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Abstract

IEEE Std P1838 is the DfT standard-under-development for 3D test access into dies meant to be used in 3D multi-die stack assemblies. P1838
is the first DfT standard to include a flexible parallel port (FPP): an optional, scalable multi-bit (‘parallel’) test access mechanism, offering
higher test access bandwidth compared to the mandatory one-bit (‘serial’) port. In this paper, we describe P1838’s FPP and propose a formal
FPP specification language based on Google’s Protocol Buffers (PBs), that potentially could become part of the standard. For a realistic
example FPP, we provide its formal specification. Finally, we report on a demonstrator software tool, developed by using PBs-generated
data access routines, that converts an FPP specification into a corresponding Verilog netlist.

1 Introduction
The market continues to pull for integrated-circuits (ICs) with
higher performance, better energy-efficiency, and lower cost. While
conventional transistor scaling runs into increasing technical and fi-
nancial hurdles, the baton in the race to create attractive new IC
products that meet market expectations is gradually being taken
over by innovations in multi-die stack-assembly and packaging
techniques [1, 2]. Large-array fine-pitch micro-bumps imple-
ment dense high-performance low-power inter-die interconnects.
Through-silicon vias (TSVs) in combination with wafer thinning
provide electrical connections via the back-side of a die’s substrate,
enabling stacks of more than two dies. Packaging costs are drasti-
cally reduced by using cheaper materials and wafer-level processes
[3]. The I/O-to-pin fan-out functionality of package substrates is re-
placed by redistribution metal layers, cost-effectively manufactured
at wafer level. And the cost of (often expensive) plastic or ceramic
packages is circumvented by applying epoxy mold compounds at
wafer level. These and other interconnect, assembly, and packag-
ing technology innovations lead to a wide range of multi-die stack
architectures, including Package-on-Package (PoP), 2.5D-stacked
ICs (SICs) consisting of multiple active dies stacked side-by-side
on a passive silicon interposer base [4], 3D-SICs comprising one or
multiple towers of stacked active dies [5, 6], flip-chip fan-out wafer-
level packages (FC-FOWLP) [7], etc. Both in product variety and
volumes we have yet only seen the beginning of multi-die stacks.

Like all micro-electronic products, multi-die stacks need to be
tested for manufacturing defects before they can be shipped with
acceptable quality levels to their customers. We distinguish the fol-
lowing tests [8]: (1) pre-bond tests prior to stacking, (2) mid-bond
tests on incomplete, partial stacks, (3) post-bond tests on complete
yet still not packaged stacks, and (4) final tests on the final pack-
aged product. The number of possible test flows grows quickly
with the number of dies in the stack [9] and hence is the subject of
automated trade-off evaluation and optimization [10].

A well-architected on-chip design-for-test (DfT) test access infra-
structure is indispensable for achieving a high-quality test. Conven-
tional (‘2D’) DfT structures such as internal scan chains, test data
compression, IEEE Std 1500 wrappers around embedded cores,
and/or built-in self-test (BIST) engines are required to provide test
access within a single die. In particular for test operations after
stack assembly has commenced (i.e., mid-bond, post-bond, and
final tests), we also need novel ‘3D’ DfT structures that provide
modular [11] test access from (and to) the external stack I/Os to
(and from) the various dies and inter-die interconnects that require
testing. In a typical die stack, the external stack I/Os connect to
the bottom side of the base die. In that case, test stimuli need to
be transported through other dies in the stack up to the die where
they are meant to execute their defect detection work; likewise, test
responses need to be transported from the die-under-test through
other dies in the stack down to the external stack I/Os. Several
ad-hoc 3D-DfT architectures have been proposed [12–18]; these
architectures do their job, but are not fully compatible with each
other. However, it is important to guarantee interoperability of the
3D-DfT architecture across the various dies in a stack, even if these
dies are designed by different teams or companies; this requires
standardization.

