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Summary

Granular materials are abundantly present in nature and engineering. Their me-
chanical behavior at the macroscopic scale is determined by the deformation and
failure mechanisms occurring at the particle scale. Such coupling effects are ac-
counted for in the hierarchical multi-scale FEM-DEM framework developed in
this thesis work. The modeling framework may be used to study the effects of
mechanical and geometrical properties at the particle scale on the macroscopic
response of granular materials subjected to arbitrary loading conditions. Accord-
ingly, the three main aims of this thesis are: (1) to provide novel algorithms for
the implementation of micro-scale boundary conditions required for numerical
homogenization using finite deformation theory, (2) to incorporate the novel nu-
merical algorithm in a multi-scale FEM-DEM framework, and use this framework
for analyzing the influence of micro-structural characteristics on the quasi-static,
macroscopic response of large-scale granular structures, and (3) to apply the ho-
mogenization framework to dynamic problems, whereby the effects of wave dis-
persion, the type of contact model and the packing polydispersity on the multi-
scale dynamic response are explored.

Firstly, a servo-control methodology is adopted to establish numerical algo-
rithms for the three types of classical, micro-scale boundary conditions, which
are: (1) a homogeneous deformation and zero particle rotation (D), (2) a pe-
riodic particle displacement and rotation (P), and (3) a uniform particle force
and free particle rotation (T). The algorithms can be straightforwardly combined
with commercially available discrete element codes, thereby enabling the deter-
mination of the solution of boundary-value problems at the micro-scale only, or
at multiple scales via a micro-to-macro coupling with a finite element model. The
performance of the algorithms is tested by means of discrete element method
simulations on regular monodisperse packings and irregular polydisperse pack-
ings composed of frictional particles, which were subjected to various loading
paths. Subsequently, a homogenization framework is derived for the implementa-
tion of mixed (D)-(P)-(T) boundary conditions that satisfy the Hill-Mandel micro-
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heterogeneity condition on energy consistency at the micro- and macro-scales of
the granular system. The numerical algorithm for the mixed boundary conditions
is developed and tested for the case of an infinite layer subjected to a vertical
compressive stress and a horizontal shear deformation, whereby the response
computed for a layer of cohesive particles is compared against that for a layer of
frictional particles.

Secondly, a hierarchical multi-scale model for the analysis of granular systems
is proposed, which combines the principles of a coupled FEM-DEM approach
with the novel servo-control methodology for the implementation of appropri-
ate micro-scale boundary conditions. A mesh convergence study is performed,
whereby the results of a quasi-static biaxial compression test are compared with
those obtained by direct numerical simulations. The comparison demonstrates
the capability of the multi-scale method to realistically capture the macro-scale re-
sponse, even for macroscopic domains characterized by a relatively coarse mesh;
this makes it possible to accurately analyze large-scale granular systems in a com-
putationally efficient manner. The multi-scale framework is applied to study in
a systematic manner the role of individual micro-structural characteristics on the
effective macro-scale response. The effect of particle contact friction, particle
rotation, and initial fabric anisotropy on the overall response is considered, as
measured in terms of the evolution of the effective stress, the volumetric defor-
mation, the average coordination number and the induced anisotropy. The trends
observed are in accordance with notions from physics, and observations from ex-
periments and other DEM simulations presented in the literature.

Finally, the applicability and limitations of the first-order hierarchical multi-
scale framework are studied for dynamic wave propagation problems in granular
materials. The study considers the effects on the response by regular and polydis-
perse packings, wave dispersion, the type of particle contact law, and the size of
the representative volume used at the micro scale. The numerical results obtained
by the coupled FEM-DEM framework are compared against those following from
direct numerical simulations (DEM), which provides detailed information on the
applicability of the multi-scale framework.
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Chapter 1

Introduction

1.1 Scales of observation for granular materials

The development of adequate models for simulating the mechanical behavior of
granular materials, such as sand, clay and peat, is important for many geotechni-
cal applications in building, civil, mining and petroleum engineering. Examples
of such applications are the design of foundations for buildings, bridges, roads
and railroads, the stability of slopes, deposits, reservoirs, excavations and bore-
holes, the construction of drainage systems and irrigation systems, and the design
of buildings and other large engineering structures against earthquakes. A study
of the mechanical behavior of granular materials may be performed at different
levels of observation. Firstly, there is the micro-level, at which the individual
grains are identified and modeled as separate discrete objects, experiencing dis-
placements and rotations as a result of contact force and contact moment interac-
tions with neighboring grains. Secondly, there is the macro-level (or engineering
level), at which no internal material structure can be recognized anymore, and
the granular material behaves as a continuum. The effective constitutive behavior
at this level of observation is described by a stress-strain relationship, which, in
the classical sense, assumes the material to respond homogeneously. Although the
distinction between the above two levels of observation is unequivocal, the tran-
sition from the micro-scale to the macro-scale is far from abrupt. In fact, there
is a large class of problems for which the specific discrete, micro-level behavior
may lead to a heterogeneous material response at the macro-level. The hetero-
geneities may originate from strong time variations in the displacement/rotation
fields characterizing the micro-scale response, i.e., high-frequency wave propaga-
tion with wavelengths in the order of as small as only a few times the particle
size, or by strong spatial variations in the response, i.e. shear failure, rupture,
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faulting and local particle crushing across localized bands of a width equal to a
few times the particle size. Discrete models indeed have the potential to describe
such phenomena in an accurate fashion, see e.g., (Herrmann and Luding, 1998;
Kun and Herrmann, 1996; Ting et al., 1993; Borja and Wren, 1995; Suiker and
Fleck, 2004; Luding, 2004; Luding and Suiker, 2008; Singh et al., 2014; Potyondy
and Cundall, 2004; Wellmann et al., 2008), but their applicability to large-scale
engineering problems is prohibitory expensive due to the enormous computa-
tional costs involved when simulating the response of each particle individually.
To circumvent this problem, multi-scale techniques have been developed (Kaneko
et al., 2003; Meier et al., 2008; Miehe et al., 2010; Nguyen et al., 2013; Li et al.,
2010a,b, 2011, 2014; Guo and Zhao, 2014; Liu et al., 2016), where the mechan-
ical responses at small and large length scales are efficiently combined in a con-
sistent manner. In a two-scale approach, which distinguishes between the macro
and micro scales, lk can be defined as the characteristic length of a micro-scale
heterogeneity, which for granular materials typically may be in the order of 10 to
20 times the average grain size, and L is a macroscopic length scale, reflecting
the size of the macroscopic granular sample or a wavelength in the macroscopic
deformation field. If the difference between the micro and macro length scales is
an order of magnitude or more, i.e.,

lk � L ∀k = 1, 2, ..., N (1.1)

where N is the total number of micro-scale heterogeneities in the macroscopic
volume, then the scales may be assumed to be separated, allowing for the appli-
cation of a first-order (or classical) homogenization scheme. With the assumption
given by Eq.(1.1), which covers a wide range of practical situations, the influ-
ences of boundary-layer effects and other localized phenomena may be assumed
small, and therefore are ignored. For example, in the work of (Miehe et al.,
2010), a hierarchical computational homogenization framework for granular mate-
rials subjected to the requirement given by Eq.(1.1) was proposed for three types
of boundary conditions, namely i) linear displacements (D), ii) uniform stress (T),
and iii) periodic boundary conditions (P). Basic ingredients and concepts for such
a multi-scale approach can be found in earlier works by (Suquet, 1985; Guedes
and Kikuchi, 1990; Ghosh et al., 1995, 1996; Miehe et al., 1999a,b; Miehe and
Bayreuther, 2007) for composite materials. The homogenization framework of
(Miehe et al., 2010) simulates frictional contact interactions between particles
by means of a Coulomb-type contact law, and accounts for finite deformations
by using the macroscopic deformation gradient F̄ as the governing parameter in
the formulation of the boundary conditions at the micro scale. Accordingly, a
deformation-driven, non-linear, computational homogenization framework is es-
tablished, whereby the macro-scale, engineering problem is simulated by means of
the Finite Element Method (FEM), and the micro-scale behaviour of the particle
assembly is simulated with the Discrete Element Method (DEM). At each material
point at the macro scale, the solution of the micro-scale boundary value problem
following from the application of the corresponding deformation gradient F̄ pro-
vides the updated micro-scale particle forces and positions. This information can
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Figure 1.1: Computational homogenization scheme for granular materials

be used to compute the effective material stress P̄ (i.e., the 1st Piola-Kirchhoff
stress), see Figure 1.1. Hence, with this approach it is not necessary to explic-
itly formulate a (phenomenological) constitutive law between the stress P̄ and
the deformation gradient F̄ at the macro scale, as is commonly done in (single-
scale) finite element models; instead, the constitutive behavior of the granular
assembly automatically follows from computing the average stress P̄ after sub-
jecting the discrete granular microstructure to a specific deformation gradient F̄
by means of appropriate (D, P or S) boundary conditions. In contrast to analytical
homogenisation schemes, such as the asymptotic homogenization scheme (Ben-
soussan et al., 1978; Torquato, 2002), homogenization schemes based on Hashin-
Shtrikman variational principles (Hashin and Shtrikman, 1963; Willis, 1981), or
the so-called microstructural approach for granular materials (Chang and Gao,
1995, 1997; Suiker et al., 2001a,b; Suiker and de Borst, 2005), the above com-
putational homogenization scheme allows for the simulation of complex path-
dependent, non-linear material responses of evolving granular microstructures
subjected to arbitrary loading paths.

1.2 Types of computational homogenization

Computational homogenization may be generally classified into two categories,
i.e. the hierarchical methods, of which the model of (Miehe et al., 2010) discussed
above is an illustrative example, and the concurrent methods. The differences
between the two methods are illustrated below by highlighting several features,
and indicating some practical applications.

1.2.1 Concurrent methods

In concurrent methods the model domain is decomposed into two parts. A DEM
model is used for simulating the part in which the deformation varies substan-
tially, and is strongly characterized by the micro-scale features of the particle
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packing. The other, remaining part of the domain is simulated by a FEM model, in
which the deformation varies mildly and can be characterized by average, macro-
scale quantities (Frangin et al., 2006; Rojek and Oñate, 2007; Wellmann and
Wriggers, 2012; Li and Wan, 2011; Wagner and Liu, 2003; Xiao and Belytschko,
2004). Accordingly, an important challenge in concurrent methods is to properly
couple the kinematic and kinetic conditions at the interface between the FEM and
DEM domains. In (Frangin et al., 2006) this was done by adopting a linear com-
bination of discrete and continuum Hamiltonians at the FEM-DEM interface. The
constraints at the interface can be implemented by using Lagrange multipliers or
penalty functions (Rojek and Oñate, 2007). Additionally, the Arlequin method
has been suggested for this purpose, which uses reliable energy partition func-
tions and coupling operators to concurrently connect the FEM and DEM models
within a coupling zone (Wellmann and Wriggers, 2012). Another approach is the
so-called bridging scale technique, whereby the coarse and fine scales are simu-
lated with FEM and DEM, respectively, and high frequency waves emitted from
the fine scale are eliminated by means of lattice impedance techniques (Frangin
et al., 2006; Li and Wan, 2011).

1.2.2 Hierarchical methods

As already indicated above, in hierarchical methods the macro-scale problem is
simulated over the whole domain by using FEM, whereby at each material point
(or integration point) the effective stress response due to the imposed deforma-
tion is obtained as a volume average over a representative granular packing mod-
eled by DEM. When an implicit time integration scheme is used at the macro-
scale, in addition to the effective stress, the effective tangential stiffness of the
granular packing needs to be computed. In the following, some representative
works of hierarchical methods are briefly summarized. A small-strain, first-order
homogenization scheme for granular materials was proposed in (Kaneko et al.,
2003) to simulate a biaxial compression test for frictional granular materials and
a bending test for cohesive granular materials. A slope stability problem was ana-
lyzed in (Meier et al., 2008) by applying a hierarchical scheme based upon impos-
ing affine deformation on the representative DEM sample, whereby the effective
tangent operator required for the implicit update scheme adopted was determined
in an analytical fashion. In (Nitka et al., 2011) a perturbation method was used
to numerically calculate the tangent operator. The relation between the arrange-
ment of RVEs at the different Gauss points and the emergence of shear bands was
analyzed in (Shahin et al., 2016). Biaxial compression and cyclic shear were stud-
ied in (Guo and Zhao, 2014) by using a hierarchical multi-scale method whereby
periodic boundary conditions were applied on the representative DEM sample and
the constitutive tangent operator was computed analytically. Multi-scale effects
of inherent anisotropy in granular packings and macro-scale boundary conditions
on the formation of shear bands were explored in (Zhao and Guo, 2015). Other
problems examined in a multi-scale fashion are retaining wall and footing prob-
lem (Guo and Zhao, 2016b), shear failure of thick-walled hollow cylinder in dry
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sand (Guo et al., 2016), triaxial compression and extension tests on cubical and
cylindrical specimens (Guo and Zhao, 2016a), and compaction bands in high-
porosity sandstones (Wu et al., 2018a), and borehole instabilities in high-porosity
sandstones (Wu et al., 2018b).

The use of enhanced methods to avoid mesh-dependency during strain local-
ization has been explored in multi-scale approaches based on a nonlocal strain
formulation (Liu et al., 2016), a second-gradient formulation (Desrues et al.,
2017), and micro-polar (e.g., Cosserat) continuum models (Li et al., 2010a, 2011,
2010b, 2014). For more extensive reviews on hierarchical FEM-DEM modeling of
granular materials the reader is referred to (Li et al., 2016; Zhao, 2017).

1.3 Objectives and Scope

Specific aspects that deserve more attention in hierarchical FEM-DEM homoge-
nization methods, but often are neglected for reasons of simplicity, refer to (1)
the Hill-Mandel micro-heterogeneity condition, which enforces consistency of en-
ergy at the micro- and macro-scales, (2) the effect of particle rotations in the for-
mulation of micro-to-macro scale-transitions, and (3) a rigorous generalization of
the multi-scale approach within the theory of large deformations. The computa-
tional homogenization framework presented in (Miehe et al., 2010) does include
the three aspects mentioned above, and calculates the micro-scale response of a
granular packing with a DEM model equipped with a frame of boundary parti-
cles at which the finite deformation following from the macro-scale is imposed.
However, the numerical implementation of the micro-scale boundary conditions
in (Miehe et al., 2010) is done via a penalty method, where the violation of the
boundary conditions is punished by increasing the total virtual work of the par-
ticle packing, through the introduction of additional forces and moments on the
frame of boundary particles. Due to the nature of the penalty method the ex-
pression for the homogenized stress of the particle packing becomes explicitly
dependent on the value of the penalty parameter, and thereby looses its physical
interpretation. In addition, in DEM models the penalty parameter may be difficult
to control and must be chosen sufficiently large in order for the penalty function
to be effective, which may induce numerical instabilities (Dussault, 1995; Gu-
naratne and Wu, 2011). Another characteristic of the penalty method is that it
requires the constraint equations to be satisfied approximately instead of exactly,
whereby the accuracy of the approximation is determined by the magnitude of
the penalty parameter. As a consequence, the limit case at which the boundary
conditions are met exactly is not rigorously retrieved from the formulation, since
the homogenized stress of the particle packing then vanishes, see expression (44)
in (Miehe et al., 2010).

In order to improve on the algorithmic drawbacks mentioned above, the first
aim of this thesis work is to develop an alternative numerical algorithm for the im-
plementation of the homogenization framework presented in (Miehe et al., 2010).
This algorithm is based on a servo-control methodology, using a feedback princi-
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ple comparable to that of algorithms commonly applied within control theory of
dynamic systems (Åström and Murray, 2008). A strong point of this approach is
that it is relatively simple to implement, and only affects the interface communi-
cating information between the macro-scale FEM and micro-scale DEM models.
In addition to its simplicity, the servo-control algorithm preserves the physical in-
terpretation of the homogenized stress measure derived for the particle packing,
and furnishes a realistic value for the stress in the limit case at which the micro-
scale boundary condition is met exactly. The second aim of this thesis work is to
incorporate the novel numerical algorithm in a multi-scale FEM-DEM framework,
and use this framework for analyzing the influence of micro-structural character-
istics (e.g., particle contact friction, particle rotation, initial fabric anisotropy) on
the quasi-static, macroscopic response of large-scale granular structures. In addi-
tion, the potential of the framework for applications related to dynamic loading
need to be explored, whereby the effects by wave dispersion, the type of contact
model and the packing polydispersity on the multi-scale dynamic response must
be clarified. An adequate way of doing this is to critically compare the results of
the FEM-DEM multi-scale analyses to those obtained by direct numerical simu-
lations (DEM); for some reasons such a comparison is regularly lacking in other
works on hierarchical computational homogenization of granular materials.

1.4 Outline

The outline of this thesis is as follows. Chapter 2 presents a review of the numeri-
cal homogenization framework for particle aggregates, and outlines the formula-
tions of the micro-scale (D), (P) and (T) boundary conditions proposed in (Miehe
et al., 2010). The numerical implementation of the micro-scale boundary condi-
tions is discussed, where for the (P) and (T) boundary conditions two different
servo-control algorithms are presented, which include or not an initial prediction
of the displacements of the boundary particles based on their positions calculated
at the previous loading step. Subsequently, the performance of the numerical al-
gorithms is tested on monodisperse and polydisperse frictional packings subjected
to various loading paths. Additionally, a formulation for mixed boundary condi-
tions is provided, and its numerical performance is demonstrated for the cases of
infinite frictional and cohesive granular layers loaded by a vertical compressive
stress, and subsequently subjected to a horizontal shear deformation.

Chapter 3 presents the numerical homogenization framework for particle ag-
gregates by defining the macro-scale and micro-scale models and the scale transi-
tion relations. Numerical implementation aspects are discussed, and the explicit
time integration scheme adopted for the macro-scale problem is outlined. Fur-
thermore, details are provided on the dynamic relaxation procedure applied for
satisfying the equilibrium conditions, and on the servo-control algorithm used for
defining the boundary conditions at the micro scale. The coupled FEM-DEM so-
lution algorithm is presented, and its accuracy is explored by simulating a biaxial
compression test and comparing the computational results to those obtained by
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direct numerical simulations. A mesh convergence study is performed, and the
role of several micro-structural parameters on the macroscopic response is stud-
ied.

In Chapter 4 the applicability and limitations of the first-order hierarchical
multi-scale framework are studied for dynamic wave propagation problems in
granular materials. The study considers the effects on the response by regular
and polydisperse packings, wave dispersion, the type of particle contact law, and
the size of the representative volume used at the micro scale. The numerical re-
sults obtained by the coupled FEM-DEM framework are compared against those
following from direct numerical simulations (DEM), which provides detailed in-
formation on the applicability of the multi-scale framework.

Finally, in Chapter 5 the main conclusions of the thesis work are summarized,
and some recommendations for future research on the hierarchical, multi-scale
modelling of granular materials are provided.
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Chapter 2
Micro-scale boundary
conditions1

Novel numerical algorithms are presented for the implementation of micro-
scale boundary conditions of particle aggregates modelled with the discrete ele-
ment method. The algorithms are based on a servo-control methodology, using
a feedback principle comparable to that of algorithms commonly applied within
the control theory of dynamic systems. The boundary conditions are defined in
accordance with the large deformation theory, and are imposed on a frame of
boundary particles surrounding the interior granular micro-structure. Following
the formulation presented in Miehe et al., (2010), Int. J. Num. Meth. Engng. 83,
pp. 1206-1236, first three types of classical boundary conditions are considered,
in accordance with i) a homogeneous deformation and zero particle rotation (D),
ii) a periodic particle displacement and rotation (P), and iii) a uniform particle
force and free particle rotation (T). The algorithms can be straightforwardly com-
bined with commercially available discrete element codes, thereby enabling the
determination of the solution of boundary-value problems at the micro-scale only,
or at multiple scales via a micro-to-macro coupling with a finite element model.
The performance of the algorithms is tested by means of discrete element method
simulations on regular monodisperse packings and irregular polydisperse pack-
ings composed of frictional particles, which were subjected to various loading
paths. The simulations provide responses with the typical stiff and soft bounds
for the (D) and (T) boundary conditions, respectively, and illustrate for the (P)
boundary condition a relatively fast convergence of the apparent macroscopic
properties under an increasing packing size. Finally, a homogenization framework

1Based on Liu, J., Bosco, E. and Suiker, A.S.J. , 2017. Formulation and numerical implementation
of micro-scale boundary conditions for particle aggregates. Granular Matter, 19(4), 72.
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is derived for the implementation of mixed (D)-(P)-(T) boundary conditions that
satisfy the Hill-Mandel micro-heterogeneity condition on energy consistency at
the micro- and macro-scales of the granular system. The numerical algorithm for
the mixed boundary conditions is developed and tested for the case of an infinite
layer subjected to a vertical compressive stress and a horizontal shear deforma-
tion, whereby the response computed for a layer of cohesive particles is compared
against that for a layer of frictional particles.

2.1 Introduction

The accurate computation of the non-linear failure and deformation behavior of
heterogeneous granular systems commonly requires a resolution of the complex
mechanical interactions and deformation mechanisms at the particle scale, which
can be adequately accounted for by using the discrete element method (DEM),
see e.g., (Cundall and Strack, 1979; Herrmann and Luding, 1998; Kun and Her-
rmann, 1996; Ting et al., 1993; Borja and Wren, 1995; Suiker and Fleck, 2004;
Luding, 2004; Luding and Suiker, 2008; Wellmann et al., 2008; Guo and Zhao,
2013; Singh et al., 2014; Nitka and Tejchman, 2015; Zhu et al., 2016; Huang
et al., 2017; Zhao et al., 2018) and references therein. For practical granular
systems composed of a vast number of particles, however, it is infeasible to sim-
ulate each particle as an individual discrete object, since this leads to DEM mod-
els with an enormously large number of degrees of freedom, and consequently,
to impractical computation times. To circumvent this problem, advanced multi-
scale frameworks have been developed, where the mechanical responses at the
particle micro-scale and the structural macro-scale are hierarchically coupled in
an computationally economical fashion. This is accomplished by simulating the
macro-scale problem under consideration with the finite element method (FEM),
whereby in every integration point the response to the corresponding deformation
is calculated by means of a DEM model that accurately and efficiently represents
the complex particle behavior at the micro-scale. Examples of coupled FEM-DEM
approaches for granular materials can be found in (Kaneko et al., 2003; Nguyen
et al., 2013; Guo and Zhao, 2014; Shahin et al., 2016; Guo and Zhao, 2016b;
Wu et al., 2018a,b; Li et al., 2010a, 2011, 2010b, 2014), illustrating the use of
various averaging theorems for relating force and displacement measures at the
particle micro-scale to stress and strain measures at the structural macro-scale.
Specific aspects that should deserve more attention in FEM-DEM homogenization
methods, but often are neglected for reasons of simplicity, refer to i) the Hill-
Mandel micro-heterogeneity condition, which enforces consistency of energy at
the micro- and macro-scales, ii) the effect of particle rotations in the formula-
tion of micro-to-macro scale-transitions, and iii) a rigorous generalization of the
multi-scale approach within the theory of large deformations.

The computational homogenization framework presented in (Miehe et al.,
2010) does include the three aspects mentioned above, and calculates the micro-
scale response of a granular packing with a DEM model equipped with a frame of
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boundary particles at which the finite deformation following from the macro-scale
is imposed. The formulation considers three types of micro-scale boundary con-
ditions for the boundary particles, namely i) homogeneous deformation and zero
particle rotation (D), ii) periodic particle displacements and rotations (P), and iii)
uniform particle force and free particle rotation (T), where the abbreviations (D),
(P) and (T) are adopted from analogous, classical boundary conditions used in
continuum homogenization theories, referring to the displacement, periodic and
traction boundary conditions, respectively. The numerical implementation of the
boundary conditions in (Miehe et al., 2010) is done via a penalty method, where
the violation of the boundary conditions is punished by increasing the total vir-
tual work of the particle packing, through the introduction of additional forces
and moments on the frame of boundary particles. Although the algorithm pre-
sented in (Miehe et al., 2010) has been nicely generalized for the three types of
boundary conditions in a mathematically elegant and transparent fashion, due
to the nature of the penalty method the expression for the homogenized stress
of the particle packing becomes explicitly dependent on the value of the penalty
parameter, and thereby looses its physical interpretation. In addition, in DEM
models the penalty parameter may be difficult to control and must be chosen
sufficiently large in order for the penalty function to be effective, which may in-
duce numerical instabilities (Dussault, 1995; Gunaratne and Wu, 2011). Another
characteristic of the penalty method is that it requires the constraint equations
to be satisfied “approximately” instead of “exactly”, whereby the accuracy of the
approximation is determined by the magnitude of the penalty parameter. As a
consequence, the limit case at which the boundary conditions are met exactly is
not rigorously retrieved from the formulation, since the homogenized stress of
the particle packing then vanishes, see expression (44) in (Miehe et al., 2010).

In order to improve on the algorithmic drawbacks mentioned above, in this
chapter an alternative numerical algorithm is proposed for the implementation of
the homogenization framework presented in (Miehe et al., 2010). This algorithm
is based on a servo-control methodology, using a feedback principle comparable
to that of algorithms commonly applied within control theory of dynamic systems
(Åström and Murray, 2008). Accordingly, the displacements and rotations of the
particles of the boundary frame are iteratively adapted from a gradually dimin-
ishing discrepancy between the measured and desired values of the micro-scale
boundary condition. A strong point of this approach is that it is relatively simple
to implement, and only affects the interface communicating information between
the macro-scale FEM and micro-scale DEM models. In other words, it does not
require internal modifications of the FEM and DEM source codes, so that the ap-
proach also can be combined with commercially available software for which the
user typically has no access to the source code. In addition to its simplicity, the
servo-control algorithm preserves the physical interpretation of the homogenized
stress measure derived for the particle packing, and furnishes a realistic value for
the stress in the limit case at which the micro-scale boundary condition is met
exactly. It is noted that the algorithm only considers the (P) and (T) boundary
conditions, since for a macro-scale problem discretized with a displacement-based
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DEM code, the (D) boundary condition can be implemented in a straightforward
fashion, without the use of iterations.

