

No-wait scheduling for locks

Citation for published version (APA):
Passchyn, W., Briskorn, D., & Spieksma, F. C. R. (2019). No-wait scheduling for locks. INFORMS Journal on
Computing, 31(3), 413-428. https://doi.org/10.1287/ijoc.2018.0848

Document license:
TAVERNE

DOI:
10.1287/ijoc.2018.0848

Document status and date:
Published: 01/01/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1287/ijoc.2018.0848
https://doi.org/10.1287/ijoc.2018.0848
https://research.tue.nl/en/publications/eae3223f-9898-4fa2-b446-0b052c0ffb0d

This article was downloaded by: [131.155.144.47] On: 07 August 2019, At: 04:49
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

No-Wait Scheduling for Locks
Ward Passchyn, Dirk Briskorn, Frits C. R. Spieksma

To cite this article:
Ward Passchyn, Dirk Briskorn, Frits C. R. Spieksma (2019) No-Wait Scheduling for Locks. INFORMS Journal on Computing
31(3):413-428. https://doi.org/10.1287/ijoc.2018.0848

Full terms and conditions of use: https://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2018.0848
https://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS JOURNAL ON COMPUTING
Vol. 31, No. 3, Summer 2019, pp. 413–428

http://pubsonline.informs.org/journal/ijoc/ ISSN 1091-9856 (print), ISSN 1526-5528 (online)

No-Wait Scheduling for Locks
Ward Passchyn,a,b Dirk Briskorn,c Frits C. R. Spieksmaa,d

a Faculty of Economics and Business, ORSTAT, KU Leuven, 3000 Leuven, Belgium; bOM Partners, 2160 Wommelgem, Belgium; cLehrstuhl
für Produktion und Logistik, Bergische Universität Wuppertal, 42119 Wuppertal, Germany; dDepartment of Mathematics and Computer
Science, Eindhoven University of Technology, 5600 Eindhoven, Netherlands
Contact: ward.passchyn@kuleuven.be, https://orcid.org/0000-0002-5422-5526 (WP); briskorn@uni-wuppertal.de,

https://orcid.org/0000-0003-1829-8100 (DB); f.c.r.spieksma@tue.nl, https://orcid.org/0000-0002-2547-3782 (FCRS)

Received: December 24, 2015
Revised: August 13, 2017; June 13, 2018;
July 24, 2018
Accepted: July 26, 2018
Published Online in Articles in Advance:
April 22, 2019

https://doi.org/10.1287/ijoc.2018.0848

Copyright: © 2019 INFORMS

Abstract. We introduce and investigate the problem of scheduling a single lock with
parallel chambers. Special cases of this problem are related to interval scheduling.We focus
on the existence of no-wait schedules and characterize their feasibility for a lock consisting
of two chambers using new graph-theoretical concepts. We obtain a linear time algorithm
for this special case. We also provide an efficient algorithm for the case where all chambers
of the lock are identical. Furthermore, we describe a dynamic programming algorithm for
the general case with arbitrary chambers. Finally, we indicate how our methods for the no-
wait case can be applied to practical settings where waiting time is unavoidable.

History: Accepted by S. Raghavan, Area Editor for Network Optimization: Algorithms & Applications.
Funding: This research was supported by the Interuniversity Attraction Poles Programme initiated by
the Belgian Science Policy Office.

Keywords: lock scheduling • algorithms • interval scheduling

1. Introduction
Locks are a necessity on many inland waterways; they
maintain the water level while allowing ships traversing
these waterways to overcome the resulting water-level
differences. We consider the following scheduling prob-
lem that deals with ships passing through a lock: con-
sider a single lock that consists of m parallel chambers.
The chambers operate independent of each other and are
each characterized by two numbers: their lockage time
(denoted by Tj, j � 1, . . . ,m) and their capacity (denoted
by Cj, j � 1, . . . ,m). A lockage or lock movement refers to
a single operation of a chamber of the lock (i.e., allowing
a ship to enter and subsequently change the water level
in the lock from the downstream water level to the
upstream water level or vice versa, which allows the
ship to exit the lock and continue its journey). The term
lockage time refers to the time needed to complete this
operation. The capacity of a chamber refers to the number
of ships that can be simultaneously served during a
single lockage. Ships arrive at the lock at given times
t1, t2, . . . , tn. We use 7 to denote the set of arrival times
(i.e., 7 � {ti | 1 ≤ i ≤ n}). A ship can arrive from either
the upstream side of the lock or the downstream side
of the lock. We will refer to ships by their direction
of travel (i.e., ships arriving on the upstream (down-
stream) side of the lock are referred to as downstream-
traveling (upstream-traveling) ships). Our interest in
this paper is primarily on the existence of so-called no-
wait schedules. A no-wait schedule is a schedule where
each ship, on its arrival, can enter a chamber of the
lock immediately. Thus, in a no-wait schedule, each

ship i (1 ≤ i ≤ n) leaves the lock at ti + T1, ti + T2, . . ., or
ti + Tm depending on the particular chamber to which
the ship is assigned. The question that we address is
thus: given the arrival time and the direction of travel for
each ship, does there exist an assignment of each ship
to a chamber such that no ship has to wait; more
compactly, does a no-wait schedule exist?
The existence of no-wait schedules is relevant in ports

that connect inland waterways with seas and oceans. In
ports such as Antwerp and Rotterdam locks are used
to protect inland waterways from the influence of the
tide. In these ports, large vessels coming from the sea
can only reach the port by using the high tide. Hence,
these vessels are subject to a “tidal window” (i.e., a
limited time period when they are able to enter a port).
The length of such a tidal window depends on specific
circumstances (wind, waves, and ship dimensions); in
extreme situations, no tidal window is available, or its
length is reduced to a very short period. In such cases,
a policy is enforced where such vessels do not incur
any waiting time at the locks, allowing entry into the
port area (see Savenije 1997 and Vantorre et al. 2014
for a detailed description).
Another setting where no-wait schedules are impor-

tant is in the transport of hazardous cargo. To minimize
the risk of potential incidents, the scheduling of locks
on inland waterways that serve certain classes of ships
carrying dangerous cargo is constrained [see, e.g.,
Cornell Law School (Legal Information Institute) 2006].
Depending on precise local regulations, it can be the
case that lockages are forbidden to contain both regular

413

http://pubsonline.informs.org/journal/ijoc/
mailto:ward.passchyn@kuleuven.be
https://orcid.org/0000-0002-5422-5526
https://orcid.org/0000-0002-5422-5526
mailto:briskorn@uni-wuppertal.de
https://orcid.org/0000-0003-1829-8100
https://orcid.org/0000-0003-1829-8100
mailto:f.c.r.spieksma@tue.nl
https://orcid.org/0000-0002-2547-3782
https://orcid.org/0000-0002-2547-3782
https://doi.org/10.1287/ijoc.2018.0848

ships as well as ships carrying hazardous cargo, or it
can be the case that ships carrying hazardous cargo
should immediately be served by the lock at their time
of arrival.

In this work, we provide a complete classification of
the complexity of this no-wait scheduling problem (see
Section 1.3). In some cases, algorithms that are linear
in the number of ships (i.e., O(n)) are obtained. In ad-
dition to deciding the existence of a no-wait solution,
we describe algorithms that actually find such solu-
tions, provided that they exist. We also describe in
Section 6 how our algorithms can be expanded to find
heuristic solutions for the problem of minimizing the
waiting time, in particular for those instances that do
not admit a no-wait solution.

1.1. Literature
Scheduling locks is a problem that is receiving an in-
creasing amount of attention. In particular, when con-
fronted with a series of locks (e.g., along a canal), the
problem of operating the locks jointly to minimize total
waiting time or emissions is dealt with in Prandtstetter
et al. (2015) and Passchyn et al. (2016a) (see also Disser
et al. 2015 for a related more abstract setting).

Furthermore, the problem of scheduling a lock con-
sisting of one chamber is treated by Hermans (2014),
who presents a O(n4 logn) dynamic programming (DP)
algorithm that asserts feasibility with respect to given
ship deadlines when the single chamber has unit ca-
pacity. Passchyn et al. (2016c) deal with minimizing
total waiting time for a single lock chamber. They give
an O(n4) algorithm for the bidirectional single-chamber
setting and discuss results for such practical features
as ship handling times, drought, etc. Smith et al. (2011)
view the single-lock, single-chamber setting as a two-
stage queue and describe a mixed integer program-
ming model as well as a heuristic solution procedure.

The research mentioned above concentrates on single-
chamber locks. In practice, however, many locks con-
sist of more than one chamber. On the Panama Canal,
for example, each lock consists of two identical parallel
chambers. Another example is the Wijnegem lock, sit-
uated in Belgium, which connects the Albert Canal to
the Port of Antwerp. Like all other locks on the Albert
Canal, this lock consists of three nonidentical cham-
bers. Furthermore, the construction of a fourth lock
chamber in Wijnegem is currently under consider-
ation (see also Waterwegen en Zeekanaal NV and nv
De Scheepvaart 2014).

Ting and Schonfeld (2001) mention a heuristic for
a lock consisting of two chambers. Other works that
deal with scheduling a lock with multiple chambers are
Verstichel et al. (2011, 2014) and Verstichel (2013). In
Verstichel et al. (2014), they formulate a mixed integer
program (MIP) that models, among other things, the
physical placement of the ships within the chamber.

The objective of this MIP contains terms that correspond
to the number of lockages as well as the tardiness of
ships. Solutions are found by solving the MIP.

