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a b s t r a c t 

The design of many-to-many parcel delivery networks is an important problem in freight transporta- 

tion. To exploit economies of scale and provide a better service level, these networks usually have a 

hub-and-spoke architecture. We address a planar hub location-routing problem (HLRP) where the market 

demand is modeled as a uniform density function over a convex polygon service region. The continu- 

ous approximation (CA) technique is used for modeling the HLRP in such a way that it jointly decides 

on the location of hubs and the allocation of a service region to the hubs. The objective is to minimize 

the approximate total transportation cost, including local pickup and delivery costs, as well as line-haul 

transportation costs. Two solution algorithms are developed for the problem: an iterative Weiszfeld-type 

algorithm (IWA) and a particle swarm optimization (PSO) metaheuristic. The performance and solution 

quality of the proposed algorithms are compared with an adapted algorithm from the literature. Further- 

more, extensive computational experiments are performed to study the effect of different input param- 

eters such as the discount factor value, demand points density, and vehicle capacity on the total system 

cost and the final configuration of the network. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Freight transportation is a vital component of the economy. It

supports production, trade, and consumption activities by ensuring

the efficient movement and timely availability of raw materials and

finished goods. As a consequence, freight transportation accounts

for a significant part of the final cost of products and represents

an important component of the national expenditures of a country

( Crainic and Laporte, 1997 ). In order to lower their costs and in-

crease their service levels, freight carriers aim at improving their

transportation and distribution network. 

In freight transportation applications, as well as postal services,

hub-and-spoke networks has been shown to be effective when

it comes to reducing costs and delivery times, thereby increas-

ing the service level. In such networks, the direct connections be-

tween locations in a geographic region are replaced with indirect

connections facilitated by the use of hub nodes. As identified in

O’Kelly and Miller (1994) , such a network topology is desirable be-

cause it reduces and simplifies network construction costs, central-
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zes commodity handling, and allows carriers to take advantage of

conomies of scale through the consolidation of flows. In the case

f less-than-truckload (LTL) carriers, an additional improvement

s possible by serving the origin-destination (O/D) demand points

long the pickup and delivery routes, rather than having to serve

hem separately. This can reduce the transportation costs through

 more efficient use of resources (e.g. vehicles operating in the sys-

em). With these considerations in mind, the problem we study in

his paper consists of two main decisions: locating hubs and gener-

ting multiple-stop routes for the non-hub points allocated to the

ubs. As a result, we get the combined hub location-routing prob-

em (HLRP). An example of the HLRP is illustrated in Fig. 1 . The

riangles and circles show the installed hubs and non-hub nodes,

espectively. The thick lines represent the inter-hub connections

backbone links), whereas the thin lines show the local tours (ac-

ess links). 

Hub location, market allocation, and vehicle routing decisions

elong to different levels of the decision making process and are

ypically treated separately in the literature. However, since strate-

ic location and allocation decisions have a big impact on ship-

ent costs, not taking the related routing costs into considera-

ion in the strategic planning phase can lead to sub-optimality

 Shen and Qi, 2007 ). Nevertheless, the detailed data on the
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Fig. 1. HLRP solution example. 
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eographical locations and demand volumes of customers required

s the input data for discrete network design models are seldom

vailable when the network planner decides on the number and

ocation of hub facilities. Continuous approximation (CA) is an al-

ernative approach to discrete models where smooth demand den-

ity functions are used for describing the distribution system. Ap-

roximation models usually provide near optimal solutions and

an address problems of larger scale and size, while discrete opti-

ization models could provide more accurate solutions for smaller

nstances ( Daganzo, 2005 ). 

In this paper, we assume uniformly distributed demand points

ver a service region of a convex polygon shape. This assumption,

hich is commonly used within the CA literature, clearly makes

t easier to analyze the model. However, it still provides funda-

ental insights into the nature of the problem and hence is a

aluable complement to large, complex, and more realistic mod-

ls ( Erlenkotter, 1989; Geoffrion, 1976; Hall, 1986; Newell, 1973 ).

e use the Euclidean ( L 2 ) norm to measure the distances be-

ween points over the service area. Although some authors have

rgued that the L 1 distance is more realistic in urban applica-

ions as urban road networks might be better approximated by

ectilinear distance, it has been shown by Von Hohenbalken and

est (1984) that the market areas that were calculated by using

he Euclidean distance provide fair approximations to those cal-

ulated using the rectilinear metric. We also assume that each

emand point is assigned to the nearest installed hub facility

ased on a single allocation protocol. In the single allocation pro-

ocol, which is a common assignment scheme in many applica-

ions such as postal services, less-than-truckload (LTL) transporta-

ion, telecommunications, etc. Campbell and O’Kelly (2012) , each

emand node is allocated to exactly one hub. 

The main contributions of this paper are threefold. First, the

lanar HLRP is modeled by using the CA technique for the first

ime in the literature that incorporates operational routing cost es-

imates into the strategic decisions of hub location. The problem is

lso formulated as a multifacility location problem. Secondly, two

olution algorithms are developed: an iterative Weiszfeld-type al-

orithm (IWA) that exploits the characteristics of the multifacil-

ty location model and a particle swarm optimization (PSO) meta-

euristic. Based on a set of experiments, it is shown that the pro-

osed solution algorithms can obtain higher quality solutions than

n adapted algorithm from the literature. Third, an extensive set

f experiments is conducted to study the effect of different input

actors such as the inter-hub transportation discount factor, the de-

and point density, and the vehicle capacity on the total system-

ide costs and the number of installed hubs. 
The remainder of this paper is organized as follows. The next

ection discusses the relevant literature. Section 3 formally de-

nes the problem by presenting the new formulation and some

efinitions. The proposed solution algorithms are described in

ection 4 . Section 5 presents the respective experimental results

nd Section 6 concludes the paper and provides some directions

or future research. 

. Literature review 

This section presents a review of the literature for the three

ain research streams, namely the hub location-routing problem,

A models in location and routing problems, and the PSO algo-

ithm. 

.1. Hub location-routing problem 

Even though a large number of papers have been published on

he hub location problem (HLP) and the location-routing problem

LRP), few studies have addressed the combined HLRP. A simple

ersion of a hub location and routing problem is presented by

ykin (1995) , where the hub locations and service types for the

outes between the O/D pairs include three types of routes (direct,

ne-stop, and two-stop routes). The author proposes an iterative

lgorithm for solving the problem. Nagy and Salhi (1998) present

 mathematical programming formulation for the HLRP where the

ehicles are allowed to do the pickup and delivery on separate

outes. They impose capacity and maximum distance constraints

n the vehicle tours but disregard the fixed costs of using vehicles

nd economies of scale on the inter-hub connections. They pro-

ose a hierarchical heuristic applying the strategy of first locating

nd later routing embedded in a neighborhood search to solve the

roblem. 

Zäpfel and Wasner (2002) consider the problem of planning

nd optimizing the hub-and-spoke transportation networks for co-

perating third-party logistics providers. Mathematical models for

hese operational planning tasks are developed and applied to the

eal-case scenario of an Austrian parcel service provider. 

Çetiner et al. (2010) address a hub location and routing problem

nder a multiple allocation setting for the Turkish postal services.

hey assume that the hubs are uncapacitated and vehicles have no

oading constraint, but a maximum route length is imposed. They

inimize both the variable transportation costs and the number of

ehicles needed to achieve a given service level. They optimize the

rst goal by imposing an upper bound on the number of vehicles

nd propose an iterative hubbing and routing heuristic. Computa-

ional results using data that allow tours of no more than 450 km

one day travel time) are presented. The single allocation version of

 similar problem is considered by de Camargo et al. (2013) , where

n upper bound is imposed on the lengths of the tours made by

he vehicles in order to ensure service quality. Their objective is

o minimize the sum of fixed costs for hub installation, handling

osts for transferring goods at hubs, fixed costs for assigning vehi-

les to open hubs and distance-dependent costs for the local ve-

icle routes and the inter-hub transports. The authors propose a

olution based on Benders decomposition embedded in a branch-

nd-cut framework. 

