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Samenvatting

Identifiability and identification methods for dynamic networks

Opwarming van de aarde zal gelimiteerd worden door de uitstoot van broeikasgassen te
verminderen. Hierin speelt verdere ontwikkeling van technologién zoals hernieuwbare
energiebronnen en een slim electriciteitsnet een hoofdrol. Sommige uitdagingen in
het slimme electriciteitsnet zoals oscillaties, instabilitiet, en het ontwerp van regelaars
kunnen worden opgelost met behulp van dynamische modellen. Het electriciteitsnet
en andere moderne toepassingen bestaan uit vele gekoppelde sub-systemen, en de
interacties tussen sub-systemen kunnen worden weergegeven in een dynamisch netwerk
model. Een dynamisch netwerk model bestaat uit knooppunten die gemeten signalen
weergeven, modules die het dynamische gedrag weergeven, en excitatie vanuit de niet-
gemodelleerde wereld. Modelleren op basis van data is een manier om een dynamisch
netwerk model te verkrijgen, en het veld bekend als systeem identificatie houdt zich
bezig met het modelleren van dynamische systemen. Het kader van dit proefschrift
is gelimiteerd tot het identificeren van lineare tijd-invariante netwerken op basis van
data.

Identificatie methodes worden gewoonlijk opgesteld op basis van een beperkte exper-
imentele structuur. In het geval van een dynamisch netwerk wordt bijvoorbeeld een
beperkte topologie opgelegd, wat kan leiden tot een onnauwkeurig model wanneer de
verkeerde topologie gekozen is. Daarbij wordt gekozen welke knooppunten gemeten
worden, maar het is niet exact duidelijk welke knooppunten gemeten moeten wor-
den om een bepaald doel te bereiken. Een flexibele experimentele structuur wordt
opgezet waar verschillende keuzes voor topologie en externe excitatie mogelijk zijn.
Het uitbreiden van netwerk identificatie methodes voor deze flexibele experimentele
structuur is niet triviaal. In dit proefschrift wordt vastgesteld welke restricties in
de experimentele structuur voldoende en noodzakelijk zijn, en een efficiénte identifi-
catie methode voor deze flexibele structuur wordt opgesteld zowel in theorie als in een
functioneel algoritme.

Met een flexibele experimentele structuur kan het voorkomen dat twee netwerk mod-
ellen niet kunnen worden onderscheiden op basis van data. Het concept netwerk iden-
tificeerbaarheid wordt geintroduceerd als eigenschap die beschrijft of dat modellen
van elkaar onderscheiden kunnen worden. Netwerk identificeerbaarheid kan worden
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gegarandeerd door beperkingen in the experimentele structuur aan te brengen, bi-
jvoorbeeld door de toegestane dynamica, topologie, externe excitaties, of verstoringen
te beperken. Eenvoudig te verifiéren condities op basis van de netwerk topologie zijn
opgesteld die garanderen dat een set van netwerk modellen generiek netwerk identi-
ficeerbaar is. Op deze manier kan de meest flexibele experimentele structuur gebruikt
worden om te modelleren.

Het is een uitdaging om dynamische netwerk modellen van hoge kwaliteit te schat-
ten voor situaties met algemene verstoringen. Gecorreleerde verstoringen met een
spectrum van gereduceerde rang worden nauwelijks geadresseerd in de literatuur. De
joint-direct methode wordt geintroduceerd als een oplossing voor deze uitdaging. Een
afleiding op basis van een analyse van voorspellers leidt naar deze joint-direct methode.
De methode leidt tot schattingen van hoge kwaliteit, wat zichtbaar is in de bewezen
eigenschappen. Onder bepaalde voorwaarden is de joint-direct methode gelijk aan de
Maximum Likelihood schatting. Daarnaast kan de methode een variantie behalen die
gelijk is aan de Cramer-Rao ondergrens. De Maximum Likelihood en Cramer-Rao on-
dergrens resultaten zijn opgesteld voor verstoringen met spectrum van gereduceerde
rang. Wanneer de juiste weging wordt gekozen levert de joint-direct methode een
efficiénte schatting.