IEEE Std P1838 is a standard (currently still under development)
for 3D-DfT [19, 20]. It standardizes per-die 3D-DfT features, such
that if compliant dies are brought together in a die stack, a basic
minimum of test access is guaranteed to work across the stack.
IEEE Std P1838 consists of three main components: (1) a serial
control mechanism (SCM), (2) a die wrapper register (DWR), and
(3) a flexible parallel port (FPP). SCM and DWR are 3D extensions
of existing standards, respectively IEEE Std 1149.1 [21] and IEEE
Std 1500 [22]. P1838’s FPP is an optional, scalable multi-bit test
access mechanism that offers higher bandwidth compared to the
one-bit (‘serial’) mandatory part of P1838. Standardizing multi-bit
test access is a novelty: IEEE Std 1149.1 is fully based on serial ac-
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cess and although IEEE Std 1500 mentions a wrapper parallel port
(WPP), it leaves its definition entirely open. In that light, P1838’s
FPP is a novel structure, natively developed by the P1838 Working
Group. P1838’s FPP, while still under development, was first pub-
lished in [20]. Since that publication, the FPP definition has under-
gone several impactful changes that introduce the notion of paths
and assign symmetrical roles to the various FPP terminals. This
paper describes the FPP and proposes an FPP specification and de-
scription language based on Google’s Protocol Buffers. The choice
for PBs brings platform- and programming-language-independent
compiler support, and offers backward compatibility in case of fu-
ture extensions of the FPP specification language.

The rest of this paper is organized as follows. Section 2 gives a
brief overview of IEEE Std P1838, while Section 3 details its FPP.
Section 4 introduces PBs. In Section 5, we propose an FPP spec-
ification language based on PBs. We present an illustrative, real-
istic FPP example in Section 6, for which we provide the formal
FPP specification as well as the automatically generated gate-level
netlist. Section 7 concludes this paper.

2 Overview of IEEE Std P1838
The aim of IEEE Std P1838 is to define at die-level, in addition to
die-internal (‘2D’) digital DfT features which are not governed by
P1838, standardized and scalable 3D-DfT features, such that when
compliant dies are stacked, a stack-level 3D-DfT test access archi-
tecture emerges with guaranteed minimum functionality and many
optional extensions [20]. The P1838 test access architecture sup-
ports modular testing [11], in which dies and interconnect layers
between adjacent stacked dies can be tested individually.

To support the many possible stack architectures, P1838 avoids re-
ferring to relative physical positions of adjacent dies (‘top’, ‘bot-
tom’). Instead, the standard-under-development considers the order
in which the various stacked dies connect to one another and to the
external stack I/Os, through which external test equipment needs
to apply stimuli to and capture responses from all dies and inter-
connect layers. P1838 assumes that all external I/Os of a stack are
concentrated in a single die. Each die has exactly one primary in-
terface: the collection of signals which connect to the previous die,
i.e., the die in the direction of the external stack I/Os; apart from
the first die, for which its primary interface is the external stack in-
terface. The collection of signals going to a next die is referred to
as a secondary interface of this die. The primary interface of the
next die plugs into the secondary interface of this die. A die can
have zero or more secondary interfaces. A middle die in a single-
tower stack has exactly one secondary interface. The last die in a
stack tower has no secondary interface. And dies which connect
to multiple next dies (a.k.a multi-tower architectures [23, 24]) have
multiple secondary interfaces, one for each stacked die.

P1838’s 3D-DfT consists of three components: (1) SCM, (2) DWR,
and (3) FPP. The main purpose of the SCM is to configure the dies
in the stack into one of their test modes. In addition, the SCM
provides low-bandwidth test data access at one bit per clock cy-
cle. The primary interface of a compliant die is extended with an
IEEE Std 1149.1-compliant five-terminal test access port (primary
TAP) and associated 16-state TAP Controller finite state machine
and decode logic [21]. The TAP provides a serial test access mech-

anism via its test-data-in (TDI) and test-data-out (TDO) terminals.
Each secondary interface is extended with a secondary TAP with
the same five signals as a primary TAP, but with reversed direction.
The SCM also includes a TAP configuration register (TAP-CR),
hooked up to the TAP Controller as a dedicated test data register.
Through the TAP-CR, the user can activate individual secondary
TAPs, such that the SCM of the corresponding next die is included
in the stack’s serial test access path.