Apart from providing servo-control algorithms for the individual (P) and (T)
boundary conditions, a novel formulation for mixed (D)-(P)-(T) boundary con-
ditions is derived, and subsequently cast into a numerical formalism. The for-
mulation is proven to satisfy the Hill-Mandel micro-heterogeneity condition, and
therefore is very useful for i) a consistent derivation of macro-scale constitutive
relations from standard material tests on particle aggregates subjected to any
combination of (D)-, (P)- and/or (T)-type boundary conditions, and ii) the effi-
cient computation of the homogenized response of large-scale particle aggregates
characterized by a spatial periodicity in one or two directions, i.e., granular layers
exposed to uniform (D) and/or (T) boundary conditions at their top and bottom
surfaces. It will be demonstrated that the formulation allows to impose the (D)
and (T) boundary conditions both at separate and identical parts of the layer
boundary, where in the latter case the (D) and (T) contributions obviously need
to be applied along different orthonormal directions.

The performance of the servo-control algorithms developed for the various
micro-scale boundary conditions is tested by using monodisperse and polydis-
perse frictional and cohesive packings composed of two-dimensional, circular
particles and subjected to various loading paths. These examples illustrate the
basic features of each of the boundary conditions in full detail. Despite the focus
on two-dimensional particle systems, it should be mentioned that the extension
of the present framework towards three-dimensional granular systems is trivial,
and can be made without the introduction of additional prerequisites.

This chapter is organized as follows. Section 2.2 presents a review of the
numerical homogenization framework for particle aggregates, and outlines the
formulations of the micro-scale (D), (P) and (T) boundary conditions proposed
in (Miehe et al., 2010). Section 2.3 discusses the numerical implementation of
the micro-scale boundary conditions, where for the (P) and (T) boundary condi-
tions two different servo-control algorithms are presented, which include or not
an initial prediction of the displacements of the boundary particles based on their
positions calculated at the previous loading step. In Section 2.4 the performance
of the numerical algorithms is tested on monodisperse and polydisperse frictional
packings subjected to various loading paths. The numerical results clearly illus-
trate the characteristic differences in response for the three types of boundary
conditions, and show their response convergence behavior under increasing sam-
ple size. Section 2.5 presents the formulation for the mixed boundary conditions,
and provides the details of the servo-control algorithm and its numerical perfor-
mance for the cases of infinite frictional and cohesive granular layers loaded by
a vertical compressive stress, and subsequently subjected to a horizontal shear
deformation. Some concluding remarks are provided in Section 2.6.

In terms of notations, the cross product and dyadic product of two vectors are,
respectively, designated as a×b = eijkaibjek and a⊗b = aibjei⊗ ej , where eijk
is the permutation symbol, ei, ej and ek are unit vectors in a Cartesian vector
basis, and Einstein’s summation convention is used on repeated tensor indices.
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The inner product between two vectors is given by a · b = aibi, and between two
second-order tensors by A : B = AijBij . The action of a second-order tensor on
a vector is indicated as A · b = Aijbjei. The superscript T is used to indicate the
transpose of a vector or a tensor. Further, I = δijei⊗ ej denotes the second-order
identity tensor, with δij the Kronecker delta symbol.

Since the present study focuses on two-dimensional particle aggregates, through-
out this chapter the dimensions related to volume, area, stress and mass density
are consistently presented in their reduced form as length2, length, force/length
and mass/length2, respectively.

2.2 Micro-macro transitions for particle aggregates

2.2.1 Micro-scale geometry

The initial micro-scale granular system is characterized by a two-dimensional
square domain of P +Q rigid particles, which are partitioned into P inner parti-
cles Pp, with p = 1, .., P , and Q boundary particles Pq, with q = 1, .., Q, colored in
yellow and red in Figure 2.1(a), respectively. The boundary particles can be fur-
ther split into corner particles Pc with c = 1, .., 4 and the remaining edge particles
Pe with e = 1, .., E = Q − 4. The initial interior domain V comprises the inner
particles with their center points as Xp ∈ Pp with p = 1, .., P . The boundary ∂V
is defined by the boundary particles, whose center points in the initial configura-
tion are Xq ∈ Pq with q = 1, .., Q. The macroscopic deformation of the granular
micro-structure is imposed via the frame of boundary particles Pq, as a result of
which the center points of the inner and boundary particles become located at xp
and xq, respectively, see Figure 2.1(b). In the current configuration, the boundary
particles Pq are subjected to boundary forces aq, boundary moments mq, and par-
ticle contact forces f cq , see Figure 2.1(c), while the inner particles Pp are subjected
to particle contact forces f cp , see Figure 2.1(d), with the superscript c denoting a
contact with a neighbour particle.

The macroscopic response of a granular assembly is derived by transforming
relevant principles used in first-order homogenization theories (Suquet, 1985;
Terada et al., 2000; Kouznetsova et al., 2001; Miehe et al., 2002) from a contin-
uous setting to a discrete setting. Accordingly, at the centroids of the boundary
particles Pq the finite area vectors Aq and forces aq are derived from infinitesimal
area vectors and forces, respectively,∫

∂V

Nds→ Aq and
∫
∂V

t ds→ aq for q = 1..., Q , (2.1)

with N the vector pointing in the outward normal direction of the boundary ∂V of
the initial particle volume V , t being the boundary traction, and ds indicating an
infinitesimal part of the boundary surface. Various expressions for Aq have been
presented in the literature, see e.g., (Miehe and Koch, 2002; Dettmar, 2006).
In the present chapter the initial area vector is computed by accounting for the
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Figure 2.1: (a) Two-dimensional particle aggregate of initial volume V and
boundary ∂V . Yellow and red colors refer to inner Pp and boundary Pq parti-
cles, respectively; (b) Particle aggregate in the current configuration; (c) Bound-
ary forces aq, boundary moments mq, and particle contact forces f cq acting on the
boundary particles Pq; (d) Particle contact forces f cp acting on the inner particles
Pp.

different radii of the boundary particles:

Aq =
Rq

Rq +Rq−1
(Xq −Xq−1)× e3 +

Rq
Rq +Rq+1

(Xq+1 −Xq)× e3 , (2.2)

where Rq+1, Rq and Rq−1 are the radii of adjacent boundary particles q+1, q and
q−1, respectively. Further, e3 represents the unit vector in the out-of-plane direc-
tion of the two-dimensional particle structure, see also Figure 2.1(a). Note that
in (2.2) the boundary particles must be numbered in the anti-clockwise direction
in order to obtain an area vector pointing in the outward normal direction of the
boundary.

It is remarked that the formulation of the proposed homogenization scheme
in principle is independent of the chosen shape of the micro-scale particle sys-
tem, see also (Miehe et al., 2010); however, a slightly different implementation
strategy may be required when considering non-rectangular particle systems.

2.2.2 Micro-scale governing equations

In what follows, firstly, equilibrium definitions for a granular micro-structure, an
inner particle and a boundary particle are presented. Secondly, particle contact
laws describing the interaction between two contacting particles are outlined.
Thirdly, the dynamic relaxation procedure is introduced whereby the kinetic en-
ergy is dissipated out.
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2.2.2.1 Equilibrium conditions

In the absence of body forces, the mechanical equilibrium of a granular micro-
structure can be formulated in terms of the boundary forces aq and moments mq

acting on the boundary particles Pq:

Q∑
q=1

aq = 0 and
Q∑
q=1

(xq × aq + mq) = 0 for q = 1..., Q , (2.3)

with xq the current position vector of the boundary particles. The boundary forces
aq and moments mq thus drive the overall, macroscopic deformation of the gran-
ular system via the frame of boundary particles.

Note that, besides global equilibrium (2.3), local equilibrium conditions may
be formulated for each of the inner particles Pp, which interact through contact
forces f cp at discrete contact points xcp on the particle surfaces:

Nc
p∑

c=1

f cp = 0 and
Nc

p∑
c=1

(xcp − xp)× f cp = 0 for p = 1..., P , (2.4)

with the superscript c referring to a particle contact, N c
p being the number of

contact forces related to particle p and xp is the current position vector of the
inner particle. Analogous conditions may be written for the boundary particles
Pq, for which discrete contact forces f cq act at contact points xcq on the particle
surfaces. The frame of boundary particles is driven by boundary forces aq and
boundary moments mq,

Nc
q∑

c=1

f cq = −aq and

Nc
q∑

q=1

(xcq − xq)× f cq = −mq for q = 1..., Q ,

(2.5)

whereN c
q is the number of contact forces for particle q. Note that the combination

of expressions (2.4) and (2.5) is in correspondence with relation (2.3).

2.2.2.2 Particle contact laws

In order to solve the micro-scale problem, the constitutive response of the gran-
ular assembly needs to be defined through a relation between the contact forces
f ci (or contact moments mc

i), with i = 1, ..., P + Q, and the corresponding con-
tact displacements ∆uci (or contact rotations ∆θci). For the sake of clarity, in the
following the superscript c and subscript i will be dropped. Two types of particle
contact interactions will be considered, which are referred to as frictional contact
and cohesive contact.
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In accordance with (Cundall and Strack, 1979), in the frictional contact law
the normal particle contact force fn is proportional to the normal overlap ∆un be-
tween two particles in contact via a multiplication by the normal contact stiffness
kn. The tangential particle contact force fs is proportional to the relative tangen-
tial displacement ∆us at the particle contact via a multiplication by the tangential
contact stiffness ks, up to a limit value at which frictional sliding starts, as defined
by the normal force multiplied by the friction coefficient µ. The contact law is thus
expressed as

fn = kn∆un and fs =

{
ks∆us if |fs| < −µfn ,
µfn otherwise .

(2.6)

For the cohesive contact law, two particles in contact are assumed to be initially
bonded according to the constitutive model presented in (Wang and Mora, 2008;
Wang, 2009), which proposes a linear relation between the force (or moment)
and the corresponding relative displacement (or rotation) at the particle contact:

f bn = kbn∆un and f bs = kbs∆us and mb
θ = kbθ∆θ

b , (2.7)

where the superscript b refers to “bond”. In specific, the relative displacements
between two particles in the normal and tangential directions of the contact, ∆un
and ∆us, are, respectively, related to the normal and tangential bond forces f bn
and f bs through a multiplication by the bond stiffnesses kbn and kbs, respectively.
Similarly, the relative angular rotation ∆θb is related to the contact moment mb

θ

through a multiplication by the bond bending stiffness kbθ. The bond between two
particles is considered as broken when the following failure criterion is met:

f bn

f b,un
+
|f bs |
f b,us

+
|mb

θ|
mb,u
θ

= 1 , (2.8)

where f b,un is the (ultimate) tensile strength, f b,us is the shear strength and mb,u
θ

is the bending strength. After breakage of the contact the particle interaction is
described by the frictional contact law presented in expression (2.6).

2.2.2.3 Dynamic relaxation

The equilibrium conditions described by equations (2.3) to (2.5) are solved by
applying a dynamic relaxation method, in which the kinetic energy activated by
the applied deformation is dissipated to arrive at the equilibrium state. For each
particle i, where i = 1, .., P + Q, a vector of generalized coordinates is defined
as di = [xi, θi · e3]

T , which includes the particle center location xi and rotation
θi. In addition, a generalized force vector is introduced, pi = [fi, mi · e3]

T ,
which contains the forces and moments acting on the particle. Accordingly, the
generalized equation of motion of particle i can be expressed as
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Mid̈i = (pr + pd)i for i = 1..., P +Q , (2.9)

where the mass matrix Mi = diag [Mi, Ii] includes the particle mass Mi and
particle mass moment of inertia Ii = 1/2 MiR

2
i , with Ri the particle radius. The

term d̈i represents the generalized acceleration vector, with a superimposed dot
indicating a derivative with respect to time. The vector pr is the generalized
force vector composed of the resultant force fr and moment mr acting on particle
i, and pd = [fd, md · e3]

T is the vector containing the resulting particle force
and moment following from the artificial dissipation applied in the simulations to
improve the convergence rate towards the equilibrium state. Following (Potyondy
and Cundall, 2004), the artificial dissipative force fd and moment md are here
defined as

fd = −α|fr| sign(ẋi) and md = −β|mr| sign(θ̇i) , (2.10)

where α and β are damping values related to (signum functions of) the particle
translational velocity ẋi and rotational velocity θ̇i, respectively. Further, |.| refers
to the absolute values of the components of the corresponding vector.

The time integration of the governing equations is performed by applying an
explicit, first-order finite difference scheme, which, for each time step th+1, with
the time increment given by ∆t = th+1 − th, allows for an explicit update of
the particle acceleration, velocity and displacement, see (Weatherley et al., 2014)
for more details. The dynamic relaxation process is considered to be converged
towards the equilibrium state when the ratio between the kinetic energy Ek of
the inner particles in the aggregate and their potential energy Ep is lower than a
prescribed tolerance (Imole et al., 2013), i.e.,

Ek/Ep ≤ tolE , (2.11)

in accordance with the following definitions

Ek =

P∑
i=1

1

2
ḋTi Miḋi and

Ep =

Nc∑
c=1

1

2

(
kn (∆ucn)2 + ks (∆ucs)

2
)
,

(2.12)

where ∆ucn and ∆ucs are the relative displacements in the normal and tangential
direction of particle contact c andN c is the total number of particle contacts. Note
that for the cohesive contact law given by equations (2.7) and (2.8) the potential
energy in (2.12) needs to be extended with the rotational term kθ(∆θ

c)2/2.
Obviously, for deriving the solution of a boundary value problem, the equation

of motion (2.9) and the constitutive response of the particles (2.6) and (2.7)
should be complemented by the appropriate boundary conditions. As mentioned
in the introduction, the numerical implementation of the micro-scale boundary
conditions is based on the formulation presented in (Miehe et al., 2010), and the
main equations are summarized in Section 2.2.3 for the sake of clarity.
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2.2.3 Micro-scale kinematics and boundary conditions

Consider a rigid particle iwithin a granular assembly. The current location x of an
arbitrary material point, located within the initial particle volume at X, is defined
through the non-linear deformation map x = ψi(X), with ψi as

ψi(X) = xi + Qi · (X−Xi) for i = 1..., P +Q , (2.13)

where xi and Xi are the current and original positions of the center of particle
i, and Qi is the second-order particle transformation tensor. For plane problems
defined with respect to the orthonormal tensor basis {ek ⊗ el}2k,l=1,2, the trans-
formation tensor of particle i can be expressed as Qi = cos θie1 ⊗ e1 − sin θie1 ⊗
e2 + sin θie2 ⊗ e1 + cos θie2 ⊗ e2, with θi the magnitude of the particle center ro-
tation θi = θie3, where e3 is the unit vector normal to the plane. In addition, the
current position of the particle center xi can be expressed as the sum of a contri-
bution affine to the macroscopic deformation gradient F̄ and a local, micro-scale
fluctuation wi:

xi = F̄ ·Xi + wi for i = 1..., P +Q . (2.14)

In homogenization schemes for continuous media, the macro-to-micro scale tran-
sition is enforced by requiring the macro-scale deformation gradient to be equal to
the volume average of the micro-scale deformation gradient. In a discrete setting,
this is equivalent to the condition

F̄ =
1

V

Q∑
q=1

xq ⊗Aq . (2.15)

Relation (2.15) can be derived by transforming the volume average of the micro-
scale deformation into a surface integral

F̄ =
1

V

∫
V

F dv =
1

V

∫
V

∇xdv =
1

V

∫
∂V

x⊗Nds , (2.16)

with N the vector normal to the outer boundary of the original particle volume,
and subsequently performing the transition from a continuous to a discrete setting
with the aid of (2.1)1.

Equation (2.15) needs to be satisfied by applying specific boundary conditions
to the boundary particles of the granular micro-structure. For continuous media,
this goal is typically accomplished by applying one of the three classical types
of boundary conditions, namely i) a homogeneous deformation, also known as
the displacement boundary condition and thus abbreviated as (D), ii) periodic
displacements (P), and iii) a uniform traction (T), see, e.g., (Kouznetsova et al.,
2001; Terada et al., 2000; Miehe et al., 2002). For discrete particle structures,
however, additional conditions need to be imposed on the rotations or moments
of the boundary particles. Correspondingly, along the lines of (Miehe et al., 2010),
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the three boundary conditions mentioned above are extended as i) homogeneous
deformation and zero rotation (D), ii) periodic displacement and periodic rota-
tion (P), and iii) uniform force and free rotation (T), of which the formulations
are presented below. The abbreviations (D), (P) and (T), although typically used
in continuum homogenization theories, are maintained here for reasons of con-
sistency. In addition to the three classical boundary conditions, a novel combi-
nation of these boundary conditions has been derived, which will be referred to
as “mixed boundary conditions”. The corresponding formulation is proven to sat-
isfy the consistency of energy between the microscopic and macroscopic scales
of observation, known as the Hill-Mandel micro-heterogeneity condition, and the
details are provided in Section 2.5.

2.2.3.1 Homogeneous deformation and zero rotation (D)

In accordance with this boundary condition, all the boundary particles Pq are
prescribed to have zero micro-scale displacement fluctuations and zero rotations:

xq = F̄ ·Xq and Qq = I on ∂V , (2.17)

where the first expression follows from (2.14) with the displacement fluctuations
as wq = 0. Due to the second condition in (2.17) the boundary moments do not
vanish, i.e.,

mq 6= 0 on ∂V . (2.18)

The homogeneous deformation and zero rotation boundary condition is expected
to result in a relatively stiff macroscopic response of the particle aggregate.

2.2.3.2 Periodic displacement and periodic rotation (P)

For this boundary condition, both the displacements and rotations of the bound-
ary particles Pq are related by periodicity requirements:

x+
q − x−q = F̄ · (X+

q −X−q ) and Q+
q −Q−q = 0 on ∂V , (2.19)

where the superscripts + and − refer to corresponding particles on opposite bound-
aries of the granular assembly. From the viewpoint of equilibrium, the forces and
moments on opposite boundaries need to be anti-periodic, thus satisfying the re-
lations

a+
q + a−q = 0 and m+

q + m−q = 0 on ∂V . (2.20)

2.2.3.3 Uniform force and free rotation (T)

The boundary forces aq of the boundary particles Pq are here determined from
the product of the macroscopic first Piola-Kirchhoff stress P̄ and the discrete area
vectors Aq introduced in equation (2.1)1:

aq = P̄ ·Aq on ∂V . (2.21)
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In addition, no constraint is applied to the boundary rotations, so that the bound-
ary moments vanish:

mq = 0 on ∂V . (2.22)

The uniform force and free rotation boundary condition is expected to provide a
relatively soft macroscopic response of the particle aggregate.

2.2.4 Macro-scale stress and Hill-Mandel condition

The first Piola-Kirchhoff stress at the macro scale is defined in terms of the bound-
ary forces aq acting on the particle aggregate:

P̄ =
1

V

Q∑
q=1

aq ⊗Xq . (2.23)

The Hill-Mandel micro-heterogeneity condition expresses the equality between
the volume average of the virtual work applied at the boundaries of the micro-
structure and the virtual work of a macroscopic material point (Hill, 1963). For a
discrete particle system this condition specifies

P̄ : δF̄ =
1

V

Q∑
q=1

aq · δxq . (2.24)

The macroscopic stress P̄ given by (2.23) must satisfy the energy consistency
between the two scales. Accordingly, considering definition (2.15), the following
identity holds

P̄ : δF̄ = P̄ :
1

V

Q∑
q=1

δxq ⊗Aq =
1

V

Q∑
q=1

(
P̄ ·Aq

)
· δxq . (2.25)

Alternatively, by making use of the definition of the macro-scale stress (2.23), the
inner product P̄ : δF̄ can be expanded as

P̄ : δF̄ =
1

V

Q∑
q=1

aq ⊗Xq : δF̄ =
1

V

Q∑
q=1

aq ·
(
δF̄ ·Xq

)
. (2.26)

Subsequently, reformulating equation (2.24) as

1

V

Q∑
q=1

aq · δxq − P̄ : δF̄ − P̄ : δF̄ + P̄ : δF̄ = 0 , (2.27)
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substituting equations (2.25) and (2.26), and keeping in mind that

P̄ : δF̄ = P̄ :

δF̄ · 1

V

Q∑
q=1

Xq ⊗Aq


= P̄ :

 1

V

Q∑
q=1

δF̄ ·Xq ⊗Aq


=

1

V

Q∑
q=1

(P̄ ·Aq) · (δF̄ ·Xq),

(2.28)

leads to
1

V

Q∑
q=1

(
aq − P̄ ·Aq

)
·
(
δxq − δF̄ ·Xq

)
= 0 . (2.29)

Invoking the micro-scale displacement fluctuations in accordance with relation
(2.14) turns expression (2.29) finally into

1

V

Q∑
q=1

(
aq − P̄ ·Aq

)
· δwq = 0 . (2.30)

Note that the recast form (2.30) of the Hill-Mandel condition is satisfied for all
three types of boundary conditions introduced above: For the (D) boundary con-
dition, the combination of equations (2.14) and (2.17) results in δwq = 0. For the
(P) boundary condition, the periodicity of the micro-fluctuations of the bound-
ary displacements w+

q = w−q and the anti-periodicity of the boundary forces
a+
q = −a−q , following from equations (2.19) and (2.20), respectively, make their

products in expression (2.30) vanish for opposite boundaries. For the (T) bound-
ary condition, relation (2.21) leads to aq − P̄ ·Aq = 0.

It should be mentioned that the Hill-Mandel condition elaborated above only
accounts for the influence of contact forces acting on boundary particles, and does
not include the effect of contact moments. This is consistent with the assumption
of a standard (Boltzmann) continuum at the macro scale, which contains displace-
ment degrees of freedom but does not consider rotations. This assumption is sat-
isfied for the frictional contact law, in which the contact moments are absent, see
expression (2.6). For the cohesive contact law, the contact moments contribute
both to the elastic behavior and the strength criterion, see expressions (2.7) and
(2.8), respectively. The extension of a contact law with a contact moment con-
tribution formally introduces a couple stress in the macroscopic response of the
particle aggregate, which is energetically conjugated to the gradient of the over-
all rotation, see e.g., (Mühlhaus and Vardoulakis, 1987; Chang and Liao, 1990;
Chang and Ma, 1992; Suiker et al., 2001a,b; Suiker and de Borst, 2005). These
higher-order stress and deformation measures correspond to higher-order natural
and essential boundary data (Suiker and de Borst, 2005), which are known to be
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difficult to measure in experiments, and commonly are (substantially) lower in
magnitude than the classical boundary data. For these reasons, and from the fact
that the cohesive contact law defined by equations (2.7) and (2.8) is used only
for one example discussed at the end of this chapter, see Section 2.5.3, an exten-
sion of the Hill-Mandel condition with the effect of a contact moments is omitted
here, but may be considered as a topic for future research. Correspondingly, for
the cohesive contact law a consistency in energy between the micro- and macro-
scales of a particle aggregate can only be warranted in an approximate fashion.

In Sections 2.4 and 2.5, the results of the DEM analyses will be presented
in terms of components of the macro-scale Cauchy stress tensor σ̄. This stress
measure can be derived from the first Piola-Kirchhoff stress P̄ computed through
(2.23) by using the common transformation rule:

σ̄ =
1

det
(
F̄
) P̄ · F̄ T . (2.31)

2.3 Numerical implementation of micro-scale bound-
ary conditions

The micro-scale boundary conditions outlined above were implemented by using
the open-source discrete element code ESyS-Particle (Virgo et al., 2013; Guo and
Zhao, 2013). The numerical algorithms developed for this purpose are described
below.

2.3.1 Homogeneous deformation and zero rotation (D)

The homogeneous deformation and zero rotation boundary condition (D) given
by equation (2.17) can be implemented straightforwardly by imposing this con-
dition in an incremental fashion on the boundary particles Pq. After moving the
boundary particles in accordance with the incremental update of the deformation
F̄ , dynamic relaxation is applied to reach the equilibrium state of the particle
aggregate, during which the displacements imposed on the boundary particles
remain fixed. The particle configuration corresponding to the equilibrium state is
stored, and the next deformation increment is applied. This process is repeated
until the total number of deformation increments itot is reached. The details of
the algorithm are summarized in Table 2.1.

Table 2.1: Algorithm for the (D) boundary condition.

1. DEM simulation. Increments 0 ≤ i ≤ itot
1.1 Apply updated boundary conditions

xq = F̄Xq and Qq = I for q = 1..., Q
1.2 Dynamic relaxation until equation (2.11) is satisfied
1.3 Save current configuration and go to 1 (next increment i+ 1)
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2.3.2 Periodic displacement/periodic rotation (P) and
uniform force/free rotation (T)

The periodic displacement and periodic rotation boundary condition (P) and the
uniform force and free rotation boundary condition (T) were numerically imple-
mented by means of a servo-control algorithm, which uses a feedback principle
similar to that of algorithms commonly applied within control theory of dynamic
systems (Åström and Murray, 2008). More specifically, the algorithms iteratively
correct the boundary particle displacements and rotations from a gradually dimin-
ishing discrepancy between the measured and the required values of the boundary
condition.