Dynamische netwerk modellen kunnen opgesteld worden voor situaties waar fysieke
grootheden direct gekoppeld zijn, zodat algebraische lussen in het netwerk ontstaan.
Een traditionele voorspeller leidt tot onzuivere schattingen. Een analyze van ver-
schillende voorspeller definities laat zien waarom de directe methode tot onzuivere
schattingen leidt. De joint-direct methode gebruikt een andere voorspeller dan de di-
recte methode, en dit leidt tot consistente schattingen, ook onder aanwezigheid van
algebraische lussen. In vergelijking met methoden gebaseerd op projecties heeft de
joint-direct methode minder strikte eisen aan externe excitaties, en een kleinere vari-
antie. Algebraische lussen zijn geen probleem voor identificatie wanneer deze op een
juiste manier aangepakt worden.

Om een enkele module te schatten in een netwerk is het voldoende om enkele knoop-
punten rondom de module te meten. Het is niet exact bekend welke set van knoop-
punten tot een nauwkeurige schatting leidt. Er zijn verschillende oplossingen voor dit
vraagstuk, maar in dit proefschrift is gekozen om ongemeten knooppunten te verwi-
jderen uit het netwerk model. Het abstracte netwerk is ontwikkeld, en dit netwerk
wordt opgebouwd uit een gekozen aantal knooppunten terwijl het gedrag van de
overgebleven knooppunten gelijk blijft. Onder bepaalde voorwaarden blijft de module
gelijk in het abstracte netwerk, zodat de module geidentificeerd kan worden met de
gekozen knooppunten. De condities kunnen geverifieerd worden op basis van de orig-
inele netwerk topologie, zonder het abstracte netwerk af te leiden. Op deze manier
zijn eenvoudige regels opgesteld om knooppunten te selecteren waarmee een specifieke
module geidentificeerd kan worden.

Krachtige algoritmes zijn nodig om de joint-direct methode efficiént in de praktijk toe
te passen op dynamische netwerken van grote schaal. Een Sequential Least Squares
algoritme met expliciete oplossing is opgesteld op basis van een benadering van de
joint-direct methode. Dit algoritme heeft dezelfde asymptotische eigenschappen als
de joint-direct methode, en simulaties laten zien dat het algoritme naar dezelfde
nauwkeurigheid convergeert als de joint-direct methode wanneer de hoeveelheid data
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groeit. Op deze manier is een efficiénte implementatie van en netwerk identificatie
methode gerealizeerd.

Een theoretische basis voor de identificatie van dynamische netwerken is gelegd, en
daarnaast zijn stappen genomen in de richting van identificatie van een module in een
netwerk. Mogelijke vervolgstappen zijn een onderzoek naar de informativiteits eisen
aan data, identificatie van de netwerk topologie, of het toevoegen van niet-lineare
dynamica.






Summary

Identifiability and identification methods for dynamic networks

Global warming is to be limited by reducing greenhouse gas emissions. Further devel-
opment of technologies such as renewable energy sources and smart electricity grids is
to play a major role in this reduction. Some of the challenges in the smart grid such as
oscillations, instability and control design may be solved with the help of a dynamic
model. These smart grids and other modern applications consist of many interact-
ing sub-systems, and the interactions between these sub-systems can be modeled as
a dynamic network model. A dynamic network model consists of nodes that repre-
sent measured signals, modules that capture the dynamical behavior, and excitations
coming from the unmodeled world. Data-driven modeling is one way of obtaining
dynamic network models, and the field of modeling dynamical systems is known as
system identification. The scope of this thesis is limited to the identification of linear
time invariant networks.

