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A model for the diffusion and precipitation of antimony in highly doped 
8 layers in silicon 

C. van Opdorp, L. J. van IJzendoorn,a’ C. W. Fredriksz, and D. J. Gravesteijnb) 
PhiI& Research Laboratories, 5600 JA Eindhoven, Tie Netherlands 

(Received 20 April 1992; accepted for publication 17 July 1992) 

Antimony S-doping layers were made by deposition of Sb on monocrystalline Si, followed by the 
deposition of amorphous Si and a final solid-phase-epitaxy treatment at 620 “C. After 
post-annealing at temperatures between 625 and 725 “C, Sb precipitates with a diameter of 
several nm are observed in the S plane with the aid of transmission electron microscopy. Using 
channeling Rutherford Backscattering Spectrometry the increase of the precipitated fraction 
with time was determined from the minimum-yield signal. The results are interpreted using a 
model for the generation of Sb nuclei which grow subsequently due to lateral diffusion of Sb 
atoms in the 6 plane, followed by incorporation into the nucleus. The generation of the nuclei 
appears to take place by way of two parallel processes: (i) fast, simultaneous generation of a 
limited number of nuclei at low-energetic sites in the S plane, with subsequent 
diffusion-controlled growth, and (ii) slow, continuous generation of a larger number of nuclei at 
random sites in the S plane, with subsequent incorporation-controlled growth. The Sb diffusion 
at the extremely high concentrations under consideration is very fast and concentration 
dependent, which can be explained by the model of vacancy-percolation diffusion of Mathiot and 
Pfister [J. Appl. Phys. 66,970 ( 1989)]. The activation energy for incorporation of Sb atoms into 
liquid precipitates appears to be considerably lower than for incorporation into solid ones. 

1. INTRODUCTION 

Impurity doping in a single atomic plane of semicon- 
ductor material has a large number of potential device ap- 
plications; see, e.g., Ref. 1. A well-known example is the 
antimony &doping layer in silicon. ‘-*s In a previous pa- 
perKh we reported on the thermal stability of such layers 
which were fabricated by deposition of Sb on a monocrys- 
talline Si substrate, followed by the deposition of amor- 
phous Si and a final solid-phase-epitaxy (SPE) treatment 
at 620 “C. These layers, which contained 3.1 x 1014 Sb at- 
oms per cm’ (approximately 4 monolayer), exhibited pre- 
cipitation under post anmaling. This behavior is of practi- 
cal interest with a view to device processing steps 
subsequent to the realization of the S layer. 

The results of Ref. 16 are briefly summarized in this 
paragraph. Using cross-sectional transmission electron mi- 
croscopy (XTE.M) we showed that Sb precipitation took 
place in spheres with a diameter of several nm, situated in 
the S-doping plane. The 6 layers had been investigated 
further syVstematically with Rutherford backscattering 
spectrometry (RBS) before and after the successive an- 
nealing steps at temperatures between 625 and 725 “C. An 
example of a mudom and a channeled RBS spectrum is 
given in Fig. 1. The number of Sb atoms per unit of area in 
the &doping layer as evaluated from the Sb peak area in 
the random spectrum. Channeled RBS spectra were mea- 
sured by aligning the incoming ion beam with the [lOO] 
a&s of the silicon crystal. In that case Sb atoms located at 
substitutional sites are shielded from the incoming ion 

“- - 
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beam. Thus, from the Sb peak area in the channeled spec- 
trum one can calculate the number of Sb atoms at nonsub- 
stitutional sites, which was taken to be that in the precip- 
itates. Furthermore, within the RBS depth resolution of 7 
nm we found no effects of perpendicular Sb diffusion (in 
agreement with the observations for the same temperature 
range in Refs. 9 and lo), from which we concluded that 
lateral Sb diffusion within the 6 plane rather than diffusion 
away from the S plane is the dominating transport pro- 
cess.17 

Observation of Sb precipitation in supersaturated sili- 
con had already been reported by other investigators, both 
for S-layer-doped”-‘3~‘5 and three-dimensional-doped sili- 
con.‘s-“) The S layers of Refs. 11-13 and 15 were prepared 
by a method analogous to ours, while the three- 
dimensional (3D) doping regions in Refs. 18-29 were es- 
tablished by high-energetic Sb-ion implantation with sub- 
sequent annealing for removing the damage thus 
introduced. interpreting the observed dependence of the 
RBS minimum-yield signal of 6 layers on annealing time 
and temperature in terms of lateral transport followed by 
precipitation can provide more information on the under- 
lying mechanisms. We already presented rough outlines of 
a model based on such considerations in Ref. 16. In the 
present paper a more extended and quant.itative analysis 
and model will be given. 

In Refs. 30-32 it was already found that in 3D cases 
the diffusion coefficient D of Sb can be more than a decade 
higher than expected from extrapolating the model of Fair, 
Manda, and Wortman.“3 According to this model, for Sb 
concentrations C near 2 x 10” crn.-s D varies with G as 
D = D&“. Extrapolation of this equation to the concentra- 
tions in question, i.e., up to 7~ 10ZO cm--3, produced the 
mentioned considerable underestimate. Actually, it has 
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FIG. 1. Example of 2 MeV He+ RBS spectra of an as-deposited Sb 
d-doping layer, measured with a scattering angle of 1W’. The integrated 
random Sb yield corresponds to 3.1 X lOI atoms per cm?. (From Ref. 
16.1 

been reported.3y30131y34 that D in this C range can be de- 
scribed phenomenologically by D=DoCs with variable s. 
At 1050 “C, for example, s increases from 1.7 to 3.6 when 
C increases from 1 X 10” to 3 X 10’” cme3. 

A provisional estimate of D in our S layers also points 
to very high values. This estimate follows from equating 
the time t after which the RBS minimum-yield signal has 
become practically constant (indicating the end of the pre- 
cipitation) with $0. Here r. represents the extent of the 
region which has been depleted of Sb atoms above the 
solid-solubility limit, for which extent we take half the 
average mutual distance between the precipitates. For 
650 “C we thus found” 

D&tz4XlO-‘“/2X 10”=2~ IO-‘” cm2/s, 

whereas extrapolating Fair’s equation gives only 2.5 
x 10 ‘7 cm2/s (see Sec. V A). 

An interpretation for the observed strong increase of D 
with C in 3D has been given by Mathiot and Pfister35-.38 
and more recently by Larsen et al.32Y3g in terms of perco- 
lation theory. Just like Fair, Manda, and Wortman,33 for 
not too high C values these authors start from considering 
the diffusing species as partially dissociating complexes of 
an impurity atom and a (charged) lattice vacancy.““” 
They remark, however, that this concept of basically non- 
interacting complexes becomes invalid at very high impu- 
rity concentrations C. It is claimed that an adequate de- 
scription of the diffusion of various impurities in Si is 
possible by introducing a “percolation diffisivity” Z&r,. 
This D,,,, starts to play a decisive role rather abruptly 
when C exceeds the “percolation threshold’” C,,, above 
which the fraction of the impurities which occupy tlfth- 
neighboring sites in the Si lattice passes a certain critical 
value. Above this critical value there is a finite probability 
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for the existence of an interconnected fifth-neighbor impu- 
rity network extending throughout the whole lattice. The 
authors argue that impurity-vacancy complexes in this net- 
work can completely dissociate quite easily then, the va- 
cancy thus being able to percolate practically freely 
through the whole network, This easy diffusion path for 
vacancies opens up an equally easy diffusion path for the 
impurities themselves by way of the usual interchange of 
sites with the vacancies, without forming now, however, 
stable complexes. Moreover, above the percolation thresh- 
old the ditFusivity is further increased by a decrease of the 
formation enthalpy of the vacancies, again due to fifth- 
neighbor interactions. 

In our view t.his “vacancy-percolation model” provides 
as yet also the best available conceptual framework for 
comprehending the very fast 2D dithision of a number of 
impurities in Si at very high concentrations. Adopting the 
main lines of the 3D model for the Sb S layers can explain 
characteristic features of our RBS data. This does not im- 
ply, however, that we are endorsing quantitative claims 
like those made in Refs. 32 and 35-39. These claims and 
our objections will be phrased in Sec. V A. 