The DWR mandates a wrapper cell at the vast majority of digi-
tal signals of the primary and secondary interfaces of a die. The
wrapper cells provide scan test access and hence controllability and
observability. Wrapper technology enables modular testing [11],
in which large stack designs are divided into smaller units, such
that ATPG is performed on tractable units, the responsability for
test coverage is assigned to whom it belongs (the die maker), test
data volume is reduced [25], and reuse in subsequent stack de-
signs becomes easier. Dies can be tested internally while the wrap-
per is in its inward-facing mode (INTEST) and provides isolation
from die-external switching. We can also test the interconnects be-
tween adjacent dies with the wrapper in its outward-facing mode
(EXTEST). P1838’s wrapper cell definition is largely based on
the wrapper boundary register (WBR) definition of IEEE Std 1500
[22]. Like IEEE 1500, P1838 is quite liberal with respect to wrap-
per cells; multiple shift bits, an update register, and output guarding
are all optional. P1838 allows wrapper cells to be either dedicated
or shared, i.e., implemented by reusing already-present functional
flip-flops. DWRs are mostly thought to exist at the die boundary,
but P1838 also allows ‘inland’ wrapper cells with some combina-
tional (‘shore’) logic between DWR and actual die boundary, to fa-
cilitate flip-flop sharing and at-speed interconnect testing [20, 26].

Configured via the SCM, P1838 supports many configurations [27],
which are characterized by (1) which test ports are utilized and (2)
which DfT elements are included into the active test access between
these ports. We distinguish serial vs. parallel modes, in which there
is either a one-bit test access path between TDI and TDO, or a multi-
bit test access path between the FPP terminals. And we distinguish
INTEST vs. EXTEST, in which either the DWR cells alone, or in
combination with 2D-DfT scan paths are selected between the ac-
tive test access terminals.

3 P1838’s Flexible Parallel Port
The main purpose of P1838’s FPP is to provide more test band-
width than the one-bit test access via the mandatory TAP. As there
is no ‘one-size-fits-all’ requirement for test access bandwidth, the
FPP is optional and scalable in many parameters. It provides a flex-
ible template that covers common, advanced, and even exotic test
scenarios.

A key element in the definition of the FPP is a lane, i.e., a one-bit
test data transportation hub. The lane template has six terminals.

• FPP PRI and FPP SEC (bidirectional): for vertical transport
to and/or from the previous and next die in the die stack,
respectively. Vertical inter-die interconnects as micro-bump
and/or TSVs take up a relatively large circuit area. There-
fore, vertical input and output interconnects often get com-
bined into bidirectional terminals, which improves efficiency
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w.r.t. the available interconnect resources.

• FPP TO SIDE (output) and FPP FROM SIDE (input):
for transport to/from another lane in the same die.
The FPP TO SIDE output of one lane connects to the
FPP FROM SIDE input of another lane.

• FPP TO CORE (output) and FPP FROM CORE (input): for
transport to/from the core-under-test in the same die.

A lane instantiation implements one or more paths that uses these
terminals as input source or output destination. The maximum
number of possible paths in one lane is (4 × 4) − 2 = 14 (as the
bidirectional terminals FPP PRI and FPP SEC cannot serve simul-
taneously as source and destination of the same path). Typical cases
implement only a few paths per lane. If multiple paths share a com-
mon destination, a multiplexer is required to perform selection.

P1838 distinguishes registered and non-registered lanes. Registered
lanes transport data that can be pipelined, such as scan test data.
Registered lanes require a clock input, named FPP CLK IN. Paths
in registered lanes can be provisioned with pipeline registers to in-
crease throughput. It is allowed to share (some of) these pipeline
registers between different paths, if the die layout so permits. Op-
tionally, a bypass for pipeline registers can be provided. The des-
tination terminals in a registered lane are equipped with a hold el-
ement (e.g., a latch at the inverted clock, a.k.a. ‘lock-up’ latch) to
prevent timing issues in the test data transport, since especially the
inter-die interconnect is sensitive to hold-time violations and races.
Non-registered lanes are used for transporting signals that cannot
be pipelined (such as clock signals); these lanes obviously do not
contain pipeline registers nor hold elements. A non-registered lane
serving as clock source has an FPP CLK OUT output, which is
meant to be connected to the FPP CLK IN inputs of the registered
lanes that use this clock signal.

A lane is controlled by configuration bits that enable the output
drivers of the bidirectional terminals FPP PRI and FPP SEC that
connect to off-chip circuitry, multiplexer selection signals, and
pipeline bypass signals, if present.