Rodríguez-Martín et al. (2014) address an HLRP where exactly

 hubs must be installed and thus the fixed costs for using a lo-

ation as a hub are disregarded. They impose an upper bound

 on the number of customerts assigned to a hub, and there

s exactly one vehicle at each hub that visits the assigned cus-

omers during one multi-stop route. They propose an MIP model

or the problem, along with an exact branch-and-cut algorithm.

ieck et al. (2014) consider a generalized HLRP with multiple prod-

cts and the possibility of direct shipments between pickup and
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delivery locations. Unlike the mail delivery applications, where

each O/D pair constitutes a unique product, they assume that each

O/D pair represents more than one product. There are several dif-

ferent products, each produced at one or several locations and de-

manded at one or several other locations. A homogeneous fleet of

vehicles services three different types of routes: multi-stop pickup

routes, direct inter-hub routes, and multi-stop delivery routes. The

authors present an MIP model and devise a multi-start fix-and-

optimize procedure (FOP), as well as a genetic algorithm (GA) for

solving the problem. 

2.2. CA models in location and routing problems 

So far, not many works on the application of CA models to the

hub location problem have been presented. Daganzo (1987) ad-

dresses a many-to-many distribution problem where the trans-

portation and inventory costs are modeled by using the CA. The

author assumes that the underlying network is a square grid

and distances are measured by using the L 1 metric. He proposes

analytical expressions for the optimal number of terminals but

does not address the location problem for the terminals. Campbell

(1990a,b) considers the problem of routing freight shipments via

consolidation terminals (hubs) in a many-to-many logistics net-

work and develops CA models with the aim of determining the

optimal location of terminals when the costs for the consolidated

inter-hub transportation are discounted. The author assumes direct

shipments between origins/destinations and hubs, as well as be-

tween pairs of hubs, where the distances are measured by using

the L 1 norm. 

Suzuki and Drezner (1997) propose two models for the airline

hub location problem in an Euclidean space. The first model as-

sumes that all O/D traffic is routed via two hubs (the hubs located

closest to the corresponding origin and destination, respectively),

whereas in the second model, the flows are routed via a single

hub. The problems are analyzed for the case where two hubs are

selected in a square. They also analyze a three-hub case for the

first model. Campbell (2013) extends Campbell (1990a) by impos-

ing limits on the maximum travel distance via the hub network for

each O/D pair. He considers a transportation carrier that serves a

fixed geographic region where demand is modeled as a continu-

ous distribution and develops analytical expressions for the opti-

mal number of hubs, hub locations, and transportation costs. 

Carlsson and Jia (2013) consider the problem of optimal hub

network design in a continuous Euclidean space where the de-

mand points are distributed uniformly over a service region. Their

objective is to determine the optimal number of hub nodes and

their locations. They consider seven different backbone network

topologies for connecting the hub nodes, but the service at the

access level is based on direct shipments. The authors describe

the asymptotically optimal configurations that minimize the total

network costs under the condition that the values of different in-

put parameters become very large or very small compared to each

other. They also give an approximation algorithm that solves their

problem on a convex planar region for all possible values of the

relevant input parameters. 

Saberi and Mahmassani (2013) present CA models for airline

hub location and optimal market problems where a single hub has

to be located and the O/D traffic can be routed via no more that

one hub. They also study the impact of a competitive airline net-

work structure with regard to the hub location. Cachon (2014) con-

siders a special case of the problem studied in Carlsson and

Jia (2013) , where the goal is to minimize the total amount of car-

bon emissions produced by a supply network of retail stores and

the customers they serve. Pulido et al. (2015) propose a CA model

for locating warehouses and designing physical distribution strate-

gies in a one-to-many logistics network where limits on the deliv-
ry times are considered. They also study and analyze the logistics

etwork of a Chilean firm that is active in the home delivery of a

ange of different products. Xie and Ouyang (2015) study the opti-

al layout of transshipment facilities on an infinite homogeneous

uclidean plane. They minimize the total cost that results from the

acility set-up and the access and backbone transportation costs.

he backbone network is assumed to be a multi-stop tour that

erves the transshipment facilities from a central depot and using a

ehicle of infinite capacity. Moreover, facilities serve the customers

ithin corresponding service regions and using direct shipments.

hey consider both the L 2 and L 1 distance measures and provide

ight upper and lower bounds on the total system cost. 

The CA technique has also been used for modeling the rout-

ng costs in the traveling salesman problem (TSP), the ve-

icle routing problem (VRP), etc. Distance approximations for

ulti-stop vehicle routes play a key role in these problems.

eardwood et al. (1959) develop an analytical expression to es-

imate the distance covered by a traveling salesman in an area

ith a uniform density of destinations. Distance approxima-

ions for multiple stop routes are developed by Christofides and

ilon (1969) , Eilon et al. (1971) , and Daganzo (1984a, 1984b, 2005) .

angevin et al. (1996) present a detailed review of applications

f the CA modeling framework in freight distribution up to 1996.

ore recently, Francis and Smilowitz (2006) present a continu-

us approximation model for the periodic vehicle routing problem

ith service choice (PVRP-SC) where the visit frequency to nodes

s a decision variable. The authors present a CA model to facilitate

trategic and tactical planning of periodic distribution systems and

valuate the value of service choice. 

Smilowitz and Daganzo (2007) use the CA technique for the

esign of integrated package distribution systems. They introduce

esign strategies and cost modeling techniques for multiple mode,

ultiple service level package delivery networks where service lev-

ls are defined by guaranteed delivery times. The authors consider

ey cost components such as facility charges and vehicle repo-

itioning, transportation and inventory costs. They show that the

roblem can be reduced to a series of easily solvable subproblems.

abali et al. (2012) address the fleet composition problem, which

s a variant of the vehicle routing problem where the CA is used

or assessing the routing costs. In their problem, the fleet size and

ix are decision variables. The service region is assumed to be of

 circular shape and partitioned into zones with each zone being

erviced by a single vehicle. They develop a mixed integer non-

inear programming formulation followed by computationally effi-

ient upper and lower bounding procedures. 

.3. Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based meta-

euristic that was originally developed by Kennedy and Eber-

art (1995) . Inspired by the flocking (motion) of birds, PSO uses

he concepts of communication and collaboration in a population

f simple search agents (called particles) for solving various op-

imization problems. The standard PSO algorithm has undergone

everal refinements that finally enable to solve a large variety of

iscrete and continuous optimization problems ( Banks et al., 2007;

008 ). As a result, the PSO has successfully been used for solving

 wide range of optimization problems in numerous fields ( Ai and

achitvichyanukul, 2009; Liu et al., 2012; Marinakis and Marinaki,

010; Pedrycz et al., 2009; Sevkli and Guner, 2006; Sha and Hsu,

008; Yang et al., 2013; Zhao et al., 2014 ). However, solution al-

orithms based on PSO for solving the hub location problems are

carce in the literature. Yang et al. (2013) solve a fuzzy p -hub cen-

er problem by using an improved hybrid PSO algorithm and com-

ining PSO with genetic operators and local search (LS) to update

nd improve particles for the subproblems. They compare their hy-
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Fig. 2. Voronoi partition of a rectangular service region for a fixed set of hubs. 
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rid PSO algorithm with two other solution methods, genetic algo-

ithm (GA) and PSO without LS components, and show that the

mproved hybrid PSO algorithm achieves a better performance in

erms of runtime and solution quality. Bailey et al. (2013) propose

 PSO algorithm for the uncapacitated single allocation hub loca-

ion problem (USAHLP). An empirical study that uses well-known

enchmark problems from the Civil Aeronautics Board (CAB) and

rom the Australian Post (AP) data sets is conducted and it is

hown that the proposed PSO matches or outperforms the solution

uality of the best known methods for the USAHLP. 

. Model formulation 

In this section, we first present the problem assumptions and

hen formulate the problem as a nonlinear model by using the the-

ry of CA. The model is then reformulated as a multifacility loca-

ion problem so that it can be solved by an iterative heuristic. 

