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Optimal Lateral Transshipment Policies for a Two Location Inventory
Problem with Multiple Demand Classes

A.C.C. van Wijk∗, I.J.B.F. Adan, G.J. van Houtum

Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands

Abstract

We consider an inventory model for spare parts with two stockpoints, providing repairable

parts for a critical component of advanced technical systems. As downtime costs for these

systems are expensive, ready–for–use spare parts are kept in stock to be able to quickly

respond to a breakdown of a system. We allow for lateral transshipments of parts between

the stockpoints upon a demand arrival. Each stockpoint faces demands from multiple demand

classes. We are interested in the optimal lateral transshipment policy. There are three ways

in which a demand can by satisfied: from own stock, via a lateral transshipment, or via an

emergency procedure. Using stochastic dynamic programming, we characterize and prove

the structure of the optimal policy, that is, the policy for satisfying the demands which

minimizes the average operating costs of the system. This optimal policy is a threshold type

policy, with state-dependent thresholds at each stockpoint for every demand class. We show

a partial ordering in these thresholds in the demand classes. In addition, we derive conditions

under which the so-called hold back and complete pooling policies are optimal, two policies

that are often assumed in the literature. Furthermore, we study several model extensions

which fit in the same modeling framework.

Keywords: inventory, spare parts, lateral transshipments, optimal policy, multiple demand

classes

1. Introduction

In this paper we study an inventory model with two stockpoints, which provide spare parts

for advanced technical systems. These systems are typically used in the primary processes
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of their users. Hence, any downtime of these systems is extremely costly, mainly because

of loss of production. Therefore, ready–for–use spare parts are kept in stock for the critical

components of these systems. We focus on a single, repairable part, for which a repair–by–

replacement strategy is executed: upon failure of a system, the defective part is replaced by

a part from inventory. The defective part is returned to the stockpoint, where it is repaired

and added to the inventory. We take the total number of spare parts (on-hand and in repair)

at each location to be given.

The stockpoints service multiple groups of technical systems. Each group is assigned to

one stockpoint. The cost of downtime of a system depends on the service contract. The

systems are classed into groups based on these downtime cost. In case of a breakdown of one

of the systems, it demands a spare part at its dedicated stockpoint. Hence, at each stockpoint,

there are multiple demand classes, which differ in importance based on downtime cost. The

demands form a Poisson process, possibly with different rates per stockpoint and per demand

class. If a demand for a spare part is directly met at the stockpoint, we refer to this as a

demand that is directly fulfilled. Otherwise, there are two possibilities. The first option is a

lateral transshipment, which means that a part is shipped from the other stockpoint. In this

case, the system is down while it is waiting for the part and extra transportation costs are

incurred. The second option is an emergency procedure: the defective part is repaired in a fast

repair procedure or a ready–for–use part is obtained from somewhere else via an emergency

shipment. In both cases, high costs are incurred. Downtime costs heavily depend on the

amount of time the system is down. Since the system is down for a longer period of time

when an emergency procedure is applied, the emergency option is much more expensive than

a lateral transshipment. Because of the large downtime costs, backordering of demands is not

allowed. Notice that the use of these emergency shipments is standard in several industries

(Kranenburg and Van Houtum, 2009; Grahovac and Chakravarty, 2001; Lee, 1987; Zhao et al.,

2006). The failed parts are repaired at external repair shops, which are modeled as ample

server stations where the service times are exponentially distributed (service times at these

servers represent repair lead times).

When lateral transshipments are used efficiently in a spare parts provisioning inven-

tory system, significant cost reductions can be achieved. This is shown by Kranenburg

and Van Houtum (2009) for the company ASML, an original equipment manufacturer in
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the semiconductor industry. They consider the cost of providing spare parts when lateral

transshipments are used, and compare these to the cost in the same setting when lateral

transshipments are not allowed. They show that the costs of spare parts provisioning can

be up to 50% lower when using lateral transshipments (without affecting the service level).

Robinson (1990) shows that substantial costs savings can be realized by the use of lateral

transshipments even when the transportation costs are high. Besides, Cohen and Lee (1990)

show that stock pooling is an effective way to improve the service levels even with less on-hand

inventory. Their conclusions are based on two case studies in the computer and automobile

industry. Furthermore, Cohen et al. (2006) point out that the pooling of spare parts is one

of the best ways for companies to realize cost reductions.

In this paper, we focus on the optimization of the lateral transshipment policy (under the

assumptions as specified in Section 2) in a setting with multiple demand classes per stockpoint.

That is, we determine the optimal decision on how to fulfill a demand to minimize the average

operating costs of the system in the long-run: (i) directly from own stock, (ii) via a lateral

transshipment, or (iii) via an emergency procedure. When is it beneficial to apply a lateral

transshipment, and when is it better to apply an emergency procedure? A straightforward

policy would be to always fulfill demands from the own stockpoint whenever possible, and

otherwise via a lateral transshipment (if possible). This policy is known as complete pooling

(or full pooling) of inventory.

Depending on the cost parameters, a complete pooling policy is suboptimal in certain

cases. If, for example, a stockpoint has only one part left in stock, it could be beneficial to

hold it back from a lateral transshipment request, for some or even for all demand classes. This

situation can occur when the cost parameters for both stockpoints and all demand classes are

equal (i.e., symmetric), but its effect may be even larger under asymmetric costs parameters.

It could, in fact, be better to hold parts back even in case of a demand at the stockpoint

itself. This may be wise to be able to respond to a future request from a more important

demand class, or even for a future lateral transshipment request of the other stockpoint. This

situation where stockpoints can hold back some inventory is known as partial pooling. A hold

back policy (cf. Xu et al. 2003, see also Van Wijk et al. 2012) is a special case of this policy.

Under that policy, one will directly fulfill a demand from the own stockpoint if possible and

outgoing transshipments are limited by a threshold parameter on the stock level.
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A considerable amount of work has been done on the use of lateral transshipments in

various settings. Wong et al. (2006) and Paterson et al. (2011) provide good overviews. Most

studies focus on (approximate) evaluation of performance characteristics or (approximate)

optimization of parameters when the policy is given: Lee (1987); Axsäter (1990); Sherbrooke

(1992); Tagaras and Cohen (1992); and Van Wijk et al. (2012). Optimal reorder policies in

the presence of transshipments are derived in Robinson (1990) and Olsson (2009).

More relevant in relation to our work, is the literature on the optimization of the lateral

transshipment rule, for which only limited results are known. Archibald et al. (1997) study

a periodic-review model and prove the optimal transshipment policy in case of stock-outs.

They allow demands to arise at any time epoch in a period. They find that a threshold type

policy is optimal, where the thresholds depend on the remaining time in a period until the

next review epoch (that is, the remaining time until the start of the next period). More

specifically, in case of a demand at a location that is out-of-stock, the optimal action is to

apply a lateral transshipment if the remaining time in the period is smaller than the threshold,

and to apply an emergency procedure otherwise. They consider only a single customer class,

assume zero-lead time replenishments, and allow only for lateral transshipments in case of a

stock-out. Our results indicate that it is not always optimal to satisfy a demand directly from

a location’s own stock. Hu et al. (2008) consider a similar model, allowing for uncertainty in

production capacity.

Periodic–review models for multiple locations include Archibald et al. (2007), who present

a heuristic for the lateral transshipment rule, and Herer et al. (2006), who approximate the

optimal transshipment rule. Van der Heide and Roodbergen (2013) (see also Van der Heide

et al., 2018) consider a problem of redistributing stock between local depots, which shows

similarities with lateral transshipments, and propose a heuristic that performs within close

margin of the optimal solution. In Herer and Tzur (2001) an optimal transshipment policy is

derived for pro-active lateral transshipments. Here lateral transshipments are only applied to

balance stock because of different holding and replenishment costs at the locations. Further,

Wee and Dada (2005) study the decision for a single period in a system with multiple locations

and one central warehouse, providing different protocols for transshipment attempts in case

of a stock-out. Xu et al. (2003) introduce a hold back parameter that limits the amount of

outgoing transshipments. Only when the stock level is above the hold back level, a lateral
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transshipment is carried out. They approximately evaluate the performance characteristics

of the model. Motivated by the retailing of seasonal goods, Abouee-Mehrizi et al. (2015)

study a multi-period, finite horizon model. The structure of the optimal joint replenishment

and transshipment policies is derived, such that the total expected cost over the season are

minimized. They show that these optimal policies can be described by four switching curves.

Amrani and Khmelnitsky (2017) consider a model with a central depot and multiple bases,

with lateral transshipments allowed between the latter. They first focus on the optimal

division of stock, and show that partial pooling often is the best strategy.

For optimal lateral transshipments rules in a continuous time review setting, few results

are available. Zhao et al. (2005, 2006) prove the optimal transshipment policy for so-called

decentralized networks, where the locations are independently owned and operated. They

find a policy where two (Zhao et al., 2005) or three (Zhao et al., 2006) parameters deter-

mine when to send and when to accept a transshipment request. Evers (2001) provides two

heuristics giving critical values for on-hand inventory, above which a stock transfers should be

applied. Minner et al. (2003) improve these heuristics using an approach based on net present

value. For the case of compound Poisson processes, Axsäter (2003a) presents a heuristic rule

determining which part of a given demand should be covered by a lateral transshipment.

In Zhao et al. (2008), a two location make–to–stock system is considered for which the

optimal production and optimal transshipment policy are derived, where the production units

are modeled as exponential, single-server queues. They show that both policies can be de-

scribed by a switching curve, i.e., by state-dependent thresholds. However, they do not allow

inventory to be held back, whereas our results show that keeping stock back could be beneficial

if the other location is (having a large risk of) facing a stock-out. The optimal lateral trans-

shipment policy for a multi-location system is characterized in Van Wijk et al. (2013), under

the assumption that only a single stockpoint (referred to as the quick response warehouse)

is allowed to supply lateral transshipments to each of the other warehouses. The dynamic

optimal transshipment policy is shown to be a state-dependent threshold policy.

By far most of the works mentioned before, assume a single demand class at each of the

stockpoints. However, the demands faced by a stockpoint can be of different importance.

Different groups of systems may have different downtime costs, because they are used by

different types of companies or departments. Consequently, it might be of more or less
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importance to quickly satisfy a certain demand. Therefore demands are categorized in classes,

the so-called demand classes. The costs for lateral transshipments and emergency procedures

depend on the class the customer belongs to. When the on-hand inventory level becomes

low, it might be beneficial to stop serving lower priority demands, in order to be able to

satisfy future demands of higher priority. In this way, stock is reserved for demands of higher

importance, which is called stock rationing. For a single stockpoint, the seminal works in

this field are Veinott Jr (1965) and Topkis (1968), both showing that the optimal policy

consists of critical levels: inventory levels at or below which only high(er) priority demands

are served. These critical levels are non-increasing in the priority of the class. An overview

of the literature on stock rationing is found in Teunter and Klein Haneveld (2008).

For the combination of multiple demand classes at different stockpoints with lateral trans-

shipment, only few results seem to be available. Closely related to our setup is the work by

Tiemessen et al. (2013), which proposes a heuristic dynamic rule for demand fulfillments

based on cost approximations and only looking one step ahead. Jalil (2011) does look into

a similar model with multiple periods, where the cost function is approximated under rather

restrictive conditions. In numerical experiments it is shown that a dynamic rule significantly

outperforms a static allocation rule, especially in the presence of major differences between

the demand classes and when on-hand inventory levels are low.

Our main contributions are as follows. For the described model with two stockpoints and

multiple demand classes, under the assumptions as specified, (a) we characterize and prove the

structure of the optimal lateral transshipment policy. That is, we model the inventory problem

as a Markov decision problem, and use stochastic dynamic programming to characterize the

optimal policy structure as a threshold type policy, with state-dependent thresholds at each

stockpoint for every demand class. We show a (partial) ordering in these thresholds in the

demand classes. Next, (b) we give conditions under which the optimal policy simplifies to

either a hold back policy or a complete pooling policy. The latter policy is often assumed in the

literature considering multi-location models with lateral transshipments and with ample server

assumptions for the repair/replenishment pipelines; see, e.g., Lee (1987); Tagaras (1989);

Axsäter (1990); Sherbrooke (1992); Grahovac and Chakravarty (2001); Kukreja et al. (2001);

Wong et al. (2006) and Zhao et al. (2008). Therefore we contribute to the literature by

presenting conditions on the cost parameters under which this policy is indeed optimal, and
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we give relaxed conditions under which the more general hold back policy is optimal. Third,

(c) we extend our results to systems with limited repair capacities, systems with substitutable

inventories, and order fulfillment problems in e-commerce. We remark that our policy is

optimal only under the assumptions made.

The outline of this paper is as follows. We start by describing the model in more detail,

and introducing the notation in Section 2. We model the system as a Markov decision problem

and introduce the technique of Event–Based Dynamic Programming. In Section 3, we give

the structural properties of the event operators and of the value function. This leads to the

characterization of the structure of the optimal policy of the Markov decision problem as a

threshold type policy. Illustrated with examples, the ordering of the thresholds is shown,

and conditions are given under which certain simple policies are optimal. Section 4 considers

several generalizations and extensions to the model. Finally, we summarize the results and

indicate possibilities for further research in Section 5. Appendix A contains all proofs.

2. Model and Notation

In Section 2.1, we introduce the problem, followed by its modeling as a Markov decision

problem in Section 2.2. We introduce the value function, i.e., the n–period minimal expected

cost function. Furthermore, we introduce the two types of event operators: for the demands

and for the repairs. Using these, the value function can be recursively expressed.

2.1. Problem Description

We consider a spare parts inventory system consisting of two stockpoints. These provide

spare parts for a single critical component of advanced technical systems. The time horizon

is infinite, starting at time 0. Each stockpoint is assigned a predetermined number of spare

parts, denoted by Si ∈ N ∪ {0} for stockpoint i, i = 1, 2. Each stockpoint serves multiple

groups of systems, and these groups are ordered according to their importance. We refer to

these groups as the (demand) classes of a stockpoint.

When a technical system breaks down, the critical component must be replaced by a

spare part. Consequently, the system demands a spare part at its designated stockpoint. The

demands arrive continuously and according to independent Poisson processes. The arrival

rate is λij ≥ 0 at stockpoint i for a system of class j ∈ Ji := {1, . . . , Ji}. A demand can
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be fulfilled in one of the following three ways: (i) directly from own stock, (ii) via a lateral

transshipment (from the other stockpoint), or (iii) via an emergency procedure. If the demand

is fulfilled from the own stock, then the downtime of the corresponding failed technical system

is short. If the demand is fulfilled by a lateral transshipment, there is extra downtime because

a part from the other stockpoint must be transported to the failed technical system. If the

demand is fulfilled by an emergency procedure, there is an even longer downtime.