1.2. Interval Scheduling
An important special case of our problem arises when
all arrival times are distinct. Observe that in this case
the capacities of the chambers lose their meaning be-
cause then, in a no-wait schedule, no two ships can be
in the same lockage. This resulting special case can be
phrased as an interval scheduling problem as follows.
Let a chamber be a machine, and let a ship be a job.
Furthermore, let the direction of travel for each ship
correspond to the job type for each job. Multiple in-
tervals are associated to each job: one for each machine
in the instance. The starting time of each of the intervals
corresponding to a particular job i is equal to ti; the
ending times of these intervals are given by ti + Tj,
j ∈ {1, . . . ,m}. Notice that, when considering a particu-
lar interval, it is associated with a job and a machine.
A feasible solution consists of a selection of intervals
such that (i) one interval corresponding to each job is
selected and (ii) the selected intervals that correspond
to a machine are disjoint; even more, when two con-
secutive intervals of a machine correspond to jobs with
the same job type, there must be a difference of Tj be-
tween the ending point of the earlier interval and the
starting point of the later interval. The requirement
involving this difference is needed, because a chamber
transporting a ship needs Tj time units to return before
transporting another ship that travels in the same di-
rection. Notice that, in the special case where all ships
travel in the same direction, this difference requirement
vanishes, because it can be modeled by assuming that
the length of all intervals equals 2Tj. We refer to this
setting, which corresponds to a well-known interval
scheduling problem, as the unidirectional case.
Interval scheduling is a well-studied subject (see Kolen

et al. 2007 for an overview). Krumke et al. (2011) deal
with interval scheduling on related machines: given
are m machines, each with a certain speed sj (1 ≤
j ≤ m), and n intervals specified by a starting point ri
and a processing time pi (1 ≤ i ≤ n). They show that
even deciding the existence of a schedule is NP com-
plete. This setting is related to the unidirectional vari-
ant of our problem with distinct arrival times. Indeed,
a chamber corresponds to a machine (so that there are
m machines), and the speed of machine j (the sj) is set
equal to 1/Tj. Furthermore, there is an interval for each
ship (so that there are n intervals); we set the starting
points of the n intervals (the ri) equal to the arrival
times of the corresponding ships. The processing time
of each interval (the pi) equals one. Notice that the
resulting interval scheduling problem has the prop-
erty that the lengths of the intervals processed by the
same machine are equal.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
414 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

The unidirectional case with distinct arrival times
is also related to a problem studied in Böhmová et al.
(2013). In their setting, a job corresponds to a set of
intervals: one for each machine. To schedule a job,
exactly one of its intervals must be selected, and a se-
lection of intervals is called feasible if no two intervals
corresponding to the same machine overlap. In par-
ticular, they consider the problem with so-called cores,
where all intervals corresponding to the same job have
a point in time in common. They prove that deciding
the existence of a feasible selection that schedules all
jobs is NP complete, thereby solving an open problem
from Sung and Vlach (2005). However, they allow
arbitrary lengths of the intervals corresponding to a job,
which differs from this special case of our problem
(unidirectional with distinct arrival times) where all
interval lengths are identical. They also mention a DP
given in Sung and Vlach (2005), which, translated into
our terms, solves the unidirectional case with distinct
arrival times in O(mnm+1) time. In addition, they men-
tion without specifying additional details that the spe-
cial case with two machines is polynomially solvable
by a reduction to 2-SAT.

1.3. Summary of Results
We formulate our results in terms of locks and ships;
for example, the phrase “assigning ship i to chamber j”
can, in machine scheduling terms, be read as “executing
job i on machine j.”

As mentioned before, the input of our problem
consists of lockage times Tj and capacities Cj for j ∈
{1, . . . ,m} and arrival times ti and direction di ∈
{upstream,downstream} for i ∈ {1, . . . ,n}. We con-
sider the following question: does a no-wait solution
exist? We refer to this problem as “no-wait lock sched-
uling” (NLS). In addition to this problem, we consider
different special cases in what follows, deciding on
whether a no-wait solution exists subject to addi-
tional restrictions imposed on the input. For conve-
nience, we introduce a notation to refer to these
special cases. We refer to the problem settings as
NLS{-uni, ∅}{-2,−m, ∅}{-id, ∅}{-distinct, ∅}, where uni
refers to the unidirectional case (omitting this implies
bidirectional traffic), 2 refers to the setting with two

lock chambers, m refers to the setting where the
number of chambers m is fixed (omitting these implies
that the number of chambers is part of the input), id
refers to the setting with identical chambers (omitting
this implies that values for lockage time and capacity are
arbitrary), and distinct refers to the setting where
all arrival times are distinct (omitting this implies that
multiple ships may arrive simultaneously). We point
out that specifying additional parameters in the problem
name increasingly yields a more specific case of the
problem. NLS, which describes the setting with an ar-
bitrary number of nonidentical chambers and bidirec-
tional traffic, thus describes the most general problem
covered by this notation. Table 1 lists the notation as
well as the results discussed in this paper for the dif-
ferent special cases of the problem that we consider.
Based on the chamber characteristics, we consider the
following settings.

1. The setting where m � 2 with two arbitrary cham-
bers. For the unidirectional setting, called NLS-uni-2,
we give necessary and sufficient conditions for de-
ciding the existence of a no-wait schedule (Section 2).
This result is obtained by introducing the concept
of a “bad path,” and this characterization allows us
to establish the existence of such a schedule in O(n)
time, provided that the arrival times are sorted (see
Section 1.4). Because reading the input takes O(n)
time, this is an optimal algorithm. Furthermore, for
the bidirectional case NLS-2, we give a reduction to
2-SAT that leads to an O(n2) algorithm (Section 3).

2. The setting where Cj � C and Tj � T for all j ∈
{1, . . . ,m} (i.e., the setting with m identical chambers).
The resulting problems are called NLS-uni-id andNLS-
id, and we show that we can solve these problems
in O(n) time for sorted arrival times (Section 4).

3. The setting where the number of chambers m
is fixed. We give a DP for our problem that runs in
polynomial time (Section 5). For the problem of finding
a feasible no-wait schedule described here, this DP
strengthens the result in Sung and Vlach (2005) that
can only be applied to the unidirectional case with
distinct arrival times.

4. The settingwith an arbitrary number of chambers.
We state that the unidirectional case of this variant

Table 1. Summary of Results

Two arbitrary chambers m Identical chambers m Arbitrary chambers
m Arbitrary chambers
(m part of the input)

Unidirectional NLS-uni-2
O(n)a

(Section 2)

NLS-uni-id
O(n)a

(implied)

NLS-uni-m
O(mnm)
(implied)

NLS-uni
strongly NP complete

(Section 5)
Bidirectional NLS-2

O(n2)
(Section 3)

NLS-id
O(n)a

(Section 4.3)

NLS-m
O(mnm)

(Section 5)

NLS
strongly NP complete

(implied)

aThese results apply to input with arrival times given in sorted order (see Section 1.4).

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 415

is NP complete (Section 5). This result strengthens both
the result given in Krumke et al. (2011) and a result in
Böhmová et al. (2013).

Finally, not all instances will admit a feasible solution
where no ship incurs any waiting time. Thus, an im-
portant issue concerns the question of whether our
algorithms can be used in a situation where no-wait
solutions do not exist. In Section 6, we sketch two di-
rections in which algorithms for no-wait solutions can
be modified so as to deal with instances that do not ad-
mit a no-wait solution.

1.4. A Note on Sorted Arrival Times
Notice that some of the results stated in Table 1 apply
exclusively to sorted input (i.e., these results require
the assumption that arrival times are given in non-
decreasing order). Because of the well-known Ω(n logn)
lower bound on comparison-based sorting algorithms,
it may not be possible to improve beyond a complexity of
O(n logn) in the general case of unsorted arrival times.
However, assuming that the arrival times are known
in sorted order may be justified. For instance, when
iteratively applying the presented methods, a large
part of the input may have remained unchanged since
earlier iterations so that sorting is no longer required
for a large subset of the given arrival times. Furthermore,
the input may be unsorted, but it may satisfy additional
assumptions that allow the use of a non–comparison-
based sorting algorithm, such as radix sort, which runs
in linear time. Therefore, we choose to report the com-
plexity assuming that the arrival times are sorted.

2. Two Arbitrary Chambers,
Unidirectional Case

In this section, we deal with the case of two chambers:
more specifically, with the unidirectional setting. To
serve a ship with chamber j ∈ {1, 2}, a lockage time Tj is
incurred. We assume that T1 ≤ T2. We refer to the two
chambers as the short and long chambers, respectively,
and their lockages as the short and long lockages.

In Section 2.1, we first look at problem NLS-uni-2-
distinct (i.e., the special case where (i) all ships travel
in the same direction and (ii) all arrival times are
distinct). Notice that the numbers C1,C2 are then ir-
relevant, because a chamber contains at most one ship.
In Sections 2.2 and 2.3, we extend our approach to
a more general setting where some ships are preas-
signed to a chamber, and we describe how this result
can be used to model the setting NLS-uni-2, where the
numbers C1 and C2 become relevant.

2.1. Unidirectional Setting with Distinct
Arrival Times

As argued in Section 1.4, we assume throughout this
section that the arrival times are given in sorted order.

We describe an O(n) algorithm under this assumption.
We organize this section as follows. In Section 2.1.1, we
describe the construction of a graph corresponding
to an instance of NLS-uni-2-distinct and discuss some
basic observations. In Section 2.1.2, we prove a theorem
characterizing feasibility, and Section 2.1.3 describes an
O(n) algorithm.

2.1.1. Graph and Concepts. An instance (is given by
specifying distinct ordered arrival times t1 < t2 < . . . < tn
and lockage times T1 <T2. We say that an instance
is feasible if there exists a no-wait solution; otherwise,
it is not feasible. Given an instance (, we create a
graph G((); we will, in the sequel, simply write G.
Notice that we allow multiple edges between a pair
of nodes in G; more precisely, the edge set of G consists
of a set ES and a set EL. The graph is constructed as
follows. There is a node for each arrival time; we say
that two nodes i< j are connected via an s-edge (i, j) ∈ ES

if and only if tj − ti < 2T1; two nodes i< j are connected
via an l-edge (i, j) ∈ EL if and only if tj − ti < 2T2. Observe
that the resulting graphs (V,ES) and (V,EL) are undirected,
and they are, in fact, so-called unit interval graphs.
Because the arrival times are assumed to be strictly

ordered, this same ordering applies to the nodes of V.
Node i then refers to the arrival of a ship at time ti, with
1 ≤ i ≤ n. We may thus refer to “first” and “last” or
“earlier” and “later” nodes without ambiguity. We call
a pair of nodes (i, j) consecutive when j � i + 1. In all
figures, we represent an s-edge by a straight line
segment (), whereas an l-edge is represented by
a segment in the form of an arc (�).
A no-wait solution to the given instance can exist

only if each ship can be assigned to one of the two lock
chambers so that a lockage starts at the ship’s time
of arrival. We can immediately observe the following:
for a solution to be no-wait, two arrivals connected by
an s-edge cannot both be served by the short cham-
ber; two arrivals connected by an l-edge cannot both
be served by the long chamber. Furthermore, we can
observe a number of interesting properties in graph G.
In addition to highlighting some structural character-
istics of an instance and its graph, we will refer back
to these observations in the Proof of Theorem 1, where a
more general structure is described that characterizes
infeasible instances.

