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Abstract. Continuous deployment techniques support rapid deployment
of new software versions. Usually a new version is deployed on a limited
scale, its behavior is monitored and compared against the previously
deployed version and either the deployment of the new version is broad-
ened, or one reverts to the previous version. The existing monitoring
approaches, however, do not capture the differences in the execution be-
havior between the new and the previously deployed versions.
We propose an approach to automatically discover execution behavior
models for the deployed and the new version using the execution logs.
Differences between the two models are identified and enriched such that
spurious differences, e.g., due to logging statement modifications, are mit-
igated. The remaining differences are visualized as cohesive diff regions
within the discovered behavior model, allowing one to effectively analyze
them for, e.g., anomaly detection and release decision making.
To evaluate the proposed approach, we conducted case study on Nutch,
an open source application, and an industrial application. We discov-
ered the execution behavior models for the two versions of applications
and identified the diff regions between them. By analyzing the regions,
we detected bugs introduced in the new versions of these applications.
The bugs have been reported and later fixed by the developers, thus,
confirming the effectiveness of our approach.

Keywords: Continuous Deployment · DevOps · Execution Logs · Run-
time Flow Graph · Release Decision · Visualization

1 Introduction

Increasing speed of the changing priorities of customers causes many companies
to adopt continuous deployment [1][8][15][23]. A continuous deployment model is
crucial for service delivery business as it ensures that software services are always
in a releasable state, and changes are incremental. To ensure high quality release
in continuous deployment, the upcoming release is staged in production envi-
ronment using such strategies as blue-green deployment [13], dark launches [9],
canary release [13][26] and shadow testing [23], and its performance is monitored
[3][13] to quickly identify whether it is misbehaving [23][26].
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Sequence of templates (T1103 –
T1109) disappears and a set of new
templates appears in new version.
Undiscovered bug: [Nutch-2345]

Fig. 1: Differences between the execution behavior models of two versions of Nutch.
Vertices added in the new version are encircled twice, added edges–bold, deleted vertices
and edges–dashed. The analysis of differences allowed us to discover a bug that we
reported as NUTCH-2345. The bug was fixed by the Nutch developers.

Vast amount of data is logged during the execution of the new and previously
deployed software versions. Existing monitoring systems keep track of suspicious
events in logs (e.g., errors, warning messages, stack traces) and raise alerts.
However, such systems do not leverage the unstructured data captured in the
execution logs to efficiently derive and compare the dynamic behavior of the new
and the previously deployed versions in a holistic manner.

In this work, we present a novel approach to automatically detect discrep-
ancies in the fast evolving applications adopting continuous deployment. This is
achieved by identifying the differences in the behavior model of the previously
deployed and new version, derived by mining the execution logs.

2 Motivating Example: a Bug in Nutch

As part of an issue [NUTCH-1934]3 the class Fetcher counting ca. 1600 lines of
code is refactored to improve modularity. We took the version before and after
refactoring to identify differences between the two versions. We used Nutch to

3 https://issues.apache.org/jira/browse/NUTCH-1934
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crawl a set of URLs thus generating the execution logs for both the versions. We
map the generated execution logs to templates derived from the Nutch source
code using string matching. A subset of log lines was not mapped to any source
code template (that is, from third party library) and clustered using a combina-
tion of approximate and weighted edit distance clustering. Execution behavior
model is discovered automatically for each of the versions using the respective
templatized execution logs. Each vertex in the model corresponds to a unique
template. Using our automated approach, many diff regions are detected between
the two discovered models.

Fig. 1 presents one of the diff regions, i.e., deletion of a set of vertices
T1103–T1109 (represented as dashed) from class Fetcher.java and addition of
new vertices EXT0–EXT5 (double circled) from apparently third party library
(prefixed with EXT). We manually investigated this diff region and found that
the code fragment corresponding to templates T1103–T1109 has been moved
from Fetcher.java to FetchItemQueue.java4. Inspecting FetchItemQueue.java we
found that FetchItemQueues is used as logger instead of FetchItemQueue. Con-
sequently, the log messages from FetchItemQueue had a wrong class name, and
thus were not mapped to the corresponding source code logging statement and
treated as log statements from third party library (EXT0–EXT5).