Under the options (i) and (ii), the failed part is returned to the stockpoint that supplied

the requested spare part. In this way, the total number of parts at each location is constant.

This assumption not only facilitates the analysis, but since in practice the total number of

parts at a location is typically determined based on the size of the installed base that is served

by this stockpoint, one typically prefers to keep the total number of parts at a location the

same, instead of having it altered after a lateral transshipment has been applied. Next, the

failed part is immediately sent into repair at an external repair shop. In practice, external

repair shops generally have standard customer order lead times, and they have possibilities

to adapt their repair capacity for peaks in their workload. Hence, at both stockpoints, the

external repair shop is modeled as an ample server. The service times at this ample server

correspond to the repair lead times of failed parts. To facilitate the analysis, we assume that

these service times are exponentially distributed. The assumption of exponentially distributed

service times is a common one when optimal policy structures are derived in a continuous-

review setting; see also Zhao et al. (2008). The system performance is known to be rather

insensitive to this distribution, which has been shown by Alfredsson and Verrijdt (1999) and

Enders et al. (2014). The mean repair time is denoted by 1/µ (µ > 0), and is the same for

both stockpoints. In Section 4.4, we investigate unequal repair rates. We assume that parts

can be repaired an unlimited number of times, and that repaired parts attain their original

quality.

In practice, the emergency procedure, option (iii), may reflect different options. It may

represent that an external spare part is sent from another place/company, and that the failed

part is sent back to that other place. Alternatively, the failed part may be repaired off-line,

and placed back in the system after repair, after which the external part can be sent back to

that other place/company. A third possibility is that no other part is provided, but that the

failed part itself is repaired via a special fast repair procedure.
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Our goal is to minimize the average costs in the long-run. The costs are composed of

the costs for the lateral transshipments, emergency procedures, and the downtimes of the

systems. We are only interested in the influence of the decisions on the costs. That is, we

consider the extra costs a lateral transshipment or an emergency procedure causes, compared

to a fulfillment of a demand directly from stock. The number of spare parts S1 and S2 is

given, where Si is the total of parts on-hand and in repair. Hence, we ignore the purchase

costs of these parts. Neither do we take into account inventory holding or storage costs,

because, under the above assumptions, we have a fixed circulating stock at both stockpoints.

We investigate the case of non-zero holding costs in Section 4.1, where we extend the model

to consumable parts. We set the costs when a demand is met directly from own stock to

zero. These would be the costs for the downtime of the machine and for the shipment of

the spare part to the system. Also replacing, shipping back, and repairing the broken part

contribute to these costs. If a lateral transshipment is applied, higher transportation costs are

incurred. Moreover, the system is down during the extra transportation time, so extra costs

for loss of production are incurred too. All these costs for applying a lateral transshipment to

stockpoint i for a system of class j constitute the penalty costs for a lateral transshipment,

denoted by PLT
ij . The third option for fulfilling a demand, is an emergency procedure. The

extra costs for this procedure and the downtime constitute the penalty costs for an emergency

procedure for a demand at stockpoint i for a system of class j, denoted by PEP
ij . We assume

PEP
ij > 0 and PEP

ij ≥ PLT
ij ≥ 0, for all pairs (i, j), i = 1, 2, j ∈ Ji.

We model the delays for lateral transshipments and emergency procedures entirely in the

cost factors PLT
ij and PEP

ij . This is because, compared to the repair lead times (i.e., the service

times at the ample servers), these delays are on a different time scale. From our work together

with several companies in the spare parts industry, we know the typical orders of magnitude

for repair lead times, lateral transshipment times, and emergency shipments. Repair lead

times are typically in the order of multiple weeks or months, whereas lateral transshipments

and emergency procedures are typically in the order of hours or, at most, one day, say. As a

result, it is unlikely that a normal repair lead time of a part is completed in the few hours in

which a lateral transshipment or an emergency procedure is executed. Hence, we model the

lateral transshipments and emergency procedures to occur instantaneously.

Only in case that delays for lateral transshipments and emergency procedures are signif-
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icant compared to the repair lead times, and that the repair lead times are, for example,

deterministically distributed, there would be a benefit in keeping track of remaining lead

times and considering this information first before deciding on the action taken to fulfill a

demand. Such a model is studied in Howard et al. (2015). However, they are not able to

prove any structural results on the optimal policy and have to resort to heuristics.

All costs, particularly for the down-times, are united in the factors PLT
ij and PEP

ij . We

allow these to be non-equal at the two stockpoints and for each of the classes, to reflect for

differences in down-time costs and transportation costs.

The class j of a demand represents the importance of the demand to the firm. For

example, some systems might incur higher downtime cost per time unit than others, and

therefore belong to a higher priority class. This can also be based on agreements made with

the user of the systems of the various groups. This prioritization, which we assume to be solely

cost based, is reflected as an ordering of the cost for lateral transshipments and emergency

procedures. Denoting by 1 the class of the highest importance, i.e., with the highest costs, we

impose the ordering, for i = 1, 2: PLT
i1 ≥ PLT

i2 ≥ . . . ≥ PLT
iJi

and PEP
i1 ≥ PEP

i2 ≥ . . . ≥ PEP
iJi

.

As denoted already, under the above assumptions, we have a fixed circulating stock at

each of the two stockpoints. That is, the inventory position (the total number of parts in

stock and parts in repair) is constant at each stockpoint. It equals the initial amount of spare

parts, which is Si at stockpoint i. Our model fits also for consumables (spare parts or other

goods) for which basestock control is used, with basestock level Si at stockpoint i. The repair

lead times are the equivalent of the replenishment/production lead times. The emergency

repair procedure is equivalent with either lost sales or emergency shipments from outside.

2.2. Dynamic Programming Formulation

The state x of the system is given by the inventory levels at both stockpoints: x = (x1, x2).

Here xi ∈ {0, 1, . . . , Si} is the on-hand stock at stockpoint i. The state space S is given by all

possible combinations of inventory levels: S = {0, 1, . . . , S1}×{0, 1, . . . , S2}. Upon a demand

of class j at stockpoint i, a decision must be made how to fulfill it, in one of the following three

ways: (0) directly from own stock, (1) via a lateral transshipment or (2) via an emergency

procedure. The action taken for a demand of class j at stockpoint i when in state x, is

denoted by aij(x) ∈ {0, 1, 2}. An optimal action is denoted by a∗ij(x). As backorders are not

allowed, the decision space of aij(x) consists of the decisions under which x1 and x2 remain
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greater than or equal to zero.

We apply uniformization (cf. Lippman, 1975) to convert the semi-Markov decision problem

into an equivalent Markov decision problem (MDP). The existence of an average optimal

policy is guaranteed by Theorem 8.4.5a of Puterman (1994): if the state space and action

space for every state are finite, the costs are bounded, and the model is unichain, then there

exists a stationary average optimal policy. A model is said to be unichain if the transition

matrix of every (deterministic) stationary policy is unichain, that is, if it consists of a single

recurrent class plus a possibly empty set of transient states. The current model is unichain,

as the state (S1, S2) is accessible from every state (x1, x2) ∈ S for every stationary policy.

When facing a decision, we should take into account the direct costs for a decision as well

as the future expected costs this decision brings along. For the expected costs from a state,

we introduce the value function Vn : S 7→ R+. Vn(x1, x2) is the minimum expected total cost

when there are n events (demands or repairs) left when starting in state (x1, x2) ∈ S. This Vn

can be recursively expressed. The two types of operators it consists of (Gi for the repairs and

Hij for the demands) are defined below. Vn is given by:

Vn+1(x1, x2) =
1

ν

 2∑
i=1

µGi Vn(x1, x2) +
2∑

i=1

Ji∑
j=1

λij Hij Vn(x1, x2)

, for (x1, x2) ∈ S, n ≥ 0,

(1)

starting with V0 ≡ 0. Here ν = (S1 + S2)µ +
∑2

i=1

∑Ji
j=1 λij is the uniformization rate.

Decisions are only made through fulfilling demands (in the operator Hij). The decision is

made each time a demand arrives and is based on the inventory levels and demand class. For

the repairs no decisions are made.

The operator G1 models the repairs at stockpoint 1, and is defined by

G1f(x1, x2) =


(S1 − x1)f(x1 + 1, x2) + x1f(x1, x2) if x1 < S1,

S1f(x1, x2) if x1 = S1,

(2)

for some arbitrary function f : S 7→ R+. G2 is defined analogously. If the inventory level

is x1, there are S1−x1 outstanding repairs. Hence, the repairs occur at a rate proportional to

S1 − x1. Since we apply uniformization, we add the term x1f(x1, x2), which corresponds to

fictitious transitions. In this way, we assure that the total rate at which G1 occurs is always
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equal to S1.

The operator H1j models the demands at stockpoint 1 from class j ∈ J1:

H1jf(x1, x2)

=



PEP
1j + f(x1, x2) if x1 = 0, x2 = 0,

min{f(x1 − 1, x2), P
EP
1j + f(x1, x2)} if x1 > 0, x2 = 0,

min{PLT
1j + f(x1, x2 − 1), PEP

1j + f(x1, x2)} if x1 = 0, x2 > 0,

min{f(x1 − 1, x2), P
LT
1j + f(x1, x2 − 1), PEP

1j + f(x1, x2)} if x1 > 0, x2 > 0.

(3)

H2j , for j ∈ J2, is defined analogously. Hij takes the costs-minimizing action when a demand

arises. The costs consist of the direct costs for an action (0, PLT
ij , or PEP

ij ) and the expected

remaining costs from the state the system is in after taking that action, given by f(·). As

stock levels cannot become negative, four cases are distinguished.

3. Structural Results

In this section we prove our main result: the structure of the optimal policy, for the Markov

decision problem as presented in the previous section. For this, we first prove that the value

function Vn satisfies certain structural properties, such as monotonicity and multimodularity.

We show that all the operators of which Vn is composed, preserve these properties. Then,

as V0 satisfies them, it follows directly by induction that the properties hold for Vn for all

n ≥ 0. A framework for this was introduced by Koole (1998, 2006) as Event–Based Dynamic

Programming. The main advantage of this approach is that one can prove the propagation of

properties for each of the event operators separately. Hence the complexity of the problem is

reduced.

In Section 3.1, we introduce the structural properties and prove that G1 + G2 and Hij

preserve these. It then follows that Vn, for all n ≥ 0, satisfies them as well. From this we

derive, in Section 3.2, the structure of the optimal lateral transshipment policy. This policy

is a threshold type policy. The ordering of these thresholds in the demand classes is shown

in Section 3.3. In Section 3.4, we derive conditions under which it reduces to a simple policy,

such as a hold back or a complete pooling policy. Two examples are given in Section 3.5.

Finally, Section 3.6 deals with the special case of symmetric system parameters. All proofs
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are given in Appendix A.

We remark that the optimal lateral transshipment as derived here is optimal for the

problem under the assumptions as discussed in Section 2. That is, the repair completions are

assumed to be one-for-one, and the repair lead times are exponentially distributed. When

these assumptions are relaxed, the policy is not necessarily optimal anymore. In particular,

if the repair lead times are non-exponential, the optimal policy most certainly has different

characteristics, since in such a case decisions can depend on the state of the repair processes.

3.1. Properties of Operators and Value Function

Consider the following properties of a function f , defined for all (x1, x2) such that the

states appearing in the right–hand and left–hand side of the inequalities exist in S:

Decr(1) : f(x1, x2) ≥ f(x1 + 1, x2), (4)

Decr(2) : f(x1, x2) ≥ f(x1, x2 + 1), (5)

Conv(1) : f(x1, x2) + f(x1 + 2, x2) ≥ 2f(x1 + 1, x2), (6)

Conv(2) : f(x1, x2) + f(x1, x2 + 2) ≥ 2f(x1, x2 + 1), (7)

Supermod : f(x1, x2) + f(x1 + 1, x2 + 1) ≥ f(x1 + 1, x2) + f(x1, x2 + 1), (8)

SuperC(1, 2) : f(x1 + 2, x2) + f(x1, x2 + 1) ≥ f(x1 + 1, x2) + f(x1 + 1, x2 + 1), (9)

SuperC(2, 1) : f(x1, x2 + 2) + f(x1 + 1, x2) ≥ f(x1, x2 + 1) + f(x1 + 1, x2 + 1). (10)

Decr(i) stands for (non-strict) decreasingness of f in xi. Conv(i) stands for convexity of f

in xi. This means that the difference f(x) − f(x + ei) is decreasing in xi. Here, ei denotes

the unit vector consisting of all zeros except for a 1 at position i. Supermod stands for

supermodularity, the definition of which is symmetric in x1 and x2. SuperC(i, j) stands

for superconvexity, adopting the terminology of Koole (2006). It is a straightforward result

that Supermod and SuperC(i, j) imply Conv(i). Decr stands for the combination of Decr(1)

and Decr(2), i.e., Decr = Decr(1) ∩ Decr(2). Similarly, Conv = Conv(1) ∩ Conv(2) and

SuperC = SuperC(1, 2) ∩ SuperC(2, 1). Multimodularity (MM) (introduced by Hajek, 1985)

is, for the case of a two-dimensional domain, equal to the combination of Supermod and

SuperC:

MM = Supermod ∩ SuperC. (11)
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The following two lemmas provide useful properties of the operators Gi and Hij . These

enable us to derive the structure of the optimal policy.

Lemma 1. a) Operator Gi, i = 1, 2, preserves each of the following properties:

(i) Decr; (ii) Conv; (iii) Supermod.

b) The sum of the operators G1 +G2 preserves each of the following properties:

(i) Decr; (ii) Conv; (iii) Supermod; (iv) SuperC; (v) MM.

For example, part a) (i) of the lemma states the following: if a function f is Decr, then Gi f

is Decr as well, for i = 1, 2. Note that SuperC (and hence MM), is only preserved by the sum

of the operators G1+G2, and not by G1 and G2 separately. That is, if a function f is SuperC,

then (G1 + G2) f is SuperC as well, but that does not necessarily hold for G1 f and G2 f .