Identification approaches are typically formulated on the basis of a restricted exper-
imental setup. In the dynamic network situation for example the allowed network
topology is restricted, which may lead to an inaccurate model if the wrong structure
is chosen. Moreover a certain set of measured nodes is chosen for the experimental
setup, but it is not clear which nodes need to be measured for a particular purpose.
A flexible network setup is introduced where all different choices can be made for
the topology and excitation locations. Extending network identification approaches
to deal with a fully flexible experimental setup is not a trivial task. In this thesis it
is to be determined which restrictions on the experimental setup are necessary and
sufficient, and an efficient identification method for this setup is to be determined both
in theory and as a functional algorithm.

With a fully flexible experimental setup it may happen that two network models can
not be distinguished on the basis of data. The notion of network identifiability is in-
troduced as the property that describes whether the models can be distinguished from
each other. Network identifiability can be guaranteed by restricting the experimental
setup, i.e. by restricting the modeled dynamics, topology, external inputs and distur-
bances. Easy to check conditions on the basis of the network topology are formulated

ix



that guarantee that a network model set is generically network identifiable. In this
way the least restrictive experimental setup can be used in the modeling process.

It is challenging to estimate high quality dynamic network models for general unknown
disturbance situations. In particular correlated disturbances with a rank-reduced spec-
trum are rarely treated in literature. The joint-direct method is established as a solu-
tion for this problem. A derivation on the basis of an analysis of predictors leads to
this joint-direct method. This joint-direct method leads to estimates of high quality.
Under some conditions the joint-direct method is equivalent to the Maximum Likeli-
hood estimate. Moreover, variance of models estimated with the joint-direct method
is bounded from below by the Cramer-Rao Lower Bound. The Maximum Likelihood
and Cramer-Rao Lower Bound results have been formulated for disturbances with
rank-reduced spectrum. The joint-direct method leads to an efficient estimate when
an appropriate weighting is chosen in the optimization cost function.

Dynamic network models may be formulated for situations where physical variables
have direct couplings, such that algebraic loops appear in the network. A traditional
direct estimation method leads to biased estimates. An analysis of different predictor
definitions shows why the direct method leads to biased estimate. The joint-direct
method uses a different predictor than the direct method, and leads to consistent
estimates, even in the situation of algebraic loops. Compared to projection based
methods, the joint-direct method has reduced requirements on external excitation
signals, and leads to a reduction of variance. Algebraic loops are not a problem in the
identification of systems when appropriately dealt with in the estimation method.

In order to estimate a single module in a network it is sufficient to measure a number
of nodes locally around the module. It is however not precisely known which subset
of nodes can lead to an accurate estimate. Answering this question can be done
in different ways, and the approach taken is to remove unmeasured nodes from the
network. The abstracted network is introduced, and this network can be constructed
on the basis of a chosen set of nodes, and this leaves the behavior of the remaining
nodes intact. Under certain conditions the module of interest remains invariant in the
abstracted network, in which case it can be identified with the selected set of nodes.
These conditions can be verified on the basis of the original network topology, without
the need to construct the abstracted network. In this way straightforward rules for
selecting a set of nodes are formulated that allow for identification of a module of
interest.

Powerful algorithms are needed in order to efficiently apply the joint-direct method
to large-scale dynamic networks in practice. A Sequential Least Squares algorithm
with an explicit solution is formulated as an approximation of the joint-direct method.
This algorithm has the same asymptotic properties as the joint-direct method, and
simulations show that the algorithm converges to the same accuracy as the joint-direct
method with increasing amounts of data. In this way an efficient implementation of
network identification methods is formulated.

A theoretical basis for identification of dynamic networks has been established, and
steps have been taken towards identification of a single module in a network. The next
steps that can be taken are an investigation of informativity requirements on data,
identification of the network topology, and the inclusion of non-linear dynamics.
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Introduction

1.1 Motivation

1.1.1 Greenhouse gasses

97% of climate scientists agree that humans cause global warming (Cook et al., 2013).
Many people have gotten used to driving or flying to holiday destinations and confer-
ences, having electric appliances to make life easier, and enjoying an actively heated
or cooled house. Typically fossil fuels are burned during these activities, causing emis-
sion of so called greenhouse gasses, which cause the earth to warm up. The United
Nations Framework Convention on Climate Change has made an agreement, the so
called Paris agreement (United Nations, 2016), to keep global warming below 2 °C.