This issue was introduced in Nutch 1.11 and fixed after we reported it5 in
Nutch 1.13. Using our approach, the issue would have been detected in the
version 1.11 itself. This highlights the potential of our approach for discovering
anomalies by analyzing automatically identified diff regions.

3 Proposed Approach
The proposed approach takes executions logs and source code for the deployed
and new version as starting points. Since our approach is targeted towards con-
tinuous deployment, access to both these artifacts can be assumed. The approach
leverages execution logs without instrumenting the code because instrumentation
overhead is not possible in a fast evolving production software [31]. Neverthe-
less, execution paths are successfully captured from the existing logs because in
practice, sufficient logging is done to facilitate runtime monitoring [6][16].

Our approach consists of three broad phases: template mining that maps
each line in execution logs to a unique template (Section 3.1), execution behavior
model mining that derives execution behavior models from the templatized logs
and refines the model using multimodal approach (Section 3.2), and analysis of
the model differences to identify the differences between the execution behavior
models and classify them into cohesive diff regions (Section 3.3).

3.1 Template Mining
A template is an abstraction of a logging statement in the source code consisting
of a fixed part and variable part (denoting parameters) [2][18]. Due to presence of

4 http://svn.apache.org/viewvc?view=revision&revision=1678281
5 https://issues.apache.org/jira/browse/NUTCH-2345
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{"classname": "fetcher.FetcherThread", 
"TemplatePattern": "redirectCount=*", 
"TemplateID": T858, 
"loggerLevel": "debug"}

1. Source code 2. Extracted templates

{"classname": "fetcher.FetcherThread", 
"TemplatePattern": "fetching * (queue crawl 
delay= *ms)", 
"TemplateID": T857, 
"loggerLevel": "info"}

3. Execution logs and their template mappings

2017-02-20 20:22:31,551 INFO  fetcher.FetcherThread 
[FetcherThread] - fetching http://www.primedeep.com/wp-json/  
(queue crawl delay=5000ms)

2017-02-20 20:22:31,551 DEBUG fetcher.FetcherThread 
[FetcherThread] - redirectCount=0

2017-02-20 20:22:32,466 WARN  robots.SimpleRobotRulesParser 
[FetcherThread] - Problem processing robots.txt for 
http://www.tigerbeat6.com/products-page/transaction-results/ {"classname": "robots.SimpleRobotRulesParser", 

"TemplatePattern": "Problem processing 
robots.txt for *”, 
"TemplateID": T859, 
"loggerLevel": "warn"}

Log statement #1

Log statement #2

classNameloggerLeveltimeStamp

Mapped to Template T857

classNameloggerLeveltimeStamp

Mapped to Template T858

Not Mapped to any Template

4. Clustering of third party log 
statements for template generation

Fig. 2: Given the source code (1) templates are extracted (2), and log lines are mapped
to them (3). Log lines from external libraries are clustered to create new templates (4).

parameters templates often manifest themselves as different log messages. Thus,
identifying the templates from the execution log messages has inherent challenges
[20]. If no source code is available, templates can be inferred by clustering log
messages [27][20]. However, often log messages from different logging statements
are clustered together, resulting in inaccurate templates. Since we have access
to source code, we extract templates using regular expressions (cf. Fig. 2).

Derive Templates from the Source Code: In this step the print statements
are identified from the source code along with the class name and severity level
(e.g., INFO, WARN and DEBUG) [6]. We search for the logging statements in
the source code using regular expressions with some enhancements to identify
ternary print statements and ignore commented logging statements in the source
code. As shown in Fig. 2, logging statement is parsed and represented as a regular
expression which is then assigned a unique template id. Class name and severity
level are also stored as additional information to disambiguate templates which
have identical invariant pattern but appear in different classes of the code.

