a network model to an equiv-
alent network model is characterized by operations applied to the network equation.
For example, the network equation (2.4) can be pre-multiplied by a rational transfer
matrix P , i.e.

P (q)w(t) = P (q)
(
G(q)w(t) +R(q)r(t) + v(t)

)
. (6.6)

The above pre-multiplication can lead to a left-hand side unequal to w(t), in which
case the offending terms must be moved to the right-hand side, i.e.

w(t) = (I − P (q))w(t) + P (q)
(
G(q)w(t) +R(q)r(t) + v(t)

)
, (6.7)

which is denoted as

w(t) = G(2)(q)w(t) +R(2)(q)r(t) + v(2)(t) (6.8)

where
G(2) = I − P (I −G), R(2) = PR, v(2) = Pv. (6.9)

An interesting feature of the network transformations is that the response from ex-
ternal variables and process noises to internal variables remains the same. A pre-
multiplication P as defined above leaves the transfer Twr invariant, i.e.

Twr = (P (I −G))−1PR, (6.10)

where P−1P = I.

We are looking for transformations P that lead to an appropriate network represen-
tation, i.e. the transformed network corresponds to a network model as defined in
Chapter 2. These restrictions are as follows:

• if P is proper, then G(2) is proper,

• if P is stable, then G(2) is stable,
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• and P should be such that G(2) is hollow, i.e. the diagonal of (I − P (I −G)) is
0.

In terms of manipulating the network, properness of G(2) is not important. However,
in an identification context usually only proper modules will be considered. It is not
strictly necessary that P is proper to have a proper G(2), moreover even with non-
proper G(2) it might be possible to identify some modules. Despite these arguments,
properness of P is assumed to make the reasoning suitable for use with most conven-
tional identification methods. The lifting example from Example 6.1 is continued to
show that the corresponding transformation P creates a zero column in G(2).

Example 6.4 (Example 6.1 continued). In Example 6.1 the immersion of node w4
has been demonstrated. In the current example the corrsponding transformation matrix
P associated with the lifting procedure is evaluated. Figure 6.2 shows the immersed
network, and before w4 is removed the associated input matrix is

R(2) =


S 0 0 SG14
0 1 0 G24
0 0 1 0
0 0 0 1

 . (6.11)

From (6.9) we find that P = R(2) since R = I in the original network. It can be
validated using (6.9) that indeed the modules of the transformed network are

G(2) = I −


S 0 0 SG14
0 1 0 G24
0 0 1 0
0 0 0 1




1 −G12 −G13 −G14
0 1 0 −G24
0 0 1 0
−G41 0 0 1



=


0 SG12 SG13 0

G24G41 0 0 0
0 0 0 0
G41 0 0 0

 .
(6.12)

What can be observed is that the transformation is precisely such that in the top-left
element of G(2) we create 1− 1−G14G41

1−G14G41
= 0. Moreover the right-most column of G(2)

becomes 0 due to the multiplication with P . In this way an equivalent network is
created that does not use w4 as input to any module.

In (6.9) a transformation of the noise model is defined. When we describe the noise
model as v = H(1)e, then a pre-multiplication with P does not necessarily lead to
a monic filter PH(1). For that reason H(2) and Λ(2) are obtained through spectral
factorization of the transformed noise spectrum

P (e−jω)Φv(ω)PT (ejω) = H(2)(e−jω)Λ(2)(H(2)(ejω))T . (6.13)

It has already been discussed that there are some restrictions on P , but a large freedom
in the choice of transformation P is left.
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Proposition 6.5. A network model M (1) containing the modules G(1) can be
transformed into an equivalent network model M (2) containing the modules G(2)

using the transformation defined by

P = (I −G(2))(I −G(1))−1 (6.14)

for any G(1) and G(2) that satisfy the dynamic network definition in Chapter 2.

Proof. Provided in Appendix 6.7.1. �

The consequence of transforming G(1) to an arbitrary G(2) is that the corresponding
R(2) will have a complex structure

R(2) = (I −G(2))(I −G(1))−1R(1). (6.15)

The implication is that when G(1) is transformed, then R(2) will compensate the
changes to keep node behavior invariant. This also holds for the noise model, which
will contain additional correlations. Without any further restrictions on the choice
of R and H, the modules represented in G contain no information on the dynamic
network. It is the combination of G,R,H that determines the dynamic network.

6.2.2 Local module transformation

In this section a particular network transformation is introduced that later on is an
important tool to relate the indirect inputs method to immersion. Modules in G can
be transformed to arbitrary other transfer functions, but here we investigate what the
consequences are of changing a single module. To this end we will change the direction
of a module in the network, i.e. a module is ’flipped’. With ’flipping’ is meant that
a module G(1)

ji that connects wi to wj is replaced by a module G(2)
ij = (G(1)

ji )−1 that
connects wj to wi. This is illustrated by the following example.

Example 6.6. Consider the network in Figure 6.4a. If we transform the network to
an equivalent one with module G12 ’flipped’, then we can find a transformation that
leads to the desired new G(2). The original network is characterized by[

w1
w2

]
=
[
0 G12
0 0

] [
w1
w2

]
+
[
r1
r2

]
. (6.16)

In the transformed network after flipping we have G(2) =
[

0 0
G−1

12 0

]
, and so the cor-

responding transformation is determined using Proposition 6.5

P =
[

1 0
−G−1

12 1

] [
1 −G12
0 1

]−1
=
[

1 G12
−G−1

12 0

]
. (6.17)

For this transformation we have R(2) = PR(1) = P , as can be observed in the trans-
formed network in Figure 6.4b. The effect of r1 and r2 on the nodes must remain
invariant under transformation, so they are essentially re-routed around the flipped
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w2G12w1

r1

r2

(a)

w2(G12)
-1w1

r1

r2

-(G12)
-1

G12

(b)

Figure 6.4: Simple network on the left, and the network with flipped arrow on the
right.

module. Excitation r1 originally does not affect w2 directly, and with the flipped mod-
ule its contribution through G−1

12 must be compensated for by a direct link filtered with
−G−1

12 .

6.2.3 Abstraction

The next step is to extend network equivalence with the option to remove nodes from
the representation. To this end the concept abstraction is defined next.

Definition 6.7. Let network model M (1) be associated with nodes w(1) ∈ RL,
external variables r ∈ RK , open-loop transfer function T

(1)
wr ∈ RL×K , and noise

spectrum Φ(1)
v̄ ∈ RL×L. Let network model M (2) be associated with nodes w(2) ∈

RL2 , external variables r ∈ RK , open-loop transfer T
(1)
wr ∈ RL2×K , and noise

spectrum Φ(2)
v̄ ∈ RL2×L2 . Let C be the matrix that selects w(2) from w(1), so

define C with one 1 per row, zeros everywhere else, full row rank, and such that
w(2) = Cw(1). Network model M (2) is said to be an abstraction of M (1) if

T (2)
wr = CT (1)

wr , Φ(2)
v̄ = CΦ(1)

v̄ CT . (6.18)

The nodes that are in w(1), but not in w(2) are said to be abstracted from the
network.

When one network is an abstraction of the other network it means that some nodes
have been removed from the abstracted network compared to the original network.
Moreover the behavior of the nodes in the abstracted network is the same as the
behavior of the corresponding nodes in the original network.

The next step is to determine how to obtain an abstraction of a network. In certain
cases abstracting nodes w̄ from a network can be done by simply pre-multiplying the
network equation (2.4) with the selection matrix C, i.e.

Cw(t) = C
(
G(q)w(t) +R(q)r(t) + v(t)

)
. (6.19)
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However, this only is an abstraction if the abstracted nodes w̄ no longer appear on
the right-hand side of the equation. If w̄ appears on the right-hand side of (6.19) then
the abstracted nodes have an influence on the behavior of the nodes in Cw, such that
(6.18) cannot hold. It has to be determined how to define a transformation P such
that an abstraction can be obtained.

A node wi influences other nodes through its out-neighbors, and these corresponding
modules are a column in G. When a node has no influence on the rest of the network,
then it has no out-neighbors, and the corresponding column is 0. Abstracting node
wi requires us to transform the network such that a 0-column is formed by transfor-
mation, after which the node can be removed. By Proposition 6.5 we know that such
a transformation always exists. Then the abstraction satisfies the relations

G(2) = C (I − P (I −G))CT , R(2) = CPR. (6.20)

A noise model constructed as CPH(1) is a non-square matrix, which is difficult to
handle in an identification setting. Therefore the transformed noise model H(2), Λ(2)

will be obtained through spectral factorization

CP (e−jω)Φv(ω)PT (ejω)CT = H(2)(e−jω)Λ(2)(H(2)(ejω))T . (6.21)

6.3 Abstraction for identification of a single module

6.3.1 Identification approach

The identification approach taken is to identify the module of interest from the ab-
stracted network. We have seen in the previous section that either the module of
interest Gji is invariant under abstraction

G
(1)
ji = G

(2)
ji , (6.22)

or the module has been modified during abstraction

G
(1)
ji 6= G

(2)
ji . (6.23)

We will investigate what is needed in order to consistently identify the module of
interest in each of these two situations.

In the situation that the module of interest is invariant, then we can use the identi-
fication methods from previous chapters for identification of that module. If we can
define a network identifiable network model set that contains the abstracted network,
then consistent estimates may be obtained. We have seen in Chapter 3 that a network
model set is identifiable when

[
R H

]
is parameterized such that it can be given a

leading diagonal by column operations. A transformation used to abstract the network
may result in a complex structure in R(2), hence a model set containing the abstracted
network may not satisfy the diagonality condition. In fact the module of interest may
not be identifiable due to the great flexibility required to model the complex structure
in R(2), regardless of which conditions are checked.
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In the alternative situation that the module of interest has changed as a result of
abstraction, then the identification procedure has to take that change into account. An
indirect identification method may estimate all the modules of the abstracted network,
and then in a second step obtain the module of interest from the estimated abstracted
network. Another option is that the abstracted network is parameterized with modules
that share parameters, e.g. by assigning parameters to P (θ) and G(1)(θ) to obtain the
parameterization of G(2). The latter case is difficult to handle in an identification
setting due to the shared parameters, and it is not clear under which conditions the
module of interest will be identifiable. In both the indirect inputs method, and with
the shared parameters, it has to be investigated whether the module of interest is
identifiable from the abstracted network model, see for example (Bazanella et al.,
2017).

The approach taken in the remainder of the chapter is to consider abstracted networks
where the module of interest remains invariant, and for which a network identifiable
model can be defined. In particular we investigate abstraction algorithms that lead to
abstracted networks for which network identifiable model sets can be defined. When
the abstraction algorithms have been defined it will be investigated under which con-
ditions the module of interest remains invariant.

6.3.2 Immersion

The immersion algorithm is formalized as an algorithm to remove one node, which
can be applied sequentially for each node to be removed. The order in which nodes
are removed is of no consequence for the final result.

Algorithm 6.8 (Immersion of node wk, (Dankers et al., 2016)). The immersion
algorithm to remove node wk from the network, where wk has in-neighbors wp,
p ∈ P, and out-neighbors wc, c ∈ C, is defined as follows:

1. Noise vk moves downstream to all out-neighbors wc, c ∈ C, where the new
noise is

vnewc = vc +Gckvk for all c ∈ C.

2. Excitation uk moves downstream to all out-neighbors wc, c ∈ C, where the
new excitation is

unewc = uc +Gckuk, for all c ∈ C.

3. The dynamics of modules from all in-neighbors wp, p ∈ P, to wk are merged
with the dynamics of modules from wk to all out-neighbors wc, c ∈ C, i.e.

Gnewcp = Gcp +GckGkp, for all c ∈ C, p ∈ P.

4. Self-loops are removed by normalizing nodes that are both in-neighbor and
out-neighbor of wk, i.e. for all j for which Gnewjj 6= 0 set Ğjj = 0 and
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compensate

G
(2)
ji = 1

1−GjkGkj
Gnewji , for all i ∈ N \ j, (6.24)

v
(2)
j = 1

1−GjkGkj
vnewj , u

(2)
j = 1

1−GjkGkj
unewj . (6.25)

The immersion algorithm can be written using the transformation of a network. Con-
sider the situation that we have a network with R = I denoted as[

wS
wZ

]
=
[
GSS GSZ
GZS GZZ

] [
wS
wZ

]
+
[
rS
rZ

]
+
[
vS
vZ

]
(6.26)

with wZ as the unmeasured nodes to be removed by immersion. Immersion can be
explained as substituting the equation for wZ into the equation for wS to remove the
dependence on the unmeasured nodes. Then the transformation that corresponds to
applying the immersion algorithm for each unmeasured node is

Pimm =
[
DS 0
0 I

] [
I GSZ(I −GZZ)−1

0 I

]
, (6.27)

where DS is diagonal with (DS)jj = 1
1−GjZ(I−GZZ)−1GZj

. The transformed network
obtained by transformation matrix Pimm is as follows:

G(2) = I −
[
DS 0
0 I

] [
I GSZ(I −GZZ)−1

0 I

] [
I −GSS −GSZ
−GZS I −GZZ

]
︸ ︷︷ ︸[
I −GSS −GSZ(I −GZZ)−1GZS 0

−GZS I −GZZ

]
. (6.28)

The effect of DS is that self-loops are removed, since it contains exactly the inverse of
the diagonal of I−GSS−GSZ(I−GZZ)−1GZS . This transformation has the effect that
in the transformed network the nodes no longer depend on the to be abstracted nodes.
Then the immersed network is obtained by transforming with Pimm and abstracting
the nodes wZ .
For the network described in (6.26), the R(2) determined by immersion has the follow-
ing structure

R(2) =
[
I 0

]
Pimm =

[
DS DSGSZ(I −GZZ)−1]R, (6.29)

where R = I. Since DS is diagonal by definition, R(2) has a leading diagonal block by
construction. We can conclude that immersion of a network that has diagonal R leads
to an immersed network that has a leading diagonal in R(2). This has the effect that a
network identifiable model set can be chosen for networks that are abstracted by the
immersion algorithm if R is diagonal. Later on in Section 6.4 it will be discussed under
which conditions the module of interest remains invariant in the immersed network.
A non-square noise model of the same structure as (6.29) is created by the immersion
algorithm. As discussed before, a spectral factorization must be applied to obtain
a square noise model. After the spectral factorization, the noise model may have
a diagonal structure, or not, depending on which correlations were created by the
immersion.
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6.3.3 Indirect inputs method

The indirect inputs methods is formalized as an algorithm. Figure 6.5 describes the
general network setup for the algorithm.

wkGjkwj

vk+rk

wcGck

vc+rc

Gcp

wp

vj+rj

vp+rp

Figure 6.5: Basic network for the application of the indirect inputs algorithm.