The reason is as follows: when G1 +G2 is applied to SuperC(1, 2) (9) and SuperC(2, 1) (10)

respectively, some terms introduced by G1 cancel out against terms introduced by G2, and

this is exploited in deriving the properties for G1 +G2.

Lemma 2. Operator Hij, i = 1, 2, j ∈ Ji, preserves each of the following properties:

(i) Decr, (ii) MM.

Note that, whileHij preserves MM, it does not hold thatHij preserves the parts Supermod,

SuperC(1, 2), and SuperC(2, 1) individually. That is, if a function f is MM, then Hij f is MM

as well. However, if f is Supermod, then Hij f does not necessarily have to be Supermod as

well, which would have been the case if f is also SuperC.

By induction on n, and Lemmas 1 and 2, the next theorem immediately follows.

Theorem 3. Vn satisfies (4)–(10) for all n ≥ 0.

The properties (4)–(10) of Vn are the key in classifying the structure of the optimal policy.

3.2. Structure of Optimal Policy

We now characterize the structure of the optimal policy in the following two theorems.

We state the optimal policy for fulfilling a demand of class j at stockpoint 1 (see Figure 1);

for stockpoint 2, analogous results hold. First we give the results for x2 fixed, next for x1

fixed. Combining both results leads to the general structure as given in Figure 1.
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Demand of class j at location 1

DI

LT

EP

Lateral transshipment

Emergency procedure

Directly from stock
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EP

x2

ltT (x )1j 1

DI

x fixed1 

0

di
T (x )1j 1

LTEP

x1

ltT (x )1j 2

DI

0 diT (x )1j 2

x  fixed2

0 S1

0

S2S2

S1

Figure 1: General structure of the optimal policy for a demand of class j at location 1. For fixed x2, the
optimal policy structure is indicated below the horizontal axis, for fixed x1 next to the vertical axis.

Theorem 4. The optimal policy for fulfilling a demand of class j at stockpoint 1 for fixed x2

is a threshold type policy: for each x2 ∈ {0, 1, . . . , S2}, there exist thresholds T lt
1j(x2) ∈

{0, 1, . . . , S1 + 1} and T di
1j (x2) ∈ {1, . . . , S1 + 1}, with T lt

1j(x2) ≤ T di
1j (x2), such that:

a∗1j(x) = 2 (emergency procedure), for 0 ≤ x1 ≤ T lt
1j(x2)− 1;

a∗1j(x) = 1 (lateral transshipment), for T lt
1j(x2) ≤ x1 ≤ T di

1j (x2)− 1;

a∗1j(x) = 0 (directly from own stock), for T di
1j (x2) ≤ x1 ≤ S1 + 1,

where T lt
1j(0) = T di

1j (0) ≥ 1.

The analogous result holds for demands at stockpoint 2 under a fixed x1 ∈ {0, 1, . . . , S1}.

This theorem follows by the supermodularity and superconvexity in (x1, x2) of the value

function (cf. (8) and (9), respectively). The structure is graphically represented below the

horizontal axis in Figure 1. For a given demand class j it holds that for each x2, the thresholds

divide the set {0, . . . , S1} into (at most) three subsets. In the first subset, where x1 is small,

an emergency procedure is optimal; in the second one a lateral transshipment; and in the third

one, where x1 is large, it is optimal to satisfy a demand from the own stock. A threshold can

be equal to S1 + 1, hence, implying that for a given x2 taking parts from stock or applying

lateral transshipments is never optimal. A special case is x2 = 0: as lateral transshipments
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are not possible at stockpoint 1, we have T lt
1j(0) = T di

1j (0), where T di
1j (0) ≥ 1, for all j. In this

case, there are (at most) two subsets: an emergency procedure is applied for 0 ≤ x1 < T di
1j (0),

and a demand is directly delivered from the own stock for T di
1j (0) ≤ x1 ≤ S1 + 1.

The intuition behind this theorem is as follows. If the stock level x1 is high, one is willing

to take a part from the own stock as there are still many remaining afterward. But if the stock

level is low, one might, depending on the costs parameters, decide to hold some parts back,

either for future request for higher priority demands, or for future lateral transshipment

requests of the other stockpoint. If x1 = 0, one is forced to apply either an emergency

procedure or a lateral transshipment, and the optimal choice depends on the stock level at

the other stockpoint. A similar characterization of the optimal policy can be made for fixed x1,

which is given in the following theorem.

Theorem 5. For the optimal policy for fulfilling a demand of class j at stockpoint 1 for fixed

x1 ∈ {0, 1, . . . , S1}, there exist T̂ di
1j (x1) ∈ {0, 1, . . . , S2 + 1} and T̂ lt

1j(x1) ∈ {1, . . . , S2 + 1}, with

T̂ di
1j (x1) ≤ T̂ lt

1j(x1), such that:

a∗1j(x) = 2 (emergency procedure), for 0 ≤ x2 ≤ T̂ di
1j (x1)− 1;

a∗1j(x) = 0 (direct from own stock), for T̂ di
1j (x1) ≤ x2 ≤ T̂ lt

1j(x1)− 1;

a∗1j(x) = 1 (lateral transshipment), for T̂ lt
1j(x1) ≤ x2 ≤ S2 + 1,

where T̂ di
1j (0) = T̂ lt

1j(0) ≥ 1.

The analogous result holds for demands at stockpoint 2 under a fixed x2 ∈ {0, 1, . . . , S2}.

This theorem follows by the supermodularity and superconvexity in (x2, x1) of the value

function (cf. (8) and (10), respectively). The structure is graphically represented next to

the vertical axis in Figure 1. For a given demand class j it holds that for each x1, the set

{0, . . . , S2} is divided into (at most) three subsets, such that in each subset one decision is

optimal. Again, a T̂ di
1j (x1) or T̂ lt

1j(x1) larger than the maximum stock level indicates that a

certain subset is empty, hence, that decision is never optimal. A special case is x1 = 0, when

it is not possible to deliver a demand directly from stock. Hence T̂ di
1j (0) = T̂ lt

1j(0), where

T̂ lt
1j(0) ≥ 1 for all j.

If the stock level at the other stockpoint, x2, is high, a lateral transshipment can be a

good option as there are still plenty of parts remaining after the transshipment is carried out.
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When x2 decreases, lateral transshipments are less likely to become the best option. If x2

is low, or even zero, stockpoint 1 might hold stock back by applying emergency procedures,

which can be optimal if there are emergency costs at stockpoint 2 that are much higher than

those of 1. We note that this is the general form of the structure. It is unlikely that it turns

out to be optimal to take parts via lateral transshipments when x2 is large, but hold parts

back for stockpoint 2 when x2 is small. In Section 3.4, we discuss conditions under which this

general optimal policy structure simplifies.

By combining Theorem 4 and Theorem 5, we can show that for each j the optimal policy

for fulfilling demands at stockpoint 1 is described by two switching curves. Define the sets

EPj , LTj , and DIj , as the areas where it is optimal to satisfy a demand of class j from the own

stock, to apply a lateral transshipment, and to apply the emergency procedure, respectively:

DIj = {x ∈ S | a∗1j(x) = 0}, LTj = {x ∈ S | a∗1j(x) = 1}, EPj = {x ∈ S | a∗1j(x) = 2}.

The set EPj consists of connected states in the lower left corner in Figure 1. This follows

from the property that a∗1j(x̃) = 2 for some x̃ implies a∗1j(x) = 2 for all x with x1 ≤ x̃1 and

x2 = x̃2 (by Theorem 4), and for all x with x1 = x̃1 and x2 ≤ x̃2 (by Theorem 5). Hence,

EPj consists of all states below a first switching curve k1j(x1) = T̂ di
1j (x1), x1 ∈ {0, . . . , S1},

which is non-increasing in x1. The remaining states are split by a second switching curve

k2j(x2) = T di
1j (x2) defined for all x2 ∈ {0, . . . , S2 | T di

1j (x2) > T lt
1j(x2)} . By Theorem 5, it

holds that: (i) if T di
1j (x̃2) > T lt

1j(x̃2) for a given x̃2, then T di
1j (x2) > T lt

1j(x2) for all x2 ≥ x̃2

(the point (T lt
1j(x̃2), x̃2) belongs to LTj and hence also all points right above that point); (ii)

k2j(x2) is non-decreasing as a function of x2. Hence, k2j(x2) is a curve that starts at the

first switching curve k1j(x1) and ends at the line x2 = S2. The set LTj consists of all states

x ∈ S \EPj that are to the left of k2j(x2) (excluding states at k2j(x2) itself). All other states

belong to the set DIj .

Theorem 6. The optimal policy for fulfilling a demand of class j at stockpoint 1 is described

by the switching curves k1j(x1) and k2j(x2) as defined above. EPj consists of all states below

k1j(x1), LTj consists of all other states that are to the left of k2j(x2), and DIj consists of all

remaining states. The analogous structure holds for demands at stockpoint 2.
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Figure 2: Ordering of the switching curves between demand classes, when j1 < j2, as in Lemma 7. Note
that part a) of Lemma 7 always holds, i.e., T di

1j1(0) ≤ T di
1j2(0). Left: Case b.1) of Lemma 7, resulting in

k1j1(x1) ≤ k1j2(x1) for all x1 ∈ {0, . . . , S1}. Right: Case b.2) of Lemma 7, resulting in k1j1(0) ≥ k1j2(0). Here,
two possible curves of k1j2(x1) are drawn.

3.3. Ordering of Demand Classes

The result that the optimal policy can be described by two switching curves can be seen

as an extension of the classical results in stock rationing (Veinott Jr, 1965; Topkis, 1968).

This result states that for a single location, multiclass model, the optimal policy for fulfilling

demands is described by critical levels, one per demand class, such that a demand of class j is

only satisfied if the on-hand inventory level is at or above the critical level for j, say cj . These

critical levels are ordered in the priority of the class: 0 = c1 ≤ c2 ≤ . . . ≤ cJ , assuming J

classes. That is, for the highest priority demands (j = 1, largest penalty costs) no stock is

ever kept back, and the lower the priority of the class, the more stock is kept back from it.

In the two-location model, these critical levels also depend on the stock level at the other

location, hence, transforming these into switching curves. For the ordering of the switching

curves, only a partial characterization can be made, as stated in the following lemma and

illustrated in Figure 2.

Lemma 7. Assuming J1 ≥ 2, let j1, j2 ∈ J1, such that j1 < j2, then

a) T di
1j1

(0) ≤ T di
1j2

(0)

b.1) If PEP
1j1
− PLT

1j1
≥ PEP

1j2
− PLT

1j2
, then k1j1(x1) ≤ k1j2(x1) for all x1 ∈ {0, . . . , S1};

b.2) If PEP
1j1
− PLT

1j1
≤ PEP

1j2
− PLT

1j2
, then k1j1(0) ≥ k1j2(0);

The analogous results hold for demands at stockpoint 2, assuming J2 ≥ 2.
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Part a) states that the higher the priority of the demand, the lower the hold back level when

the other stockpoint is out-of-stock (i.e., x2 = 0). Part b.1) states that when the difference in

cost between an emergency procedure and a lateral transshipment for a certain demand class

is larger than that difference for a lower priority demand class, then an emergency procedures

will be the non-preferred option, for all levels x1. If the difference is smaller (cf. part b.2),

in case of a stock-out (i.e., x1 = 0), a lateral transshipment is preferred over an emergency

procedure at lower stock-levels at the other stockpoint for the lower priority demand class.

In this case, no general result can be obtained for the ordering of the curves k1j1(x1) and

k1j2(x1) when x1 > 0.

That only limited results on the ordering can be obtained is a result of the fact that the

optimal policy and its switching curves originate from three hidden, underlying switching

curves. For given x, i, and j, in every state, there is an ordering of the costs of the actions

DI, LT, and EP (assuming costs are infinite when an action is not possible). For the optimal

action, it is only of importance which of these three costs is smallest. However, a closer

consideration of the ordering in these costs in each state, results in a better understanding

why the optimal policy has this structure. When the cost for each of the three actions are

compared in pairs of two (DI vs EP, DI vs LT, and LT vs EP), there exist three switching

curves that define the boundaries between sets of states where one action is preferred over the

other. Denote these curves for class j at location 1 by kDI-EP
1j (x1), k

DI-LT
1j (x1), and kLT-EP

1j (x1).

Note that the existence (and monotonicity) of these switching curves results from Theorem 4.

There are six possible orderings for costs of these actions (assuming no ties, for the sake of

this argument). Using the three curves, the state space can be subdivided into six mutually

exclusive subsets, where one of the six orderings of cost occur. This is illustrated in Figures 3

and 4 for an example. Figure 3(a) shows how the state space is subdivided into six subsets,

where in each set one of the ordering in costs of DI, LT, and EP occurs (in state (0, 0) there is

a tie in costs for DI and LT, as both are infinite). The optimal policy, as shown in Figure 3(b)

only takes into account which option results in the smallest cost. The three switching curves

are shown in Figure 4. These define the areas of Figure 3(a), and the switching curves k1j(x1)

and k2j(x2) of the optimal policy (as in Figure 3(b), cf. Theorem 6) are parts of these three

switching curves.

There exists a (partial) ordering in these underlying switching curves in the demand
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Figure 3: Optimal policy for a demand of class j at location 1. (a): Ordering in costs. (b): Resulting optimal
policy. The optimal actions are underlined.
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Figure 4: Three switching curves, for the same case as in Figure 3. The optimal actions are underlined.

classes, as stated in the following lemma. Despite this result, this does in general not imply

that the switching curves k1j(x2) and k2j(x2) which describe the optimal policy (cf. Theo-

rem 6) will be ordered as well in the demand classes (see Example 1 in Section 3.5, classes 2

and 3 at location 1).

Lemma 8. Assuming J1 ≥ 2, let j1, j2 ∈ J1, such that j1 ≤ j2, then, for all x1:

a) kDI-EP
1j1

(x1) ≤ kDI-EP
1j2

(x1);

b) kDI-LT
1j1

(x1) ≥ kDI-LT
1j2

(x1);

c.1) If
(
PEP
1j1
− PLT

1j1

)
−
(
PEP
1j2
− PLT

1j2

)
≥ 0, then kLT-EP

1j1
(x1) ≤ kLT-EP

1j2
(x1);

c.2) If
(
PEP
1j1
− PLT

1j1

)
−
(
PEP
1j2
− PLT

1j2

)
≤ 0, then kLT-EP

1j1
(x1) ≥ kLT-EP

1j2
(x1).