While the complete source code is used to extract templates for the deployed
source code version, to extract the templates for the new version we only analyze
the diff between the two source code revisions as indeed, continuous deployment
encourages incremental changes. Not only is the extraction more efficient, this
also ensures that the unchanged templates between the two versions are rep-
resented by the same template ID. The main shortcoming of diff is that if a
logging statement is modified, it is represented in the diff as a combination of
addition and deletion, that will be interpreted as addition of a new template and
deletion of the old template. Thus, two execution behavior models will appear
different for the templates which are actually the same. Since modification of
logging statement is frequent [6][16], we address this shortcoming using a novel
multimodal approach for template merging and model refinement (Section 3.2).

Templatize Log Messages: In this step, template id is assigned to each log
line appearing in the execution logs, by matching with templates obtained from
the previous step. To reduce the search space for the match, class name and
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severity level (if included as part of the log messages) are used as additional
matching parameters (cf. Fig. 2). While regular expression matching can find
the matching template, log lines matching multiple templates, templates with
no fixed part and log lines generated by the third party libraries require special
treatment. If a log line matches more than one template it is mapped to the
most specific template, i.e., the template with the largest fixed part. If there is
one logging statement in a class without constant part then all the unmapped
log lines from that class with same logging level are mapped to it6. Finally, log
lines from external sources such as third party libraries for which we do not
have access to source code cannot be templatized as explained above. These
log lines are clustered using a combination of approximate clustering [20] and
weighted edit distance similarity [10]. Each cluster generated after the refinement
is represented as a template and is assigned a unique template ID. Thereafter,
non-templatized log lines are matched with the templates derived from clustering
step such that all the log lines are assigned a unique template id.

3.2 Mining Execution Behavior Model using Multimodal Approach

Execution Behavior Model (EBM) is a graphical representation of the templa-
tized execution logs capturing the relationship between the templates. Each ver-
tex in the model corresponds to a unique template and the edges represent the
flow relationship between the templates. Since template represents a logging
statement from the code, EBM captures a subset of possible code flows.

Accuracy of identified diff regions directly depends on the accuracy of the
EBM mining which in turn depends on the accuracy of the template mining.
As discussed in Section 3.1, the execution logs are templatized with high preci-
sion using source code. However, for log lines being generated from third party
libraries we had to resort to the clustering based technique which has inher-
ent limitations. This limits the template mining accuracy and consequently the
accuracy of EBM mining. This is even more apparent in the new version be-
cause only a limited amount of logs is available, which is a hindrance to accurate
mining [20]. Further, inconsistency in the templates because of the modified
log statements in source code being recorded as new templates leads to many
spurious differences between the compared models thus, making the diff analy-
sis practically less effective. To overcome this problem, we propose an iterative
EBM refinement strategy using multimodal signals that is, text and vicinity (i.e.
predecessors and successors in EBM) of the template.

Iterative execution behavior model refinement: We derive execution be-
havior model for the deployed, EBMd and the new version, EBMn using corre-
sponding templatized execution logs. We compare EBMd and EBMn to identify
the vertices which are present in EBMn but not in EBMd (that is, 4Tadd) and
vice-versa, i.e. 4Tdel. It is possible that the vertex from 4Tadd set is actually
same as the vertex from set4Tdel but captured as different template as discussed

6 The case with multiple such statements is very rare and hence does not affect our approach.
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T0 T3

T2

T4 T5T6

T0 T’3

T1

T7

T6 T’4 T5

T’2

T0 T’3T7

T6 T’4 T5

T2

T0T7

T6 T4 T5

T2

1. Discovered EBMd 2. Discovered EBMn 3. After Iteration 1: EBMn

textsim(T4, T’4) > Sth
vicsim(T4, T4) < Vth

textsim(T3, T’3) > Sth
vicsim(T3, T’3) < Vth

textsim(T2, T’2) > Sth
vicsim(T2, T’2) > Vth

4. After Iteration 2: 
Refined EBMn

T’3

T1 T1 T1

textsim(T3, T’3) > Sth
vicsim(T3, T’3) < Vth

textsim(T4, T4) > Sth
vicsim(T4, T4) > Vth

Fig. 3: Iterative multimodal execution behavior model refinement

above. We identify and resolve such cases using proposed multimodal approach
thus, reducing the spurious diff and making the comparison more effective.