Algorithm 6.9 (Removal of wk using indirect observation wc). The indirect
inputs algorithm to remove wk from a network, where wk has a out-neighbor wc
and where wc is not an in-neighbor of wk, is defined on the basis of (Linder and
Enqvist, 2017a) as follows: Denote Pc as the set of in-neighbors of wc and Pk as
the set of in-neighbors of wk. Module Gck is assumed to be non-zero.

1. The direction of Gck is ’flipped’, i.e. Gck is removed, and a new module
G−1
ck is added with wc as input and wk as output.

2. Compensate the effect of all the in-neighbors of wc, except for wk, i.e.

• Noise vc forms an additional connection vnewk = −G−1
ck vc,

• Excitation uc forms an additional connection unewk = −G−1
ck uc,

• In-neighbors of wc except for wk form an additional connection

Gnewkp = G−1
ck Gcp for all p ∈ Pc \ k.

3. Excitations of wk are moved to wc with additional dynamics, i.e.

• Noise vk is moved vnewc = vc +Gckvk,
• Excitation uk is moved unewc = uc +Gckuk,
• In-neighbors of wk re-route the modules

Gnewcp = GckGkp +Gcp for all p ∈ Pk.

4. The other modules and excitations are unaffected.

5. Node wk is immersed using Algorithm 6.8.
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An interesting observation is that steps 1-3 of the algorithm are the same steps as
described in Section 6.2.2 where the causal direction of a module was ’flipped’. In the
final step, the node is immersed, implying that one way of interpreting the indirect
inputs method for removing a single node is a combination of flipping arrows and then
immersing the transformed network.
A transformation matrix can be derived that corresponds to steps 1-3. The network
depicted in Figure 6.5 is

wj
wc
wk
wp

 =


0 0 Gjk 0
0 0 Gck Gcp
0 0 0 0
0 0 0 0



wj
wc
wk
wp

+


rj
rc
rk
rp

+


vj
vc
vk
vp

 , (6.30)

where it is assumed that wj and wc are measured, and wk and wp are unmeasured.
We can see that the new excitation has the following relation with the old excitation[

unewc

unewk

]
=
[

1 Gck
−G−1

ck 0

] [
uc
uk

]
. (6.31)

This implies that the transformation matrix that achieves step 1-3 is

Pflip =


I 0 0 0
0 1 Gck 0
0 −G−1

ck 0 0
0 0 0 I

 . (6.32)

Now the network identifiability of networks abstracted by Algorithm 6.9 is investigated.
The excitation matrix after removing unmeasured nodes is

R(2) =
[
I 0

]
PimmPflipR. (6.33)

An analysis of the structure of R(2) is made next. From analysis of the immersion it
is known that [

I 0
]
Pimm =

[
I ∗

]
, (6.34)

i.e. it is structured with a leading diagonal block and arbitrary contents ∗. The bot-
tom left block of Pflip contains the non-zero element −G−1

ck , and this is multiplied by
the arbitrary contents of ∗, such that R(2) does not have a leading diagonal. However
Theorem 3.10 states that the network is identifiable when R(2) can be given a leading
diagonal by column operations. When R is diagonal then it does not affect the struc-
ture of PflipR, so then in PflipR we can swap the two columns corresponding to wc
and wk and obtain

P̄flip =


I 0 0 0
0 Gck 1 0
0 0 −G−1

ck 0
0 0 0 I

R. (6.35)

A leading diagonal is created in
[
I ∗

]
P̄flip since the ∗ is multiplied by 0, such that a

network abstracted by Algorithm 6.9 has a leading diagonal in R(2). This has the effect
that a network identifiable model set can be chosen for networks that are abstracted by
the Algorithm 6.9 if there are as many external variables as nodes and R is diagonal.



6.3. Abstraction for identification of a single module 131

6.3.4 Generalized algorithm

The immersion and indirect inputs methods are generalized into one algorithm that
generates an abstracted network by removing all unmeasured nodes at once, instead
of per node. In the indirect inputs method the indirect observation wc is not allowed
to be an in-neighbor of wj , while in the generalization this restriction is removed. The
network is divided into measured nodes wS and the unmeasured nodes wZ that are
to be abstracted. A combination of the indirect inputs method and immersion can be
used for the abstraction. A number of unmeasured nodes that are in-neighbor of wj
are to be indirectly observed through a number of measured nodes, and to this end
some notation must be introduced.

• wV are the unmeasured nodes that are indirectly observed via other nodes, i.e.
the nodes are unmeasured but other measured nodes in the network contain
information on these nodes;

• wL are the measured nodes that are indirect input measurements, so they indi-
rectly observe the nodes wV ;

• wS̃ are the remaining measured nodes, i.e. wS̃ = wS \ wL;

• wZ̃ are the remaining unmeasured nodes, i.e. wZ̃ = wZ \ wV .

In the final identification setup the indirect input measurements wL are used to replace
the unmeasured in-neighbors in wV . When the measured and unmeasured nodes are
given, then it has to be decided which nodes are considered as indirectly observed
nodes, and which are considered as indirect input measurements. In other words, the
user has to select the wL and wV in a smart way. In the remainder of this section the
choice of wL and wV is pre-specified, and a systematic way to select these nodes is
deferred to a later section.

The network can be rewritten on the basis of the groups of nodes that have been defined
above. We have the network that consists of an equation for each of wS̃ , wL, wV , wZ̃ ,
i.e. 

wS̃
wL
wV
wZ̃

 =


GS̃S̃ GS̃L GS̃V GS̃Z̃
GLS̃ GLL GLV GLZ̃
GVS̃ GVL GVV GVZ̃
GZ̃S̃ GZ̃L GZ̃V GZ̃Z̃



wS̃
wL
wV
wZ̃

+


uS̃
uL
uV
uZ̃

+


vS̃
vL
vV
vZ̃

 . (6.36)

It will be assumed that the indirect input measurements contain sufficient information
on the indirectly observed nodes. This means that there are sufficient paths through
the network from wV to wL.

Assumption 6.10. It is assumed that GLV + GLZ̃(I − GZ̃Z̃)−1GZ̃V has full
column rank.

This assumption is on the paths from wV to wL contained in GLV , but also makes use of
the paths through the unmeasured nodes in wZ̃ described by the GLZ̃(I−GZ̃Z̃)−1GZ̃V
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term. When this transfer function matrix has full column rank, it is implied that
the number of indirect input measurements is greater than the number of indirectly
observed nodes. The rank condition is generically satisfied when there are dim(wV)
vertex-disjoint paths present from wV to wL. An example of the full rank assumption
is shown in Figure 6.6. In the figure there are the two vertext-disjoint paths wv1 → wl1
and wv2 → wz → wl3 for two nodes that are indirectly observed.

wl1

wl2

wl3

wv1

wv2

wz

Figure 6.6: Example network with V = {v1, v2}, Z̃ = {z}, L = {l1, l2, l3}, where
Assumption 6.10 is satisfied.

If just one indirect observation is used to eliminate one unmeasured node, then one
module is inverted, resulting in a flipped arrow. In the general situation, paths between
indirect input measurements and indirectly observed nodes may pass through a number
of other unmeasured nodes, and this has to be taken into account in the abstraction
algorithm. Another additional difficulty is that potentially a multivariable transfer
has to be inverted, instead of just a single module.

The main idea is that the indirectly observed nodes wV can be eliminated from the
network equation (6.36) by utilizing the equation of the indirect input measurements
wL. To this end we need to eliminate the unmeasured nodes wV and wZ̃ from the first
equation of (6.36). One step is to solve the second equation of (6.36) for wV , and the
result into the first equation of (6.36). However it is necessary to appropriately deal
with the nodes in wZ̃ . To this end the fourth equation of (6.36) is solved for wZ̃

wZ̃ = (I −GZ̃Z̃)−1 (GZ̃S̃wS̃ +GZ̃LwL +GZ̃VwV + uZ̃ + vZ̃) . (6.37)

The equation (6.37) is inserted into the second equation of (6.36)

wL =
(
GLS̃ +GLZ̃(I −GZ̃Z̃)−1GZ̃S̃

)
wS̃

+
(
GLL +GLZ̃(I −GZ̃Z̃)−1GZ̃L

)
wL

+
(
GLV +GLZ̃(I −GZ̃Z̃)−1GZ̃V

)
wV

+ uL +GLZ̃(I −GZ̃Z̃)−1uZ̃

+ vL +GLZ̃(I −GZ̃Z̃)−1vZ̃ ,

(6.38)
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and the result is solved for wV

wV=
(
GLV +GLZ̃(I −GZ̃Z̃)−1GZ̃V

)†(− (GLS̃ +GLZ̃(I −GZ̃Z̃)−1GZ̃S̃
)
wS̃

+
(
I −GLL −GLZ̃(I−GZ̃Z̃)−1GZ̃L

)
wL

− uL −GLZ̃(I −GZ̃Z̃)−1uZ̃

− vL −GLZ̃(I −GZ̃Z̃)−1vZ̃

)
,

(6.39)

where (.)† denotes a left-inverse of a matrix. Then (6.37) is inserted into the first
equation of (6.36), after which (6.39) is inserted. In this way the unmeasured in-
neighbors in wS̃ have been replaced by measured nodes.

An important observation on this elimination of equations is the following. The net-
work after it has been manipulated is equivalent to the original network since all
changes are due to equation manipulations.

The algorithm that achieves the generalized abstraction is not as simple as just writing
Algorithm 6.9 with multivariable signals. There are three main steps:

1. First the paths from all nodes to indirect input measurements wL that go through
other unmeasured nodes wZ̃ are lifted. This is a multivariable version of the
lifting procedure that was described in Example 6.1. It is then ensured that the
indirectly observed nodes wV are in-neighbors to the indirect input measurements
wL like was done in (6.37) and (6.39).

2. The new modules from indirectly observed nodes wV to input measurements wL
are inverted.

3. All unmeasured nodes are immersed.

Algorithm 6.11 (Generalized algorithm). The generalized algorithm to remove
unmeasured nodes wV and wZ̃ from a network representation with use of indirect
observations wL. It is assumed that wV , wZ̃ , and wL are such that Assumption
6.10 is satisfied.

1. The paths from all nodes to indirect input measurements wL that go through
other unmeasured nodes wZ̃ are lifted.

• First the modules GLZ̃ are removed by setting

G
(2)
LZ̃ = 0.

• Then in order to compensate for the removed modules, the modules
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that have wL as output need to compensate for the change, i.e.

G
(2)
LS̃ = GLS̃ +GLZ̃(I −GZ̃Z̃)−1GZ̃S̃ ,

G
(2)
LL = GLL +GLZ̃(I −GZ̃Z̃)−1GZ̃L,

G
(2)
LV = GLV +GLZ̃(I −GZ̃Z̃)−1GZ̃V .

• Finally the external signals are compensated

u
(2)
L = uL +GLZ̃(I −GZ̃Z̃)−1uZ̃ ,

v
(2)
L = vL +GLZ̃(I −GZ̃Z̃)−1vZ̃ .

2. The second objective is to invert the direction of the modules that connect
indirectly observed nodes to indirect input measurements.

• The direction of GLV is flipped, i.e.

G
(3)
VL = (G(2)

LV)†(I −G(2)
LL).

• The effect that wL has on itself remains unchanged

G
(3)
LL = G

(2)
LL.

Nodes wV do not depend on themselves as the contribution GVV is
routed via nodes wL

G
(3)
VV = 0,

G
(3)
LV = G

(2)
LVGVV .

• Compensate for the in-neighbors of wL, i.e.

v
(3)
V = −(G(2)

LV)†vL,

u
(3)
V = −(G(2)

LV)†uL,

G
(3)
VS̃ = −(G(2)

LV)†G(2)
LS̃ ,

G
(3)
VZ̃ = −(G(2)

LV)†G(2)
LZ̃ .