Apart from the phenomenon of very fast diffusion, the 
analysis of our RBS data in the present paper indicates that 
two types of precipitates develop in the S plane. These have 
significantly different sizes and thermal activation energies 
of growth rates. First, there are the precipitates with 
roughly identical diameters which are visible on the TEM 
pictures. All of them are already present directly after the 
SPE treatment; during the subsequent annealing, diffusion- 
controlled growth of these precipitates occurs. Second, 
there is strong evidence that continuous nucleation of still 
another type of precipitates is taking place simultaneously. 
These remain supposedly too small here [diameter < 1 
nm) for unambiguous observation by TEM. Due to these 
small sizes the Sb transport to the latter type of precipitates 
is incorporation controlled. 

The organization of this paper is as follows. In Sec. II 
the preparation procedures and the full results of the TEM 
and RBS measurements are given. Section III presents our 
model, which is applied to the experimental data in Sec. 
IV. The discussion is given in Sec. V, while Sec. VI pre- 
sents the conclusions, 

II. EXPERIMENTAL PROCEDURES AND RESULTS 

Sb-doped 6 layers have been grown on ( lOO)-oriented 
4-in.-diam. Si substrdes of p-type (p > 10” 0 cm) floating- 
zone material. In a first step the residual oxide on the 
substrate was thermally evaporated in situ. Then a lOO-nm- 
thick Si buffer layer was grown under standard conditions 
at a substrate temperature of 700 “C, using the technique of 
molecular beam epitaxy (MBE) . Details of the MBE sys- 
tem have been reported elsewhere.“’ Subsequently, a layer 
of 3.1 X 1014 Sb-atoms per cm2 was deposited from a Knud- 
sen cell. [A full monolayer on a (100) Si plane contains 
6.78 x 10’” Sb * t -d oms per cm”.] After cooling down to room 
temperature, a 50-nm amorphous Si layer was deposited. 
Finally, this top layer was crystallized epitaxially by ramp- 
ing up the temperature to 620 “C in approximately 15 min. 

van Opdorp ef a/. 4048 



FIG. 2, Cmss-sectb3nel TEM micrographs of an Sh &doping layer after 
different annealing times t at 650°C’; (a) t=O s, (h) t=900 s, and (c) t 
~=3600 s. 

A rmmber of samples were cut from one of the above 
wafers, after which annealing experiments were carried out 
in the target chamber of the KBS facility. Details of the 
heating method, the temperature measurements and the 
RBS technique, as well as the results, can be found in Ref. 
16. Channeling RES spectra were measured while the sam- 
ples were at ambient temperature, after annealing at 625, 
650, 675, 700, and 725 “C. The depth resolution was lim- 
ited by energy straggling to approltimately 7 nm. TEM 
pictures were taken with a Philips Ehl NOT microscope 
using 120-keV electrons. Cross-sectional ( 110) images 
were taken by diffraction on the (400) planes in bright 
fir3l.d. 

Figure 2(a) shows the TEM image of an as-deposited 
sample. Precipitates in the &doping plane already show up 
here. Figures 2(b) and 2(c) show the TEM cross sections 
after annealing at 650 “C for 900 and 3600 s, respectively. 
Corresponding plan-view pictures revealed a practically 
time-independent density of precipitates of roughly 6 
x 10”’ cm-.‘. High-resolution TEM pictures revealed that 
the precipitates are monocrystslline, but have random ori- 
entations with respect to the Si la&e. From x-ray reflec- 
tion measurements on a 0.3 monolayer Sb S-doped sample 
the thickness h of the 6 layers was found to be h zz 1.3 nm.43 
From the random RBS spectra [cf. Fig. 1) it was con- 
cludt& that no Sb wa+q lost during the experiments and that 
all Sb remains in the S plane. 

The fraction rv of the Sb atoms in the precipitates was 
calculated as follows. The minimum yield ,Ymin( imp) of an 
impurity in a given host lattice is defined as the ratio of the 
yields in the channeled and in a random RBS spectrum. 
The same ratio measured for the host atoms in a sample 
without impurities is denoted by ,~rnit, (host). A first-order 
estimate of the substitutiorml fraction S of the impurity is 
given then byM 

0.0 1 I I t I I I I 1 I 
IO’ 102 103 

t(s) - 

FIG. 3. Semilogarithmic plot of the precipitated fraction W of Sb atoms 
vs the annealing time r, for different annealing temperatures. The values of 
W were calculated from Eq. (2). The W values for t=O s are sitoat 
within the hatched interval. 

s= l--Xmin(imP) 
l-,y,,i,,(host) ’ 

Equating W to the fraction of nonsubstitutional Sb atoms, 
1 -S, we find 

W_Xmin(Sb)--Xn~in(Si) 
l-,Ymin(Si) * 

Our W values were calculated from this equation using 
,vmin(Si) cO.03.“’ 

A plot of W vs In t for the different annealing temper- 
atures is given in Fig. 3. In such a plot the W values for 
t=O cannot be represented; these are included in the 
double-linear plots of Fig. 4. In these plots we have omitted 
the data points of the longest (or two longest) annealing 
times. The suggestive curves drawn in Fig. 4 will come up 
for discussion in the next section. 

Ill. THE PRECIPITATION MODEL 

A. Evidence for two parallel precipitation processes 

When the data points of each series in Fig. 4 are con- 
nected with straight-line elements, a salient feature in all of 
them-except the 625 “C series-is the occurrence of a 
kink near the second or third point. We have found similar 
kinks for samples cut from Sb S layers containing 5.4 x lo’* 
Sb atoms per cm’. The persistence of this feature makes the 
existence plausible of a similar kink in the 625 “C curve of 
Fig. 4, presumably between the second and third point. 
Since W cannot exceed unity, the general trend for the 
highest points is a concave shape. The three lowest points 
of the 650 and 675 “C series of Fig. 4 also reveal a concave 
interval; again it is plausible that. this is the general initial 
shape for all five samples. 

The overall general shape of the W-t curve thus con- 
sists of two concave intervals, I and II, separated by a kink. 
Such a shape strongly suggests an assignment to two par- 
allel precipitation processes. This is illustrated schemati- 

4049 J. Appl. Phys., Vol. 72, No. 9, 1 November 1992 van Opdorp et a/. 4049 



06 
0.5 
0.4 
0.3 

T 

0.2 3 
0.1 
0.0 

0 1000 2000 3000 

t(s) - t(s) - 
625°C 650°C 

0.6 
0.5 
0.4 
0,3 

i-/--1 

T 

02 3 
0.1 
0.0 

0 250 500 750 1000 
t (S) - 

675% 

0.6 
05 
0.4 
0.3 
0.2 

0,l 
0.0 m  

0 500 1000 I.500 2000 

t 

0.6 
0.5 
0.4 
0.3 

3 0.2 
0.1 
0.0 

0 10 20 30 
t(s) - 

725°C 

FIG. 4. The data of Fig. 3, including the data for t=O s, in double-linear 
plots. The data points of the (two) longest annealing time(s) have been 
omitted here. The suggestive curves serve merely as a guide to facilitate 
the discussion in the first paragraph of Sec. III A, and have no quantita- 
tive meaning. 

tally in Fig. 5: a concave curve W I[ t> saturating roughly at 
W~0.3,, and a slower-starting sigmoid curve W ,i(t) satu- 
rating at a  higher W  value. The idea of two different par- 
allel processes is further corroborated by the appearance of 

t 
- wrlrr 1 0.6 - . . . 

W I1 

W  

/ I .’ 

0.0 0 

t- 

FIG. 5. Schematic II-t curve representative for the general shape of the 
data of Fig. 3 (solid line). The presence of two separate concave intervals, 
I and II, suggests the assignment of the overall precipitation Wiin(“) to 
two different parallel processes (chain lines). Note that W ’r,,,(t)f U/,(t) 
+ W ,,(t); cf. Eq. (271. 
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different thermal activation energies in the intervals I and 
II, as will be demonstrated now. 