Figure 1 shows a schematic example of a registered lane. The data
terminals in Figures 1, 4, and 5 have, for illustration purposes, been
assigned a color code: dark and light green for resp. FPP PRI and
FPP SEC, dark and light blue for resp. FPP FROM SIDE and

Figure 1: Example FPP lane comprising five paths.

FPP TO SIDE, and red and orange for resp. FPP FROM CORE
and FPP TO CORE. The clock signal is shown in purple and the
configuration controls are black. This example lane does not use
the terminal FPP FROM SIDE and hence this terminal is grayed
out in Figure 1. The example lane uses the bidirectional terminals
FPP PRI and FPP SEC only as input and output, respectively; their
superfluous drivers and the output enable signal FPP PRI EN are
also grayed out in the figure. This lane has five paths: (1) FPP PRI
→ FPP SEC, (2) FPP PRI → FPP TO SIDE, (3) FPP PRI →
FPP TO CORE, (4) FPP FROM CORE → FPP SEC, and (5)
FPP FROM CORE → FPP TO SIDE. Destinations FPP SEC and
FPP TO SIDE both serve two paths, and therefore are both
equipped with a selection multiplexer, controlled by the inverted
version of configuration register bit BYPASS. Paths (1) and (2) both
contain a single pipeline register without bypass; the other three
paths have no pipelines. All three destinations have a lock-up latch
as mandatory hold element.

The example in Figure 1 corresponds to the upward parallel test
access mechanism (PTAM) in a 3D-SIC in [12–15, 27], described
in the context of P1838’s FPP as conventional parallel port (CPP)
in [20]. The only (minor) difference with this prior PTAM imple-
mentation is the addition of a lock-up latch on the FPP TO CORE
output terminal, to make also that output robust for clock-skew.

A channel is a set of identical lanes, controlled by the same config-
uration bits, and, in case the lane is registered, serviced by the same
clock lane. An FPP consists of one or more channels. It is per-
mitted that multiple channels share configuration bits and/or clock
signals.

4 Google’s Protocol Buffers
Protocol Buffers (PBs) is “a flexible, efficient, automated mecha-
nism for serializing structured data – think XML, but smaller, faster,
and simpler” [28]. Google has developed PBs as internal lingua
franca for use in communication protocols and data storage in the
context of its distributed data centers [29]. In 2008, Google made
PBs available to the public under an open-source license.

In PBs, data is structured in messages. A message holds one or
more fields. Each field consists of a name-value tuple. Names
are user-defined key words, while value types can be integer or
floating-point numbers, booleans, strings, raw bytes, or other PBs
message types, allowing hierachically-structured data. Fields are
specified to be required (= 1×), optional (0× or 1×), or repeated
(≥ 0×).

Each field is assigned a tag number unique within its message. This
allows to extend an existing PBs data structure with new fields,
without breaking backwards-compatibility of existing code. Ex-
isting fields keep their existing tag number, while new fields get
assigned a fresh, so-far unused tag number, unique within the mes-
sage. Application programs based on older versions of the data
structure definition without these new extensions will simply ignore
the new fields when parsing data.

Messages are defined in a .proto text file. That .proto file
serves as input for Google’s PBs Compiler, which generates source
code for data access classes, containing routines specific to the
data format, as well as methods to parse the entire data struc-
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ture to/from ASCII or binary data streams. The PBs Compiler is
platform-neutral, i.e., it runs on Linux, MacOS, and Windows. The
PBs Compiler is also language-neutral: version 2 (proto2) gener-
ates source code in the programming languages C++, Java, and
Python, while version 3 (proto3) in addition supports C#, Java Lite,
JavaScript, Objective-C, and Ruby [28].

Practical usage of PBs is as follows. A (possibly hierarchical) struc-
tured data format is defined through a .proto file. On a compute
platform of choice, the PBs Compiler generates numerous test data
access routines in a programming language of choice. These rou-
tines can be used by a programmer to implement application soft-
ware that can read, write, and manipulate data in the defined data
structure, either in human-readable text format or in more-compact
binary format. Based on the same .proto source file, more appli-
cations can be written, possibly on another platform and/or in an-
other programming language, all capable of handling and exchang-
ing the same data files.