• In-neighbors of wV are moved to wL with additional dynamics, i.e.

v
(3)
L = vL +G

(2)
LVv

(2)
V ,

u
(3)
L = uL +G

(2)
LVu

(2)
V ,

G
(3)
LS̃ = G

(2)
LS̃ +G

(2)
LVGVS̃ ,

G
(3)
LZ̃ = GLZ̃ +G

(2)
LVGVZ̃ .
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3. All the unmeasured nodes wZ̃ are immersed.

• The modules and signals that are not changed are relabeled

v
(3)
S̃ = vS̃ , v

(3)
Z̃ = vZ̃ ,

u
(3)
S̃ = uS̃ , u

(3)
Z̃ = uZ̃ ,

G
(3)
S̃? = GS̃?, G

(3)
Z̃? = GZ̃?.

• Define

G
(3)
SS =

[
G

(3)
S̃S̃ G

(3)
S̃L

G
(3)
LS̃ G

(3)
LL

]
, G

(3)
SZ =

[
G

(3)
S̃V G

(3)
S̃Z̃

G
(3)
LV G

(3)
LZ̃

]
,

G
(3)
ZS =

[
G

(3)
VS̃ G

(3)
VL

G
(3)
Z̃S̃ G

(3)
Z̃L

]
, G

(3)
ZZ =

[
G

(3)
VV G

(3)
VZ̃

G
(3)
Z̃V G

(3)
Z̃Z̃

]
.

Then the final modules of G are

G(4) = D
(
G

(3)
SS +G

(3)
SZ(I −G(3)

ZZ)−1G
(3)
ZS

)
,

where Djj = 1
1−G(3)

jZ (I−G(3)
ZZ)−1G

(3)
Zj

.

• The external signals are compensated as well. Define

v
(3)
S =

[
vS̃
v

(3)
L

]
, v

(3)
Z =

[
v

(3)
V
vZ̃

]
,

u
(3)
S =

[
uS̃
u

(3)
L

]
, u

(3)
Z =

[
u

(3)
V
uZ̃

]
.

Then after immersion the external signals are

v
(4)
S = D

(
v

(3)
S +G

(3)
SZ(I −G(3)

ZZ)−1v
(3)
Z

)
,

u
(4)
S = D

(
u

(3)
S +G

(3)
SZ(I −G(3)

ZZ)−1u
(3)
Z

)
,

where D is defined above.

When G
(3)
VL is defined, the G(2)

LL is the compensation for interconnections that exist
between indirect observations wL, which is 0 in the situation that just 1 node is
removed by indirect inputs.

The algorithm corresponds with a transformation defined by the matrix

P =
[
D 0
0 I

] [
I G

(3)
SZ(I −G(3)

ZZ)−1

0 I

]
P flip, (6.40)
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with D and G(3) as defined in Algorithm 6.11 and

P flip =


I 0 0 0
0 I G

(2)
LV 0

0 −
(
G

(2)
LV

)†
0 0

0 0 0 I

 .

Similar to the identifiability reasoning in the previous section, when G
(2)
LV is diagonal,

then R(4) associated with u(4)
S = R(4)r can be given a leading diagonal by column oper-

ations. A network identifiable model set may be chosen for the networks abstracted by
Algorithm 6.11 if R is diaognal. However in case G(2)

LV is non-diagonal then there is no
leading diagonal in R(4). This does not necessarily make the network non-identifiable,
as the leading diagonal condition is just sufficient. In such a situation a more thorough
analysis of identifiability must be performed before conclusions can be drawn. The
identifiability result is formalized in the following proposition.

Proposition 6.12. Consider a network model M where the nodes are grouped as
in (6.36), where R and GLV are both square and diagonal, and where GLZ̃ = 0.
The R(4) of the abstracted network model M (4) obtained by Algorithm 6.11 can
be given a leading diagonal by column operations, such that a globally network
identifiable model set can be chosen that contains the abstracted network model.

Proof. Provided in Appendix 6.7.3. �

Since the immersion and indirect inputs methods have been generalized by Algorithm
6.11, the above proposition also shows identifiability for the immersion and indirect
inputs methods. This identifiability result uses the sufficient condition of Theorem
3.10, which is the reason for requiring diagonality of R and GLV . On the basis of the
discussion in Chapter 3 we can conclude that the above proposition can be generalized
quite a lot. In future research we may evaluate identifiability conditions that are also
necessary, and we may evaluate identifiability of just the module of interest. Moreover
further research into topological conditions that guarantee identifiability of abstracted
networks can be made. It should be noted that any transformation P can be applied
before immersion, and some of those may lead to network representations for which
a network identifiable model set can be defined. This means that there are other
algorithms that can obtain abstracted networks that are suitable for identification.

6.4 Invariance of a module

In the previous section, an algorithm has been shown to generate an abstracted net-
work representation that leads to network identifiable model sets. When additionally
the module of interest Gji remains invariant in the abstracted network, then the nodes
of the abstracted network may be used to obtain consistent estimation of this mod-
ule. For the situation that Algorithm 6.11 is used to generate an abstracted network
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representation, the question to be addressed is under which conditions the module of
interest is invariant.

As was shown in Example 6.1 and 6.2, modules might remain invariant. Both for the
immersion and the indirect inputs methods there are sets of conditions that specify
when a module remains invariant under transformation. In this section, these con-
ditions will be generalized into one set of conditions such that a module of interest
remains invariant for the new Algorithm 6.11.

If we have a network, and we chose the sets of nodes to be used in Algorithm 6.11,
then it will depend on the original network topology whether the module of interest is
affected. There are two structures of the original network that lead to changes in the
module of interest in the immersion process (Dankers et al., 2016), and these may lead
to problems in the abstraction Algorithm 6.11. The following two examples illustrate
these two issues. Noise-free networks are used in the examples in order to stick to the
core reasoning.

Example 6.13 (Parallel paths). Consider the module of interest Gji. Paths that run
in parallel to this module, i.e. paths from wi to wj, may lead to changes in the module
of interest during abstraction. Consider the network in Figure 6.7a. If wu is removed
using immersion, then the path wi → wu → wj is lifted and the dynamics of modules
Gju, Gui are merged with module of interest wi → wj, i.e.

wj = (Gji +GjuGui)wi. (6.41)

The typical way to prevent these parallel paths from changing the module of interest
is by retaining a node in every parallel path in the abstracted network, for example by
measuring wu. An alternative is to include wl as an indirect measurement of wu. Also
in that case an equation is used that does not contain wi, and Gji remains invariant,
i.e.

wj = Gjiwi +GjuG
−1
lu wl, (6.42)

where wu = G−1
lu wl is used. When an additional path wi → wl exists as in the network

in Figure 6.7b, then the situation changes. Now the equation for node wl depends
on wi, and if the unknown node wu is eliminated using the equation for wl, then an
additional contribution from wi appears such that the module of interest is changed,
i.e.

wj = (Gji −GjuG−1
lu Gli)wi +GjuG

−1
lu wl, (6.43)

where wu = G−1
lu (wl − Gliwi) is used. If in Figure 6.7a there is no path from wu to

wl, then wl cannot be used as an indirect input measurement.

From the example it can be observed that the nodes used as indirect input measure-
ments should not have wi as an in-neighbor.

Example 6.14 (Self-loops). Suppose the module of interest is Gji. Paths that run as
a loop around the output of this module, i.e. paths from wj to wj, may lead to changes
in the module of interest during abstraction. Consider the network in Figure 6.8a. If
the node wu of the network in Figure 6.8a is eliminated by immersion, then a self-loop
from wj to itself is created. A way to prevent these self-loops is by retaining a node in
every loop around the output wj in the abstracted network.
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Figure 6.7: Networks to illustrate issues with parallel paths when abstracting.
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Figure 6.8: Networks to indicate issues with self-loops when making abstractions.

An alternative is to have wu eliminated by its out-neighbor wl, in which case wu is
substituted for an equation that does not depend on wj. This alternative does not
create a self-loop either, i.e.

wj = Gjiwi +GjuG
−1
lu wl, (6.44)

with wu = G−1
lu wl. If instead there is a direct link wj → wl like in Figure 6.8b, then

wl depends directly on wj, and using this equation for elimination of wu would again
lead to a dependence of wj on itself in the abstracted network, i.e.

wj = Gjiwi +GjuG
−1
lu (wl −Gljwj), (6.45)

with wu = G−1
lu (wl −Gljwj). The self-loop should be normalized, leading to

wj = Gji

1 +GjuG
−1
lu Glj

wi +
GjuG

−1
lu

1 +GjuG
−1
lu Glj

wl (6.46)

where it is obvious that the module of interest has changed.

In conclusion, it is not sufficient to only consider parallel paths from wi to wj and
self-loops from wj to wj that appear in the data generating system. Paths from wi
and wj to the indirect observations wL also have to be considered to avoid merging
of paths and to keep Gji invariant under the transformation. These observations are
formalized in the conditions below.
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Proposition 6.15. Consider a dynamic network model associated with mod-
ules G(1) where the nodes are divided into the groups wS̃ , wL, wV , wZ̃ . Assume
that nodes wL and wV have been chosen such that Assumption 6.10 is satisfied.
Consider the abstracted network model associated with modules G(2) obtained by
Algorithm 6.11. Define the sets J = {j}∪L and D = V∪S̃ \j. The module of in-
terest Gji remains invariant under abstraction, i.e. G(1)

ji = G
(2)
ji , if the following

conditions are satisfied:

(a) All paths from wi to wJ , excluding the direct path Gji, pass through a node
wk, k ∈ D \ i,

(b) All paths from wj to wJ pass through a node wk, k ∈ D.

Proof. Provided in Appendix 6.7.2. �

In condition (a) the index i is excluded from the set D for the following reason. Every
path from wi starts in wi, so all those paths contain a node in D.

The set D is the set of, either directly or indirectly, observed nodes except for node
j. This means that all parallel paths from wi to wJ must pass through a node that
is observed either directly or indirectly. Similarly all loops around the ’output’, i.e.
all paths from wj to wJ must pass through a node that is observed either directly or
indirectly.

Remark 6.16. The conditions in Proposition 6.15 are a generalization of the condi-
tions for immersion. When the sets L = ∅ and V = ∅ are chosen, then Algorithm 6.11
is equivalent to the immersion algorithm when applied to all unmeasured nodes. More-
over the conditions for invariance of the module of interest that have been specified in
(Dankers et al., 2016) are obtained. With the new conditions, parallel paths wi → wj
and loops around the output wj → wj can also be blocked by indirectly observed nodes,
instead of just by directly observed nodes.

Remark 6.17. The conditions in Proposition 6.15 are a generalization of the condi-
tions for the indirect inputs method. When it is assumed that indirect observations are
not an in-neighbor of the output node, i.e. Gjl = 0, l ∈ L, and when the remaining
unmeasured nodes are assumed to not be an in-neighbor of indirect input measure-
ments, i.e. 0 = Gln, l ∈ L, n ∈ Z̃, then Algorithm 6.11 is equivalent to the indirect
inputs method (Linder and Enqvist, 2017a). Moreover the conditions for invariance
of the module of interest that have been specified in (Linder and Enqvist, 2017a) are
obtained. With the new conditions the indirect input measurements wL can be an in-
neighbor of wj in the original network, and that indirect input measurements may have
unmeasured nodes wZ as an in-neighbor.

If we have selected as set of nodes that are measured, and it is decided which nodes
are indirectly observed by the chosen indirect input measurements, then it can be
checked whether the module of interest remains invariant in the abstracted network.
Since a network identifiable model set can be selected for the abstracted network,
and the module of interest is invariant, we satisfy important conditions for consistent
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estimation of the target module. A suitable identification method is to be chosen, and
this depends for example on whether noises have become correlated in the abstracted
network.

6.5 Choosing measured nodes

Proposition 6.15 allows us to check whether a module remains invariant under ab-
straction if the network topology is known and we have divided the nodes into four
groups. The next question is how to choose the sets of nodes, based on the network
topology, such that the module of interest remains invariant.

The strategy to obtaining a set of measured nodes in (Dankers et al., 2016) is as
follows. First the input and output nodes of the module of interest are required to
be measured. Then every parallel path from the input to the output node must be
blocked by a measured node. This means that nodes are added such that each of those
paths contains a measured node. Similarly every loop around the output node must
be blocked by a measured node, so nodes are added such that each of those loops
contains a measured node. Different nodes on a path can be chosen to block the path,
so the choice of which nodes to measure is not unique.

Now with the extension to the possibility of having indirectly observed nodes the
method of choosing nodes is adapted. A parallel path or a loop can now be blocked by
either a measured or an indirectly observed node. However when we use an indirect
observation to block a path, then additional conditions must be satisfied. Paths from
either input or output of the module of interest to the indirect observation must also
be blocked by either a measured or an indirectly observed node. For each indirect
observation that is added, this condition on blocking the paths is applied recursively.
This selection method is demonstrated in the following example.

Example 6.18 (Selecting nodes). Consider the network in Figure 6.9. It is illustrated
how to select nodes such that the conditions of Proposition 6.15 are satisfied. The
module of interest is Gji, so we select wj as output, and wi is included as a predictor
input. A parallel path through node wu exists and must be blocked if Gji is to be kept
invariant. We can either include wu as a predictor input, or we can choose to indirectly
observe it using wl. When wl is chosen as indirect input measurement, then l ∈ L,
and the parallel path from wi to wl through w2 should be blocked, so either w2 should
then be included as a predictor input, or w3 can be included as the indirect observation
of w2.