A possible approach for studying activation energies 
consists in making horizontal cross sections through the 
c.urves of Fig. 3  or 4; the time intervals needed for estab- 
lishing a given value of W  at the five different temperatures 
are plotted then in an Arrhenius plot of ln( l/t) vs l/T. 
The relevance of such an approach is demonstrated most 
easily for a first-order process with a single activation en- 
ergy E. In such a process the fraction of non-precipitated 
material I ( ?C/Ci,, where Ci, is the initial value of C) 
decreases as dI/dt= -I/r. Here r is a time constant 
which can be expressed in the parameters of the underlying 
physical mechanisms, and which generally depends on T  
as r=~,~ exp( E/k?‘) [cf. Eq. ( 35)11 where rjr is a constant 
and k is the Boltzmann constant. Solving the differential 
equation for r yields for FE 

W=l-I=l-exp(-t/r). (3) 

Thus for constant W  one has ln( l/t) =B-E/kT, with the 
constant B given by 

BE-ln[rz~ln(l- W)-‘1. 

In more complex cases the dependence of W o n  t may still 
be given by a function of t/r with a single r, but this 
function W( t/r) will be more complicated than that of Eq. 
(3); cf. Eqs. (9), (18), and (24). Knowledge of the par- 
ticular function in question is, however, not necessary for 
evaluating E: provided that the dependence of r on T is 
still given by an exponential expression like that directly 
preceding Eq. (3), the ln( lit) -- l/T plots for different 
W-values will still produce parallel straight lines having a 
slope corresponding to the same, single E value. One needs 
to know the functional form W(t/r) only for possible eval- 
uation of the constant r:+ We  shall start here by making 
the suggested ln( l/t) -l/T plots; the derivation of the 
pertinent theoretical function W( t/r) will be postponed to 
Sec. III B. 

Our ln( l/t) - l/T plots for nine values of W  are pre- 
sented in Fig. 6. The t values were obtained from Fig. 3; 
only for the low W  values that gave no point of intersection 
there, Fig. 4  was used instead. At first sight the results are 
not encouraging. Though the c.urves for W ’> 0.25 (the type 
II interval) are nearly parallel, as anticipated, they are not 
straight. The curves for W <  0.18 (the type I interval) are 
even far from parallel. This difference between the two 
groups of curves supports the idea of two different precip- 
itation mechanisms dominating below and above the kinks 
in the curves of Fig. 4. By elaborating this idea one can 
bring more order in the curves of Fig. 6  and grasp their 
physical sense. 

It will be shown that the type I intervals of the curves 
in Fig. 4  are attributable to diffusion-controlled growth of 
the relatively large precipitates with approximately identi- 
cal diameters visible on the TEM pictures of Fig. 2. 
Though the larger precipitates exhibit a  lens shape, in our 
simplified model they will be considered as spherical. The 
type II intervals will be attributed tentatively to much 
smaller spheres, nof visible on the TEM pictures, with 
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FIG. 6. Arrhenius plots for the l/r values obtained from horizontal cross 
sections through Figs. 3 and 4, for various values of W . The W=O. 14 plot 
is very inaccurate. 

varying diameters and much higher density. In order to 
allow such attributions, we shall need the preliminary the- 
orctical elaborations of the next sections. On the other 
hand, the TEM pictures do not allow quantitative estimat- 
ing of the amount of Sb in the larger spheres and conse- 
quently equally not of the division of W  over the two types 
of precipitates. 

B. Sequential stages in precipitation 

When considering a single precipitation process (i.e., 
without any parallel process ) , in the course of time one can 
generally distinguish a nucleation and a growth stage. In 
conformity with the terminology for precipitation in 3D, in 
our 2D case we shall make use of the terms heterogeneous 
and homogeneous nucleation with a duly adapted sense. 
“Heterogeneous nucleation” will denote here the forma- 
tion of nuclei of Sb atoms at low-energetic sites (not fur- 
ther specified here) in the 6 plane; ‘homogeneous nucle- 
ation” will refer to nucleation at numerous random non- 
low-energetic lattice sites in the same 6 plane, due to 
statistical density fluctuations of the Sb atoms occasionally 
producing supercritical nuclei. 

Once the radius R of a nucleus has managed to surpass 
a certain critical value R, the growth stage proper starts 
(for R <R, there is still a  large chance of dissolution of the 
subcritic.al nucleus; see, e.g., Refs. 45-47.) During this 
growth stage two processes are acting in series: transport of 
Sb atoms by diffusion to the precipitate surface, followed 
by their incorporation into the precipitate. For sufficiently 
low values of R the incorporation process is always rate- 
limiting, since the diffusion-determining concentration gra- 
dient at the surface varies inversely with R [cf. Appendix 
B, Eq. (B’l’)]. Thus one can generally distinguish three 
subsequent stages in the development of a  given precipi- 
tate: nucleation, incorporation-controlled growth and 
diffusion-eontrolled growth. In general there may follow 
still another stage, viz. that of Ostwald ripening. During 

this final stage larger precipitates grow at the expense of 
smaller ones, which disappear eventually. This leads to a 
reduction of the number of precipitates, typically with 
many orders of magnitude, while the value of W  usually 
remains virtually invariant.“” 

In view of the foregoing, when considering now the 
collection of all precipitates resulting from a single precip- 
itation process one can distinguish two possible cases: ( 1) 
all supercritical nuclei have been formed virtually at the 
same moment, so that their number remains further con- 
stant, and (2) supercritical nuclei are being formed con- 
tinuously. The former case is usually correlated with het- 
erogeneous nucleation, where the nucleation at the low- 
energetic sites is so fast that these sites are saturated within 
a very short period. Case (2) is often, though not exclu- 
sively, ascribable to the much slower, nonsaturating homo- 
geneous nucleation. 

In Sec. IV it will be shown that the two parallel pro- 
cesses that can explain our experimental data start with 
nucleation processes of the above types ( 1) and (2). In 
order to justify these assignments, we have to firstly derive 
the mathematical formulations for the increase of W  vs t 
for the two cases separately. These functions will be de- 
noted henceforth as U’,(t) and W l(t). 

In deriving W, (t) and W,(t), the Sb diffusion perpen- 
dicular to the 6 plane will be completely neglected in view 
of the extremely small D in the undopd material outside 
the S layer. This can be justified by calculating the pene- 
tration depth x* for perpendicular diffusion in the case that 
D can be described by D= D,-,C”. Here x* is defined as the 
depth at which the Sb concentration C in the originally 
undoped material has increased to an arbitrarily chosen 
value. W ithout actually solving the pertinent one- 
dimensional partial differential equation for the diffusion, it 
can be shown rather easily that x* increases with t as a 
certain function of t”(s+“). Consequently, for our very 
high values of s(szz25; see Sec. IV A), x* is expected to 
generally increase only very slowly with t. 

1. Type (1): The growth of simultaneously generated 
nuclei 

We  shall treat the incorporation- and diffusion- 
controlled cases separately. 

a. Incorporation-control ied grouth. We suppose that all 
supercritical nuclei have been generated simultaneously at 
r=O with a density n per unit of area in the 6 plane. In 
describing the ensuing incorporation-controlled growt.h we 
shall consider spherical precipitates that protrude rela- 
tively far beyond the extremely thin 6 layer. We  denote the 
sphere radius by R and the concentration of Sb atoms per 
unit of volume in the 6 layer by C, with the initial value 
Ci,. In the direction perpendicular to the S plane we pos- 
tulate a rectangular-shaped Sb-concentration profile with 
the invariant thickness h. 

For a given precipitate the incorporation of Sb atoms 
takes place over a r ing-shaped surface with area 2nRh. 
Assuming a first-order interfacial reaction process, the 
number of Sb atoms which is incorporated per unit of time 
into the precipitate equals 
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2iiRkh(G-G,) -2rRkhG. 

Here G,? is the solid-solubility limit and k is the surface- 
reac.tion-rate coefficient with the dimension of velocity, and 
of the form 

k = k,d exp( - Esurf /kT). (4) 

After crossing the ring-shaped surface, the Sb atoms 
will rearrange themselves over the precipitate, trying to 
maintain a spherical surface of minimum free energy. The 
fast self-diffusion in metallic Sb (see Sec. V A) favors fast 
rearranging. In addition to this, however, a spherical shape 
requires easy displaceability of Si atoms adjoining the 
whole precipitate surface. The vacancies enabling this dis- 
placement are mainly supplied by the Cs layer: wit.hin this 
layer both the concentration and the diffusion coefficient of 
negatively charged vacancies are very high (cf. the para- 
graph summarizing the vacancy-percolation theory in Sec. 
I). Fast transport of vacancies from the ring-shaped sur- 
face to other parts of the prec.ipitate surface may take place 
through the (liquid) bulk of the precipitate. A possible 
alternative vacancy-supply road is a very thin Si shell di- 
rectly adjoining the precipitat.e surface. An n-type inver- 
sion layer may exist here between the metallic Sb precipi- 
tate and the p-type Si. In such a layer-just as in the 6 
layer, though in a lesser degree-the equilibrium concen- 
t.rat.ion of negative vacancies is greatly enhanced with re- 
spect to the surrounding p-type Si. 