Observation 2.1. If there exists a node i ∈ V \ {n} such
that (i, i + 1) /∈EL (i.e., if there exists a pair of consecutive
nodes that are not connected by an l-edge), the instance
splits into two independent subproblems. This is easily
seen, because both chambers are then available at time
ti+1 for any no-wait solution, regardless of the assign-
ment of nodes 1, . . . , i. A no-wait solution thus exists
if and only if there is a no-wait solution for each of the
two subproblems.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
416 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

Observation 2.2. If there exists a node i ∈ V such that
(i, i + 2) ∈ ES (i.e., if there exists a triangle of s-edges inG),
then the instance is not feasible. This readily follows from
the fact that there does not exist a proper two-coloring in
a triangle graph.

Observation 2.3. If an l-edge contains two s-edges
that are node disjoint (i.e., if there exist nodes i, j ∈ V
with j> i + 1 so that (i, i + 1) ∈ ES, (j, j + 1) ∈ ES, and
(i, j + 1) ∈ EL), then the instance is not feasible. This is
easily verified by enumerating all possible assign-
ments for nodes i, i + 1, j, and j + 1. An example is
shown in Figure 1.

Observation 2.4. If there exists a node i ∈ V such that
there exist s-edges (i, i + 1), (i + 1, i + 2), (i + 2, i + 3) ∈
ES and l-edges (i, i + 2), (i + 1, i + 3) ∈ EL, the instance
is not feasible. Figure 2 shows the graph for an in-
stance consisting of four such nodes. It is easily verified
(see also the next observation) that both nodes i + 1 and
i + 2 must be served by the short chamber in all feasible
solutions, which is impossible because of the presence of
s-edge (i + 1, i + 2). Hence, an instance containing this
structure is not feasible.

For convenience, we restrict ourselves in the remain-
der of Section 2 to instances (with corresponding
graphs G(() that do not contain any of the structures
described in Observations 2.1–2.4. This can be done
without loss of generality, because we can recognize
these structures efficiently (see Section 2.1.3). We also
point out that the existence of an l-edge (i, j) ∈ EL im-
plies that each edge of the form (p, q) with i ≤ p< q ≤ j
is also in EL. For clarity, our figures contain only the
maximal l-edges.

Furthermore, an additional observation allows us to
recognize certain nodes that must be assigned to the
short chamber.

Observation 2.5. If there exist nodes i, j ∈ Vwith j> i + 1
such that (i, i + 1) ∈ ES and (i, j) ∈ EL, a feasible solu-
tion can exist only when node j is assigned to the short
chamber. This follows readily from the fact that either i
or i + 1 must be assigned to the long chamber, and an
l-edge to j starts at both i and i + 1. From symmetry, it
immediately follows that the same holds for a node i,
where (i, j) ∈ EL and (j, j − 1) ∈ ES. The associated graphs
are shown in Figure 3.

We proceed by describing paths and nodes in the
graph that have a specific structure. We show later that
checking for the presence of such paths suffices to decide
the feasibility of a given instance.

Definition 1. Given an instance (and graphG((), a bad
path is any sequence of distinct nodes (i1, i2, . . . , ik)with
k ≥ 4 that satisfies the following.

1. The nodes in the sequence appear in the order
defined on V, with the exceptions of i1 and ik, which
satisfy i2 < i1 < i3 and ik−2 < ik < ik−1. More formally,
ix < ix+1 for all x ∈ {2, . . . , k − 2}, i2 < i1 < i3, and ik−2 <
ik < ik−1.

2. The pairs of consecutive nodes in the sequence
are alternatingly connected by an s-edge and an l-edge,
with the first and last edges in the sequence being
both s-edges. More formally, (ix, ix+1) ∈ ES for all odd
x ∈ {1, . . . , k − 1}, (ix, ix+1) ∈ EL for all even x ∈ {1, . . . ,
k − 1}, and k is even.

Note that a bad path necessarily contains an even
number of nodes. An example is shown in Figure 4.
Observe that a bad path with k � 4 is present in
Figure 1.
We also describe specific nodes that are closely re-

lated to the definition of a bad path. Intuitively, we
define a potentially bad node as the latest node in a path
(i1, i2, . . . , ik) that contains at least five nodes and that
could be extended to a bad path if there would exist
a node j with ik−1< j< ik and an s-edge (j, ik). Note that
the existence of such a node j is not required for ik to
be a potentially bad node. More formally, we define
a potentially bad node as follows.

Definition 2. A node ik is a potentially bad node if there
exists a path (i1, i2, . . ., and ik) that satisfies the following.
• ix < ix+1 for all x ∈ {2, . . . , k − 1}, and i2 < i1.
• (ix, ix+1) ∈ ES for all odd x ∈ {1, . . . , k − 1} and

(ix, ix+1) ∈ EL for all even x ∈ {1, . . . , k − 1}.
• k ≥ 5, and k is odd.

Observe that, in a bad path, all nodes ij in the path with
j ≥ 5 and j odd are potentially bad nodes (e.g., in Figure 4,
nodes i5 and i7 are potentially bad nodes, whereas i3
is not).

Figure 1. Structure Described in Observation 2.3

Note. The existence of (i, j + 1) ∈ EL implies that (i, j) ∈ EL and (i + 1,
j + 1) ∈ EL, because ti < ti+1 < tj < tj+1.

Figure 2. Structure Described in Observation 2.4

Figure 3. Structures Described in Observation 2.5

Note. The existence of the dashed edges is implied.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 417

2.1.2. Characterizing Feasible Instances. We present
the following theorem to characterize when an instance
is feasible.

Theorem 1. An instance (of NLS-uni-2 distinct is feasible
if and only if its corresponding graph G(() does not contain
a bad path.

Proof. ⇒ We argue that, if G(() contains a bad path,
the instance is not feasible. Consider a bad path
(i1, . . . , ik) in G. It follows from Observation 2.5 and
i2 < i1 < i3 that node i3 must be assigned to the short
chamber. We now trace the path from i3 to ik−1. Note
that, because l-edges and s-edges alternate, any solu-
tion must assign nodes i3, . . . , ik−1 to the short and long
chambers in alternating order. This implies that node
ik−2 must be assigned to the long chamber, whereas
node ik−1 must be assigned to the short chamber. How-
ever, the badpath implies that (ik−1, ik) ∈ ES and (ik−2, ik) ∈
EL so that no chamber is available for ik; hence, no feasible
solution exists.

⇐ We now argue by contradiction that a feasible
solution exists whenever the graph does not contain
a bad path. For this, let us assume that there exists
an instance that is not feasible while its corresponding
graph does not contain a bad path. Assuming that
such instances exist, consider one with a minimum
number of arrivals. Let G∗ � (V∗,E∗) be the graph
corresponding to this instance, with E∗ � ES∗ ∪ EL∗,
where ES∗ and EL∗ denote the sets of s-edges and
l-edges, respectively. The proof is organized as fol-
lows. We first show that G∗ must contain at least one
potentially bad node. We then argue that there
cannot be a latest potentially bad node in G∗: a
contradiction.

We claim that graph G∗ must satisfy the following
properties.

Property 2.1. For each i ∈ V∗, there exists a feasible solu-
tion in G∗ \ {i} with distinct nodes js, jl ∈ V∗ \ {i} such that
(i, js) ∈ ES∗ and (i, jl) ∈ EL∗, while js (jl) is assigned to the
short (long) chamber in that feasible solution.

Proof. Let i be an arbitrary node in G∗. Because G∗ is
a counterexample with a minimum number of nodes
and because no bad paths are introduced by removing
a node and its incident edges, it follows immediately
that a feasible assignment of chambers is possible in

G∗ \ {i}. Consider an arbitrary feasible assignment in
G∗ \ {i}, and let S and L be the set of nodes that are
assigned to the short and long chambers in this solu-
tion, respectively; clearly, S ∩ L � ∅. If, in G∗, none of
the nodes in S are connected to i by an s-edge, it is
easily seen that node i can be assigned to the short
chamber, thus extending the solution in G∗ \ {i} to a
feasible solution in G∗. Because no feasible solution
is possible in G∗, it follows that a node js ∈ S must exist
such that (i, js) ∈ ES∗. Repeating this reasoning for the
long chamber immediately implies that there exists
a node jl ∈ L such that (i, jl) ∈ EL∗. □

Property 2.2. G∗ contains at least one potentially bad node.

Proof. Consider the earliest node, say i2, in G∗. Ap-
plying Property 2.1 to this node, it follows that there
must exist two additional nodes i1, i3 such that (i2, i1) ∈
ES∗ and (i2, i3) ∈ EL∗. We select i1, i3 to be minimal
(i.e., i1 is the successor of i2, and i3 is the successor of
i1). We obtain the structure shown in Figure 3, im-
plying that node i3 cannot be assigned to the long
chamber (Observation 2.5). Applying Property 2.1 to
node i3 implies that there is an s-edge incident to
node i3. We can distinguish two possible cases.

1. The s-edge is incident to a node i4 > i3. Observe
that i4 must be the successor of i3. We obtain the struc-
ture shown in Figure 5(a). If G∗ consists of four nodes,
applying Property 2.1 to i1 implies that (i1, i4) ∈ EL∗.
Recall that i3 cannot be assigned to the long chamber.
Furthermore, observe that (i1, i3) /∈ES∗ (by our assump-
tion that the structure from Observation 2.4 is not
present in an instance) and that (i2, i4) /∈EL∗ (by our
assumption that the structure from Observation 2.3
is not present). Then, however, G∗ corresponds to an
instance that is feasible, which is not the case. This is
illustrated in Figure 5(b). Thus, G∗ consists of at least
five nodes. Observation 2.1 implies that (i4, i5) ∈ EL∗,
and thus, i5 is a potentially bad node.