One of the multimodal signals that we use is textual similarity between the
templates from 4Tdel and 4Tadd. If there are m templates in 4Tdel and n tem-
plates in 4Tadd then similarity is calculated between m×n pairs. The pairs with
textual similarity above a threshold are captured as potential merge candidates.
We do not merge the templates simply based on text similarity because there can
be two textually similar templates corresponding to different logging statements
in the code. Hence, to improve the precision, we evaluate the similarity for one
more modality, i.e., vicinity similarity, where vicinity is the set of predecessors
and successors. If the vicinity similarity is above a threshold, the templates are
marked as identical. Thresholds for textual similarity and vicinity similarity can
be selected based on grid search and fine tuned to project requirements [20].

We continue the process iteratively with each step leading to a more refined
EBMn. With every iteration some of the vertices are marked as identical which
in turn can change the value of vicinity similarity for other candidate pairs. We
stop the iterations when no more candidate pairs can be merged and the EBMn

output of subsequent steps no longer changes.

Example 1. Consider the EBMs shown in Fig. 3. By comparing EBMd and
EBMn, we observe that 4Tdel = {T2, T3, T4} and 4Tadd = {T ′2, T ′3, T ′4}. We
calculate text similarity for all the nine pairs and find the potentially similar
candidate set, C = {(T2, T ′2), (T3, T ′3), (T4, T ′4)}. Vicinity similarity is checked for
all the candidates and in first iteration vicinity similarity is above the threshold
only for one pair, (T2, T ′2) which is marked as identical and removed from C.
In the next iteration, the remaining pairs from C are analyzed for the vicinity
similarity which is found to be greater than the threshold for (T4, T ′4), which is
again marked as identical and removed from C. Only one pair, (T3, T ′3) is not
marked as same because its vicinity similarity is below threshold even though
the textual similarity is high. Consequently, diff set after EBMn refinement is
reduced to 4Tadd = {T ′3} and 4Tdel = {T3}.
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3.3 Analyzing Differences between Execution Behavior Models

Since EBMs are graphs identifying the differences between them can be seen
as the graph isomorphism problem [14], known to be in NP. However, since we
ensure the consistency in the template ID across the two models, the compar-
ison of two models is simplified. The refined models are compared to identify
the following differences: sets of vertices, 4diffv and edges, 4diffe which are
added/deleted, as well as the set of vertices for which the relative frequency of
outgoing transitions has changed 4diffdist in EBMn when compared to EBMd.
For efficient follow-up analysis, we group the identified differences into cohesive
regions such that the related differences are investigated as single unit.

Example 2. Deletion of T1103–T1109 and the corresponding edges, and addition
of EXT0–EXT5 and the corresponding edges in Fig. 1 are grouped together.

Vertex anchored region: Intuitively, we would like to find the maximum point
from which the difference in execution behaviors is observed and the minimum
point up to which there are differences in the execution behavior. For the differ-
ences with same maximum point, it is highly likely that they are caused due to
modification in same code, and, thus, should be investigated as a single unit.

A vertex, vi is randomly selected from 4diffv as a seed to detect the region.
We back traverse the graph till an unchanged ancestor (that is, vertex common
between the two models) is detected along all the paths to vi. All the vertices
and edges along the path (including unchanged ancestor) are marked as part
of the region. For all marked vertices, all the outgoing branches are traversed
and marked till an unchanged child vertex (that is, vertex common between the
two models) is detected. Unchanged child vertex is not included in the region
because the boundary of region is defined till the last difference in the included
path. Effectively, a region covering a set of vertices and edges is identified. The
process repeats as long as there remain unmarked vertices in 4diffv. At the end
of this step, all vertices from 4diffv and some edges from 4diffe are marked as
part of some region. We call these regions as vertex anchored regions.