The fact that the larger precipitates in Fig. 2 (c) exhibit 
a lens shape rather than a spherical one might indicate that 
the rearrangement of Sb atoms cannot entirely keep pace 
with their supply. Assuming nevertheless a spherical shape 
for all precipitates, the incorporation-controlled rate of 
volume growth of a sphere is given by 

(5) 

where L’ is the atomic volume of Sb. Integrating the first as 
well as the second of Eqs. (5), combining the results, and 
making use of R(0) =R,sO [which is allowed for all 
R(t)) R,], yields for the time dependence of the sphere 
volume: 

Y(t) =; R3(t) z4+ ( 1 C(f) dt’)3’2. (6) ukh 

Substituting here C(t) = Ci,[ 1 - IV: (t)], where the lower 
index 1 of lr”; refers to the type ( 1) nucleation process and 
its upper index i to the incorporation-controlled growth 
regime, this becomes 

4,Tr 4r 
F’(t) =- R”(t) =- 

3 3 i J 
LJkhGi” t [1-W‘&‘)]dt’ 

0 
(7) 

Thus we obtain for Wf (t) : 

a 2 x 
“.- 
3 

0.5 -’ “... 

II I I t I I I I I 
0.0 1 .o 2.0 

VT,, or t/Q -----w 

FIG. 7. The incorporation-controlled growth stage of precipitates: theo- 
retical curves of the precipitated Sb fractions &Vi  and Wrl vs the normal- 
ized annealing time. The lower index refers to either of the following 
nucleation processes: ( 11 simultaneous (heterogeneous) generation of 
nuclei--see Eqs. (9)-( 11); (2) continuous (homogeneous) generation of 
nuclei-see Eqs. (24)-(26). 

tiw  = nF(t) 47r 
-z3 n/$/2(&Cin)1/2 L,hG 

in 

x 
This can be rewritten in the dimensionless form: 

w$.5y) = (,-:-I [l-@ r’)]&t)3’22 

where ..7r is defined as 

271= t/r,, (10) 

with the time constant rE1 given by 

rn*-$ (&),g3. (11) 

The nonlinear integral equation (9) cannot be solved an- 
alytically. The result of the numerical solution obtained in 
Appendix A is shown in Fig. 7. 

b. Dz$usion-controfIed growth. When the radii R have 
become sufficiently large, the further growth of the spheres 
becomes prac.tically exclusively determined by the ditfu- 
sional supply of the Sb-atoms through the S layer. As 
stated in Sec. I, we shall adopt the vacancy-percolation 
model for describing the diffusion at our extremely high Sb 
concentrations. For the moment we follow the heuristic 
approach of describing D very roughly by 

D=D,G” (12) 

with 

DQ=DQ~ exp( -Edia/kT). (13) 

In these as well as in all our other equations the index 0 
denotes independence of G, while A denotes independence 
of ‘r. Note that D and Do have different dimensions. In Eq. 
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c.12) we shall allow high values for s in order to phenom- 
enologically represent the dramatic increase of D for 
c > qm:- 

Framing the differential equation for diffusion- 
controlled growth meets with some mathematical difficul- 
ties that arise from the presence of concentration gradients 
surrounding the spherical sinks, as opposed to the zero- 
gradient incorporation-controlled case treated above. 
These problems are handled in Appendix B. The resulting 
diffrrential equation for the precipitated fraction, which for 
the diffusion-controlled regime will be denoted by e, 
read9 

In(bB”;i)dB$ dt 
- (,-Jpp-l =I$ (14) 

In contrast with the corresponding Eq. (9) for Wi, three 
rather than a single pammeter appear in Eq. ( 14), viz. the 
power s, the dimensionless const.ant 

I=p(.),4Cexp i”x”j . 

FIG. 8. The diffusion-controlled growth stage of precipitates: theoretical 
curves of the precipitated Sb fraction tt;’ w the normalized annealing 
time, according to Eq. [ 18) with bx3.0~ IWn and for different values of 
s. The index I refers to simultaneous generation of nuclei: cf. caption of 
Fig. 7. 

b= (3/4) (ml) *f2wkC~a, 

and the time constant 

( 

S-+1 Sf 1 
‘;” 

mlD,g $, = 61j-n4, ’ 

In Eq. (lo) the quantity 

Dir, zD()C fl [ E D(J-dC faeXp ( - E&ff/kT) ] (17) 

represents the initial value of D; cf. Eq. ( 12). For whole 
values of s> 0 and for Fe(O) z-0 the solution of differential 
equation ( 14) reads 

8-I [1-(1-P;) -“]ln(b#)-ln(l-Byi) 
( 

s--l 
+ ]Fl j-‘[(l-w-f) i-l] -t/r& 

) 
(18) 

with the proviso that for s= 1 the B term in this equation 
drops out. 

All the values of the parameters on the right-hand side 
of Eq. I 15) are knowu (see Sec. II), viz. n =6 X 1O’e cme2, 
v=3.0;< lo-‘” cm-’ and K&=3.1 x 10’” cm-‘, which 
yields b = 3.0 x lo-- ‘. Normalized My- t/rd curves for this 
value of b and for s ranging from 0 to 50 are presented in 
Fig. S. 

2. Type (2): The growth of continuously generated 
nuciei 

The classical absolute-reaction-rate theory of Turnbull 
and Fisher4’*“’ for surface-tension-controlled homogeneous 
nucleation in solids gives for the generation rate 1 of nuclei 
per unit of volume: 

Here I& is 3 C- and T-independent frequency factor, Ag 
the activation energy for transfer of atoms across the sur- 
face of a nucleus, and AG, the critical free energy for nu- 
cleation. Introducing for brevity f,, given by 

and substituting C=C,,[l- W2(r)], Eq. (19) becomes 

I(t)=I()Cin[ l-W2(t)]e (211 

For a collection of precipitates with identical radii, like 
those of the type ( 1) of Sec. III B 1, one can make a dis- 
tinct discrimination of the four stages of development, viz. 
nucleation, incorporation-controlled growth, diffusion- 
controlled growth, and Ostwald ripening. However, in the 
present. case of continuous generation and the ensuing si- 
multaneous presence of nuclei with different radii, this is 
not possible. After some time the older nuclei will already 
have passed into the diffusion-controlled stage, whereas the 
younger nuclei remain still in the incorporation-controlled 
stage. We shall restrict ourselves below to calculating 
W;(t) corresponding to the initial time interval when ull 
supercrit.ical nuclei are still in the incorporat.ion-controlled 
stage. 

Let us consider 3 particular nucleus that has become 
supercritical at the moment t=r. For calculating its vol- 
ume V( t,r) at the time t we assume that the diameters of 
the type (2) precipitate spheres remain smaller than h, 
resulting in a simple 3D problem. The following analoguc 
of Eq. (7) is then derived easily: 

V( f,T) =T [l- w;(t’)]dt’ (22) 

The expression for Wi( t) reads 

s 

t 
W’,(t)=(tlCi:,,)-’ J(T) li(t,T)dr 

iI 

Substituting here Eqs. (21) and (22 j yields the nonlinear 
double-integral equation 
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pfq.yr) = J 2 s” [l-I+;(r)] 
0 

TABLE I. Experimentally determined values of the time constants rd [see 
Eq. (16)] and -rm2 [see Eq. (26)] and of the tsvr time shifts (see Sec. 
IV A); for all temperatures s=25 [see Eq. (. IZ)]. 

II 
.F2 

X [l- Wi(f’) I& L-, 
I 

(24) 
7 

where 

3-2 Es urn, (25) 
with the time constant rX2 given by 

~a2 E [ (4~/3 ) ~~10 ( kCi, ) 3] - *‘4a 06) 
The method of numerically solving Eq. (24) is given in 

Appendix A. The result is shown in Fig. 7. The most sa- 
lient feature of the sigmoid Wi - t curve, characteristic for 
continuous nucleation, is the “incubation time” before the 
precipitation becomes appreciable,50Y5’ which time equals 
here roughly 0.4=r,,,. 