3.4. Conditions Simplifying the Optimal Policy

A special instance of the model presented is the case in which at each stockpoint, there

is only a single customer class (i.e., J1 = J2 = 1). In this setting, under simple, sufficient
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conditions for the cost parameters, the structure of the optimal policy is simplified. We give

two such conditions: under the first one, (i) it is optimal to fulfill a demand directly from

own stock, whenever possible. However, a parameter limits the amount of outgoing lateral

transshipment. This parameter is called the hold back level, and indicates the amount of stock

that is held back from a transshipment request. Hence, we refer to this policy as a hold back

policy (see Xu et al., 2003; Van Wijk et al., 2012). Furthermore, under the second condition,

(ii) it is optimal to fulfill a demand directly from own stock, whenever possible, and otherwise

to apply a lateral transshipment, whenever possible. For an individual stockpoint, we call this

a zero hold back policy, as the hold back level equals zero. When both stockpoints execute

this policy, this is called a complete pooling policy.

The following theorem states conditions under which it is optimal to always fulfill a de-

mand directly from own stock. Since in this section we focus on the setting with a single

demand class per stockpoint, we drop the subscript j for clarity of exposition.

Theorem 9. 1a) If

PEP
2 ≤ PLT

2 +

(
1 +

µ

λ2

)
PEP
1 , (12)

then T di
1 (x2) = 1 for all x2 ∈ {0, 1, . . . , S2}, i.e., a hold back policy is optimal at stockpoint 1.

b) If

PEP
1 ≤ PLT

1 +

(
1 +

µ

λ1

)
PEP
2 , (13)

then T di
2 (x1) = 1 for all x1 ∈ {0, 1, . . . , S1}, i.e., a hold back policy is optimal at stockpoint 2.

2) If (12) and (13) hold, then it is optimal for both stockpoints to execute a hold back policy.

Under condition (12), whenever there are items in stock at stockpoint 1, they should

always be used in case of a demand at stockpoint 1, see Figure 5(a). However, stock can

possibly be held back from lateral transshipment requests. If both stockpoints execute a hold

back policy, the entire policy is prescribed by only 2 parameters (T̂ lt
1 (0) and T̂ lt

2 (0)).

In the case of symmetric costs at both stockpoints, i.e., PLT
1 = PLT

2 and PEP
1 = PEP

2 ,

one clearly satisfies conditions (12) and (13). The conditions (12) and (13) are also satisfied

when λ1 ↓ 0 and λ2 ↓ 0, i.e., under sufficiently low demand rates. Furthermore, in case the

cost structure for a stockpoint satisfies a ‘triangle inequality’ PEP
i ≤ PEP

k + PLT
i (that is, it

is cheaper to immediately apply an emergency procedure at i, than to apply an emergency

procedure at the other stockpoint k and then ship that part by lateral transshipment from k
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Figure 5: Optimal policy structure of Theorems 9 and 10: (a) Always from stock if x1 > 0 (hold back policy,
Theorem 9); (b) Always lateral transshipment if x1 = 0 (Theorem 10); (c) Combination of (a) and (b): zero
hold back policy (again Theorem 10, as it implies Theorem 9)

to i), the condition of Theorem 9 at this stockpoint will always be true.

Next we give conditions under which a zero hold back policy is optimal. The required

conditions are stronger versions of the conditions in Theorem 9.

Theorem 10. 1a) If

PLT
1 +

λ2
λ2 + µ

PEP
2 ≤ PEP

1 , (14)

then T di
1 (x2) = 1 for all x2 ∈ {0, 1, . . . , S2} and T̂ lt

1 (0) = 1, i.e., a zero hold back policy is

optimal at stockpoint 1.

1b) If

PLT
2 +

λ1
λ1 + µ

PEP
1 ≤ PEP

2 , (15)

then T di
2 (x1) = 1 for all x1 ∈ {0, 1, . . . , S1} and T̂ lt

2 (0) = 1, i.e., a zero hold back policy is

optimal at stockpoint 2.

2) If (14) and (15) hold, then a complete pooling policy is optimal.

Under condition (14), stockpoint 2 should not hold back stock if stockpoint 1 requests a

lateral transshipment when it is out–of–stock, see Figure 5(b). As condition (14) is stronger

than condition (12), it follows that under condition (14) a zero hold back pooling policy is

optimal, see Figure 5(c). When both conditions (14) and (15) are satisfied, we obtain a

complete pooling policy as optimal policy. Notice that this policy is often assumed in the

literature (e.g. Lee, 1987; Tagaras, 1989; Axsäter, 1990; Sherbrooke, 1992; Alfredsson and

Verrijdt, 1999; Grahovac and Chakravarty, 2001; Kukreja et al., 2001; Wong et al., 2006;

Zhao et al., 2008, to mention only a few). Theorem 10 contributes to a better understanding

of when it is justified to assume complete pooling.
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The conditions (14) and (15) are always satisfied when 1/µ ↓ 0, i.e., under sufficiently

small repair lead times. From a practical point of view: if the part taken for the lateral

transshipment can be expected to be added back to stock again (almost) immediately, a

lateral transshipment is preferred over an emergency procedure.

Furthermore, we can partially understand the structure of the conditions by considering

the following scenario: a demand arises at stock point 1 when in state x1 = 0, x2 = 1,

followed by a demand at stock point 2. For the first demand (at stock point 1), applying an

emergency procedure yields direct cost PEP
1 while leaving the state unchanged, and in that

case, the second demand (at stock point 2) can be satisfied directly from stock at no additional

extra cost. Alternatively, the first demand can be satisfied by a lateral transshipment, at

direct cost PLT
1 , after which the state becomes x1 = x2 = 0. Now, if the second demand

occurs before the part used in this lateral transshipment is added back to stock again, which

happens with a probability that is at most λ2/(λ2 + µ) (if S1 = 0, S2 = 1), and the extra

cost for an emergency procedure are PEP
2 (and are zero otherwise). Comparing the total

expected costs for this scenario yields that a lateral transshipment for the first demand, i.e.,

the demand at stockpoint 1, is preferred if the expected costs of this option, which are at

most PLT
1 +

(
λ2/(λ2+µ)

)
PEP
2 , are smaller than the cost of applying an emergency procedure,

PEP
1 . This is exactly condition (14). A similar reasoning holds for condition (15) when the

stockpoints are interchanged.

The conditions in Theorems 9 and 10 are, in general, sufficient, but not necessary. For the

cases S1 = 1, S2 = 0, respectively S1 = 0, S2 = 1, the conditions are necessary and sufficient.

There exist examples not satisfying these conditions, in which case, the optimal policy is

neither a hold back nor a zero hold back pooling policy (see Example 2a of Section 3.5).

Combining these conditions for both stockpoints leads to the following result.

Corollary 11. The optimal lateral transshipment policy is

1. either a hold back policy at both locations;

2. or a zero hold back policy for at least one location.

In the second case, the optimal policy for one location is a zero hold back policy, and the

optimal policy for the other location can be a hold back policy, a zero hold back policy, or

neither of the two.
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3.5. Examples

Example 1. Consider the following example: S1 = 5, S2 = 6, and J1 = 3, J2 = 3, λ11 = 2,

λ12 = 0.5, λ13 = 0.25, λ21 = 0.5, λ22 = 0.5, λ23 = 1, µ = 1/3, and cost parameters given by

PEP
11 = 13, PEP

12 = 7, PEP
13 = 6, PEP

21 = 23, PEP
22 = 18, PEP

23 = 9, and PLT
11 = 6, PLT

12 = 1,

PLT
13 = 1, PLT

21 = 15, PLT
22 = 10, PLT

23 = 1. The optimal policy for fulfilling demands at

location 1 is given in Figure 6.

For the highest priority class at location 1, orders are always satisfied if on-hand stock

is available. In case of a stock-out, a lateral transshipments is applied in case location 2

has three or more parts on-hand. The lower the priority class, the more often the choice

is made for an emergency procedure or lateral transshipment (which are less costly than

these actions for a high priority demand). In particular, for the lowest demand class at

location 1, the threshold above which demands are directly fulfilled is high. Note that since

PEP
1j1
− PLT

1j1
> PEP

1j2
− PLT

1j2
> PEP

1j3
− PLT

1j3
, we have EPj1 ⊆ EPj2 ⊆ EPj3 (as in Lemma 7,

part b.1). At location 2, stock is almost always used to fulfill demand directly. Only for the

lowest priority demand class, parts are kept back. Although the parameters are different, the

optimal policies for the two highest priority classes here are equal.

Example 2a. We now consider an example with only a single demand class per stockpoint,

that is, J1 = J2 = 1 (as in Section 3.4). In this way, we can fully concentrate on the use of

lateral transshipment in the optimal policy. Again, the subscript j is dropped for clarity of

exposition. The parameters are set to: S1 = S2 = 4, and λ1 = 2, λ2 = 1, µ = 1/3, and for

the costs: PEP
1 = 25, PLT

1 = 5 and PEP
2 = 10, PLT

2 = 2. Hence, an emergency procedure

is five times as expensive as a lateral transshipment, and at location 1, the demand rate as

well as the costs are higher. The optimal policy is given in Figure 7. At stockpoint 1 a zero

hold back policy is optimal. This structure is implied by the fact that the parameters satisfy

condition (14), and hence, part 1a) of Theorem 10 holds. For stockpoint 2, demands are

only fulfilled directly from stock if the sum of the inventory levels at both locations is large

enough. That is, if x1 + x2 ≥ 3 (and x2 > 0) a part is taken from stock, and otherwise an

emergency procedure is applied. This can be explained in the following way. The costs for

lateral transshipments to and emergency procedures at stockpoint 1 are much higher than

those at stockpoint 2. This results in the fact that stockpoint 2 will hold back parts, even when

it faces a demand. By holding back parts, the expensive costs for an emergency procedure
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Figure 6: Example 1: Optimal policy for fulfilling demands of each of the classes at locations 1 and 2.

at stockpoint 1 are saved in case of a demand there, when it is stocked-out. This is at the

expense of a lateral transshipment from 2 and possibly one or more emergency procedures

at 2. The option of holding back parts at 2, however, turns out to be less costly, on average.

The optimal policy at location 2 resembles a critical level policy where the sum x1 + x2 acts

as a critical level determining whether a demand at location 2 is directly satisfied.

The optimal policy gives expected average costs per time unit of 18.2. Without lateral

transshipments, these costs would be 25.5; hence, the optimal policy reduces this by almost

29%. A complete pooling policy has expected average costs per time unit of 20.0. So, the

optimal policy reduces these by 9.4%.

Example 2b. In Example 2a, condition (14) (and hence, condition (12)) was satisfied for

stockpoint 1, but not for stockpoint 2. By doubling the penalty costs at 2, into PEP
2 = 20

and PLT
2 = 4, condition (13) is satisfied as well. Hence, by Theorem 9, this results in the

optimality of a hold back policy at both locations (with still zero hold back at 1). The optimal

policy is given in Figure 8. The two hold back levels T̂ lt
1 (0) = 1 and T̂ lt

2 (0) = 2 determine the
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Figure 7: Example 2a: Optimal policy for the case with S1 = S2 = 4, λ1 = 2, λ2 = 1, µ = 1/3 and penalty
costs PEP

1 = 25, PLT
1 = 5, PEP

2 = 10, PLT
2 = 2.
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D e m a n d  a t  l o c a t i o n  2

D I

E P

x 2

x 1

D i r e c t l y  f r o m  s t o c k

L T

Figure 8: Example 2b: Optimal policy. Note that the difference in parameters with Example 2a is PEP
2 = 20

and PLT
2 = 4.

entire policy. These are the inventory levels from which on lateral transshipments (a∗i = 1)

are applied instead of emergency procedures (a∗i = 2). The expected average costs per time

unit are 22.9. For a policy without lateral transshipments these would be 27.6 (almost 17%

reduction for the optimal policy), and complete pooling would give 23.2. This is only a 1.4%

reduction, but this policy differs from the optimal policy only in a2(1, 0).

3.6. Symmetric Parameters

A special case is the system in which all parameters are symmetric, i.e., in which all

parameters for both stockpoints are equal: S1 = S2 =: S, λ1 = λ2 =: λ, PLT
1 = PLT

2 =:

PLT , PEP
1 = PEP

2 =: PEP (still assuming J1 = J2 = 1). It is straightforward that in this case

there exists a symmetric optimal policy. As the conditions of Theorem 9 are clearly satisfied,

it follows that for both stockpoints a hold back policy is optimal. The entire policy can now
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(a) Ample repair capacity
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(b) Single repair server at each of the loca-
tions

Figure 9: For S = 4 and symmetric system parameters, the S + 1 regions where each of the thresholds T is
optimal, in the cases of ample repair capacity (left) and in case of a single repair server at each of the locations
(right). For ample repair capacity, the region where Condition (16) assures the optimal policy to be complete
pooling is indicated as well (marked area below the bold line).

be described by a single (for both stockpoints equal) hold back level T̂ lt
1 (0) = T̂ lt

2 (0) =: T ∈

{1, 2, . . . , S+1}: T = 1 indicates a zero hold back policy, T = 2 indicates that one part is held

back, and so on. Finally, T = S + 1 indicates that no stock in shared in any way, i.e., there

is no interaction between the stockpoints. Hence, there are S + 1 possible optimal policies.

Given the ratio λ/µ, it turns out that the optimal policy is determined by only the ratio

PLT /PEP . For S = 4 it is indicated in Figure 9a when each of the five (= S + 1) possible

policies is optimal. These areas are determined by solving the steady-state distribution of

the Markov process for each of the policies and deriving the average costs of a policy. For

the symmetric case, Theorem 10 reduces to the following corollary, which also holds when

S1 6= S2. The interpretation of the condition in this theorem is similar to the interpretation

of conditions (14) and (15).

Corollary 12. In case of symmetric system parameters λ, PEP and PLT , a complete pooling

policy is optimal if

PLT ≤ µ

λ+ µ
PEP . (16)

In Figure 9a the curve PLT /PEP = µ/(λ + µ) is plotted as well. Below this curve, by

Corollary 12, complete pooling is optimal. From this figure it turns out that this condition,

although only sufficient, covers a large part of the total, exact area.
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4. Model Extensions

In this section, we consider several model extensions, which include consumables (4.1),

order fulfillment problems (4.2), and substitutable items (4.3). Typically, with possibly some

minor adjustments, all results derived in the previous sections remain to hold. We also show

that in case of unequal repair rates, the structural results might fail to hold (4.4). However,

when one limits the repair capacity, the results remain valid, even when the repair rates are

unequal (4.5).