Other energy
10% Electricity and
heat production
25%

Buildings
6%

Transport
14%

Agriculture,
Forestry and
Other Land Use

24%

Industry
21%

Figure 1.1: Contribution of greenhouse gasses per economic sector (Intergovernmental
Panel on Climate Change, 2015).



2 Chapter 1. Introduction

Many people do not want to go back to pre-industrial era living standards, so the
only way to comply with the Paris agreement is to make luxurious life more sustain-
able. The main activities that produce greenhouse gasses are depicted in Figure 1.1.
Electricity and heat production are a combined total of 25% of greenhouse gas contri-
bution (Intergovernmental Panel on Climate Change, 2015). Policies and visions are
developed by governments to obtain concrete developments in specific domains such as
transportation and the electricity grid (European Technology Platform SmartGrids,
2006). Engineers will have to play a major role in making life more sustainable by
developing clever solutions that reduce greenhouse gas emissions. In the electricity
grid, the traditional coal and natural gas fired power plants are being replaced by
renewable energy sources such as wind mills and solar panels. These renewable energy
sources do not emit greenhouse gasses during generation of electricity.

1.1.2 The electricity grid

Technological challenges appear due to the increasing penetration of renewable energy
sources in the electricity grid. Instead of power being generated at a few dedicated
locations, the generation becomes distributed over many different locations, e.g. solar
panels at someone’s home or wind mills scattered around the landscape. Power gen-
erated by wind mills and solar panels can be intermittent due to the weather, which
makes it hard to continuously balance the supply and demand of electricity. Some of
the issues that need to be addressed to successfully incorporate the renewables into the
grid are the following (Olivares et al., 2014). Intermittent generation of power can be
counteracted by appropriate levels of reserves, but economical operation under a relia-
bility constraint has to be taken into account. Moreover the topology of the grid may
change when participants go online or offline, so the market and control mechanisms
need be able to handle this. The electricity grid has to undergo a transformation in
order to be fully suitable for power generated by renewable sources.

A division into many microgrids is one of the ways to implement the smart electricity
grid of the future (Hatziargyriou et al., 2007). A microgrid is formed from a local
community of loads, renewable energy sources, and also energy storage and demand
response services, as depicted in Figure 1.2. Each microgrid is connected to the main
grid via a single interconnection, and can be operated either as connected to the grid,
or as a standalone island. It is possible that a microgrid produces or consumes more
than it can handle locally, and then this surplus or deficit needs to be transported to
other parts of the grid, possibly across borders. When the microgrid is operating in
grid connected mode, then it needs to contribute to the stability of the whole grid.
This implies that communication between participants on a large scale plays a key role
in the balancing of the grid of the future.

In the traditional grid configuration, power plants would be locally controlled to follow
the targets set by a Transmission System Operator (Kundur et al., 1994). The way
that supply and demand are balanced will need to change in a smart grid. A grid with
distributed generation has so many generators that centralized control is no longer
feasible. Participants in a microgrid are to coordinate among each other how much
electricity is produced, and possibly how much is consumed. In this way the supply
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Figure 1.2: One microgrid where electricity is locally produced by windmills and solar
panels, electricity is consumed by factories and houses, and where battery storage and
a connection to the main grid provide a balance between supply and demand.

and demand is balanced locally as much as possible, with possibly some external help
from the main grid.