IV. APPLlCATiON OF THE MODEL 

We shall show now that the experimental curves of 
Figs. 3 and 4 can be assigned to a combination of processes 
of the types ( 1) and (2) treated in Sec. III. 

A. Type I intervals 

As can be seen from Fig. 2(a), the supposedly simul- 
taneous generation of supercritical nuclei already has taken 
place during the SPE treat.ment. Formally this can be ac- 
counted for by introducing an additional annealing- 
temperature-dependent time interval tSPE( T) preceding 
the annealing process, an “SPE-induced equivalent 
annealing-time shift.” 

We assume that at the end of the incorporation- 
controlled growth stage WI is still negligible’compared to 
its increase during the subsequent diffusion-controlled 
stage. If this is justifiable, we must be able to fit all five type 
I intervals in Fig. 4 with Eq. ( IS), and that using a single 
value for the adjustable parameters and different values for 
rJT) for each curve. Furthermore, we have to allow 
fSPE( T) as an additional adjustable parameter for each 
curve separately. Figure 8 demonstrates for that for ~~20 
the theoretical curves exhibit an analogous “quasi- 
saturation” at W~0.2 as the experimental data. The actual 
fitting will be performed in the first instance only to the 650 
and 675 “C curves, which have three points in the 
diffusion-controlled regime, whereas the others have only 
two. 

Due to the linearity in t of Eq. ( 18) one can use a 
simple direct procedure that enables making an allowance 
for the tspE time shifts. Rather than plotting the measured 
values of fl itself vs t, as was done in Fig. 4, we plot now 
the values of the function of the left-hand side of Eq. (18) 
for these @ values as the argument, again YS t. This is 
done for a number of whole values of s. It turns out then 
t.hat the three data concerned for 650 “C are lying on a 
straight line-not through the origin-for the choice s 
=25. For the same value of s the three 675 “C dam are also 
lying on a-different-straight line. The straight-line cri- 
terion is sufficiently sensitive to variations of a few units in 
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TO3 625 650 675 loo 125 

TJS) 4.02 3.25 3.94 2.03 0.568 
kP&) 54.3 25.0 32.0 24.3 1.92 
T"nlCS) 1367 911 370 56.8 1.32 

s. From the slopes of the two straight lines one obtains the 
two values of rd, and from the cut-offs from the t axes those 
of &PC These values are given in Table I. 

In view of the overdeterminedness in the foregoing fit- 
ting (six data points in total for evaluating five parame- 
ters), its success constitutes a certain verification of the 
validity of the model. This is demonstrated more clearly in 
Fig. 9, where all six points are lying on a single W- t/7;1 
curve. In this figure the t values for the two sets of data 
have been increased firstly with the corresponding tspE val- 
ues and-in accordance with Fig. S-were normalized sub- 
sequently to the corresponding rd values. 

For the three remaining samples with only two points 
in the diffusion-controlled regime we also use s = 25, which 
allows us to evaluate the two other adjustable parameters, 
rd( T) and tSPE( T), for each of them. All results are listed 
in Table I. 

After all this, we can bring more order in the set of 
three upper curves of Fig. 6. Adding the tspE( 7’)~values of 
Table I to the t values and replotting yields the broken 
curves of Fig. 10. Though these corrected type I curves are 
now mutually parallel, they are no more straight than the 
type II curves. We shall come back to this problem in the 
first paragraph of Sec. V A. 

t 0,2 

--h 3 77 

z 

0.1 

OX 

- 

4i 

A 650°C 
. 675°C 
- WY 

FIG. 9. The result of fitting the W;’ curves of Fig. 8 to the six data points 
of the type I intervals (cf. Fig. 5) of the 650 and 675 “C curves of Fig. 4. 
Fitting is obtained for s=25 and for the values of r,J T) given in Table I. 
In this figure the experimental values for the six points have been in- 
creased with the pertinent tsrr( t) values of Table I and were normalized 
subsequently to the corresponding rJ;I( T) values. 
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FIG. 10. Idctltical with Fig. 6, except that the type I (three upper) curves 
have heen corrected by increasing their t v&es with the corresponding 
ts,,, values of Tiihlc 1. 

8. Type II intervals 

The observed incubation time of the type II contribu- 
tions in Fig. 4 [cf. Wn(t> in Fig. S] points to a type (2) 
process of continuous generation of nuclei. By trying to fit 
accordingly the W;(r) curve of Fig. 7 to our data we meet 
with t.hr following problem. 

In the region where the type 12) process starts to yield 
a significant contribution to W’, or even where it domi- 
natcs, the contribution of process (1) remains still non- 
negligible. Therefore, for the present fitting procedure one 
would like to firstly correct. the data for contributions of 
the type ( 1) process. This is, however, unfeasible. The 
TeaTon is the non-linearity of the complete integro- 
differential equation for parallel processes of the types( 1) 
and (2). Strictly speaking, the solution of t.his complete 
equation should be fitted to all the data, but we shall follow 
a simplifying approach here. 

For lintwr parallel processes characterized by individ- 
ual precipitation functions W,(t) and HIP(t), the 
w 6+13Ct) of the combined effect would be given by 

Wrr+&) = W,(t) + FT7D(t) - We Wp(r). (27) 

[Note that for t-t m this gives the due result Wa&t) --f 1 
if W, I t) -+ 1 and/or Wfj( t) + 1.1 Equation (27 ) can be de- 
rived perspicuously by considering the electric analog of a 
chnrge condenser that is discharged through two parallel- 
Lmnnected resistors. The analog consists in that the time 
dependence of the charge fraction that is still present on 
the condenser is identical to that of the non-precipitated 
fraction 1 - W&t). 

In spite of the nonlinearity of the present problem, yet 
we shall make use of Eq. (27); the resulting errors are 
difficult to estimate, The data points in the type II intervals 
in Fig. 4 corrected according to Eq. (27) are given by 

FIG. 11. The result of fitting the W’$ curve of Fig. 7 to the processed data 
of the type II intervals of Fig. 4 (cf. Fig. 5). The processing consisted in 
applying Eq. (28) for finding W,,(t) from the measured Wilcrr( i). 

where WI + 11( f) represents the measured values, and the 
W1 ( t) were calculated from Eq. ( 18 > using the parameter 
values found in Sec. IV A. The resulting points are shown 
in Fig. 11. Possible reasons for the saturation occurring 
already at wJJ( t) < 1 will be discussed in Sec. V C. For the 
fitting in Fig. 11 we have used the Wi( f) curve of Fig. 7 
with the ordinate values reduced in such a way that the 
resulting horizontal asymptote for t-t to fits reasonably to 
the experimental point(s) with the highest W,, value(s) 
for the sample considered. [The reason for disregarding the 
points with the highest t values for 700 and 725 “C follows 
from item (ii) of Sec. V C.] The highest point for 650 “C is 
probably an aberration, as was already obvious from Fig. 3. 

In contrast with the fitting of the type I curves, in the 
present case only a single parameter had to be adjusted for 
each sample, viz r,,*. The values of r’,? as found from the 
fitting shift along the logarithmic horizontal axis in Fig. 1 I 
are given in Table I. The high values of rn2 justify our 
omitting a correction of the type II curves with rsrE values 
in an analogous way as performed for the type I curves. 
Figure 12(a) shows the I/7*2 values in an Arrhenius plot. 

V. DISCUSSION 

In this section we discuss the final results for the type 
( 1) and t.ype (2) precipitation processes as summarized in 
the Arrhenius plots of Fig. 12. Further, possible reasons 
are given why the precipitation already stops at W values 
significantly below unity. 