4.1. Consumables

We have presented the model for an inventory system with repairables. However, the

model is also suitable for consumable parts. Instead of having Si circulating repairable spare

parts at location i, we assume that a basestock policy is executed, where the basestock level

is Si. Replenishments are used to increase the stock level, where the replenishment lead times

are modeled by the operator Gi, in the same way as the repair lead times were modeled.

Holding cost. For a system with circulating stock, one can without loss of generality

charge holding costs for items in repair. Hence the holdings costs are constant and can

therefore be left out. However, when considering consumables, typically holding costs are

charged only for parts in stock. This can be incorporated in the model, by adding the term∑2
i=1 hi(xi) in the value function, where hi : {0, 1, . . . , Si} 7→ R denotes the holding costs

at stockpoint i per part per time unit. We assume that hi(0) = 0 and that hi(xi) is non-

decreasing and convex in xi. The latter is required to ensure that the value function remains

convex in every iteration.

We can again use Lemmas 1 and 2. Instead of Theorem 3, the value function now

satisfies (6)–(10) for all n ≥ 0. Decr is not satisfied, as the holding costs are increas-

ing in x1 and x2. Consequently, Theorems 4, 5, and 6 still hold (as Decr is not used

in the proofs). When focusing on a single demand class per stockpoint, in the condi-

tions under which the (zero) hold back policy is optimal, however, an extra term incor-

porating the holding costs should be added. In Theorem 9, condition (12) changes into

PEP
2 ≤ PLT

2 + (1 + µ/λ2)P
EP
1 + h1(1)/(ν λ2), and similarly for condition (13). In Theo-

rem 10, condition (14) changes into PLT
1 + (λ2 P

EP
2 )/(λ2 + µ) ≤ PEP

1 + h2(1)/(ν (λ2 + µ)),

and similarly for condition (15). Under these changed conditions, both theorems hold.
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Backordering. Since we consider a model in which high cost are incurred for downtime

of systems, we did not allow for backorders. However, it is straightforward to include this

option, as long as we limit ourselves to a single demand class per stock point. That is, we

allow parts to be ‘taken directly from stock’ at location i, even if xi ≤ 0, which means that

a demand is backordered. The negative part of xi, which is x−i = max{−xi, 0}, denotes

the number of outstanding backorders at location i. For technical reasons, we limit the

maximum number of outstanding backorders at location i to be Bi ≥ 0, to ensure that

one can still apply uniformization (this requires a finite rate out of each state). Let bi :

{0, 1, . . . , Bi} 7→ R denote the backordering costs at stockpoint i per backordered demand

per time unit. We assume that bi(0) = 0 and that bi(xi) is non-increasing and convex

in xi. We add the term
∑2

i=1 bi(x
−
i ) to the value function. The state space becomes Sb =

{−B1, . . . ,−1, 0, 1, . . . , S1} × {−B2, . . . ,−1, 0, 1, . . . , S2}, where the superscripts b indicates

the case of backordering. Furthermore, for the operator H1 the states for which a certain

action can be taken have to be adjusted. In the definition (3), x1 = 0 and x1 > 0 are replaced

by x1 = −B1 and x1 > −B1, respectively, and x2 = 0 becomes x2 ≤ 0. Similar adjustments

are made for H2. Denote the new operators by Hb
i , i = 1, 2. Note that a demand at location

i can only be backordered at location i. Assuming that the replenishment rate is linear in the

number of outstanding orders, the operator Gi remains the same. The uniformization rate

becomes νb = (S1 + S2 +B1 +B2)µ+
∑2

i=1 λi.

It is straightforward to derive that Lemma 2 still holds for the operator Hb
i on the state

space Sb. This is the case, as in fact the extension to backordering only expands the state

space and then shifts the origin from (0, 0) to (−B1,−B2). For the same reason, Lemma 1

remains to hold as well. Analogously to the case with holding cost, instead of Theorem 3, the

value function now satisfies (6)–(10) for all n ≥ 0 and state space Sb. The structural results

of Theorems 4, 5, and 6 still hold, when the domains of x1 and x2 (and accordingly, those of

the thresholds) are adjusted to Sb. In Theorem 9, if condition (12) is changed into

PEP
2 ≤ PLT

2 +

(
1 +

µ

λ2

)
PEP
1 +

b1(−B1)− b1(−B1 + 1)

νb λ2
,

and similarly for condition (13), the theorem still holds, with an adjusted definition of a hold

back policy. That is, a hold back policy now means that in case of a demand, whenever there

is the possibility to take a part from stock or to backorder the demand, this option is preferred
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over a lateral transshipment and over an emergency procedure. Note that the condition given,

simplifies if b1(·) is linear in the number of outstanding backorders. Theorem 10 remains to

hold, with unchanged conditions, if the definitions of a zero hold back policy and complete

pooling policy are adjusted similarly to the adjustment of the definition of a hold back policy

for Theorem 9.

4.2. Order Fulfillment Problems

The lateral transshipment model also exactly fits a so-called order fulfillment problem in

e-commerce: a retailer has multiple warehouses and customers differ in revenue and criticality

regarding shipment times (see, e.g., Acimovic and Graves, 2014). When a customer orders a

product via a website or by phone, the retailer might have that product stocked at multiple of

its warehouses. Moreover, the customer might choose from different options for shipping: the

faster, the higher the cost, with these options also differing in revenue for the retailer. Once

the demand is placed, the retailer has to decide on the optimal way to fulfill the demand.

This could be from the warehouse closest to the customer, or from another warehouse.

The customers are assigned to the warehouses based on, e.g., their geographical location.

The shipment time chosen for their order defines the demand classes it has at a warehouse,

where the shorter the shipment time, the higher the priority of the customer. A direct

demand fulfillment equals the customer receiving the ordered product directly from the closest

warehouse. A lateral transshipment equals the action that the order is fulfilled from another

warehouse. Higher transportation costs are incurred, however, stock is kept back at the

closest warehouse for future high priority demands. A shipment from a central depot, having

large shipment cost, reflects an emergency procedure. As this problem fits into the lateral

transshipment model (for a two warehouse setting), all results of Section 3.2 remain to hold,

and so will the orderings and the conditions of Sections 3.3 and 3.4.

4.3. Substitutions and Unidirectional Transshipments

The presented model is also suitable for a single-location inventory models with two types

of products. Then the state (x1, x2) denotes the inventory levels of each type of the product.

One type can serve as a substitute for the other in case of a stock-out. However, extra costs

for such a substitution might be incurred, which are then the cost factors PLT
1j and PLT

2j .

Applications of these models are found in, e.g., car rentals and storage box rentals. For
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example, x1 denotes the number of available large cars, and x2 of small cars. A customer

wishing to rent a small car, can be assigned a large car if x2 = 0. This is called a substitution.

The extra costs this brings along, are taken into account in PLT
1j . Since some customers might

be more affected by a substitution than others, the cost differ per demand class.

In the model we allow transshipments (substitutions) in both ways. A simplification of

this is an unidirectional transshipment model (cf. Axsäter, 2003b). In that case, a lateral

transshipment (substitution) can only be applied in one way, e.g., from 2 to 1 only, and

not the other way around. Other reasons for a substitution in one way might be due to

higher quality or product specifications. The restriction to unidirectional transshipments

(from 2 to 1) can be achieved by setting PLT
2j = PEP

2j for all j ∈ J2. In this way a lateral

transshipment will never be an optimal action for a demand at stockpoint 2 (as it is as

expensive as an emergency procedure but does not reduce the stock level at 1). Obviously,

all structural results will remain to hold.

For a single demand class per stockpoint, note that by putting PLT
2 = PEP

2 , inequality (12)

is always satisfied. Consequently, a hold back policy is optimal for 1, which was to be

expected. Note that although (15) is never satisfied (unless PEP
1 = 0), we can not conclude

that a zero hold back policy is suboptimal at stockpoint 2. This is because the conditions

in Theorems 9 and 10 are sufficient but not necessary. As for a one-way substitution model,

typically PEP
2 ≥ PEP

1 (it is more costly not satisfying a demand for a larger car than for a

smaller car), inequality (13) will be satisfied as well. Hence, a demand at 2 is always satisfied

directly from stock.

4.4. Asymmetric Repair Rates

As both stockpoints stock the same repairable part, we have assumed that both stockpoints

have the same repair lead time distribution. In fact, we need this assumption in order to derive

the structural results. This is because according to Lemma 1 only G1 + G2 preserves MM,

and not G1 and G2 individually. This assumption is sufficient but not necessary. One can

easily construct examples with unequal repair rates for which the structural results do hold.

However, there are also examples with unequal repair rates for which the structural results

fail to hold, as shown in the following example.

Let S1 = 1, S2 = 2, J1 = J2 = 1, λ1 = λ2 = 1, and µ1 = 1/3 6= µ2 = 1, denoting by µi the

repair rate at stockpoint i. Furthermore, let PEP
1 = 1000, PLT

1 = 175 and PEP
2 = PLT

2 = 10.
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Figure 10: Example in which µ1 6= µ2: the structural properties of the optimal policy does not hold.

The (unique) optimal policy is given in Figure 10. Clearly, for demands at stockpoint 1 when

x1 = 1, the structure of the optimal policy is not as described by Theorem 6. This example

illustrates that under µ1 6= µ2 the structural results do not necessarily hold. At location 1

when x1 = 1, a demand is directly satisfied from stock if x2 = 0 or x2 = 2, however, if x2 = 1

a lateral transshipment is the (only) optimal action.

By applying a lateral transshipment at location 1 when in state x1 = x2 = 1, one exploits

the faster repair times at location 2, at the expense of PLT
1 . Namely, after applying a lateral

transshipment in this state, the expected time till any part is added back to stock is 0.25,

whereas it would be twice as long, i.e., 0.50, if a part is taken from stock at location 1 when in

this state. Given the high cost for an emergency procedure at 1 in this example, the reduction

in expected repair time (and hence, the reduction in expected future cost) outweighs the extra

cost PLT
1 . Note that this situation cannot happen when the repair rates are equal, since then

there is no advantage to apply a lateral transshipment in such a situation, only to decrease

the expected time till a part is added back to stock.

The parameters in this example are such that in state x1 = 1, x2 = 2 the smaller expected

repair lead time does not lead to sufficient savings on expected future costs to justify the extra

cost of a lateral transshipment at location 1 when in this state. Only if PLT
1 is reduced from

175 to (approximately) 165.2, the optimal action in this state becomes a lateral transshipment.

If PLT
1 is increased to (approximately) 196.0, it will be optimal in state x1 = 1, x2 = 1 to

take a part directly from stock.

4.5. Limited Repair Capacity

A variant of the described system is a system in which there is limited repair capacity: at

each stockpoint there is only one server to repair the failed returned parts. The repair times

remain exponentially distributed with mean 1/µi at stockpoint i, where, for generality, we
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allow for non-identical repair rates at both locations. We only have to change the operator

Gi into, say, G̃i, defined by

G̃1f(x1, x2) =


f(x1 + 1, x2) if x1 < S1,

f(x1, x2) if x1 = S1,

(17)

and G̃2 analogously. In the value function, one replaces Gi by G̃i, i = 1, 2 and updates ν into

ν =
∑2

i=1

∑Ji
j=1 λij + µ1 + µ2, the remainder being unchanged.

Theorem 13. In case of a single repair server at each of the stockpoints, the same structural

results for the optimal policy hold. That is, Theorems 4, 5, and 6 hold.

For Theorem 13 we do not need equal µi’s, as G̃1 and G̃2 separately preserve MM, and not

only the sum of both. For symmetric system parameters, we compare the optimal policy for

a single repair server (see Figure 9b) with the case of ample repair capacity (see Figure 9a).

From the graphs it follows that the set of system parameters where one can benefit from

lateral transshipments, is much smaller in the case of a single repair server.

5. Conclusion

In this paper, we proved that the structure of the optimal lateral transshipment policy

(under the given assumptions) is a threshold type policy. We also gave sufficient conditions

under which a (zero) hold back policy or a complete pooling policy is optimal. We studied a

number of model extensions fitting within the same framework.

Interesting problems for further research would be the extension to three or more stock-

points; variations in the repair time distribution (such as Erlang-k distributed repair lead

times, or state-dependent repair rates); and the incorporation of so-called pro-active lateral

transshipments, i.e., rebalancing of the stock levels triggered by a replenishment.
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Axsäter, S., 2003b. Evaluation of unidirectional lateral transshipments and substitutions in

inventory systems. European Journal of Operational Research 149, 438–447.

Cohen, M., Agrawal, N., Agrawal, V., 2006. Winning in the aftermarket. Harvard Business

Review 84, 129–138.

Cohen, M., Lee, H., 1990. Out of touch with customer needs? Spare parts and after sales

service. Sloan Management Review 31, 55–66.

Enders, P., Adan, I., Scheller-Wolf, A., Van Houtum, G., 2014. Inventory rationing for a

system with heterogeneous customer classes. Flexible Services and Manufacturing Journal

26, 344–386.

Evers, P., 2001. Heuristics for assessing emergency transshipments. European Journal of

Operational Research 129, 311–316.

34



Grahovac, J., Chakravarty, A., 2001. Sharing and lateral transshipment of inventory in a

supply chain with expensive low-demand items. Management Science 47, 579–594.

Hajek, B., 1985. Extremal splittings of point processes. Mathematics of Operations Research

10, 543–556.

Van der Heide, G., Roodbergen, K., 2013. Transshipment and rebalancing policies for library

books. European Journal of Operational Research 228, 447–456.

Van der Heide, G., Van Foreest, N., Roodbergen, K., 2018. Optimizing stock levels for

rental systems with a support warehouse and partial backordering. European Journal of

Operational Research 265, 107–118.

Herer, Y., Tzur, M., 2001. The dynamic transshipment problem. Naval Research Logistics

48, 386–408.
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Supplementary Materials
Optimal Lateral Transshipment Policies for a Two Location

Inventory Problem with Multiple Demand Classes

A.C.C. van Wijk, I.J.B.F. Adan, G.J. van Houtum

A. APPENDIX - Proofs

A.1. Proof of Lemma 1

Proof. a) We give the proofs for the operator G1. By interchanging the numbering of the locations,

the results directly follow for the operator G2 as well.