2. The s-edge is incident to node i1. Observe that, if
G∗ consists of only three nodes, a feasible solution is
easily found. Thus, there exists a fourth node i4 in G∗.
Because i2, i1, and i3 are the earliest nodes in the in-
stance, i4 is the successor of i3. Applying Property 2.1 to
node i1, it follows that (i1, i4) ∈ EL∗. Observe that nodes
i2 and i3 cannot be selected as node jl in the property,

Figure 5. Structures Described in Case 1 in the Proof

Note. In (b), the dotted edges are not present in G*, and a feasible
solution assigns i1 and i3 to the short chamber and i2 and i4 to the long
chamber.

Figure 4. Example of a Bad Path

Note. The structure described in Definition 1 remains satisfied if the
dashed edges are replacedwith a longer sequence (with odd numbers
of nodes) consisting alternatingly of s-edges and l-edges.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
418 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

because they must not be assigned to the long chamber
(Observation 2.5). G∗ then contains the structure shown
in Figure 6(a). We then apply Property 2.1 to node i4.
Because we may assume that (i3, i4) /∈ES∗ (otherwise,
the case described above applies), it follows that there
exists a node i5 > i4 with (i4, i5) ∈ ES∗. The resulting
structure is shown in Figure 6(b). Finally, we apply
Property 2.1 again, now to i5. It follows that there is
an l-edge incident to i5. As before, note that nodes i3
and i4 cannot be chosen as node jl in the property,
because they must not be assigned to the long chamber
(Observation 2.5). Because the existence of the l-edge
(i1, i5), dotted in Figure 6(b), implies a bad path, this
l-edge cannot be present, and there thus exists a node
i6 > i5 with (i5, i6) ∈ EL∗. Node i6 is then a potentially
bad node, with path (i3, i1, i4, i5, i6) satisfying the def-
inition above.

Thus, G∗ must contain at least one potentially bad
node. □

Property 2.2 implies that G∗ contains a latest po-
tentially bad node. We now show that this leads to
a contradiction. Figure 7 illustrates the reasoning be-
low. Let ik be the latest potentially bad node in G∗.
Applying Property 2.1 to ik implies that there exists an
s-edge (ik, ik+1). Because ik is a potentially bad node,
ik+1 < ik would imply the existence of a bad path. Node
ik+1 is thus the successor of ik. Applying Property 2.1
again, now to ik+1, implies the existence of an additional
l-edge. Observe that the l-edge (ik−1, ik+1), illustrated
by the dotted l-edge in Figure 7, cannot be present,
because it implies the existence of a bad path. Thus,
there exists a node ik+2 > ik+1 with (ik+1, ik+2) ∈ EL∗. Note
that ik+2 is a potentially bad node, and ik+2 > ik. This
contradicts our choice of ik as the latest potentially
bad node.

Thus, the existence of G∗ leads to a contradiction,
proving the theorem. □

2.1.3. An O(n) Algorithm for Deciding Feasibility and
Constructing a Solution. Notice that Theorem 1 char-
acterizes feasibility of an instance. We now present an
O(n) algorithm that actually recognizes whether G
contains a bad path. We start with the arrival times ti
for i ∈ {1, . . . , n} in sorted order and avoid explicitly
constructing G, which may contain up toO(n2) l-edges.
Because (V,EL) is a unit interval graph, we can avoid
checking each of the l-edges explicitly as follows. In-
stead of constructing all edges in graph G, we will
check for the existence of edges, using their definition,

only when needed. For example, when we write “if
(vi, vj) ∈ EL” for nodes vi, vj ∈ V in what follows, this
equals the expression “if tj − ti < 2T2,” corresponding
to the definition of an l-edge. For any given pair of
nodes, this is easily checked in constant time. In ad-
dition to recognizing feasibility, the algorithm assigns
each node to a chamber such that the corresponding
solution is a no-wait solution, provided that no bad
path exists.
Recall that, in Figure 8, each of the nodes labeled s

must be assigned to the short chamber in any feasible
solution as argued in Observation 2.5.
The outline of the procedure is as follows (see

Algorithm 1). We first identify all nodes that must be
assigned to the short chamber because of the struc-
tures shown in Figure 8 (lines 4–17 of Algorithm 1).
We then use implications from these assignments to
assign other nodes to the chambers (lines 18–33 of
Algorithm 1). In this way, all “forced” assignments are
handled. Finally, we apply a simple greedy procedure
to assign the remaining nodes to chambers (lines 35–39
of Algorithm 1). In the remainder of this section, we
will show that, if no bad paths are present, the greedy
procedure always yields a feasible assignment of lock
chambers (i.e., correctness of the algorithm) and that
each of these steps can be performed in linear time
(i.e., complexity of the algorithm).
We will call any node that must be assigned to

a specific chamber in all feasible solutions a fixed node.
We distinguish s-fixed and l-fixed nodes for nodes that
must be assigned to the short and long chambers, re-
spectively. As argued in Observation 2.5, the nodes
labeled s in Figure 8 are s-fixed nodes. We start by
identifying all occurrences of these structures in G.
Observe that these structures correspond to the “be-
ginning” (i.e., the first three nodes) and the “end”
(i.e., the last three nodes) of a bad path. Finding these
structures is easily done in linear time by considering
each node once and checking for the presence of the
edges shown in the figures. We obtain an initial set of
s-fixed nodes. Initially, no nodes are l-fixed.

Figure 6. Structures Described in Case 2 in the Proof

Figure 7. Structure Describing the Latest Potentially Bad
Node in G

Note. Observe that the dotted l-edge cannot be present.

Figure 8. The Nodes Labeled s Must Be Assigned to the
Short Chamber

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 419

Observe that any node connected to an s-fixed node
by an s-edge is necessarily l-fixed and that any node
connected to an l-fixed node by an l-edge is necessarily
s-fixed. The following step is to identify all remaining
nodes that can be fixed using these observations. We
first consider all nodes in order; let i be the current
node. If i is s-fixed and (i, i + 1)∈ES, add i + 1 to the set
of l-fixed nodes. If i is l-fixed, add all j> i for which
(i, j) ∈ EL to the set of s-fixed nodes. Next, we repeat
this for all nodes in reverse order; again, let i be the
current node. If i is s-fixed and (i, i − 1) ∈ ES, add i − 1
to the set of l-fixed nodes. If i is l-fixed, add all j< i for
which (i, j) ∈ EL to the set of s-fixed nodes. Clearly,
when a node is both s-fixed and l-fixed, no feasible
solution exists. Observe that such a conflict is only
possible if a path starting from the beginning of a bad
path is extended to a node where it meets the end of
a bad path.

We claim that, after considering all nodes in in-
creasing order (the increasing round) and once in de-
creasing order (the decreasing round), no new nodes
can be fixed in a feasible instance. Indeed, assuming
the opposite implies the existence of a bad path: con-
sider a node i, which is not fixed after the decreasing
round but becomes fixed in a second increasing round.
If i becomes s-fixed, there also exists a node that be-
comes l-fixed in the second increasing round. Thus, we
can assume that node i becomes l-fixed in the second
increasing round, implying that node i − 1 is s-fixed.
Moreover, if node i − 1 is s-fixed in the first increasing
round, node i is l-fixed in the first increasing round.
Thus, node i − 1 only becomes s-fixed in the decreasing
round, and there exists a node j> i with (i − 1, j) ∈ EL,
which is l-fixed. This implies that node i is s-fixed and
that the instance is thus infeasible. From symmetry,
the same also holds for nodes fixed in a second de-
creasing round.

As noted above, if a bad path exists, at least one node
must be both s-fixed and l-fixed. If no such contra-
diction is found, the instance is thus feasible, and no
additional nodes can be fixed. In the corresponding
solution, all s-fixed nodes are assigned to the short
chamber, and all l-fixed nodes are assigned to the long
chamber. On completing this step, there may remain
nodes with no chamber assignment. We describe a
straightforward greedy rule that assigns the remaining
nodes to the chambers and show that applying this
rule to a node does not prevent us from applying it
to any later node, thus yielding a feasible solution. The
greedy procedure considers all nodes in order. Let i be
the current node to be labeled: if (i − 1, i)∈ES and i − 1
is assigned to the short chamber, assign i to the long
chamber; otherwise, assign i to the short chamber.
To see that applying this rule does not prevent us
from applying it to any later node, consider node i

in Figure 9. If (i, i + 1) ∈ ES, then node i + 1 must be
assigned to the long chamber only if i is assigned to
the short chamber; this is consistent with the rule. If
there exists a j> i + 1 for which (i, j) ∈ EL, no s-edges
may be incident to any nodes k with i< k< j, because
this would imply that either i or j is a fixed node and
hence, already assigned to a chamber. All such nodes k
as well as node j can thus be assigned to the short
chamber, which is consistent with the rule. Note that
it cannot be the case that both (i, i + 1) ∈ ES and there
exists a j> i + 1 with (i, j) ∈ EL, because this would
imply that j is a fixed node.
After applying the greedy rule, all nodes have been

assigned to a chamber; if no bad path was identified,
we have thus obtained a feasible solution. A pseu-
docode of this procedure is presented in Algorithm 1.
Note that the algorithm assumes that n ≥ 3; instances
with n< 3 can be solved trivially. The discussion
above establishes correctness of the algorithm.