A. Vacancy-percolation diffusion 

Figure 12(b) presents an Arrhenius plot of the diffu- 
sion coefficients calculated from the rd values of Table I 
(solid squares). The plotted values are those of Q,, which 
follow from the rd values by using Eq. ( 16) with s= 25. 
The nonmonotonous course of these points, which is anal- 
ogous to that of the three upper curves in Fig. 10, is un- 
likely to represent a real feature. In view of this and of the 
rather small accuracy of these corrected points, we make 
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FIG. 12. Arrhenius plots for (a) the l/r,z values obtained from the 
fitting procedure shown in Fig. 11 and (b) the five Di, values calculated 
with the aid of Eq. (16) from the values of s and of the T,,‘s obtained from 
the fitting procedure of Sec. IV A; the dot-and-dash line represents the 
rough average through these data given by Eq. (29). Also shown are: 
. . .-the self-diffusion coefficient De” in Sb, given by Eq. (30), - - -p” 
given by Eq. (31), extrapolated to lower temperatures and to our initial 
Qe2.4~ 10” cm-3 to allow comparison with our Din values. Note the 
vertical shifts to firstly be performed on the top and bottom lines before 
the values of IYe” and L$” can be read from the given ordinate scale. 

the rough approximation of representing them by the dot- 
and-dash straight-line average shown. This line is given by 
[cf. Eq. (17)] 

Din = Din4 exp( -E&kT) [ = Da& & exp( -Ed&kT) ] 

with 

Di,(=O.Ol cm’/s and EdiE= 1.7 eV: (29) 

obviously, these values of Dim4 and Editf are very inaccurate. 
Yet it is interesting to compare this line5” with the top and 
bottom straight lines in the same figure. The solid right- 
hand part of the top line represents the self-diffusion coef- 
ficient in solid, polycrystalline antimony.53P5” The dotted 
part of the same line is an extrapolation to temperatures 
above the melting point of antimony (630.5 “C) and thus 
has no direct physical meaning. The equation for the line is 
given by53*5” 

with 

ei’r= 1.05 cm*/s and J!$$= 1.73 eV. (30) 

The bottom line in Fig. 12(b) was calculated from the 
following formula of Fair et al. 33s5 for the diffusion of Sb in 
Si: 

OF”” = @ jirC2exp ( -,$g/kT) 

with 

D~~=1.37~10~~’ cm”/s and @$=3.39 eV. (31) 

Actually our use of this equation implies an extrapolation 
beyond its range of validity: the equation describes the 
experimental diffusion data considered in Ref. 33 for T 
between 1000 and 1200 “C, and for C near 2~ 10’” cme3. 
For calculating the L$y line in Fig. 12(b) we substituted 
our value 

C,,=hCi,/hZ3*1X iO’4/1*3‘i( lo-‘=2*4X 10” cm-j 

for C in Eq. (3 1 ), which gives a preexponential factor 
@ .$rc”~80 cm”,%. Note that in the interval considered 
here our values of Din lie on the average roughly 5 decades 
above those of Dp and only 2 decades below those of DseIf. 

An appropriate model for explaining our high Dir, val- 
ues may be based on the concept of vacancy-percolation 
diffusion,32*35-3’ the essentials of which were already sum- 
marized in Sec. I. However, we have some objections 
against the approach in Ref. 32 (which in its turn follows 
Refs. 35-38). Firstly, without due justification an effective 
diffusion coefficient Deff for 3D diffusion has been intro- 
duced according to 

Derr= PJ’,,,, + C 1 -Pa Am,,. (32) 

Here P, is the probability that a given Sb atom belongs to 
the “infinite” percolation cluster of high-diffusivity mate- 
rial [viz., silicon possessing fifth-neighbor Sb atoms; cf. 
Sec. I); Dper, and D,,,, are the-concentration- 
dependent-diffusion coefficients of Sb in that cluster and 
in normal, lower-doped siIicon, respectively. Equation 
(32) suggests a simple parallel connection of the infinite 
cluster of high-diffusivity material and an infinite cluster of 
normal material, without taking due account of the finite 
clusters of both materials, which are also present. Sec- 
ondly, for describing the increase of P, for an increase of 
C from the percolation-threshold concentration C,,, to 
3 C,W a so-called critical exponent was used which in ac- 
bual fact is applicable only up till CZ 1.1 Cpt,rF.56’57 

A better approach to framing an expression for DeF, 
starting from the same idea of a random mixture of high- 
diffusivity and normal materials, might proceed as follows. 
Let us start from the simplified, hypothetical case that the 
above-mentioned D,,, and D,,,,,, are concentration Gzde- 
pendent. More specifically, we take Dnrlrm=O, so that dif- 
fusion takes place by way of the percolation network of 
high-diffusivity material exclusively. The simplified perco- 
lation problem thus defined is exactly the familiar problem 
of “the ant in the labyrinth,” the diffusion of a particle in 
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FE. 13. (a) Theoretical curves for the percolation probabihty p: and 
the normalixd diffusivity, D$ for a disordered network on 3 2D square 
lattice vs the site-occupation probability JP; after Refs. 58 and 59 
[D?‘) ,. a,Lxr= 1 for p= 1, i.e., for complete occupation). (b) __ the fitting in 
Ref. 32 of the expression for & from the vacancy-percolation diffusion 
thnwy [Fq. (3231 to the Sb diffusion data of Ref. 30, - - - - - the fitting in 
Ref. 30 to the same data, using the power law of Eq. (12) with s=3.6. 
[For converting abscissa values from rz/ni to C? (zn) we took tfi 
~.1050 “C) I to” cm-““.] 

a disordered network (or the analogous problem of the 
conductivity of a random-resistor network) .58*59 Fortu- 
nately, for 2D geometries this problem has already been 
solved. The diffusion coefficient for this case will be de- 
noted here as @,“,+ Figure 13 (a) shows a double- 
logarithmic plot of Oz,$ the normalized @$ for a 2D 
square lattice, versus the fraction p of the lattice sites that 
are “occupied,” i.e., that provide diffusional (or conduct- 
ing) pathways; see, e.g., Refs. 58 and 59. Our suggestion is 
that the O,ff- C curve for Sb-diffusion in 2D S layers might 
be obtained by properly modifying this Ot,“, - p curve. To 
express Def as a modified 0:: one has to try to bring into 
account the realistic, concentration-dependent DPflc and 
D llOrm of Refs. 31 and 38. Furthermore, in a first approxi- 
mation direct proportionality between C and p may be 
assumed. (An additional problem will be how to account 
for the effect of closer-than-fifth Sb neighbors.) 

In the light of the last paragraph the inadequacy of the 
criticized 3D equation (32) can be presented now more 
perspicuously. For our simple case of constant O,,, and 
D Rt,m,=O this equation yields &,,a P, rather than Oef 
=Q,,,, as would be correct. Though the exact shape of 022 
vsp appears not to be known in the literature, it is plausible 
that it differs considerably from that of P-L? vs p. This can 
be inferred from the great difference in t.he 2D case, where 
both curves are known; see Fig. 13 (a). 

More arguments for our objections can be extracted 
from Ref. 32, where the application of Eq. (32) to 3D Sb 
diffusion produced the solid O,,-C fitting curve of Fig. 
13 (b). As might already be conject.ured from the last para- 
graph, this curve exhibits the same feature of concavity as 
the p’,” --p curve of Fig. 13 (a). Before publishing this con- 
cave fitting curve the same authors reported”0’“‘V3” that a 

purely phenomenalogical fit to the same experimental data 
was obtained with a straight line given by Eq. (12) with 
x=3.6; see the broken line in Fig. 13(b). Our present con- 
siderations and the near-straightness of the z-p curve 
of Fig. 13(a) appear to argue in favor of the original 
straight-line fit, against the concave one. This is further 
supported by the experimental results of the present work. 
Extrapolation of our Eq. (29) to the temperature of 
1050 “C of Fig. 13(b) yields Din= 3.6~ 10e9 cm*/s, corre- 
sponding to C,, -2.4X lO*l c.rnsw3. This associated pair of 
values lies rather close to the extrapolation of the straight 
line in Fig. 13 (b) and very far above any reasonable ex- 
trapolation of the curved line. 

On closer inspection the above value of Gin, found by 
maKing use of h= 1.3 nm, turns out not to be correct. 
When the Sb diffusion takes place L& charged vacancies, D 
depends on the local electron concentration, since this con- 
centration codetermines the local charged-vacancy concen- 
tration through- a so-called quasi-chemical equilibrium 
condition.3”*60*61 The electrons, though they are confined in 
a two-dimensional quantum well with a thickness of the 
order ofsome nnl,l,d8,11d”d5 are still significantly extending 
beyond the Sb-layer with thickness h. The ensuing broad- 
ening of the layer wit.h high diffusivity will bring about 
some fast initial perpendicular Sb diffusion, until the slop- 
ing Sb profile nearly coincides with that of the electrons. 
Formally this initial outdiffusion of the S layer can roughly 
be accounted for by using a lower value of Ci”. This implies 
that our data point at the end of the preceding paragraph 
shifts to the left, so that it will lie even considerably nbove 
the extrapolated straight line. Thus for increasing C the 
slope even increases, which is consistent with our finding of 
s-25 at C= Ci,. Finally, a lower value of Ci, will ~SO 
entail a lowering of the Op line in Fig. 12(b). 