In an estimation setting, both the nodes wk, k ∈ S̃\j and wl, l ∈ L are used as predictor
inputs to parameterized modules. So when identification is performed, what is the
difference between having nodes in either of these sets? We have seen that immersion
and the indirect inputs method lead to different transformation matrices P and those
then lead to different ways that external variables appear in the abstracted network.
Particularly the location of zeros in the transformed R is different for immersion
and the indirect inputs method. This leads to the need to include different external
variables depending on which nodes are in S̃ and L. The external variables that are
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wj

wu wl
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w3

Figure 6.9: Network where measured nodes and indirectly observed nodes are to be
selected. Dotted lines are paths through the network.

in-neighbors of a node in the abstracted network are determined in Algorithm 6.11,
which are the following: After application of the abstraction algorithm the transformed
u(4) has the following relation with the original u

u
(4)
S =

[
D ∗ 0 ∗
0 ∗ D

(
GLV +GLZ̃(I −GZ̃Z̃)−1GZ̃V

)
∗

]
R


rS̃
rL
rV
rZ̃

 , (6.47)

where ∗ is written for transfer function matrices that are not relevant to the current
discussion. When we consider the situation of Proposition 6.12, where R and GLV
are diagonal, where GLZ̃ = 0, and considering that D is diagonal, then the following
excitations must be included as predictor input:

• For nodes wk, k ∈ S̃ the rk, rL and rZ̃ are in-neighbors and should be included
as predictor inputs;

• For nodes wl, l ∈ L the rl, rL and rZ̃ are in-neighbors and should be included
as predictor inputs.

In terms of choosing a network model set for the abstracted network, the structure of
(6.47) specifies how to choose the zero-structure of the parameterized R(q, θ) that is
to be used for estimation of the abstracted network.

Due to the abstraction the noise process is modified in the same way that the external
input process is modified. A similar expression for the abstracted process noise is
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obtained as for the external variables

v
(4)
S =

[
D ∗ 0 ∗
0 ∗ D

(
GLV +GLZ̃(I −GZ̃Z̃)−1GZ̃V

)
∗

]
H


eS̃
eL
eV
eZ̃

 . (6.48)

The obtained noise filter above is not square, which is problematic in terms of identi-
fication. A spectral factorization of this noise model can be made in order to obtain a
square noise filter H(4) and white noise e(4). It is likely that the obtained noise model
is then no longer diagonal. The zero-structure of the obtained noise filter can be used
as the zero-structure when parameterizing the network model set. Under particular
conditions special noise structures can be obtained that can be exploited. If no par-
ticular structure is obtained for the noise model, then all process noises are correlated
and the applied identification method has to deal with this.
It is now clear how to select measured nodes and external variables such that an
abstracted network is obtained with the module of interest invariant. Now a network
model set that matches the zero-structure of G(4) and R(4) can be chosen to model the
abstracted network. In order to identify the module of interest, for example the joint-
direct method can be applied to the full abstracted network such that a maximum
likelihood estimate is obtained, or an indirect identification method may be applied.
When the objective is to estimate a single module, then applying the joint-direct
method to an abstracted network may to be easier to solve than applying the joint-
direct method to the original network. However applying the joint-direct method to
the abstracted network may still be an overly complicated way of obtaining an estimate
of a single module. In future research it is to be investigated how to select nodes such
that the simplest estimation problem can be obtained.

6.6 Conclusions

The question to be answered is which nodes are to be measured in order to obtain
a consistent estimate of a particular module in a network. As a way to answer this
question the concept of abstraction has been introduced as a way to remove unmea-
sured nodes from a network representation, as a generalization of methods present in
literature. In the abstracted network the module of interest remains invariant under
some conditions on the chosen measured nodes. Under some additional conditions on
the original network structure, e.g. when there is an external excitation present on
every node, a network identifiable model set can be defined for the abstracted network
in order to identify the module. The results can be applied in combination with dif-
ferent identification methods. In the abstracted network obtained by the abstraction
algorithm a transformed network topology is obtained, and from this structure it is
clear which nodes and external signals to use when identifying the module. Moreover
a systematic method to select which nodes to measure has been introduced.
A-priori assumptions on H and R have been avoided for the formulation of the ab-
straction method. For the identifiability analysis of the resulting abstracted network
some assumptions on R and the network topology have been made. However, this
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identifiability analysis has been performed with the conservative Theorem 3.10. It
is clear that the identifiaility analysis can be extended in future research. With an
extension of the identifiability analysis relaxed conditions on the presence of external
variables may be obtained. Moreover the identifiability conditions may be formulated
on the basis of the network topology. When the identifiability conditions have been
relaxed, then a method will be obtained that tells us which nodes need to be mea-
sured, and which nodes need to be excited, in order to be able to identify a module of
interest.

6.7 Appendix

6.7.1 Proof of Proposition 6.5

Substituting P = (I−G(2))(I−G(1))−1 into the definition of the transformation (6.9)
gives

G(2) = I − (I −G(2))(I −G(1))−1(I −G(1)), (6.49)

which shows that G(2) is obtained by applying this transformation. The transfer
function matrices (I − G(1))−1 and (I − G(2)) are both stable and proper. Moreover
the diagonal of (I −P (I −G(1))) is 0, so P = (I −G(2))(I −G(1))−1 is an appropriate
transformation. �

6.7.2 Proof of Proposition 6.15

In order to prove the proposition the conditions must be interpreted in terms of G.
Condition (a) and (b) imply that there are no direct paths from wi and wj to indirect
observations wL, i.e.

(i) GLi = 0,

(ii) GLj = 0.

The conditions also imply that there are no paths from wi and wj to indirect obser-
vations wL and j that only go through unmeasured nodes wZ̃ , i.e.

(iii) GLZ̃(I −GZ̃Z̃)−1GZ̃i = 0,

(iv) GLZ̃(I −GZ̃Z̃)−1GZ̃j = 0,

(v) GjZ̃(I −GZ̃Z̃)−1GZ̃i = 0,

(vi) GjZ̃(I −GZ̃Z̃)−1GZ̃j = 0.
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The module Gji is part of matrix GS̃S̃ which does not get modified in steps 1-2 of
Algorithm 6.11, i.e. G(3)

S̃S̃ = GS̃S̃ . In step 3 the module G(4)
ji is defined as

G
(4)
ji = Djj

(
G

(3)
ji +G

(3)
jZ (I −G(3)

ZZ)−1G
(3)
Zi

)
, (6.50)

where Djj = 1
1−G(3)

jZ (I−G(3)
ZZ)−1G

(3)
Zj

. Now the next steps are to show that

0 = G
(3)
jZ (I −G(3)

ZZ)−1G
(3)
Zi and (6.51)

0 = G
(3)
jZ (I −G(3)

ZZ)−1G
(3)
Zj . (6.52)

The modules of G(3) are determined in steps 1-2 of Algorithm 6.11 and the relevant
modules to show that (6.51) and (6.52) hold are determined next. Modules on row j
are left invariant in step 2, such that

G
(3)
ji = Gji and G

(3)
jZ = GjZ . (6.53)

For the unmeasured nodes there is the factorization

G
(3)
ZZ =

[
G

(3)
VV G

(3)
VZ̃

G
(3)
Z̃V G

(3)
Z̃Z̃

]
, (6.54)

where G(3)
VV = 0 in step 2, G(3)

VZ̃ = −G−1
LVGLZ̃ in step 2, and the modules on rows Z̃

are left invariant in step 2
[
G

(3)
Z̃V G

(3)
Z̃Z̃

]
=
[
GZ̃V GZ̃Z̃

]
. Then finally there is the

factorization

G
(3)
Zi =

[
G

(3)
Vi

G
(3)
Z̃i

]
, and G

(3)
Zj =

[
G

(3)
Vj

G
(3)
Z̃j

]
, (6.55)

where G(3)
Vi = −G−1

LVGLi and G
(3)
Vj = −G−1

LVGLj in step 2, and the modules on rows Z̃
are left invariant in step 2 G(3)

Z̃i = GZ̃i and G
(3)
Z̃j = GZ̃j . Then when rewriting (6.51)

and (6.52) using (6.53), (6.54) and (6.55) it must be shown that

0 =
[
GjV GjZ̃

] [ I G−1
LVGLZ̃

GZ̃V GZ̃Z̃

]−1 [−G−1
LVGLi
GZ̃i

]
and (6.56)

0 =
[
GjV GjZ̃

] [ I G−1
LVGLZ̃

GZ̃V GZ̃Z̃

]−1 [−G−1
LVGLj
GZ̃j

]
. (6.57)

Now using (i) and (ii) and using the matrix inversion lemma these two equations are
rewritten as

0 =
[
GjV GjZ̃

] [? X
? Y

] [
0
GZ̃i

]
and (6.58)

0 =
[
GjV GjZ̃

] [? X
? Y

] [
0

GZ̃j

]
, (6.59)
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where

X = −
(
I +G−1

LVGLZ̃(I −GZ̃Z̃
)−1

GZ̃V)−1G−1
LVGLZ̃(I −GZ̃Z̃)−1

and
Y = (I −GZ̃Z̃)−1 + (I −GZ̃Z̃)−1GZ̃VX.

Now using (iii) and (iv) it can be established that XGZ̃i = 0 and XGZ̃j = 0 such
that it must be shown that

0 =
[
GjV GjZ̃

] [ 0
(I −GZ̃Z̃)−1GZ̃i

]
and (6.60)

0 =
[
GjV GjZ̃

] [ 0
(I −GZ̃Z̃)−1GZ̃j

]
, (6.61)

which holds by (v) and (vi), leaving G(4)
ji = Gji. �

6.7.3 Proof of Proposition 6.12

Transfer function matrix R(4) is determined from u
(4)
S as

R(4) =
[
D ∗ 0 ∗
0 ∗ D

(
GLV +GLZ̃(I −GZ̃Z̃)−1GZ̃V

)
∗

]
R. (6.62)

Matrix D is diagonal by definition, matrix GLV is diagonal by the condition in the
proposition, and GLZ̃ = 0 by the condition in the proposition, such that the matrix[

D ∗ 0 ∗
0 ∗ DGLV ∗

]
(6.63)

can be given a leading diagonal by column operations. Since R is diagonal the same
column operations can also be applied to R(4) to obtain a leading diagonal. �





7Sequential Least Squares
identification algorithm1

7.1 Introduction

Algorithms to efficiently solve the identification problem are important for practical
applications, therefore the following question is addressed.

Which algorithms are suitable for the efficient identification
of large-scale dynamic networks?

In the previous chapters and in literature theory has been developed for the identifica-
tion of dynamic networks, and in practice this theory used in the form of an algorithm.
The algorithms that are deemed suitable must be efficient, where efficient has a double
meaning. Firstly efficient refers to statistical efficiency, as in leading to a minimum
variance estimate. Secondly efficient refers to an algorithm of low complexity, such
that a model can be computed quickly and accurately. Algorithms should be applica-
ble to the small scale problems, such as identification of a local module, but also to
the identification of a full large-scale network.
In Chapter 4 a prediction error method to identify dynamic networks is introduced,
however the associated cost function (4.8) is typically non-convex. That is, when com-
monly used model structures as Output Error (OE), AutoRegressive Moving Average
with eXogenous input (ARMAX) or Box-Jenkins (BJ) are extended to the dynamic
network situation, then this leads to a non-convex cost function prone to local min-
ima. When the size of the network and the number of modules to be estimated grow,

1This chapter is based on collaboration with M. Galrinho, G. Bottegal and H. Hjalmarsson, which
resulted in the paper (Weerts et al., 2018a).
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so does the number of local minima. Moreover, computing the direction of the next
iterative solution becomes increasingly challenging. This is particularly important
for large-scale dynamic networks, where the large number of parameters may lead to
high computational complexity and multiple local minima of the cost function. Al-
gorithms that do not rely on non-convex optimization seem like good candidates for
identification of large-scale networks.

In a situation where noise model H is diagonal, the network identification problem
can be split into a smaller MISO problem for each node, such as done in Section
2.3. Typical algorithms such as the ARMAX() function in Matlab based on (Ljung,
1999), but also subspace algorithms such as SSARX (Jansson, 2003) can be applied
to the MISO identification problem. However, when process noises are correlated, and
there are loops in the network, then estimation of MISO models with a direct method
leads to biased estimates. In such a situation the joint-direct method from Chapter
4 can be applied, which requires solving a MIMO problem. In this MIMO setting,
nodes that appear as an input do not have to influence every node that appears as
ouput. There is a need to encode the network topology specified by the network
model set in the algorithm. It is not possible to encode the network topology in the
SSARX algorithm in the MIMO situation, and therefore this algorithm is not suitable
for network identification. Subspace identification methods that are able to encode
the network topology exist, e.g. (Torres et al., 2015), however these operate under
restrictive assumptions on the process noise and are therefore not considered.

One of the difficulties of the correlated noise is that the H(q, θ) becomes non-diagonal.
In the prediction error (4.7) the inverse H−1(q, θ) appears, which can cause difficul-
ties. When H has some particular structure, this structure is typically lost in the
inverted H−1, possibly resulting in H−1 not having any 0 elements. Moreover the
parameterization of H−1 will be fairly complicated.