In the context of this paper, we used PBs to define an FPP specifica-
tion language and demonstrate its usage by developing example ap-
plication software for it. The corresponding software flow is shown
in Figure 2. We first developed an example FPP specification in a
self-defined .fpp file format, respecting the constraints and limi-
tations imposed by PBs. Subsequently, in a straightforward, almost
mechanic manner, we derived the corresponding FPP language def-
inition in the fpp.proto file.1 fpp.proto then served as input
source file for the PBs Compiler to generate data access routines
on a platform and in a programming language of choice; we chose
Linux and C++. With these automatically generated routines, we
built as demonstrator application a software tool that reads an FPP
specification in the .fpp format and automatically generates a cor-
responding Verilog gate-level netlist [30].

Figure 2: Flow for the definition of an FPP specification language and de-
velopment of an FPP spec-to-netlist generator as demonstrator application.

5 FPP Specification Language Definition
Figure 3 shows the definition of our FPP specification language in
PBs proto2. An FPP has a name and consists of an optional config-
uration register, and a number of non-registered lanes and channels
(Lines 03–06). 1

The FPP specification language has its data structured in messages
that consist of fields which are either strings (Lines 03, 09, 16, 19,
48, 62, 71, and 74), integers (Lines 12, 49, and 73), dedicated enu-
merated types (Lines 40–46, 77–82, and 83–88), or other messages.
Message fields have tag numbers starting with ‘=1’, while enumer-

ated data types have tag numbers starting with ‘=0’.

01: syntax = “proto2”;
02: message FppDef {
03: required string name =1;
04: optional ConfigRegDef configReg =2;
05: repeated NonRegLaneDef nonRegLane=3;
06: repeated ChannelDef channel =4;
07: }
08: message NetDef {
09: repeated string net =1;
10: }
11: message ConfigRegDef {
12: required int32 bitCount =1;
13: repeated ConfigBitDef configBit =2;
14: }
15: message ConfigBitDef {
16: required string bit =1;
17: }
18: message NonRegLaneDef {
19: required string name =1;
20: repeated NonRegDestDef destination =2;
21: optional NetDef pri =3;
22: optional NetDef sec =4;
23: optional NetDef toSide =5;
24: optional NetDef fromSide =6;
25: optional NetDef toCore =7;
26: optional NetDef fromCore =8;
27: optional NetDef clkOut =9;
28: optional ConfigBitDef priOutEn =10;
29: optional ConfigBitDef secOutEn =11;
30: }
31: message NonRegDestDef {
32: repeated ConfigBitDef muxCtrl =1;
33: required NonRegDestList port =2;
34: repeated NonRegPathDef path =3;
35: }
36: message NonRegPathDef {
37: optional string muxCtrlVal =1;
38: required SourceList source =2;
39: }
40: enum NonRegDestList {
41: FPP PRI =0;
42: FPP SEC =1;
43: FPP TO SIDE =2;
44: FPP TO CORE =4;

45: FPP CLK OUT =6;
46: }
47: message ChannelDef {
48: required string name =1;
49: required int32 regLaneCount =2;
50: required RegLaneDef regLane =3;
51: optional NetDef clkIn =4;
52: optional NetDef pri =5;
53: optional NetDef sec =6;
54: optional NetDef toSide =7;
55: optional NetDef fromSide =8;
56: optional NetDef toCore =9;
57: optional NetDef fromCore =10;
58: optional ConfigBitDef priOutEn =11;
59: optional ConfigBitDef secOutEn =12;
60: }
61: message RegLaneDef {
62: required string name =1;
63: repeated RegDestDef destination =2;
64: }
65: message RegDestDef {
66: repeated ConfigBitDef muxCtrl =1;
67: required RegDestList port =2;
68: repeated RegPathDef path =3;
69: }
70: message RegPathDef {
71: optional string muxCtrlVal =1;
72: required SourceList source =2;
73: optional int32 plRegs =3;
74: optional string plTriggerEdges =4;
75: optional ConfigBitDef plBypass =5;
76: }
77: enum SourceList {
78: FPP PRI =0;
79: FPP SEC =1;
80: FPP FROM SIDE =3;
81: FPP FROM CORE =5;
82: }
83: enum RegDestList {
84: FPP PRI =0;
85: FPP SEC =1;
86: FPP TO SIDE =2;
87: FPP TO CORE =4;
88: }

Figure 3: Definition of the FPP specification language in PBs proto2 format.