Some of the challenges (Olivares et al., 2014) that need to be solved in these microgrids
are described below. Local oscillations, instability or transient effects may plague the
microgrid, and an analysis of the stability and effect of disturbances is necessary to
guarantee smooth operation. Assumptions made for traditional power grid models
may not be valid for microgrids, and the models need to be revised. A grid where
renewables are prevalent may have low inertia, such that a small imbalance in supply
and demand can lead to large deviations from the nominal frequency of 50 or 60Hz,
which requires control mechanisms to react and prevent these imbalances. The systems
and control field will need to address answers for the challenges in the microgrids.

1.1.3 Systems and control

The field of systems and control specializes in the analysis of stability and oscillations,
and the modeling and control of systems. The concept of a system must be defined,
and for this we consider the following dictionary definition.

System: 7A set of connected things or parts forming a complex whole,
in particular: a set of things working together as parts of a mechanism or
an interconnecting network ...”

—The new Ozford dictionary of English, 1998.

The tools for analysis and control design are traditionally tailored towards systems
that operate in a single control-loop. A single system is controlled for a purpose, e.g.
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to follow a setpoint or reject a disturbance. In case there are multiple controlled vari-
ables, the controller may work in a hierarchical structure where a central optimization
algorithm generates setpoints for a number of separate control loops. In this control
architecture each system is considered as an entity that does not interact with the
others, as depicted in Figure 1.3a. Performance of the total system is improved by
optimizing the performance of each local system with a local controller. This con-
trol strategy can lead to a globally optimal performance, but the weaknesses are that
possible interactions between systems are neglected, and that it may be infeasible to
synthesize a central governor when the number of sub-systems grows large.

In the more modern approach the sub-systems are seen as interacting entities, and con-
trollers are designed to interact among each other, as depicted in Figure 1.3b. Consid-
ering multiple systems as an interconnected network of systems is quite natural, as this
is included in the dictionary definition of a system. Here a controller communicates
with a small number of other controllers in order to optimize performance. Interac-
tions between systems are taken into account with this distributed control strategy,
and controllers can be synthesized regardless of the size of the network.

Setpoints

(a) (b)

Figure 1.3: On the left: Sub-systems do not interact with each other, and each sub-
system is individually controlled on the basis of setpoints generated on a higher level.
On the right: Sub-systems and controllers interact among each other in order to satisfy
a control objective.

1.2 Models

1.2.1 Definition

Many of the techniques applied in the systems and control domain depend on, or
benefit from, the presence of a model. First it is established what is meant with a
model by considering a dictionary definition.

Model: "A simplified description, especially a mathematical one, of a
system or process, to assist calculations and predictions.”
—The new Ozford dictionary of English, 1998.
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According to (Eykhoff, 1974) a model is a simplification of reality that captures only
the essential aspects. This implies that a model is a representation of the real world
where irrelevant features are neglected, which makes it easier to understand the reality.
There can be many forms of models, such as graphical, physical, verbal or mathemat-
ical. In a mathematical model this representation is a description in mathematical
language, e.g. a set of equations.

A mathematical model may give us insight into a physical phenomenon. Newton’s
second law states that force applied to a mass is proportional to the acceleration of
that mass, i.e.

F =ma,

where F' is the force, m is the mass, and a is the acceleration. This model provides some
understanding of how the world behaves, which is why models can help to improve
the design of a system. Dynamic models are models where time plays a role in the
described phenomenon, i.e. where a present value has an influence on a future value.
An example is that the present-time acceleration of a mass has an influence on the
future speed and location of the mass. If this data is available up to the current
moment, then the model may be used to predict the future behavior of the modeled
aspect. These predictions may be used to influence the future behavior of the system.
Typical engineering systems can be represented by dynamic models, and their future
behavior can be influenced with the application of a controller.