Consider a service region A ⊂ R 

2 with a convex polygon shape

ver which a large number of clients (origins and/or destinations)

re distributed. We represent the density of customers (measured

n the number of clients per unit area) by a uniform continuous

patial density function δ(x ) = δ, x ∈ A . Assume that N is the to-

al number of clients within the service region A . Let the origin-

estination (O/D) flow density be described as function λ(x , y ) ,

hich gives the average number of items per time unit that need

o be transported from a region of a unit area around x to a region

f a unit area around y . For the sake of simplicity, we assume that

he average value of temporal flow between any O/D pair is one

nit item, i.e., λ(x , y ) = 1. 

Collected at point x and delivered to point y by means of local

ickup/delivery tours, every O/D flow is transferred through either

ne or two installed hubs. The vehicle fleet is assumed to be ho-

ogeneous with a capacity of C unit items. In other words, C can

e interpreted as the number of stops per tour made by the vehi-

les. We assume that the demands are realized at different times

uring the planning horizon. Hence, the vehicles pick up/deliver

ne unit item whenever they arrive at a customer. In other words,

he pickups and deliveries from/to a customer are done one at a

ime and on separate tours as they happen at different times. It is

urther assumed that the hub facilities to be installed are identi-

al and hence have the same installation costs. Moreover, we as-

ume that there is a limitation on the capital budget to be spent

n setting up the hub facilities. Therefore, the number of hubs to

e installed is exogenously determined as p hubs. 

The strategic decisions to be made in the planar HLRP are lo-

ation and allocation decisions. As soon as these decisions are

ade, the operational decisions regarding the routing of flows be-

ween O/D pairs are straightforward. The allocation of clients to

ubs is based on the Euclidean distance between clients and hubs.

ach hub i with location coordinates X i serves the clients within

he area closest to the respective hub. Hence, Voronoi diagrams

 Aurenhammer, 1991 ) are used for determining the allocation de-

isions for a given set of located hubs. The Voronoi partition cor-

esponding to the hub located at X i , denoted by V i , is the set of

ll points in the service region to which the hub located at X i is

losest. For location-allocation problems with Euclidean distances,

hese allocation decisions are determined according to the follow-

ng set definition: 

 i = { Y ∈ A | ‖ Y − X i ‖ ≤ ‖ Y − X j ‖ , ∀ j � = i } (1)

here, for every x = (x 1 , x 2 ) ∈ R 

2 , ‖ x ‖ denotes the Euclidean norm,

.e., ‖ x ‖ = 

√ 

x 2 
1 

+ x 2 
2 
. Note that the service region of each hub X i or

ts Voronoi partition ( V i ) is a polygon where the local deliveries

n the form of vehicle routes are performed. Fig. 2 illustrates the

oronoi partitioning of a rectangular service region given the po-

itions of 10 hubs located within it. Let W ij denote the magnitude
f the commodity flow from hub i to hub j . In other words, W ij 

s the value of the total flow from sub-region (Voronoi cell) V i to

ub-region V j and is calculated as: 

 i j = λ(δA i )(δA j ) = δ2 A i A j (2) 

ith A i and A j representing the areas of sub-regions V i and V j 
in square kilometers), respectively. Note that we allow flows from

odes within a sub-region to nodes in the same sub-region. Sim-

lar to classical hub location problems, the total transportation

ost in HLRP has two main components: access network cost

ANC) and backbone network cost (BNC). The former corresponds

o the pickup and delivery from and to customers by means of

ehicle routes within each Voronoi partition, whereas the lat-

er corresponds to the transportation costs between hubs that

re discounted by a constant factor (0 ≤α ≤ 1), which reflects the

conomies of scale as a result of larger flow volumes and due to

he use of more efficient and/or faster means of transportation on

nter-hub connections. 

Since we assume that the number of hubs is an exogenous de-

ision and that the hub establishment costs are uniform, we can

gnore the costs of installing hubs in the objective function. Conse-

uently, the continuous approximation model for the hub location-

outing problem (CAHLRP) can be formulated as follows: 

( CAHLRP ) 

in 

p ∑ 

i =1 

p ∑ 

j=1 

αW i j ‖ X i − X j ‖ /C + 2 N 

p ∑ 

i =1 

V RP (V i , X i ) (3) 

.t.: X i ∈ A i = 1 , 2 , . . . , p (4) 

The first term in the objective function (3) calculates the back-

one network cost (BNC), whereas the second term represents the

ccess network cost (ANC). Both the ANC and BNC in the above for-

ula are calculated as vehicle-kilometers. However, without loss of

enerality, we assume that each vehicle-kilometer of transporta-

ion costs one unit of currency (e.g., one dollar, etc.). Therefore,

e can also interpret the ANC and BNC as monetary (financial)

osts. The term V RP (V i , X i ) denotes the cost of pickup and deliv-

ry within the Voronoi partition V i from a depot located at point

 i . Note that since each customer sends and receives one unit of

ow to all other customers, V RP (V i , X i ) is multiplied by 2 N in the

econd term of the objective function (3) . Given the exact loca-

ion of customers in the service region, V RP (V i , X i ) can be calcu-

ated by solving the vehicle routing problem ( Laporte, 1992 ). How-

ver, since the exact data regarding the location of future cus-

omers is seldom available in the strategic network design phase,

A is used for estimating the optimal routing costs and for utilizing
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them in the decision making process about the location of hubs.

Daganzo (1984a) shows that the VRP distance V RP (V i , X i ) can be

approximated by the following formula: 

 RP (V i , X i ) = 2 ̄ρ(V i , X i ) N i /C + 0 . 57 

√ 

A i N i (5)

where N i is the number of customers within the sub-region V i .
Also, ρ̄(V i , X i ) denotes the average distance between the hub X i 

and the customers distributed over the region V i which is calcu-

lated as: 

ρ̄(V i , X i ) = 

∫ ∫ 
V i ‖ Y − X i ‖ d A ∫ ∫ 

V i d A 

(6)

A closed-form expression for ρ̄(V i , X i ) in which V i is a convex poly-

gon is derived in Appendix A . The first term in Eq. (5) can be in-

terpreted as the line-haul distance between the depot and the cus-

tomers, while the second term reflects the local distance between

customers. The coefficients of this formula are derived by assum-

ing C > 6 and N i > 4 C 2 ( Daganzo, 1984a ), which is usually true in

the context of city logistics. 

Note that although the model (3) and (4) is based on the as-

sumption of equal capacities for the vehicles on backbone and ac-

cess networks, it can also be used for the case of different capaci-

ties by modifying only the value of the discount factor ( α). To this

end, let C B denote the capacity of the vehicles used on the back-

bone network, which is assumed to be γ times (usually, γ > 1) the

capacity of the vehicles used on the access network (i.e., C B = γC).

Also, assume that each vehicle-kilometer of the vehicles used on

the backbone network costs b units of currency. Based on these

assumptions, the objective function (3) can now be rewritten as: 

min 

p ∑ 

i =1 

p ∑ 

j=1 

α
(

b 

γ

)
W i j ‖ X i − X j ‖ /C + 2 N 

p ∑ 

i =1 

V RP (V i , X i ) (7)

As can be seen from (7) , the effect of using different vehicles on

the access and backbone networks can easily be captured by using

a modified value for the discount factor parameter as α′ = α(b/γ ) .

In the remainder of this section, we formulate the CAHLRP as a

multifacility location problem. The multifacility location problem,

as defined in Francis et al. (1992) , locates a fixed number of new

facilities in an area where some existing (old) facilities already ex-

ist. The objective is to minimize the total cost, which is a weighted

sum of the distance between each pair of new facilities and each

pair constituted by an existing and a new facility. Using a new set

of notations, it is not difficult to show that the model (3) –(4) can

be reformulated: 

( CAHLRP-MFL ) 

min 

∑ 

1 ≤i< j≤p 

(V i j + V ji ) ‖ X i − X j ‖ + 

p ∑ 

i =1 

U i ρ̄(V k i , X 

k 
i ) + D (8)

s.t.: X i ∈ A i = 1 , 2 , . . . , p (9)

where V i j = αW i j /C, U i = 2 N × 2 N i /C, and D = 2 N × 0 . 57 A 

√ 

δ. 