(i) It is straightforward to check that if f is Decr(1) (cf. (4)), then G1f is Decr(1) as well,

i.e., if f(x1, x2) ≥ f(x1 + 1, x2), then G1f(x1, x2) ≥ G1f(x1 + 1, x2), for all (x1, x2) such that the

states appearing exists ∈ S. Along the same lines it follows that if f is Decr(2) (cf. (5)), then

G1f is Decr(2) as well, i.e., then G1f(x1, x2) ≥ G1f(x1, x2 + 1). Combining this proves that the

operator G1 preserves Decr.

(ii) Assume that f is Conv(1) (cf. (6)), then we show that G1f is Conv(1) as well. For

x1 + 2 < S1:

G1f(x1, x2) +G1f(x1 + 2, x2)

= (S1 − x1)f(x1 + 1, x2) + x1f(x1, x2)

+ (S1 − x1 − 2)f(x1 + 3, x2) + (x1 + 2)f(x1 + 2, x2)

= (S1 − x1 − 2)
[
f(x1 + 1, x2) + f(x1 + 3, x2)

]
+ x1

[
f(x1, x2) + f(x1 + 2, x2)

]
+ 2f(x1 + 1, x2) + 2f(x1 + 2, x2)

≥ 2 (S1 − x1 − 2)f(x1 + 2, x2) + 2x1f(x1 + 1, x2) + 2f(x1 + 1, x2) + 2f(x1 + 2, x2)

= 2 (S1 − x1 − 1)f(x1 + 2, x2) + 2 (x1 + 1)f(x1 + 1, x2)

= 2G1f(x1 + 1, x2),

where the inequality holds by applying that f is Conv(1) on the parts between brackets. And for
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x1 + 2 = S1:

G1f(S1 − 2, x2) +G1f(S1, x2)

= 2f(S1 − 1, x2) + (S1 − 2)f(S1 − 2, x2) + S1f(S1, x2)

= 2f(S1 − 1, x2) + (S1 − 2)[f(S1 − 2, x2) + f(S1, x2)] + 2 f(S1, x2)

≥ 2f(S1 − 1, x2) + 2 (S1 − 2)f(S1 − 1, x2) + 2 f(S1, x2)

= 2 f(S1, x2) + 2 (S1 − 1)f(S1 − 1, x2)

= 2G1f(S1 − 1, x2),

where again the inequality holds by applying that f is Conv(1) on the part between brackets.

It is straightforward to check that if f is Conv(2) (cf. (7)), then G1f is Conv(2) as well, i.e.,

then G1f(x1, x2) +G1f(x1, x2 + 2) ≥ 2G1f(x1, x2 + 1). Combining this proves that the operator

G1 preserves Conv.

(iii) Along the same lines of the proof of (ii) one can prove that if f is Supermod (cf. (8)), then

G1f is Supermod as well. Hence the operator G1 preserves Supermod.

b) (i)–(iii) trivially follow from part a).

(iv) We show that G1 +G2 preserves SuperC(1, 2); then SuperC(2, 1) follows by interchanging

the numbering of the locations. Assume that f is SuperC(1, 2) (cf. (9)), then, for x1 + 2 < S1 and

x2 + 1 < S2:

(G1 +G2)f(x1, x2 + 1) + (G1 +G2)f(x1 + 2, x2)

= (S1 − x1 − 2)
[
f(x1 + 1, x2 + 1) + f(x1 + 3, x2)

]
+ 2f(x1 + 1, x2 + 1)

+ x1

[
f(x1, x2 + 1) + f(x1 + 2, x2)

]
+ 2f(x1 + 2, x2)

+ (S2 − x2 − 1)
[
f(x1, x2 + 2) + f(x1 + 2, x2 + 1)

]
+ f(x1 + 2, x2 + 1)

+ (x2 + 1)
[
f(x1, x2 + 1) + f(x1 + 2, x2)

]
− f(x1 + 2, x2).

2



Now we use that f is SuperC(1, 2), and apply this to the terms between brackets. This gives

(G1 +G2)f(x1, x2 + 1) + (G1 +G2)f(x1 + 2, x2)

≥ (S1 − x1 − 2)
[
f(x1 + 2, x2) + f(x1 + 2, x2 + 1)

]
+ 2f(x1 + 1, x2 + 1)

+ x1

[
f(x1 + 1, x2) + f(x1 + 1, x2 + 1)

]
+ 2f(x1 + 2, x2)

+ (S2 − x2 − 1)
[
f(x1 + 1, x2 + 1) + f(x1 + 1, x2 + 2)

]
+ f(x1 + 2, x2 + 1)

+ (x2 + 1)
[
f(x1 + 1, x2) + f(x1 + 1, x2 + 1)

]
− f(x1 + 2, x2)

= (S1 − x1 − 1)f(x1 + 2, x2) + (x1 + 1)f(x1 + 1, x2)

+ (S1 − x1 − 1)f(x1 + 2, x2 + 1) + (x1 + 1)f(x1 + 1, x2 + 1)

+ (S2 − x2)f(x1 + 1, x2 + 1) + x2f(x1 + 1, x2)

+ (S2 − x2 − 1)f(x1 + 1, x2 + 2) + (x2 + 1)f(x1 + 1, x2 + 1)

= (G1 +G2)f(x1 + 1, x2) + (G1 +G2)f(x1 + 1, x2 + 1).

The cases x1 + 2 = S1 and/or x2 + 1 = S2 are along the same lines.

(v) As MM = Supermod ∩ SuperC (cf. (11)), it directly follows from parts (iii) and (iv) that

G1 +G2 preserves MM. �

A.2. Proof of Lemma 2

Proof. (i) It is straightforward to check that if f is Decr(k), then Hijf is Decr(k), for (i, j), where

i = 1, 2, j = 1, 2, . . . , Ji, and k = 1, 2.

(ii) In order to prove that Hij preserves MM, we prove (cf. (11)) that it preserves Supermod,

SuperC(1, 2) and SuperC(2, 1) (cf. (8)–(10)) together, that is, given that f is Supermod, SuperC(1, 2)

and SuperC(2, 1), we show that Hijf is Supermod, SuperC(1, 2) and SuperC(2, 1) as well. We

show this for H1j ; then for Hj2 it follows by interchanging the numbering of the locations. Recall

that Supermod and SuperC(i, k) imply Conv(i) (cf. (6) and (7)).

The proofs come down to case checking: applying H1j to f(x) introduces a minimization over

three terms, so the sum of two gives a total of 3×3 = 9 possibilities, which we all check separately.

For this we use the trivial result:

a ≥ min{a, b}, ∀a, b ∈ R.

The proofs are given for x1 > 0, x2 > 0, but it is straightforward to check that they also hold for

the cases x1 = 0, x2 > 0, and x1 > 0, x2 = 0, and x1 = 0, x2 = 0.

Assume that f is Supermod, SuperC(1, 2) and SuperC(2, 1), which implies that f is also

Conv(1) and Conv(2). Below we prove that H1j , for all j ∈ J1, preserves (i) Supermod, (ii)

3



SuperC(1, 2), and (iii) SuperC(2, 1).

(i) Supermod

For x1 > 0, x2 > 0 :

H1jf(x1, x2) +H1jf(x1 + 1, x2 + 1)

= min
{
f(x1 − 1, x2), f(x1, x2 − 1) + PLT1j , f(x1, x2) + PEP1j

}
+ min

{
f(x1, x2 + 1), f(x1 + 1, x2) + PLT1j , f(x1 + 1, x2 + 1) + PEP1j

}
= min

{
f(x1 − 1, x2) + f(x1, x2 + 1), f(x1 − 1, x2) + f(x1 + 1, x2) + PLT1j ,

f(x1 − 1, x2) + f(x1 + 1, x2 + 1) + PEP1j , f(x1, x2 − 1) + PLT1j + f(x1, x2 + 1),

f(x1, x2 − 1) + PLT1j + f(x1 + 1, x2) + PLT1j , f(x1, x2 − 1) + PLT1j + f(x1 + 1, x2 + 1) + PEP1j ,

f(x1, x2) + PEP1j + f(x1, x2 + 1), f(x1, x2) + PEP1j + f(x1 + 1, x2) + PLT1j ,

f(x1, x2) + PEP1j + f(x1 + 1, x2 + 1) + PEP1j

}
.

It holds that:

f(x1 − 1, x2) + f(x1, x2 + 1) ≥ f(x1, x2) + f(x1 − 1, x2 + 1) (by (8)),

f(x1 − 1, x2) + f(x1 + 1, x2) + PLT1j ≥ 2 f(x1, x2) + PLT1j (by (6)),

f(x1 − 1, x2) + f(x1 + 1, x2 + 1) + PEP1j ≥ 2 f(x1, x2)− f(x1 + 1, x2) + f(x1 + 1, x2 + 1) + PEP1j

≥ f(x1, x2) + f(x1, x2 + 1) + PEP1j (by (6), resp. (8)),

f(x1, x2 − 1) + PLT1j + f(x1, x2 + 1) ≥ 2 f(x1, x2) + PLT1j (by (7)),

f(x1, x2 − 1) + PLT1j + f(x1 + 1, x2) + PLT1j ≥ f(x1, x2) + PLT1j + f(x1 + 1, x2 − 1) + PLT1j (by (8)),

f(x1, x2 − 1) + PLT1j + f(x1 + 1, x2 + 1) + PEP1j ≥ 2 f(x1, x2)− f(x1, x2 + 1) + PLT1j + f(x1 + 1, x2 + 1) + PEP1j

≥ f(x1, x2) + PLT1j + f(x1 + 1, x2) + PEP1j (by (7), resp. (8)),

f(x1, x2) + PEP1j + f(x1 + 1, x2 + 1) + PEP1j ≥ f(x1 + 1, x2) + PEP1j + f(x1, x2 + 1) + PEP1j (by (8)).
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This implies that:

H1jf(x1, x2) +H1jf(x1 + 1, x2 + 1)

≥ min
{
f(x1, x2) + f(x1 − 1, x2 + 1), 2 f(x1, x2) + PLT1j ,

f(x1, x2) + f(x1, x2 + 1) + PEP1j , f(x1, x2) + f(x1 + 1, x2 − 1) + 2PLT1j ,

f(x1, x2) + PLT1j + f(x1 + 1, x2) + PEP1j , f(x1 + 1, x2) + f(x1, x2 + 1) + 2PEP1j

}
≥ min

{
f(x1, x2), f(x1 + 1, x2 − 1) + PLT1j , f(x1 + 1, x2) + PEP1j

}
+ min

{
f(x1 − 1, x2 + 1), f(x1, x2) + PLT1j , f(x1, x2 + 1) + PEP1j

}
= H1jf(x1 + 1, x2) +H1jf(x1, x2 + 1).

(ii) SuperC(1,2)

For x1 > 0, x2 > 0 :

H1jf(x1 + 2, x2) +H1jf(x1, x2 + 1)

= min
{
f(x1 + 1, x2), f(x1 + 2, x2 − 1) + PLT1j , f(x1 + 2, x2) + PEP1j

}
+ min

{
f(x1 − 1, x2 + 1), f(x1, x2) + PLT1j , f(x1, x2 + 1) + PEP1j

}
= min

{
f(x1 + 1, x2) + f(x1 − 1, x2 + 1), f(x1 + 1, x2) + f(x1, x2) + PLT1j ,

f(x1 + 1, x2) + f(x1, x2 + 1) + PEP1j , f(x1 + 2, x2 − 1) + PLT1j + f(x1 − 1, x2 + 1),

f(x1 + 2, x2 − 1) + PLT1j + f(x1, x2) + PLT1j , f(x1 + 2, x2 − 1) + PLT1j + f(x1, x2 + 1) + PEP1j ,

f(x1 + 2, x2) + PEP1j + f(x1 − 1, x2 + 1), f(x1 + 2, x2) + PEP1j + f(x1, x2) + PLT1j ,

f(x1 + 2, x2) + PEP1j + f(x1, x2 + 1) + PEP1j

}

5



It holds that:

f(x1 + 1, x2) + f(x1 − 1, x2 + 1) ≥ f(x1, x2) + f(x1, x2 + 1) (by (9)),

f(x1 + 2, x2 − 1) + PLT1j + f(x1 − 1, x2 + 1) ≥ f(x1 + 1, x2 − 1) + f(x1 + 1, x2)− f(x1, x2)

+ PLT1j + f(x1 − 1, x2 + 1)

≥ f(x1 + 1, x2 − 1) + PLT1j + f(x1, x2 + 1) (by twice (9)),

f(x1 + 2, x2 − 1) + PLT1j + f(x1, x2) + PLT1j ≥ f(x1 + 1, x2 − 1) + PLT1j + f(x1 + 1, x2) + PLT1j (by (9)),

f(x1 + 2, x2 − 1) + PLT1j + f(x1, x2 + 1) + PEP1j ≥ f(x1 + 1, x2 − 1) + f(x1 + 1, x2)− f(x1, x2) + PLT1j

+ f(x1, x2 + 1) + PEP1j

≥ 2 f(x1 + 1, x2) + PLT1j + PEP1j (by (9), resp. (10)),

f(x1 + 2, x2) + PEP1j + f(x1 − 1, x2 + 1) ≥ f(x1 + 1, x2) + f(x1 + 1, x2 + 1)− f(x1, x2 + 1) + PEP1j

+ f(x1 − 1, x2 + 1)

≥ f(x1 + 1, x2) + f(x1, x2 + 1) + PEP1j (by (9), resp. (6)),

f(x1 + 2, x2) + PEP1j + f(x1, x2) + PLT1j ≥ 2 f(x1 + 1, x2) + PEP1j + PLT1j (by (6)),

f(x1 + 2, x2) + PEP1j + f(x1, x2 + 1) + PEP1j ≥ f(x1 + 1, x2) + PEP1j + f(x1 + 1, x2 + 1) + PEP1j (by (9)).

This implies that:

H1jf(x1 + 2, x2) +H1jf(x1, x2 + 1)

≥ min
{
f(x1, x2) + f(x1, x2 + 1), f(x1 + 1, x2) + f(x1, x2) + PLT1j ,

f(x1 + 1, x2 − 1) + f(x1, x2 + 1) + PLT1j , f(x1 + 1, x2 − 1) + f(x1 + 1, x2) + 2PLT1j ,

f(x1 + 1, x2) + f(x1, x2 + 1) + PEP1j , 2 f(x1 + 1, x2) + PLT1j + PEP1j ,

f(x1 + 1, x2) + f(x1 + 1, x2 + 1) + 2PEP1j

}
≥ min

{
f(x1, x2), f(x1 + 1, x2 − 1) + PLT1j , f(x1 + 1, x2) + PEP1j

}
+ min

{
f(x1, x2 + 1), f(x1 + 1, x2) + PLT1j , f(x1 + 1, x2 + 1) + PEP1j

}
= H1jf(x1 + 1, x2) +H1jf(x1 + 1, x2 + 1).