Algorithm 1 (Pseudocode for the Unidirectional Problem
with Two Arbitrary Chambers and Distinct Arrival Times)

Input: arrival times t1 < t2 < . . . < tn and lockage
durations T1 <T2

1. vi← node corresponding to the arrival at time ti
for all i ∈ {1, . . . , n}

2. s-fixed ← ∅
3. l-fixed ← ∅

// identify initial s-fixed nodes:
4. j ← 1
5. for i � 1 to |V|, do
6. j ← max(i + 2, j)
7. if (vi, vi+1) ∈ ES, then
8. while (vi, vj) ∈ EL, do
9. s-fixed ← s-fixed ∪ {vj}

10. j ← j + 1
11. j ← |V|
12. for i � |V| to 1, do
13. j ← min(i − 2, j)
14. if (vi−1, vi) ∈ ES, then
15. while (vj, vi) ∈ EL, do
16. s-fixed ← s-fixed ∪ {vj}
17. j ← j − 1

// extend implications of fixed nodes:
18. j ← 1
19. for i � 1 to |V|, do

Figure 9. Illustration of the Assignment Rule for Remaining
Nodes

Note. Only one of the dashed edges may be present for any
j> i + 1.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
420 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

20. if vi ∈ s-fixed and (vi, vi+1) ∈ ES, then l-fixed
← l-fixed ∪ {vi+1}

21. j ← max(i + 1, j)
22. if vi ∈ l-fixed, then
23. while (vi, vj) ∈ EL, do
24. s-fixed ← s-fixed ∪ {vj}
25. j ← j + 1
26. j ← |V|
27. for i � |V| to 1, do
28. if vi ∈ s-fixed and (vi−1, vi) ∈ ES, then

l-fixed ← l-fixed ∪ {vi−1}
29. j ← min(i − 1, j)
30. if vi ∈ l-fixed, then
31. while (vj, vi) ∈ EL, do
32. s-fixed ← s-fixed∪{vj}
33. j ← j − 1

// check for conflicts:
34. if s-fixed ∩ l-fixed � ∅, then return “not feasible”

// assign nodes to chambers using a greedy rule
for nonfixed nodes:

35. for i � 1 to |V|, do
36. if vi ∈ s-fixed, then chambersi ← “short”
37. else if vi ∈ l-fixed, then chambersi ← “long”
38. else if (vi−1, vi) ∈ ES and chambersi−1 = short,

then chambersi ← long
39. else chambersi ← short
40. return chambers

Note. n ≥ 3 is assumed for the input.

It remains to show that the procedure described above
runs in linear time. As argued above, finding the initial
set of s-fixed nodes takes at most O(n) time. Finding
all additional s-fixed nodes is also possible in linear
time. Indeed, each node has at most two s-edges in-
cident to it, and each node is considered only once in
order and once in reverse order. Graph G contains up
to O(n2) l-edges; to see that finding all additional
l-fixed nodes takes only O(n) time, we make use of the
fact that (V,EL) is an interval graph. By definition, it
follows that, if l-edge (u, v) exists, all l-edges (u,w)with
u<w< v must also exist. Thus, when traversing the
nodes in order, if a node was labeled as s-fixed because
of the presence of an l-edge, no nodes earlier than this
fixed node need to be checked at a later time, because
such nodes are already s-fixed. Thus, it suffices to re-
member the latest node thatwas s-fixed to avoid checking
all possible l-edges for each of the nodes. In Algorithm 1,
this is achieved by keeping track of j, which represents
the next node to be checked for the existence of an l-edge.
The same argument applies when considering nodes in
reverse order, where it suffices to start from the ear-
liest s-fixed node. Because in each iteration, either i or
j increases and no nodes earlier than j are checked,
finding the s-fixed nodes completes in O(n) time.

Finally, we note that recognizing the structures de-
scribed in Observations 2.1–2.4, which were assumed

not to be present in the graph, can be achieved in linear
time. This is easily seen for Observations 2.1, 2.2, and
2.4, which deal only with adjacent nodes. To recog-
nize these structures, it suffices to traverse each of the
nodes and check for the existence of the incident edges
described in the observations. For Observation 2.3, we
use the interval graph structure in the same way as
when recognizing the s-fixed nodes in Algorithm 1.
That is, we remember the latest node that was s-fixed
to avoid checking earlier nodes that are already known
to be s-fixed. If any of these structures is identified, it
immediately follows that no feasible solution exists.

2.2. Fixed Chamber Assignments
We describe here how the algorithm can be extended
to the case where some nodes are preassigned to a
specific chamber. Note that, when specific chamber
assignments are imposed, an instance may not have
a feasible solution while its corresponding graph does
not contain a bad path. Our algorithm, however, is able
to take these given assignments into account.
If a subset of the nodes, say S ⊆ V, is preassigned to

the short chamber, we initialize, in Algorithm 1, the set
of s-fixed nodes to this set S. Similarly, if a given
subset of nodes, say L ⊆ V, is preassigned to the long
chamber, we initialize, in Algorithm 1, the set of l-fixed
nodes to this set L. Clearly, when a node is both s-fixed
and l-fixed, the instance is not feasible. After the sets of
fixed nodes are initialized, the initial sets of fixed nodes
are extended as in Algorithm 1. The analysis of the
assignment rule for all nodes that are not fixed re-
mains valid. Note that feasibility is still identified by
verifying for each node whether it is both s-fixed and
l-fixed. These adjustments suffice to solve the gener-
alization with fixed chamber assignments. The com-
putational complexity remains unchanged.

2.3. Simultaneous Arrivals
In this section, we will consider the generalization
where simultaneous arrivals can occur (i.e., where ar-
rival times need not be distinct). Because a chamber
may then simultaneously serve more than one ship in
a no-wait solution, we need to take the capacity of the
chambers into account. Let Csmall � min(C1,C2) and
Clarge � max(C1,C2). Note that Csmall does not neces-
sarily correspond to the chamber with the shortest
lockage duration. We now show how to modify graph
G and Algorithm 1 to determine whether a feasible
solution exists in this setting with simultaneous arrivals.
For each time t ∈ 7, let kt be the number of ships

arriving at time t. Clearly, if there exists a t with kt >
Csmall + Clarge, the instance is not feasible, because the
number of arriving ships at time t exceeds the com-
bined capacity of both chambers. Let us thus assume
that the instance has kt ≤ Csmall + Clarge for all t ∈ 7. For
each t ∈ 7, we distinguish three cases.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 421

1. Case 1: 2 ≤ kt ≤ Csmall. We modify graph G as
follows: we let a single node represent all of the si-
multaneous arrivals at time t. Either chamber is a valid
assignment to simultaneously serve all kt ships; we
may thus treat these simultaneous arrivals as a single
ship.

2. Case 2: Csmall < kt≤ Clarge. As in the case above, let
a single node represent all simultaneous arrivals at time t.
In addition, we impose that this node must be
assigned to the large chamber. Recall that the large
chamber may be the chamber with either the short or
the long lockage duration depending on the values of
T1, T2, C1, and C2. It is easily seen that it is never
required to use both chambers to serve these kt
ships, because the large chamber must be used re-
gardless, and this single chamber can serve all ships
simultaneously.

3. Case 3: Clarge < kt≤ Csmall + Clarge. Again, let a sin-
gle node represent all simultaneous arrivals at time t. It
follows that, because kt >Clarge, both chambers must be
used simultaneously to transfer all ships without in-
troducing waiting time. We add this node to the set B
designated to identify all nodes that must be assigned
to both chambers. We argue below that, after modi-
fying the graph for all t ∈ 7, the algorithm is easily
adjusted to enforce this assignment for each node in B.

After graph G has been modified, we take B into
account by initializing the algorithm as follows. For
each node i ∈ B, we add all implications that follow
from imposing that i is assigned to both chambers: for
all j ∈ V with (i, j) ∈ ES, add j to the set l-fixed; for all
j ∈ V with (i, j) ∈ EL, add j to the set s-fixed. It is easily
argued that each of the added implications must hold
in any feasible solution. When assigning the nodes to
chambers, we set chambersi = short + long for all i ∈ B.
Furthermore, for a feasible solution to exist, it must
hold that none of the nodes in B are fixed when
running the algorithm. Indeed, if a node k ∈ B with
corresponding time tk would be fixed, this implies that
at least one chamber is unavailable at time tk so that
there is no feasible assignment for k. In addition to
modifying the initialization of sets s-fixed and l-fixed,
we thus extend the check for conflicts in the algo-
rithm to “if s-fixed ∩ l-fixed � ∅, s-fixed ∩ B � ∅, or
l-fixed ∩ B � ∅.”

Using the result for fixed chamber assignments de-
scribed in Section 2.2 and by modifying Algorithm 1 as
outlined above, it follows that we can solve the resulting
instance in O(n) time. The following theorem concludes
this discussion.

Theorem 2. If a no-wait solution exists for the unidirec-
tional lock scheduling problem with two chambers, it can be
found (i.e., problem NLS-uni-2 can be solved) in O(n) time.

We also point out the following remark. We will
come back to this issue in Section 6.

Remark 1. In case a no-wait solution does not exist,
it is not difficult to adapt Algorithm 1 to identify the
ship with the latest arrival tk such that the instance
formed by arrival times {t1, t2, . . . , tk} allows a no-wait
solution.

3. Two Arbitrary Chambers
We now focus on the more general setting with two
lock chambers, where ships may travel in both di-
rections. We show how to model this problem as a
2-SAT problem. The 2-SAT problem is well known to
be solvable in polynomial time.

Lemma 1. An instance of NLS-2 can be modeled as an
instance of 2-SAT using O(n) variables and O(n2) clauses.
Proof. In the NLS-2 setting, ships may arrive simul-
taneously. To take this into account, we first describe
how each instance of NLS-2 can be transformed into
an equivalent instance, where C1 � C2 � 1 and where
some ships are preassigned to chambers. We then
provide a reduction to 2-SAT for the setting with two
unit-capacity chambers and preassigned ships.

Similar to the approach discussed in Section 2.3, we
distinguish multiple cases when constructing the in-
stance with unit capacity. For each time t ∈ 7, let kt,d be
the number of ships arriving at time t and traveling
in direction d. Clearly, the instance is not feasible if
there exist t and d such that kt,d >C1 + C2. Because this
can be easily verified in linear time, we assume that
kt,d ≤ C1 + C2 for all t ∈ 7, d ∈ {upstream, downstream}.
Consider a given instance(ofNLS-2. As in Section 2.3,

let Csmall�min(C1,C2) and Clarge � max(C1,C2). We
construct an instance (unit, where C(unit

1 � C(unit
2 � 1,

leaving the lockage times and the set of arrival times
unaltered. The set of arriving ships is constructed as
follows for each t ∈ 7 and d ∈ {upstream, downstream}.

1. If kt,d ≤ Csmall, replace these kt,d ships by a single
ship traveling in direction d arriving at time t. It is
immediately clear that either lock chamber suffices to
handle all kt,d ships so that we effectively ignore these
simultaneous arrivals.