Design of a controller for a single control-loop can be improved with the use of models.
In fact a controller can be designed such that it is the optimal controller for that
model in some sense. Some controllers make explicit use of a model of the system.
Also for distributed controllers a model of the system is an important tool needed to
reach optimal performance. Moreover models of a distributed system can be used for
stability analysis or to prevent oscillations. A list containing a number of possible
applications of dynamic models is:

e While designing systems, a simulation using the model can reveal undesirable
behavior, such that the design may be adapted to prevent this behavior.

e Models can be used to estimate an unmeasured quantity, for example the state
of charge of a battery can be estimated on the basis of the measured voltage and

current.

e Forecasting the future, for example as in a weather forecast, can be done on
the basis of a dynamic model.

e Faults can be detected when the behavior of a system is no longer the same
as the behavior of the model.

e A controller applied to a system can be designed to work optimally on a model
of that system.

e The building of a model can provide new insight in how a system functions.
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1.2.2 Dynamic network models

Engineers are designing systems that are larger and more advanced than before. Large-
scale systems are composed as an interconnected network of smaller sub-systems. An
example of such a large-scale system is the electricity grid. The general observation
in the systems and control domain is that the considered systems also are growing
in scale. Local sub-systems are locally controlled, and possibly the controllers will
be communicating among each other. In order to decide which controllers are to
communicate with which other controllers, it is important to know which sub-systems
are interconnected to which other sub-systems, and how these interactions behave.
This means that the interactions between sub-systems are an essential part of the
behavior of the system. Then according to the definition of (Eykhoff, 1974) these
interconnections and interactions should be captured in the model. The name dynamic
network model will be adopted for models that capture the interconnection structure
as well as the dynamics of a system.

A dynamic network will be constructed from two types of components and is separated
from the unmodeled reality by a boundary:

e Nodes represent variables that depend on time, which possibly can be measured.
Examples are the force and acceleration in Newton’s second law.

e Modules represent the interconnections between nodes in a network, which
contain the dynamic behavior. The mass plays this role in Newton’s second law
as it connects the force and acceleration nodes.

e The boundary represents the distinction between what part of reality is con-
sidered part of the network, and what is not. A dynamic network interacts with
the world across the boundary, which causes a response in the dynamic network.
As an example, someone may attempt to push a mass, generating a force that
acts on the mass, which then makes the mass respond by moving.

-
I I

Figure 1.4: Graphical representation of a dynamic network. Nodes are represented by
circles, modules are represented by rectangles. The boundary is depicted as the red
dashed line.

An example of a graphical representation of a network is depicted in Figure 1.4. In
the example it can be observed that nodes are connected with only a few other nodes,
such that they interact directly only with a few other nodes. A dynamic network
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model has the property that the behavior of one node can be described fully by the
neighboring nodes and the corresponding modules.

A microgrid can be used as an example for a dynamic network model. Variables such
as power flows, deviation from the main grid frequency, or voltages can be used as
nodes in the network. Modules represent the loads, generators and controllers that are
connected to the grid. The structure of how the different modules are interconnected,
and how the control layer is connected can be graphically represented as in Figure 1.5.

Control layer

Figure 1.5: One microgrid and a control layer depicted as dynamic network model.

Next to the electricity grid, plenty of other engineering systems can be interpreted as a
dynamic network. Each of the economic sectors described in Figure 1.1 has challenges
where dynamic network models may be helpful. As an example, in the transportation
sector the interactions between an internal combustion engine and an electric motor
in the drive-train of a hybrid vehicle may be modeled as a dynamic network. This
includes a model of the battery, for which it is important to estimate the State of
Charge based on models (Beelen et al., 2016) to prevent damage and ensure optimal
performance.

Outside of the engineering domain and unrelated to greenhouse gasses there are many
possibilities to apply dynamic network models. The network model can play an im-
portant role every time a dynamic system model is needed in a situation where in-
terconnections are a relevant feature. For example in systems biology, networks of
interacting genes can be represented using a dynamic network model (Yuan et al.,
2011) to provide insight into the nature of genes. Another example field is the stock
market, where the interactions between different stocks can be modeled as a dynamic
network (Materassi and Innocenti, 2010), which may be used to forecast the future
values of these stocks.