For the periodic displacement and periodic rotation boundary condition (P),
the boundary forces and boundary moments should satisfy the anti-periodicity
conditions presented in equation (2.20). Accordingly, the corresponding residuals
for the edge particles are

∆ae = a+
e + a−e , ∆me = (m+

e + m−e ) · e3 for e = 1..., E/2 . (2.32)

Multiplying the residuals by corresponding gain parameters gpa and gpm results into
the following displacement and rotation corrections for the edge particles:

∆u+
e = ∆u−e = gpa∆ae, ∆θ+

e = ∆θ−e = gpm∆me for e = 1..., E/2 , (2.33)

which are added to the particle locations and rotations from the previous itera-
tion. Note that the four corner particles straightforwardly follow the macroscopic
deformation F̄ , by prescribing their displacements in accordance with equation
(2.17). Hence, for these particles no displacement correction is needed. The ro-
tations of the four corner particles will be updated similarly to (2.33), using the
corrections

∆θ+
c = ∆θ−c = gpm∆mc with ∆mc =

4∑
c=1

mc · e3 . (2.34)

For the uniform force/free rotation boundary condition (T), the boundary
forces ensue from the applied macroscopic stress through expression (2.21). How-
ever, since the solution procedure is deformation-driven, the constraint given by
(2.21) cannot be enforced directly on the micro-scale particle structure. Corre-
spondingly, an additional condition that depends explicitly on the macroscopic
deformation F̄ should be used. This condition is given by expression (2.15),
which represents the weak counterpart of expression (2.21), see also (Miehe
et al., 2010). Hence, the two corresponding residuals are formulated as

∆aq = P̄ ·Aq−aq, ∆F̄ q = V F̄ ·Aq−
Q∑
r=1

(Aq ·Ar) xr for q = 1..., Q . (2.35)

The correction for the displacement of the boundary particles is derived by mul-
tiplying the force and deformation residuals in (2.35) by the gain parameters gta
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and gtF , respectively, leading to

∆uq = gta∆aq + gtF∆F̄ q for q = 1..., Q . (2.36)

When performing numerical simulations, the specific values of the gain parame-
ters gpa, g

p
m, g

t
a, g

t
F need to be fine-tuned from accuracy and stability considera-

tions of preliminary numerical benchmark tests.
The corrections for the displacement and rotation of the boundary particles

were implemented by means of two different algorithms, which consider or not
an initial prediction of the position of the boundary particles based on their posi-
tions calculated at the previous loading step. These algorithms are therefore given
the labels “with initial displacement prediction” and “without initial displacement
prediction”. The algorithms are discussed below, and their effect on the compu-
tational results will be investigated in Section 2.4. The specific parts of the al-
gorithms that refer to the periodic displacement and periodic rotation boundary
condition will be denoted by the symbol (P), while the symbol (T) indicates the
uniform force and free rotation boundary condition. Finally, the residuals de-
fined in expressions (2.32) and (2.35), which relate to the particle force, particle
moment and macroscopic deformation gradient, are evaluated at each iteration
by subjecting their dimensionless form to a convergence check. The dimension-
less forms are obtained through, respectively, a normalization by the following
parameters:

ãk =
MkRk

∆t2
, m̃k =

MkR
2
k

∆t2
, F̃k = R3

k , (2.37)

with k = c, e, q referring to corner, edge, and boundary particles, respectively. In
(2.37), Mk is the mass of particle k, Rk is its radius and ∆t is the time increment
used in the dynamic relaxation procedure.

2.3.2.1 Algorithm with initial displacement prediction

The macroscopic deformation is imposed in itot steps on the boundary particles
Pq via the incrementally updated deformation gradient F̄ . In correspondence
with the algorithm presented in Table 2.2, in the initialization step, i = 0, the
boundary particles are moved in accordance with a homogeneous deformation,
and for the periodic boundary also a zero rotation, similar to equation (2.17).
Subsequently, the granular assembly is dynamically relaxed to the equilibrium
state, keeping the translational and, for the periodic boundary, rotational de-
grees of freedom of the boundary particles fixed. The iterative loop is entered,
and the actual values of the forces and moments of the boundary particles are
recorded. For the (P) boundary condition, the corrections for obtaining periodic
particle translations and rotations at the boundary are calculated for the corner
and edge particles separately, in accordance with relations (2.32)-(2.34). For the
(T) boundary condition, the boundary moments vanish and the displacement cor-
rections are computed via (2.35)-(2.36). The residuals are computed and com-
pared with prescribed tolerances. For the (P) boundary condition, the residual
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is based on boundary forces and moments. For the (T) boundary condition, two
residuals are calculated, which are based on the boundary forces and on the im-
posed macroscopic deformation. If the norm of the residual(s) is(are) smaller
than the tolerance(s) (referred to as εa for the force criterion and εF for the de-
formation criterion), the iterative loop is terminated and the next loading step is
applied. If the convergence criterion is not satisfied, the corrections are computed
again and the residual is iteratively re-examined, until convergence is reached.

After the initialization step is concluded, the responses for subsequent incre-
ments, 1 ≤ i ≤ itot, are calculated, see Table 2.2. For the (P) boundary condition,
the corner nodes are moved by straightforwardly imposing the updated macro-
scale deformation in accordance with relation (2.17). For the edge particles, their
current position is determined from a prediction based on the particle position
in the previous loading step i − 1. More specifically, this prediction is a function
of the position a particle would have in case of a homogeneous deformation (us-
ing the displacement boundary condition (2.17)), plus the difference, multiplied
by an inheritance factor nf , between the final particle position at the previous
increment and the position the particle would have at the previous increment
under a homogeneous deformation. The inheritance factor lies between 0 and
1, and its optimal value (in terms of computational efficiency) depends on the
loading conditions applied and the characteristics of the particle assembly. For
the (T) boundary condition, the prediction occurs in an analogous fashion and is
applied to all the boundary particles. After the boundary particles are translated
in accordance with the predicted values of their positions, the granular assembly
is dynamically relaxed to its equilibrium state defined by equation (2.11). Sub-
sequently, the iterative loop is entered, which invokes the previously described
correction procedure of the displacements and rotations, in correspondence with
the servo-control methodology.

2.3.2.2 Algorithm without initial displacement prediction

Similar to the algorithm with initial displacement prediction, for the algorithm
without initial displacement prediction the macroscopic deformation is imposed
in itot steps to the boundary particles Pq. However, as pointed out in Table 2.3,
all increments are now treated in the same fashion. The boundary particles are
initially moved in accordance with the updated homogeneous macroscopic de-
formation F̄ , similar to expression (2.17), after which the particle assembly is
dynamically relaxed to its equilibrium state. The iterative loop is started, in
which the corrections for the displacement and rotation of the boundary parti-
cles are calculated based on the servo-control methodology. For the (P) boundary
condition, the boundary is partitioned into corner and edge particles, whereby
relations (2.32)-(2.34) are applied. For the (T) boundary condition, equations
(2.35)-(2.36) are employed. Subsequently, the particle system is relaxed to the
equilibrium state, and the current values of the boundary forces and moments
are recorded and used to compute the residuals. If the norms of the residuals are
smaller than the corresponding tolerances adopted, the iterative loop is termi-
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Table 2.2: Algorithm for the (P) and (T) boundary conditions with initial dis-
placement prediction.

Algorithm with initial displacement prediction

1. Initialization DEM simulation. Increment i = 0
1.1 Initialize boundary conditions by applying updated macro-scale deformation homogeneously

1.1.A if (P) =⇒ xq = F̄Xq and Qq = I for q = 1..., Q
1.1.B if (T) =⇒ xq = F̄Xq and mq = 0 for q = 1..., Q

1.2 Dynamic relaxation until equation (2.11) is reached. Obtain boundary forces and moments.
1.3 Update particle configuration

1.3.A if (P) =⇒ Partition the boundary into corner c and edge e particles
Calculate edge particles displacement ∆ue and rotation ∆θe corrections via (2.32)-(2.33)
and corner particles rotation corrections ∆θc via (2.34)

1.3.B if (T) =⇒ Calculate boundary particles displacement correction ∆uq via (2.35)-(2.36)
1.4 Dynamic relaxation until equation (2.11) is satisfied. Obtain boundary forces and moments.
1.5 Calculate residual(s)

1.5.A if (P) =⇒ ra =

√∑E/2
e=1 (∆ae ·∆ae/ã2

e + (∆me/m̃e)2) + (∆mc/m̃c)2

1.5.B if (T) =⇒ ra =
√∑Q

q=1 ∆aq ·∆aq/ã2
q and rF =

√∑Q
q=1 ∆F̄ q ·∆F̄ q/F̃ 2

q

1.6 Check for convergence: ra ≤ εa for (P); ra ≤ εa and rF ≤ εF for (T)
1.6.A if converged =⇒ Save current configuration and go to 2
1.6.B if not converged =⇒ Return to 1.3

2. Subsequent increments 1 ≤ i ≤ itot
2.1 Apply updated boundary conditions

2.1.A if (P) =⇒
Impose updated macro-scale deformation on corner nodes: xc = F̄Xc and Qq = I
Prediction of the positions of edge particles:
xi
e = xi,(D)

e + nf

(
xi−1
e − xi−1,(D)

e

)
for e = 1...E/2

with x(D)
e = F̄Xe and the inheritance factor 0 < nf ≤ 1

2.1.B if (T) =⇒
Prediction of the positions of boundary particles:
xi
q = xi,(D)

q + nf

(
xi−1
q − xi−1,(D)

q

)
for q = 1..., Q

with x(D)
q = F̄Xq and the inheritance factor 0 < nf ≤ 1

2.2 Translate particles according to predictions 2.1.A, or 2.1.B
2.3 Dynamic relaxation until equation (2.12) is satisfied. Obtain boundary forces and moments.
2.4 Update particle configuration with displacement and rotation corrections ∆u and ∆θ

2.4.A if (P) =⇒ Refer to 1.3.A
2.4.B if (T) =⇒ Refer to 1.3.B

2.5 Dynamic relaxation until equation (2.11) is satisfied. Obtain boundary forces and moments.
2.6 Calculate residual(s)

2.6.A if (P) =⇒ Refer to 1.5.A
2.6.B if (T) =⇒ Refer to 1.5.B

2.7 Check for convergence: ra ≤ εa for (P); ra ≤ εa and rF ≤ εF for (T)
2.7.A if converged =⇒ Save current configuration and go to 2 (next increment i+ 1)
2.7.A if not converged =⇒ Return to 2.4
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nated and the next loading step is applied. It can be confirmed that the algorithm
without displacement prediction can be obtained as a limit case of the algorithm
with initial displacement prediction by setting the inheritance factor equal to zero,
nf = 0, whereby the algorithmic structure provided in Table 2.2 reduces to the
more compact and simpler algorithmic structure presented in Table 2.3.

Table 2.3: Algorithm for the (P) and (T) boundary conditions without initial
displacement prediction.

Algorithm without initial displacement prediction

1. DEM simulation. Increments 0 ≤ i ≤ itot
1.1 Initialize boundary conditions by applying updated macro-scale deformation homogeneously

1.1.A if (P) =⇒ xq = F̄Xq and Qq = I for q = 1..., Q
1.1.B if (T) =⇒ xq = F̄Xq and mq = 0 for q = 1..., Q

1.2 Dynamic relaxation until equation (2.11) is satisfied. Obtain boundary forces and moments.
1.3 Update particle configuration

1.3.A if (P) =⇒ Partition the boundary into corner c and edge e particles
Calculate edge particles displacement ∆ue and rotation ∆θe corrections via (2.32)-(2.33)
and corner particles rotation corrections ∆θc via (2.34)

1.3.B if (T) =⇒ Calculate boundary particles displacement correction ∆uq via (2.35)-(2.36)
1.4 Dynamic relaxation until equation (2.11) is satisfied. Obtain boundary forces and moments.
1.5 Calculate residual(s)

1.5.A if (P) =⇒ ra =

√∑E/2
e=1 (∆ae ·∆ae/ã2

e + (∆me/m̃e)2) + (∆mc/m̃c)2

1.5.B if (T) =⇒ ra =
√∑Q

q=1 ∆aq ·∆aq/ã2
q and rF =

√∑Q
q=1 ∆F̄ q ·∆F̄ q/F̃ 2

q

1.6 Check for convergence: ra ≤ εa for (P); ra ≤ εa and rF ≤ εF for (T)
1.6.A if converged =⇒ Save current configuration and go to 1 (next increment i+ 1)
1.6.B if not converged =⇒ Return to 1.3

2.4 Computational results for regular and irregular
packings

The algorithms proposed above for the implementation of the micro-scale bound-
ary conditions are tested on a series of DEM simulations on regular, monodisperse
and irregular, polydisperse particle packings.

2.4.1 Regular monodisperse packing

In this section the responses of three different regular, monodisperse particle
packings are considered, which consist of circular particles of radius R = 1.02
mm, where the centroids of two particles in contact initially are at a distance of
2.0 mm. The initial volumes of the packings are V = [64, 324, 784] mm2, which
are calculated from the locations of the centroids of the four corner particles. The
number of particles of the three packings are equal to np = [25, 100, 225]. The
particle volume fraction related to initial volume occupied by the inner particles
is v = 0.785. The corresponding coordination number, which reflects the average
number of contacts of the inner particles, equals 4.
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Table 2.4: Physical and algorithmic model parameters.
Parameter Value Unit
Elastic normal stiffness kn 1× 104 N/m
Elastic tangential stiffness ks 2× 103 N/m
Friction coefficient µ 0.4 -
Density ρ 2× 103 kg/m2

Translational damping α 0.7 -
Rotational damping β 0.7 -
Time increment ∆t 10−6 s
Tolerance force (P), (T) εa 10−4 -
Tolerance deformation (T) εF 10−2 -
Gain force (P) gpaM/∆t2 1× 102 -
Gain moment (P) gpmMR2/∆t2 2× 102 -
Gain force (T) gtaM/∆t2 1× 102 -
Gain deformation (T) gtFR

2 2× 10−5 -
Tolerance dynamic relaxation tolE 10−3 -

The particles obey a frictional contact law, in correspondence with relation
(2.6). Assuming relatively soft particles, the normal and tangential stiffnesses are
chosen as kn = 104 N/m and ks = 2 · 103 N/m, and the friction coefficient equals
µ = 0.4. The density of the particles is ρ = 2 · 103 kg/m2. The translational
and rotational damping factors used in the dynamic relaxation procedure are
α = β = 0.7. The packings are subjected to a combined biaxial compression-true
shear deformation

F̄ = I + F̄11 e1 ⊗ e1 + F̄12 e1 ⊗ e2 + F̄21 e2 ⊗ e1 + F̄22 e2 ⊗ e2 , (2.38)

with F̄11 = F̄22 = −0.03 and F̄12 = F̄21 = −0.3, which is applied in itot = 300
loading steps. For reaching the equilibrium state at each loading step, the parti-
cle system is subjected to dynamic relaxation steps of constant time increments
∆t = 10−6s. The gain parameters (in dimensionless form) used for the cor-
rect application of the boundary conditions are: for (P) gpaM/∆t2 = 1 · 102 and
gpmMR2/∆t2 = 2 · 102; for (T) gtaM/∆t2 = 1 · 102 and gtFR

2 = 2 · 10−5, with
M = ρπR2 representing the mass of the particles. The force and deformation
tolerances are taken as εa = 10−4 and εF = 10−2, respectively. For the dynamic
relaxation process, a value of 10−3 is adopted for tolE , whereby equation (2.11)
must be minimally satisfied for a pre-defined, continuous period of 20∆t, in order
to ensure a rigorous dynamic relaxation to the equilibrium state. An overview of
the model parameters is given in Table 2.4.

2.4.1.1 Responses for algorithms with and without initial displacement pre-
diction

In order to investigate the performance of the two algorithms presented in Tables
2.2 and 2.3, the packing of 25 particles is considered first. The stress responses
under the combined biaxial compression-true shear loading were computed with
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(a) (P) boundary condition (b) (T) boundary condition
Figure 2.2: Combined biaxial compression-true shear deformation: Normalized
macroscopic Cauchy stresses −σ̃11 and −σ̃12 versus the shear deformation −F̄12

for (a) periodic displacement/periodic rotation boundary condition (P) and (b)
uniform force/free rotation boundary condition (T). The responses relate to a
regular monodisperse packing of 25 particles in a square array, and were com-
puted by the algorithms with (solid line) and without (dot-dashed line) initial
displacement predictions.

Eq.(2.31), and plotted as a function of the applied macroscopic shear deformation
F̄12. Figures 2.2(a) and (b) show the results for the algorithms with (solid line)
and without (dot-dashed line) an initial displacement prediction for the (P) and
(T) boundary conditions, respectively. The normal and shear components of the
Cauchy stress are normalized as σ̃11 = σ̄11/kn and σ̃12 = σ̄12/kn, respectively,
where σ̄11 and σ̄12 are the macroscopic normal and shear Cauchy stresses of the
particle aggregate. For the periodic boundary conditions (P), Figure 2.3 illustrates
the packing structures at specific macroscopic shear deformations F̄12 = −0.01
(a), F̄12 = −0.113 (b), and F̄12 = −0.28 (c). The red lines plotted in the deformed
particle aggregates indicate the network of normal contact forces between the
particles.

For the algorithm with initial displacement prediction, the local minimum of
the normal stress σ̃11 near F̄12 = −0.113, as shown in Figure 2.2(a) for the peri-
odic boundary conditions (P), can be ascribed to a joint localized sliding of all the
boundary particles, see Figure 2.3(b), top.

This localization mechanism does not arise for the algorithm without initial
displacement prediction, which furnishes a shear response that is much more
homogeneous, see Figure 2.3(b), bottom. It may be therefore concluded that the
response of the packings is rather sensitive to bifurcations in the equilibrium path
followed, which here become evident due to the relatively low number of particles
present in the packing. Under continuing deformation towards F̄12 = −0.28,
the inner particles of the aggregate also develop substantial sliding, such that
for both algorithms the particle structure gradually reaches its densest packing
structure, at which the deformation as well as the normal contact force network
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prediction
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Figure 2.3: Combined biaxial compression-true shear deformation: Deformed
configurations of a regular packing of 25 particles with (P) boundary conditions
evaluated at three different deformation states: (a) F̄12 = −0.01, (b) F̄12 =
−0.113, (c) F̄12 = −0.28. The particle configurations were computed with the
algorithms with (top) and without (bottom) initial displacement prediction. The
red lines indicate the normal contact force network of the particles.

become strongly homogeneous. Both for the normal and shear stress components
the responses computed by the two algorithms at this stage have coalesced, and
steadily grow under further increasing deformation.

A similar trend can be observed for the normal and shear stress responses of
the particle aggregates with the (T) boundary condition, see Figure 2.2(b). The
discrepancies in the responses computed by the two algorithms appears to be less
than for the (P) boundary condition.

In the simulations discussed above the two proposed algorithms have demon-
strated a comparable numerical efficiency and robustness. Additional analyses
not presented here nevertheless have illustrated that the performance of the algo-
rithm with initial displacement prediction may be computationally more efficient
for a well-calibrated choice of the inheritance parameter. However, if the value of
the inheritance factor becomes relatively large, convergence problems may arise.
Hence, for reasons of simplicity and numerical robustness, the forthcoming DEM
results were computed with the algorithm without initial displacement prediction.

2.4.1.2 Responses for the (D), (P) and (T) boundary conditions

The influence of the choice of the boundary condition on the overall packing
response is illustrated in Figure 2.4(a). The (normalized) normal stress σ̃11

is shown as a function of the applied shear deformation F̄12 for the displace-
ment/zero rotation boundary condition (D) with a solid line, for the periodic dis-
placement/periodic rotation boundary condition (P) with a dot-dashed line, and
for the uniform force/free rotation boundary condition (T) with a dashed line.
The stress response computed for the (P) boundary condition is bounded by the
stiffer and softer responses measured for the (D) and (T) boundary conditions,
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respectively, a result that is in agreement with the numerical studies performed in
(Miehe et al., 2010). It may be observed that the initial stress value corresponding
to the (T) boundary condition is somewhat smaller than the value computed for
the other two boundary conditions. This is, because after the sample preparation
procedure was finished, the boundary forces generated by a 4% particle overlap
do not exactly satisfy equation (2.21), and therefore in the first loading increment
are slightly relaxed by the algorithm in order to meet this condition.

Consider the average normalized particle overlap ∆ūn, defined as

∆ūn =
1

N c

Nc∑
c=1

∆ucn
R̄c

, (2.39)

where N c is total number of particle contacts, R̄c is the average radius at contact
c and ∆ucn is the particle overlap at contact c. Figure 2.4(b) depicts ∆ūn as
a function of the applied shear deformation −F̄12. Observe that the trend for
the average particle overlap is similar to that for the macroscopic normal stress
in Figure 2.4(a). This can be explained as follows: The macroscopic stress is
represented by the volume average of all contact forces generated within the
granular micro-structure. Since the assumed normal contact stiffness is larger
than the shear contact stiffness, kn > ks, see Table 2.4, the normal contact forces
f cn, which are proportional to contact overlaps ∆ucn, see expression (2.6), provide
the main contribution to the macroscopic stress response, which is consistent with
the statement that the load bearing capacity of a granular assembly mainly comes
from the normal force between contacting particles (Rothenburg et al., 1989).
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(a) Normalized Cauchy stress −σ̃11 (b) Average particle overlap ∆ūn
Figure 2.4: Combined biaxial compression-true shear deformation: (a) Normal-
ized homogenized Cauchy stress −σ̃11 and (b) average particle overlap ∆ūn ver-
sus the shear deformation−F̄12 for the three types of boundary conditions (D),(P)
and (T).
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2.4.1.3 Responses for different sample sizes

The effect of the sample size on the macroscopic stress response is considered
by plotting the computational results for packings composed of 25, 100 and 225
particles for the (D), (P) and (T) boundary conditions in Figures 2.5(a), (b) and
(c), respectively. Generally, for a larger sample the normal stress σ̃11 decreases.
The (D) and (P) boundary conditions show a close resemblance in the responses
for 100 and 225 particles, from which it may be concluded that for a sample of
about 225 particles the stress response has more or less converged. Conversely,
for the (T) boundary condition the stress for a sample of 225 particles shows a
substantial relative lower value up to a deformation of F̄12 ≈ 0.20. This soften-
ing behavior appears to be governed by strongly localized deformations emerging
at the boundaries of the particle system, a phenomenon that also has been re-
ported for continuum homogenization methods equipped with this relatively soft
boundary condition, see (Coenen et al., 2012).

2.4.2 Irregular polydisperse packing

The irregular polydisperse packings analyzed in this section are composed of
circular particles, with the particle radii arbitrarily taken from a uniform size
distribution with polydispersity Rmax/Rmin = 2, where Rmin = 0.67 mm. A
collision-driven molecular dynamics code described in (Donev et al., 2005) is
used to randomly generate irregular packings with the initial number of particles
equal to n0

p = [25, 100, 200, 400, 600], as shown in Figure 2.6(a). Subsequently,
these packings are reconstructed into geometrically periodic packings by copying
each of the boundary particles intersecting with the edges of the square particle
volume to corresponding positions at the opposite boundaries. This results into
the packing geometries shown in Figure 2.6(b), with the final particle numbers
as np = [37, 120, 228, 444, 650]. The initial volumes of the particle aggregates are
equal to V = [100, 400, 818, 1462, 2156] mm2, respectively. The rose diagrams of
the particle assemblies are sketched in Figure 2.6(c), clearly indicating that the
packings become more isotropic when the particle number increases. The parti-
cle volume fraction of the packings varies in the range v ∈ [0.833, 0.850], where
the smallest and highest values correspond to the packings with the smallest and
highest number of particles, respectively. The corresponding coordination num-
bers lie in between 2.97 and 3.47.

The particle packings are subjected to a simple shear macroscopic deformation

F̄ = I + F̄12 e1 ⊗ e2 , (2.40)

with F̄12 = 0.5, which is applied in itot = 100 loading steps. A step size vari-
ation study not presented here has shown that this loading step is sufficiently
small for reaching a converged, pre-peak response of the micro-structural parti-
cle assembly, irrespective of the type of boundary condition applied. However,
after passage of the peak load localization may occur, during which the macro-
scopic stress response softens; due to the appearance of numerous bifurcations
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Figure 2.5: Combined biaxial compression-true shear deformation: Normalized
macroscopic Cauchy stress −σ̃11 versus the shear deformation −F̄12 for three dif-
ferent sample sizes of 25, 100 and 225 particles, for the (a) (D) boundary condi-
tion, (b) (P) boundary condition, and (c) (T) boundary condition.
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(a)

(b)

(c)

Figure 2.6: Characteristics of the five different irregular polydisperse packings
studied: (a) Initial packings generated by a collision-driven molecular dynamics
code (Donev et al., 2005), (b) geometrically periodic packings with the number
of particles equal to np = [37, 120, 228, 444, 650], and (c) the rose diagrams. It’s
noted that in (a) and (b) color red refers to corner particles, color blue refers to
left and right boundary particles, color green refers to top and bottom boundary
particles, and yellow refers to inner particles.

the equilibrium path to be followed then becomes sensitive to small physical and
numerical perturbations of the particle system, such as round-off errors in the
numerical scheme. Accordingly, different load step sizes may trigger different
equilibrium paths and therefore can induce differences in the post-peak response
computed. For the irregular packings the same physical and algorithmic param-
eters are used as for the regular packings, see Table 2.4, except for the tolerance
εF = 10−1 and the two gain values for the (T) boundary condition, which here
relate to gtaMi/∆t

2 = 5 and gtFR
2
i = 2 · 10−6, with Mi = ρπR2

i being the mass
of particle i and Ri its radius. Note that for an irregular polydisperse packing the
specific gain values depend on the characteristics of the actual particle i.

2.4.2.1 Responses for the (D), (P) and (T) boundary conditions

The response of a packing with 228 particles is considered first. The normalized
macroscopic stresses σ̃11 = σ̄11/kn and σ̃22 = σ̄22/kn are shown in Figure 2.7 as a
function of the applied macroscopic shear deformation F̄12. The solid, dot-dashed
and dashed lines refer to the (D), (P) and (T) boundary conditions, respectively.
Since for the packing of 228 particles the particle structure is rather isotropic, see
Figure 2.6(c), it can be confirmed that the responses for the two normal stresses
σ̃11 and σ̃22 indeed are similar. As for the regular monodisperse packing, the
(D) and (T) boundary conditions provide the upper (stiffest) and lower (softest)
bounds for the particle system response, and thereby encapsulate the response
calculated for the (P) boundary condition. Although not depicted here, the re-
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sponses for the normalized shear stress σ̃12 = σ̄12/kn under the (D), (P) and (T)
boundary conditions follow similar trends as observed for the normal stresses σ̃11

and σ̃22, with the magnitude of the shear stress being about one third of that of
the normal stresses.
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(a) Stress component −σ̃11 (b) Stress component −σ̃22

Figure 2.7: Simple shear deformation: Normalized homogenized Cauchy stresses
versus the shear deformation F̄12 for packings of 228 particles, subjected to the
boundary conditions (D), (P) and (T). (a) Stress component −σ̃11, (b) stress com-
ponent −σ̃22.