2. If Csmall < kt,d ≤ Clarge, replace all of these ships
by a single ship traveling in direction d arriving at
time t and additionally impose that this ship must be
assigned to the large chamber (i.e., the second chamber
if C1 ≤ C2; the first chamber otherwise). To serve all
ships without introducing waiting time, the large
chamber must be used to serve at least one ship arriving
at time t and traveling in direction d. By preassigning the
ship to the large chamber, it follows that this chamber
must be available at time t to serve ships traveling in
direction d. In fact, the capacity of the large chamber
suffices to serve all ships arriving at time t and traveling
in direction d. Consequently, we can ignore the simul-
taneously arriving ships in what follows.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
422 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

3. If Clarge < kt,d, replace all of these ships with two
ships traveling in direction d arriving at time t. Fur-
thermore, preassign the first ship to the first chamber
and the second ship to the second chamber. It follows
that both chambers must be available at time t to serve
ships traveling in direction d.

The resulting instance is called (unit. Finding a no-
wait schedule for (unit with preassigned ships thus
yields a no-wait solution for the original instance (of
NLS-2. We now describe a reduction to 2-SAT for
the problem of finding a no-wait solution for in-
stances with two unit-capacity chambers and preas-
signed ships.

Recall that a no-wait schedule exists if and only if
each ship can be assigned to either the short or the long
chamber such that, for each chamber, lockages do not
overlap. For lock chamber j ∈ {1, 2}, it is easily seen that
there is no overlap if and only if |ti − ti′ | ≥ Tj for each
pair of ships i and i′ that are assigned to chamber j, and
in addition, |ti − ti′ | ≥ 2Tj if ships i and i′ travel in the
same direction, as argued in Section 1. We create the
following instance of 2-SAT: for each ship i ∈ {1, . . . ,n},
define a literal xi. We will argue later that xi � false
corresponds to assigning ship i to the short chamber
and that xi � true corresponds to assigning ship i to
the long chamber. Let the Boolean expression in con-
junctive normal form consist of clauses described as
follows for each pair of ships i, i′ ∈ {1, . . . ,n}.

1. If the ships travel in opposite directions and
|ti − ti′ |<T1, add the clause (xi ∨ xi′).

2. If the ships travel in the same direction and
|ti − ti′ |< 2T1, add the clause (xi ∨ xi′).

3. If the ships travel in opposite direction and
|ti − ti′ |<T2, add the clause (¬xi ∨ ¬xi′).

4. If the ships travel in the same direction and
|ti − ti′ |< 2T2, add the clause (¬xi ∨ ¬xi′).

Observe that, if xi � false where ship i is assigned to the
short chamber, and xi � true where it is assigned to the
long chamber, (¬xi ∨ ¬xi′) suffices to prevent over-
lapping lockages for the long chamber, whereas (xi ∨ xi′)
ensures that there is no overlap for the short chamber.

In addition, to enforce that all preassignments are
respected, we add a clause containing only the literal xi
for all ships i that are preassigned to the long chamber
and a clause consisting of ¬xi for all ships i that are
preassigned to the short chamber.

We claim that the existence of a truth assignment
satisfying the Boolean formula is equivalent to the ex-
istence of a no-wait schedule. Indeed, given a truth
assignment, we assign ship i to the short chamber if xi �
false and to the long chamber if xi � true. The definition
of the clauses implies that no overlapping lockages exist
for either chamber while each ship is assigned to a
chamber, and hence, we found a no-wait schedule. Also,
the existence of a no-wait schedule immediately trans-
lates into a satisfying truth assignment. □

Note that the number of clauses in the 2-SAT in-
stance described above, as well as the time needed to
construct this instance, is quadratic in the number
of ships. To find a no-wait solution for the NLS-2
problem, it follows that we can construct an instance
of 2-SAT as described above and use any algorithm for
2-SAT with a running time linear in the number
of clauses. We can summarize this in the following
theorem.

Theorem 3. The bidirectional case for two arbitrary cham-
bers (i.e., problem NLS-2) can be solved in O(n2) time.

For an explicit description of methods deciding the
feasibility of 2-SAT, we refer to Even et al. (1976) and
Aspvall et al. (1979).

4. Identical Chambers
We now focus on problemNLS-id (i.e.,Cj � C and Tj �
T for each j ∈ {1, . . . ,m}). Again, we assume that ar-
rival times are given in sorted order (Section 1.4). In
fact, we consider a more general optimization version
of NLS-id, where we aim at finding the minimum
number of chambers allowing a no-wait solution. We
first show that this problem is a special case of color-
ing trapezoid graphs. In Section 4.2, we provide a de-
scription of a greedy procedure and argue that it always
finds a no-wait schedule while using a minimum
number of chambers. We then prove in Section 4.3 that
this procedure can be implemented with an O(n)
running time for both the unidirectional and the bi-
directional cases.

4.1. Coloring Trapezoid Graphs
For the definition of trapezoid graphs, we consider
a pair of parallel lines labeled up and down. A trapezoid
between these lines is defined by two points per line.
Let this construction of lines and trapezoids be called
the trapezoid instance. A graph G � (V,E) is called a
trapezoid graph if there exists a trapezoid instance
with |V| trapezoids, each corresponding to a node in V,
such that there is an edge in E connecting nodes u and v
if and only if the trapezoids corresponding to u and v
intersect (see Figures 10 and 11 for an example illus-
trating this definition). Felsner et al. (1997) discuss the
coloring of trapezoid graphs and show that a proper
coloring with a minimum number of colors can be
found in O(n log n) time.

Figure 10. Example Instance Illustrating the Definition of
the Corresponding Trapezoids

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 423

The special case of this trapezoid graph coloring prob-
lem that we consider is the following: given a trapezoid
instance where all trapezoids are identical isosceles tri-
angles, find a proper coloring with a minimum number
of colors. We denote this problem by TC. Notice that,
although the triangles are identical, their orientationmay
differ depending on which of the parallel lines contains
a single point. In a trapezoid coloring instance, we say
that a triangle is up oriented if this triangle has a single
point on the up line and two points on the down line;
a triangle is down oriented if it has a single point on the
down line and two points on the up line.

We argue that we can reduce NLS-id to TC and vice
versa. As in Section 3, let kt,d denote the number of
ships arriving at time t and traveling in direction d; we
first argue that we can deal with simultaneous arrivals
by transforming each instance (of NLS-id into an
equivalent instance (unit with unit capacity. In the re-
mainder of Section 4, we can then restrict ourselves to
instances where C � 1. Given (, we construct (unit as
follows. For each t ∈ 7, replace the kt,d arrivals by kt,d/C� �
arrivals at time t and traveling in direction d. Clearly, in
(, at least kt,d/C� � chambers are needed to serve these kt,d
ships. It is also clear that any remaining capacity in the
chosen lock chambers cannot be used to serve other
ships without introducing waiting time. Consequently,
a solution in (unit corresponds directly to a solution in (.
Observe that constructing(unit can be done inO(n) time.

We thus turn our attention to the case with unit ca-
pacity. Given an instance of NLS-id where C � 1,
we specify a set of identical isosceles triangles be-
tween parallel lines up and down as follows. For each
downstream-traveling ship i, we construct a triangle with
a point on the up line at ti and points on the down line at
ti − T and ti + T; for each upstream-traveling ship i, we
construct a trianglewith a point on the down line at ti and
points on the up line at ti − T and ti + T. From this
construction, we can derive two fundamental properties.

1. The triangles corresponding to two ships i and i′
traveling in the same direction intersect if and only if
|ti − ti′ |< 2T.

2. The triangles corresponding to two ships i and i′
traveling in opposite directions intersect if and only if
|ti − ti′ |<T.

Note that, in either case, ships i and i′ cannot be
served by the same chamber. In conclusion, ships can
be assigned to the same chamber if and only if the
corresponding triangles do not intersect. Hence, a proper
coloring of the corresponding graph represents a no-
wait schedule, where a color refers to a chamber. The
chromatic number of the trapezoid graph then repre-
sents the minimum number of chambers allowing a no-
wait schedule. Each instance of NLS-id can thus be
modeled as an instance of TC. Similarly, it is easily
seen that each instance of TC can be modeled as an
instance of NLS-id.
To illustrate this reduction, we provide an example

instance in Figure 10. We have downstream-traveling
ships 1, 2, 4, and 6 arriving at times 10, 25, 42, and 54
and upstream-traveling ships 3 and 5 arriving at times
30 and 50. The lockage time is T � 10. Consequently,
the pairs of ships that cannot both be served by a
single chamber are (1,2), (2,3), (2,4), (4,5), (4,6), and
(5,6). This is represented by intersections of triangles
accurately. The graph corresponding to this instance
is shown in Figure 11. It is immediately seen that at
least three colors are required to color the graph, because
it contains a clique on nodes 4, 5, and 6. One feasible
solution could consist of assigning ships 1 and 4 to the
first chamber, ships 2 and 5 to the second chamber, and
ships 3 and 6 to the third chamber.
Because the chromatic number of a trapezoid graph

can be found in O(n log n) time (Felsner et al. 1997), it
immediately follows that an O(n log n) algorithm ex-
ists that solves NLS-id. In the remainder of this sec-
tion, we improve this result to yield anO(n) algorithm.

4.2. Correctness of a Greedy Procedure for NLS-id
We argued in Section 4.1 that we can reduce each in-
stance of NLS-id to an equivalent instance with C � 1.
We thus restrict ourselves to the setting with C � 1. We
say that a chamber is available at time t for direction d if
the last ship handled by this chamber (say ship i)
traveled in direction d and arrived at time ti ≤ t − 2T or
traveled in the direction opposite to d and arrived at
time ti ≤ t − T. In the former case, we say that the
availability period of the chamber equals t − ti − 2T; in
the latter case, the availability period of the chamber
equals t − ti − T. The solution procedure is as follows.
Initially, let the number of chambers be zero. Consider
all arriving ships in order; let ti and di be the arrival
time and direction, respectively, of ship i being con-
sidered. If no chambers are available at time ti for
direction di, add an additional chamber, and assign
ship i to this chamber; otherwise, assign ship i to the
chamber with the largest availability period for di-
rection di at time ti.
We argue that this greedy procedure yields a solu-

tion with a minimum number of chambers. Whenever
a chamber is added to serve ship i, there is no possible

Figure 11. Trapezoid Graph Corresponding to the Example
Instance of Figure 10

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
424 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

assignment of ships 1, . . . , i − 1 to chambers so that
at least one chamber is available at time ti. Indeed,
because all chambers are identical, the choice of which
ship is assigned to which chamber is, in fact, irrelevant.
When considering a ship i, a chamber is added if and
only if the current number of chambers is not sufficient
to serve ships 1, . . . , i without waiting time. It follows
that, after considering all ships, we have a no-wait so-
lution that uses a minimum number of chambers.