Example 3. Consider Fig. 4 where 4diffv = {T0, T2, T3, T4, T6, T7, T8, T10} and
4diffe = {(T0, T11), (T1, T0), (T1, T4), (T1, T3), (T1, T2), (T1, T6), (T4, T5), (T3, T5),
(T2, T5), (T11, T6), (T6, T7), (T7, T11), (T10, T11), (T10, T9), (T9, T10), (T9, T8), (T8, T9),
(T8, T11), (T5, T1)}. We choose T7 as the first seed and back traverse its incoming
path (blue pointers) up to maximum unchanged vertices, i.e., {T1, T11}, marking
vertices {T7, T6, T1, T11} and edges {(T7, T6), (T6, T1), (T6, T11)}. Next, the out-
going branches are traversed (green pointers) till unchanged vertex is detected
and the corresponding vertices are marked. As a result, the light yellow region is
created consisting of Vr1 = {T0, T2, T3, T4, T6, T7} and Er1 = {(T0, T11), (T1, T0),
(T1, T4), (T1, T3), (T1, T2), (T1, T6), (T4, T5), (T3, T5), (T2, T5), (T11, T6), (T6, T7), (T7,
T11), (T5, T1)} from diffv and diffe respectively. For the next iteration we choose
T8 as a seed from the set of uncovered vertices in diffv and repeat the process
to identify another region. The second region becomes Vr2 = {T8, T9, T10} and
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seed2

T0

T1

T3

T5

T4 T2

T11

T6

T7

T10

T9

T8

T12 seed1

Fig. 4: There are two vertex anchored region (different shades of yellow) and one edge
between the unchanged vertices (blue). Blue pointers correspond to backtracking, and
green pointers depict forward tracking.

Er2 = {(T10, T11), (T10, T9), (T9, T10), (T9, T8), (T8, T9), (T8, T11)}. Hence, all the
vertices from diffv and a subset of diffe are grouped in one of the cohesive regions.

Edge anchored region: Not all edges from 4diffe belong to one of the vertex
anchored regions. These are mainly the edges added/deleted between unchanged
vertices and should be analyzed separately. We refer to each of these edges along
with its vertices as an edge anchored region.

Example 4. After detecting the vertex anchored regions in Fig. 4 only one edge
in 4diffe is unmarked. The only edge anchored region is hence Vr3 = {T1, T5}
and Er3 = {(T5, T1)}.

Distribution anchored region: Apart from the above two cases of structural
changes (addition or deletion of vertex or edge) in execution behavior model,
we investigate the vertices common in both the versions of the model to detect
the deviations in changes in the relative frequency of outgoing transitions. To
capture the distribution change, for a given vertex v and its outgoing transitions
common between the two models we compute |fd(i)−fn(i)|

fd(i) , where fd(i) (fn(i))
is a relative frequency of transition i in EBMd (EBMn) among the outgoing
transitions of v common between the two models. If the metric value is above
threshold for at least one transition from the vertex v, it is marked as distribution
anchored region. Threshold needs to be decided manually based on the project
requirements such that minor changes are discounted (that is, not considered as
part of the differences) and major changes are marked in the differences.
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Table 1: Properties for the two versions of Nutch application

Attribute Nutch
Ver 1 Ver 2

Classes 415 420
Total LOC 67658 67891
Logging statements in src 1098 1097
Total lines in execution log (approx) 94137 125695
Total [Info, Debug] 19K,73K 26K,98K
Total [Error,Warn] 408,178 354,604
Vertices in model 106 104
Edges in model 328 310

4 Evaluation: Open Source and Proprietary Applications

We evaluated our approach on two different applications: (i) Nutch7, an open
source web crawler, and (ii) an industrial log analytics application. We have
already shown some initial results on the Nutch project in Section 2 and discuss
the other findings here. Also all the artifacts such as execution logs, templatized
logs, execution behavior model and diff files are made publicly available for
reproducibility of the results8. Details of the industrial application cannot be
divulged for confidentiality reasons. We selected these applications primarily
because of the availability of the source code and historical data on bugs and
the corresponding fixes, as well as frequently occurring incremental changes in
these applications. Execution logs for these projects were not available so we use
a custom load-generator to generate logs for different source code versions.