The model (8) –(9) is a multifacility location problem where X j 

( j = 1 , . . . , p) represent the location of new facilities and the cus-

tomers within the sub-regions V i ( i = 1 , . . . , p) can be seen as the

locations of existing facilities. In other words, the first term in the

objective function (8) calculates the cost of transportation between

new facilities while the second term represents the transportation

cost between existing and new facilities. Note that, since the ex-

act locations of the customers included within each sub-region V i 
( i = 1 , . . . , p) is not known, we use the average distance ρ̄(V k 

i 
, X k 

i 
)

for all of them. 

It is known that the multifacility location problem can be

solved by a modified version of the well-known iterative Weiszfeld

algorithm ( Weiszfeld, 1973 ), which was originally developed
or the single-facility Euclidean location problem and later ex-

ended by Miehle (1958) for the multifacility location problem

 Radó, 1988 ). 

. Solution algorithms 

In this section, we propose two solution algorithms for the

AHLRP. The first algorithm is a Weiszfelt-type algorithm (IWA),

hat is frequently used in the literature for solving multifacility lo-

ation problems. The second solution algorithm is based on a par-

icle swarm optimization (PSO) metaheuristic algorithm, as often

uccessfully applied for a wide range of continuous and discrete

ptimization problems. 

.1. Iterative Weiszfeld-type algorithm 

We propose the IWA for solving the multifacility model

AHLRP-MFL in an iterative manner. Since the exact locations of

he demand points within each sub-region V i ( i = 1 , . . . , p) are not

nown, we represent all the demand points within the sub-region

 i by the geometric median or Fermat–Weber point F W (V i ) of this

egion defined as: 

 W (V i ) = argmin 

Y ∈V i 

∫ ∫ 
V i 

‖ X − Y ‖ d A = argmin 

Y ∈V i 
ρ̄(V i , Y ) (10)

ased on the above explanations, it is now possible to adapt the

eiszfelt’s algorithm for our own problem. Having generated an

nitial solution, a new solution based on the solution from the pre-

ious iteration is generated at each iteration. The following equa-

ions are used for this purpose: 

 

k +1 
i 

= 

∑ 

j � = i 

(V k 
i j 
+ V k 

ji 
) 

‖ 

X k 
i 
−X k 

j ‖ 

X 

k 
j 
+ 

U i 
ρ̄(V k 

i 
,X k 

i 
) 
F W (V k 

i 
) 

∑ 

j � = i 

(V k 
i j 
+ V k 

ji 
) 

‖ 

X k 
i 
−X k 

j ‖ 

+ 

U i 
ρ̄(V k 

i 
,X k 

i 
) 

, i = 1 , 2 , . . . , p (11)

he proposed IWA algorithm works as follows. At the beginning,

he counter k representing the main algorithm iterations is set to

. An initial solution X 0 
i 

( i = 1 , 2 , . . . , p) is first generated as a col-

ection of p points randomly generated over the service region. At

ach iteration k , based on the current solution X k 
i 

( i = 1 , 2 , . . . , p)

nd the values evaluated for W 

k 
i j 
, ρ̄(V k 

i 
, X k 

i 
) and F W (V k 

i 
) , (i, j =

 , 2 , . . . , p) , the next solution X k +1 
i 

( i = 1 , 2 , . . . , p) is generated us-

ng Eq. (11) and the new Voronoi partitions are determined for

ach installed hub. Also, the objective function value is then eval-

ated using Eq. (8) . We use another counter denoted by t that

ounts the number of iterations for which all hubs stay within

 distance of ν from their previous positions. When the counter

 is larger than the pre-specified threshold value N nonimp , the al-

orithm terminates. The pseudo-code for the IWA is illustrated in

lgorithm 1 . 

.2. PSO algorithm 

The PSO ( Kennedy and Eberhart, 1995 ) is a population-based

volutionary optimization algorithm inspired by social interaction

nd communication in bird flocking or fish schooling. Due to its

uccessful performance and rather easy implementation, there has

ecently been a high increase in the use of PSO for solving different

ptimization problems. A population of N pop candidate solutions,

alled particles, collaborate simultaneously and move around the

easible solution space in a systematic way in order to reach the

est positions in that space. Each solution s consists of a position

ector � x s and a velocity vector � v s . Given the particle’s previous best

osition 

�
 p s 
b 

and the previous best position attained by any particle

f the swarm 

�
 g b , the velocity vector for particle s is obtained by: 

  

s 
t = ω 

�
 v s t + ϕ 1 r 1 ( � p s b − �

 x s t−1 ) + ϕ 2 r 2 ( � g b − �
 x s t−1 ) (12)
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Algorithm 1 Pseudo-code for the iterative Weiszfeld-type algo- 

rithm ( A , p, N nonimp , ν, ε). 

1: Define and initialize the model parameters and variables 

2: t ← 0 

3: k ← 0 

4: Generate an initial set of p hubs X 0 
i 

(i = 1 , . . . , p) over the ser- 

vice region A 

5: Construct the Voronoi partitions V 0 
i 

(i = 1 , . . . , p) based on the 

installed hubs within A 

6: while t ≤ N nonimp do 

7: Evaluate W 

k 
i j 

, i, j = 1 , 2 , . . . , p using (2) 

8: Evaluate ρ̄(V k 
i 
, X k 

i 
) , i = 1 , 2 , . . . , p using (A.3) 

9: Evaluate the objective function f (X k ) using (3) 

10: Minimize (10) to obtain the Fermat-Weber point of Voronoi 

cell i , F W (V k 
i 
) , i = 1 , 2 , . . . , p 

11: Compute X k +1 
i 

, i = 1 , 2 , . . . , p using (11) 

12: if ‖ X k +1 
i 

− X k 
i 
‖ ≥ ν for any i (i = 1 , 2 , . . . , p) then 

13: t ← 0 

14: k ← k + 1 

15: else 

16: k ← k + 1 

17: t ← t + 1 

18: end if 

19: end while 

20: return X k , f (X k ) . 
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Algorithm 2 Pseudo-code for the PSO algorithm 

( A , p, N pop , w, ϕ 1 , ϕ 2 , I max ). 

1: Define and initialize the model parameters and variables 

2: t ← 0 

3: Generate an initial population of N pop particles �
 x s 
0 

(s = 

1 , . . . , N pop ) over the service region A 

4: while t ≤ I max do 

5: for s = 1 to N pop do 

6: Evaluate the particles’ fitness f ( � x s t ) using (3) 

7: Update particle’s velocity � v s t using (12) 

8: Update particle’s position 

�
 x s t using (13) 

9: Keep the particle within the boundaries of the service 

region ( � x s t ∈ A ) 

10: if f ( � x s t ) < f ( � p s 
b 
) then 

11: �
 p s 
b 

← 

�
 x s t 

12: end if 

13: if f ( � x s t ) < f ( � g b ) then 

14: �
 g b ← 

�
 x s t 

15: end if 

16: end for 

17: t ← t + 1 

18: end while 

19: return 

�
 g b , f ( � g b ) . 

c  

b  

w  

t  

p  

o  

s  

v  

T  

t  

v  

l  

α  

c

 

a  

a  

p  

t  

t  

0  

s  

I  

w  

a

5

 

d  

fi  

i  

a  

o  

s

 

u  

v  

h  

t  
here ω is the inertia weight that controls the momentum of the

article and ϕ1 and ϕ2 are the weights that represent the attrac-

ion toward positions � p s 
b 

and 

�
 g b , respectively. r 1 and r 2 are random

umbers and are uniformly distributed in the interval [0,1]. Having

btained the velocity vector for the particle s , its position vector is

pdated by: 

  

s 
t = 

�
 x s t−1 + 

�
 v s t (13) 

ote that, for each particle s , the corresponding position vector

s not allowed to go beyond the boundaries of the solution space

service region) during the iterations of the algorithm. 

In our implementation, each particle is represented by a 2 × p

atrix that shows the x and y coordinates of the p hubs. An initial

opulation is generated as a set of N pop randomly scattered points

ithin the service area A . The velocity and position vectors of the

articles are updated throughout the algorithm iterations based

n (12) and (13) , respectively. The algorithm terminates as soon

s a threshold for the number of iterations ( I max ) is reached. The

seudo-code for the proposed PSO is illustrated in Algorithm 2 . 