4.3. An O(n) Algorithm for NLS-id
To see that the procedure from Section 4.2 can be
implemented to run in linear time, we first briefly
discuss the unidirectional setting before extending
the implementation to the bidirectional case. When all
ships travel in the upstream direction, it is easily seen
that there is an optimal solution where a chamber, after
transferring a ship, immediately returns to the down-
stream side. A chamber that serves a ship is then always
unavailable for 2T time units starting from the arrival
time of that ship. Solving this problem corresponds to
a basic interval scheduling problem, for which Ford
and Fulkerson (1962) describe a “staircase rule” based
on Dilworth’s chain decomposition theorem. Gupta
et al. (1979) provide a more efficient algorithm, which
runs in O(n) time when the intervals have equal
length and are sorted by starting time. Applying this
algorithm thus immediately yields a solution to NLS-
uni-id.

Although this approach is straightforward for NLS-
uni-id, the time at which a chamber becomes avail-
able depends on the direction of travel in the more
general NLS-id. Indeed, a chamber that finishes an
upward lockage is immediately available to serve a
downstream-traveling ship; the next upstream-traveling
ship, however, can only be served after an additional
T time units needed to return to the downstream side.
As a result, for a given time t and direction d, a chamber
that started a lock movement at time t1 may not be
available, whereas a different chamber that started a lock
movement at time t2 > t1 is available. Themain challenge
of implementing our greedy rule is thus to efficiently
keep track of the different chambers and the moments in
time atwhich they are available to serve ships depending
on their direction.

To achieve this, we maintain the following lists
throughout the solution procedure. Each of the entries
that will be added to these lists consists of a pair (t, i),
where t specifies the time at which the chamber that
serves ship i becomes available for a given direction.

1. List AUU: availability for upstream, ship i is up-
stream traveling.

2. List AUD: availability for upstream, ship i is down-
stream traveling.

3. List ADU: availability for downstream, ship i is
upstream traveling.

4. List ADD: availability for downstream, ship i is
downstream traveling.
As outlined in the description in Section 4.2, we keep

track of the required number of chambers m. Addi-
tionally, we follow-up whether each chamber remains
available as the algorithm runs. Throughout the algo-
rithm, Ri are Boolean values indicating whether, after
serving ship i, a chamber has been used to serve an-
other ship (1 ≤ i ≤ n).
A pseudocode for the algorithm is provided in

Algorithm 2. In words, we consider each ship in order
and first verify whether one of the existing chambers
is available at the position where the ship arrives. Let i be
the ship under consideration. If a chamber j is available, it
contains an entry in two of the lists. On assigning a ship
to j, we updateRi so that the second entry corresponding
to j becomes invalid. We update the times at which
j becomes available for each direction. If no chamber is
available, we update m and proceed as above.

Algorithm 2 (Pseudocode for Identical Chambers (i.e.,
NLS-id) with Unit Capacity)

Input: arrival times t1 ≤ t2 ≤ . . . < tn, directions
d1, d2, . . . , dn, lockage duration T

1. AUU ← ∅, AUD ← ∅, ADU ← ∅, ADD ← ∅
2. Ri ← false for all i ∈ {1, . . . , n}
3. m ← 0
4. for i � 1 to n, do
5. reUsed = false
6. if di �� downstream, then
7. (t∗, i∗) ← earliest entry in ADU ∪ ADD

8. while t∗ < ti and reUsed �� false, do
9. if Ri �� false, then

10. reUsed = true
11. Ri∗ ← true
12. delete entry (t∗, i∗) from the list in

which it is contained
13. (t∗, i∗)← earliest entry in ADU ∪ ADD

14. else
15. (t∗, i∗) ← earliest entry in AUU ∪ AUD

16. while t∗ < ti and reUsed �� false, do
17. if Ri �� false, then
18. reUsed = true
19. Ri∗ ← true
20. delete entry (t∗, i∗) from the list in

which it is contained
21. (t∗, i∗)← earliest entry in AUU ∪ AUD

22. if reUsed == false, then
23. m ← m + 1
24. if di �� downstream, then
25. add entry (ti + T, i) to the back of listAUD

26. add entry (ti + 2T, i) to the back of list ADD

27. else
28. add entry (ti + T, i) to the back of listADU

29. add entry (ti + 2T, i) to the back of listAUU

30. return m

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 425

To see that Algorithm 2 runs in linear time, note the
following. Each ship is considered only once in the
given input order. New entries in the lists AUU , AUD,
ADU, and ADD are always added to the end of the list.
Furthermore, the time value of newly inserted entries
is nondecreasing with i, because the increment when
constructing the entry is the same for all entries within
each of the lists; for example, all entries inserted in list
AUU have a time value of ti + 2T for some ti, and all
entries inserted in list AUD have a time value of ti + T
for some ti. Each of the lists thus remains sorted by
the time value of the contained entries at all times.
Finding the earliest entry in two of the lists is then
easily performed in constant time by comparing the
first entry of each of the lists. Deleting the first entry
as well as adding a new entry to the back of a list
also require only constant time. Whenever an entry of
one of the lists is iterated over, it is deleted. Because
only O(n) entries are added to lists throughout the
procedure, iterating through the lists thus also takes
O(n) time in total. It follows that the entire procedure
runs in linear time. We can summarize the discussion
above as follows.

Theorem 4. For the setting with identical chambers, a no-
wait schedule can be found or shown not to exist (i.e., problem
NLS-id can be solved) in O(n) time.

Corollary 1. Finding the chromatic number of a trapezoid
graph where the trapezoids are identical up- or down-
oriented isosceles triangles can be done in O(n) time.

Similar to Remark 1, we point out the following. We
will come back to this issue in Section 6.

Remark 2. In case a no-wait solution does not exist
for a given number of chambersm, it is trivial to modify
Algorithm 2 to identify the ship with the latest arrival tk
such that the instance formed by arrival times {t1, t2, . . . ,
tk} allows a no-wait solution.

5. Results for NLS
In this section, we propose a DP approach that solves
the general problem NLS stated in Section 1. This
algorithm runs in polynomial time when the number
of chambers is fixed. In contrast, if the number of
chambers is part of the input, we state that NLS is NP
complete, even in the unidirectional case with dis-
tinct arrival times.

Recall that, in NLS, we consider an arbitrary number
of chambers m with nonidentical lockage times Tj and
capacities Cj for j � 1, . . . ,m. We assume that ships are
numbered in nondecreasing order of arrival times. Ties
are broken by letting ships arriving downstream have
lower numbers than ships arriving upstream. Remaining
ties are broken arbitrarily.OurDP approach assigns ships
to chambers in increasing order of these numbers. We
consider states (i1, . . . , im), where ij represents the last

ship 1 ≤ ij ≤ n that has been assigned to chamber j
(1 ≤ j ≤ m). Furthermore, we restrict ourselves to states
where a ship is assigned to a chamber only if all earlier
ships have also been assigned. Thus, in a given state
(i1, . . . , im), the first maxj∈{1,...,m} ij ships have been
assigned to chambers. We consider a transition from
(i1, . . . , im) to (i′1, . . . , i′m) if there is a j∗ ∈ {1, . . . ,m}
such that:

1. i′j∗ > ij∗ and i′j � ij for each j ∈ {1, . . . ,m} with j � j∗,
2. ships maxj ij

() + 1, . . . , i′j∗ travel in the same di-
rection and arrive at the same time,

3. ship i′j∗ arrives at least Tj∗ time units later than ship
ij∗ if both travel in opposite direction and at least 2Tj∗

time units later than ship ij∗ otherwise, and
4. i′j∗ − maxj ij

() ≤ Cj∗ .
This transition represents assigning ships maxj ij

() +
1, . . . , i′j∗ to chamber j∗. This is allowed only if chamber j∗

is available after handling ship ij∗ . If more than one ship
is assigned to chamber j∗, then these ships must arrive
simultaneously and travel in the same direction, and the
chamber’s capacity must not be exceeded. We consider
an initial state (0, . . . , 0) representing that no ships
are assigned to any chambers yet. The question is
whether we can reach a state (i1, . . . , im) with max ij | j �{

1, . . . ,m} � n by any sequence of transitions.
In this DP, we use O(nm) states and O(mnm+1) tran-

sitions. However, we can further restrict the set of
transitions by always assigning the maximum number
of ships (up to the chamber’s capacity) that travel in the
same direction and arrive at the same time as ship ij∗ + 1.
Each state then has m transitions: one per chamber. This
leaves us with O(mnm) transitions, which also consti-
tutes the runtime complexity. Note that the complexity
is polynomially bounded if the number of chambers
is fixed.We can conclude with the following theorem.

Theorem 5. The problem setting with a fixed number of
arbitrary chambers (i.e., problem NLS-m) can be solved in
O(mnm) time.

Again, we point out the following. We will come
back to this issue in Section 6.

Remark 3. In case a no-wait solution does not exist, it
is not difficult to adapt the procedure above to identify
the ship with the latest arrival tk such that the instance
formed by arrival times {t1, t2, . . . , tk} allows a no-wait
solution.

We now state that problem NLS is NP complete.

Theorem 6. Deciding whether a no-wait solution exists for
an arbitrary number of chambers, even when all ships travel
in the same direction and arrival times are distinct (i.e.,
problem NLS-uni-distinct), is strongly NP complete.

Proof. We refer to Passchyn et al. (2016b) for the
proof. □

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
426 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

Remark 4. As mentioned in Section 1, when viewing
a chamber as a machine and an arrival as a job repre-
sented bym intervals (one for eachmachine; each starting
at the same moment ti), the reduction referred to above
shows that the problem considered by Böhmová et al.
(2013) (called interval selection with cores) remains NP
complete even when all intervals that correspond to the
same machine have the same length.