There is a strong need to be able to express arrays in the FPP spec-
ification language. Unfortunately, PBs does not support arrays na-
tively. We have circumvented this issue by expressing array con-
structs in string types. Arrays of interconnect nets (a.k.a. buses) can
be expressed as a string that contains the net name, followed by an
array range (Line 08-10); e.g., “bus[7:0]”. We also allow forking,
merging, and reversing of buses, e.g., “bus1[7:4] + bus2[0:3]”. In
Line 74, we specify a string plTriggerEdges to express the polarity
of the trigger edges (positive or negative) of the pipeline registers
in a path as a sequence of “P” and “N” characters, one for each
subsequent pipeline stage.

Application software can implement the following semantic checks
for parsing an .fpp file.

• A (non-registered or registered) lane has at least one destina-
tion (Lines 20 and 63).

• Every destination of a (non-registered or registered) lane has
a number of paths between 1 and s, where s is the size of
the enumerated type SourceList (Line 77). FPP PRI and
FPP SEC can be both source and destination, but not simul-

1If our FPP specification language .fpp were to be adopted as standard, it is the fpp.proto file that should be released as standardized defintion of the language.
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taneously for the same path.

• For each destination d of a (non-registered or registered) lane,
the number of multiplexer select bits muxCtrl (Lines 32 and
66) shall at least be �log2(p)�, where p is the number of paths
(Lines 34 and 68) corresponding to destination d.

• The string muxCtrlValue (Lines 37 and 71) shall consist ex-
clusively of “0” and “1” characters and shall in length be
equal to the number of configuration bits muxCtrl (Lines 32
and 66) of the destination in question.

• In ConfigRegDef, the number of ConfigBits (Line 13) shall
equal bitCount (Line 12).

• The muxCtrl bits used in NonRegDestDef (Line 37) and
RegDestDef (Line 66) shall be defined as configBits in Con-
figRegDef (Line 13).

• The nets pri, sec, toSide, fromSide, toCore, and fromCore
(Lines 52–57) of a ChannelDef shall describe arrays of nets,
each with width regLaneCount (Line 49).

• The integer plRegs (Line 73) shall be non-negative.

• The string plTriggerEdges (Line 74) shall consist exclusively
of “P” and “N” characters and shall in length be equal to
plRegs (Line 73).

6 FPP Specification Language Example
In this section, we provide a realistic, illustrative example of an
FPP specification and application software that utilizes that spec-
ification. For the example FPP, we have selected the Test@First
architecture, in which PTAMs on their way up into the stack can be
configured to either (1) test the die’s core circuitry or (2) bypass it,
and subsequently either (1) continue to travel upward into the die
stack via its secondary interface to the next die, or (2) turn around

down via the primary interface to the stack’s external I/Os (thereby
possibly passing previous dies) [12–15, 20, 27].2 The FPP example
is depicted in Figure 4. It contains three types of lanes: a channel
with eight ‘up’ lanes, a channel with eight ‘down’ lanes, and a non-
registered lane that serves as clock lane to the two abovementioned
channels. Note that the ‘up’ lanes are identical to the registered lane
featured in Figure 1. The configuration signals come from a Con-
figuration Register that in turn can be controlled as test data register
from the TAP [21].

Figure 4: FPP example following the Test@First FPP architecture.

Figure 5 gives the full specification of the Test@First FPP architec-
ture in the PBs .fpp format defined in the previous section. Note
that Figures 1, 4, and 5 use the same color coding for the FPP ter-
minals. The full FPP specification in taf.fpp for this realistic
FPP consists of only 94 lines.