4.1 Experimental Results for Nutch

Two Nutch versions were used: (i) before the commit for [NUTCH-1934], hence-
forth called version 1 (deployed/prod version) and (ii) after the commit for
[NUTCH-1934], henceforth called version 2 (new version). This commit is con-
sidered a major change as a big class, Fetcher.java (ca. 1600 lines of code) is refac-
tored into six classes. Table 1 presents details for two Nutch versions. We derive
the templates from the source code for version 1, henceforth called templatesv1.
To derive the templates for version 2, templatesv2, 46 templates are deleted, and
47 templates are added to templatesv1 in accordance with the code diff (here,
git-diff ) between the two code versions. We generate the execution logs for both
the versions by crawling same URLs (that is, mimic prod) and observe that
number of loglines generated for version 1 are less than that for version 2 (cf.
Table 1). The execution logs for version 1 and version 2 are templatized using
templatesv1 and templatesv2, respectively. Around 12% log lines are not templa-
tized, and hence are clustered. 80 clusters are obtained. The clusters are further

7 http://nutch.apache.org/
8 https://github.com/Mining-multiple-repos-data/Nutch-results
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refined and grouped using weighted edit distance reducing their number to 26.
Non-templatized log lines are matched with the templates generated after clus-
tering and every line in the execution log is templatized for both the versions.
We discover the execution behavior model (EBM) for both the versions, EBM1
and EBM2 and refine them using multimodal approach.

The behavior model shows that there are 53 added and 47 deleted vertices in
EBM2 as compared to EBM1. For every pair of the added and deleted vertices,
text similarity is calculated from the source code. The text similarity is found to
be above a threshold (here, 0.8) for 36 out of 2491 pairs and the corresponding
vicinity is compared in EBM1 and EBM2. Vicinity similarity is also found to be
above a threshold (that is, 0.5) for all the 36 candidate pairs. Thus, these vertices
are marked to be the same templates across the two EBMs. For better under-
standing, diff refinements file is made publicly available at the link8. As a result,
all the templates which are captured as new template because of refactoring got
mapped to the corresponding old templates reducing the number of differences
significantly. Refined EBM2 is compared with EBM1 to identify and analyze the
differences. The final refined model with diffs is made publicly available7.

We observe several differences which are grouped as cohesive regions using
approach discussed in Section 3.3.

We identified one region which is explained in Section 2. In the additional
region we observe (i) deletion of vertex corresponding to template “Using queue
mode : byHost” (though present in source code of both the versions), and (ii)
significant change in distribution of a vertex T1135 such that the edge T1135→
T1131 traversed only twice in EBM1 has been traversed 601 times in EBM2. Both
observations are related to FetcherThread.java which is investigated manually
and a bug is identified in the way URLs are redirected. Instead of following
the correct redirect link, the code was following the same link over and over
again. After the maximum number of retries is exceeded further processing of
the URL stopped with the message T1131 (“- redirect count exceeded *”), thus,
increasing frequency of this edge traversal. This bug has already been reported as
NUTCH-21249 and attributed to patch commit we are analyzing. This validates
the findings of our approach and highlights its usefulness. Therefore, using our
approach we not only detect differences but also provide the context to derive
actionable insights.