. Computational experiments 

In this section, we describe the computational experiments we

onducted to evaluate the efficiency of the proposed algorithms

nd to investigate the effect of different input parameters on the

olution characteristics of the proposed model. The solution algo-

ithms are coded in MATLAB R2014a and all the experiments were

un on a computer with Intel(R) Core(TM) i3-3220 CPU of 3.30 GHz

nd 16GB of RAM, using the Microsoft Windows 7 operating sys-

em. Voronoi partitioning of the service region based on the loca-

ion of hubs is performed using the open-source Multi-Parametric

oolbox 3.0 (MPT3), a MATLAB-based toolbox for parametric op-

imization, computational geometry and model predictive control

 Herceg et al., 2013 ). Furthermore, the Fermat-Weber points used

t every iteration of the IWA are calculated by minimizing (10) us-

ng the function “fminunc” from MATLAB Optimization Toolbox.

he average distances ρ̄(V , Y ) in (10) are calculated by using the
i 
losed-form formula derived for this purpose in Appendix A . The

ase test instances are generated assuming a square service region

ith a side lengths of 10 km (a total area of 100 km 

2 ), which is

he dimension of many medium-sized cities world-wide. Demand

oints density ( δ) is set to 50 per square kilometer. The capacity

f vehicles ( C ) is assumed to be 10 units of load (maximum of 10

tops per tour). The number of hubs to be installed in this ser-

ice region ( p ) is set to different values from the set { 2 , 3 , . . . , 10 } .
he default value for the discount factor associated with inter-hub

ransportation costs is α = 0.4. However, to study the effect of

ariations in the values of input parameters on the quality of so-

utions, the above-mentioned default values are allowed to alter as

∈ {0.4, 0.6, 0.8}, δ ∈ {30, 50, 70}, and C ∈ {7, 10, 13}, later in our

omputational experiments. 

The parameters of the proposed algorithms are tuned in such

 way that they produce high quality solutions within a reason-

ble time frame. Based on the results we obtained through a set of

reliminary experiments, the best values for the parameters of the

wo algorithms are selected. For the IWA algorithm, the distance

olerance level ν and the threshold value N nonimp were selected as

.001 and 30, respectively. For the PSO algorithm, the population

ize N pop was chosen as 60, whereas the total number of iterations

 max was set to 100. Furthermore, the inertia weight ω we selected

as 0.9 and the attraction weights ϕ1 and ϕ2 were defined as 0.6

nd 0.3, respectively. 

.1. Numerical results 

A comprehensive set of computational experiments was con-

ucted using the above mentioned test problems to show the ef-

ciency of the proposed algorithms and the results are presented

n the remainder of this section. For each problem instance, both

lgorithms were run for three times (as the final solution depends

n the initial solution, which is generated randomly) and the best

olutions obtained are reported. 

Table 1 shows the results obtained by solving the CAHLRP by

sing the proposed solution algorithms with a discount factor

alue of α= 0.4. The first column of this table shows the number of

ubs to be opened ( p ). The column “TC” gives the total transporta-

ion cost (in thousand units) obtained by the algorithms as the
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Table 1 

Results for solving the problem with α = 0.4. 

p IWA PSO 

TC ANC BNC %ANC %BNC CPU(s) TC ANC BNC %ANC %BNC CPU(s) 

2 36022.32 33820.21 2202.11 93.89% 6.11% 3.96 36018.86 33865.25 2153.61 94.02% 5.98% 162.42 

3 31012.91 27713.39 3299.51 89.36% 10.64% 4.03 31002.91 27791.17 3211.74 89.64% 10.36% 234.11 

4 27242.92 23255.27 3987.64 85.36% 14.64% 4.68 27221.31 23367.90 3853.41 85.84% 14.16% 314.01 

5 25797.02 21631.22 4165.79 83.85% 16.15% 14.69 25793.28 21680.91 4112.37 84.06% 15.94% 332.18 

6 24529.15 20222.01 4307.14 82.44% 17.56% 8.10 24523.66 20269.04 4254.61 82.65% 17.35% 384.53 

7 23432.08 190 0 0.68 4431.40 81.09% 18.91% 12.48 23428.25 19048.65 4379.59 81.31% 18.69% 507.08 

8 22398.82 17856.75 4542.06 79.72% 20.28% 26.35 22397.38 17876.69 4520.69 79.82% 20.18% 506.81 

9 21513.24 16876.44 4636.80 78.45% 21.55% 14.85 21518.27 16908.96 4609.31 78.58% 21.42% 577.66 

10 210 0 0.19 16327.90 4672.29 77.75% 22.25% 23.76 21040.59 16421.76 4618.83 78.05% 21.95% 639.91 

Avg. 25883.18 21855.99 4027.19 83.55% 16.45% 12.54 25882.72 21914.48 3968.24 83.77% 16.23% 406.52 

Fig. 3. Network configuration for different values of p with α = 0.4. 
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value of the objective function. The access network cost (ANC) and

the backbone network cost (BNC) are reported in columns “ANC”

and “BNC”, respectively. The next two columns, labeled as “%ANC”

and “%BNC”, show the values of the access and backbone network

costs as percentage of the total transportation cost. The column

“CPU(s)” gives the solution time (in seconds). Finally, the last row
eports the average values of all the reported quantities for the two

roposed algorithms. 

Table 1 shows that the solutions that were obtained by the two

lgorithms have almost the same objective value for each instance.

n most of the instances, the cost of the solution obtained by the

SO is slightly smaller than that of the IWA. However, for some in-
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Table 2 

Results for solving the problem with α = 0.6. 

p IWA PSO 

TC ANC BNC %ANC %BNC CPU(s) TC ANC BNC %ANC %BNC CPU(s) 

2 37059.27 33983.19 3076.08 91.70% 8.30% 3.62 37051.84 34085.00 2966.84 91.99% 8.01% 150.67 

3 32579.79 27868.15 4711.64 85.54% 14.46% 4.63 32557.83 28042.80 4515.03 86.13% 13.87% 205.12 

4 29143.81 23376.40 5767.40 80.21% 19.79% 7.73 29096.07 23629.46 5466.61 81.21% 18.79% 262.95 

5 27815.25 21785.80 6029.45 78.32% 21.68% 11.13 27837.06 22021.09 5815.97 79.11% 20.89% 332.64 

6 26622.40 20365.96 6256.44 76.50% 23.50% 15.42 26608.02 20486.38 6121.64 76.99% 23.01% 383.20 

7 25592.61 19137.41 6455.20 74.78% 25.22% 10.59 25542.77 19223.95 6318.82 75.26% 24.74% 451.88 

8 24624.47 17989.07 6635.40 73.05% 26.95% 11.46 24582.14 18013.85 6568.28 73.28% 26.72% 514.49 

9 23785.89 16995.82 6790.07 71.45% 28.55% 16.35 23787.03 17070.17 6716.86 71.76% 28.24% 594.27 

10 23298.21 16450.55 6847.66 70.61% 29.39% 19.76 23344.05 16576.98 6767.06 71.01% 28.99% 657.04 

Avg. 27835.74 21994.71 5841.04 78.02% 21.98% 11.19 27822.98 22127.74 5695.23 78.53% 21.47% 394.70 

Table 3 

Results for solving the problem with α = 0.8. 

p IWA PSO 

TC ANC BNC %ANC %BNC CPU(s) TC ANC BNC %ANC %BNC CPU(s) 

2 38009.63 34217.06 3792.57 90.02% 9.98% 3.46 37997.24 34392.13 3605.11 90.51% 9.49% 152.54 

3 34049.04 28091.29 5957.75 82.50% 17.50% 5.70 34011.27 28398.46 5612.81 83.50% 16.50% 207.73 

4 30948.76 23550.94 7397.82 76.10% 23.90% 4.79 30865.11 24001.49 6863.62 77.76% 22.24% 265.97 

5 29743.02 22007.31 7735.71 73.99% 26.01% 9.53 29720.62 22275.69 74 4 4.93 74.95% 25.05% 331.92 