Figure 2.8 shows the deformed structure of the granular aggregates for the
three types of boundary conditions at four different deformation levels, namely
(a) F̄12 = 0.05, (b) F̄12 = 0.1, (c) F̄12 = 0.3 and (d) F̄12 = 0.5. The local
distribution of particles develops differently for the three boundary conditions,
leading to differences in the network of normal contact forces represented by the
red lines: The (D) and (T) boundary conditions experience the highest and lowest
contact forces, respectively, as indicated by the relatively thick and thin red lines.
Obviously, this is in correspondence with the largest and smallest stress levels for
the (D) and (T) boundary conditions, as depicted in Figure 2.7.

Figure 2.9 illustrates the average normalized particle overlap ∆ūn, defined by
relation (2.39), and the average particle rotation

θ̄ =

∑P+Q
i=1 |θi|
P +Q

, (2.41)

both as a function of the applied macroscopic shear deformation F̄12. As for the
regular monodisperse packings, the average normalized particle overlap is the
largest for the (D) boundary condition and the smallest for the (T) boundary
condition, and shows a similar evolution as observed for the normal stresses, see
Figure 2.7. As expected, the average rotation shows the opposite trend, being
the largest for the soft (T) boundary condition and the smallest for the stiff (D)
boundary condition.
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(a) F̄12 = 0.005 (b) F̄12 = 0.1 (c) F̄12 = 0.3 (d) F̄12 = 0.5

(D)

(P)

(T)

Figure 2.8: Simple shear deformation: Deformed configurations of an irregular
packing of 228 particles evaluated at four different deformation states. (a) F̄12 =
0.05, (b) F̄12 = 0.1, (c) F̄12 = 0.3, and (d) F̄12 = 0.5, for the (D), (P) and (T)
boundary conditions. The red lines indicate the normal contact force network of
the particles.
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Figure 2.9: Simple shear deformation: (a) Average normalized particle overlap
∆ūn and (b) average particle rotation θ̄ versus the shear deformation F̄12 for a
packing of 228 particles subjected to the (D), (P) and (T) boundary conditions.
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2.4.2.2 Convergence behavior of macroscopic response under increasing
sample size

The convergence behavior of the apparent macroscopic response of the particle
aggregate towards its effective response under increasing sample size is stud-
ied by subjecting the five micro-structures depicted in Figure 2.6(b) to a simple
shear deformation given by (2.40). In convergence studies, this type of loading
condition occasionally is characterized as “critical”, because of a relatively slow
convergence behavior towards a representative volume element (RVE). The con-
vergence behavior is evaluated here by means of the L2-norm of the normalized,
homogenized Cauchy stress tensor σ̃, integrated along the entire deformation
path

‖σ̃‖L2
=

( ∑
ij=11,22,12,21

∫ F̄12=0.5

F̄12=0

σ̃2
ijdF̄12

)1/2

. (2.42)
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Figure 2.10: Stress norm‖σ̃‖L2
versus particle number for irregular polydisperse

particle packings subjected to (D), (P) and (T) boundary conditions, in accor-
dance with a macroscopic simple shear deformation F̄12 = 0.5.

Figure 2.10 illustrates the stress norm‖σ̃‖L2
as a function of the sample size,

expressed in terms of the number of particles. It can be observed that for the stiff
(D) and soft (T) boundary conditions the stress norm, respectively, decreases and
increases with increasing sample size, while for the periodic (P) boundary condi-
tion it remains approximately constant. These trends are typical for a change in
apparent properties under increasing sample size, see e.g., (Kouznetsova et al.,
2001). However, to define the minimal RVE the curves for the (D) (P) and (T)
boundary conditions must coincide (Hill, 1963), which indeed is not the case for
the largest sample of 650 particles. As already indicated above, the minimum size
of RVE depends on the type of loading condition applied, which is known to be
relatively large under a macroscopic shear deformation. From the approximately
constant stress value observed in Figure 2.10 for the (P) boundary condition, it
may be expected that the stress response of the RVE will be close to‖σ̃‖L2

≈ 0.011.
Hence, in multi-scale simulations on granular materials the computational costs
can be kept manageable by adopting the (P) boundary condition for a relatively
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small (and thus not rigorously “representative”) micro-structural sample. Its ef-
fective response in fact is comparable to that of the minimal RVE, which thus is
typically characterized by a much larger size.

2.5 Mixed boundary conditions

In this section the formulation and numerical implementation of mixed (D)-(P)-
(T) boundary conditions is presented. Despite that the classical boundary con-
ditions accurately represent the response of granular assemblies for the specific
conditions under which they apply, for simulating more generally the effect of a
macroscopic deformation on the particle micro-structure and to accurately rep-
resent the loading conditions in particular experimental set-ups, a combination
of the classical boundary conditions may be needed. The homogenization frame-
work proposed here satisfies the Hill-Mandel micro-heterogeneity condition, and
thus can be used for i) a consistent derivation of macro-scale constitutive rela-
tions from standard material tests on micro-scale particle aggregates subjected to
any combination of (D)-, (P)- and/or (T)-type boundary conditions, and ii) the
efficient computation of the homogenized response of large-scale particle aggre-
gates characterized by a spatial periodicity in one or two directions, i.e., granular
layers exposed to uniform (D) and/or (T) boundary conditions at their top and
bottom surfaces. To the best of the authors’ knowledge, the formulation presented
is novel in the field of granular materials.

2.5.1 Formulation

For the formulation of the mixed boundary conditions, the basic particle config-
uration sketched in Figure 2.1 is considered, with the boundary being split up
into the top part ∂Vt, the bottom part ∂Vb, the left part ∂Vl and the right part
∂Vr. It is emphasized that the main concepts of the mixed formulation are gen-
eral, and can be applied to arbitrary boundary value problems. The concepts are
elaborated here for the specific case of an infinite horizontal layer of particles
loaded by a constant vertical pressure, P̄22 = P̄ ∗22, and subsequently subjected to
a shear deformation F̄12 in the horizontal direction. The reason for choosing this
boundary value problem is that it includes all the three (D), (P) and (T) boundary
conditions discussed previously, with their combinations entering the formulation
both at separate and identical parts of the layer boundary. This allows for high-
lighting the characteristics of the mixed formulation in full detail. Accordingly,
the macroscopic deformation of the particle aggregate is imposed via a combined
(D)-(T) condition

xq,1 = F̄12Xq,2 +Xq,1 and aq,2 = P̄21Aq,1 + P̄ ∗22Aq,2 , (2.43)

in which the macroscopic shear stress P̄21 is measured from the response of the
particle assembly. Note that (2.43)1 implicitly accounts for the condition

F̄11 = 1 . (2.44)
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Furthermore, the first contribution in the right-hand side of (2.43)2 typically is
relatively small, since most particles q at the top boundary ∂Vt are characterized
by Aq,1 << Aq,2, with Aq,1 vanishing for the specific case of an ideally horizon-
tal boundary composed of identical particles. Since the shear deformation F̄12

is imposed after the application of the vertical stress P̄ ∗22, in (2.43)1 the refer-
ence positions Xq of the boundary particles relate to the particle configuration
obtained after the vertical stress has been applied. In summary, the boundary
conditions for the particle aggregate are specified as follows:

• For the particles that are part of the bottom boundary, q ∈ ∂Vb, the homo-
geneous deformation and zero rotation boundary condition (D) is applied
in accordance with expression (2.17). The vertical boundary displacements
are constrained to construct a rigid support for the layer, and the horizontal
boundary displacements follow the shear deformation given by expression
(2.43)1.

• For the particles that are part of the left and right boundaries, q ∈ ∂Vl∪∂Vr,
the periodic displacement and periodic rotation boundary condition (P) is
applied, as given by expression (2.19). This boundary condition reflects the
horizontal confinement of the particles within the infinite layer.

• For the particles that are part of the top boundary, q ∈ ∂Vt, free rotations
are assumed, in correspondence with the (T) boundary condition2. For the
description of the particle displacements, the boundary is split up along the
two orthonormal directions e1 and e2 indicated in Figure 2.1. Along the
e1-direction, the (D) boundary condition (2.43)1 is applied to simulate the
horizontal macroscopic shear deformation. Along the e2-direction, a con-
stant macroscopic pressure P̄ ∗22 is imposed via the (T) boundary condition
(2.43)2, for which the corresponding components of the macroscopic defor-
mation gradient, F̄21 and F̄22, in accordance with the general form (2.15),
turn into

F̄21 =
1

V

Q∑
q=1

xq,2Aq,1 and F̄22 =
1

V

Q∑
q=1

xq,2Aq,2 . (2.45)

Note that the two deformation components above should be considered as
a computational result obtained by prescribing the stress component P̄ ∗22.

The macroscopic deformation gradient F̄ , which is followed by the four corner
nodes of the sample, now is fully specified through its “(D)-type components”
provided by (2.43)1 and (2.44), and its “(T)-type components” given by (2.45)1,2.

2Since the top boundary is subjected to a mixed (D)-(T) boundary condition, instead of leaving
the particle rotations free at the boundary, i.e., a (T)-type condition, the particle rotations could have
been equally well taken as fully constrained, i.e., a (D)-type condition. For relatively large samples the
effect of this choice on the homogenized response of the particle aggregate is expected to be minor.
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The corresponding macroscopic Piola-Kirchhoff stress tensor is defined by equa-
tion (2.23). For the adopted mixed-boundary conditions it will now be demon-
strated that this stress definition satisfies the recast Hill-Mandel condition given
by expression (2.30), i.e., the energy consistency between the macro- and micro
scales. Accordingly, relation (2.30) is first split up with respect to the different
boundary parts considered above, i.e.,∑

q∈∂Vb

(
aq − P̄ ·Aq

)
· δwq +

∑
q∈∂Vl∪∂Vr

(
aq − P̄ ·Aq

)
· δwq

+
∑
q∈∂Vt

(
aq − P̄ ·Aq

)
· δwq = 0 .

(2.46)

For the bottom boundary ∂Vb, boundary condition (D) holds, which, by compar-
ing equations (2.17) and (2.14), lets the micro-fluctuations of the displacements
vanish, wq = 0. Hence, the first term in (2.46) is equal to zero. At the left and
right boundaries q ∈ ∂Vl ∪ ∂Vr, the (P) boundary condition is imposed, for which
the micro-fluctuations of the displacements are periodic, wl

q = wr
q , see (2.14) and

(2.19). Together with the anti-periodicity of the boundary forces alq + arq = 0, see
(2.20), the second term in (2.46) vanishes. Finally, for the top boundary ∂Vt, the
last term in (2.46) may be further developed as∑

q∈∂Vt

[(
aq,1 − P̄1jAq,j

)
δwq,1 +

(
aq,2 − P̄2jAq,j

)
δwq,2

]
= 0 . (2.47)

Along the e1-direction, the micro-fluctuations of the boundary particle displace-
ments vanish, wq,1 = 0, in correspondence with equation (2.43)1, by which the
first term in (2.47) becomes zero. Along the e2-direction, the boundary forces
are uniform, aq,2 − P̄2jAq,j = 0, see equation (2.43)2, so that the second term in
(2.47) becomes zero. With this result, the Hill-Mandel condition (2.46) is proven
to be satisfied for the mixed boundary conditions.

2.5.2 Numerical implementation

The numerical algorithm for the implementation of the mixed boundary condi-
tions is outlined in Table 2.5, and is based on a combination of the algorithms
presented in Section 2.3 for the (D), (P) and (T) boundary conditions, without an
initial displacement prediction.

During stage 1 of the loading process, the vertical compressive stress P̄22 = P̄ ∗22

is applied to the particle aggregate in a stepwise fashion3, using a total of ivs load-
ing increments, with the subscript vs designating “vertical stress”. After initiating
the displacement and rotation boundary conditions at the top ∂Vt and bottom ∂Vb

3Instead of applying the vertical compressive stress by means of the first Piola-Kirchhoff stress
P̄22, the Cauchy stress σ̄22 could have been used. The conversion of the Cauchy stress into the first
Piola-Kirchhoff stress, which is the stress measure used in the numerical algorithm presented in Table
2.5, can straightforwardly be accomplished by using the inverse form of expression (2.31).



2.5 Mixed boundary conditions 41

boundaries, the vertical stress is incrementally updated and subsequently used to
compute the displacement and rotation corrections at the left and right bound-
aries with expressions (2.32)-(2.33), and the displacement correction at the top
boundary boundary with

∆uq,2 = gta∆aq,2 with ∆aq,2 = P̄21Aq,1 + P̄ ∗22Aq,2 − aq,2 . (2.48)

The expression above is derived from (2.43)2, whereby during the incremental
application of the vertical stress P̄ ∗22 the value of P̄21 is prescribed as zero, in order
to avoid the initial development of a shear stress. After the particle aggregate has
reached its equilibrium state under dynamic relaxation, the boundary forces and
moments of the particles at the top, left and right boundaries are recorded and
employed to compute the corresponding residuals. When all residuals are lower
than the prescribed values of the corresponding tolerances, the iterative loop is
stopped and the next vertical stress increment is applied. Otherwise, the iterative
loop is entered again, until a converged solution is found. After the application
of ivs increments the vertical stress has reached the desired value, and stage 1 of
the loading process has completed.

During stage 2 of the loading process, the horizontal shear deformation F̄12 is
imposed on the particles at the top ∂Vt and bottom ∂Vb boundaries of the granular
assembly, by displacing these in a stepwise manner using itot−ivs increments. The
rotations of the particles at the top boundary are free, and the vertical displace-
ment and rotation of the particles at the bottom boundary are fully constrained.
In a similar way as explained above for stage 1, the boundary forces and moments
in the relaxed equilibrium state are used to compute the displacement and rota-
tion corrections at the periodic left and right boundaries ∂Vl and ∂Vr, and at the
top boundary boundary ∂Vt. However, the only difference is that in (2.48) the
shear stress P̄21 here is not prescribed as zero, but is calculated from the homoge-
nized response of the particle assembly using equation (2.23). After the dynamic
relaxation procedure has completed, the residuals are computed in the same way
as during stage 1, and compared against the corresponding tolerances. The itera-
tive process is terminated when the convergence criterion is satisfied, after which
the shear deformation is incremented and the response to the next loading step
is computed. This procedure is continued until all loading increments itot are
applied.
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Table 2.5: Algorithm for the application of the mixed boundary conditions. The
loading process consists of stage 1, during which the vertical stress is incremen-
tally applied, and stage 2, during which the horizontal shear deformation is in-
crementally imposed.

Algorithm for mixed boundary conditions

1. DEM simulation. Apply vertical stress. Increments 0 ≤ i ≤ ivs

1.1 Apply boundary conditions
1.1.A q ∈ ∂Vt =⇒ Free rotations mq = 0
1.1.B q ∈ ∂Vb =⇒ Zero vertical displacements xq,2 = 0 and zero rotations Qq = I

1.2 Update vertical stress P̄22 = P̄∗22
1.3 Update particle configuration

1.3.A q ∈ ∂Vt =⇒ Calculate particles displacement correction ∆uq,2 via (2.48), with P̄21 = 0
1.3.B q ∈ ∂Vl ∪ ∂Vr =⇒

Calculate particles displacement ∆uq and rotation ∆θq corrections via (2.32)-(2.33)
1.4 Dynamic relaxation until equation (2.11) is reached. Obtain boundary forces and moments.
1.5 Calculate residual(s)

1.5.A q ∈ ∂Vt =⇒ rta =
√∑

q∈∂Vt
∆aq,22/ã2

q

1.5.B q ∈ ∂Vl ∪ ∂Vr =⇒ rpa =
√∑

q∈∂Vl∪∂Vr
∆aq ·∆aq/ã2

q and

rpm =
√∑

q∈∂Vl∪∂Vr
(∆mq/m̃q)2

1.6 Check for convergence: rta ≤ ε
t
a and rpa ≤ ε

p
a and rpm ≤ ε

p
m

1.6.A if converged =⇒ Save current configuration and go to 1 (next increment i+ 1)
1.6.B if not converged =⇒ Return to 1.3

2. Apply horizontal shear deformation at fixed vertical stress. Increments ivs < i ≤ itot
2.1 Apply updated macro-scale deformation and boundary conditions

2.1.A q ∈ ∂Vt =⇒ Horizontal displacements xq,1 = F̄12Xq,2 +Xq,1 and free rotations mq = 0
2.1.B q ∈ ∂Vb =⇒ Zero vertical displacements xq,2 = 0 and zero rotations Qq = I

Horizontal displacements xq,1 = F̄12Xq,2 +Xq,1

2.2 Dynamic relaxation until equation (2.11) is satisfied. Obtain boundary forces and moments.
2.3 Update particle configuration

2.3.A q ∈ ∂Vt =⇒ Calculate particles displacement correction ∆uq,2 via (2.48)
2.3.B q ∈ ∂Vl ∪ ∂Vr =⇒

Calculate particles displacement ∆uq and rotation ∆θq corrections via (2.32)-(2.33)
2.4 Dynamic relaxation until equation (2.11) is satisfied. Obtain boundary forces and moments.
2.5 Calculate residual(s)

2.5.A q ∈ ∂Vt =⇒ Refer to 1.5.A
2.5.B q ∈ ∂Vl ∪ ∂Vr =⇒ Refer to 1.5.B

2.6 Check for convergence: rta ≤ ε
t
a and rpa ≤ ε

p
a and rpm ≤ ε

p
m

2.6.A if converged =⇒ Save current configuration and go to 2 (next increment i+ 1)
2.6.B if not converged =⇒ Return to 2.3
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2.5.3 Computational results

The performance of the algorithm used for the implementation of the mixed
boundary conditions is demonstrated by means of two DEM simulations of an
irregular polydisperse packing of 449 particles, with the particle radii taken ran-
domly from a uniform size distribution with polydispersity Rmax/Rmin = 1.5,
where the minimum radius equals Rmin= 0.8 mm. The initial particle volume
is V = 1517 mm2, with the particle volume fraction of the packing being equal
to v = 0.849, and the average particle coordination number as 3.55. The two
simulations consider different particle contact laws, namely the frictional contact
law and the cohesive contact law described in Section 2.2.2.2. The model pa-
rameters are summarized in Table 2.6. Assuming relatively hard particles, the

Table 2.6: Physical and algorithmic model parameters for the simulations with
mixed boundary conditions.

Parameter Value Unit
Elastic normal stiffness kn = kbn 1× 105 N/mm
Elastic tangential stiffness ks = kbs 4× 104 N/mm
Elastic bending stiffness kbθ 2× 104 Nmm
Friction coefficient µ 0.6 -
Cohesive normal strength fb,un 300 N
Cohesive tangential strength fb,us 60 N
Cohesive bending strength mb,u

θ 200 Nmm
Density ρ 10× 103 kg/m2

Translational damping α 0.7 -
Rotational damping β 0.7 -
Time increment ∆t 10−5 s
Tolerance force (P) εpa 2× 10−10 -
Tolerance moment (P) εpm 2× 10−10 -
Tolerance force (T) εta 2× 10−10 -
Gain force (P) gpaMi/∆t

2 3× 104 -
Gain moment (P) gpmMiR

2
i /∆t

2 6× 104 -
Gain force (T) gtaMi/∆t

2 3× 104 -
Tolerance dynamic relaxation tolE 10−3 -

normal and tangential contact stiffnesses for the frictional contact law are set as
kn = 105 N/mm and ks = 4 · 104 N/mm, respectively, and the friction coeffi-
cient equals µ = 0.6. The normal contact stiffness kbn and the tangential con-
tact stiffness kbs for the cohesive contact interaction are assumed to be equal to
those of the frictional contact law, and the bending contact stiffness is taken as
kbθ = 2 · 104 Nmm. The normal, shear and bending strengths have the values
f b,un = 300 N, f b,us = 60 N and mb,u

θ = 200 Nmm, respectively. The density of
the particles is ρ = 10 · 103 kg/m2. The macroscopic vertical (compressive) stress
is P̄ ∗22 = −1.05 · 106 N/m, which is applied in ivs = 6 increments. The total
macroscopic shear deformation equals F̄12 = 0.2, which is imposed on the par-
ticle aggregate in itot − ivs = 100 increments. The translational and rotational
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Figure 2.11: Macroscopic response of an infinite granular layer subjected to a
vertical compressive stress P̄22 = P̄ ∗22 and a horizontal shear deformation F̄12. (a)
Stress ratio σ̄12/σ̄22, (b) relative volumetric change det(F̄ ), and (c) average par-
ticle rotation θ̄, all plotted versus the applied shear deformation F̄12 for cohesive
(dot-dashed line) and frictional (solid line) packings.

damping factors used in the dynamic relaxation procedure are α = β = 0.7, and
the time increment equals ∆t = 10−5 s. The dimensionless values of the gain
parameters are gtaMi/∆t

2 = gpaMi/∆t
2 = 3 · 104 and gpmMiR

2
i /∆t

2 = 6 · 104, and
the corresponding tolerances are equal to εta = εpa = εpm = 2 · 10−10.

Figure 2.11 shows the macroscopic response of the particle aggregates as a
function of the applied shear deformation F̄12, with the dot-dashed and solid lines
referring to packings with cohesive and frictional particle contact interactions, re-
spectively. In Figure 2.11(a) the stress ratio σ̄12/σ̄22 is depicted, while Figure
2.11(b) illustrates the relative volumetric change det(F̄ ) (using the packing ob-
tained after the application of the vertical stress as the reference state), and Figure
2.11(c) sketches the average particle rotation θ̄, in accordance with expression
(2.41). Furthermore, in Figure 2.12 the particle configurations of the cohesive
and frictional packings are plotted at four different deformation levels, namely
(a) F̄12 = 0.002, (b) F̄12 = 0.05, (c) F̄12 = 0.1 and (d) F̄12 = 0.015. Here, the red
lines between the particles represent cohesive contact forces, while the blue lines
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Figure 2.12: Deformed configurations of a packing with 449 particles corre-
sponding to (a)F̄12 = 0.002, (b) F̄12 = 0.05, (c) F̄12 = 0.1 and (d) F̄12 = 0.15, for
cohesive (top) and frictional (bottom) particle contact interactions. The networks
of cohesive and frictional forces acting between particles are indicated by the red
and blue lines, respectively.

indicate frictional contact forces. It can be observed from Figure 2.11(a) that up
to a deformation F̄12 = 0.02 the cohesive and frictional packings show a similar
response, whereby the stress increases approximately proportionally with defor-
mation. Upon continuing deformation, in the frictional packing a large number
of contacting particles meet the failure criterion (2.6) and start to slide, such that
the stress ratio σ̄12/σ̄22 reaches a maximum at F̄12 ≈ 0.06. The maximal stress
ratio is accompanied by a volumetric increase of the particle structure, commonly
referred to as “dilation”, see Figure 2.11(b). After passing the peak value, the
stress ratio for the frictional packing slightly drops in magnitude, which is caused
by a substantial rolling of particles. The effect of particle rolling can be clearly ob-
served from Figure 2.11(c), where at the onset of shear deformation the increase
in average particle rotation only is mild, but steadily grows towards a more or less
constant value at F̄12 = 0.07 for the frictional packing and at F̄12 = 0.12 for the
cohesive packing. Note from Figure 2.11(c) that the initial value of the average
particle rotation is due to the application of the vertical stress P̄ ∗22, and for the
frictional packing appears to be somewhat larger than for the cohesive packing.
For the cohesive packing the maximal value of the stress ratio σ̄12/σ̄22 is about
1.5 times larger than for the frictional packing, and is reached at F̄12 ≈ 0.07, see
Figure 2.11(a). At this stage a significant number of particle bonds are broken,
in correspondence with the failure criterion (2.8). With continuing deformation,
the broken particle bonds of the cohesive packing become frictional, as indicated
by the thick blue lines in Figure 2.12(c), whereby the stress ratio σ̄12/σ̄22 of the
packing drops to a level comparable to that of the frictional packing, see Fig-
ure 2.11(a). Observe from Figures 2.12(c) and (d) that for the cohesive packing
the frictional contacts indicated by the blue lines are established only along lo-
cal force chains in the particle structure, whereby the rest of the contacts remain
cohesive, as indicated by the red lines. This implies that the overall deformation
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of the packing near the end of the loading process becomes governed by a local-
ized failure zone, which indeed is associated to a strong softening behavior in the
stress response, see Figure 2.11(a). Towards a shear deformation of F̄12 = 0.20,
both the stress ratio σ̄12/σ̄22 and the relative volumetric change det(F̄ ) of the
frictional and cohesive packings become approximately constant, characterizing
the occurrence of a so-called “critical state”. For the frictional packing the overall
residual strength at the critical state is σ̄12/σ̄22 ≈ 0.28. This value is only about
half of the value of 0.6 adopted for the local particle contact friction µ, which can
be explained from the fact that at the end of the deformation process the dilating
particle structure, instead of sliding, is predominated by a relatively easy rolling
of particles, see (Suiker and Fleck, 2004) for a more detailed discussion on this
aspect. For the same reason, the eventual, large amount of particle rolling gener-
ated in the cohesive packing, see Figure 2.11(c), leads to a final residual strength
that is lower than for the frictional packing, see Figure 2.11(a).

As a final note, it is mentioned that the contact moments in the cohesive pack-
ing determine about 10% of the total potential energy. This contribution implic-
itly contributes to the stress ratio σ̄12/σ̄22 depicted in Figure 11(a) by means of
moment equilibrium at the particle level. More specifically, for each particle the
corresponding contact moments are balanced by the product of the contact shear
forces and the particle radius, whereby contact shear forces contribute to the ef-
fective Cauchy stress in accordance with expressions (23) and (31).