Instrumental variables methods (Dankers et al., 2015) or two-stage methods (Van den
Hof et al., 2013) do not need an accurate noise model in order to obtain consistent
estimates. This implies that a non-diagonal H does not have to be modeled, and a
MISO setting can be used regardless of noise correlation. These methods can make use
of linear-in-the-parameters models, and can thus lead to convex optimization problems.
However external excitations that are sufficiently informative and of sufficient power
are a necessary requirement for these methods to succeed. An additional issue is that
these methods use the external excitation to de-correlate noise contributions, such
that excitation provided by process noise is not used to reduce variance, resulting
in estimates that are not minimum variance. It can be concluded that the classical
methods and algorithms are not sufficient for minimum variance identification of large-
scale dynamic networks.

In (Everitt, 2017) Model Order Reduction Steiglitz-McBride (MORSM) is introduced
as a method to estimate modules in a network. The method is similar to a two-stage
identification approach (Van den Hof et al., 2013) and leads to an algorithm based on
the solving of a sequence of least squares problems. Since only least squares problems
are solved, the method relies on convex optimizations and does not run into local
minima. However since the method resembles a two-stage approach, it suffers from
increased variance. Additionally the algorithm needs to iterate an infinite number of
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times in order to achieve consistency. The method did provide the inspiration for the
approach developed in this chapter.

For single-input single-output (SISO) ARMA time-series, (Durbin, 1960) observed that
if the innovations sequence is known, the model can be written as a linear regression
model, and the model parameters estimated with a least-squares criterion. Based
on this, he proposed a method—Durbin’s first method—where the innovations are
first estimated as the residuals of a high-order AR-model, which are then used to
estimate the ARMA parameters using another least-squares criterion. This method
is not asymptotically efficient, which was remedied in (Mayne and Firoozan, 1982)
by filtering the output and the AR residuals with the inverse of the estimated MA-
polynomial obtained from Durbin’s first method, and then re-estimating the ARMA-
parameters. The asymptotic results in Mayne and Firoozan (1982) are not entirely
satisfactory, since they do not cover the situation where the number of parameters in
the AR model is a function of the number of available data samples, which is addressed
in Hannan and Kavalieris (1983). This type of method has become popular for vector
ARMA time series (e.g., Dufour and Jouini (2014) and references therein) due to their
computational and optimal statistical properties.

Durbin’s method will be extended for the identification of ARMAX dynamic network
models. The flexibility of the method allows to encode the network topology and
capture the noise correlations. A close relation between the introduced method and
the method of Weighted Null Space Fitting (WNSF) of (Galrinho et al., 2014) will be
shown. As a result the thorough asymptotic analysis in (Galrinho et al., 2017) can be
used to show the properties of the proposed method.

The chapter proceeds with a definition of the parametric network ARMAX model and
the identification algorithm in Section 7.2. Asymptotic properties of this algorithm are
investigated in Section 7.3. Issues regarding practical implementation and simulations
showing the performance of the algorithm are presented in Section 7.4. Finally possible
extensions are discussed and conclusions are drawn.

7.2 Sequential Least Squares algorithm

7.2.1 Parametric ARMAX network model

The network model set M defined in Definition 2.7 is assigned a specific parameteri-
zation. The parameterized rational transfer functions relate to matrix polynomialsG(q, θ) = D−1(q, θ)NG(q, θ),

H(q, θ) = D−1(q, θ)NH(q, θ),
R(q, θ) = D−1(q, θ)NR(q, θ),

 (7.1)

where D,NG, NH are proper polynomial matrices in q−1 of order np. In order for the
algorithm to work some restrictions must be introduced to the parameterization:
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• D(q, θ) is diagonal and monic,

• NG(q, θ) has zeros on the diagonal,

• NH(q, θ) is monic.

It is assumed that the network model set is globally network identifiable at M(q, θ0).

As D is diagonal, all transfer functions in one row of
[
G R H

]
have the same

poles. With adequate model order np this model structure is able to capture any data
generating network represented in (2.4). Hence it is not restrictive to assume that
there exists a parameter θ0 for which the model captures all dynamics in the network,
i.e. S = M(θ0).

It should be noted that the network ARMAX model is related to typical open-loop
MIMO ARMAX models of the form

A(q, θ)w(t) = B(q, θ)r(t) + C(q, θ)e(t). (7.2)

The network and open-loop models can be related through

D(q, θ)w(t) = NG(q, θ)w(t) +NR(q, θ)r(t) +NH(q, θ)e(t), (7.3)

such that
A = D −NG, B = NR, C = NH . (7.4)

Since NG(q, θ) has zeros on the diagonal and D(q, θ) is diagonal the parameters do not
mix in A. The network ARMAX and open-loop ARMAX models are typically used
in different ways, as the open-loop model is typically unstructured in contrast to the
network model that contains the network topology as a structure.

Due to the parameterization defined in (7.1) and the diagonal structure of D−1, the
zero-structure of G(q, θ) is the same as the zero-structure of NG(q, θ), i.e.

Gji(q, θ) = 0⇔ (NG)ji(q, θ) = 0. (7.5)

The same principle holds for the zero-structures of R,H and NR, NH . This implies
that when the zero-structure can be encoded in a standard ARMAX algorithm, then
this algorithm can be used to estimate network ARMAX models.

7.2.2 Step 1: ARX fitting of network dynamics

This step serves to make an initial estimate of the dynamics, without taking the
network structure into account. An ARX model structure is defined as

MA = {MA = (A(q, η), B(q, η)), η ∈ β} ,

where A and B are L × L proper polynomial matrices of order nA, and A(q, η) is
monic. This model is a parameterization of the open-loop response in the following
way

Twr(q, η) = A−1(q, η)B(q, η), Twe(q, η) = A−1(q, η). (7.6)
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Using this ARX model a prediction error is defined as

εA(t, η) = A(q, η)w(t)−B(q, η)r(t), (7.7)

and optimized with the weighted least squares criterion

η̂N = arg min
η∈β

1
N

N∑
t=1

εTA(t, η) QA εA(t, η) , QA > 0. (7.8)

This estimate has an analytical closed-form solution.

When the ARX estimate is consistent, we also have reconstructed the innovation of the
network as ε̂A(t) := εA(t, η̂N ). The error between the innovation and the reconstructed
innovation is denoted by

s(t) := e(t)− ε̂A(t) (7.9)

and will be used in the later steps of the algorithm.

7.2.3 Step 2: Reconstructed innovation as input

From (7.9), we notice that the innovation e(t) can be written as a sum of a known
signal ε̂A(t) and an unknown signal s(t). Substituting this into (2.4) yields

w = G0w +R0r +H0ε̂A +H0s. (7.10)

Since ε̂A(t) is known, it acts as an input in the above network formulation, while s
acts as the “new innovation”. Note that s(t) becomes smaller when the innovation is
estimated better. If the innovation is recovered exactly, s(t) = 0 for all time and the
above network essentially is noise-free and deterministic. The related prediction error
is

εs(t, θ) = H−1(q, θ)
(
(I −G(q, θ))w(t)−R(q, θ)r(t)

)
− εA(t, η̂N ). (7.11)

When observing from (7.1) that G(q, θ), H(q, θ), R(q, θ) share a common denominator
D(q, θ), the related prediction error is

εs(t, θ) = N−1
H (q, θ)εL2(t, θ), (7.12)

with

εL2(t, θ) = (D(q, θ) − NG(q, θ))w(t) − NR(q, θ)r(t) − NH(q, θ)εA(t, η̂N ). (7.13)

Note that D is diagonal and NG is 0 on the diagonal such that their parameterizations
do not mix. The estimated innovation ε̂A acts as an additional input, parameterized
with the same parameters as the noise model. The NH has the same structure as H,
and so structure restrictions from H also need to be encoded into NH . Polynomial
matrix NH is parameterized, and not its inverse, this means that structure restrictions
on NH can easily be parameterized in this estimation algorithm.

The relation between the original prediction error defined in (4.7) and new prediction
error is

εs(t, θ) = ε(t, θ)− ε̂A, (7.14)
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so εs is non-linear in the parameters just like ε. However, we note that εL2 is linear
in the parameters. Instead of optimizing over εs, estimation is defined as

θ̂
[2]
N = arg min

θ∈Θ

1
N

N∑
t=1

εTL2(t, θ) Q εL2(t, θ) , Q > 0, (7.15)

which has a closed-form solution in θ. An estimate of all the ARMAX polynomials is
obtained, including the numerator of the noise model NH . For SISO ARMA models,
(7.15) corresponds to Durbin’s first method (Durbin, 1960).

7.2.4 Step 3: Improve approximation

In step 2, an approximation of εs(t, θ) has been made in order to obtain a convex
criterion that yields an estimate of the parameters. Using the estimate of NH from
step 2, we can construct a new criterion to refine the parameter estimates. To do so,
we define a new approximation of εs(t, θ), where the parameterized term N−1

H (q, θ) is
replaced with the estimated version from the previous step. This can be done for one
step, or optionally in an iterative procedure as follows: For k ≥ 3 use:

εLk(t, θ) := N−1
H (q, θ̂[k−1]

N )εL2(t, θ). (7.16)

Then we can define criterion

θ̂
[k]
N = arg min

θ∈Θ

1
N

N∑
t=1

εTLk(t, θ) Q εLk(t, θ). (7.17)

The algorithm can be summarized as follows.

Algorithm 7.1.

1) Choose an ARX model set MA with model order nA, and a parametric
network model set M with model order n.

2) Solve the multivariable linear regression problem (7.8) with w as the output
and r as the input, while using model set MA.

3) Compute ε̂A = A(η̂N )w −B(η̂N )r.

4) Solve the linear regression problem (7.15) where w are the nodes and r and
ε̂A are the inputs, while using network model set M.

5) Set k = 3

6) Solve the linear regression problem (7.17) where the error of step 4) is pre-
filtered with N−1

H (q, θ̂k−1
N ), while using network model set M.

7) If no stopping criterion is reached, increase k by 1, and return to 6).

Some different stopping criteria maybe used for the algorithm above, for example
when ‖θ̂[k]

N − θ̂
[k−1]
N ‖2 is below a threshold value, or when a fixed number of iterations

is reached.
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7.2.5 Discussion

In most practical situations the ARX estimate can only be consistent when the model
order nA →∞. With finite data length the number of parameters can not be infinite
due to a lack of data. An approximation of the data generating system has to be made
by choosing an ARX model of high, but not infinite, order, which causes the estimated
innovation to be an approximation. The consequences of a finite ARX model order
are investigated in a later section.

The estimated innovation ε̂A is used as an input in every subsequent identification
step. Any difference between estimated and true innovation propagates through each
iteration of the algorithm. This has the undesired effect that the quality of the ARX
estimate limits the quality of the final parametric estimate.

In Algorithm 7.1 the ARX model is estimated first, and the next steps depend on
the estimated ARX model. But we are not directly interested in a high quality ARX
model, it only serves as an intermediate step to obtain a parametric ARMAX model.
A possible topic for further research is to perform a joint optimization of the ARX
and ARMAX models. The reason that joint optimization is interesting is that the
parametric restrictions imposed by the ARMAX model will reduce the variance of
the ARX model, which possibly improves the estimated model. After obtaining ini-
tial ARX and ARMAX estimates, this joint optimization is to jointly optimize the
functions

Vk(θ, η)= 1
N

N∑
t=1

εTLk(t, θ, η)QεLk(t, θ, η), and VA(η)= 1
N

N∑
t=1

εTA(t, η)QAεA(t, η)

(7.18)
with appropriate weighting. Setting the weight on the ARX objective function VA
to infinity would be equivalent to Algorithm 7.1. Note that εLk(t, θ, η) in this joint
optimization has bi-linear parameterization since the εA(t, η) would now be param-
eterized, causing multiplication of the η and θ parameters. An initial guess for the
obtained non-convex criterion is available from the Sequential Least Squares algorithm
as defined before.

7.3 Asymptotic properties

7.3.1 Sketch of consistency

Although informal, the following argument provides an intuition for consistency of
Algorithm 7.1. A reasoning is provided under the assumption that a consistent ARX
estimate is obtained. In that situation the ARX prediction error converges to the
innovation, i.e. εA(t, η̂N ) → e(t) with probability 1 for N → ∞. The estimated
innovation sequence is used as a known input in the ARMAX estimation step (7.15),
and the s(t) acts as the “new innovation”. We can investigate whether θ0 is a minimum
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of (7.15). When substituting the true network into εL2, we obtain the expression

εL2(t, θ) =
(
X(θ)NR(θ0)−NR(θ)

)
r(t)

+
(
X(θ)NH(θ0)−NH(θ)

)
ε̂A(t)

+ X(θ)NH(θ0)s(t),

(7.19)

driven only by external signals, with

X(θ) = (D(θ)−NG(θ))(D(θ0)−NG(θ0))−1. (7.20)

We can see that X = 1 when θ = θ0, and then the first two terms of (7.19) are 0, and
so εL2(t, θ0) = NH(θ0)s(t). Due to consistency of the ARX estimate,

s(t) = e(t)− εA(t, η̂N )→ 0, (7.21)

which implies that εL2(t, θ0)→ 0. Then, the cost function of (7.15) is 0 and minimized
by the true network θ0. When θ0 is also the only minimum of the cost function,
consistency can be proven.