6 28630.58 20571.82 8058.76 71.85% 28.15% 7.34 28603.15 20809.19 7793.96 72.75% 27.25% 387.92 

7 27671.66 19330.45 8341.21 69.86% 30.14% 8.90 27692.71 19597.07 8095.64 70.77% 29.23% 460.89 

8 26775.27 18175.75 8599.52 67.88% 32.12% 12.17 26755.72 18341.33 8414.38 68.55% 31.45% 527.66 

9 25990.58 17169.07 8821.51 66.06% 33.94% 20.08 25989.03 17321.94 8667.09 66.65% 33.35% 597.56 

10 25531.14 16627.43 8903.71 65.13% 34.87% 17.45 25511.76 16768.63 8743.12 65.73% 34.27% 649.76 

Avg. 29705.52 22193.46 7512.06 73.71% 26.29% 9.94 29682.96 22433.99 7248.96 74.57% 25.43% 397.99 
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tances (such as p = 9,10), the IWA renders a better solution than

he PSO. Analyzing the two components of the transportation cost,

e observe that the access network cost (ANC) has a larger share

n the transportation cost than the backbone network cost (BNC),

hich means that the local pickup and delivery via vehicle routes

omes at a significantly higher cost than the consolidated line-haul

ransportation between hubs. Note that, as the number of hubs

ets larger, the backbone network cost (BNC) increases as a result

f the longer total distance between the installed hubs. Another

nteresting observation is that the access network cost (ANC) de-

reases as the number of hubs increases. This result may not seem

ntuitive at first sight but it is in line with the general assump-

ion of the continuous approximation literature, where transporta-

ion costs are modeled proportional to the square of the service

egion size ( Murat et al., 2010 ). More specifically, when the num-

er of hubs increases, the service region assigned to each hub gets

maller on average. However, the average distance between an in-

talled hub and the customers inside the corresponding service re-

ion decreases non-linearly relative to the size of the service re-

ion, which in turn results in a much smaller access network cost

ncurred by pickup and delivery routes. 

Note that, from a solution time perspective, both algorithms

olve the CAHLRP in short computational times, although the IWA

s much faster than the PSO. The IWA solves the instances in less

han 15 s on average, whereas the average time for the PSO is more

han 400 s for the same set of problems. Comparing the solution

imes, one can conclude that the computational burden for calcu-

ating the Fermat-Weber points (which is only used in the IWA)

s not substantial. Furthermore, the results show that the solution

imes for both algorithms depend on the number of hubs to be

pened as a higher number of hubs needs more computational ef-

ort for partitioning the service region and calculating the average

istance for each partition. 

For every solution obtained by the IWA and reported in Table 1 ,

e plotted the location of hubs in the service region along with

he corresponding Voronoi partitions and depicted the resulting

t  
etwork configurations in Fig. 3 . The solutions obtained by the PSO

ave similar configurations. 

It can be seen from Fig. 3 that the hubs are scattered within

he service region based on symmetric and uniform patterns and

he resulting Voronoi partitions are of almost the same size. This is

ainly due to the uniform distribution of the customers over the

ervice region. 

.2. Studying the effect of the discount factor 

The discount factor ( α) plays an important role in the final con-

guration of the network in hub location problems. In this section,

e present the results of solving our problem under different val-

es of α. The results we obtained by solving the CAHLRP with dis-

ount factor values α= 0.6 and 0.8 are reported in Tables 2 and 3 ,

espectively. 

Observe that the increase in value of the discount factor ( α) re-

ults in increased values for both the ANC and the BNC and hence

ncreased total transportation cost. It should also be noted that the

hare of the BNC from the TC gets larger as the value of α in-

reases. For instance, the BNC makes up (on average) around 16%,

1%, and 26% of the TC for the cases with α = 0 . 4 , 0.6, and 0.8, re-

pectively. This is due to the fact that, by setting α to a large value,

he amount of discount granted on the inter-hub transportations

ets smaller and hence, the corresponding cost increases. 

To get a better visualization of the effect of the discount factor

n the location of hubs, the final network configuration for differ-

nt values of α are plotted in Fig. 4 for problems with 5 and 10

ubs. Three different values for the discount factor value are used

s α ∈ {0.0, 0.5, 1.0}. The parts we colored in red correspond to the

etwork configuration under α = 0.0, whereas the blue and gray

arts correspond to the networks under α = 0.5 and 1.0, respec-

ively. The black parts are common for all the three values of α. 

We can see from Fig. 4 that increasing the value of α makes

he location of hubs move closer to each other at the center of

he service region. This can be interpreted as a consequence of the
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Fig. 4. Network configuration for p = 5 and 10 with different values of α. 

Fig. 5. Total transportation cost for different values δ with α = 0 . 4 and C = 10 . 
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increased inter-hub transportation cost that makes the algorithms

reduce the distance between the hubs to partly diminish the ef-

fect of increased α values. However, the decrease in the BNC as a

result of closer hub facilities does not compensate its increase as

a result of larger α values. As a result, the BNC increases as the

discount factor value gets larger. Furthermore, for larger values of

α, the hubs go far from the Fermat-Weber points of corresponding

Voronoi partitions, which results in slightly increased ANC com-

pared to the case where each hub is located exactly at the Fermat-

eber point of the corresponding Voronoi partition. Therefore, a

trade-off has to be done between the BNC and the ANC compo-

nents of the total transportation cost. 

5.3. The effect of other input parameters 

In this part of our computational experiments, we study the ef-

fect of adopting alternative values for two other input parameters,

namely the demand point density ( δ) and the vehicle capacity ( C ),

on the total transportation cost of the system. To this end, we first

study the effect of δ by using three values for the demand point

density as δ ∈ {30, 50, 70} and solve the problem by taking the

default values as the input for the other parameters (i.e., α = 0.4
nd C = 10). Fig. 5 illustrates the total transportation cost for vary-

ng numbers of hubs under three different values of δ. 

As can be seen from Fig. 5 , larger values of demand point den-

ity result in substantially higher total cost as both the access and

ackbone network costs are increased for larger values of δ. Fur-

hermore, as mentioned earlier, an increase in the number of in-

talled hubs ( p ) results in smaller transportation cost. 

We will now study the effect of the vehicle capacity ( C ) on the

otal transportation cost. Fig. 6 illustrates the total cost under three

ifferent values we selected for the vehicle capacity: C ∈ {7, 10,

3} for different numbers of installed hubs by assuming that the

ther input parameters take their default values (i.e., α = 0.4 and

= 50). 

Observe from Fig. 6 that, as the vehicle capacity ( C ) increases,

he total transportation cost decreases. This is because, if one uses

maller vehicles, more vehicle-kilometers are needed to transfer

he O/D flows between the corresponding origins and destinations.

.4. Evaluating the quality of the proposed solution algorithms 

In order to evaluate the quality of our proposed solution al-

orithms, we compare the solutions obtained by our algorithms
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Fig. 6. Total transportation cost for different values C with α = 0 . 4 and δ = 50 . 