6. Minimizing Waiting Time
An interesting extension of the work presented for no-
wait schedules is to consider instances where some
waiting time cannot be avoided. For such instances,
it makes sense to look for a schedule that minimizes
the waiting time. For example, two sensible objective
functions to consider would be to minimize (i) the total
sum of waiting times of all ships or (ii) the maximum
waiting time that any ship incurs. In this section, we
sketch how extensions of algorithms introduced in
the previous sections can be used to find solutions for
instances that do not have a no-wait solution. We
discuss two distinct approaches. Of course, it may not
be possible to make strong guarantees about the so-
lution quality of the proposed heuristics for all possible
problem instances.

6.1. Iterative Application
Essentially, we iteratively identify a maximal instance
that allows a no-wait schedule, build a corresponding
partial schedule, and postpone the arrival times of the
ships that are incompatible with the partial schedule.
A more precise description is as follows. Suppose that
a given instance of NLS-m does not admit a no-wait
schedule. As indicated by Remark 3, the DP sketched in
Section 5 will then identify the largest arrival time tk
(with tk < tn) such that the partial instance {t1, . . . , tk}
allows a no-wait schedule. Then, we schedule the
first k ships accordingly and refer to these assignments
as a partial schedule. Clearly, all lock chambers are
unavailable at time tk+1; otherwise, the partial schedule
was not maximal. Let t∗ be the earliest time at which
a chamber becomes available after serving all ships in
the partial schedule. Next, we update the arrival times
ti that satisfy ti < t∗ with i ≥ k + 1 as follows: ti ← t∗.
Updating these arrival times leads to a new partial
instance {tk+1, . . . , tn} to which we apply the same
procedure.

Notice that, in each iteration, we are sure that at
least one ship is scheduled. This guarantees that this
procedure ends with a feasible solution and in fact,
runs in polynomial time.

Clearly, by Remarks 1 and 2, similar procedures can
be applied for instances of NLS-uni-2 and NLS-id,
respectively, making use of the efficient no-wait al-
gorithms for these special cases discussed in Sections 2
and 4.

This approach can be used for minimizing the maxi-
mumwaiting time, because in each iteration, the updated
arrival times reflect the minimum possible delays that
allow a feasible extension.

6.2. Rounding of Arrival Times
Instead of associating an arrival time with each ship
that is a unique moment in time, one can also associate
a predefined interval with each ship. Thus, let us as-
sume that time is split up into five-minute intervals and
that we know in which interval each ship arrives. In
fact, we assume that each ship arrives at the end of its
five-minute interval. Next, by treating the resulting
instance as an instance of NLS, we verify whether there
exists a schedule in which a ship does not wait for more
than five minutes. If the answer is yes, we can imple-
ment this schedule with a bound on the maximum (and
total) waiting time; otherwise, we might (incrementally)
increase the length of the time interval and verify
whether a feasible solution exists for this new length.
This approach allows for the clustering of ships that

arrive close to each other and may find no-wait sched-
ules for these rounded data where the original data do
not admit such schedules. Such an approach is likely to
work well when the interval is small compared with
the lockage time and where there is enough capacity
for the locks. Clearly, these issues may depend on
the precise practical situation.

7. Conclusion and Future Research
In this paper, we have investigated the problem of
scheduling a lock consisting of multiple chambers in
parallel. We showed the connection of this problem to
a known interval scheduling problem.We focused on the
relevant case of finding so-called no-wait schedules, and
we obtained algorithmic results for different special cases.
More specifically, for the problem setting where a

lock consists of two (distinct) chambers and traffic is
unidirectional, we showed how to characterize feasi-
bility and how this result leads to a linear time algo-
rithm that either identifies a no-wait solution or proves
that no such solutions exist. For the problem setting
where a lock consists of (many) identical chambers, we
showed how a known result for the unidirectional
setting can be extended to the bidirectional setting and
how this result extends to a special case of the trape-
zoid coloring problem. Furthermore, we described a
DP approach for the more general problem setting with
arbitrary chambers. We also showed that the general
problem of deciding whether a no-wait schedule exists
is strongly NP complete, thereby strengthening a result
from interval scheduling. Finally, we discussed two
approaches that make use of the algorithms for the
no-wait setting to obtain solutions for the problem of
minimizing waiting time in case a no-wait solution
does not exist.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS 427

One direction for future research would be to expand
on Section 6 with a more in-depth study of the problem
of minimizing waiting time. In addition to this ex-
tension, taking into account ship properties, such as
individual deadlines and size or other restrictions, is
worth studying. Finally, multiple multi-chambered locks
in sequence (which are present in many inland water-
ways) are an interesting research area.

Acknowledgments
Apreliminary version of this article appeared as a chapter in the
first author’s PhD thesis (Passchyn 2016) and in a technical
report (Passchyn et al. 2016b). The authors thank the reviewers
and the editors for their comments and suggestions.

References
Aspvall B, Plass MF, Tarjan RE (1979) A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Inform.
Processing Lett. 8(3):121–123.

Böhmová K,Disser Y,MihalákM,Widmayer P (2013) Interval selection
with machine-dependent intervals. Dehne F, Solis-Oba R, Sack JR,
eds. Proc. Algorithms Data Structures 13th Internat. Sympos. (Springer,
Berlin), 170–181.

Cornell Law School (Legal Information Institute) (2006) 33 cfr 207.718-
navigation locks and approach channels, Columbia and Snake
Rivers, Oreg. andWash. Accessed July 28, 2017, https://www.law
.cornell.edu/cfr/text/33/207.718.

Disser Y, Klimm M, Lübbecke E (2015) Scheduling bidirectional
traffic on a path. Halldórsson MM, Iwama K, Kobayashi N,
Speckmann B, eds.Automata, Languages, and Programming, Lecture
Notes in Computer Science, vol. 9134 (Springer, Berlin), 406–418.

Even S, Itai A, Shamir A (1976) On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput. 5(4):691–703.

Felsner S, Müller R, Wernisch L (1997) Trapezoid graphs and general-
izations, geometry and algorithms.Discrete Appl. Math. 74(1):13–32.

Ford LR, FulkersonDR (1962) Flows in Networks (PrincetonUniversity
Press, Princeton, NJ).

Gupta U, Lee DT, Leung JYT (1979) An optimal solution for the channel-
assignment problem. IEEE Trans. Comput. C-28(11):807–810.

Hermans J (2014) Optimization of inland shipping - a polynomial time
algorithm for the single ship single lock optimization problem.
J. Scheduling 17(4):305–319.

Kolen AWJ, Lenstra JK, Papadimitriou CH, Spieksma FCR (2007)
Interval scheduling: A survey. Naval Res. Logist. 54(5):530–543.

Krumke SO, Thielen C, Westphal S (2011) Interval scheduling on
related machines. Comput. Oper. Res. 38(12):1836–1844.

Passchyn W (2016) Scheduling locks on inland waterways. PhD
thesis, KU Leuven, Leuven, Belgium.

Passchyn W, Briskorn D, Spieksma FCR (2016a) Mathematical pro-
gramming models for lock scheduling with an emission objec-
tive. Eur. J. Oper. Res. 248(3):802–814.

Passchyn W, Briskorn D, Spieksma FCR (2016b) No-wait scheduling
for locks. Technical Report KBI_1605, KU Leuven, Research
Group Operations Research and Business Statistics, Leuven,
Belgium.

PasschynW, Coene S, Briskorn D, Hurink JL, Spieksma FCR, Vanden
Berghe G (2016c) The lockmaster’s problem. Eur. J. Oper. Res.
251(2):432–441.

Prandtstetter M, Ritzinger U, Schmidt P, Ruthmair M (2015) A
variable neighborhood search approach for the interdependent
lock scheduling problem. Ochoa G, Chicano F, eds. Evolutionary
Computation in Combinatorial Optimization, Lecture Notes in
Computer Science, vol. 9026 (Springer International Publishing,
Berlin), 36–47.

Savenije R (1997) Admittance policy deep draught vessels and safety.
Sung JS, Das BM, Matsui T, Thiel H, eds. Proc. Internat. Offshore
Polar Engrg. Conf. (International Society of Offshore and Polar
Engineers, Cupertino, CA), 289–296.

Smith LD, Nauss RM, Mattfeld DC, Li J, Ehmke JF, Reindl M (2011)
Scheduling operations at system choke points with sequence-
dependent delays and processing times. Transportation Res. E
47(5):669–680.

Sung SC, Vlach M (2005) Maximizing weighted number of just-in-
time jobs on unrelated parallel machines. J. Scheduling 8(5):
453–460.

Ting C, Schonfeld P (2001) Control alternatives at a waterway lock.
J. Waterway Port Coast Ocean Engrg. 127(2):89–96.

Vantorre M, Candries M, Verwilligen J (2014) Optimisation of tidal
windows for deep-drafted vessels by means of a probabilistic
approach policy for access channels with depth limitations. Proc.
33rd PIANC World Congress (Curran Associates, Red Hook, NY),
1–18.

Verstichel J (2013) The lock scheduling problem. PhD thesis, KU
Leuven, Leuven, Belgium.

Verstichel J, De Causmaecker P, Vanden Berghe G (2011) Scheduling
algorithms for the lock scheduling problem. Procedia Soc. Behav.
Sci. 20:806–815.

Verstichel J, De Causmaecker P, Spieksma FCR, Vanden Berghe G
(2014) The generalized lock scheduling problem: An exact ap-
proach. Transportation Res. E 65:16–34.

Waterwegen en Zeekanaal NV, nv De Scheepvaart (2014) Masterplan
voor binnenvaart op de Vlaamse waterwegen—Horizon 2020.
[Master plan for inland shipping on the Flemish waterways—
Horizon 2020.] Report, nv De Scheepvaart, Willebroek, Belgium.

Passchyn, Briskorn, and Spieksma: No-Wait Scheduling for Locks
428 INFORMS Journal on Computing, 2019, vol. 31, no. 3, pp. 413–428, © 2019 INFORMS

https://www.law.cornell.edu/cfr/text/33/207.718
https://www.law.cornell.edu/cfr/text/33/207.718

	No-Wait Scheduling for Locks
	Introduction
	Two Arbitrary Chambers, Unidirectional Case
	Two Arbitrary Chambers
	Identical Chambers
	Results for NLS
	Minimizing Waiting Time
	Conclusion and Future Research