7.3.2 Connection to WNSF

A more thorough way of showing consistency of Algorithm 7.1 is developed here by
relating Algorithm 7.1 to the WNSF algorithm (Galrinho et al., 2014). To this end
first the WNSF algorithm is defined, after which it is related to Algorithm 7.1 such
that then the asymptotic properties can be obtained.

The WNSF algorithm has been defined as an estimation algorithm for SISO systems
(Galrinho et al., 2014, 2017). Different parametric model structures can be handled by
WNSF, e.g. Output Error, Box-Jenkins and ARMAX. Here the ARMAX version of
WNSF will be formulated for the situation that there is one node w and one external
excitation, i.e. w ∈ R, r ∈ R. However the algorithm can also be applied for a situation
where one node is the output, and another node is the input, simply by labeling the
input as r.

As a first step an ARX model of order nA is estimated exactly as done in Section
7.2.2. The obtained ARX model is characterized by

A(ηA) ∈ R(q−1), B(ηB) ∈ R(q−1), (7.22)

where ηA ∈ RnA , ηB ∈ RnA+1. With sufficiently high order nA, the ARX model
captures the open-loop response of the network, i.e.

Twr(q) = B(q, ηB)
A(q, ηA) , Twe(q) = 1

A(q, ηA) , (7.23)

for some parameters ηA and ηB .
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An ARMAX network model is characterized as in (7.1), and this relates to an ARMAX
model as described in (7.4). With sufficiently high order np, the ARMAX model
captures the open-loop response of the network, i.e.

Twr(q) = B(q, θB)
A(q, θA) , Twe(q) = C(q, θC)

A(q, θA) , (7.24)

for some parameters θA, θB and θC . It would be possible to write the above equa-
tion in terms of D(θ), NG(θ), NR(θ), NH(θ), but this would make the notation in the
remainder of the section even more involved than it is. The WNSF is based on the
relation between the ARX and ARMAX models that follows from (7.23) and (7.24)

B(q, ηB)
A(q, ηA) = B(q, θB)

A(q, θA) , (7.25)

1
A(q, ηA) = C(q, θC)

A(q, θA) . (7.26)

By filling (7.26) in into (7.25) it is directly obtained that

C(q, θC)B(q, ηB)− B(q, θB) = 0. (7.27)

By multiplying with both denominators (7.26) is transformed into

C(q, θC)A(q, ηA)−A(q, θA) = 0. (7.28)

When the parameters ηA and ηB are given, or estimated beforehand, then (7.27) and
(7.28) are linear in the parameters θA, θB , θC . For each polynomial order in q−1 an
equation can be obtained that relates linearly to the parameters in θA, θB and θC ,
which is illustrated by writing the two equations in regression form. The polynomials
consist of terms that are multiplied with q0, · · · , qnA+np , and an equation will be
associated with each of these terms. The following notation will be used: Let T (x) be
a lower-triangular Toeplitz matrix whose first column is x. Then (7.27) is represented
by

T
([

ηB
0np×1

])[
1
θC

]
−
[

θB
0(nA)×1

]
= 0, (7.29)

where 0(nA×1) denotes a column vector of zero of dimension nA × 1, and where the
Toeplitz matrix is of dimension (1 + nA + np)× (np + 1), and (7.28) is represented by

T

 1
ηA

0np×1

[ 1
θC

]
−

 1
θA

0(nA)×1

 = 0, (7.30)

with the Toeplitz matrix also of dimension (1 + nA + np)× (np + 1). Now (7.29) and
(7.30) are written in regression form as

1
ηA

0np×1
ηB

0np×1

+


−T
([

1
0(nA+np)×1

])
0 T

 1
ηA

0np×1


0 −T

([
1

0(nA+np)×1

])
T
([

ηB
0np×1

])


︸ ︷︷ ︸
:=Q(η)


1
θA
θB
θC

=0,

(7.31)
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where the term
[
1 ηTA 0Tnp×1 ηTB 0Tnp×1

]T is of dimension 2(nA + np + 1)× 1.
Let the residual εη of dimension 2(nA + np + 1)× 1 denote

εη(η, θ) :=


1
ηA

0np×1
ηB

0np×1

+Q(η)


1
θA
θB
θC

 . (7.32)

Then the regression form is related to (7.27) and (7.28) via

εTη (η, θ)
[
ρ 0
0 ρ

]
=
[
C(q, θC)A(q, ηA)−A(q, θA) C(q, θC)B(q, ηB)− B(q, θB)

]
,

(7.33)
where ρ =

[
1 q−1 · · · q−nA−np

]T .
The WNSF estimation is then defined as an optimization over θ of the residual εη
with the estimated η̂ as an argument

θ̂
[k]
WNSF = arg min

θ∈Θ
εTη (η̂N , θ)W (θ̂[k−1]

N )εη(η̂N , θ), (7.34)

where W (θ̂[k−1]
WNSF ) is an appropriate weight that depends on the previous estimate

θ̂
[k−1]
N or an initialization. The weight W (θ) is defined as follows

W (θ) := T−1
C (θ)PT−TC (θ), (7.35)

where

TC(θ) :=


T

 1
θC

0nA×1

 0

0 T

 1
θC

0nA×1



 , (7.36)

with the Toeplitz matrices of dimension (1 + nA + np)× (1 + nA + np), and where

P = 1
N

N∑
t=1

[
ρ 0
0 ρ

]T [
w(t)
r(t)

] [
wT (t) rT (t)

] [ρ 0
0 ρ

]
. (7.37)

The interpretation of P is a weighting with the data spectrum. The interpretation of
T−1
C is a weighting with the inverse of C, which is made on the basis of the previous

estimate. It should be noted that the toeplitz matrix in T−1
C corresponds to a filter

constructed from the first nA+np+1 impulse response coefficients of C−1. This means
that there is a small approximation of the filter C−1 due to truncation, but when the
order nA + np + 1 is large enough this error is insignificant, and it disappears when
the ARX order nA →∞.
As an initialization an initial weight must be chosen, for example

W = I, (7.38)
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as a pure least square estimator, or

W (0) = P (7.39)

to weight the data spectrum in the estimate. The WNSF algorithm can then be
summarized in the following algorithm.

Algorithm 7.2 (SISO WNSF ARMAX). Let there be one node w that acts as
output and one external variable r that acts as input.

1) Choose an ARX model set MA with model order nA, and a parametric
network model set M with model order n.

2) Solve the multivariable linear regression problem (7.8) with w as the output
and r as the input, while using model set MA.

3) Set k = 2 and compute the initial weight as either (7.38) or (7.39).

4) Increase k by 1.

5) Solve the linear regression problem (7.34) with the computed weight.

7) If not converged, compute W (θ̂[k]
WNSF ) from (7.35) and return to 4).

Now that the WNSF algorithm is defined, the equivalence relation with the Seqential
Least Squares algorithm can be shown.

Proposition 7.3. Consider estimates obtained by Sequential Least Squares in
Algorithm 7.1 and Weighted NullSpace Fitting in Algorithm 7.2 when initialized
by (7.39) for a ”SISO” network with precisely one node w1 and one external
excitation r1.

1. The initial estimates are equal, i.e.

θ̂
[2]
N = θ̂

[2]
WNSF . (7.40)

2. The further iterations are approximately equal, i.e.

θ̂
[k]
N ≈ θ̂

[k]
WNSF , k ≥ 3, (7.41)

due to truncation of the impulse response of C−1(θ̂[k−1]
WNSF ) in the WNSF

estimate.

Proof. Provided in Appendix 7.6.1. �

The impact of truncation of the impulse response of C−1(θ̂[k−1]
N ) is negligible in practice,

as the values are nearly 0 at the point of truncation. This difference has been treated in
(Galrinho, 2016) for OE models. Moreover when nA+np+ 1→∞ then the difference
disappears.
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Equivalence of Algorithm 7.2 and Algorithm 7.1 has some implications. Due to the
equality relations derived in Proposition 7.3, for a SISO situation step 2 of SLS is a
consistent estimate, and step 3 is an asymptotically efficient estimate. This is unlike
other iterative methods, e.g. MORSM (Everitt, 2017), where an infinite number of
iterations are required in order to obtain consistency.

Despite the equivalence relations between SLS and WNSF there is added value in the
SLS algorithm. SLS serves as an alternative interpretation of the WNSF algorithm,
and this interpretation shows how WNSF is connected to the non-convex prediction
error criterion. In terms of execution the SLS may not require the explicit computation
of C−1 if the errors are implicitly filtered by this inverse, whereas in WNSF the impulse
response of C−1 is explicitly used in the weight of the third step. Moreover SLS can
be executed by sequentially calling the ARX() command in Matlab, although with
different model sets and signals in each call.

Given that Algorithm 7.1 is asymptotically the same as WNSF in the SISO situation,
consistency and asymptotic efficiency in the MIMO situation follow from extending
the results of Proposition 7.3 and the asymptotic analysis in (Galrinho et al., 2017) to
MIMO ARMAX models. This extension is left as a future work.

7.4 Implementation issues and simulations

7.4.1 Selection of ARX order

For typical networks the order of the ARX model must go to infinity in order to obtain
consistent estimates. In practice a data set is of finite length, and so an infinite model
order is not feasible. There will be bias, and there will be variance, so it is necessary to
tune the order of the ARX model such that a satisfactory trade-off is achieved between
bias and variance.

The error of the ARX model, either in bias or variance, can directly be observed in
σ2
s , the power of s(t). When the number of parameters is 0, then ε̂A(t) = w(t) and

there is a large bias error in σ2
s . On the other hand when the number of parameters

is N , then ε̂A(t) = 0 and there is a large variance error σ2
s . Computing the optimal

σ2
s is not possible from just estimation data, since it requires knowledge of the true

innovation sequence. Therefore a method is required that performs the bias-variance
trade-off for us in a smart way.

One way of choosing the ARX order is by checking whether the residuals pass a corre-
lation test, and if not then increase the order. This iterative procedure of model order
selection may be time consuming, and depends on user knowledge and experience. In
order to prevent manual tuning we will only consider systematic methods to select
the ARX order. In particular we consider Akaike’s Information Criterion (AIC), and
selecting the optimal ARX order on the basis of the PEM criterion. More formally
the AIC criterion is the minimization of

AIC(n) = log
(

1
N

N∑
t=1

ε2
A(t, η)

)
+ n

N
, (7.42)
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where n = dim(η) is the number of parameters in the ARX model. The function
AIC(n) can be minimized by repeating step 1 of Algorithm 7.1 for different model
orders nA. Alternatively the algorithm steps 2 and 3 can be applied for every model
order nA, after which the performance of the ARMAX models is evaluated on

V (nA) = 1
N

N∑
t=1

εT (t, θ̂(nA)) Q ε(t, θ̂(nA)), (7.43)

where θ̂(nA) is the estimate in Step 3 that belongs to the ARX model of order nA. The
optimal model order nA is the one that minimizes V (θ̂(nA)). A difference between the
two methods is that with AIC the order of the ARX model can be determined without
performing the ARMAX modeling steps, saving computational load. Differences in
performance for these two selection methods are illustrated in simulation.

w2 w3

w1

G12 G21

G13

v2

G32

v1

v3

Figure 7.1: A 3 node network used for simulations.

The network used to evaluate the performance of the order selection methods is de-
picted in Figure 7.1. The data generating network model is described by the model
M0 = (G0, H0,Λ0), which has the following dynamics

G320 = q−1 + 0.5q−2

1− 0.5q−1 + 0.2q−2 , H0
33 = 1− 0.6q−1

1− 0.85q−1 ,

G0
21 = 0.4q−1 − 0.2q−2

1 + 0.4q−1 − 0.5q−2 , H0
22 = 1− 0.3q−1

1− 0.9q−1 ,

G0
13 = 0.8q−1

1− 0.3q−1 , H0
11 = 1 + 0.5q−1

1− 0.7q−1 ,

G0
12 = −0.7q−1

1− 0.7q−1 ,

and Λ = I. Since H is diagonal, the joint-direct method consists of 3 separate MISO
problems that can be solved separately. The measure to evaluate performance of the
order selection methods is how well module G0

32 is estimated. Performance is evaluated
by testing the fit of the impulse response onto the true impulse response, i.e. using
the fit ratio defined by

fg(θ) = 1− ‖g(θ0)− g(θ)‖2
‖g(θ0)‖2

, (7.44)
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where g is the impulse response of a module. A 3rd order ARMAX model is estimated
for node 3, which can exactly capture the data generating system M0, N = 1000
datapoints are available, and 100 Monte-Carlo runs are performed.

The ARX order of the model is varied from 3 to 50 and the 10th iteration of Algorithm
7.1 is used to determine a model for every ARX order. Using the two criteria (7.42)
and (7.43) the best models are selected. In Figure 7.2 the fit onto the true module
is compared between the two selection methods and the model estimated by ARMAX()
initialized in the true network. It can be concluded that selection of the ARX order by
the PEM criterion (7.43) is the better selection method, and for this example system
no further improvement seems possible for ARX order selection. When selecting the
ARX order by the AIC criterion the performance deteriorates slightly. However there
may be some value in the AIC selection method due to the lower computational load.
When α denotes the number of different orders that are to be selected, and β is the
number of iterations to estimate the ARMAX model, then with the order selection
based on AIC only α least squares problems have to be solved, while with the PEM
criterion α(1 + β) least squares problems have to be solved.