2.6 Conclusions

Novel numerical algorithms have been presented for the implementation of three
types of classical boundary conditions for a particle aggregate. The micro-scale
boundary conditions are formulated within the discrete element method using
large deformation theory, and, along the lines of (Miehe et al., 2010), are im-
posed on a frame of boundary particles of the particle packing, in accordance
with i) a homogeneous deformation and zero particle rotation (D), ii) a peri-
odic particle displacement and rotation (P), and iii) a uniform particle force and
free particle rotation (T). The algorithms can be straightforwardly combined with
commercial discrete element codes, thereby enabling the determination of the so-
lution of boundary-value problems at the micro-scale only, or at multiple scales
via a micro-to-macro coupling with a finite element model. The performance of
the algorithms has been tested by means of discrete element method simulations
on regular monodisperse packings and irregular polydisperse packings composed
of frictional particles, which were subjected to various loading paths. The simula-
tions provide responses with the typical stiff and soft bounds for the (D) and (T)
boundary conditions, respectively, and illustrate for the (P) boundary condition a
relatively fast convergence of the apparent macroscopic properties under an in-
creasing packing size. Finally, a homogenization framework has been presented
for the formulation of mixed (D)-(P)-(T) boundary conditions that satisfy the
Hill-Mandel micro-heterogeneity condition on energy consistency at the micro-
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and macro-scales of the granular system. The numerical algorithm for mixed
boundary conditions has been developed and tested for the case of an infinite
layer subjected to a vertical compressive stress and a horizontal shear deforma-
tion, whereby the response computed for a layer of cohesive particles is compared
against that for a layer of frictional particles. The results illustrate that the failure
response for both contact laws is characterized by the development of a dilated
particle structure, which at large deformation gradually turns into a critical state
with an approximately constant residual strength and specific volume. The appli-
cation of the present algorithms for multi-scale FEM-DEM analyses on granular
systems with a large number of particles, and their extension towards a dynamics
homogenization framework, are topics for future studies.
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Chapter 3

Multi-scale quasi-static
simulation1

A multi-scale model for the analysis of granular systems is proposed, which
combines the principles of a coupled FEM-DEM approach with a novel servo-
control methodology for the implementation of appropriate micro-scale bound-
ary conditions. A mesh convergence study is performed, whereby the results of a
quasi-static biaxial compression test are compared with those obtained by direct
numerical simulations. The comparison demonstrates the capability of the multi-
scale method to realistically capture the macro-scale response, even for macro-
scopic domains characterized by a relatively coarse mesh; this makes it possible
to accurately analyse large-scale granular systems in a computationally efficient
manner. The multi-scale framework is applied to study in a systematic manner
the role of individual micro-structural characteristics on the effective macro-scale
response. The effect of particle contact friction, particle rotation, and initial fabric
anisotropy on the overall response is considered, as measured in terms of the evo-
lution of the effective stress, the volumetric deformation, the average coordina-
tion number and the induced anisotropy. The trends observed are in accordance
with notions from physics, and observations from experiments and other DEM
simulations presented in the literature. Hence, it is concluded that the present
framework provides an adequate tool for exploring the effect of micro-structural
characteristics on the macroscopic response of large-scale granular structures.

1Based on Liu, J., Bosco, E. and Suiker, A.S.J. , Multi-scale modelling of granular materials:
numerical framework and study on micro-structural features. Computational Mechanics, 2018.
https://doi.org/10.1007/s00466-018-1600-y.

https://doi.org/10.1007/s00466-018-1600-y
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3.1 Introduction

The intrinsic influence of the discrete micro-structure of granular materials on
their effective material properties and structural response is nowadays well rec-
ognized. The morphology, material evolution and mechanical interactions at the
particle scale all contribute to the observed macroscopic non-linear failure and
deformation behaviour. Multi-scale approaches provide an ideal tool for the mod-
elling of granular systems, as they allow to directly incorporate the complex be-
haviour of the discrete micro-structure into the response of large-scale structural
problems. This is typically done by coupling the discrete element method (DEM),
which accurately represents the complex particle behaviour at the micro scale
(Cundall and Strack, 1979; Herrmann and Luding, 1998; Kun and Herrmann,
1996; Ting et al., 1993; Borja and Wren, 1995; Suiker and Fleck, 2004; Luding,
2004; Luding and Suiker, 2008; Wellmann et al., 2008; Singh et al., 2014; Nitka
and Tejchman, 2015; Zhu et al., 2016; Huang et al., 2017; Zhao et al., 2018),
to the finite element method (FEM), which enables to efficiently solve bound-
ary value problems at the macro scale. As a general principle, each integration
point in the macro-scale FEM model is connected to a corresponding DEM micro-
scale model via the application of adequate homogenization relations. In specific,
a macroscopic deformation measure is imposed on the granular micro-structure
through the definition of appropriate boundary conditions (Miehe et al., 2010;
Liu et al., 2017). The DEM model is solved in turn, providing the particle contact
forces in the granular assembly. These forces are subsequently translated into a
macroscopic stress measure, which is required to solve the boundary value prob-
lem at the structural level. Several examples of coupled FEM-DEM approaches for
granular materials have been presented in the literature. In (Nguyen et al., 2013;
Shahin et al., 2016) a quasi-static multi-scale method is formulated within the
framework of small deformations, whereby the role of the particle microstruc-
ture on the effective frictional failure response of macroscopic samples is anal-
ysed, with a special focus on the initiation of strain localization. In (Guo and
Zhao, 2014) a small-strain multi-scale framework is proposed that elegantly com-
putes the mechanical response for various monotonic and cyclic loading problems,
whereby drained as well as undrained conditions are considered. In (Guo and
Zhao, 2016b) this framework is applied for developing multi-scale insights into
classical geomechanical problems, such as retaining wall and footing problems.
Coupled FEM-DEM approaches are typically validated by analysing the macro-
scopic structural response in experimental tests typical for granular media, such
as a biaxial compression test (Miehe et al., 2010; Guo and Zhao, 2014; Kaneko
et al., 2003; Andrade et al., 2011; Nguyen et al., 2014), a slope stability test
(Meier et al., 2009), or a (cyclic) shear test (Guo and Zhao, 2014).

In the current chapter a novel multi-scale framework is presented for granular
materials, which employs the formulation and implementation of the micro-scale
boundary conditions recently published in (Liu et al., 2017). This formulation is
based on the first-order homogenization approach originally proposed in (Miehe
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et al., 2010), which includes important aspects that are usually ignored in other
homogenization methods for particle systems, namely i) the Hill-Mandel micro-
heterogeneity condition that enforces consistency of energy at the micro- and
macro scales, ii) the influence of particle rotations in the formulation of micro-
to-macro scale transitions, and iii) a rigorous generalization of the multi-scale
relations within the theory of finite deformations. The implementation of the
micro-scale boundary conditions is performed with a servo-control algorithm that
uses a feedback principle similar to that of algorithms applied in control theory of
dynamic systems. The servo-control algorithm has several attractive features com-
pared to other methods used for implementing micro-scale boundary conditions.
Firstly, from the computational viewpoint the algorithm is relatively simple to
implement. Secondly, it can be implemented at the level of the interface commu-
nicating information between the macro-scale FEM and micro-scale DEM models,
whereby modifications of the FEM and DEM source codes are not needed. The
algorithm can therefore be easily combined with commercial software, whose
source codes generally are not available to the user. Thirdly, in contrast to the
often-used penalty method, the servo-control methodology preserves the physical
meaning of the homogenized stress measure derived from the granular assembly.
Further, the limit case at which the micro-scale boundary conditions are met ex-
actly is rigorously retrieved from the formulation, see (Liu et al., 2017) for more
details.

The first aim of this chapter is to demonstrate how the servo-control algo-
rithm for the micro-scale boundary conditions can be conveniently incorporated
in a multi-scale FEM-DEM framework. Accordingly, the governing equations of
the multi-scale framework are formulated, and their numerical implementation is
validated by comparing the computational results obtained for a quasi-static biax-
ial compression test to those calculated by direct numerical simulations. The con-
vergence behaviour of the numerical results under mesh refinement is analysed,
and the heterogeneity of the mechanical response across the specimen height is
explored. The second aim of this chapter is to show how the FEM-DEM frame-
work can be used for analysing the influence of micro-structural characteristics
on the macroscopic response of a granular system. Using the biaxial compres-
sion test, the microscopic properties selected for the variation study are the par-
ticle contact friction, the particle rotation and the initial fabric anisotropy. The
influence of these properties on the overall, macroscopic response is analysed
by computing the evolution of the effective stress, the volumetric deformation,
the average coordination number, and the induced fabric anisotropy. This study
is essential for gaining confidence in the quality of the multi-scale formulation;
nonetheless, most other works on coupled FEM-DEM modelling do not consider
such a study, but refer to a specific example simulation for the validation of the
proposed method.

This chapter is organized as follows. Section 3.2 presents the numerical ho-
mogenization framework for particle aggregates by defining the macro-scale and
micro-scale models and the scale transition relations. Section 3.3 discusses nu-
merical implementation aspects. The explicit time integration scheme adopted
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for the macro-scale problem is outlined, and details are provided on the dynamic
relaxation procedure applied for satisfying the equilibrium conditions, and on the
servo-control algorithm used for defining the boundary conditions at the micro
scale. The section ends with a presentation of the coupled FEM-DEM solution al-
gorithm. In Section 3.4, the performance of the proposed multi-scale framework
is analysed for a biaxial compression test by comparing the computational results
to those obtained by direct numerical simulations. A mesh convergence study
is performed, and the role of several micro-structural parameters on the macro-
scopic response is studied. Some concluding remarks are provided in Section 3.5.

In this chapter the following notations will be used. The cross product and
dyadic product of two vectors are denoted as a × b = eijkaibjek and a ⊗ b =
aibjei ⊗ ej , respectively. Here eijk is the permutation symbol, ei, ej and ek are
unit vectors in a Cartesian vector basis, and Einstein’s summation convention is
used on repeated tensor indices. The inner products between two vectors and two
second-order tensors are given by a · b = aibi and A : B = AijBij , respectively.
The action of a second-order tensor on a vector is indicated as A·b = Aijbjei. The
symbol ∇ indicates the gradient operator with respect to the reference configura-
tion, and |.| refers to the absolute value of a variable. Occasionally, field variables
referring to the macroscopic scale are indicated by an overbar, for instance F̄, in
order to avoid misinterpretation.

The present study focuses on two-dimensional particle aggregates. Accord-
ingly, the dimensions related to volume, area, stress and mass density are con-
sistently presented in their reduced form as length2, length, force/length and
mass/length2, respectively.

3.2 Multi-scale framework for particle aggregates

This section treats the main principles of a multi-scale homogenization strat-
egy for granular structures. These principles ensue from transforming relevant
theorems used in classical first-order homogenization theories (Suquet, 1985;
Kouznetsova et al., 2001; Miehe et al., 2002; Terada et al., 2000) from a con-
tinuous setting to a discrete setting. For more details on this aspect the reader is
referred to (Miehe and Koch, 2002; Dettmar, 2006; Liu et al., 2017).

3.2.1 Macro-scale problem

Consider a two-dimensional macroscopic domain with an initial, undeformed
volume Ω and boundary ∂Ω, characterized by a heterogeneous, granular micro-
structure. The macroscopic domain is subjected to loadings and constraints at the
boundaries under which the separation of scales principle holds, i.e., the charac-
teristic length scale of the micro-structure is much smaller than the typical length
across which the macroscopic deformation varies. Under this assumption, the
macroscopic domain may be considered as a Boltzmann continuum, governed by
the classical equilibrium equations:
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∇ · P̄ + b̄ = 0 and F̄ · P̄ T − P̄ · F̄ T = 0 in Ω, (3.1)

with the boundary conditions

P̄ ·N = t̄∗ on ∂Ωt (3.2)

ū = ū∗ on ∂Ωu. (3.3)

In equation (3.1), P̄ is the first Piola-Kirchhoff stress, b̄ is the body force per
unit volume, and F̄ = ∇(x) is the macroscopic deformation gradient, which is
a function of the current position x. In relations (3.2) and (3.3) the external
traction t̄∗ is imposed on the boundary ∂Ωt characterized by the normal direction
N, and the displacement ū∗ is prescribed on the boundary ∂Ωu.

In order to solve the boundary value problem defined by equations (3.1)-(3.3),
a constitutive relation between the stress and the deformation is required. Instead
of assuming a phenomenological constitutive equation, a multi-scale procedure
is adopted that retrieves the constitutive response numerically from a computa-
tional analysis of the granular domain at the micro scale. The main features of
the multi-scale scheme are illustrated in Figure 3.1. At each material point the
macroscopic deformation gradient F̄ is calculated, and subsequently imposed on
the corresponding micro-structural domain via appropriate micro-scale boundary
conditions. After solving the response of the granular medium at the micro scale,
from the particle contact forces at the boundaries the effective macroscopic stress
P̄ of the particle medium is computed, which is returned to the macro scale to
solve the macroscopic equilibrium expressed by equation (3.1).

MACRO-SCALE

MICRO-SCALE

MATERIAL POINT DEFORMATION

DISCRETE

STRESS

STANDARD CONTINUUM

Figure 3.1: Schematic overview of the macroscopically continuous-
microscopically discrete multi-scale framework.

3.2.2 Micro-scale problem

The micro-scale geometry is represented by a two-dimensional square domain
composed of P + Q rigid particles. These particles are partitioned into P inner
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particles Pp with p = 1, .., P , defining the initial interior domain V , and Q bound-
ary particles Pq with q = 1, .., Q, defining the undeformed boundary ∂V . The
boundary particles can be further split into corner particles Pc with c = 1, .., 4
and the remaining edge particles Pe with e = 1, .., E = Q− 4. The reference con-
figuration of the centroids of the inner and boundary particles is denoted by the
position vectors Xp ∈ Pp and Xq ∈ Pq, respectively. The undeformed micro-scale
domain is schematically shown in Figure 3.2(a).

Figure 3.2: (a) Two-dimensional particle aggregate of undeformed volume V
and boundary ∂V . Light blue and blue colors refer to inner Pp and boundary
Pq particles, respectively; (b) Particle contact forces f cp acting on inner particle
p ∈ Pp in its current position xp; (c) Boundary forces aq, boundary moments mq,
and particle contact forces f cq acting on boundary particle q ∈ Pq in its current
position xq.

The effective response of the granular assembly is derived by using classical
homogenization principles, in the transition from a continuous to a discrete de-
scription. In this perspective, the finite area vector Aq and the boundary forces
aq are defined at the centroids of the boundary particles Pq as∫

∂V

Nds→ Aq and
∫
∂V

t ds→ aq for q = 1..., Q . (3.4)

Here, N is the normal vector associated to the undeformed boundary ∂V of the
micro-scale domain, t is the boundary traction in the reference configuration, and
ds denotes an infinitesimal part of the boundary surface. The initial area vector
Aq is computed by accounting for the different radii of the boundary particles
(Miehe and Koch, 2002; Liu et al., 2017):

Aq =
Rq

Rq +Rq−1
(Xq −Xq−1)× e3 +

Rq
Rq +Rq+1

(Xq+1 −Xq)× e3 , (3.5)

in which Rq+1, Rq and Rq−1 are the radii of adjacent boundary particles q + 1,
q and q − 1, respectively. In addition, e3 is the unit vector in the out-of-plane
direction of the two-dimensional particle structure, as indicated in Figure 2. It is
emphasized that in equation (3.5) the boundary particles must be numbered in
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the counterclockwise direction to arrive at an area vector pointing in the outward
normal direction of the boundary.

The kinematics of a rigid particle i within the granular assembly departs from
the linearisation of the macroscopic deformation map. The current position xi of
the centroid of particle i can be expressed as

xi = F̄ ·Xi + wi for i = 1..., P +Q . (3.6)

The first term in the right hand side of equation (3.6) reflects the contribution on
the micro-scale kinematics by the macroscopic homogeneous deformation gradi-
ent F̄ , and the second term indicates the local fluctuation wi of the micro-scale
position field with respect to the applied homogeneous deformation. The macro-
scopic deformation is imposed via the frame of boundary particles Pq, which in-
duces contact forces fp and fq on the inner and boundary particles, and boundary
forces aq and moments mq on the boundary particles, see Figures 3.2(b) and (c).
The force and moment equilibria of the overall granular micro-structure can be
expressed as

Q∑
q=1

aq = 0 and
Q∑
q=1

(xq × aq + mq) = 0 for q = 1..., Q , (3.7)

with xq the current position vector of the boundary particles. Additionally, local
equilibrium conditions must be formulated for each of the inner particles Pp and
for each of the boundary particles Pq:

Nc
p∑

c=1

f cp = 0 and

Nc
p∑

c=1

(xcp − xp)× f cp = 0 for p = 1..., P ,

(3.8)

Nc
q∑

c=1

f cq = −aq and

Nc
q∑

q=1

(xcq − xq)× f cq = −mq for q = 1..., Q .

(3.9)

Equation (3.8) describes force and moment equilibrium of N c
p contact forces f cp

at discrete contact points xcp on the surface of the interior particle p, with respect
to its current configuration xp, see Figure 3.2(b). Analogously, relation (3.9)
expresses force and moment equilibrium of N c

q contact forces f cq at contact points
xcq on the surface of the boundary particle q, in relation to its current configuration
xq, see Figure 3.2(c). Note that the combination of expressions (3.8) and (3.9)
results in expression (3.7).
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In order to solve the micro-scale problem, a contact law describing the parti-
cle interactions is finally required. In the present work, a stick-slip contact law is
adopted that relates the contact forces f ci to the corresponding contact displace-
ments ∆uci as (Cundall and Strack, 1979)

fn = kn∆un and fs =

{
ks∆us if |fs| ≤ −µfn ,
µfn otherwise .

(3.10)

where the superscript c and subscript i on the contact force and contact displace-
ment have been dropped for the sake of clarity. The normal particle contact force
fn (with tension considered as positive and compression as negative) depends on
the normal particle overlap ∆un between two particles in contact through a mul-
tiplication by the normal contact stiffness kn. When the contact is fully sticking,
the tangential particle contact force fs is proportional to the relative tangential
displacement ∆us at the particle contact via a multiplication by the tangential
contact stiffness ks. This elastic constitutive relation holds up to a limit value at
which frictional sliding is initiated, as defined by the normal force multiplied by
the particle contact friction coefficient µ.

3.2.3 Scale transition relations

3.2.3.1 Macro-to-micro: kinematics and boundary conditions

The kinematical averaging relation is an essential ingredient for establishing the
micro-to-macro coupling, by requiring the macro-scale deformation gradient to
be equal to the volume average of the local, micro-scale deformation gradients.
In a discrete setting, this is equivalent to the expression (Miehe et al., 2010; Liu
et al., 2017; Dettmar, 2006)

F̄ =
1

V

Q∑
q=1

xq ⊗Aq . (3.11)

Equation (3.11) is enforced to obtain appropriate boundary conditions in terms
of displacements and rotations of the boundary particles of the granular micro-
structure. Different types of boundary conditions may be selected to satisfy the
constraint given by equation (3.11), see e.g. (Miehe et al., 2010; Liu et al.,
2017), among which the periodic boundary conditions adopted in the present
study. Periodic boundary conditions already provide a realistic effective response
for micro-structural volumes of relatively small to moderate size, which is com-
monly bounded by the upper and lower estimates obtained from, respectively,
displacement and traction boundary conditions (Kouznetsova et al., 2001; Miehe
et al., 2002; Liu et al., 2017). Under periodic boundary conditions both the dis-
placements and rotations of the boundary particles Pq are subjected to periodicity
requirements:

x+
q − x−q = F̄ · (X+

q −X−q ) and θ+
q − θ−q = 0 on ∂V , (3.12)
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with θq the magnitude of the boundary particle center rotation θq = θqe3, where
e3 is the unit vector in the out-of-plane direction of the 2D particle structure.
Superscripts + and − refer to corresponding particles on opposite boundaries +

and − of the granular assembly. Note that equation (3.12)1 directly follows from
equation (3.6), by using the periodicity requirement that the local fluctuations
at two opposite boundaries must be equal, w+

q = w−q . From the viewpoint of
equilibrium, the forces and moments on opposite periodic boundaries need to be
anti-periodic, thus satisfying the relations

a+
q + a−q = 0 and m+

q +m−q = 0 on ∂V , (3.13)

with mq the magnitude of the boundary moment, i.e., mq = mqe3.

3.2.3.2 Micro-to-macro: macroscopic stress and Hill-Mandel condition

In the micro-to-macro scale transition the macro-scale first Piola-Kirchhoff stress
tensor is required to be equal to the surface average of the micro-scale forces aq
acting on the boundary ∂V of the particle aggregate:

P̄ =
1

V

Q∑
q=1

aq ⊗Xq . (3.14)

This expression, together with equations (3.11) and (3.12), satisfies the condition
on energy consistency between the macro and micro scales, known as the Hill-
Mandel micro-heterogeneity condition (Hill, 1963). For a discrete particle system,
the Hill-Mandel condition becomes (Miehe and Koch, 2002; Liu et al., 2017)

P̄ : δF̄ =
1

V

Q∑
q=1

aq · δxq . (3.15)

Equation (3.15) essentially states that the volume average of the virtual work
applied at the boundaries of the granular micro-structure equals the virtual work
of a macroscopic material point.

Finally, the numerical results of the multi-scale simulations will be presented
in terms of components of the macro-scale Cauchy stress tensor σ̄. This stress
measure is obtained from the first Piola-Kirchhoff stress P̄ computed through
(3.14) by using the common transformation rule:

σ̄ =
1

det
(
F̄
) P̄ · F̄ T . (3.16)
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3.3 Numerical implementation

3.3.1 Macro-scale problem

3.3.1.1 Finite element formulation

In order to determine the solution of the macro-scale problem, a finite element
formulation based on the theory of large deformations is employed. To this end, a
total Lagrange scheme is adopted, for which the initial, undeformed macro-scale
domain Ω is discretized into the domain Ωh by using ne finite elements of volume
Ωe ∈ Ωh. In the finite element formulation the strong form of the quasi-static
macroscopic equilibrium (3.1) is transformed into the weak form, which, after
integration by parts and using Gauss theorem, results in∫

Ω

P̄ : δF̄ dΩ−
∫

Ω

b̄ · δū dΩ−
∫
∂Ω

t̄ · δū d∂Ω = 0 . (3.17)

The first and second integrals in equation (3.17) represent the internal work and
external work contributions, computed with respect to the test functions δF̄ =
∇(δū) and δū, respectively. In the spatial discretization procedure, the weak
form (3.17) is approximated by formulating the continuous displacement field
ū in terms of finite element interpolation functions, which leads to a system of
non-linear algebraic equations

fint(U)− fext = 0 . (3.18)

Here, the vector U contains the nodal values of the macroscopic displacement
field ū. The internal and external force vectors are given by

fint(U) =

∫
Ω

BT · P̄ (U) dΩ and fext =

∫
Ω

N T b̄ dΩ +

∫
∂Ω

N T t̄ d∂Ω , (3.19)

where N and B are matrices incorporating the interpolation functions and their
spatial derivatives, respectively.

3.3.1.2 Dynamic relaxation

In the present work an explicit time marching scheme based on dynamic relax-
ation is adopted. The purpose of the dynamic relaxation method is to reach static
equilibrium from the equations of motion in a relatively fast and numerically ro-
bust fashion, by effectively dissipating the kinetic energy of the modelled system.
This requires the computation of the effective macroscopic stress tensor P̄ , cal-
culated from expression (3.14) via the boundary forces acting on the granular
micro-structure, but circumvents the additional computation of the (computa-
tionally expensive) constitutive tangent matrix typically required in implicit time
marching schemes. Correspondingly, the macro-scale balance equation, originally
given by relation (3.18), takes the form

M̄ · Ün + C̄ · U̇n + fint (Un) = fext , (3.20)
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where M̄ is the mass matrix and C̄ is the damping matrix, which here is taken
proportional to the mass matrix as C̄ = αM̄, with α a viscous damping coeffi-
cient. Further, Ün, U̇n and Un designate the nodal acceleration, nodal veloc-
ity and nodal displacement vectors at time tn, respectively. In correspondence
with (Underwood, 1983), the nodal accelerations Ün at time tn are approximated
through a central difference scheme based on time step ∆t in the time interval[
tn− 1

2
, tn+ 1

2

]
, while the nodal velocities U̇n are straightforwardly calculated from

averaging the values at times tn− 1
2

and tn+ 1
2
:

Ün =
1

∆t

(
U̇n+ 1

2 − U̇n− 1
2

)
and U̇n =

1

2

(
U̇n+ 1

2 + U̇n− 1
2

)
. (3.21)

Inserting relations (3.21) into the equation of motion (3.20) results in the update
for the nodal velocities U̇ at time tn+ 1

2
:

U̇n+ 1
2 =

1

2 + ∆tα

[
(2−∆tα) U̇n− 1

2 + 2∆tM̄−1(fext − fint(Un))
]
. (3.22)

Subsequently, the displacement vector Un+1 is computed from the velocity vector
U̇n+ 1

2 as
Un+1 = Un + U̇n+ 1

2 ∆t . (3.23)

In the above relations a lumped (diagonal) mass matrix is used, for which the
diagonal terms at nodes k = 1, ...K of element e follow from (Zienkiewicz and
Taylor, 1991)

Me
kk =

∫
Ωe
N 2
k dΩ∑K

k=1

∫
Ωe
N 2
k dΩ

∫
Ωe

ρ̄dΩ, (3.24)

where K is the total number of nodes of element e, Nk is the shape function
referring to node k, and ρ̄ is the macroscopic density computed as the product
between the particle density ρ and the packing volume fraction vm, i.e., ρ̄ =
ρvm. The damping coefficient α appearing in equation (3.22) is adjusted in each
iteration j of time step n as (Benson, 2007)

α = αn,j = 2ξωn,j , (3.25)

with ξ the damping ratio and ωn,j a frequency parameter, computed as (Zhang
and Yu, 1989):

ωn,j =

(
(Un,j)T fn,jint

(Un,j)TM̄Un,j

)1/2

. (3.26)

Finally, for warranting the stability of the solution, the time increment ∆t is iter-
atively updated as (Benson, 2007)

∆t = ∆tn,j = γ
2

ωn,j

(√
ξ2 + 1− ξ

)
, (3.27)
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with γ a safety factor. This safety factor ensures that the time increment ∆t can
be prescribed sufficiently small to avoid numerical divergence characteristic of
an explicit time-marching scheme. The solution of equation (3.20) is considered
to be converged when the ratio between the systems’ kinetic energy Ēn,jkin in the
current iteration j of time step n and the maximal kinetic energy Ēnkin,max reached
during the time step is less or equal than a prescribed tolerance tolĒ:

Ēn,jkin
Ēnkin,max

≤ tolĒ , (3.28)

with the kinetic energy computed as

Ēn,jkin =
1

2
(U̇n,j)TM̄ U̇n,j . (3.29)

The macro-scale solution procedure has been implemented in the finite element
code ESyS-Escript (Schaa et al., 2016); details on the solution algorithm are pro-
vided in Section 3.3.3. The package mpi4py2 was used for parallelizing the DEM
computations at the different integration points.