Table 4 

Results for solving the problem by the algorithm proposed by Carlsson and Jia (2013) with δ = 50 and 

C = 10. 

p α = 0.4 α = 0.6 α = 0.8 

Total Cost Gap with Total Cost Gap with Total Cost Gap with 

C&J IWA PSO C&J IWA PSO C&J IWA PSO 

2 36192.17 0.47% 0.48% 37442.17 1.03% 1.05% 38692.17 1.80% 1.83% 

3 31300.73 0.93% 0.96% 33100.76 1.60% 1.67% 34900.79 2.50% 2.62% 

4 27428.16 0.68% 0.76% 29562.05 1.44% 1.60% 31695.93 2.41% 2.69% 

5 26165.61 1.43% 1.44% 28375.41 2.01% 1.93% 30585.21 2.83% 2.91% 

6 24741.74 0.87% 0.89% 27029.80 1.53% 1.59% 29317.87 2.40% 2.50% 

7 23619.83 0.80% 0.82% 25936.05 1.34% 1.54% 28252.28 2.10% 2.02% 

8 23544.25 5.11% 5.12% 25885.70 5.12% 5.30% 28227.15 5.42% 5.50% 

9 22486.03 4.52% 4.50% 24844.37 4.45% 4.45% 27202.70 4.66% 4.67% 

10 21446.05 2.12% 1.93% 23817.45 2.23% 2.03% 26188.84 2.58% 2.65% 

Avg. 26324.95 1.88% 1.88% 28443.75 2.31% 2.35% 30562.55 2.97% 3.04% 
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α

o those obtained by the algorithm proposed by Carlsson and

ia (2013) on the instances with a square service region. For do-

ng so, first the solution procedure presented in Carlsson and

ia (2013) is implemented to determine the location of a fixed

umber of hubs and the corresponding Voronoi partitions. Then

he objective function values of the obtained solutions are evalu-

ted by using (3) . The results for different values of α with δ = 50

nd C = 10 are reported in Table 4 . Note that, since the number

f hubs in our problem is fixed, we do not need to run Algorithm

 of Carlsson and Jia (2013) and we only run the algorithms “Ap-

roxFW” and “RectanglePartition” to determine the location of p

ubs. The total cost values obtained for different instances, as well

s the gap percentage between the obtained objective function val-

es and those of the IWA and PSO, are reported. The gap percent-

ge values are calculated by using the following formula: 

ap = 

OF C& J − OF IWA (PSO ) 

OF IWA (PSO ) 

× 100% 

here OF C& J represents the objective function value obtained by

arlsson and Jia’s algorithm and OF IWA ( PSO ) is the objective function

alue obtained by the IWA (or the PSO). 

The results reported in Table 4 show that both of our proposed

lgorithms (i.e., the IWA and PSO) outperform the algorithm pro-

osed in Carlsson and Jia (2013) for all the tested instances. For
he IWA, the average gap between the objective values under α =
.4, 0.6, and 0.8 are 1.88, 2.31, and 2.97 %, respectively. The corre-

ponding gap values for the PSO are 1.88, 2.35, and 3.04 %, respec-

ively. Therefore, it can be concluded that both the proposed algo-

ithms perform better than an existing algorithm from the litera-

ure in terms of solution quality. An interesting observation form

able 4 is that the average gap between the Carlsson and Jia’s al-

orithm and the proposed algorithms increases as the value of the

iscount factor gets larger. In other words, the solutions obtained

y the Carlsson and Jia’s algorithm perform much better under

maller values of the discount factor α. 

Fig. 7 depicts the corresponding network configurations ob-

ained by the Carlsson and Jia’s algorithm for the tested instances.

he network configurations are identical for different values of α. 

The results for solving the problem using the Carlsson and Jia’s

lgorithm as well as the proposed heuristics for different values of

emand points density δ with α = 0.4 and C = 10 are reported

n Table 5 . It can also be seen from this table that the proposed

lgorithms perform better than the Carlsson and Jia’s algorithm for

ll the tested instances. 

Table 6 presents the results for solving the problem using the

hree algorithms for different values of vehicle capacity C with

= 0.4 and δ = 50. 
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Fig. 7. Network configuration obtained by the algorithm proposed by Carlsson and Jia (2013) . 

Table 5 

Results for solving the problem by the algorithm proposed by Carlsson and Jia (2013) with α = 0.4 

and C = 10. 

p δ = 30 δ = 50 δ = 70 

Total Cost Gap with Total Cost Gap with Total Cost Gap with 

C&J IWA PSO C&J IWA PSO C&J IWA PSO 

2 13451.41 0.46 0.47 36192.17 0.47 0.48 69713.42 0.48 0.49 

3 11690.49 0.89 0.93 31300.73 0.93 0.96 60126.18 0.95 0.98 

4 10296.37 0.65 0.73 27428.16 0.68 0.76 52535.96 0.70 0.78 

5 9841.85 1.37 1.38 26165.61 1.43 1.44 50061.35 1.46 1.48 

6 9329.25 0.83 0.66 24741.74 0.87 0.89 47270.56 0.89 0.86 

7 8925.37 0.76 0.79 23619.83 0.80 0.82 45071.62 0.82 1.10 

8 8898.16 4.86 5.05 23544.25 5.11 5.12 44 923.4 8 5.26 5.24 

9 8517.20 4.29 4.28 22486.03 4.52 4.50 42849.38 4.66 4.62 

10 8142.81 2.01 1.99 21446.05 2.12 1.93 40811.02 2.19 2.08 

Avg. 9899.21 1.79 1.81 26324.95 1.88 1.88 50373.66 1.93 1.96 
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Table 6 

Results for solving the problem by the algorithm proposed by Carlsson and Jia (2013) with α = 0.4 

and δ = 50. 

p C = 7 C = 10 C = 13 

Total Cost Gap with Total Cost Gap with Total Cost Gap with 

C&J IWA PSO C&J IWA PSO C&J IWA PSO 

2 49975.75 0.49 0.50 36192.17 0.47 0.48 28770.26 0.46 0.47 

3 42987.97 0.97 1.00 31300.73 0.93 0.96 25007.60 0.89 0.92 

4 37455.74 0.71 0.80 27428.16 0.68 0.76 22028.71 0.65 0.73 

5 35652.08 1.50 1.29 26165.61 1.43 1.44 21057.51 1.36 1.17 

6 33617.98 0.91 0.74 24741.74 0.87 0.89 19962.23 0.83 0.84 

7 32015.25 0.84 0.86 23619.83 0.80 0.82 19099.22 0.76 0.75 

8 31907.28 5.41 5.33 23544.25 5.11 5.12 19041.08 4.85 4.87 

9 30395.55 4.79 4.79 22486.03 4.52 4.50 18227.07 4.28 4.26 

10 28909.87 2.25 2.17 21446.05 2.12 1.93 17427.09 2.01 1.96 

Avg. 35879.72 1.99 1.94 26324.95 1.88 1.88 21180.09 1.79 1.77 

Fig. 8. Total cost change as function of the number of installed hubs p . 
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As in the previous cases, one can observe from Table 6 that the

roposed algorithms show a better performance than the Carlsson

nd Jia’s algorithm. 

It should also be noted that, unlike the results reported in

able 4 , the average gap does not vary significantly under different

alues of the demand points density ( δ) and the vehicle capacity

 C ) as shown in Tables 5 and 6 , respectively. 

.5. Optimal number of hubs 

As we noted in the Section 3 , the proposed model for the

AHLRP assumes that the number of hubs is given as an input pa-

ameter and hence, the proposed model and the solution heuristics

o not determine the optimal number of hubs. In this part of our

omputational experiments, we show that one can easily use the

roposed heuristics to determine the optimal number of hubs by

ncorporating the fixed costs for opening hubs into the analysis.

or doing so, we set the fixed cost for opening a hub as 2 mil-

ion dollars, which is equal for all hubs. We then solved the prob-

em with different values of p ranging from 2 to 10 and obtained

he total system-wide cost as the sum of the transportation and

xed facility setup costs. Fig. 8 illustrates the plots for the total

ystem-wide cost and its components (i.e., the transportation and
xed hub installation costs) for varying numbers of installed hubs

ith α = 0 . 4 , δ = 50 , and C = 10 . 

As can be seen from Fig. 8 , the transportation cost (including

he ANC and the BNC) decreases as the number of installed hubs

ets larger. In contrast, the facility setup cost increases as the num-

er of hubs increases (proportional to the number of hubs). Note

hat the total cost reaches its minimum at p = 4. Therefore, the

ptimal number of hubs, assuming a fixed facility setup cost of 2

illion dollars, is p = 4. 

.6. Alternative service region shapes 

The proposed model and solution algorithms are applicable to

ny service region with a convex polygon shape and there is no

imitation on the size of the polygon or the number of its sides.

o show this, we conduct an additional set of experiments with a

egular hexagonal service region. As in the square case, we assume

hat the total area of this hexagonal region is 100 km 

2 . Fig. 9 illus-

rates the resulting network configurations for different numbers

f installed hubs with a hexagonal service region. 
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Fig. 9. Network configuration with different values of p for hexagonal service region ( α = 0.4). 
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6. Conclusions 

This paper considered a planar hub location-routing problem

where the market demand was modeled as a uniform density

function and the distances were measured using the L 2 norm. Con-

tinuous approximation (CA) technique was used for modeling the

problem with the aim of simultaneously deciding on the location

of hubs and the allocation of service region to these hubs in such a

way that the approximate total transportation cost, including local

pickup and delivery cost, as well as line-haul inter-hub transporta-

tion cost is minimized. To solve the problem, two solution algo-

rithms were proposed: an iterative Weiszfeld-type algorithm (IWA)

and a particle swarm optimization (PSO) metaheuristic algorithm. 