(iii) SuperC(2,1)

6



For x1 > 0, x2 > 0 :

H1jf(x1, x2 + 2) +H1jf(x1 + 1, x2)

= min
{
f(x1 − 1, x2 + 2), f(x1, x2 + 1) + PLT1j , f(x1, x2 + 2) + PEP1j

}
+ min

{
f(x1, x2), f(x1 + 1, x2 − 1) + PLT1j , f(x1 + 1, x2) + PEP1j

}
= min

{
f(x1 − 1, x2 + 2) + f(x1, x2), f(x1 − 1, x2 + 2) + f(x1 + 1, x2 − 1) + PLT1j ,

f(x1 − 1, x2 + 2) + f(x1 + 1, x2) + PEP1j , f(x1, x2 + 1) + PLT1j + f(x1, x2),

f(x1, x2 + 1) + PLT1j + f(x1 + 1, x2 − 1) + PLT1j , f(x1, x2 + 1) + PLT1j + f(x1 + 1, x2) + PEP1j ,

f(x1, x2 + 2) + PEP1j + f(x1, x2), f(x1, x2 + 2) + PEP1j + f(x1 + 1, x2 − 1) + PLT1j ,

f(x1, x2 + 2) + PEP1j + f(x1 + 1, x2) + PEP1j

}
.

It holds that:

f(x1 − 1, x2 + 2) + f(x1, x2) ≥ f(x1 − 1, x2 + 1) + f(x1, x2 + 1) (by (10)),

f(x1 − 1, x2 + 2) + f(x1 + 1, x2 − 1) + PLT1j ≥ f(x1 − 1, x2 + 1) + f(x1, x2 + 1)− f(x1, x2)

+ f(x1 + 1, x2 − 1) + PLT1j

≥ f(x1 − 1, x2 + 1) + f(x1 + 1, x2) + PLT1j (by twice (10)),

f(x1 − 1, x2 + 2) + f(x1 + 1, x2) + PEP1j ≥ f(x1 − 1, x2 + 1) + f(x1, x2 + 1)− f(x1, x2)

+ f(x1 + 1, x2) + PEP1j

≥ 2 f(x1, x2 + 1) + PEP1j (by (10), resp. (9)),

f(x1, x2 + 1) + PLT1j + f(x1 + 1, x2 − 1) + PLT1j ≥ f(x1, x2) + f(x1 + 1, x2) + 2PLT1j (by (10)),

f(x1, x2 + 2) + PEP1j + f(x1, x2) ≥ 2 f(x1, x2 + 1) + PEP1j (by (7)),

f(x1, x2 + 2) + PEP1j + f(x1 + 1, x2 − 1) + PLT1j ≥ f(x1, x2 + 1) + f(x1 + 1, x2 + 1)− f(x1 + 1, x2) + PEP1j

+ f(x1 + 1, x2 − 1) + PLT1j

≥ f(x1, x2 + 1) + PLT1j + f(x1 + 1, x2) + PEP1j

(by (10), resp. (7)),

f(x1, x2 + 2) + PEP1j + f(x1 + 1, x2) + PEP1j ≥ f(x1, x2 + 1) + f(x1 + 1, x2 + 1) + 2PEP1j (by (10)).
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This implies that:

H1jf(x1, x2 + 2) +H1jf(x1 + 1, x2)

≥ min
{
f(x1 − 1, x2 + 1) + f(x1, x2 + 1), f(x1 − 1, x2 + 1) + f(x1 + 1, x2) + PLT1j ,

f(x1, x2 + 1) + PLT1j + f(x1, x2), f(x1, x2) + f(x1 + 1, x2) + 2PLT1j ,

2 f(x1, x2 + 1) + PEP1j , f(x1, x2 + 1) + PLT1j + f(x1 + 1, x2) + PEP1j ,

f(x1, x2 + 1) + f(x1 + 1, x2 + 1) + 2PEP1j

}
≥ min

{
f(x1 − 1, x2 + 1), f(x1, x2) + PLT1j , f(x1, x2 + 1) + PEP1j

}
+ min

{
f(x1, x2 + 1), f(x1 + 1, x2) + PLT1j , f(x1 + 1, x2 + 1) + PEP1j

}
= H1jf(x1, x2 + 1) +H1jf(x1 + 1, x2 + 1).

�

A.3. Proof of Theorem 4

Proof. Consider a demand at stockpoint 1. For j ∈ J1, (x1, x2) ∈ S and u ∈ {0, 1, 2}, define

wj(u, x1, x2) :=


Vn(x1 − 1, x2) if u = 0,

Vn(x1, x2 − 1) + PLT1j if u = 1,

Vn(x1, x2) + PEP1j if u = 2,

(A.1)

where Vn(x1, x2) := ∞ if (x1, x2) /∈ S. Hence H1jVn(x1, x2) = minu∈{0,1,2} w
j(u, x1, x2). Define,

for u ∈ {0, 1, 2} and x1 ∈ {0, 1, . . . S1 − 1}, x2 ∈ {0, 1, . . . S2}:

∆wjx1
(u, x1, x2) := wj(u, x1 + 1, x2)− wj(u, x1, x2).

Then for each n ≥ 0, and for x2 > 0:

∆wjx1
(1, x1, x2)−∆wjx1

(0, x1, x2) = Vn(x1+1, x2−1)−Vn(x1, x2−1)−Vn(x1, x2)+Vn(x1−1, x2) ≥ 0

(as, by Theorem 3, Vn is SuperC(1, 2)), and:

∆wjx1
(2, x1, x2)−∆wjx1

(1, x1, x2) = Vn(x1+1, x2)−Vn(x1, x2)−Vn(x1+1, x2−1)+Vn(x1, x2−1) ≥ 0

(as Vn is Supermod). So, for x2 > 0, ∆wjx1
(u, x1, x2) is increasing in u:

∆wjx1
(2, x1, x2) ≥ ∆wjx1

(1, x1, x2) ≥ ∆wjx1
(0, x1, x2).
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This implies that, for every n ≥ 0, there exists a threshold for the inventory level x1, which

can depend on x2, say T din,1j(x2), from which on it is optimal to fulfill demands directly from

stock. Next there exists a threshold, say T ltn,1j(x2), such that T ltn,1j(x2) ≤ T din,1j(x2), from which

on (until T din,1j(x2) − 1) it is optimal to fulfill demands via a lateral transshipment, and on the

interval x1 = 0 up till T ltn,1j(x2) − 1 an emergency procedure is optimal. Hence, if fn+1 is the

minimizing policy in (1), then fn+1 is a threshold policy. Note that the transition probability

matrix of every stationary policy is unichain (since every state can access (S1, S2)) and aperiodic

(since the transition probability from state (S1, S2) to itself is positive). Then, by Theorem 8.5.4

of Puterman (1994), the long run average costs under the stationary policy fn+1 converges to the

minimal long run average costs as n tends to infinity. Since there are only finitely many stationary

threshold policies, this implies that there exists an optimal stationary policy that is a threshold

type policy.

For x2 = 0, lateral transshipments (u = 1) are not possible, and we have, for each n ≥ 0:

∆wjx1
(2, x1, 0)−∆wjx1

(0, x1, 0) = Vn(x1 + 1, 0)− Vn(x1, 0)− Vn(x1, 0) + Vn(x1 − 1, 0) ≥ 0,

(as Vn is Conv(1)). Hence ∆wjx1
(2, x1, 0) ≥ ∆wjx1

(0, x1, 0), and so, for the special case x2 = 0,

there exists only one threshold. By the analogous reasoning as for x2 > 0, it follows that there

exists a T di1j (0) (which is equal to T lt1j(0)). As it is only possible to deliver directly from stock if

x1 ≥ 1, it follows that T di1j (0) ≥ 1.

By interchanging the numbering of the stockpoints, the analogous result for stockpoint 2

directly follows. �

A.4. Proof of Theorem 5

Proof. Analogously to the proof of Theorem 4, consider a demand at stockpoint 1, and define:

∆wjx2
(u, x1, x2) := wj(u, x1, x2 + 1)− wj(u, x1, x2),

where wj(u, x1, x2) is as defined in (A.1). Then for each n ≥ 0, and for x1 > 0:

∆wjx2
(0, x1, x2)−∆wjx2

(1, x1, x2) = Vn(x1−1, x2+1)−Vn(x1−1, x2)−Vn(x1, x2)+Vn(x1, x2−1) ≥ 0

(as, by Theorem 3, Vn is SuperC(2, 1)), and:

∆wjx2
(2, x1, x2)−∆wjx2

(0, x1, x2) = Vn(x1, x2+1)−Vn(x1, x2)−Vn(x1−1, x2+1)+Vn(x1−1, x2) ≥ 0
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(as Vn is Supermod). Hence, for x1 > 0:

∆wjx2
(2, x1, x2) ≥ ∆wjx2

(0, x1, x2) ≥ ∆wjx2
(1, x1, x2).

Analogously to the reasoning in the proof of Theorem 4, it now follows that, for n to infinity, there

exist two thresholds T̂ di1j (x1) and T̂ lt1j(x1), where T̂ di1j (x1) ≤ T̂ lt1j(x1), such that from T̂ lt1j(x1) lateral

transshipments are optimal, from T̂ di1j (x1) to T̂ lt1j(x1) − 1 direct delivering from stock is optimal,

and from 0 to T̂ di1j (x1)− 1 emergency procedures are optimal.

For x1 = 0, directly satisfying a demand from stock (u = 0) is not possible, and we have, for

each n ≥ 0:

∆wjx2
(2, 0, x2)−∆wjx2

(1, 0, x2) = Vn(0, x2 + 1)− Vn(0, x2)− Vn(0, x2) + Vn(0, x2 − 1) ≥ 0,

(as Vn is Conv(2)). Hence ∆wjx1
(2, 0, x2) ≥ ∆wjx1

(1, 0, x2), and so, for the special case x1 = 0,

there exists only one threshold: T̂ lt1j(0) (which is equal to T̂ di1j (0)). As it is only possible to apply

a lateral transshipment if x2 ≥ 1, it follows that T̂ lt1j(0) ≥ 1.

By interchanging the numbering of the stockpoints, the analogous result for stockpoint 2

directly follows. �

A.5. Proof of Lemma 8

Proof. We can use the following:

Assuming J1 ≥ 2, let j1, j2 ∈ J1, such that j1 ≤ j2. The following results hold for x1 ∈

{0, 1, . . . S1}, x2 ∈ {0, 1, . . . S2}, and each n ≥ 0:

a)
(
wj1(2, x1, x2)− wj1(0, x1, x2)

)
−
(
wj2(2, x1, x2)− wj2(0, x1, x2)

)
= PEP1j1 − P

EP
1j2 ≥ 0,

by assumption;

b)
(
wj1(1, x1, x2)− wj1(0, x1, x2)

)
−
(
wj2(1, x1, x2)− wj2(0, x1, x2)

)
= PLT1j1 − P

LT
1j2 ≥ 0,

by assumption;

c)
(
wj1(2, x1, x2)−wj1(1, x1, x2)

)
−
(
wj2(2, x1, x2)−wj2(1, x1, x2)

)
=
(
PEP1j1 −P

LT
1j1

)
−
(
PEP1j2 −P

LT
1j2

)
≥ 0,

given that this ordering holds, and otherwise the other way around. �

A.6. Proof of Theorem 9

Proof. We prove part 1a). Part 1b) then directly follows by interchanging the stockpoints, and 2)

is a trivial consequence of 1a) and 1b).
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For 1a), we prove that a∗1(1, x2) = 0 for all x2 ∈ {0, 1, . . . , S2}, then it follows by Theorem 4

that T di1 (x2) = 1 for all x2. It suffices to prove that, for all n ≥ 0:

Vn(1, x2) + PEP1 ≥ Vn(0, x2), for x2 ∈ {0, . . . , S2}, (A.2)

Vn(1, x2 − 1) + PLT1 ≥ Vn(0, x2), for x2 ∈ {1, . . . , S2}. (A.3)

For S1 = 0 trivially T di1 (x2) = 1 for all x2, and for S1 > 0, S2 = 0 we only have to prove (A.2).

We prove the inequalities by induction, using that, by Theorem 3, Vn satisfies (4)–(10). For

V0 ≡ 0 both inequalities trivially hold. We first prove (i) the induction step of (A.2), then (ii) that

of (A.3), both for S1 > 0. All given inequalities hold by the induction hypothesis, unless stated

otherwise.

(i) Assume that (A.2) holds for a given n (induction hypothesis), and let S1 > 0. We have to

show that Vn+1(1, x2) + PEP1 ≥ Vn+1(0, x2). The left-hand side can be written as

λ1
ν

[H1 Vn(1, x2) + PEP1 ] +
λ2
ν

[H2 Vn(1, x2) + PEP1 ]

+
µ

ν
[G1 Vn(1, x2) + (S1 − 1)PEP1 ] +

µ

ν
[G2 Vn(1, x2) + S2 P

EP
1 ] +

µ

ν
PEP1 ,

since ν = λ1 + λ2 + µS1 + µS2. Here, the term PEP1 has been distributed such that each of the

four expressions in brackets (for the operators H1, H2, G1, and G2) can be considered separately.

For x2 = 0:

H1Vn(1, 0) + PEP1 = min{PEP1 + Vn(0, 0), 2PEP1 + Vn(1, 0)}

≥ min{PEP1 + Vn(0, 0), PEP1 + Vn(0, 0)}

= PEP1 + Vn(0, 0) = H1Vn(0, 0);

and for x2 ∈ {1, 2, . . . , S2}:

H1Vn(1, x2) + PEP1 = min{PEP1 + Vn(0, x2), PEP1 + PLT1 + Vn(1, x2 − 1), 2PEP1 + Vn(1, x2)}

≥ min{PLT1 + Vn(0, x2 − 1), PEP1 + Vn(0, x2)} = H1Vn(0, x2).