3.3.2 Micro-scale problem

3.3.2.1 Dynamic relaxation

The micro-scale boundary value problem, consisting of the equilibrium equations
(3.7) to (3.9), the constitutive response of the particles (3.10), and the boundary
conditions (3.12), is solved by applying a dynamic relaxation method, similar
to the approach adopted for the macro-scale problem. For each particle i, with
i = 1, .., P +Q, the generalized equation of motion can be expressed as

Mid̈i = (pr + pd)i for i = 1..., P +Q , (3.30)

where the mass matrix Mi = diag [Mi, Ii] includes the particle mass Mi and the
mass moment of inertia Ii = MiR

2
i /2, with Ri the particle radius. The term

d̈i represents the generalized acceleration vector, calculated as the second time
derivative of the generalized coordinate vector di = [xi, θi · e3]

T . The gener-
alized coordinate vector contains the current locations of the particle centres
xi and the particle rotations θi. The vector pr = [fr, mr · e3]

T is the general-
ized force vector composed of the resultant force fr and moment mr acting on
particle i. Analogously, pd = [fd, md · e3]

T is the generalized vector containing
the resulting particle force and moment following from the artificial dissipation
applied in the simulations. Based on (Potyondy and Cundall, 2004), the artifi-
cial dissipative force fd and moment md are defined as fd = −α|fr| sign(ẋi) and
md = −β|mr| sign(θ̇i). The symbols α and β are damping values that are cou-
pled to (signum) functions of the particle translational velocity ẋi and rotational

2See: http://mpi4py.scipy.org/docs/
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velocity θ̇i, respectively. The equations of motion (3.30) are integrated using an
explicit, first-order finite difference scheme, the details of which can be found in
(Weatherley et al., 2014) . The dynamic relaxation process is considered to be
converged when the ratio between the kinetic energy Ekin of the inner particles
Pp in the granular medium and their potential energy Epot is less or equal than a
prescribed tolerance (Imole et al., 2013), i.e.,

Ekin
Epot

≤ tolE , (3.31)

with

Ekin =
1

2

P∑
i=1

ḋTi Miḋi and Epot =
1

2

Nc∑
c=1

[
kn

(
f cn
kn

)2

+ ks

(
f cs
ks

)2
]
,

(3.32)
where f cn/kn and f cs/ks reflect the relative elastic displacements in the normal and
tangential directions of particle contact c and N c is the total number of particle
contacts.

3.3.2.2 Servo-control algorithm for micro-scale boundary conditions

The periodic displacement and periodic rotation boundary conditions discussed
in Section 3.2.3.1 were implemented by means of a servo-control algorithm (Liu
et al., 2017). This algorithm is based on finding an iterative correction for the
boundary particle displacements and rotations in order to reduce the difference
between the measured and the required values of the boundary condition. Con-
sidering the anti-periodicity conditions (3.13) required for boundary forces and
boundary moments, the corresponding residuals for the edge particles are

∆ae = a+
e + a−e , ∆me = (m+

e + m−e ) · e3 for e = 1..., E/2 . (3.33)

Introducing the gain parameters ga and gm, the corrections for displacements and
rotations of the edge particles can be obtained by multiplying the residuals by the
corresponding gains:

∆u+
e = ∆u−e = ga∆ae, ∆θ+

e = ∆θ−e = gm∆me for e = 1..., E/2 . (3.34)

For the four corner particles no displacement correction is needed as their dis-
placements are directly imposed as a function of the macroscopic deformation,
i.e. xc = F̄Xc. The rotations of the corner particles are updated in a similar way
as done for the edge particles in relation (3.34), in accordance with the correction

∆θ+
c = ∆θ−c = gm∆mc , (3.35)

with

∆mc =

4∑
c=1

mc · e3 . (3.36)
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This correction is added to the displacement and rotation calculated at the previ-
ously converged increment. The process is considered to be converged when the
residual in terms of the particle forces and particle moments, defined in expres-
sions (3.33) and (3.36), satisfies the criterion

ra(∆ae,∆me,∆mc) ≤ εa . (3.37)

The residual ra is characterized by the normalized L2-norm of the incremental
boundary forces ∆ae and moments ∆me and ∆mc of the edge and corner par-
ticles, see Table 2, and εa is a pre-defined tolerance. The implementation of the
micro-scale problem, involving the dynamic relaxation procedure and the servo-
control algorithm for the boundary conditions, has been performed by using the
open-source discrete element code ESyS-Particle (Virgo et al., 2013; Guo and
Zhao, 2013). The numerical algorithm for the multi-scale framework is discussed
in detail in Section 3.3.3.

3.3.3 Multi-scale FEM-DEM coupling

In order to perform a multi-scale analysis of a granular system, the macroscopic
continuum formulation treated in Section 3.3.1 is coupled to the discrete micro-
scale model described in Section 3.3.2. The coupled macro-micro solution algo-
rithm is summarized in Table 3.1. The macroscopic domain is discretized in ne

Table 3.1: Incremental-iterative nested multi-scale solution scheme for the cou-
pled FEM-DEM framework.

MACRO MICRO
1. Initialization
• Initialize the macroscopic model
• Assign a discrete RVE to every IP

2. Next increment iinc ≥ 1
• Apply increment of the macroscopic external load

3. Next iteration iit ≥ 1
• Loop over all integration points
If increment iinc = 1⇒ Set F̄ = I and P̄ = 0

If increment iinc > 1⇒ Update deformation gradient F̄
F̄−→ DEM simulation - see Table 3.2

• Prescribe periodic boundary condi-
tions
• Dynamic relaxation

Store macroscopic stress P̄
P̄←− • Compute macroscopic stress P̄

4. Continue iteration
• End IPs loop
• Solve the macroscopic equation of motion (3.20) with

iteratively updated damping coefficient (3.26) and time step
(3.27)
• Compute nodal velocities using (3.22)
• Compute nodal displacements with (3.23)

5. Check for convergence (3.28) in terms of kinetic energy
• If converged⇒ go to next increment 2
• If not converged⇒ go to next iteration 3
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finite elements, with nip integration points (IPs) per element. Before the loading
is applied, an identical granular micro-structure is assigned to each integration
point. The multi-scale coupling is realized by following a deformation driven
procedure, consistent with the homogenization strategy presented in Section 3.2.
As pointed out in Table 3.1, the external load is applied to the macroscopic do-
main in an incremental fashion, whereby for each macroscopic integration point
the macroscopic deformation gradient F̄ is incrementally updated from the nodal
displacements, and subsequently imposed upon the frame of boundary particles
of the micro-scale granular packing. At the onset of each increment the macro-
scopic deformation is applied homogeneously to all the boundary particles Pq,
and the particle assembly is dynamically relaxed to its equilibrium state. Subse-
quently, an iterative loop is entered, whereby the corrections for the displacement
and rotation of the boundary particles are calculated following the servo-control
methodology, see relations (3.33)-(3.36). After the application of these correc-
tions, the particle system is again dynamically relaxed to the equilibrium state,
and the residual ra is computed as a function of the current values of the bound-
ary forces and moments. When the convergence criterion given by (3.37) is sat-
isfied, the iterative loop is terminated. The macro-scale stress P̄ is calculated
from the micro-structural boundary forces in accordance with expression (3.14),
and its value is transferred back to the corresponding integration point in the
macroscopic domain. This procedure is performed for all integration points in
the macroscopic domain. Table 3.2 summarizes the solution algorithm for the
micro-scale DEM simulation. Once the macroscopic stress is computed in the in-

Table 3.2: Algorithm for the solution of the DEM problem.
DEM simulation. Increment iinc

1. Initialize boundary conditions by applying updated macro-scale deformation homogeneously
xq = F̄Xq and θq = 0 for q = 1..., Q

2. Dynamic relaxation until convergence criterion (3.31) is satisfied.
Obtain boundary forces and moments.

3. Update particle configuration
Partition the boundary into corner c and edge e particles
Calculate edge particles displacement ∆ue and rotation ∆θe corrections via (3.33)-(3.34)
and corner particles rotation corrections ∆θc via (3.35)-(3.36)

4. Dynamic relaxation until convergence criterion (3.31) is satisfied.
Obtain boundary forces and moments.

5. Calculate residual

ra =

√∑E/2
e=1 (∆ae ·∆ae/ã2

e + (∆me/m̃e)2) + (∆mc/m̃c)2

where ãk =
MkRk

∆t2
, m̃k =

MkR2
k

∆t2
with Mk and Rk the mass and radius of particle k; k ∈ {c, e}.

6. Check for convergence: ra ≤ εa
6A. if converged =⇒ Save current configuration, compute macroscopic stress P̄ with (3.14)
and go to macro-scale simulation.
6B. if not converged =⇒ Return to 3.

tegration points, the macroscopic equations of motion (3.20) are solved using the
iteratively adjusted values of the damping coefficient (3.25) and time step (3.27).
The nodal velocities and nodal displacements are calculated from relations (3.22)
and (3.23). When criterion (3.28) is satisfied, the current increment is considered
to be converged. When this is not the case, the procedure above is repeated, until
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expression (3.28) holds.

3.4 Computational results

In this section the proposed FEM-DEM multi-scale framework is validated on a
series of representative numerical simulations. A reference problem is defined
first, for which a mesh convergence study is performed to establish the appro-
priate element size for the FEM model. Subsequently, the influence of various
micro-structural properties on the macro-scale response is investigated.

3.4.1 Definition of the reference problem

The macro-scale domain consists of a rectangular specimen of dimensions 10 mm
× 20 mm, supported vertically at the complete bottom edge and horizontally in
the lower left corner node. The domain is discretized into ne bilinear quadrilat-
eral elements, with nip = 4 integration points per element. The specimen is first
subjected to isotropic compression with the stress magnitude σ̄0 = 0.15 MN/m ap-
plied in ten loading steps, see Figure 3.3(a). Next, a biaxial compression loading
stage is initiated, whereby the vertical displacement d̄ is increased incrementally
up to a vertical strain of ε̄ = d̄/hic = 10% of the sample height hic obtained after
isotropic compression, see Figure 3.3(b). The contribution by the gravitational
loading to the sample response is relatively small, and therefore may be ignored.
Four different FEM discretizations of the macro-scale domain are considered, as
detailed in Section 3.4.2. The damping ratio and safety factor used in expres-
sion (3.27) are ξ = 1.0 and γ = 0.5, respectively3. The constitutive behaviour
in each macroscopic integration point follows from the effective response of an
initially (almost) isotropic polydisperse packing composed of 228 particles, see
Figure 3.3(c) and (d). The chosen number of particles is based on the conver-
gence study performed in (Liu et al., 2017), which shows that under simple shear
deformation and periodic boundary conditions the effective stress response for
this number of particles does not significantly change under a further increase of
the sample size. The initial packing structure is generated by a collision-driven
molecular dynamics code and subsequently reconstructed into a geometrically pe-
riodic packing, see (Liu et al., 2017) for more details. The particle radii are taken
from a uniform size distribution with polydispersity Rmax/Rmin = 1.5, with the
minimal particle radius in accordance with Rmin/L = 0.03, where L is the side
length of the initially square micro-structural domain. Note that from dimen-
sional considerations it follows that the sample response is uniquely determined
via the specific values chosen for the ratios Rmin/L and Rmax/Rmin. The volume
fraction of the initial packing is vm = 0.846, and the initial coordination number
(i.e, before the application of isotropic compression) is n̄0 = 2C/(P +Q) = 3.42,

3Occasionally, the damping ratio ξ and safety factor γ were modified during the simulation to
improve the convergence speed.
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(c)

(a) (b) (d)
Figure 3.3: Geometry of the macro-scale problem and applied boundary con-
ditions for the (a) initial isotropic compression loading stage, and (b) biaxial
compression loading stage; (c) initial, square micro-structural domain, and (d)
corresponding rose diagram.

with C the total number of particle contacts and P +Q the total number of (inner
+ boundary) particles. The fabric anisotropy is measured as

A =
Π1

Π2
− 1 , (3.38)

where Π1 and Π2 are the eigenvalues of the fabric tensor

Π =
1

2C

P+Q∑
p=1

Nc
p∑

c=1

npc ⊗ npc , (3.39)

with N c
p the total number of particles in contact with particle p and npc the unit

vector pointing from the centroid of particle p to the specific contact point c. The
initial anisotropy of the reference packing is A0 = 0.02. The normal and tan-
gential stiffnesses in the stick-slip particle contact model (3.10) are kn = 104

N/m and ks = 2 · 103 N/m, representing relatively soft particles, and the friction
coefficient equals µ = 0.4. The density of the particles is ρ = 2 · 103 kg/m2.
The translational and rotational damping factors used in the dynamic relaxation
procedure are α = β = 0.7, and the time increment is ∆t = 10−6s. The gain
parameters adopted in equation (3.34) for the application of the boundary condi-
tions are (in dimensionless form) gaM/∆t2 = 1 · 102 and gmMiR

2
i /∆t

2 = 2 · 102,
with Mi = ρπR2

i representing the mass of particle i and Ri its radius. The toler-
ances in expressions (3.31) and (3.37) are taken as tolE = 10−3 and εa = 10−4,
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respectively. The parameters used at the macroscopic and microscopic levels of
the multi-scale framework are summarized in Table 3.3.

Table 3.3: Geometrical, physical and algorithmic model parameters at the macro
and micro scales.

Parameter Value Unit
Macro-scale
Applied stress isotropic compression σ̄0 0.15 MN/m
Vertical strain biaxial compression ε̄ 0.1 -
Tolerance kinetic energy tolĒ 10−3 -
Damping ratio ξ 1.0 -
Safety factor γ 0.5 -
Micro-scale
Polydispersity Rmax/Rmin 1.5
Anisotropy A0 0.02
Coordination number n̄0 3.42
Elastic normal stiffness kn 1 · 104 N/m
Elastic tangential stiffness ks 2 · 103 N/m
Friction coefficient µ 0.4 -
Density ρ 2 · 103 kg/m2

Translational damping α 0.7 -
Rotational damping β 0.7 -
Time increment ∆t 10−6 s
Tolerance force εa 10−4 -
Gain force gaM/∆t2 1 · 102 -
Gain moment gmMR2/∆t2 2 · 102 -
Tolerance dynamic relaxation tolE 10−3 -

3.4.2 Mesh convergence study

In order to explore the mesh sensitivity of the multi-scale approach, the macro-
scopic domain depicted in Figure 3.3(a) has been discretized into four different
finite element meshes, which are characterized by the following number of el-
ements: ne = [1× 1, 1× 2, 2× 4, 4× 8], with the corresponding number of in-
tegration points as nip = [4, 8, 32, 128], respectively. The specimen first under-
goes isotropic compression, followed by biaxial compression, as described in Sec-
tion 3.4.1. The overall stress-deformation response for the considered meshes is
shown in Figure 3.4. The stress is measured in terms of the stress ratio σ̄, given
by

σ̄ =

∣∣∣∣ σ̄11 − σ̄22

σ̄11 + σ̄22

∣∣∣∣ , (3.40)

which is taken as the average over all integration points, where σ̄11 and σ̄22 are
the normal components of the macroscopic Cauchy stress (3.16) in the axial and
lateral directions of the specimen, respectively. Note that the biaxial stress ratio
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σ̄ given by Equation (3.40) directly reflects the macroscopic friction angle φm via
the usual relation φm = arcsin(σ̄). The linear axial strain ε̄ is imposed on the
specimen via the vertical displacement d̄:

ε̄ =
d̄

hic
, (3.41)

where hic is the sample height obtained after the initial, isotropic compression
stage.
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Figure 3.4: Average macroscopic stress ratio σ̄ as a function of the applied vertical
strain ε̄ for different mesh sizes, and the comparison with the predictions of two
DNS with 441 particles (A) and 1641 particles (B).

The results of the multi-scale simulations are compared to those of two direct
numerical simulations (DNS), in which the rectangular specimen is described by
DEM models of 441 and 1681 particles.These models are referred to as DNS A and
DNS B, respectively, and the corresponding samples are constructed by copying
the square L × L micro-structural domain (used in the multi-scale simulations)
multiple times along the sample height and width, see Figures 3.7(e) and (f).
Accordingly, the length scale L defines the sample height and width as 2L×L for
DNS A and 4L × 2L for DNS B. The particle radius is kept the same in the two
DEM models, in accordance with the ratios Rmax/Rmin = 1.5 and Rmin/L = 0.03
adopted for the micro-structure used in the multi-scale simulations.

The traction boundary conditions characterizing the initial isotropic compres-
sion stage and the displacement boundary condition defining the biaxial compres-
sion stage are applied in accordance with the servo-control procedure presented
in (Liu et al., 2017). Figure 3.4 illustrates that the average stress response of the
coupled FEM-DEM models for all meshes considered is very close to the predic-
tions of the direct numerical simulations, in particular in the pre-peak regime,
0 ≤ ε̄ ≤ 0.05. After this point, a moderate softening behaviour is observed,
whereby the responses for the different meshes start to deviate from one other.
The mesh size dependency of the FEM response in the post-peak regime is a well-
known effect; to circumvent this problem in a multi-scale setting, kinematically
enriched multi-scale frameworks have been proposed in the literature, see (Bosco
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et al., 2014, 2015b). Since in the present work the focus is mainly on the pre-
peak regime of the macroscopic response, the application of these frameworks for
granular systems is considered as a topic for future research.

The influence of the choice of the macroscopic mesh size on the effective re-
sponse is further investigated by considering the evolution of the coordination
number n̄ and the induced fabric anisotropy A (both averaged over all macro-
scopic integration points), see Figures 3.5(a) and (b). As a general trend, it can
be observed that the results are only slightly sensitive to the mesh adopted. The
coordination number somewhat decreases with increasing deformation, due to
the horizontal expansion of the macroscopic domain. The anisotropy initially in-
creases, since the packing deforms stronger in the vertical direction than in the
horizontal direction, in correspondence with the macroscopic biaxial loading con-
ditions applied. The induced anisotropy becomes maximal at about the same de-
formation stage as at which the peak strength is reached. In the softening regime,
a small decrease in anisotropy is observed, which is caused by a dilating particle
structure that develops under progressive shear failure.
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Figure 3.5: (a) Average macroscopic coordination number n̄ and (b) average
induced anisotropy A as a function of the applied vertical strain ε̄ for different
mesh sizes.

In addition to examining the development of the average stress in the macro-
scopic domain, the variation in stress is considered by plotting the stress evolu-
tions in the individual integration points of the FEM model. Figures 3.6(a) and (b)
show the stress ratio σ̄ in all the integration points of two specific meshes selected,
which have ne = [2× 4] and ne = [4× 8] elements, respectively. The thick black
line represents the corresponding average stress response taken from Figure 3.4.
In general, the spread in stress values in the relatively coarse mesh is smaller than
in the fine mesh, which illustrates that the fine mesh more accurately describes
the heterogeneous response of the macroscopic domain. The heterogeneity of the
response clearly becomes rather strong in the softening regime, due to a localiza-
tion of the macroscopic deformation pattern. This effect can be further explored
by depicting the micro-structures at a vertical deformation ε̄ = 0.09 in two differ-
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ent integration points, corresponding to the locations with the highest (bold dark
grey line) and lowest (bold light grey line) stress levels at the macro-scale. The
micro-structural responses clearly show differences in both the overall deformed
shape and in the force chains developing within the particle structure (indicated
by the red lines).

(a)

(b)
Figure 3.6: Evolution of the stress ratio σ̄ in all integration points of the two FEM
meshes (a) ne = [2× 4] and (b) ne = [4× 8]. The bold dark grey and light grey
lines refer to the integration points with the highest and lowest stress levels at a
strain ε̄ = 0.09, and the corresponding micro-structural responses are visualized
in the insets (with the particle contact forces indicated in red). The black bold
line represents the evolution of the average stress, taken from Figure 3.4.

In conclusion, the results in Figures 3.4 and 3.5 demonstrate that even the
coarsest mesh with ne = [1× 1] accurately captures the average multi-scale stress-
deformation response. This supports the capability of the proposed multi-scale
framework to adequately perform large-scale simulations with a relatively coarse
mesh discretization of the macroscopic domain at limited computational cost. Ob-
viously, a finer mesh allows for a richer description of the heterogeneous macro-
scopic response. This aspect, which has been noticed from the stress evolutions
in Figure 3.6, is further elaborated by comparing the deformed macroscopic con-
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figurations computed by the multi-scale method and the DNS at the end of the
deformation process ε̄ = 0.1, see Figure 3.7. Here, the variable used in the con-

(a) Mesh with ne = [1× 1] (b) Mesh with ne = [1× 2]

(c) Mesh with ne = [2× 4] (d) Mesh with ne = [4× 8]

(e) DNS A: 441 particles (f) DNS B: 1681 particles
Figure 3.7: (a)-(b)-(c)-(d) Contour plots of the incremental equivalent strain
∆ε̄eq on the deformed macroscopic domain at ε̄ = 0.1, for the four considered
meshes; the insets illustrate the deformed micro-structures at integration points
near the top and bottom of the macroscopic domain (with the particle contact
forces indicated in red). (e)-(f) Deformed configurations of the two direct nu-
merical simulations, shown for comparison.

tour plots is the incremental equivalent strain ∆ε̄eq, defined as the L2-norm of
the increments of the components of the linear strain tensor ε̄ = F̄ − I. It can
be observed that the deformation of the macroscopic domain computed by the
multi-scale simulations lies closer to those computed by DNS when the mesh be-
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comes finer. In addition, the localization pattern becomes more prominent for a
finer mesh. Based on these results, it is concluded that a good compromise be-
tween the accuracy in the description of the local macroscopic features and the
computational time is found for the mesh of ne = [2× 4] elements with nip = 32
integration points. Hence, this mesh will be used for the forthcoming multi-scale
simulations in which the influence of micro-structural parameters on the effective
macroscopic response is analysed. As a final note, from the deformed configura-
tions computed with DNS it can be observed that a few inner particles have been
pushed through the frame of boundary particles during the dynamic relaxation
procedure, thereby ending up outside the actual macroscopic domain. A way to
prevent this from happening is by extending the thickness of the boundary frame
with more particles. This solution, however, has not been implemented here,
since the influence of this effect on the macroscopic response is negligible.

3.4.3 Influence of micro-structural parameters on the macro-
scopic response

The macroscopic geometry in Figure 3.3 is discretized with the selected mesh of
2 × 4 finite elements, whereby the particle contact friction, the particle rotation,
and the initial fabric anisotropy are varied. In the analysis of the results the
attention will be focused on the pre-peak regime of the macroscopic response,
during which the FEM results are independent of the mesh size, see Section 3.4.2.

3.4.3.1 Particle contact friction

The effect of the particle contact friction on the macro-scale response is investi-
gated by considering three different values for the particle contact friction, namely
µ = [0.2, 0.4, 0.6]. Note that µ = 0.4 is the friction coefficient of the reference
particle packing studied in Section 3.4.2. The macroscopic stress evolution, ex-
pressed in terms of the stress ratio σ̄ averaged over all the integration points, is
presented in Figure 3.8(a). In addition, the evolution of the volumetric deforma-
tion J̄rel = (det(F̄) − det(F̄ic))/det(F̄ic) is plotted in Figure 3.8(b), where F̄ic is
the deformation gradient, evaluated at the end of the preliminary isotropic com-
pression stage. As expected, from Figure 3.8(a) it follows that in the pre-peak
regime the stress ratio clearly is higher for a larger particle contact friction. In
addition, the development of compaction (corresponding to a negative value of
J̄rel) during the initial stage of deformation, as typical for packings with rela-
tively soft particle contacts, is larger for a higher value of the particle contact
friction. Essentially, the normal contact forces become higher when the parti-
cle contact friction increases, which generates more particle overlap, and thus
more compaction. This result is consistent with other DEM results presented in
the literature (Göncü and Luding, 2013). At ε̄ = 0.08 the structure starts to fail
and develops into a dilated particle structure (corresponding to a positive value
of J̄rel). At this stage, the order of the deformation responses in Figure 3.8(b)
changes, and is expected to eventually show a trend whereby the dilation will
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be larger for a higher particle friction, see also (Suiker and Fleck, 2004; Göncü
and Luding, 2013). However, this will happen at deformations falling outside the
range considered here, whereby shear failure has substantially developed.
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Figure 3.8: (a) Average macroscopic stress ratio σ̄ and (b) average volumetric
deformation J̄rel as a function of the applied vertical strain ε̄ for different particle
contact friction coefficients µ.
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Figure 3.9: (a) Average macroscopic coordination number n̄ and (b) average
induced anisotropy A as a function of the applied vertical strain σ̄ for different
particle contact friction coefficients µ.