Extensive computational experiments were performed to evalu-

ate the proposed solution algorithms. The results confirm the effi-

ciency of the proposed solution algorithms in terms of their abil-

ity to generate quick and high quality solutions. The proposed so-

lution algorithms were also compared with an adapted algorithm

from the literature and it was shown that both of the proposed

algorithms outperform the existing algorithm. 

We also studied the influence of different input factors, such as

the inter-hub transportation discount factor, demand point density,

and vehicle capacity on the total system-wide cost. To show that

the proposed solution methods can be applied to service regions

of different shapes and sizes, we conducted another set of experi-

ments with a hexagonal service region and presented the results. 

a  
Future research can be conducted in several directions. One

ight wish to try different density functions, rather than a uni-

orm function, for modeling the market demand. Moreover, other

istance metrics such as the rectilinear (or L 1 ) distance can be

sed, which might be more interesting in some situations like

ity logistics. Finally, some simplifying assumptions, such as hav-

ng a complete network between hub facilities or flow-independent

conomies of scale only on inter-hub connections, can be relaxed

n order to make the proposed model suitable for application to

ore realistic settings. 
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ppendix A. The average distance from a point within a convex

olygon 

In this appendix, we first calculate the average distance from

niformly distributed points within a triangle to one of its vertices

ased on the method used in Mathpages[dot]com (2014) . Then, us-

ng the formula obtained for a triangle, we derive a closed-form

ormula for calculating the average distance from a point within

 convex polygon to evenly scattered points over that polygon.
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Fig. A.10. A general triangle and a shaded narrow sector inside it. 
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Fig. A.11. A typical polygon as union of triangles. 
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ig. A.10 illustrates a general triangle with the coordinates of its

ertices. 

If we approximate the shaded region in the above figure as a

arrow sector from a circle centered at X and with the radius ‖ X −
(λP 1 + (1 − λ) P 2 ) ‖ , then the average distance from point X to all

oints evenly distributed within this region is calculated as 2 
3 ‖ X −

(λP 1 + (1 − λ) P 2 ) ‖ . This is because the average distance from the

enter of a circle of radius r to its interior is 2 
3 r. Consequently, we

an derive the formula for the average distance from a vertex to

he points within a triangle as follows: 

¯tri = 

2 

3 

∫ 1 

0 

‖ X − (λP 1 + (1 − λ) P 2 ) ‖ d λ (A.1) 

roposition 1. A closed-form for calculating ρ̄tri is: 

¯tri = 

‖ P 2 − P 1 ‖ 

6 

(
θ (1 + φ2 ) + 

1 

2 

(1 − θ2 )(1 − φ2 ) ln 

(
θ − 1 

θ + 1 

))

(A.2) 

n which 

θ = 

‖ X − P 2 ‖ + ‖ X − P 1 ‖ 

‖ P 2 − P 1 ‖ 

, 

= 

‖ X − P 2 ‖ − ‖ X − P 1 ‖ 

‖ P 2 − P 1 ‖ 

. 

roof. Let I be defined as the following definite integral: 

 = 

∫ 1 

0 

‖ X − (λP 1 + (1 − λ) P 2 ) ‖ dλ = 

∫ 1 

0 

√ 

(x − λa 1 − (1 − λ) a 2 )

= 

∫ 1 

0 

√ 

((a 2 − a 1 ) 2 + (b 2 − b 1 ) 2 ) λ2 + 2((x − a 2 )(a 2 − a 1 ) + (y −

= 

∫ 1 

0 

√ 

‖ P 2 − P 1 ‖ 

2 λ2 + 2 〈 X − P 2 , P 2 − P 1 〉 λ + ‖ X − P 2 ‖ 

2 dλ

= 

∫ 1 

0 

√ 

‖ P 2 − P 1 ‖ 

2 λ2 + (‖ X − P 1 ‖ 

2 − ‖ P 2 − P 1 ‖ 

2 − ‖ X − P 2 ‖ 

2 ) λ +

rom calculus, we know that: 

 √ 

ax 2 + bx + c dx = 

b + 4 ax 

4 a 

√ 

ax 2 + bx + c + 

4 ac − b 2 

8 a 3 / 2 
ln 

∣∣∣2 ax 

+ b + 2 

√ 

a (ax 2 + bx + c) 

∣∣∣ + C 

eplacing the parameters a, b , and c in the above formula and do-

ng the required simplifications, the solution to the definite integral
 (y − λb 1 − (1 − λ) b 2 ) 2 dλ

b 2 − b 1 )) λ + (x − a 2 ) 2 + (y − b 2 ) 2 dλ

P 2 ‖ 

2 dλ

 I ) can be expressed as: 

 = 

‖ P 2 − P 1 ‖ 

4 

(
θ (1 + φ2 ) + 

1 

2 

(1 − θ2 )(1 − φ2 ) ln 

(
θ − 1 

θ + 1 

))

ence, the average distance from a vertex of a triangle to the

oints evenly distributed within that triangle can be calculated as

ollows: 

¯tri = 

2 

3 

∫ 1 

0 

‖ X − (λP 1 + (1 − λ) P 2 ) ‖ d λ

= 

‖ P 2 − P 1 ‖ 

6 

(
θ (1 + φ2 ) + 

1 

2 

(1 − θ2 )(1 − φ2 ) ln 

(
θ − 1 

θ + 1 

))
. 

�

Now consider a polygon V of n sides formed by points (in clock-

ise order) P i , i = 1 , . . . , n and let X be a point inside this polygon

rom which we want to calculate the average distance to points in-

ide the polygon, i.e., ρ̄(V, X ) . Fig. A.11 depicts such a polygon with

 sides. It can be easily shown that the average distance from point

 to points within this polygon equals the weighted sum of the av-

rage distance from X to the points within the triangles formed by

 X, P i , P i +1 } , i = 1 , . . . , n with P n +1 = P 1 . The weight associated with

he average distance for each triangle is the proportion between

he area of that triangle and the area of the whole polygon. Based

n the definition of matrix determinants, we can calculate the

rea of the triangle formed by { X, P i , P i +1 } as 1 
2 det (P i +1 − P i , P i − X )

nd the area of the whole polygon as 1 
2 

∑ n 
i =1 det (P i +1 , P i ) , where

et (P i +1 , P i ) is the determinant formed by vectors P i +1 and P i , 

et (P i +1 , P i ) = 

∣∣∣∣a i +1 a i 
b i +1 b i 

∣∣∣∣
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Hence, ρ̄(V, X ) can be calculated by using the following closed-

form expression: 

ρ̄(V, X ) = 
∑ n 

i =1 ρ̄tri (i ) det (P i +1 − P i , P i − X ) ∑ n 
i =1 det (P i +1 , P i ) 

= 
∑ n 

i =1 ‖ P i +1 − P i ‖ 
(
θi (1 + φ2 

i 
) + 1 

2 
(1 − θ2 

i 
)(1 − φ2 

i 
) ln ( θi −1 

θi +1 
) 
)

det (P i +1 − P i , P i − X ) 

6 
∑ n 

i =1 det (P i +1 , P i ) 
(A.3)

in which 

θi = 
‖ X − P i +1 ‖ + ‖ X − P i ‖ 

‖ P i +1 − P i ‖ , 

φi = 
‖ X − P i +1 ‖ − ‖ X − P i ‖ 

‖ P i +1 − P i ‖ . 

Having derived a closed-form expression for the average distance

from a point inside a convex polygon to all points evenly dis-

tributed within that polygon, ρ̄(V, X ) , one can easily minimize this

distance by using any convex optimization tool to obtain the

Fermat-Weber point of that polygon. 
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