In this FPP example, the bidirectional terminals FPP PRI and
FPP SEC are used unidirectionally only. Consequently, the out-
put enable signals SEC UP OE and PRI DOWN OE can be always
‘on’. Modification of taf.fpp in Lines 068 and 093 to respec-
tively

068: secOutEn {bit: “1”}
093: priOutEn {bit: “1”}

001: name: “FPP TEST AT FIRST”

002: configReg {
003: bitCount: 4
004: configBit {bit: “BYPASS”}
005: configBit {bit: “TURN”}
006: configBit {bit: “SEC UP OE”}
007: configBit {bit: “PRI DOWN OE”}
008: } //end configReg

009: nonRegLane {
010: name: “ClkLane”
011: destination {
012: port: FPP CLK OUT
013: path {source: FPP PRI}
014: }
015: destination {
016: port: FPP SEC
019: path {source: FPP PRI}
018: }
019: pri {net: “TestClock”}
020: sec {net: “TestClock UP”}
021: clkOut {net: “FppClock”}
022: secOutEn {bit: “SEC UP OE”}
023: } // end nonRegLane ClkLane

024: channel {
025: name: “UpChannel”
026: regLaneCount: 8

027: regLane {
028: name: “UpLane”

029: destination {
030: port: FPP TO CORE
031: path {source: FPP PRI}
032: }

033: destination {
034: muxCtrl: “!BYPASS”
035: port FPP SEC
035: path {
037: muxCtrlVal: “0”
038: source: FPP PRI
039: plRegs: 1
040: plTriggerEdges: “P”
041: }
042: path {
043: muxCtrlVal: “1”
044: source: FPP FROM CORE
045: }
046: }

047: destination {
048: muxCtrl: “!BYPASS”
049: port: FPP TO SIDE
050: path {
051: muxCtrlVal: “0”
052: source: FPP PRI
053: plRegs: 1
054: plTriggerEdges: “P”
055: }
056: path {
057: muxCtrlVal: “1”
058: source: FPP FROM CORE
059: }
060: }
061: }

062: clkIn {net: “FppClock”}
063: pri {net: “PRI UP[7:0]”}
064: sec {net: “SEC UP[7:0]”}
065: toSide {net: “LaneConn[7:0]”}
066: toCore {net: “TO CORE[7:0]”}
067: fromCore {net: “FROM CORE[7:0]”}
068: secOutEn {bit: “SEC UP OE”}

069: } // end channel UpChannel

070: channel {
071: name: “DownChannel”
072: regLaneCount: 8
073: regLane {
074: name: “DownLane”
075: destination {
076: muxCtrl: “!TURN”
077: port: FPP PRI
078: path {
079: muxCtrlVal: “0”
080: source: FPP FROM SIDE
081: }
082: path {
083: muxCtrlVal: “1”
084: source: FPP SEC
085: plRegs: 1
086: plTriggerEdges: “P”
087: } }
088: }
089: clkIn {net: “FppClock”}
090: pri {net: “PRI DOWN[7:0]”}
091: sec {net: “SEC DOWN[7:0]”}
092: fromSide {net: “LaneConn[7:0]”}
093: priOutEn {bit: “PRI DOWN OE”}
094: } // end channel DownChannel

Figure 5: Specification taf.fpp of the Test@First architecture as P1838 FPP.

2In the similar Test@Last architecture, the PTAM first travels up into the die stack, and the dies’ DfT resources such as the DWR and 2D core-internal scan chains are
accessed for test only on the PTAM’s way down the stack to the external stack I/Os. Test@First and Test@Last dies can be freely combined in a single-tower die stack.
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will tie these output-enable signals to logic ‘1’ and allows the two
corresponding configuration bits to be removed from the Configu-
ration Register (Lines 006 and 007).

Following the flow in Figure 2, we have built a demonstrator soft-
ware tool that parses FPP specifications in .fpp format, performs
various semantic checks (as outlined in Section 5), and subse-
quently generates a corresponding Verilog gate-level netlist [30]
for the specified FPP. We have used this demonstrator tool on the
taf.fpp specification of Figure 5. The schematic view of the
generated netlist in Cadence’ Genus [31] is shown in Figure 6.

Figure 6: Schematic view of the generated Verilog netlist of the FPP example.

7 Conclusion
This paper described the FPP and its role in standard-under-
development IEEE Std P1838. The paper proposed an FPP spec-
ification language (.fpp) using Google’s Protocol Buffers. We
provided the fpp.proto definition of the language, which could
be released as part of the standard. With this definition, PB Com-
piler can automatically generate data access routines for multiple
compute platforms and programming languages. These routines
serve as building blocks in the construction of application software.
As demonstrator, we made an FPP-to-Verilog generator tool. The
paper closes with a realistic example FPP, for which we used the
demonstrator software tool.
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