The evolutions of the mean coordination number n̄ and the mean anisotropy
parameter A for simulations performed with different particle friction coefficients
are illustrated in Figures 3.9(a) and (b), respectively. For all cases the coordina-
tion number decreases with increasing deformation; the loss of contacts can be as-
cribed to the horizontal expansion of the specimen, which occurs despite that the
overall material structure compacts, see Figure 3.8(b). A similar observation was
made in the DEM study presented in (Kuhn, 1999). Moreover, the coordination
number in general is lower for a higher particle contact friction, which is in cor-
respondence with the DEM study presented in (Göncü and Luding, 2013). Since
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the coordination number is lower and the overall strength is larger at higher par-
ticle contact friction, the average particle contact force becomes larger when the
particle contact friction increases. Observe further that the effect of the contact
friction on the induced fabric anisotropy is minimal during the initial stage of the
response. Close to progressive shear failure some differences emerge, whereby
the induced anisotropy tends to grow when the particle contact friction, and thus
the overall failure strength, becomes larger.

3.4.3.2 Particle rotation

The effect of particle rotation upon the macroscopic response of the granular
structure is examined by comparing the responses of the reference particle struc-
ture defined in Table 3.3 for the cases with and without particle rotation. The
latter case is obtained by prescribing the rotation of the inner particles Pp of
the granular micro-structure to be zero, θp = 0, throughout the entire loading
process. For the boundary particles Pq the rotation follows from the periodic-
ity requirement (3.12). Figure 3.10(a) shows the evolution of the stress ratio σ̄
and Figure 3.10(b) illustrates the development of the volumetric deformation J̄rel
for the two cases. The ultimate failure strength of the system with constrained
particle rotation appears to be more than 30% higher than the ultimate failure
strength of the system with unconstrained particle rotation. Essentially, limiting
the particle rotation may be interpreted as a kinematic constraint that increases
the shear strength (Bardet, 1994; Suiker and Fleck, 2004). Hence, granular mate-
rials composed of angular shaped particles, which are susceptible to interlocking,
show limited particle rotation, and thus typically have a higher effective strength
than granular materials composed of smooth, round particles (Lambe and Whit-
man, 1969). The deformation behaviour plotted in Figure 3.10(b) illustrates that
the particle system with constrained rotation experiences more compaction than
the particle system with unconstrained rotation. This result is consistent with the
DEM study on relatively soft particle systems reported in (Bardet, 1994), and is
due to larger particle overlap from the higher normal contact forces generated un-
der constrained particle rotation. Note that the above trends are analogue to what
has been observed in Figure 3.8 from constraining particle sliding by increasing
the particle contact friction.

Figures 3.11(a) and (b) show the evolution of the coordination number n̄ and
the induced fabric anisotropyA, respectively, for the simulations with constrained
and unconstrained particle rotations. The coordination number decreases with
deformation, and is smaller for the case of constrained particle rotation. Fur-
thermore, from Figures 3.10a and 3.11b it is concluded that the shear strength is
higher when the induced anisotropy is larger. More specifically, at an axial strain
ε̄ = 0.073 the granular assembly with unconstrained particle rotation has reached
its maximal shear strength, which is 0.39/0.48 = 0.81 times lower than the cor-
responding strength of the granular assembly with constrained particle rotation.
The anisotropy ratio for the two granular assemblies turns out to be similar, and at
ε̄ = 0.073 equals 0.27/0.33 = 0.82, thus indicating here an almost linear relation
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Figure 3.10: (a) Average macroscopic stress ratio σ̄ and (b) average volumetric
deformation J̄rel as a function of the applied vertical strain ε̄ for constrained and
unconstrained particle rotation.
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Figure 3.11: (a) Average macroscopic coordination number n̄ and (b) average
induced anisotropy A as a function of the applied vertical strain ε̄ for constrained
and unconstrained particle rotations.

between shear strength and induced anisotropy.

3.4.3.3 Initial anisotropy

The influence of the initial anisotropy of the granular micro-structure on the
macro-scale response is assessed by considering, together with the reference par-
ticle packing defined in Table 3.3, two additional particle packings characterized
by higher anisotropy values. Accordingly, the set of initial anisotropy parameters
is A0 = [0.02, 0.05, 0.08], and the corresponding microstructures and rose dia-
grams are shown in Figure 3.12. The evolutions of the effective stress and the
volumetric deformation for the different initial fabric anisotropies are shown in
Figures 3.13(a) and (b), respectively. The value of the peak strength appears to be
lower for a higher initial fabric anisotropy, and is reached at a smaller axial strain
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A0 0.02 0.05 0.08

(a)

(b)

Figure 3.12: (a) Particle packings used to assess the effects of initial fabric
anisotropy on the macro-scale response, and (b) the corresponding rose diagrams,
for initial anisotropies A0 = [0.02, 0.05, 0.08].

ε̄. Further, in the pre-peak regime a higher initial fabric anisotropy creates less
compaction of the granular packing, which agrees with the DEM study performed
in (Kuhn, 1999). Combining the results from both figures leads to the conclusion
that a higher compaction level obtained under a lower initial anisotropy provides
a higher effective shear strength of the sample.
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Figure 3.13: (a) Average macroscopic stress ratio σ̄ and (b) volumetric defor-
mation J̄rel as a function of the applied vertical strain ε̄ for three packings with
different values of the initial anisotropy A0.

The average coordination number n̄ and the induced anisotropy A are illus-
trated in Figures 3.14(a) and (b) for the three different initial anisotropies. The
structure with the lowest initial anisotropy A = 0.02 clearly has the highest coor-
dination number close to the onset of localized failure at ε̄ = 0.07, which corre-
sponds to the highest compacting level and the largest overall strength, see Fig-
ure 3.13. For the other two anisotropies considered this relation is less clear, but
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may become more apparent when the number of particles in the micro-scale do-
main is enlarged. Further, the link between the initial anisotropy and the induced
anisotropy depicted in Figure 3.14(b) can not be clearly established, although it
can be observed that during progressive shear failure (i.e., in the deformation
range 0.06 ≤ ε̄ ≤ 0.08) the order of the three curves is similar as for the shear
strength depicted in Figure 3.13a.
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Figure 3.14: (a) Average macroscopic coordination number n̄ and (b) average in-
duced anisotropyA as a function of the applied vertical strain ε̄ for three packings
with different initial anisotropy A0.

3.5 Conclusions

In the present contribution a multi-scale model for the analysis of granular sys-
tems has been proposed, which combines the principles of a coupled FEM-DEM
approach with a novel servo-control methodology for the implementation of ap-
propriate micro-scale boundary conditions. A mesh convergence study has been
performed, whereby the results of a quasi-static biaxial compression test were
compared to those obtained by direct numerical simulations. The comparison
demonstrated the capability of the multi-scale method to realistically capture the
macro-scale response, even for macroscopic domains characterized by a relatively
coarse mesh; this makes it possible to accurately analyse large-scale granular sys-
tems in a computationally efficient manner. The multi-scale framework has been
applied to study in a systematic manner the role of individual micro-structural
characteristics on the effective macro-scale response. The effect of particle con-
tact friction, particle rotation, and initial fabric anisotropy on the overall response
has been considered, as measured in terms of the evolution of the effective stress,
the volumetric deformation, the average coordination number and the induced
anisotropy. The trends observed are in accordance with notions from physics,
and observations from experiments and other DEM simulations presented in the
literature. Accordingly, it is concluded that the present framework provides an
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adequate tool for exploring the effect of micro-structural characteristics on the
macroscopic response of large-scale granular structures.

Since the proposed multi-scale framework is based on first-order homogeniza-
tion principles, it can only be adequately applied for problems whereby micro-
scopic length scale effects do not influence the macroscopic response. Examples
whereby this separation of length scales holds are static (and dynamic) problems
in which significant strain localization remains absent, and dynamic problems in
which the time-dependent response is composed of non-dispersive, slowly varying
low-frequency components. The extension of the proposed multi-scale FEM-DEM
scheme for applications related to strain localization and high-frequency wave
propagation is a topic for future research.
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Chapter 4
Multi-scale dynamic
simulation

In this Chapter, the multi-scale FEM-DEM method introduced in Chapter 3 is
extended towards a dynamics formulation to simulate wave propagation in gran-
ular materials. In order to (explicitly) solve the macro-scale dynamic problem,
the effective first Piola-Kirchhoff stress tensor and the effective density are re-
quired as input parameters at the integration point level. Using the hypothesis
of a separation of length scales, i.e., the micro-structural length scale is much
smaller than the characteristic length related to the macroscopic domain, the ef-
fective density is obtained from the densities of the microstructural components
(particles, air) via a rule of mixtures. The macroscopic stress is computed for
each time increment from a DEM simulation of the underlying granular assembly.
The applicability and limitations of this approach are studied on a set of bench-
mark numerical examples. First, the model is validated for a one-dimensional
string of particles, comparing the multi-scale solution with DNS results. Next,
two-dimensional microstructures are considered, which reveal that the applica-
bility of the method is dependent of the constitutive assumptions made at the
micro-structural level. While for bond-elastic interactions the FEM-DEM solution
and the DNS solution agree well, for compressive-elastic interactions the differ-
ences may become significant. This aspect constitutes a limitation of the method
that should be addressed in future research.

4.1 Introduction

Understanding the response of granular materials to ground vibrations is partic-
ularly relevant for engineering applications, for instance to predict soil behaviour
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during earthquakes. Some experimental works in the literature deal with wave
propagation in granular materials, for instance in order to determine the elastic
stiffness of soil using the bender element test (O’Donovan et al., 2012b) or to mea-
sure the dynamic mechanical behaviour of cohesive granular materials (Zhang
and Zhao, 2014). From the modelling viewpoint, the discrete element method
(DEM) has often been used to study the dynamic response of granular materials
(Sadd et al., 2000; Somfai et al., 2005; Mouraille et al., 2006; O’Donovan et al.,
2012a). This approach has revealed that wave propagation in granular media
may be affected by several factors, including fabric (Sadd et al., 2000), confining
pressure (Somfai et al., 2005), particle friction (Mouraille et al., 2006) and load-
ing frequency (O’Donovan et al., 2012a). However, DEM analyses are not suit-
able for representing large-scale engineering problems, due to the high number
of degrees of freedom involved, which would require a substantial computational
effort.

Alternatively, a multi-scale FEM-DEM solution strategy can be adopted, which
relies on averaging theorems to relate force and displacement measures at the
particle micro-scale to stress and strain measures at the macroscopic level (Kaneko
et al., 2003; Miehe et al., 2010; Guo and Zhao, 2014; Shahin et al., 2016; Guo and
Zhao, 2016b; Nguyen et al., 2014; Liu et al., 2016). Most of these works, how-
ever, focus on quasi-static problems only. The response of a granular material to
shear wave propagation has been studied in (Liu et al., 2016). Despite that this
is a valuable contribution, in this work the dynamic effective response was not
compared against the results from direct numerical simulations (DNS) obtained
from DEM models; moreover, the frequency range in which the long-wavelength
based FEM-DEM model is valid was not analysed.

This chapter explores the applicability of the multi-scale FEM-DEM model pro-
posed in Chapter 3 for wave propagation problems. The method is based on the
assumption of a separation of the microscopic and macroscopic length scales. This
allows to directly compute the effective density of the granular assembly via a rule
of mixtures from the densities of the particles and the air. The macroscopic stress
at each time increment is calculated from the solution of a DEM quasi-static prob-
lem defined on the underlying granular domain. The limitations of the method
due to these hypotheses will be investigated.

The chapter is organized as follows. Section 4.2 presents a review of the for-
mulation of the proposed multi-scale FEM-DEM model. Section 4.3 discusses the
numerical implementation, for both the coupled FEM-DEM model and the DNS. In
Section 4.4, numerical simulations are performed, which relate to wave propaga-
tion in a macroscopic domain associated to different micro-structural assemblies.
Concluding remarks are finally provided in Section 4.5.

In terms of notations, the following notations will be used. The dyadic product
of two vectors is denoted as a ⊗ b = aibjei ⊗ ej . Here ei, ej and ek are unit
vectors in a Cartesian vector basis, and Einstein’s summation convention is used
on repeated tensor indices. The inner products between two vectors and two
second-order tensors are given by a · b = aibi and A : B = AijBij , respectively.
The action of a second-order tensor on a vector is indicated as A · b = Aijbjei.
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Field variables referring to the macroscopic scale will be indicated by an over-bar,
for instance ā.

4.2 Computional homogenization for wave propa-
gation

4.2.1 Working assumptions: separation of scales and long wave-
length approximation

Computational homogenization is a multi-scale method that allows to derive the
response of a material at the macroscopic, engineering scale from the analysis
of the behaviour of the underlying micro-structural volume. First-order compu-
tational homogenization is based on the assumption of a strong separation of
scales, i.e., the characteristic length at the macro-scale must be much larger than
that at the micro-scale. In the particular case of granular materials, this can be
formulated as

Rk � L , (4.1)

where Rk is the radius of particle k in the micro-structural volume, and L is
the characteristic length scale related to the macroscopic domain, or the fluctu-
ation length of the applied macroscopic deformation field (Kouznetsova et al.,
2001). In the case of dynamic loading, this fluctuation length equals the shortest
wavelength of the various waves generated in the granular structure, by which
Equation (4.1) may be characterized as the long wave approximation. When the
condition given by Equation (4.1) holds, the effective macroscopic density of the
granular structure can be computed by using a rule of mixtures:

ρ̄ = ρvm , (4.2)

where ρ̄ is the macroscopic density, ρ is the particle density and vm is the packing
volume fraction (Sanchez-Palencia, 1980).

4.2.2 Macro-scale problem

Consider a macroscopic domain of undeformed volume Ω and boundary ∂Ω.
Based on the above assumptions, the domain can be described by a standard
continuum. According to the conservation of linear momentum, the equation of
motion in the reference configuration, neglecting body forces, is expressed by

∇ · P̄ = ρ̄¨̄u , (4.3)

where P̄ is the first Piola-Kirchhoff stress and ¨̄u is the macroscopic acceleration.
The conservation of angular momentum in the reference configuration reads

F̄ · P̄ T
= P̄ · F̄ T , (4.4)
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where F̄ = ∇x̄ is the macroscopic deformation gradient calculated as the gradient
of the current position x̄ with respect to the initial configuration. Equation (4.3)
should be completed with appropriate boundary conditions, defined as

ū = ū∗ on ∂Ωu , (4.5)

P̄ ·N = t̄∗ on ∂Ωt , (4.6)

where ū∗ is the prescribed displacement on the undeformed Dirichlet boundary
∂Ωu, N and t̄∗ are the outward unit normal and the prescribed traction on the un-
deformed Neumann boundary ∂Ωt, respectively. A constitutive specification link-
ing the macroscopic deformation F̄ to the macroscopic stress P̄ is finally needed.
In the framework of computational homogenization, this relation is obtained from
the (nested) solution of a quasi-static boundary value problem defined on the
micro-structural domain, as will be discussed later.

4.2.3 Micro-scale problem

The quasi-static micro-structural problem is formulated on an assembly of par-
ticles of undeformed volume V . The geometry and the governing equations for
the micro-structural domain have been introduced in Chapter 3. The macro-scale
deformation gradient F̄ is enforced on the boundary frame of the particle assem-
bly via micro-structural boundary conditions. Despite that, in principle different
boundary conditions may be selected (Liu et al., 2017), in this Chapter displace-
ment boundary conditions are used.

Finally, to solve the micro-scale problem, the particle interaction must be spec-
ified by an appropriate contact law. An elastic model and a cohesive model are
employed to prescribe the compressive-elastic interactions and the bond-elastic
interactions between particles, respectively.

The elastic model describing the compressive-elastic interaction between par-
ticles relates the normal contact force fn to the normal overlap between two
particles ∆un, as

fn = kn∆un , (4.7)

where kn is the normal contact stiffness.
The bond-elastic model assumes that two particles in contact are initially

bonded via a linear relation between the force (or moment) and the correspond-
ing relative displacement (or rotation) at the particle contact (Wang and Mora,
2008; Wang, 2009). This can be specified as

f bn = kbn∆un , f bs = kbs∆us and mb
θ = kbθ∆θ

b , (4.8)

where f bn is the bond force in the normal direction, kbn is the bond normal stiff-
ness, ∆un is the normal relative displacement between two particles, f bs is the
bond force in the tangential direction, kbs is the bond shear stiffness, ∆us is the
tangential relative displacement between two particles, mb

θ is the moment induc-
ing bending, kbθ is the bond bending stiffness, and ∆θb is the relative angular



4.2 Computional homogenization for wave propagation 83

displacement. When the bond breaks, the bond-elastic interaction changes into
a compressive-elastic interaction in accordance with the failure criterion (Wang
and Mora, 2008)

f bn

f b,un
+
|f bs |
f b,us

+
|mb

θ|
mb,u
θ

= 1 , (4.9)

where f b,un is the (ultimate) tensile strength, f b,us is the shear strength and mb,u
θ

is the bending strength.

4.2.4 Multi-scale coupling

The macro-to-micro scale coupling is achieved by imposing the macro-scale de-
formation gradient F̄ on the boundary particles of the particle assembly. In a
continuum setting, this scale transition relation requires that the macro-scale de-
formation gradient F̄ should be equal to the volume average of its micro-scale
counterpart. For a granular packing, it reads (Miehe et al., 2010; Dettmar, 2006;
Liu et al., 2017)

F̄ =
1

V

Q∑
q=1

xq ⊗Aq , (4.10)

where V is the initial volume covered by the granular packing, Q is the total
number of boundary particles, xq is the current position vector of the centroid
of boundary particle q, and Aq is the initial area vector of particle q. Condition
(4.10) is enforced by imposing displacement boundary conditions, i.e.

xq = F̄ ·Xq , (4.11)

with Xq the position vector of the centroid of particle q in the original configura-
tion.

On the other hand, the transition from the micro-scale to the macro-scale is
obtained by returning to the macro-scale problem the first Piola-Kirchhoff stress
P̄ computed from the micro-structural analysis. The stress averaging relation
requires the macroscopic first Piola-Kirchhoff stress P̄ to be equal to the volume
average of its microscopic counterpart. In a discrete setting, the macroscopic first
Piola-Kirchhoff stress may be defined as (Miehe et al., 2010; Liu et al., 2017)

P̄ =
1

V

Q∑
q=1

aq ⊗Xq , (4.12)

with aq the boundary force acting on particle q.
For a granular medium, Equation (4.10) and Equation (4.12) satisfy the Hill-

Mandel condition (Hill, 1963) that expresses the equality between the virtual
work done at a macroscopic material point to the volume average of the virtual
work done at the micro-structural level. This condition may be written as (Miehe
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et al., 2010; Liu et al., 2017)

P̄ : δF̄ =
1

V

Q∑
q=1

aq · δxq . (4.13)

4.3 Numerical implementation

4.3.1 Macro-scale problem

4.3.1.1 Finite element formulation

The macro-scale problem is solved by using a finite element formulation based on
the theory of large deformations. To this aim, introducing the test functions δū
and δF̄ = ∇(δū), the weak form of the dynamic macroscopic equilibrium (4.3) is
obtained, i.e., ∫

∂Ω

δū · t̄ d∂Ω−
∫

Ω

δF̄ : P̄ dΩ =

∫
Ω

δū · ρ̄¨̄u dΩ . (4.14)

Equation (4.14) is discretized according to the Galerkin method, by writing
the continuous displacement ū and acceleration ¨̄u fields in terms of finite element
interpolation functions. This leads to a system of non-linear algebraic equations

fext − fint = M̄Ü , (4.15)

where the vectors U and Ü contain the nodal values of the macroscopic displace-
ment ū and acceleration ¨̄u fields, respectively. In (4.15), the external force fext,
the internal force fint, and the consistent mass matrix M̄ are defined as

fext =

∫
∂Ω

N T t̄ d∂Ω and fint =

∫
Ω

BT P̄ (U) dΩ and M̄ =

∫
Ω

N T ρ̄N dΩ ,

(4.16)
with N and B matrices containing the interpolation functions and their (spatial)
derivatives, respectively. Considering that the explicit time integration scheme is
used, instead of the consistent mass matrix M̄ defined above, the lumped mass
matrix is employed. This allows to reduce the numerical approximation error in
the solution, as explained in (de Borst and Sluys, 2015). The lumped mass matrix
of element e is defined by its diagonal components at nodes k = 1, ...K according
to (Zienkiewicz and Taylor, 1991)

Me
kk =

∫
Ωe
N 2
k dΩ∑K

k=1

∫
Ωe
N 2
k dΩ

∫
Ωe

ρ̄dΩ , (4.17)

where K is the total number of nodes of element e, Nk is the shape function
referring to node k, and ρ̄ is the macroscopic density obtained from Equation
(4.2).
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4.3.1.2 Explicit time integration

A first-order finite difference scheme is used to integrate the equation of motion
(4.15). First, the acceleration field is calculated. Next, the velocity and the dis-
placement fields are updated, in accordance with the following relationships:

Ün+1 =
fext − fint

M̄
, (4.18)

U̇n+1 = U̇n + Ün+1∆t , (4.19)

Un+1 = Un + U̇n+1∆t , (4.20)

with ∆t the incremental time step. In the computational homogenization pro-
cedure, the internal force fint depends on the DEM quasi-static solution of the
micro-scale problem associated to each Gauss point. The detailed solution proce-
dure for the DEM quasi-static problem and the FEM-DEM coupled problem can
be found in Chapter 3.

4.3.2 Direct numerical simulation

In order to assess the performance of the coupled FEM-DEM model in simulating
wave propagation in granular materials, the results obtained from computational
homogenization have to be compared to those computed from a direct numerical
simulation performed with the DEM method. For a granular assembly composed
of N particles, the dynamic equilibrium equation for particle i can be written as

Mid̈i = (pr)i for i = 1..., N , (4.21)

where the mass matrix Mi = diag [Mi, Ii] includes the particle mass Mi and the
mass moment of inertia Ii = 1/2 MiR

2
i , with Ri the particle radius. The term d̈i

represents the generalized acceleration vector, which is integrated twice to obtain
the generalized coordinate vector di = [xi, θi · e3]

T . The latter vector contains
the current locations of the particle centroids xi and the particle rotations θi.
Finally, the vector pr = [fr, mr · e3]

T is the generalized force vector composed of
the resultant force fr and moment mr acting on particle i.

Equation (4.21) is integrated by using an explicit, first-order finite difference
scheme. For each time step tn+1, this allows for an explicit update of the particle
acceleration, velocity and displacement.

4.4 Computational results

4.4.1 Overview of the simulations

The reference macroscopic domain consists of a rectangular body of length l and
height h, as illustrated in Figure 4.1. The left boundary is supported both in the
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horizontal and vertical direction, and the top and bottom boundaries are sup-
ported in the vertical direction. The right boundary is subjected to a half-sine
displacement pulse, ū(t) = Asin(2πt/T ) for 0 ≤ t ≤ T/2, where A is the ampli-
tude of the pulse and T is the period.

The macroscopic response will be computed for different underlying micro-
structures: i) a one-dimensional string of n particles, see Figure 4.2; ii) a regular
mono-disperse packing of 255 particles, see Figure 4.3(a); iii) an irregular poly-
disperse packing of 228 particles, see Figure 4.3(b). In all the cases, the solution
of the FEM-DEM method will be compared to that of a corresponding direct nu-
merical simulation. Note that the mono-disperse packing in principle could have
been taken smaller due to the regularity of the microstructure. However, for
simplicity the size of the regular packing is taken similar to that of the irregular
polydisperse packing.

Figure 4.1: Displacement boundary conditions for the FEM-DEM model.

Figure 4.2: a string of n particles.

(a) (b)
Figure 4.3: (a) regular packing of 255 particles, and (b) polydisperse packing of
228 particles.

4.4.2 Benchmark one dimensional problem: string of bond-
elastic particles

The coupled FEM-DEM framework is first used to investigate the response of a
one-dimensional string of bond-elastic particles, see Figure 4.2, whereby the par-
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ticles are characterized by a bond-elastic constitutive interaction given by Equa-
tion (4.8).

4.4.2.1 Analytical expressions for effective density and stress

The effective response of a string of n bond-elastic particles can be computed
analytically. Based on Equation (4.2), the effective density ρ̄ of the string of
particles is calculated as

ρ̄ = ρ
Vp
V

=
(n− 1)πR2

4R2(n− 1)
= ρ

π

4
, (4.22)

where ρ is the particle density, Vp is the particle volume, V is the total volume,
and R is the particle radius. Note that the effective density ρ̄ does not depend
on the particle number n and the particle radius R. For a deformation-controlled
loading condition in the 1-direction, the applied deformation gradient tensor may
be generally written as F̄ = F11e1 ⊗ e1 + F12e1 ⊗ e2 + F21e2 ⊗ e1 + F22e2 ⊗ e2,
with F11 = a, F12 = F21 = 0 and F22 = 1. Considering that the normal force
between two particles (both in tension and compression) is given by Equation
(4.8)1, and that the relative particle displacement between two particles may be
expressed as ∆un = 2R(F11 − 1), a combination of these two relations allows
to write the force vector as aq =

(
2Rkbn (F11 − 1) , 0

)
. Furthermore, the position

vector indicating the center of particle n is expressed as Xq = (2R (n− 1) , 0), so
that, with Equation (4.12), the first Piola-Kirchhoff stress tensor becomes

P̄ =
1

4R2(n− 1)

[
kbn(F11 − 1)(n− 1)(2R)2 0

0 0

]
=

[
kbn(a− 1) 0

0 0

]
. (4.23)

Note that the stress does not depend on the particle size or number, so that the
string of particles may be unconditionally considered as a representative volume
element (RVE). Hence, this micro-structure is very suitable for analyzing mesh
convergence aspects with the FEM-DEM framework, since the accuracy of the
response computed hereby only is determined by the FEM discretization, and does
not depend on the size of the RVE. The mesh convergence behaviour is one of the
aspects examined in the section below, which is done by means of a comparison
of the FEM-DEM solution to the exact DNS solution (computed by DEM).