4.2 Experimental Results for the Industrial Application
The EBM generated automatically by our code is shown in Fig. 5 with annota-
tions. Grey denotes the part which is common in EBMd and EBMn, dashed is
the part which is present only in EBMd but not in EBMn, and bold edges/double
encircled correspond to the part which is present in EBMn but not in EBMd. We
selected two code revisions (referred to as v1 and v2) of the project such that it
captures different kinds of code changes possible in software development cycle.
As shown in the Fig. 5, our approach detected six different regions of change
between the two revisions, which we explain below.

9 https://issues.apache.org/jira/browse/NUTCH-2124
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Fig. 5: Annotated execution behavior model highlighting the regions of diff for internal
analytics application. Grey part is common in EBMd and EBMn, dashed is the part
which is present only in EBMd but not in EBMn, and bold edges/double encircled are
present in EBMn but not in EBMd

Region 1: T58 template is present in both the source code versions but is not
observed in EBMn. Manual inspection of the code and commit history reveals
that this is actually a bug caused due to faulty regular expression match and
hence one conditional statement is skipped completely.

Region 2: A shift in distribution between edges (EXT0, T1) and (EXT0, T2)
that is, increase in transition to T1 by factor of 8. Manual inspection reveals that
the cause of this anomaly is a wrong Boolean condition check, which caused the
distribution to be flipped between two conditional statements.

Region 3: Many new nodes appeared in EBMn because a new Java class is added
(identified in manual investigation) which gets invoked in the new version, i.e.,
this is an evolutionary design change. Addition of T0 however is not exactly
related to this change. It is from the class that invokes the new feature but was
added in Region 3 alongside the new class because of its close proximity.
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Region 4: It has only one change viz. the addition of edge T50 → T78 and an
accompanying decrease in the frequency of T76 → T78. Manual investigation
highlights that T78 corresponds to a new exception check added in the class
containing T50 thus whatever is not caught at T50 level is caught at T76.

Region 5: Main change is addition of node T40 and disappearance of nodes
T44 and T45. Both T44 and T45 are exception nodes which exist in both code
revisions while T40 is a new node. On manual inspection, it is revealed that this
change is actually a result of bug fix that is, for ArrayOutOfBounds exception.
This validates that the bug fix is working as intended.

Region 6: Two new nodes appeared in EBMn and investigation of revision history
reveals that a new function was added with two prints which is invoked just after
T51 in the code thus, an evolutionary change.
To summarize, our approach has successfully detected all seven regions of code
change between the two code revisions. It coalesced two of the regions (in Region
3) but this does not affect the usability of our approach as these regions are in
close proximity. Manual investigation of diff regions in EBM highlights regression
bugs as well as validates the evolutionary changes.

5 Discussion

Based on the project requirements, the information from the proposed approach
can be leveraged in different ways to help improve the continuous deployment
process. It provides additional insights (not to replace the existing practices) for
some of the use cases as discussed below:

– Go/No-go during Release Decision Making: Most software companies have
the concept of a go/no-go meeting before a production release where product,
development and operations managers get together to decide whether to go
ahead with the release of newer version or not. Our approach provides a way
to visualize differences between the code versions in a graphical way thus
being easily consumable for decision-making.

– Update Test Suite to Cover Modified Execution Flows: The proposed ap-
proach identifies region of differences between two execution behavior models
thus, merit for comprehensive review. Regression testing can be performed
for the diff regions instead of testing the whole application thus making
regression testing leaner and at the same time more reliable and effective.

– Optimal Test Suite Coverage: By looking at discovered execution flow graphs,
it is possible to identify the code paths which are frequently taken during
runtime, and tests can be designed intelligently. Hence ensure that more
frequent paths are tested rigorously using sophisticated techniques.

The approach assumes the presence of an identifier (i.e. thread ID) to capture
the trace for an execution. Since thread ID is often present in the execution logs
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[32], it is fair to make this assumption. When the identifier for an execution is
not present, execution behavior model can be mined using other techniques [20].

To keep our approach language independent and light weight, we do not use
static analysis techniques [19]. Also static analysis will not capture the complete
reality of execution behavior which gets influenced by prod configuration.