Power grids and other fields of engineering and science raise a number of questions
regarding dynamic network models. Among these questions are stability of the network



8 Chapter 1. Introduction

and various control problems. Having an available network model can be helpful in
solving these issues. What is often assumed is that a model is available, avoiding the
question of how to obtain a model. When it is unknown how to model a network, then
we have to be careful with the assumption that a model is available. Therefore, the
objective of this thesis is to contribute to the modeling of dynamic networks.

1.3 Research question

The objective of modeling dynamic networks is quite broad and in this section the
scope is narrowed down to a particular research question. Restrictions of the scope
are made by discussing what types of network models are relevant, and what methods
are available for obtaining these models. There are some different objectives for the
modeling procedure, and these have their own specific challenges. Literature has
a number of answers for the network modeling objective, but many open questions
remain to be discussed.

1.3.1 First principles modeling vs. data-driven modeling

With the availability of cheap sensors it becomes possible to measure almost every-
thing. Smart meters are being introduced in the grid such that the electricity consump-
tion of clients can measured and sent automatically to the supplier. The availability
of enormous amounts of data is both a blessing and a curse known as "big data’ There
is a tremendous amount of data available, but it is challenging to recover the relevant
information from this data.

Typically there are two types of approaches to obtain mathematical models, first-
principles modeling, and data-driven modeling. In first-principles modeling, known
models from physics or other sciences are combined into a model of the desired system.
With this approach it is required that the available equations are able to describe
the behavior in a sufficiently accurate way, and that particular parameters of the
equations can be determined with sufficient accuracy. This way of modeling can be a
time consuming and therefore costly endeavor.

The alternative is a data-driven approach, which is based on the fact that measure-
ments of a system contain information on the behavior of the system. In the classical
reasoning of (Ljung, 1999) a user selects a model set containing candidate models with
to be determined parameters, and then a criterion or algorithm selects a model from
the set based on the available measurement data. An accurate model is selected by
the criterion when the set of candidate models contains an accurate approximation of
the real system, the data contains sufficient information, and the selection criterion
is suitable. In this way it is possible to obtain accurate models, even when it is not
known what kind of physical system has generated the data. All that is obtained is a
model that mimics the behavior of the system, which is ultimately the relevant part
of the model.

The difficulty with data-driven modeling is that measured data is used, which contains
unknown disturbances. A criterion has to select an appropriate model, even though
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the models can not exactly explain the data due to disturbances. The model that is
ultimately selected fits the data the best in some sense.

In this thesis the data-driven modeling approach of (Ljung, 1999) is followed. This
implies that an appropriate set of candidate models must be chosen, and that an
appropriate identification criterion must be chosen.

1.3.2 Linear time-invariant models

In reality the behavior of a system is usually of a non-linear nature, i.e. the principle of
superposition does not hold between variables. Moreover this behavior often changes
over time due to wear or changing conditions in the environment. When modeling
on the basis of data the incorporation of non-linear or time-varying behavior involves
many additional complexities compared to linear time-invariant (LTI) behavior. Ad-
ditionally, in order to model non-linear behavior there are additional requirements
on the measured data since all the complicated behavior must be excited if it is to
be modeled. Theory for data-driven modeling of LTI dynamical systems is more ad-
vanced than theory for modeling non-linear or time-varying alternatives. Many real
world systems can accurately be described by linear time-invariant approximations
when operated around a working point. LTI networks are a good starting point, and
so this thesis is restricted to the LTI setting. In the future the work may be extended
to non-linear or time-varying situations.

1.3.3 Different model sets

The objective is to model network systems on the basis of data, and it has been
established that a suitable set of models must be chosen. Networks of linear time-
invariant systems can be described by for example ordinary differential equations or
by discretized partial differential equations. A number of different LTI models suitable
for dynamic network modeling exist in the literature and are considered.

Behavioral models

In the behavioral modeling paradigm (Willems and Polderman, 2013), a model de-
scribes simply which trajectories a signal is allowed to follow. Signals that are part of
a behavioral model are n