For x2 = 0:

H2Vn(1, 0) + PEP1 = min{PEP1 + PLT2 + Vn(0, 0), PEP1 + PEP2 + Vn(1, 0)}

≥ min{PEP1 + PLT2 − PEP2 +H2Vn(0, 0), H2Vn(0, 0)}

= H2Vn(0, 0) + min{PEP1 + PLT2 − PEP2 , 0};
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and for x2 ∈ {1, 2, . . . , S2}:

H2Vn(1, x2) + PEP1 = min{PEP1 + Vn(1, x2 − 1), PEP1 + PLT2 + Vn(0, x2), PEP1 + PEP2 + Vn(1, x2)}

≥ min{Vn(0, x2 − 1), PEP1 + PLT2 + Vn(0, x2), PEP2 + Vn(0, x2)}

≥ H2Vn(0, x2) + min{PEP1 + PLT2 − PEP2 , 0},

as H2Vn(0, x2) = min{Vn(0, x2 − 1), PEP2 + Vn(0, x2)}.

For the operator G1 we obtain:

G1Vn(1, x2) + (S1 − 1)PEP1 = (S1 − 1)Vn(2, x2) + Vn(1, x2) + (S1 − 1)PEP1

= (S1 − 1)[Vn(2, x2)− Vn(1, x2)] + S1Vn(1, x2) + (S1 − 1)PEP1

≥ (S1 − 1)[Vn(1, x2)− Vn(0, x2)] + S1Vn(1, x2) + (S1 − 1)PEP1

≥ S1Vn(1, x2) = G1Vn(0, x2),

where the first inequality holds as Vn is Conv(1) (cf. Theorem 3).

For x2 ∈ {0, 1, . . . , S2 − 1} we obtain:

G2Vn(1, x2) + S2P
EP
1 = (S2 − x2)Vn(1, x2 + 1) + x2Vn(1, x2) + S2P

EP
1

≥ (S2 − x2)Vn(0, x2 + 1) + x2Vn(0, x2) = G2Vn(0, x2);

and for x2 = S2 trivially:

G2Vn(1, S2) + S2P
EP
1 = S2Vn(1, S2) + S2P

EP
1 ≥ S2Vn(0, S2) = G2Vn(0, S2).

Combining these give, for all x2 (recall ν = λ1 + λ2 + µS1 + µS2):

ν(Vn+1(1, x2) + PEP1 )

= λ1H1Vn(1, x2) + λ2H2Vn(1, x2) + µG1Vn(1, x2) + µG2Vn(1, x2) + ν PEP1

= λ1[H1Vn(1, x2) + PEP1 ] + λ2[H2Vn(1, x2) + PEP1 ] + µ[G1Vn(1, x2) + (S1 − 1)PEP1 ]

+ µ[G2Vn(1, x2) + S2P
EP
1 ] + µPEP1

≥ λ1H1Vn(0, x2) + λ2[H2Vn(0, x2) + min{PEP1 + PLT2 − PEP2 , 0}] + µG1Vn(0, x2)

+ µG2Vn(0, x2) + µPEP1

= νVn+1(0, x2) + λ2 min{PEP1 + PLT2 − PEP2 , 0}+ µPEP1

≥ νVn+1(0, x2), (A.4)

12



where the last inequality holds by condition (12), since that can be rewritten as

λ2 [PEP1 + PLT2 − PEP2 ] + µPEP1 ≥ 0.

This completes the induction step, and hence (A.2) holds for all n ≥ 0.

(ii) Assume that (A.3) holds for a given n (induction hypothesis), and let S1, S2 > 0. We

consider the operators H1, H2 and G1 +G2 separately:

For x2 ∈ {2, . . . , S2}:

H1Vn(1, x2 − 1) + PLT1

= min{PLT1 + Vn(0, x2 − 1), 2PLT1 + Vn(1, x2 − 2), PLT1 + PEP1 + Vn(1, x2 − 1)}

≥ min{PLT1 + Vn(0, x2 − 1), PEP1 + Vn(0, x2)} = H1Vn(0, x2);

and for x2 = 1:

H1Vn(1, 0) + PLT1

= min{PLT1 + Vn(0, 0), PLT1 + PEP1 + Vn(1, 0)}

≥ min{PLT1 + Vn(0, 0), PEP1 + Vn(0, 1)} = H1Vn(0, 1).

For x2 ∈ {2, . . . , S2}:

H2Vn(1, x2 − 1) + PLT1

= min{PLT1 + Vn(1, x2 − 2), PLT1 + PLT2 + Vn(0, x2 − 1), PLT1 + PEP2 + Vn(1, x2 − 1)}

≥ min{Vn(0, x2 − 1), PEP2 + Vn(0, x2)} = H2Vn(0, x2);

and for x2 = 1:

H2Vn(1, 0) + PLT1

= min{PLT1 + PLT2 + Vn(0, 0), PLT1 + PEP2 + Vn(1, 0)}

≥ min{Vn(0, 0), PEP2 + Vn(0, 1)} = H2Vn(0, 1).
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For x2 ∈ {1, . . . , S2 − 1}:

(G1 +G2)Vn(1, x2 − 1) + (S1 + S2)PLT1

= (S1 − 1)Vn(2, x2 − 1) + Vn(1, x2 − 1)

+ (S2 − x2 + 1)Vn(1, x2) + (x2 − 1)Vn(1, x2 − 1) + (S1 + S2)PLT1

= (S1 − 1)[Vn(2, x2 − 1)− Vn(1, x2)] + (S1 − 1)Vn(1, x2) + Vn(1, x2 − 1)

+ (S2 − x2)[Vn(1, x2)− Vn(0, x2 + 1)] + Vn(1, x2) + (S2 − x2)Vn(0, x2 + 1)

+ x2[Vn(1, x2 − 1)− Vn(0, x2)]− Vn(1, x2 − 1) + x2Vn(0, x2) + (S1 + S2)PLT1

≥ (S1 − 1)[Vn(1, x2 − 1)− Vn(0, x2)] + S1Vn(1, x2)

+ (S2 − x2)[Vn(1, x2)− Vn(0, x2 + 1)] + (S2 − x2)Vn(0, x2 + 1)

+ x2[Vn(1, x2 − 1)− Vn(0, x2)] + x2Vn(0, x2) + (S1 + S2)PLT1

≥ S1Vn(1, x2) + (S2 − x2)Vn(0, x2 + 1) + x2Vn(0, x2) + PLT1

= (G1 +G2)Vn(0, x2) + PLT1 ,

where the first inequality holds as Vn is SuperC(1,2) (cf. Theorem 3). For x2 = S2:

(G1 +G2)Vn(1, S2 − 1) + (S1 + S2)PLT1

= (S1 − 1)Vn(2, S2 − 1) + Vn(1, S2 − 1)

+ Vn(1, S2) + (S2 − 1)Vn(1, S2 − 1) + (S1 + S2)PLT1

= (S1 − 1)[Vn(2, S2 − 1)− Vn(1, S2)] + S1Vn(1, S2)

+ S2[Vn(1, S2 − 1)− Vn(0, S2)] + S2Vn(0, S2) + (S1 + S2)PLT1

≥ (S1 − 1)[Vn(1, S2 − 1)− Vn(0, S2)] + S1Vn(1, S2)

+ S2[Vn(1, S2 − 1)− Vn(0, S2)] + S2Vn(0, S2) + (S1 + S2)PLT1

≥ S1Vn(1, S2) + S2Vn(0, S2) + PLT1 = (G1 +G2)Vn(0, S2) + PLT1 ,

where the first inequality again holds as Vn is SuperC(1,2).

Combining these gives, for all x2 ∈ {1, . . . , S2}:

ν(Vn+1(1, x2 − 1) + PLT1 )

= λ1H1Vn(1, x2 − 1) + λ2H2Vn(1, x2 − 1) + µ(G1 +G2)Vn(1, x2 − 1) + ν PLT1

= λ1[H1Vn(1, x2 − 1) + PLT1 ] + λ2[H2Vn(1, x2 − 1) + PLT1 ] + µ[(G1 +G2)Vn(1, x2 − 1) + (S1 + S2)PLT1 ]

≥ λ1H1Vn(0, x2) + λ2H2Vn(0, x2) + µ(G1 +G2)Vn(0, x2) = νVn+1(0, x2),

which completes the induction step, and hence (A.3) holds for all n ≥ 0. �
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A.7. Proof of Theorem 10

Proof. We again prove only part 1a), as again part 1b) directly follows by interchanging the

stockpoints, and 2) is a trivial consequence of 1a) and 1b).

For 1a), we first show that condition (14) implies (12). Rewriting (14) gives λ2

λ2+µ
PEP2 ≤ PEP1 −

PLT1 . This implies λ2

λ2+µ
PEP2 ≤ PEP1 + λ2

λ2+µ
PLT2 (as both PLT1 and λ2

λ2+µ
PLT2 are nonnegative),

which is equivalent to (12). Hence, T di1 (x2) = 1 for all x2 ∈ {0, 1, . . . , S2}. Next, analogously to

the proof of Theorem 9, we prove that a∗1(0, 1) = 1; then it follows by Theorem 5 that T̂ lt1 (0) = 1.

By induction, we prove that, for all n ≥ 0:

Vn(0, 1) + PEP1 ≥ Vn(0, 0) + PLT1 . (A.5)

For V0 ≡ 0 this trivially holds.

Assume that (A.5) holds for a given n (induction hypothesis), and we consider the opera-

tors H1, H2, G1 and G2 separately:

H1Vn(0, 1) + PEP1 = min{PEP1 + PLT1 + Vn(0, 0), 2PEP1 + Vn(0, 1)}

≥ PEP1 + PLT1 + Vn(0, 0) = H1Vn(0, 0) + PLT1 ;

H2Vn(0, 1) + PEP1 = min{PEP1 + Vn(0, 0), PEP1 + PEP2 + Vn(0, 1)}

≥ min{PEP1 − PEP2 + PEP2 + Vn(0, 0), PEP2 + Vn(0, 0) + PLT1 }

= H2Vn(0, 0) + min{PEP1 − PEP2 , PLT1 },

as H2Vn(0, 0) = PEP2 + Vn(0, 0);

G1Vn(0, 1) + S1P
EP
1 = S1[Vn(1, 1)− Vn(1, 0) + Vn(1, 0) + PEP1 ]

≥ S1[Vn(0, 1)− Vn(0, 0) + Vn(1, 0) + PEP1 ]

≥ S1[Vn(1, 0) + PLT1 ] = G1Vn(0, 0) + S1P
LT
1 ,

where the first inequality holds as Vn is Supermod;

G2Vn(0, 1) + (S2 − 1)PEP1 = (S2 − 1)[Vn(0, 2)− Vn(0, 1) + PEP1 ] + S2Vn(0, 1)

≥ (S2 − 1)[Vn(0, 1)− Vn(0, 0) + PEP1 ] + S2Vn(0, 1)

= S2Vn(0, 1) + (S2 − 1)PLT1 = G2Vn(0, 0) + (S2 − 1)PLT1 ,

where the first inequality holds as Vn is Conv(2).

15



Combining these, using condition (14), gives, analogously to (A.4), the induction step, and

hence (A.5) holds for all n ≥ 0. �

A.8. Proof of Corollary 11

Proof. Either condition (12), or condition (15) holds (or both hold); and either condition (13),

or condition (14) holds (or both hold). These statements can be derived in the following way

(e.g. for the first one): (i) if condition (12) does not hold, then surely condition (15) holds; and

(ii) if condition (15) does not hold, then surely condition (12) holds. This follows by rewriting

the conditions: for (i) we have that if (12) does not hold, then PEP2 ≥ PLT2 + λ2+µ
λ2

PEP1 , but

this implies PEP2 ≥ PLT2 + λ1

λ1+µ
PEP1 (as λ2+µ

λ2
≥ 1, but λ1

λ1+µ
≤ 1), which is exactly (15); and

(ii) follows as λ1

λ1+µ
≤ 1 in (15), but 1 + µ

λ2
≥ 1 in (12). The analogous reasoning holds for

conditions (13) and (14).

Combined with the properties that (14) implies (12), and that (15) implies (13), this immedi-

ately leads to the statement of the corollary. �

A.9. Proof of Theorem 13

Proof. The following holds for G̃k:

Lemma 13.1. The operator G̃k, k = 1, 2, preserves each of the following properties:

(i) Decr; (ii) Conv and Decr(k); (iii) Supermod; (iv) SuperC and Conv(k + 1); (v) MM and

Conv(k + 1).

Here k + 1 should be read as k + 1 mod 2. So, (ii) states that if f is Conv and Decr(k), then

G̃kf is so as well. It follows that the valuefunction satisfies (4)–(10) for all n ≥ 0. The theorem is

a direct consequence of this. �

A.10. Proof of Lemma 13.1

Proof. We give the proofs for the operator G̃1. By interchanging the numbering of the locations,

the results directly follow for the operator G̃2 as well.

(i) It is straightforward to check that if f is Decr(1) (cf. (4)), then G̃1f is Decr(1) as well, and

if f is Decr(2) (cf. (5)), then G̃1f is Decr(2) as well. Combining this proves that G̃1 preserves

Decr.

(ii) Assume that f is Conv(1) (cf. (6)), then we show that G̃1f is Conv(1) as well. For

x1 + 2 < S1 this is straightforward to check, for the case x1 + 2 = S1 we need Decr(1):

G̃1(f(x1, x2) + f(x1 + 2, x2)) = f(x1 + 1, x2) + f(x1 + 2, x2)

≥ f(x1 + 2, x2) + f(x1 + 2, x2) = 2 G̃1f(x1 + 1, x2).
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The preservation of Conv(2) (cf. (7)) is again straightforward to check, and hence G̃1 preserves

Conv.

(iii) It is straightforward to check that if f is Supermod (cf. (8)), then G̃1f is Supermod as

well, hence G̃1 preserves Supermod.

(iv) It is straightforward to check that if f is SuperC(1,2) (cf. (9)), then G̃1f is SuperC(1,2)

as well, hence G̃1 preserves SuperC(1,2). Assume that f is SuperC(2,1) (cf. (9)), then we show

that G̃1f is SuperC(2,1) as well. For x1 + 1 < S1 this is straightforward to check, for the case

x1 + 1 = S1 we need Conv(2):

G̃1(f(x1, x2 + 2) + f(x1 + 1, x2)) = f(x1 + 1, x2 + 2) + f(x1 + 1, x2)

≥ f(x1 + 1, x2 + 1) + f(x1 + 1, x2 + 1)

= G̃1(f(x1, x2 + 1) + f(x1 + 1, x2 + 1)).

(v) By (11), this is a direct consequence of parts (iii) and (iv). �
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