In spite of all uncertainties, in our view the concept of 
vacancy-percolation diffusion still provides the best avail- 
able basis for developing a quantitative theory for the dif- 
fusion of a number of impurities in 6 layers. 

B. The type (2) nucleation and growth 

Examination of the ln(1/7-,J2) vs l/T curve of Fig. 
12(a) raises the question about the origin of the variation 
of its slope with as much as a factor of 6. Let us start by 
inspecting the expression for T,,~ of Eq. (26), where 1, is 
given by Eq. (20). In the latter equation, neglecting elastic- 
energy contributions, AG, is given by”5 AG,= (4~/3)R$, 
where u is the surface free energy per unit of area and 
where the radius R, of the critical nucleus is given by”’ 
R,=2m/kT ln(C/C,>. Thus we find for AGJkT: 

g?=T (&)’ ( l*l(&))2. (33) 

In this equation we substitute Cz C, ==2.4~ lo*’ ctK3. 
Further we take T=725 “C, extrapolation of an expression 
in Ref. 28 to this value of T gives C,=5.6>110*’ cmw3. 
Finally, (T is generallya of the order of 100 erg cm-’ (cf. 
Ref. 29). With all this we find AGJkT=O.lti. When sub- 
stituting accordingly exp( - AGJkT) =: 1 in Eq. (20)) one 
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FIG. 14. A possible explanation for the curvature of the VT,,! vs l/T 
curve of Fig. 12(a). Different values of EIud for Sb atom incorporation 
into solid and liquid Sb-precipitates will produce different slopes of the 
low- and high-temperature asymptotes. 

obtains the following expression for Ia, which may well be 
in error with a good few orders of magnitude: 

JOdOAexp (-~)=I,,enp( -$). (34) 

We  have also made use here of the identicalness of Ag and 
Esurii which follows from comparing the definition of Ag, 
given after Eq. ( 19), with that of EsU,.r, given implicitly in 
Eq. (4). By substitution of Eqs. (4) and (34) in (26)) this 
equation can be rewritten finally as 

l/r,zzz [ (4?r/3)v’I,.~(k.~Cin)3]“4 exp( -E&kT). 
(35) 

Differentiation of this equation-leaving open the possibil- 
ity that Es,,& depends on T-yields for the slope in ques- 
tion: 

(36) 

Thus a variation of the slope may result from a variation of 
Esuti with T. 

Figure 14 shows a possible but quantitatively largely 
arbitrarily chosen “switch-over” continuation of the exper- 
imental curve, for which Esurf decreases with increasing T  
up to approximately 850 ‘C, after which it becomes con- 
stant again. We  suggest ascribing the decrease of &,,+ with 
T  to the precipitates passing beyond the Sb melting point. 
The observed gradual rather than abrupt switch-over 
would indicate then a certain distribution of the rise of the 
melting point in the precipitates, which can be brought 
about. by different degrees of pressure increase for the dif- 
ferent sizes. 

(ii) Dissolution of the smaller type (2) precipitates 
might take place. The released Sb atoms may not be 
trapped-as in 3D Ostwald ripening-by the type ( 1) and 
the larger type (2) precipitates (cf. second paragraph of 
Sec. III B and Ref. 29), but diffuse away from the 8 layer, 
as under (i). Such a process would also explain the occa- 
sionally observed final decrease of W . 

(iii) The saturation value of the actual fraction precip- 
itated, rather than being 0.45-0.65, might be closer to 1.0 if 
the precipitates are partly coherent in the Si lattice and 
thus indetectable with RBS, 

VI. CONCLUSIONS 

There is some additional support for the suggestion The study of 6  layers in silicon turns out to be inter- 
that the steep part of the slope corresponds indeed with a esting not only for device applications, but also because it 
switch-over phenomenon (from Sb incorporation into solid allows the basic investigation of diffusion and precipitation 
precipitates to incorporation into liquid ones), rather than processes up till much higher impurity concentrations than 

with a single process. For the latter case the steep slope 
would yield 6.4 eV for Es,,&? which seems implausibly high. 
More decisively, the corresponding value of the prefactor, 
roughly 10J3 s-l (as found from extrapolation to l/T=0 
in Fig. 14), is very many decddes higher than expected 
from Eq, (35), which is seen as follows. The theory of 
absolute reaction rates;‘Y*h”*“” shows that k;r~zsaIo,4, where a  
represents a lattice parameter and 1,,,d equals an atomic 
vibration energy (a-3 run and 10.4~ 10’” s-l). Substitu- 
tion in Eq. (35) yields for the prefactor, within a few or- 
ders of magnitude, a value of only 2:~ 10” s-‘. (This value 
corresponds within an order of magnitude to that found 
from the extrapolation of a  straight line through the 650 
and 675 %  data points of Fig. 14, which gives roughly 10” 
s- ‘. The sIope of this line would yield Esurfz2.8 eV. How- 
ever, this rough correspondence of prefactor values, which 
would throw doubt on the reliability of the 625 “C point, 
may well be fortuitous.) 

Summarizing this section: in principle the observed 
super-exponential increase of I/T,~ with decreasing l/T 
can be explained by an increasing fraction of liquid precip- 
itates with a much lower value of EgUd than the solid ones. 

C. Incompleteness of precipitation 

Since t.he ratio CiJCs equals at least 430 [see the 
values given below Eq. (33)], one might expect w to fi- 
nally approximate practically unity. However, w appears 
to saturate (or occasionally to decrease again) already at 
W=O.45-0.65; see Fig. 3. Possible esplanations for this are 
as follows: 

(i) For sufficiently reduced C values the very small 
perpendicular diffusion will not be completely dominated 
any more by the lateral diffusion. The perpendicular diffu- 
sion withdraws Sb atoms from the precipitation process. 
Moreover, the perpendicular diffusion will lower the value 
of IY at which the condition C/C.,% 1 in the S layer will not. 
be satisfied any more. &cording to Eq. (33)) a  still further 
decrease of C entails then non-negligibility of AGJkT. In 
its turn this causes a fast decrease of Z  [cf. Eq. (19)], so 
that the generation of fresh type (2) nuclei will exhibit an 
almost abrupt stop. 
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reachable by 3D doping. For Sb S layers the interpretation 
of KBS minimum-yield data in terms of lateral diffusional 
transport followed by precipitation has provided here in- 
form&on on the underlying mechanisms. The character- 
istic features of these data for samples annealed at 625- 
725 “c” can be explained by postulating two parallel 
mechanisms of precipitation. 

(i) Fast, simultaneous generation of a limited number 
of nucl.ei, the growth of which reaches rapidly the 
ditTusion-controlled regime. This produces the precipitates 
observed on TEM pictures. The nucleation already occurs 
during the SPE stage and takes place probably at a limited 
number of certain low-energetic sites in the S plane (“het- 
erogeneous nucleation” ) . The diffusion coefficient describ- 
ing the Sb diffusion towards the precipitates is a very 
strongly increasing function of the Sb concentration. This 
XI-diffusion behavior can probably be described quantita- 
tively by adapting the 3D vacancy-percolation diffusion 
model of Refs. 32 and 35-39. 