We mine the differences between the execution behavior models of two ver-
sions. However, we do not associate the differences with the change type such
as bug fixing or feature addition. This kind of classification will not only help in
quick resolution of bugs but will also act as an additional check to see if all the
release items have been properly taken care before signing off on deployment.

6 Threats to Validity

Threats to Construct Validity: It focuses on the relation between the theory
behind the experiment and the observation [29]. Performance of the approach
depends on the pervasiveness of logging hence, if less logging statements then
it may not be possible to derive useful inferences. However, given that logs are
primary source for problem diagnosis, sufficient logging statements are written
in the software [6].

Threats to External Validity: External validity is concerned with the gener-
alizability of the results to other settings [29]. We conducted experiments on
one open source and one proprietary project to illustrate the effectiveness of the
approach. However, both are Java based projects using Log4j library for logging
thus, very similar in terms of logging practice. While the approach does not make
any project specific assumptions, it is possible that the performance can vary
for different project characteristics. Accuracy of multimodal approach depends
on the thresholds and thus can vary across projects.

7 Related Work

Execution logs have been extensively studied in such contexts as anomaly de-
tection [4][20], identification of software components [24], component behavior
discovery[17], process mining [28], behavioral differencing [12], failure diagnosis
[25], fault localization [30], invariant inference [5], and performance diagnosis
[10][26]. In this section, we focus on automatic analysis of execution logs.

Goldstein et al. [12] analyze system logs, automatically infer Finite State Au-
tomata, and compare the inferred behavior to the expected behavior. However,
they work on system logs with predefined states while we identify these states
(templates) first. Moreover, they present the differences as independent units
whereas we group them together rendering the representation more usable.

Cheng et al. [7] propose to extract the most discriminative subgraphs which
contrast the program flow of correct and faulty execution. Fu et al. [10] derive a
Finite State Automata to model the execution path of the system and learn it to
detect anomalies in new log sequences. However, these are supervised approaches
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assuming the presence of ground truth for correct and faulty executions to learn
a model. Nandi et al. [20] detect anomalies by mining the execution logs in dis-
tributed environment however, anomalies are detected within the same version,
no differencing between the flow graphs of two versions.

Tarvo et al. [26] automatically compare the quality of the canary version with
the deployed version using a set of performance metrics such as CPU utilization
and logged errors however, do not detect the differences in execution flow which
is crucial for finding discrepancies. A set of techniques compare multiple versions
of an application. Ramanathan et al. [22] consider program execution in terms
of memory reads and writes and detect the tests whose execution behavior is
influenced by these changes. Ghanavati et al. [11] compare the behavior of two
software versions under the same unit and integration tests. If a test fails in
the new version, a set of suspicious code change is reported. This approach
works best when comprehensive test suites are available which is not the case in
considered Agile environment.

Beyond the specifics of the execution log analysis, our work can be positioned
in the context of continuous deployment. Continuous deployment can be seen
as an extension of continuous integration [33] and the following step on “the
stairway to heaven”, the typical evolution path for companies [21].

8 Conclusion and Future Work

We have presented an approach to efficiently highlight the differences in the exe-
cution behavior caused due to incremental changes in fast evolving applications.
We automatically discover execution behavior model using multimodal approach
for the deployed and the new version by mining the execution logs. The models
are compared to automatically identify the differences which are presented as
cohesive diff regions. Since we have used a graphical representation, we not only
identify diff regions but also the context to facilitate in-depth analysis.

Our preliminary evaluation on the open source project Nutch and internal
log analytics application illustrates the effectiveness of the approach. Using our
approach, we were able to detect multiple bugs introduced in new version for
both the applications. Following the analysis, we found that some of the detected
bugs were already reported in their issue tracking system therefore, we reported
the remaining ones which were later fixed by the developers.

As part of future work, we plan to evaluate the approach on several other
applications. Also we plan to automatically classify identified diff regions as
anomaly and drill down to the root cause commit(s) using revision history.
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