AIC V ARMAX oracle
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94

96

98

fit

Figure 7.2: Boxplot to compare ARX order selection methods on the basis of the fit of
module G0

32. Left) Order selection by AIC criterion, Middle) Order selection by PEM
criterion, Right) Benchmark with Matlab’s ARMAX() algorithm initialized at the data
generating system as comparison.

Remark 7.4. In Algorithms 7.1 and 7.2 there is no guarantee on stability of N−1
H .

An unstable N−1
H will lead to bad estimates in step 3 and further iterations. For

most selections of ARX order nA the algorithms result in a stable N−1
H , but for some

selections of the ARX order an unstable result is obtained. Models with unstable N−1
H

lead to a large value in the PEM criterion, and consequently the ARX orders that lead
to unstable models are not chosen as the final estimate.
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7.4.2 Selection of iteration

This section is dedicated to the iterations that Algorithm 7.1 can perform, in order to
improve estimates. At k = 3 the estimate obtained in 6) of Algorithm 7.1 is asymp-
totically efficient, and it is claimed that further iterations can improve the estimate.
A simulation is performed to verify this claim.

Simulations using the network model M0 in the previous section as data generating
system are performed. For these simulations the order of the ARX model is fixed at a
sufficiently high order nA = 35. Now estimates are made on different data lengths, to
evaluate the convergence of the error. For each different data length N , 100 Monte-
Carlo runs are performed. As the performance measure, the difference in impulse
response between estimate and true module is averaged over the 100 Monte-Carlo
runs, i.e.

MSE(N) = 1
100

100∑
i=1
‖g(θ0)− g(θi(N))‖2, (7.45)

where θi(N) indicates the estimated for the i-th Monte-Carlo run for data length N .
Fig. 7.3 shows the resulting average MSE per data length N for the 2nd, 3rd and
20-th iteration of Algorithm 7.1, and for the joint-direct estimate computed by the
Matlab algorithm armax() using the true system as initialization.

103 104

N

10-2

10-1

M
S
E

Figure 7.3: MSE over 100 Monte-Carlo runs plotted against data length N . Blue:
Step 2, Red: Step 3, Yellow: 20-th iteration, and Purple: the joint direct method.

For small numbers of data N , Algorithm 7.1 has a slightly higher MSE than the joint
direct method on average. Increasing N leads to improved models for each step of
the algorithm. Around N = 3 · 104, step 3 has the same MSE as PEM, and around
N = 6 · 103 the 20-th iteration has the same MSE as PEM. On average continued
iterations improve the estimate of the algorithm. The point of these simulations is
to show that Algorithm 7.1 is a close approximation of the non-convex optimization
problem, even for small data sets.
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Remark 7.5. A comparison between the SLS and WNSF algorithms has been made
by estimating models with Algorithm 7.2, with initial weight P , on the basis of the
same data sets as used in Figure 7.3. The MSE of the models estimated with WNSF
for step 2,3 and iteration 10 result in an MSE plot that is indistinguishable from the
plot depicted in Figure 7.3. On the basis of this we conclude that the WNSF and SLS
algorithms is negligible in practice.

 3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21

iteration k
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Figure 7.4: Boxplot depicting the improvement of (7.46) over the iterations k. Nega-
tive values are an improvement.

We can check convergence of the iterations by evaluating the PEM criterion

V (k) = 1
N

N∑
t=1

εT (t, θ̂[k]) Q ε(t, θ̂[k]) (7.46)

for each iteration k. Step 2 of Algorithm 7.1 is indicated as k = 2, and Step 3 and
further iterations with k ≥ 3. Improvement in cost (7.46) is defined with

∆(k) = V (k)− V (k − 1), (7.47)

so when ∆(k) < 0 then the cost is improving. Results are plotted for k ≥ 3 in Figure
7.4. In the plot it is observed that in median the cost improves each iteration until
convergence.

There are however a few instances where iterations make the model perform worse
in criterion (7.46). From experience, this happens particularly when the ARX order
is too large. Despite our best effort to select an appropriate ARX order, we can not
guarantee that the optimal one is selected. Therefore it seems beneficial to select
the iteration that has the best performance using the PEM criterion. In the current
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situation with nA = 35, the best iteration is selected using (7.46), and compared to
the performance of the final iteration in Figure 7.5. The conclusion is that selecting
the best iteration leads to a slight improvement of the fit, but the gain is marginal.

iter max iter best ARMAX oracle
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Figure 7.5: Boxplot to compare the final iteration to the iteration selected by criterion
(7.46). On the left is the final iteration, in the middle is the best iteration by the
criterion, and on the right is the benchmark ARMAX() algorithm.

7.4.3 Comparison of methods on a MISO problem

In order to show that the algorithm is competitive with some benchmark algorithms
in a multi-input setting we include an estimation of a more challenging 5 node network
with randomly generated dynamics. The objective is to estimate G0

12 in the network
shown in Figure 7.6 in a MISO setting with a fixed number of samples N = 1000. In
each Monte-Carlo run, the modules are randomly generated with restrictions:

• Modules are randomly generated by drss(). Modules are of 2nd order, with all
poles within |z| < 0.9 and ‖G(z)‖H′2 = 0.5, and all modules on a row of G0 or
H0 share the same poles.

• The closed-loop transfer T 0(z) and the predictor filters W 0(z) have their poles
within |z| < 0.95.

• The noise filter H0 is diagonal and Λ0 = I.

The network ARMAX model of order 2 defined in (7.1) is used with the same topology
as the network, and with diagonal H. Models are estimated with:
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...

Figure 7.6: An L = 5 node network used for simulations.

• Algorithm 7.1 with order and iteration selection.

• The SSARX subspace identification algorithm implemented in Matlab as part of
the n4sid() function.

• PEM, with the armax() algorithm of Matlab with standard initialization.

• PEM, with the armax() algorithm of Matlab with the true system as initializa-
tion.

In total 100 Monte-Carlo runs are performed, and the resulting fit of module G12
is shown in Fig. 7.7. The PEM algorithm starts to struggle with these 4 inputs,
but overall the performance of the 4 algorithms is competitive. We conclude that
Algorithm 7.1 is suitable for extension to MISO and MIMO, and therefore suitable
for use in dynamic networks. SSARX has a slightly better performance than the
other algorithms. But as discussed in the introduction, SSARX can not incorporate
the network topology in a MIMO estimation setting and is therefore not suitable for
identification of a full network.

Algorithm 1 SSARX PEM PEM oracle
0

20

40

60

80

100

fit

Figure 7.7: Fit ofG12 for 100 randomly generated systems and data sets for: Algorithm
7.1, SSARX, PEM with standard initialization, PEM initialized by true system.
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7.4.4 Estimation with correlated noise

Algorithm 7.1 is presented as a method that can estimate networks where noises are
correlated. The network depicted in Figure 7.8 with dynamics

G12 = 0.3q−1 − 0.5q−2

1− 0.7q−1 + 0.2q−2 , G21 = 0.4q−1 − 0.2q−2

1− 0.4q−1 + 0.8q−2 ,

H11 = 1− 0.85q−1

1− 0.7q−1 + 0.2q−2 , H21 = 0.2q−1 + 0.6q−2

1− 0.4q−1 + 0.8q−2 ,

H12 = −0.6q−1 + 0.8q−2

1− 0.7q−1 + 0.2q−2 , H22 = 1− 0.3q−1 + 0.3q−2

1− 0.4q−1 + 0.8q−2 ,

R11 = 1
1− 0.7q−1 + 0.2q−2 , R22 = 1

1− 0.4q−1 + 0.8q−2 ,

will be simulated such that the estimation performance in the situation of colored and
correlated process noise can be tested. Note that in this system the transfer functions
on each row have the same denominator, i.e. it is of network ARMAX form. The r1,
r2, e1 and e2 are mutually uncorrelated white noise of equal power. With this network
100 data sets are generated with random noise and external variable realizations.

w2

w1

G12 G21

v1

v2
H22

H11e1

e2

H12

H21

r2

r1
+

+ R22

R11

Figure 7.8: Network of 2 nodes with correlated process noise.

Performance of some different estimation methods is tested on the data sets, namely

• Algorithm 7.1 with a network ARMAX model of the same structure as the true
network, i.e.

M =
(
G =

[
0 G12
G21 0

]
, R =

[
R11 0
0 R22

]
, H =

[
H11 H12
H21 H22

]
,Λ = I

)
. (7.48)

The ARX model is of order 15 and the estimates obtained in steps k = 2 and
k = 3 are evaluated. The ARMAX model is of order 2.

• The generalized Instrumental Variable method for dynamic networks (Dankers
et al., 2015) is used in a 2-input-1-output setting for each node, i.e. r1, w2 → w1
and r2, w1 → w2. For this method a MISO ARMAX model of order 2 is used.
As instrument both r1 and r2 and up to 40 samples of their past are used.
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• Direct estimation using the ARMAX() algorithm. The model structure is charac-
terized by

A =
[
D11 NG12
NG21 D22

]
,B =

[
NR11 0

0 NR22

]
, C =

[
NH11 0

0 NH22

]
, (7.49)

where A and C are of 2nd order, and B contains only a gain. The diagonal
C is used for the reason that Matlab’s ARMAX() algorithm can not handle non-
diagonal C. For this method the network model can not fully capture the true
network.

• Direct estimation using the SSARX algorithm is performed by estimating two
separate 2-input-1-output models, i.e. r1, w2 → w1 and r2, w1 → w2.

From these methods Algorithm 7.1 and the generalized IV are consistent, while the
other two methods are biased due to not properly modeling the noise. The selected
model orders lead to the best fit compared to larger and smaller model orders.

The SSARX algorithm can not encode the network topology in a MIMO setting, in par-
ticular the 0 entries in R0 can not be enforced, which would lead to non-identifiability.
Therefore the SSARX is applied as two separate MISO identifications, which leads to
bias.

The results of the estimation of modules G12 and G21 are plotted in Figures 7.9a
and 7.9b respectively. In these plots the fit of the original transfer function is plotted
for each estimation method. As can be expected the two biased methods have poor
performance. Generalized IV has acceptable performance, but suffers from a large
variance error. Algorithm 7.1 performs well, the asymptotically efficient step 3 shows
an improvement over the consistent step 2.

7.5 Conclusions

7.5.1 Conclusions

For the general dynamic network identification problem that includes correlated noises
there are a few algorithms available in literature. These algorithms are however not
satisfactory in the sense that they do not minimize variance of the estimate. A Se-
quential Least Squares algorithm is introduced that asymptotically in the number of
data points leads to efficient estimates. This algorithm consists of a sequence of least
squares problems to be solved, which makes it computationally attractive since there
is an explicit solution and local minima are avoided.

7.5.2 Extensions

In Algorithm 7.1 an ARX model is used where each polynomial is of the same order.
Systems may best be modeled by different order polynomials for the A and B matrices,
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Figure 7.9: Fit for module G12 (left) and module G21 (right). Each boxplot corre-
sponds to one method, from left to right the methods are step 2 and step 3 of Algorithm
7.1, the generalized IV method, direct estimation by the ARMAX() algorithm, and the
SSARX algorithm.

or even different order polynomials for individual elements of A and B. When the data
generating system has different orders for the polynomials, then using the ARX model
defined in Algorithm 7.1 introduces either bias or variance error.
When the order of the ARX is the same in every polynomial, then selection over the
best order is straightforward to compute. However when for every element of A and B
an order must be determined, then order selection becomes computationally heavy. In
such a situation one can resort to some heuristic selection algorithm to select individual
orders. Or alternatively a regularization scheme can be employed to avoid the order
selection problem altogether.
Another possible extension is the use of non-convex optimizations to improve the ob-
tained estimates. The obvious candidate is to use the estimate obtained by Algorithm
7.1 as an initialization to the non-convex joint-direct criterion.

7.6 Appendix

7.6.1 Proof of Proposition 7.3

The proof proceeds by showing that the SLS estimate W (θ̂[k]
N ) can be written with the

same expression as the WNSF estimate W (θ̂[k]
WNSF ) for the initial estimate, and after

that for the following iterations. From (7.15) the SLS estimator’s initial estimate is
obtained and restated here

θ̂
[2]
N = arg min

θ∈Θ

1
N

N∑
t=1

εTL2(t, θ) Q εL2(t, θ) , Q > 0. (7.50)
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The εL2 expression can after substitution of (7.4) be written as

εL2(t, θ) = A(q, θ)w(t)− B(q, θ)r(t)− C(q, θ)εA(t, η̂N ). (7.51)

When the expression (7.7) for the εA is substituted it is obtained that

εL2(t, θ) =
[
A(q, θ)− C(q, θ)A(q, η̂N ) C(q, θ)B(q, η̂N )− B(q, θ)

] [w(t)
r(t)

]
. (7.52)

Using (7.33) and (7.32) this can be written as

εL2(t, θ) = εTη (η, θ)
[
ρ 0
0 ρ

]T [
w(t)
r(t)

]
. (7.53)

Since εL2 is scalar for the SISO case, then the SLS estimate can be written as

θ̂
[2]
N = arg min

θ∈Θ

1
N

N∑
t=1

(
εTη (η, θ)

[
ρ 0
0 ρ

]T [
w(t)
r(t)

])2

. (7.54)

This can be written as a weighted estimate as

θ̂
[2]
N = arg min

θ∈Θ
εTη (η, θ)

(
1
N

N∑
t=1

[
ρ 0
0 ρ

]T[
w(t)
r(t)

] [
wT (t) rT (t)

][ρ 0
0 ρ

])
εη(η, θ).