4.4.2.2 Coupled FEM-DEM solution and comparison to DNS

The coupled FEM-DEM numerical procedure presented in Section 4.3 is applied
to solve the dynamics problem illustrated in Figure 4.1. The dimensions of the
macro-scale domain are l × h = 800R × 2R, in correspondence with a string of
400 circular particles. The domain is discretized by using 4-node iso-parametric
elements with one-point Gauss quadrature. In the mesh convergence study four
different finite element meshes are considered, with the number of elements equal
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to ne = [40× 1; 80× 1; 200× 1; 400× 1]. The period of the half-sine pulse applied
at the right boundary is T = 5 ms and the amplitude is A = 1.8 mm. The macro-
scale density and stress, represented by Equations (4.22) and (4.23), serve as
input for expressions (4.17) and (4.16)2, respectively.

Additionally, a DNS is performed on a string of 400 bonded particles with elas-
tic contact interactions. The corresponding micro-structural parameters are listed
in Table 4.1. Note that the bond tensile strength and the tangential and bending
strengths are given artificially high values to ensure that the particles maintain
a cohesive response, i.e., bond failure can not occur. The values listed for the
tangential and bending strengths and stiffnesses are not relevant for the present
simulations, but will be used in subsequent simulations related to 2-dimensional
granular micro-structures.

Table 4.1: Geometrical and physical parameters used in DEM simulation.

Parameter Value Unit
Elastic normal stiffness kn = kbn 1× 104 N/m
Elastic tangential stiffness ks = kbs 4× 103 N/m
Elastic bending stiffness kbθ 0× 103 N/m
Bond tension strength f b,un 3× 106 N
Bond tangential strength f b,us 6× 106 N
Bond bending strength mb,u

θ 2× 106 Nm
Particle radius R 1.1× 10−3 m
Particle density ρ 2× 103 kg/m3

Translational damping α 0.7 −
Rotational damping β 0.7 −
Time increment ∆t 10−6 s

Figure 4.4 illustrates the time evolution of the axial displacement (normalized
with respect to the amplitude A of the half-sine pulse) at nodes located at a dis-
tance of 20R (10 particles) and 100R (50 particles) from the right boundary of
the macroscopic domain (at which the half-sine pulse is applied). The response
is shown for the four different FEM discretizations considered, together with the
DNS result. Further, the half-sine pulse load signal is illustrated as a reference.
It can be observed that for an increasing number of elements the displacement
response computed by the FEM-DEM model converges towards that of the DNS
model. Additionally, the displacement profile at a distance of 100R from the
source, plotted in Figure 4.4(b), requires a somewhat finer mesh for convergence
than the displacement profile at a distance of 20R, depicted in Figure 4.4(a). This
is due to the fact that mesh discretization effects of a relatively short wavelength,
which are most apparent at the end of the response signal, tend to grow in ampli-
tude with increasing travelling distance of the compression wave. However, for
the finest mesh of ne = 400 elements, these discretization effects seem to have
vanished.
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Figure 4.4: Time evolution of the displacement response of FEM models with
four different mesh sizes (solid lines), together with the DNS solution (aster-
isk symbols). The displacement half-sine pulse applied (dashed line) is plotted
for comparison. (a) Response at a distance of 20R (10 particles) from the right
boundary, and (b) Response at a distance of 100R (50 particles) from the right
boundary.

4.4.2.3 Wave dispersion effects

The first-order FEM-DEM framework presented in Section 4.2 is formally valid
under the long wave approximation given by Equation (4.1). However, for the
one-dimensional string of particles depicted in Figure 4.2, it is expected to give
accurate results in the range of short wavelengths as well, as for this micro-
structure the effective density and stress are independent of the size of the RVE,
see Equations (4.22) and (4.23). In order to investigate the dynamic response
under relatively short wavelengths, the period of the half-sine pulse is varied as
T = [0.5, 1, 2, 5] ms. Note that the maximal value of T = 5 ms corresponds to the
period used in the analyses presented in the previous section.

The phase velocity of a string of bonded elastic particles in the long-wave limit
can be expressed as (Suiker and de Borst, 2005)

c∞ =

√
4knR2

M
, (4.24)

with kn the particle normal stiffness and M the particle mass. The 2D simulations
were performed for a string of cylindrical particles of radius R = 1.1 mm and
a thickness of 1 mm, which, with the parameter values listed in Table 4.1, via
Equation (4.24) results in a phase velocity of c ≈ 80 mm/ms. Correspondingly,
the wavelengths related to the four pulse periods selected become λ = c∞T ≈
[36; 72; 144; 364]R.

Figure 4.5 shows the time evolution of the normalized horizontal displace-
ment for the four different pulse periods, as obtained with an FEM model of
ne = 400 × 1 elements (which is the finest mesh examined in the mesh conver-
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gence study of the previous section), and from the DNS solution. Figures 4.5(a)
and (b) refer to nodes located at 20R (10 particles) and 100R (50 particles) from
the right boundary, respectively.

It can be observed that the FEM-DEM results and DNS results match closely for
all pulse periods analyzed. Furthermore, for the shortest pulse periods, T = 0.5
ms and T = 1.0 ms, wave dispersion effects become prominent, as character-
ized by the oscillatory pattern of relatively high frequency appearing at the end
of the response signal. The reason that these high-frequency components prop-
agate relatively slow follows from the typical sinusoidal shape of the ω − k dis-
persion curve characterizing a string of elastic particles, see Suiker and de Borst
(2005); this shape of the dispersion curve causes the group velocity (= the veloc-
ity at which the wave energy propagates) to decrease with increasing frequency,
whereby it finally becomes zero at the maximum frequency for a propagating
wave, ωmax = 2

√
kn/M , thereby resulting in a standing wave.
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Figure 4.5: Horizontal displacement response (normalized) under half-sine
pulses of different period. The response signals are recorded at (a) 20R and (b)
100R from the right boundary of the macroscopic domain (at which the half-sine
pulse is applied).

4.4.3 Regular monodisperse packing

In this Section, the macroscopic domain illustrated in Figure 4.1 is associated
to the underlying micro-structural geometry represented by the regular mono-
disperse packing of 255 particles shown in Figure 4.3(a). The packing has di-
mensions 30.5 × 30.8 mm2. The dynamic response in the macroscopic domain
will be studied by considering two different constitutive interactions between the
particles in the micro-structure: a bond-elastic interaction (i.e., elastic interac-
tion both in tension and compression) and a compressive-elastic interaction (i.e.,
elastic interaction in compression, no interaction in tension).
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4.4.3.1 Packing with bond-elastic particle interactions

A granular micro-structure with a bond-elastic interaction - see Equation (4.8)
- is considered first. The constitutive parameters related to the particle con-
tacts are presented in Table 4.1. The macro-scale domain size is specified as
l×h = 1219.4 ×30.8 mm2, thus representing a composition of 40 micro-structural
geometries in the longitudinal direction of the domain. A mesh convergence
study is performed, by considering the macroscopic domain to be discretized
with 4-node iso-parametric elements with one-point Gauss quadrature. Here,
the number of elements equals ne = [40× 1; 80× 1; 160× 1; 320× 1]. A half-sine
displacement pulse with a period T = 5 ms and an amplitude A = 5 mm is ap-
plied at the right boundary of the macroscopic domain. The results of the coupled
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Figure 4.6: Time evolution of the (normalized) horizontal displacement response
of FEM-DEM models with four different mesh sizes (black lines), whereby the
underlying micro-structure is a regular packing with bond-elastic interactions be-
tween the particles. The DNS solution (red line), and the half-sine displacement
pulse applied (dashed line), are plotted for comparison. The displacement is
evaluated at locations (a) 30.5 mm (corresponding to a distance of one micro-
structural geometry) and (b) 305 mm (corresponding to a distance of 10 micro-
structural geometries) from the right boundary of the macroscopic domain.

FEM-DEM analyses for the different FEM meshes considered are shown in Figure
4.6. The average of the horizontal displacements of the nodes located at 30.5
mm (corresponding to a distance of one micro-structural geometry) and 305 mm
(corresponding to a distance of 10 micro-structural geometries) from the right
boundary of the macroscopic domain (which is where the half-sine pulse is ap-
plied), normalized by the pulse amplitude, are illustrated in Figures 4.6(a) and
(b), respectively. A DNS is also performed, in which the rectangular specimen is
described by a DEM model of 9615 particles. It can be observed that for an increas-
ing number of elements in the FEM model, the FEM-DEM displacement response
clearly converges to the DNS displacement response (represented by the average
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particle displacement over the sample height at the specific location considered).
As observed before in Figure 4.4 for the one-dimensional string of particles, a
comparison of Figures 4.6(a) and (b) illustrates that the displacement response
closer to location of the pulse load accurately approaches the DNS response at a
somewhat coarser mesh.

4.4.3.2 Packing with compressive-elastic particle interactions

The FEM-DEM response is now investigated by considering a micro-structural
packing of particles with a compressive-elastic contact interactions, as repre-
sented by Equation (4.7). The material parameters used are listed in Table 4.1.
The macro-scale dimensions are l × h = 792.6× 30.8 mm2. The macroscopic do-
main is discretized into four different meshes, which are characterized by the
following number of elements: ne = [26× 1; 52× 1; 104× 1; 208× 1]. A cor-
responding DNS is considered, where the macroscopic domain consists of 6255
particles. The half-sine displacement pulse applied at the right boundary of the
macroscopic domain is characterized by a period T = 5.0 ms and an amplitude
A = 1.8 mm.
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Figure 4.7: Time evolution of the (normalized) horizontal displacement response
of FEM-DEM models with four different mesh sizes (black lines), whereby the un-
derlying micro-structure is a regular packing with a compressive-elastic interaction
between the particles. The DNS solution (red line), and the displacement-driven
half-sine pulse applied (dashed line), are plotted for comparison. The displace-
ment is evaluated at locations (a) 30.5 mm (corresponding to a distance of one
micro-structural geometry) and (b) 305 mm (corresponding to a distance of 10
micro-structural geometries) from the right boundary of the macroscopic domain.

The horizontal displacement response to the pulse loading is illustrated in
Figure 4.7 for the different FEM meshes considered. Note that the displacement
response here is not characterized by a sinusoidal shape similar to that of the
pulse load, since, due to a compressive-elastic particle interaction, the tensile
force required to pull the particles back to their original position can not develop.
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At the initial stage, i.e., before the displacement response reaches its maximum,
the response of the FEM-DEM models is close to that of the DNS. After passing
the maximum value, the displacement predicted by the FEM-DEM model starts to
deviate from the DNS solution. Moreover, as can be clearly observed from Figure
4.7(a), the difference between the multi-scale solution and the result obtained
by the DNS may be larger for a finer mesh. This characteristic can yet not be
explained, and needs to be addressed in future work.

4.4.4 Irregular poly-disperse packing

The dynamic analysis is finally performed assuming an irregular polydisperse
packing as the underlying micro-structure associated to the macroscopic domain,
see Figures 4.1 and 4.3(b). The packing is initially (almost) isotropic and is char-
acterized by 228 particles. Its dimensions are 30 × 30 mm2. It has been verified
that this packing size is sufficient to be statistically representative for computing
the effective response under the present dynamic loading conditions. In the fol-
lowing, the multi-scale problem will be solved by successively considering both
bond-elastic particle interactions and compressive-elastic particle interactions.

4.4.4.1 Packing with bond-elastic particle interactions

A granular packing characterized by bond-elastic interactions is considered first.
The constitutive parameters are specified in Table 4.1. The macro-scale domain,
which has dimensions l × h = 1200 × 30 mm2, is discretized into four dif-
ferent finite element meshes, characterized by the number of elements ne =
[40× 1; 80× 1; 160× 1; 320× 1]. The FEM mesh is constructed by using 4-node
iso-parametric elements with one-point Gauss quadrature. The corresponding
DNS model has 8535 particles. A half-sine displacement pulse with a period
T = 5 ms and an amplitude A = 1.8 mm is applied.

Figure 4.8 shows the (normalized) displacement response averaged across two
different cross-sections, located (a) 30 mm (corresponding to a distance of one
microstructural geometry) and (b) 300 mm (corresponding to a distance of 10
microstructural geometries) from the right boundary at which the load is applied.
Close to the source, the multi-scale response is in good agreement with the re-
sponse of the DNS model, even for the relatively coarse meshes, see Figure 4.8(a).
However, at the location further from the loading source, the displacement for
the two coarsest meshes show some oscillations at the end of the response sig-
nal, which are likely to be the result of numerical dispersion (i.e., the effect of
the finite element size on the dynamic response under shorter wavelength), see
Figure 4.8(b). In addition, the response by the multi-scale simulations shows a
small time shift compared to that of the DNS.

Figures 4.9(a) and (b) show the time evolution of the stress normal to the
top boundary, evaluated at 15 mm (corresponding to the location of the integra-
tion point in the first element) and 285 mm (corresponding to the location of the
integration point in the 10th element) from the right boundary. The response
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Figure 4.8: Time evolution of the (normalized) horizontal displacement re-
sponse of FEM-DEM models with four different mesh sizes (black lines), whereby
the underlying micro-structure is an irregular polydisperse packing with a bond-
elastic interaction between the particles. The DNS solution (red line), and the
displacement-driven half-sine pulse applied (dashed line), are plotted for com-
parison. The displacement is evaluated at locations (a) 30 mm (corresponding
to a distance of one micro-structural geometry) and (b) 300 mm (corresponding
to a distance of 10 micro-structural geometries) from the right boundary of the
macroscopic domain.
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Figure 4.9: Stress response normal to the top boundary of the FEM-DEM model
(ne = 40 elements) and the DNS model, evaluated at positions (a) 15 mm, (b)
285mm from the loading source. The underlying micro-structure is an irregular
packing with bond-elastic interactions.

of the FEM-DEM model is computed using a mesh with ne = 40 × 1 elements.
Accordingly, the element size here corresponds with the size of the particle mi-
crostructure. For the DNS the stress in Figures 4.9(a) and (b) is computed by
summing up the boundary forces over a distance of 0-30 mm and 270-300 mm
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from the right boundary, respectively, and dividing the result by the correspond-
ing distance of 30 mm (which thus equals the element length in the FEM-DEM
model). Both for the multi-scale model and the DNS the stress response initially
is compressive, followed by a tensile part (= negative stress value) of a some-
what lower amplitude. Due to non-uniform motions of individual particles, for
the DNS the stress response oscillates around the more smooth response com-
puted with the multi-scale model. The reason that the high-frequency oscillations
remain absent in the multiscale model, is because the response of the granular
microstructure here is based on a quasi-static analysis. The normal stress at the
top edge results from the constraining effect caused by vertical supports. Note
that the stress computed by the FEM-DEM model somewhat decreases in ampli-
tude, which may be the result of numerical dispersion caused by the interaction
between the generated wavelengths and the relatively coarse element size.

4.4.4.2 Packing with compressive-elastic particle interactions

The micro-structural irregular packing associated to the macroscopic domain is
now characterized by compressive-elastic particle interactions. The constitutive
properties are listed in Table 4.1. The domain size of the macroscopic domain is
l×h = 780×30 mm2. The macro-scale geometry is discretized into four finite ele-
ment meshes, with the number of elements ne = [26× 1; 52× 1; 104× 1; 208× 1].
The corresponding DNS model consists of 5553 particles. The applied half-sine
displacement pulse and the type of elements used are the same as for the regular
granular packing.

Figure 4.10 shows the time evolution of the horizontal displacement averaged
across the cross-section, evaluated at locations 30 mm (corresponding to a dis-
tance of one micro-structural geometry) and 300 mm (corresponding to a distance
of 10 micro-structural geometries) from the loading source. The corresponding
multi-scale solutions are comparable to those computed for the regular packing,
see Figure 4.7. Nonetheless, the difference with the corresponding DNS solutions
is significant, which is an issue that currently can not be explained and therefore
requires a more detailed investigation.

The time evolution of the stress normal to the top edge, evaluated at dis-
tances 15 mm and 285 mm from the right edge at which the loading is applied,
are shown in Figures 4.11(a) and (b), respectively, for a granular structure with
compressive-elastic particle interactions. The DNS responses plotted for compar-
ison are computed by summing up the boundary forces over the distances 0− 30
mm and 270 − 300 mm from the right boundary, and dividing these sums by the
corresponding length of 30 mm. The DNS responses and multi-scale responses
approximately show the same trend, which is initially represented by a compres-
sive stress pulse that approaches to zero when time progresses. Comparing the
responses plotted in Figures 4.11(a) and (b) illustrate that the amplitude of the
compressive pulse slightly decreases with propagation distance, while its period
somewhat increases. These are typical wave dispersion effects. Note further that
the tensile part of the stress response present in Figure 4.9 for the bond-elastic
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Figure 4.10: Time evolution of the (normalized) horizontal displacement
response of FEM-DEM models with four different mesh sizes (black lines),
whereby the underlying micro-structure is an irregular polydisperse packing with
compressive-elastic particle interactions. The DNS solution (red line), and the
displacement-driven half-sine pulse applied (dashed line), are plotted for com-
parison. The displacement is evaluated at locations (a) 30 mm (corresponding
to a distance of one micro-structural geometry) and (b) 300 mm (corresponding
to a distance of 10 micro-structural geometries) from the right boundary of the
macroscopic domain (at which the half-sine pulse is applied).
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Figure 4.11: Stress response normal to the top boundary of the FEM-DEM model
(ne = 26 elements) and the DNS model, evaluated at positions (a) 15 mm, (b)
285mm from the loading source. The underlying micro-structure is an irregular
packing with compressive-elastic interactions.

model remains absent here, since the compressive-elastic interactions in the cur-
rent particle structure are not able to transfer tensile forces.
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4.5 Conclusions

In this Chapter, the multi-scale FEM-DEM framework for the analysis of granu-
lar materials has been extended to capture wave propagation phenomena. The
method is based on a first-order computational homogenization approach, thereby
using the hypotheses of scale separation and the long-wave approximation. The
macro-scale problem is defined through a classical continuum, for which the stan-
dard equations of motion hold. This set of equations requires as input from the
micro scale the first Piola-Kirchhoff stress tensor and the macroscopic effective
density. In view of the hypotheses made, the former parameter is extracted from
a quasi-static DEM analysis performed on the granular packing associated to each
macroscopic material point. The effective density is simply derived by a rule of
mixtures. The method has been tested on a numerical example, consisting of a
macroscopic rectangular domain subjected to a compressive half-sine displace-
ment pulse. The macro-scale problem is solved for different underlying granular
microstructures, namely a one-dimensional string of particles, a regular mono-
disperse packing and an irregular poly-disperse packing, which are characterized
by bond-elastic or compressive-elastic particle interactions. The analysis of the
results illustrates that the multi-scale solution agrees exactly to the DNS response
for the one-dimensional string of particles. For the two-dimensional granular
microstructures, the efficacy of the multi-scale method depends on the selected
micro-structural contact law. For a bond-elastic particle interaction, the FEM-DEM
solution agrees well with the DNS. Conversely, when considering compressive-
elastic particle interactions, the multi-scale response shows significant differences
with the DNS solution. These aspects point out a criticality of the method that
currently remains unresolved and therefore requires further research.
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Chapter 5
Conclusions and
Recommendations

5.1 Conclusion

This thesis focuses on the first-order hierarchical multi-scale modeling of granular
materials at large deformations. For this purpose, first a servo-control methodol-
ogy is adopted to implement two types of classical boundary conditions for gran-
ular packings modelled with the discrete element method (DEM), namely, (1)
periodic particle displacement and periodic particle rotation (P) and (2) uniform
particle force and free particle rotation (T). The third classical boundary condi-
tion, which is homogeneous particle displacement and zero particle rotation (D),
follows an implementation that, in contrast to the (P) and (T) boundary condi-
tions, does not require an iterative scheme. The servo-control algorithm for the
periodic boundary conditions is coupled with the finite element method to study
effects of micro-scale parameters on the macro-scale response during quasi-static
biaxial compression. The applicability and limitations of the presented multi-
scale FEM-DEM method for solving wave propagation problem is demonstrated.
The main conclusions drawn from numerical studies discussed in the individual
chapters are summarized below.

5.1.1 Micro-scale boundary conditions

Novel algorithms for micro-scale boundary conditions of granular packings are
implemented using an open-source DEM code ESyS-Particle, and are validated
by studying the response of regular and irregular granular packings subjected to
various loading paths.

https://launchpad.net/esys-particle
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For a regular, monodisperse packing subjected to a combined compression-
true shear deformation mode, the (D) and (T) boundary conditions respectively
provide stiff and soft responses that bound the response under (P) boundary con-
ditions. The responses under the (D), (P) and (T) boundary conditions converge
towards each other under increasing packing size. Furthermore, the response of
an irregular polydisperse packing subjected to simple shear illustrates that the (P)
boundary condition provides a faster convergence towards the apparent macro-
scopic properties than the (D) and (T) boundary conditions.

Additionally, mixed (D)-(P)-(T) boundary conditions have been proposed and
have been proven to satisfy the Hill-Mandel micro-heterogeneity condition. The
algorithm for these mixed boundary conditions is developed and tested for the
case of an infinite layer subjected to a vertical compressive stress and a horizon-
tal shear deformation, whereby the ultimate strength computed for a layer of
cohesive particles appears to be about 1.5 times larger than that for a layer of
frictional particles. The failure response for both contact laws is characterized
by the dilatation of the particle assembly, which at large deformation gradually
results in a critical state with an approximately constant residual strength and
specific volume.

5.1.2 Multi-scale quasi-static simulations

The hierarchical multi-scale FEM-DEM method has been implemented by using
the open-source DEM code ESyS-Particle and the open-source FEM code ESyS-
Escript, and has been parallelized by using the module MPI in mpi4py.

First, a mesh convergence study has been performed, where the multi-scale
FEM-DEM models have different meshes characterized by a number of elements:
ne = [1× 1, 1× 2, 2× 4, 4× 8], and all Gauss point are initially connected to one
and the same polydisperse granular microstructure composed of relatively soft
particles. Upon mesh refinement the average stress-strain response of the cou-
pled FEM-DEM models turns out to be in good agreement with that of the DNS
model, especially in the pre-peak regime. After passing the maximum stress, the
responses for the different meshes start to deviate from one other, due to the well-
known reason that the strain-softening behavior is mesh dependent. The evolu-
tions of the average macroscopic coordination number and the average anisotropy
agree well with those reported in the literature. The spread in the stress values
across the relatively coarse mesh is smaller than across the fine mesh, indicating
that the fine mesh describes the heterogeneous response of the macroscopic do-
main with higher accuracy. For the finest mesh the overall deformation pattern at
localized failure appears to be in good agreement with that of the DNS model.

A variation study of the particle contact friction shows that a larger value
of the particle contact friction typically generates a higher stress, a larger volu-
metric compaction, and a smaller coordination number of the granular packing,
which is consistent with results reported in the literature. In addition, constrain-
ing the particle rotation leads to a higher ultimate strength, a larger volumetric
compaction, and a lower coordination number than for the case of unconstrained

https://launchpad.net/esys-particle
https://launchpad.net/escript-finley
https://launchpad.net/escript-finley
http://mpi4py.scipy.org/docs/
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particle rotation. Finally, a higher initial fabric anisotropy creates a lower peak
strength and less volumetric compaction.

5.1.3 Multi-scale dynamic simulations

By considering different granular microstructures and different contact laws be-
tween particles, the applicability and limitations of the multi-scale FEM-DEM
method in solving wave propagation problems in the range of relatively long
wavelengths are explored. It has been demonstrated that the multi-scale solu-
tion agrees exactly to the DNS response if the microstructure consists of a one-
dimensional string of particles with bonded, elastic contacts. For two-dimensional
regular and irregular polydisperse granular microstructures, the efficacy of the
multi-scale method depends on the selected micro-structural contact law. For
a bond-elastic particle interaction, the FEM-DEM solution agrees well with the
DNS. However, when considering compressive-elastic particle interactions, the
multi-scale response shows significant differences with the DNS solution. These
aspects point out a criticality of the method that currently remains unresolved
and therefore requires further research.

5.2 Recommendations

The numerical results for the quasi-static, multi-scale simulations presented in
Chapter 3 have illustrated a mesh-dependent behavior during the strain softening
(or shear banding) stage. This mesh-dependent behavior is common for first-
order computational homogenization procedures. The mesh dependency results
from the principle of local action assumed in the standard continuum theory and
from the uniformity assumption on the macroscopic deformation across the at-
tached micro-structural domain (Kouznetsova, 2002). These two assumptions
can be relaxed by either using at the macro level a non-local continuum model,
e.g., (Liu et al., 2016) or a higher-order continuum model, e.g., (Li et al., 2014),
resulting in a mesh-independent behavior during strain softening upon mesh re-
finement. Despite this remedy, these two approaches are not sufficiently adequate
to deal with strong localization, i.e., discrete cracking. The method presented in
(Bosco et al., 2015a) employed the extended finite element method (XFEM) for
the macroscopic domain and the percolation-path-aligned boundary conditions
for the microscopic domain in order to simulate macroscopic crack propagation
originating from damage at the micro scale. So, the computational scheme pro-
posed in (Bosco et al., 2015a) may be adopted to simulate discrete cracking in co-
hesive granular materials by implementing a hierarchical multi-scale XFEM-DEM
model where the XFEM is employed at the macro scale level and the percolation-
path-aligned boundary conditions are used for the associated DEM model at the
micro scale.

The application and limitations of the current FEM-DEM model to solve wave
propagation problems have been demonstrated in Chapter 4. The FEM-DEM
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method developed in this thesis appeared to be highly accurate only for dynamic
responses characterized by low-frequency waves propagating in granular mate-
rials with linear-elastic particle interactions. For dynamic responses character-
ized by relatively short waves that initiate wave dispersion phenomena, a more
advanced, higher-order multi-scale model is required for obtaining a good corre-
spondence with direct numerical simulations. As further demonstrated in Chapter
4, the accuracy level of the multi-scale method for wave propagation problems in
granular systems composed of particles with non-linear contact interactions still
contains unsatisfactory aspects, which need to be studied in more detail.
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