(ii) Slow, continuous generation of hypothetical nuclei 
with subsequent incorporation-controlled growth. The re- 
sulting precipitates (diameter < 1 nm) are invisible on 
TEM pictures. The annealing time needed for producing a 
significant amount of precipitation entails here an incuba- 
tion period and a sigmoid shape of the FV vs t curve. The 
slow nucleation may take place at numerous random non- 
low-energetic sites in the S plane, due to statistical density 
fluctuations of the Sb atoms (“homogeneous nucleation”). 
The observed strong acc.eleration of the precipitation rate 
with increasing temperature can be explained by an in- 
creasing fraction of liquid precipitates with a considerably 
lower activation energy for Sb incorporation than solid 
ones. 
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APPENDIX A: SOLUTION OF INTEGRAL EQUATIONS 

For solving the integral equation (9) we use the 
method of successive approximations. Thus we construct a 
sequence of successive functions 

#ycJ-), Fqy)(y,), py’(*,y*) ),.‘) @Pyqyl) )‘.’ 

by means of the recursive relation ,. 
wip+l)(~~~l) = ’ [14Pt~“)(t’)]dt’ (AlI 

where we start with Wf’a’(.Y-,) ~0. 
In applying Eq. (A1 ) for finding W ii(m), the result of 

analytie integrat.ion is series expanded in powers of .?-T’2 
and cut off after the mth term. The result is that every 
repeated application of Eq. (Al) adds another higher- 
order term to the unchanged previous approximation. Af- 
ter four applications this yields 

3 _ 

0.5 - 

0.0 1.0 20 

T=tk,, ----F 

FIG. IS. The successive approximations R, qt”)(cY?mt) to the function 
Wnt(~‘-t) as caldated with the aid of Fd. (Al): (l)-(4) raults of the 
first four analytical integrations with starting function W$;l’)i(.lj- ,) -0; 
(5)-(b) results of the nest two numerical integrations. The solid line 
reprtxnts the iinal curve. 

~‘“‘(,yjq) =.qf2( 1 - 0.6000,8-1’” + 0.285O..Yy 

-0. 1227ry2). (A2) 

The successive results for R = 14 are plotted in Fig. 15. We 
continue the sequence of approximations using numerical 
int.egrations in applying Eq. (Al ). This is also done four 
times, giving the curves for n=5-8. In Fig. 15 only the 
curves for n =5 and 6 are shown, since those for 1~x7 and 
8 turn out to practically coincide-over the range calcu- 
lated, i.e.! up to .Yt z 1.5-with the final curve represented 
by the solid line. This final curve was found as follows. 

It turned out that in the interval 1,0<.8, < 1.5 the 
curve for n=8 can be described very accurately by the 
heuristic function 

W’; = 1 --K exp( --/Zf) 

with 

h’- I.5312 and II=1.3321. (A33 

Two further applications on Eq. (Al) lead to virtually 
identical reproductions of this “final” function up to as far 
as 71= 3.0. 

An analogous approach was followed in solving the 
double-integral equation (24). For ?V$ we only show the 
final result, again in Fig. 7. 

APPENDIX B: DIFFUSION-CONTROLLED GROWTH 

In case of incorporation-controlled growth of the type 
( 1) process the ditfusion coefficient is large enough to 
maintain the lateral Sb diffusion towards the spherical pre- 
cipitates with only negligible concentration gradients. This 
quasi-homogeneity of the concentration in the S plane 
(outside the precipitates) entails@rear additivity of the 
individual Sb incorporation rates into the-in this case 
identical-spheres. Consequently, the total precipitation 
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FIG. 1~5. A  simple square periodic lattice of spherical precipitates, divided 
into square cells; after Ham.@ 

rate per unit of area can be found from the rate for a single 
sphere, viz. by multiplying with the sphere density ~1; cf. 
:Eqs. (7) and (S). Obviously the exact spatial distribution 
of the spheres over the 6 plane is irrelevant here. 

On the other hand, for diffusion-controlled growth the 
concentration gradients are essentially non-negligible. The 
concentration profile depends on the density distribution of 
the spheres over the plane, which impedes an exact solu- 
tion. The case of s= 0 in Eq. ( 12 ) for D has been treated by 
Ham,“” both for 2D and 3D geometries, by introducing the 
approximation of a reguZar spatial array of spheres, which 
enables the application of eigenfunction methods. For s:#O, 
however, the regular-array approximation generally is of 
no groat use, since eigenfunction methods do not exist 
t,hen.“’ Now it is a fortunate circumstance that, in spite of 
lack of eigenfunction methods, the regular-array approxi- 
mation becomes useful again for our very high values of s 
(s= - 35; see Sec. IV A). This can be shown as follows. 

Let us consider a simple square periodic lattice of 
spheres. This lattice is divided into equivalent symmetrical 
square cells centered around each particle; see Fig. 16. We 
shall start by trying to find a sufficiently accurate solut.ion 
for a single cell in this lattice. For this purpose we adopt 
another of Ham’s approximations,@ viz. that of replacing 
the square cell by a circle of equivalent area, i.e., with a 
radius r, defined by 

ITr;, = 1. (Bl) 

As a consequence, the diffusional Sb supply to the ring- 
shaped surface of the slice with thickness h cut out from 
,the sphere by the 6 layer, possesses cylindrical symmetry. 
Therefore the continuity equation in the case of D=D,C s 
reads 

g=;$ (D&.‘r$) . (B2) 

We shall follow hesg the usual steady-state approxima- 
tion 45~47P64866 through which Eq. (B2) simplifies to the or- 
diniry differential equation 

Since the solid solubility of Sb in Si for T < 725 “C! is less 
than 2~ IO-” Gin [see under Eq. (33)], it is allowed to set 
C=O for the boundary condition at the slice surface: 

C=O for r=R. 

With this, the solution of Eq. (B3) becomes 

C(r) =G rg In (;)I t’is+1i. 

Strictly speaking, the constant G has to be determined 
from the other boundary condition, at the outer cell 
boundary: 

Differentiation of Eq. CBS) yields for the derivative 

dC Gs+’ -=- 
dr DoC %  

Application of Eq. (B6) thus yields the trivial solution 
G=O. This problem can be circumvented by the following 
alternative approach, in which the constant G is main- 
tained provisionally. 

The growth of the sphere radius R with f follows from 
the analogue of Eq. (5): 

= LrrhD& ,’ 2 . 

The right-hand side of this equation represents the diffu- 
sional Sb-atom flux to the sphere, which is independent of 
r in the steady-state approximation. Substitution of Eq. 
(B7) in (Bg) and subsequent elimination of G with the aid 
of Eq. (B5) yields 

R”dR = 
uhD& *+‘(r,t) dt 

2(s+l)ln(r/R) ’ V W  

In accordance with the principle of steady-state approxi- 
mating we have reintroduced here the dependence of C on 
t. Due to the above-mentioned r independence of the flux, 
Eq. (B9) is valid for all r between R and r,. We make the 
choice r= r,] and shall calculate the value of C “I (r&j/ 
ln(ro/R) figuring at the right-hand side of Eq. (B9) 

To the above end we shall show first that the shape of 
the function C(r) given by Eq. (BS ) with nonzero G rep- 
resents a close approximation to the exact concentration 
profile. The function of Eq. (B5 ) is presented in Fig. 17 in 
a normalized plot of C(r)/C(r,) vs r/R. For the parame- 
ter va1ue.s in this figure we have chosen s=O, 2, and 25, and 
q//R= 10 and 20. In the course of our annealing experi- 
ments the ratio r,JR approaches the final rough value of 10 
from the side of higher values. Though for s=25 and 
r(,/R = 10 the derivative dC/dr at r= r. does not exactly 
satisfy Eq. (B6), Fig. 17 shows that the relevant? relative 
value of the derivative is very small. Thus Eq. (B5) with 
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FIG. 17. Diffusion-controlled growth of the precipitates: normalized plot 
of the Sh concentration M  the distance to the center of the precipitate 
when only a single precipitnte is present, as given by Eq. (B5). R repre- 
sents the radius of the sphere. C(r) has been normalized to its value C(r,) 
on the circular boundary defined hy Eq. (81). The parameter values 
chosen ax-e 51-0, 2, and 3-S. and rdR= 10 and 20. 

s-=25 represents indeed a good approximation to the exact 
conc.entration profile with zero derivative at r=ro. 

Nest, from the curve for s=25 and r,JR= 10 of Fig. 17 
it can be calculated that C(r”,t) isznly slightly larger than 
the areal-averaged concentration C(t) : their relative differ- 
ence amounts to only 2%. Thus, after substituting r=r, 
inte Eq. (IN), and making subsequent use of C(r,,t> 
z C( t) and of Eq. (RI ) we obtain 

*92D,j3”‘(t) 
ln[ t/&R)R2dR=:- 2(E~ I) dt. 

Finally, this equation can be transformed into the differ- 
ential equation (14) for the precipitated fract.iog ET by 
substituting R from W=4?rR”rt/3vhCi,, and C= Ci,( 1 
- R$). 
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