(7.55)
This then shows that the estimate is equal to the WNSF estimate θ̂[2]

WNSF with the
weight defined by W = P defined by (7.37).

In the further iterations of the SLS an additional weight is included in the estimator,
the new criterion is given by (7.17)

θ̂
[k]
N = arg min

θ∈Θ

1
N

N∑
t=1

εTLk(t, θ) Q εLk(t, θ), (7.56)

with
εLk(t, θ) := N−1

H (q, θ̂[k−1]
N )εL(k−1)(t, θ). (7.57)

Now the linear regression can be extended with an additional noise model, and to this
end (7.33) is extended. The linear regression εη(η, θ) is then pre-multiplied with[

T (c) 0
0 T (c)

]
, (7.58)

where c is a column vector containing the impulse response of C−1(q, θ[k−1]
C ), implying

that the dimension of T (c) is∞× (nA +np + 1). Then the filter of εLk can be written
as

εTη (η, θ)
[
T (c) 0

0 T (c)

]T [
ρ∞ 0
0 ρ∞

]
= ·

· C−1(q, θ[k−1]
C )

[
C(q, θC)A(q, ηA)−A(q, θA) C(q, θC)B(q, ηB)− B(q, θB)

]
,

(7.59)
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where ρ∞ =
[
1 q−1 · · · q−∞

]T .

An approximation can be made by truncating the impulse response of C−1(q, θ[k−1]
C )

at (nA + np + 1) parameters, i.e.

[
T (c) 0

0 T (c)

]
≈


T

 1
θ

[k−1]
C

0nA×1

 0

0 T

 1
θ

[k−1]
C

0nA×1





−1

= T−1
C (θ[k−1]

C ), (7.60)

where the dimension of TC is 2(nA + np + 1)× 2(nA + np + 1). Then the filter is

εTη (η, θ)T−TC (θ[k−1]
C )

[
ρ 0
0 ρ

]
= ·

· C−1(q, θ[k−1]
C )

[
C(q, θC)A(q, ηA)−A(q, θA) C(q, θC)B(q, ηB)− B(q, θB)

]
,

(7.61)

For the estimation the following is then obtained

θ̂
[k]
N = arg min

θ∈Θ
εTη (η, θ)T−TC (θ[k−1]

C )PT−1
C (θ[k−1]

C )εη(η, θ), (7.62)

where

P =
(

1
N

N∑
t=1

[
ρ 0
0 ρ

]T [
w(t)
r(t)

] [
wT (t) rT (t)

] [ρ 0
0 ρ

])
, (7.63)

which is exactly the WNSF estimator θ̂[k]
WNSF . �





8 Conclusions

8.1 Answer to the research question

The need to reduce greenhouse gas emissions, modernization of the electricity grid,
and other engineering challenges have created a need to further advance knowledge of
dynamical systems. For various purposes such as analysis of a system or control design
there is a need for high quality models of the dynamical behavior as well as the internal
structure of the system. Modern systems often consist of multiple interconnected sub-
systems, which can be modeled as a dynamic network. The research question answered
in this thesis is under which conditions dynamic network models can efficiently be
estimated. A discussion of the main contributions to answering the research question
is provided next.

Network identifiability

Contrary to open-loop and closed-loop system, the experimental setup of a dynamic
network is flexible, and multiple network topologies may describe the same dynamical
system. The original intention of the identifiability study has been to find conditions
under which different network topologies can be distinguished in a topology detection
problem. It quickly became clear that the presence and modeled location of external
signals is critical to be able to distinguish between different network topologies. This
eventually led to conditions on the modeled experimental setup, which need to be
satisfied in order to distinguish between different networks.

The main concept of network identifiability has been introduced as a concept that tells
us that network models can be distinguished from each other. Network identifiability
is a property of a set of network models that describes that module dynamics and
topology are uniquely represented within the model set, which makes it a different
type of identifiability that is not focused on parameters. Network identifiability is a

171
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necessary condition for the consistent estimation of networks, and conditions under
which networks are identifiable have been obtained. Requiring that every node has
an independent external excitation or noise source is sufficient to guarantee network
identifiability, but also conservative. Non-conservative conditions have been derived,
which allows us to check the identifiability of any dynamic network model set. Relaxed
conditions for the identifiability of just a single module have been formulated, which
become relevant when the objective is to identify only a single module. The conditions
for identifiability can generically be checked on the basis the modeled network topology.

Any traditional MIMO system can be modeled as a dynamic network, and the user
can choose the modeled network structure regardless of the structure of the data
generating network. The user can select a structure that either matches the physical
structure, that is beneficial for identification, or beneficial for control purposes. In fact
a traditional MIMO model is one special case of the dynamic network model.

Joint-direct method

An investigation into algebraic loops triggered the realization that we need to consider
MIMO predictors. It then became clear that confounding variables can be modeled as
correlated disturbances and included in the predictor. The main identification method
introduced in this thesis, the joint-direct method, has been the natural follow-up of
the MIMO predictor.

The joint-direct method is an asymptotically efficient identification method, which
is applicable to any experimental setup. In particular the joint-direct method can
identify networks where noises are correlated and rank-reduced, and it can identify
networks that contain algebraic loops. Correlated disturbances are taken care of by
jointly predicting all node signals, and modeling a multivariable noise model. Rank-
reduced noises may be modeled with non-square noise models, and estimated with a
constrained criterion, which can be relaxed to an unconstrained criterion. Algebraic
loops are also taken care of by jointly predicting all node signals, and by making ex-
plicit use of external excitations to uniquely determine all the feedthrough terms. All
these situations lead to consistency and asymptotic efficiency under certain conditions.
One of the main conditions for consistency of the joint-direct method is network iden-
tifiability. Another important condition, the informativity of data, i.e. the sufficient
excitation of all relevant dynamics, has been assumed to hold, but this requires further
investigation. The variance of estimates obtained with the joint-direct method asymp-
totically reaches the Cramér-Rao lower bound. In particular for the rank-reduced noise
situation, the Cramér-Rao lower bound has been reformulated in order to show that
this bound is reached.

In practical situations it is easy to come up with reasons why noises are correlated,
for example a wind disturbance that affects multiple position measurements. Network
models for such practical scenario’s can be identified with the joint-direct method,
while many other methods in literature are not able to handle these practical situations
in a satisfactory way.

For estimation problems that involve algebraic loops, typically indirect methods are
formulated that do not minimize the variance. A direct method for the situation that
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noise is full rank has been formulated. This method makes use of external excitations
only to provide uniqueness of the feedthrough terms involved in the algebraic loop,
and not to de-correlate noises. Utilizing the excitation provided by process noise is the
main reason why the joint-direct method improves the variance compared to indirect
methods.

Single module identification

In practical situations one may need only part of a dynamic network model, for ex-
ample to analyze the local behavior or develop a local controller. For this reason it
is interesting to be able to identify part of a network, or a single module in particu-
lar. To model a single module we typically do not need to measure all nodes. The
problem of which nodes need to be included in a network description such that the
module of interest can be identified has been investigated on the basis of the concept
of immersion. Immersion is a method that removes nodes from a network description
while leaving the other nodes and dynamics invariant. When the module of interest is
left invariant after immersion, then the removed nodes are not needed for consistent
identification of the module.

It turns out that immersion is just one way of removing nodes from a network de-
scription, as there is also the indirect inputs method that can remove nodes. This has
lead to the notion of abstraction, which is a generalization of the immersion method
and the indirect inputs method. In this way an abstracted network description can be
determined that includes only a selected set of nodes. Conditions under which abstrac-
tion leaves the dynamics of a module of interest invariant, and conditions under which
this module is also identifiable in the abstracted network have been obtained. Under
those conditions the module of interest may be identified on the basis of the selected
nodes. An insight obtained is that not only a set of input nodes must be selected in
the local modeling procedure, but also a set of output nodes must be selected.

Sequential Least Squares algorithm

Efficient algorithms are required in order to bring network identification techniques
into practice. The joint-direct method is formulated for simultaneous identification of
all modules in a network by a typically non-convex cost function. In particular for
large-scale networks it is desirable to avoid non-convex optimization schemes. Being
able to encode the network topology into the algorithm is required for the joint-direct
method, which is not possible in typical identification algorithms.

An algorithm based on a sequential application of least squares estimations has been
introduced as an approximation of the joint-direct method. This algorithm can encode
the network topology, and this includes the correlation structure of noises. Moreover,
the algorithm leads to asymptotically efficient estimates while avoiding local minima.
Since every step of the algorithm is based on linear regression, it is expected that this
algorithm can scale well to large-scale networks.

The Sequential Least Squares algorithm is suited for identification of a part of a
network, or of a single module. For example a network identification problem where
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noises are uncorrelated can be split into a MISO identification problem for each node,
and this is straightforward to identify with the algorithm.

Global research question

Reflecting back onto the global research question, under certain conditions it is pos-
sible to efficiently estimate all modules in a network with prediction error methods.
The main conditions are that a network model set is network identifiable, which is
essentially a condition on the modeled network topology, and the data should contain
sufficient information. Identifying a particular module of interest is also possible under
some conditions on the network topology, although there is still much work to be done
in this identification problem. A solid theoretical basis has been formed that may be
extended to the identification of single modules, the identification of topology, or other
problems.

8.2 Recommendations for future research

8.2.1 Informativity of data

A limitation of the theory presented in this thesis is that the data has been treated as
if it is informative, which has allowed us to avoid investigating informativity of data in
detail. In the joint-direct method some nodes may be used both as input and as output
simultaneously, which leads to the fundamental question what data informativity is
for dynamic networks, and how to check it. Analysis of informativity is connected to
the identifiability analysis that has been carried out, and that is likely to be a good
starting point for future research. Informativity for identification of local modules is
an interesting topic in the sense that conditions can be relaxed considerably compared
to the full network situation, as only the module of interest needs to be uniquely
identified and therefore the only module that needs to be sufficiently excited.

When the requirements for informativity have been determined, then this topic may be
continued with an investigation into experiment design. Where to excite the network
such that variance of a module, or modules, is minimized is a question that remains
open.

8.2.2 Topology detection

Identification of a dynamic network under the assumption that the interconnection
structure is unknown is a possible extension of the problem setting of this thesis.
Bayesian estimation techniques are a promising direction that may be able to iden-
tify the interconnection structure along with the network dynamics. The Bayesian
identification techniques are related to regularized identification techniques that use
impulse response models for the dynamics. Introducing dynamic network models with
colored and correlated noise in the Bayesian estimation problem may lead to topology



8.2. Recommendations for future research 175

detection schemes that function under rather general assumptions on the experimental
setup. An additional benefit of the regularized identification techniques is that the
model order of modules does not have to be chosen, as the modules are modeled as
impulse responses.

8.2.3 Non-linear models

Only linear models and systems have been treated in this thesis. Some common
non-linear phenomena such as static friction or saturation can not be captured by
linear models. An extension that is relevant for practical identification problems is
the inclusion of non-linear dynamics into the modules. Adding non-linear dynamics
can be achieved for example by multiplying each linear module with a static non-
linearity, although other approaches such a linear-parameter-varying models may be
just as valid. Due to the ability of the network to keep dynamics induced by a non-
linear component localized around that component, the non-linearities may be added
to only a few modules, such that the identification problem is kept relatively simple. A
question that then arises is where to model the non-linearities, and whether modules
can remain as being single-input-single-output.

8.2.4 Local identification

The research topic of identifying a single module in a network is far from exhausted.
In literature on single module identification the focus has been on choosing the appro-
priate inputs, but one of the realizations from this thesis is that additional outputs
may need to be modeled. Thorough investigation of which nodes are to be used as
inputs and/or outputs, how the abstracted network structure is modeled, and what
kind of information needs to be present in data is required in future research.

A requirement imposed in this thesis has been that the module of interest remains
invariant under abstraction, but that is not a strict requirement for consistent identi-
fication. It may be that the module of interest can be identified in an indirect way by
combining the knowledge of two or more modules present in the abstracted network.
This points to the question whether a module is identifiable on the basis of a subset
of node signals.
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erani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke,
et al. Trends in microgrid control. IEEE Transactions on smart grid, 5(4):1905–
1919, 2014.

J. Pearl. Causality. Cambridge University Press, 2009.
C. R. Rao. Information and accuracy attainable in the estimation of statistical pa-

rameters. Bulletin of the Calcutta Mathematical Society, 37:81–91, 1945.
C. R. Rao. Linear statistical inference and its applications. Wiley, London, 2nd edition,

1973.
C. R. Rojas and H. Hjalmarsson. Sparse estimation based on a validation criterion.

In Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, pages 2825–2830. IEEE, 2011.

B. M. Sanandaji, T. L. Vincent, and M. B. Wakin. Exact topology identification
of large-scale interconnected dynamical systems from compressive observations. In
American Control Conference, pages 649–656, San Francisco, CA, USA, 2011.

B. M. Sanandaji, T. L. Vincent, and M. B. Wakin. A review of sufficient conditions
for structure identification in interconnected systems. In 16th IFAC Symposium on
System Identification, pages 1623–1628, 2012.
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